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ABSTRACT

It remains unquestionable that space-based technology is an indispensable component

of modern daily lives. Success or failure of space missions is largely contingent upon the

complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks

to contribute towards the search for simpler, efficacious and more reliable methodologies

and tools that accurately model and analyze space systems dynamics. Inopportunely, de-

spite the inimical physical hazards, space systems must endure a perturbing dynamical en-

vironment that persistently disorients spacecraft attitude, dislodges spacecraft from their

designated orbital locations and compels spacecraft to follow undesired orbital trajecto-

ries. The ensuingdynamics’ analyticalmodels are complexly structured, consisting of para-

metrically excited nonlinear systemswith external periodic excitations–whose analysis and

control is not a trivial task. Therefore, this dissertation’s objective is to overcome the lim-

itations of traditional approaches (averaging and perturbation, linearization) commonly

used to analyze and control such dynamics; and, further obtainmore accurate closed-form

analytical solutions in a lucid and broadly applicable manner. This dissertation hence im-

plements amulti-facetedmethodology that relies on Floquet theory, invariant centerman-

ifold reduction and normal forms simplification. At the heart of this approach is an in-

tuitive system state augmentation technique that transforms non-autonomous nonlinear

systems into autonomous ones. Two fitting representative types of space systems dynam-

ics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an ec-

centric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This

investigation demonstrates how to analyze the motion stability, chaos, periodicity and

resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation

behavior of the gravity gradient stabilized attitude motion. Control laws developed on
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transformed, more tractable analytical models show that; unlike linear control laws, non-

linear control strategies such as sliding mode control and bifurcation control stabilize the

intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a reg-

ular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly,

the outcomes obtained are unconventionally realized as closed-form analytical solutions

obtained via the comprehensive approach introduced by this dissertation.
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Chapter 1

INTRODUCTION

1.1 Motivation

Space technology plays an indispensable role inmany areas of our lives such as telecom-

munications, navigation, personal entertainment, weather forecasting, farming, security,

defense, scientific exploration, research, innovation etc. There are currently over 1,957

satellites in orbit around earth [1] providing such essential services to millions of people.

Moreover, over 42 space missions located beyond earth orbit [2] are currently underway

and numerous others planned for future launch. Undoubtedly, the prominence of space

technology in shaping humanity’s future is unequivocal. The success or failure of a given

space mission is largely contingent upon the complex system analysis and design method-

ologies exerted in converting the initial idea into an elaborate functioning enterprise [3].

It is for this reason that reliable and efficacious methodologies and tools are consistently

utilized in spacemission formulation and implementation. Thus, there is a need to contin-

uously examine the effectiveness of prevailing space mission analysis and design method-

ologies. This is in order to improve prevailing tools and approaches that shall expedite

relatively simpler, more reliable and accurate mission analytical modeling and analysis.

Space systems are required to function nominally in their designated orbital locations,

maintain appropriate orientation and conform toplanned trajectories despite the ambient

perturbing space environment. Strict mission pointing requirements normally constrain

spacecraft in orbit around a large body tomaintain a fixed stable orbital position and orien-

tation during operation. However, perturbing space-environment torques act to dislodge
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positioned spacecraft and disorient stabilized ones [4], [5]. Similarly, spacecraft injected

into deep space transit trajectories often require multiple mid-course corrections to offset

undue deviations from their planned trajectories caused by prevailing space-environment

disturbance torques or inherent inaccuracies in mission design methodologies [6]–[11].

Further, spacemission objectives often necessitate elaborate dynamical operations such as

rendezvous, docking, hovering, descent, sampling etc in hostile uncertain environments.

Modeling, analyzing and controlling dynamics of space systems is therefore a crucial com-

ponent of space mission design. The quest for relatively simpler, more accurate and more

reliable analytical methodologies and tools to represent, scrutinize andmanipulate the dy-

namics of space systems is therefore a worthwhile undertaking.

Inopportunely, dynamics of space systems tend to be commonly represented by

coupled analytical models that possess complex structures encompassing nonlinearity,

parameter-variant coefficients (parametric excitation) and external periodic excitation

terms [12]–[23]. Moreover, such analytical models normally encompass a large number

of ordinary differential equations (ODE). The requisite analysis essential to facilitate the

understanding of suchmotion is not a trivial undertaking–except for few special cases, the

general solution for such dynamical systems cannot be found. The intricate and complex

structures of these analytical models characteristically point to nondeterministic and po-

tentially chaotic systems over a range of initial conditions and system parameters. There-

fore, to analyze the space systems dynamical models, we often have to content with non-

autonomous, nonlinear and periodic differential equations [24], [25]. This presents an

immense analysis challenge. For instance, time-varying eigenvalues of the periodic linear

systemmatrix cannot determine the system stability. Consequently, methods such as; lin-

earization [26], averaging [27] and perturbations techniques [28], [29] have been consis-

tently used to analyze such complex nonlinear, periodic motion. However, the two latter
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approaches tend to be limited tominimally excited systems (parametermultiplying the pe-

riodic terms is small); while linearization is restricted to small domains about the operating

point. Further, suchmethods are inclined to be relatively cumbersome and normally aug-

mented with numerical approaches to analyze dynamical systems and accomplish real-life

applications [30]–[32].

Therefore, this dissertation intends to overcome the above limitations and further ob-

tain more accurate closed-form analytical solutions in a lucid and broadly applicable man-

ner. We shall hence implement a multi-faceted methodology that relies on;

• Floquet theory.

• Normal Form (NF) theory.

• Center manifold reduction.

• System States Augmentation.

At the heart of this approach is the intuitive system state augmentation that transforms

non-autonomous nonlinear dynamical systems to autonomous ones.

Fitting use of the aforementioned transformations and techniques, enables dynamical

systems analysis and control law development in transformed, parameter-invariant and

more tractable coordinates that preserve the original system’s Lyapunov stability and bi-

furcation properties [33], [34]. Consequently, we intend to exploit this propitious at-

tribute in our investigation. Applications of L-F transformations in spacecraft dynamics

have been previously investigated by authors such as [16], [35]. The former demonstrates

how L-F theory enhances the representation of relative spacecraft dynamics in elliptical

orbits; while the latter further proposes an orbit control law based on L-F theory.

The use of normal forms to investigate nonlinear systems with external periodic exci-

tation has been studied by several authors in literature. [36] present a direct methodol-

ogy that utilizes a ‘book-keeping’ parameter in conjunction with a set of time-dependent
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near-identity transformations to construct the system’s normal forms. The authors fur-

ther demonstrate how their approach is applicable to forced nonlinear systems with both

periodic and invariant coefficients. To analyze forced nonlinear systems, [37] augment

the differential equations modeling the dynamical systems by introducing new equation

variables and detuning parameters. Subsequently, normalization of the system with an

expanded dimension is shown. In his approach to normalize the forced oscillations of the

Duffing oscillator, [38] introduces an additional state variable to convert the system from

two-dimensional non-autonomous to three-dimensional autonomous system. A detun-

ing parameter is similarly included in this methodology to obtain the normal forms of the

forced nonlinear system. In the investigation of damped and close to resonance second-

order mechanical vibration problems by [39], the authors show that the near-identity

transformation is unaffected by the introduction of damping or forcing. Despite the

authors utilizing perturbation techniques with a detuning parameter, they show that a

book-keeping parameter is not required provided that forcing and damping are consid-

ered to be weak. In an earlier investigation, [40] utilize approaches equivalent to those by

authors such as [37] and [38] to investigate second-order nonlinear vibration problems

via normal forms. [41] show a relatively simpler approach detailing how normal forms

expedite nonlinear systems model order reduction via nonlinear normal modes (NNM)

to analyze the hardening/softening behavior in forced nonlinear structural systems. By

using normal forms, the authors avoid too severe truncation normally attributed to a sin-

gle mode of a nonlinear system. Subsequently, [42] improves the methodology in [41]

by considering damping effects in the MOR. The two foregoing investigations require a

small book-keeping parameter as well in their approach to obtain normal forms. [43] use a

similar approach to [41] and [42] to show that additional resonance terms do not increase

the accuracy of second-order normal formmethod.
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The foregoing methodologies encompass special strategies such as introduction of de-

tuning parameters, ‘book-keeping’ parameters, ad-hoc unsolved ODEs, ad-hoc new vari-

ables, etc. In general, the aggrandizement of the foregoing parameters seemingly lacks

consistent, plain and direct affiliation to the pertinent terms of the nonlinear equations.

Consequently, these formulations appear daunting, cumbersome and convoluted. More-

over, the mandatory ad-hoc parameters involved hinder seamless suitability of these ap-

proaches to broad applications over a wide range of nonlinear systems.

Therefore, as the novelty of our research; we shall formulate a relatively more direct

and simpler approach to obtain normal forms of nonlinear systems subjected to external

periodic excitation. Additionally, presence of external periodic excitation and/or periodic

coefficients in the system dynamics introduces unique challenges that render direct appli-

cation of the conventional nonlinear order reduction methodologies infeasible.

On the other hand several authors have applied varying techniques to obtain reduced

ordermodels of nonlinear systemswith external periodic excitation. For instance, stochas-

tic approaches such as Proper Orthogonal Decomposition (POD), for order reduction of

self-excited, time-periodic systems are found in [44]. Few other researchers such as [45]

and [46] proved the existence of Spectral Sub-manifolds (SSM) and their application for

model order reduction for structural analysis.

Using themethod ofmultiple scales to constructNNM, [47] augment the states to ad-

dress periodic forcing. However, this perturbations technique is only valid for small non-

linearities. [48] and [49] similarly employNNMto reduce the order of periodically excited

systems. The former includes solving partial differential equations (PDEs) via polynomial

expansion while the latter numerically solves the PDEs. A detailed review of application

of NNM for model reduction in mechanical systems is presented in [50].

The approaches presented by [51] and [52] avoid augmentation of the state-space and
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perform order reduction of periodically forced nonlinear systems with periodic and con-

stant coefficients via center manifold reduction. [51] treat the invariant manifold as time

modulated nonlinear functions of the dominant states which have a specific structure in

terms of temporal and spatial terms. Thework by [52] extends ideas of [53] and [51] in or-

der to improve modeling of secondary resonance with external periodic excitation. More-

over, [52] argue that; in general, state augmentation approach is not appealing for order

reduction of systems subjected to multi-frequency and/or parametric excitation. This is

because each augmented state has a corresponding single increase in the degree of freedom

(DOF) of the equivalent system. Therefore construction of invariant manifold could be

cumbersome and may invalidate the advantages of order reduction altogether.

As elucidated in the foregoing illustrative examples; several authors have presented dif-

ferent approaches to address theMORof nonlinear systems subjected to external periodic

excitation. Some of the presented approaches incorporate a means to augment the state

space by treating the forcing as an additional state (e.g. [47]), while others construct in-

variantmanifolds composed of temporal and spatial state variables (e.g. [51]). Depending

on the application, some approaches could be adapted as a generic methodology, whereas

others are limited to a narrow application.

However, here, we present an intuitive state space augmentation methodology that

simplifies model order reduction on the center manifold for nonlinear systems with ex-

ternal periodic excitation. Our methodology is applicable to parametrically excited and

constant coefficient nonlinear systems with external periodic forcing. Moreover, this ap-

proach can represent commensuratemultifrequency excitations in terms of the delineated

state corresponding to the fundamental frequency. In the case of incommensurate multi-

frequencies, the simplified methodology of reducing the order of periodically forced sys-

tem far outweighs the aggrandizement of states.
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To study the complex dynamics of space systems via the strategies above, we shall con-

sider twofitting representative types of space systemsdynamics, i)dynamics of a rigid body

about its center of mass (COM)while in an eccentric orbit around a central large mass, ii)

dynamics of a point mass in a non-uniformNewtonian force field. Respectively, we shall

therefore apply the aforementioned series approaches to analyze and control:

I. Attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit.

II. Spacecraft motion in the vicinity of irregularly shaped small bodies (ISSB).

1.2 Parametrically Excited Nonlinear Spacecraft DynamicsWith Periodic External Ex-

citation

In this section we introduce the two representative dynamical space systems charac-

terized by nonlinear models with parametric excitation and periodic external excitation.

We first describe the attitudemotion of a gravity gradient stabilized spacecraft followed by

spacecraft motion in the vicinity of irregularly shaped small bodies. The detailed descrip-

tion and dynamical models developments are respectively conducted in Chapters 3 and

5.

1.2.1 Attitude Motion of a Gravity Gradient Stabilized Spacecraft in an Eccentric Or-

bit

A number of strategies are employed to stabilize spacecraft attitude motion and main-

tain a desired orientation despite the presence of perturbing torques present in the space

environment. The most common attitude control and stabilization approaches are three-

axis stabilization, spin stabilization and gravity gradient stabilization. To provide the
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determined control input required to offset undesired attitude deviations, these methods

employ either active control systems (e.g. thrusters,magnetic torquers, reactionwheels) or

passive control systems (e.g. booms). Unlike passive controllers, active controllers utilize

an external source of energy to drive the attitude control actuators [31], [54].

Among the stated attitude stabilization methods, gravity gradient stabilization of

spacecraft attitude is attractive due to its relatively intrinsic simplicity, reliability and low

cost [55]. However, it is mostly feasible in low earth orbit due to its principle of operation

as discussed in chapter 3.

The motion about COM of a rigid gravity gradient stabilized spacecraft is libratory

about the pitch axis [56]. This axis is normal to the orbital plane in an inverse-square

gravity field. The satellite will oscillate about a position of stable relative equilibrium if

the work done by external perturbing forces is greater than the rotational kinetic energy.

The sufficient conditions for stability of relative equilibrium are explained in chapter 2.

The complete formulation of COM motion for a gravity gradient stabilized satellite in

eccentric orbit consists of six coupled, nonlinear second-order differential equations. This

system of equations is considered analytically unsolvable in closed form [13], [15], [57]–

[59].

1.2.2 Spacecraft Dynamics in the Vicinity of Irregularly Shaped Small Bodies

Since its onset, deep space exploration has been traditionally dominated by missions

to investigate ascertained planets of our solar system. Additionally, even missions to non-

planetary bodies have mostly targeted relatively sizable moons such as Ganymede, Titan,

Callisto, Io etc. These destinations remain comparable in size to small planets of the solar
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system. Conversely, a relatively meager number of missions (≈10%), have targeted aster-

oids, comets or other irregularly shaped bodies within the solar system [60].

Notably, a recent trend characterized by rising interest to explore ISSB of our solar sys-

tem has emerged within the space scientific community. Evidence of this surging affinity

is illustrated by the plethora of mission proposals targeting small bodies that dominated

entries in the recently concluded 2017 NASA’s Discovery Program competition. Over

half of the competing mission proposals sought to explore small bodies such as comets,

asteroids and small moons. In the end, two missions–PYSCHE and LUCY were selected

as winners [61]. Both missions will dispatch spacecraft to visit and investigate asteroids

(ISSB) in a quest to assist mankind unravel origins of the universe.

The aforementioned developments reveal a fervent interest within NASA and the

space scientific community at large to study small bodies in our solar system. Moreover,

numerous proposals of manned-missions to rocky small bodies similarly continue to be

formulated and deliberated upon. At the time of writing this dissertation, the OSIRIS-

REx spacecraft justwent into orbit around asteroidBennu. Thismissionhas set the record

for the smallest body ever orbited by a spacecraft [62]. Undoubtedly, exploration of small

bodies in the solar system has emerged to be a sustained priority undertaking for the space

science community.

To achieve the designated mission objectives, space systems investigating ISSB may be

required to execute a variety of close proximity rendezvous maneuvers such as hovering,

descent, orbiting, sampling etc. However, there exist inimitable complex challenges in the

themodeling, analysis and control of spacecraft dynamics in the vicinity of ISSB.These ex-

ceptional challenges stem from several distinctive factors such as; uncertainty in the small-

body mass and orbital parameters, irregularly shaped, weak gravitational forces, strong

susceptibility to 3rd-body and solar radiation pressure perturbations etc., [63]–[68]
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Therefore, the resulting spacecraft dynamics in the proximity of ISSB are modeled by

a large system of coupled astrodynamical ODEs that are nonlinear, parametrically excited

with external periodic excitations [22], [63], [69]–[74]. As previously noted, modeling,

analysis and control law development for such motion is not a trivial task given that the

dynamics equations are unsolvable in closed form. It is hence the intention of this disser-

tation to address this particular problem.

1.3 Dissertation Scope and Overview

Summarily, this dissertationmodels, analyzes and controls complex dynamics of space

systems. The analyticalmodels of the dynamical systemsunder considerationpossess com-

plex structures encompassing nonlinear differential equations with parameter-variant co-

efficients and periodic external excitation. Methods such as linearization, averaging and

perturbation techniques are commonly used to solve such complex dynamical systems.

However, due to the shortcomings inherent in these approaches; we shall utilize state aug-

mentation, L-F transformation and normal forms techniques in our methodologies. The

preferred methodologies are not subjected to the constraints and assumptions beleaguer-

ing the prevalent methodologies.

Two representative types of motions are considered–motion of a rigid body about its

COM in eccentric orbit, andmotion of a point mass in a gravity field due to an irregularly

shaped small body. As a result, the dissertation problem to be investigated is divided into

two major parts:

I. Firstly, our analysis of gravity gradient stabilized spacecraft attitude dynamics will

investigate the motion periodicity, quasi-periodicity and chaos. Moreover, the mo-

tion structural stability, resonances and bifurcation behavior will similarly be exam-
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ined. Requisite assumptions made to facilitate the attitude motion analyses will be

explicitly stated and qualified. Attitude motion analyses will be followed by synthe-

sis of suitable control laws that adequately offset the periodic and secular attitude

variations due to perturbing ambient environmental torques.

II. Secondly, we shall investigate periodicity, chaos, resonance and stability of the dy-

namical space system in the vicinity of irregularly shaped small bodies. We intend to

further demonstrate how the suitability of our proposed approach inmodeling and

analysis of the pertinent astrodynamics will similarly facilitate synthesis of appropri-

ate space systems motion controllers via conventional techniques. This is essential

in designing successful imperative mission maneuvers such as hovering, orbiting,

sampling, descent etc.

To study the problem of dynamics of space systems via Floquet theory, center mani-

fold reduction and normal forms, the remainder of this dissertation is segmented into six

chapters. Next, we briefly outline the fundamental objectives of each chapter.

Chapter 2 will present the details of themethodologies and strategies that this disserta-

tion will use to investigate space systems dynamics. The classical theories of normal forms,

center manifold reduction and Floquet theory will be summarized. After examining the

limitations of these methods in studying nonlinear systems with external periodic excita-

tion, this chapter will introduce the intuitive state augmentation and demonstrate how

to extend the Floquet theory, center manifold reduction and normal forms to the analy-

sis of parametrically excited nonlinear systems with external periodic excitation. We shall

validate the accuracy of the proposed techniques using numerous illustrative cases ofDuff-

ing’s andMathieu-Duffing equations.

Chapter 3 introduces the first part of this dissertation by characterizing the problem

of spacecraft gravity gradient attitude stabilization in eccentric orbit. After developing
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the dynamical model of this motion, we shall analyze the dynamic’s time-history, stabil-

ity, chaos and periodicity. Further, by investigating the versal deformation of the normal

forms, this chapter will scrutinize the bifurcation behavior of a gravity gradient stabilized

spacecraft in eccentric orbit.

Chapter 4 completes the first part of this dissertation by demonstrating variousmeans

to control the gravity gradient spacecraft. Because the planar pitch attitude motion of a

gravity gradient stabilized spacecraft is undesirable for nominal space mission operations,

this chapter will explore development strategies for linear and nonlinear control laws capa-

ble of stabilizing the spacecraft by countering the prevailing librations. Among the non-

linear control approaches to be applied are sliding mode control and bifurcation control

methods. The controller design will be conducted after the system has been transformed

from the original coordinates into more tractable forms via L-F transformation, state aug-

mentation and near identity transformation.

Chapter 5 will introduce the second part of this dissertation by characterizing the mo-

tion in the vicinity of irregularly shaped small bodies. After examing the unique challenges

associated with studying themotion in the vicinity of irregularly shaped small bodies, this

chapter will outline the significance of modeling the gravitation potential of an irregu-

larly shaped body and examine the main approaches used to model such a gravitational

potential. Using the second degree and order spherical harmonic gravitational model, the

dynamicalmodel in the vicinity of an irregularly shaped small body is developed here. Sub-

sequently, we shall study the time-history behavior, stability, periodicity and chaos of the

pertinent motion. The analysis will culminate in examining the shape and behavior of

orbits around the irregularly shaped small body.

Chapter 6 studies how to control the dynamics in the vicinity of the irregularly shaped

small body. This section demonstrates how the series of procedures in our approach i.e. L-
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F transformation, state augmentation, center manifold reduction and normal forms sim-

plification enable appropriate nonlinear control laws synthesis aimed at stabilizing our dy-

namics. The trajectories in the vicinity of irregularly shaped small bodies are erratic and

necessitate ameans to control them so that theymay be conducive to spacemission design.

Chapter 6will demonstrate how regular and periodic orbits that are favorable to spacemis-

sion design can be realized around irregularly shaped small bodies by using asteroid 4179

Toutatis as a case study.

Chapter 7 will constitute the concluding remarks, dissertation contributions to the

body of knowledge and future areas of research on this and related topics. We shall out-

line the contributions this dissertation has made by introducing the lucid and direct ap-

proaches of analyzing parametrically excited nonlinear systems with external periodic ex-

citation via center manifold reduction and normal forms. Then, we separately outline the

dissertation’s contributions in the gravity gradient attitude stabilization problem and in

themotion in the vicinity of irregularly shaped small bodies problem. Finally, wemake rec-

ommendations for future areas of research on the primary theme tackled by this research

and other closely related areas.

The dissertation road map culminating from the chapters as outlined above is hence

illustrated in the layout schematic shown in figure 1.
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Figure 1: Dissertation Road-map
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Chapter 2

METHODOF ANALYSIS

In general, Floquet theory and Lyapunov-Floquet transformation (LFT) techniques

in particular facilitate stability analysis of dynamical systems with periodic coefficients; fa-

cilitate solving parametrically excited nonlinear systems and help design full-state feedback

control laws. By introducing an intuitive state augmentation technique, we shall augment

these capabilities withModel Order Reduction (MOR) techniques and normal forms ap-

proaches in our methodology in this dissertation. MOR reduces the dimension of our

analytical models while normal forms simplify our nonlinear system into a more tractable

form. The intuitive system states augmentation essentially converts our non-autonomous

system into an autonomous which avails numerous advantages in our methodology as we

shall see. Subsequently, the emanating synergies from the cumulative application of these

techniques serve to accomplish the intended analysis of and control of parametrically ex-

cited nonlinear space systems dynamics with external periodic excitation.

To analyze the nonlinearmotion, we shall first transforms the linear parameter-varying

terms of the dynamics equations into parameter-invariant terms usingL-F transformation.

Then, we subsequently reduce the order of nonlinear terms into their respective simpler

normal forms using a near identity transformation. Motion periodicity, resonance and

chaos will be investigated in the original coordinates while Floquet theory will facilitate

stability analysis. Further, resonance analysis will be undertaken in the L-F transformed

coordinates. On the other hand, analyzing the versal deformation of the normal forms

will provide insights in to bifurcation behavior within the neighborhood of the critical

point. System state augmentation will facilitate normalization of the periodically excited
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Figure 2: Motion Analysis Sequence

system before constructing the versal deformations. Our approach to analyze this motion

is summarily illustrated in the schematic shown in figure 2.

Control law development on the other hand is carried out on dynamics that have been

subjected to L-F transformation, state-augmented, dimensional order-reduced and nor-

malized. This is because, the preceding steps transform the dynamical model into a more

tractable and conducive form for application of conventional control law synthesis. The

motion in the original coordinates consisting of parametric excitation, nonlinearity and

external periodic excitation does not readily lend itself to conventional control law synthe-

sis approaches. The control law synthesis sequence we shall follow in this dissertation is as

shown in figure 3.

We shall exploit the orthogonal properties of Chebyshev Polynomials to compute the

Lyapunov-Floquet transformation (LFT) matrix in closed form in addition to the pre-
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Figure 3: Motion Analysis and Control Law Development Sequence

requisite state transition matrix (STM) and Floquet transition matrix (FTM) as explicit

function of the varying parameter. Chebyshev polynomials are preferred because they

convert the emanating integral equations into amenable algebraic expressions and have

relatively better convergence properties. Elements of the LFT matrix and its inverse in

closed form are expressed in terms of truncated Fourier series with the orbit true anomaly,

f as the series independent parameter. The LFT matrix will be applied to transform the

linear periodic terms of the motion into linear parameter-invariant terms. Thereafter,

MOR will be utilized to reduce the model dimension and final normal forms simplifi-

cation will simplify the nonlinear terms into their simpler forms via a near-identity co-

ordinate transformations. Since the L-F transformed dynamics retain their original Lya-

punov stability and bifurcation characteristics [33], [34]; motion analysis and control can

still be safely undertaken on the transformed dynamics. The Lyapunov-Floquet andNor-

mal Form approaches stated above are similar to those proposed by [34], [36], [75], [76].

However, we shall extend these approaches and the invariantmanifold order reduction ap-
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proaches in a more lucid and straightforward manner to facilitate our research objectives

here. Back-transformation of our analyzed and controlledmotion via inverse near identity

transformation, inverse modal transformation and inverse L-F transformation will enable

the closed-form dynamical solutions to be presented in the original coordinates. Next,

we shall examine the theoretical backgrounds of themain approaches implemented in this

dissertation In doing so, we shall highlight the inherent limitations of thesemethodologies

and formulate techniques to overcome these limitations in a more straightforward and lu-

cid manner with broad application. Illustrative examples will also be used to verify the

accuracy of these proposed approaches.

2.1 Floquet Theory

Floquet theory enables stability and response analysis of linear systems with periodic

coefficients. This section summarizes Floquet theory presented in [77]. Using the knowl-

edge of characteristic exponents of STM; the theory infers that if the solution of a system

is obtained over a full principle period, then the solution is known for all time [77], [78].

Consider the periodic nonlinear system subjected to an external periodic excitation as be-

low,

ẋ(t) = A(t)x(t) + f(x, t) + F̃ (t), (2.1)

whereF (· ) constitutes nonlinear terms of fk(x,t) representing homogeneousmonomials

in xi of order k. F̃ (t) is the periodic forcing term. A(t) is periodic with a principal period

T . The linear part of equation (2.1) is given by

ẋ(t) = A(t)x(t), A(t) = A(t+ T ). (2.2)
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Based on Floquet theorem [77], each fundamental matrix Φ(t) of equation (2.2) can be

represented as a product of two n× nmatrices, i.e.

Φ(t) = Q(t)eBt, (2.3)

whereQ(t) = Q(t+T ) is a T-periodic matrix andB is a constant matrix. In generalQ(t)

andB are complex. Moreover, a realQ(t) with a period 2T has a corresponding realB

matrix in equation(2.3). Φ(t) is the nonsingular STM whose columns are a solution to

equation (2.2) such thatΦ(0) = I . Also,

Φ̇(t) = A(t)Φ(t),

Φ(t+ T ) = Φ(t)C,

Φ(T ) = Φ(0)C.


(2.4)

C is a nonsingular matrix. Then, it follows from the properties: Φ(t) andΦ(0) = I , that

Φ(T ) = C. (2.5)

Hence, knowledge of the STM enables the solution of unforced equation (2.2) to be writ-

ten as,

x(t) = Φ(t)x(0) = Q(t)eBtx(0), (2.6)

where x(0) is the initial state vector. For time greater than one period (t > T ), we have

x(t) = Φ(t+ nT )x(0) = Φ(t)[Φ(T )]nx(0), (2.7)

where t ∈ [0 , T ], n = 1, 2, 3, . . ..

Φ(T ) is called the Floquet TransitionMatrix (FTM) or themonodromymatrix. Equa-

tion (2.5) infers that if a solution is known throughout the principal period of time varia-

tions in the system, then the solution is known for all times. In order for the solution of

x(t) to be bounded for all time t, we conclude from equation (2.7) that all the eigenvalues
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ofΦ(T ) (= C) must have a magnitude, |ρk| ≤ 1. The eigenvalues of FTM are called the

Floquet or characteristic multipliers ρk and are generally complex (ρk = ρkk + iρkI). Each

ρk provides a measure of the local orbital divergence along a particular direction over one

principal period of the closed orbit of equation (2.2). We can also define the Floquet or

characteristic exponents; αk ± iβk as,

αk =
1

T
ln|ρk|,

βk =
1

T
arctan

(
ρkI
ρkk

)
.

 (2.8)

A periodic solution to (2.2) is asymptotically stable if there are no Floquet multipliers

outside the unit circle (|ρk| < 1, ∀k); and, it is unstable if one ormore Floquetmultipliers

lie outside the unit circle (k ∃ s.t., |ρk| > 1) [79]. The knowledge of FTM at the end of

one principal period is hence sufficient to determine the stability of the system.

Corollary:The Lyapunov-Floquet (L-F) transformation

x(t) = Q(t)z(t), (2.9)

reduces the original non-autonomous linear differential system given in equation (2.2) to

an autonomous one with of the form,

ż(t) = Rz(t). (2.10)

R is an n×n constant matrix. Further, by differentiating equation (2.9) and applying the

properties of Φ̇(t) and Q̇(t) it can be shown that,

ż(t) = Bz(t). (2.11)

Therefore in our notation B = R. Recall, B is the Floquet constant matrix given in

equation (2.3). The eigenvalues ofB are the Floquet exponents.
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2.2 Computation of Lyapunov-Floquet Transformation Matrix via Chebyshev Poly-

nomials

In order to compute theLFTmatrix,Q(t), the STM,Φ(t) associatedwith the periodic

linear system given in equation (2.2) has to be obtained first. To demonstrate the method-

ology of computing Q(t), we shall adapt the approach advanced by [75], [80]. In this

approach, the STM of a linear periodic system is evaluated in terms of shifted Chebyshev

polynomials of the first kind as an explicit function of time. Chebyshev polynomials are

chosen because they produce better approximation and convergence than other special or-

thogonal polynomials [81]. The enticing feature of this technique is that the special poly-

nomial functions decompose the original linear differential system into a system of linear

algebraic equations. Standard techniques can then be employed to solve the resulting alge-

braic equations assuming that convergence is achieved in the polynomial representation

of the solution.

This method expands both A(t) and the solution vector x(t) in terms of shifted

Chebyshev polynomials in the interval [0, T ] as illustrated in the equations below,

xi(t) ≈
s−1∑
r=0

birs
∗
r(t) ≡ s∗T (t)bi , i = 1, 2, 3, ..., n, (2.12)

A(t) =
s−1∑
r=0

dij
r s

∗
r(t) ≡ s∗T (t)dij , i, j = 1, 2, 3, ...,n, (2.13)

where bi = {bi0 bi1 ... bim−1}T : Unknown Chebyshev expansion coefficients of xi(t).

dij = {dij
0 dij

1 ... dij
m−1}T : Known Chebyshev expansion coefficients ofA(t).

And,

s∗r(t) = {s∗0(t) s∗1(t) s∗m−1(t)}: ShiftedChebyshevpolynomials of the first kind. Afterx(t)

andA(t) have been expanded in shifted Chebyshev polynomials of the first kind, we can

substitute them in the integral formof equation (2.2) to solve for the unknownChebyshev
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expansion coefficients b. Finding the STM of the system requires a set of solutions with

n initial conditions, i.e. xi(0) = (1, 0, 0..., 0), (0, 1, 0..., 0), (0, 0, 1, 0..., 0), (0, 0, 0..., 1).

Consequently, the STM valid for 0 ≤ t ≤ T (shifted Chebyshev polynomials are only

valid over the interval [0, T ] is given by,

Φ(t) = Ŝ(t)B̄, (2.14)

where Ŝ(t) = I ⊗ s∗T (t) , B̄ = [b̄1 b̄2 b̄3 ...b̄n] , Φ(0) = I and⊗ represents the Kro-

necker product. The STM for t > T is evaluated using Floquet theory and property of

Φ(t) given in equation (2.7)―see [34], [75] for detailed computation. OnceΦ(t) is ob-

tained, then from equation 16, the Lyapunov-Floquet transformation matrix is evaluated

asQ(t) = Φ(t)e−Bt. The constant matrixB is computed via matrix logarithm as,

B =
logmΦ(T )

T
. (2.15)

To findQ−1(t), firstΦ−1(t)must be evaluated. Instead of pursuing a brute inversion of

Φ(t) via symbolic programming language; it ismore feasible to consider the state transition

matrix; Γ(t) of the adjoint system to equation (2.2) as shown below [27],

ν̇ = −AT (t)ν(t). (2.16)

Then apply the relationship

Φ−1(t) = ΓT (t). (2.17)

From equation (2.3)Q(t) = Φ(t)e−Bt. Subsequently,

Q−1(t) = eBtΦ−1(t) = eBtΓT (t). (2.18)

The above approximation of LFT matrix via Chebyshev polynomials contains ele-

mentsQij(t)with truncated Fourier representations as shown in equation below,

Qij(t) ≈
a0
2

+

q∑
n=1

an cos
(
πnt

T

)
+

q∑
n=1

bn sin
(
πnt

T

)
. (2.19)
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Q−1
ij (t) has similar Fourier representation. Readers are directed to references cited in the

first paragraph of this section for complete details of this outlined approach to obtainΦ(t)

andQ(t)matrices.

2.3 Normal Forms

A significant segment of dynamical phenomena in engineering and physical sciences is

modeled via a system of nonlinear ordinary differential equations (ODEs) whichmay pos-

sess constant or varying coefficients. Moreover, these analytical models may also include a

periodic forcing term–further complicating the nonlinear systemmodel structure. Exam-

ples of such dynamical systems are common in domains such as space systems dynamics,

rotary craft dynamics, structural vibrations, etc. The complexmake-up of analytical mod-

els of such nonlinear systems renders their analysis and feedback control via conventional

methods a remarkably daunting endeavor. Consequently, appropriate techniques to sim-

plify and reduce the complexity of such intricate nonlinear analyticalmodels are a requisite

to comprehensively investigate, understand and manipulate their respective engendering

systems. Normal forms simplification facilitates construction of relatively lesser complex,

but qualitatively equivalentmodels of the original nonlinear dynamical systems. This sim-

plification is generally implemented on equations arising fromTaylor series expansion via

the successive application of nonlinear near-identity transformations. Such a transforma-

tion entails preservation of the original system’s stability and bifurcation characteristics

by the transformed models.

Origins of the normal form theory can be traced back to the work by [82]. Later, ad-

ditional authors such as [83], [84], [85], [38], [86], [87], [88] (to mention a few) have

conducted further investigations into the theory. Normal form is a local coordinate trans-
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formation technique that spawns simplified models that are topologically equivalent to

the original nonlinear system in the vicinity of a stable point. The stable point (which

represents a known solution) could be a limit cycle; constant, stationary, or equilibrium

solution, etc. [38]. Moreover, authors such as [89], [90], [80], etc. have extended the

normal forms theory to nonlinear systems with periodic coefficients (i.e. parametrically

excited). Therefore, multiple strategies to obtain normal forms for nonlinear systemswith

constant coefficients and parametrically excited nonlinear systems are hence easily found

in literature. Normal forms simplification of nonlinear systems is also a very useful tool

in nonlinear system dynamics and bifurcation analysis. It provides a means to investigate

nonlinear systems represented by complex and unwieldy equation structures.

The conventional normal forms theory is generally applicable to nonlinear systems

without any external periodic excitation. Presence of external periodic excitation renders

the conventional near-identity transformation unsuitable. As a result, nonlinear systems

with external periodic excitation have been traditionally analyzed using averaging and per-

turbations techniques. However, these techniques have a drawback of being restricted

to minimally excited systems encompassing relatively small nonlinearity coefficients [75],

and [36].

In the next section, we shall outline the conventional normal forms theory for simplify-

ing nonlinear systemswithout a forcing term. We shall highlighting the requisite resonance

conditions. Afterwards, we shall introduce intuitive system states augmentation and elu-

cidate how this technique facilitates construction of normal forms for periodically forced

nonlinear systems with constant and periodic coefficients.
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2.3.1 Time Independent Normal Form (TINF)

The fundamental concept behindnormal formsmethodology is to simplify the system

by eliminating asmanynonlinear terms as possible. This is accomplished via applicationof

successive series of near-identity transformations on the original system. The near-identity

coordinate transformations are nonlinear and local ( e.g. see [38], [82], [87] and [37]).

Consider the nonlinear dynamical system given by,

ẋ = Ax+ f2(x) + f3(x) + · · ·+ fk(x) +O(|x|k+1). (2.20)

A is an n × nmatrix, fr(x) are n × 1 vectors of homogeneous monomials in x of order

r; (r = 2, 3, 4...k). After application of the modal transformation x = My, equation

(2.20) is changed into its Jordan canonical form shown below

ẏ =Jy +M−1f2(My) +M−1f3(My) + · · ·+M−1fk(My)

+M−1O(|My|k+1),

(2.21)

whereM is the modal transformationmatrix and J is the Jordan canonical form ofA. J ,

shown below, is a diagonal matrix containing the eigenvalues of the linear matrixA,

J =



λ1

λ2

. . .

λn


. (2.22)

Equation (2.21) is amenable to reduction to its simplest form via application of successive

sequence of near-identity transformations of the form

y = v + hr(v), (2.23)
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where hr(v) is an n× 1 homogeneous vector of monomials in v of degree r. It can hence

be shown that elimination of higher order nonlinearities via successive application of the

near-identity transformations spawns the general homological equation below,

∂hr(v)

∂v
Jv − Jhr − fr(v) = 0. (2.24)

Note that, for r > 3, fr(v) is expressed in terms of solutions of homological equation of

order r − 1.

Though is it not generally possible to evaluate the exact solution of the homological

equation (2.24), an approximate solution in terms of series expansion can be obtained.

Hence we express,

hr(v) =
n∑

j=1

∑
mr

hr,j,mr |v|mrej,

fr(v) =
n∑

j=1

∑
mr

fr,j,mr |v|mrej,


(2.25)

where mr = (m1,m2, . . . ,mn),
∑n

i=1mi = r, (r = 2, 3, . . . , k), |v|m =

vm1
1 vm2

2 · · ·vmn
n and ej is the jthmember of the natural basis. After substituting equation

(2.25) into equation (2.24) then equating coefficients of similar terms we obtain,

hr,j,mr =
fr,j,mr

mr · λ− λj

. (2.26)

Here, λ = [λ1, λ2, · · ·λn]
T is a vector containing the eigenvalues of linear matrixA, while

Equation (2.26) represents the coefficients of rth degree near-identity transformation. It

hence is clear that coefficients of rth order near-identity can only be obtained if the follow-

ing solvability condition is satisfied,

mr · λ− λj ̸= 0. (2.27)

If the solvability condition is not satisfied, then it is referred to as a ‘resonant’ case and the

corresponding resonant terms are retained in the transformed equation. Consequently
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the transformed equation in its simplest nonlinear form is the normal form and can be

written as,

v̇ = Jv −
k∑

r=2

f∗
r (v) +O(|v|k+1), (2.28)

where f∗
r (v) constitute the resonant terms.

Usually, we can define a linear operator as below,

LA(hr) =
∂hr(v)

∂v
Jv − Jhr, r = 2, 3, . . . , k, (2.29)

which carries homogeneous vector polynomials over to vector polynomials of the same

degree. LA(hr) is the Lie or Poisson bracket of the vector field Jv andhr(v). If the set of

eigenvalues of LA does not contain any zeros, then LA is invertible and equation (2.29)

can be solved.

2.3.2 Time Dependent Normal Form (TDNF)

Here, we outline the theory behind construction of normal forms for nonlinear sys-

tems possessing periodic coefficients. Consider equation (2.30) of a nonlinear systemwith

periodic coefficients,

ẋ = A(t)x+ f2(x, t) + f3(x, t) + · · ·+ fk(x, t) +O(|x|k+1, t), (2.30)

whereA(t) = A(t+T ) i.e. an n×n T -periodicmatrix; and, fr(x, t) are n×1 nonlinear

monomials in x with T -periodic coefficients. The periodic coefficients in A(t) render

the normal form methodology discussed in section 2.3 inapplicable. Therefore, requisite

transformation of the of the time-variant elements of A(t) to time-invariant elements is

accomplished via Lyapunov-Floquet (L-F) transformation matrix Q(t); whose elements

have truncated Fourier series representation [75]. Applying the L-F transformation;

x = Q(t)z, (2.31)
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to equation (2.30) results in the equation with a parameter-invariant linear part as below,

ż =Rz +Q−1(t)f2(Q(t)z, t) +Q−1(t)f3(Q(t)z, t) + · · ·

+Q−1(t)fk(Q(t)z, t) +Q−1(t)O(|Q(t)z|k+1, t).

(2.32)

R is a constant n×nmatrix that generally tends to be complex. After this transformation,

equation (2.32) can nowbe directly subjected to themethod ofTime-DependentNormal

Forms (TDNF). Subsequently, the Jordan canonical form of equation (2.32) is,

ẏ = Jy +M−1f2(y, t) + ... +M−1fk(y, t) +M−1O(|y|k+1, t), (2.33)

where J is the Jordan form ofR and fk(y, t) areT -periodic functions containing homo-

geneous monomials of yi of order r. The above equation is amenable to reduction to its

simplest form via a successive application of near-identity transformations of the form,

y = v + hr(v, t), (2.34)

where hr(v, t) is a formal power series of in v of degree r with T -periodic coefficients.

Application of above near-identity transformation to equation (2.33) yields,

v̇ =Jv −
[
∂hr(v, t)(v)

∂v
Jv − Jhr(v, t) +

∂hr(v, t)

∂t

]

+ fr(v, t) +O(|v|r+1, t).

(2.35)

To eliminate the nonlinear terms in equation (2.35), the near identity transformation has

to satisfy the following homological equation

∂hr(v, t)

∂v
Jv − Jhr(v, t) +

∂hr(v, t)

∂t
− fr(v, t) = 0. (2.36)

Similar to TINF case, one can solve the time-periodic homological equation and obtain

the following solvability condition for a given degree of nonlinearity as,

hr,j,mr,l =
fr,j,mr,l

ilω +mr · λ− λj

, (2.37)

28



where λ = [λ1, λ2, · · · , λn]
T are the eigenvalues of J and are referred to as the Floquet

exponents of the system. i =
√
−1, ω = π/T and −k ≤ l ≤ k. Clearly, the resonant

condition that must be satisfied to determine the obtain all the coefficients of the near

identity transformation is,

ilω +mr · λ− λj ̸= 0. (2.38)

Otherwise the resonant terms will remain in the near-identity transformation which can

be written in its simplest form as shown in equation below

v̇ = Jv −
k∑

r=2

f∗
r (v, t) +O(|v, t|k+1), (2.39)

where f∗
r (v, t) are the resonant nonlinear terms.

Moreover, averaging out the periodic terms and retaining only constant terms inf∗
r (y)

of equation (2.33), does not significantly jeopardize the quality of solutions. This re-

sults in autonomous equations which are amenable to Time-Independent Normal Form

(TINF) theory. The resulting autonomous systemwith approximate states, ỹ and nonlin-

ear monomial functions, f̃ ∗
r (ỹ, t) is,

˙̃y = Jỹ −
k∑

r=2

f̃ ∗
r (ỹ, t) + ... O(|ỹ|r+1; t). (2.40)

Application of time-independent near-identity transformation in equation (2.23) yields a

simplified TINF as shown below,

v̇ = Jv −
k∑

r=2

f̃ ∗
r (ṽ, t) + ... O(|ṽ|r+1; t). (2.41)

Certainly theTINF case demands less computational effort than theTDNFone, how-

ever in both instances, normal form equations retain the stability characteristics of the

original periodic nonlinear system. Solutions of the original periodic system in original

coordinates are obtained through back transformation of the near-identity, modal and L-

F transformations.
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2.4 Center Manifold Reduction

A multitude of dynamical systems are modeled by a set of a large number of nonlin-

ear ordinary differential equations (ODE) which may possess constant or periodic coef-

ficients. Analytical models of space systems dynamics are often characterized by a large

number of nonlinear ODEs. Consequently, the large dimensional nonlinear analytical

models pose significant challenges inmodel characterization, analysis and control law syn-

thesis. Analyzing such systems requires costly computational and manpower resources;

is prone to convergence and numerical truncation errors; and, necessitates intricate treat-

ment of the pertinent excitation parameters and the often coupled system states. Addi-

tionally, the systemmay be externally excited by a periodic forcing term–exacerbating the

complexity of the analytical model structure. Therefore, research efforts in the Model

Order Reduction (MOR) field continue to investigate propitious techniques of reducing

the dimensions of analyticalmodels representing nonlinear dynamical systems. Moreover,

MOR techniques have the potential to directly impact related techniques in the field of

mathematical modeling such as rapid development of fractional systems. Illustrative re-

cent developments in fractional systemsmodeling that can be enhanced byMOR include

[91], [92]

Order reduction can be defined as a procedure of constructing smaller dimensional

systems from large-scale dynamical systems that retain the dominant features of the origi-

nal system [93]. Order reduction is feasible in dynamical systems because dominant and

non-dominant dynamics can be segregated. Consequently, the evolution and long-term

dynamical behavior of the system can be exclusively captured andmodeled by the reduced

number of dominant states. In doing so, a relatively simplermodel that is correspondingly
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more amenable to system response analysis, optimization, control law development, etc.

is achieved–[94], [95].

In general, reduced-order models that approximate the dynamics of the original high-

dimension system can be accomplished via linear and nonlinear reduction techniques.

There is an abundance of literature on linear order reduction–classical Guyan reduction

[96].

On the other hand, nonlinear order reduction is based on a nonlinear projection of the

full state-space onto low-dimensional sub-space via the construction of an invariant man-

ifold. Nonlinear order reduction approaches can be broadly classified into the following

three i) center manifold, ii) nonlinear normal modes (NNM), and iii) singular perturba-

tion as further expounded by authors such as [51]–[53], [97] and [98]. The second and

third techniques are comprehensively addressed in the literature and the reader is directed

to the cited references further detailed discussion.

Center manifold is a nonlinear projection-based order reduction technique character-

ized by the construction of an invariant subspace (manifold) in the system phase-space

such that any motion initiated on the subspace remains on the subspace for all time [99],

[100]. The underlying premise behind center manifold reduction is the definition of a

transformation such that the non-dominant states of the system are expressed as functions

of the dominant states. This transformation is then substituted back in the original sys-

tem to eliminate the non-dominant states. Center manifold reduction is applicable when

the linear system matrix has some eigenvalues lying on the imaginary axis (critical modes)

while the rest lie on the left-half (stable modes) of the complex plane. Consequently,the

evolution of dynamics in such a system will be strictly governed by the critical modes and

damped dynamicswill passively follow the ‘dominant dynamics’ as well. Further, it is feasi-
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ble to construct a qualitatively equivalent butminimally sizedmodelwhich solely depends

on the system critical modes.

As previously indicated, center manifold is a nonlinear subspace of the state space

spanned by the solutions that correspond to marginally stable (critical) eigenvalues [101].

The basis of center manifold reduction is determining a nonlinear transformation that de-

couples the critical states from the stable states in the nonlinear system. Extension of the

center manifold reduction was suggested by Malkin [102] and [51], [52], [75] extended

the research further developing methodologies to compute the periodic center manifold

with application to bifurcation analyses of nonlinear time periodic systems. Next we out-

line the time periodic center manifold reduction theory based on the works of [100] and

[75]. This will be followed by center manifold reduction of nonlinear systems with con-

stant coefficients.

2.4.1 Time Periodic Center Manifold Reduction

Consider the nonlinear dynamical system with time periodic coefficients below,

ẋ = A(t)x+ f(x, t). (2.42)

A(t) is an n× n T -periodic matrix such thatA(t) = A(T + t), x is an n× 1 state vector,

f(x, t) is an n × 1 nonlinear T -periodic vector containing homogeneous monomials in

x such that, f(0, t) = 0. The periodic coefficients in A(t) render a direct procedure for

center manifold reduction infeasible. The requisite transformation of the linear matrix

to a nonautonomous one is first accomplished via via Lyapunov-Floquet (L-F) transfor-

mation, x = Q(t)z. Elements of the LFT matrixQ(t) contain truncated Fourier series

representation [75]. Applying the L-F transformation to equation (2.42) results in the
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equation with a parameter-invariant linear part shown below,

ż = Rz +Q−1(t)f(Q(t)z, t). (2.43)

R is a constant n×nmatrix that generally tends to be complex. After applying themodal

transformation z = My to equation (2.43) we obtain the Jordan canonical form as,

ẏ = Jy +M−1f(y, t) ≡ Jy +w(y, t), (2.44)

where J is the Jordan form ofR and w(y, t) representsT -periodic functions containing

homogeneous monomials of yi. Let matrix J in equation (2.44) be composed of r critical

eigenvalues and (n− r) stable eigenvalues. Hence, equation (2.44) can be partitioned asẏc

ẏs

 =

Jc 0

0 Js


yc

ys

+

wc(yc,ys, t)

ws(yc,ys, t)

 , (2.45)

where yc is an r × 1 vector of critical states (r ≪ n). ys is an (n − r) × 1 vector of stable

states. Jc is an r×r Jordan block corresponding to critical states. Js is the (n−r)×(n−r)

Jordan block of dimension corresponding to the non-dominant states and wc(yc,ys, t)

and ws(yc,ys, t) are monomials of y (of order i ) with periodic coefficients. The time

periodic center manifold theorem specifies existence of the following non-unique relation,

ys = H(yc, t). (2.46)

Substituting equation (2.46) into (2.45) decouples the critical states from the stables ones

resulting in a system containing only critical states shown below,

ẏc = Jcyc +wc(yc,H(yc, t), t). (2.47)

The reduced equation (2.47) is dynamically equivalent to the original system in equa-

tion (2.42). We assume a nonlinear relationship between the dominant yc and the non-

dominant ys states as,

ys =
∑
i

hi(yc, t) ≡ H(yc, t), (2.48)
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where,
hi =

∑
m̄

h̄i(t)y
m1
i . . . ymr

c

m̄ = [m1, . . . ,mr]
T , m1 + · · ·+mr = i, i = 1, 2, 3 . . . , k.

(2.49)

h̄i(t) are the unknown periodic vector coefficients with period 2T. Substituting equation

(2.48) into (2.45) yields,

∂H

∂t
+

∂H

∂yc

(Jcyc +wc) = JsH +ws. (2.50)

If the ith orderH in above equation is considered, thenws has to be approximated to the

ith order as well, and we represent this bywsi. However, all terms in (∂H/∂yc)wc are of the

order i+1 or higher. Therefore, neglecting this product, we obtain,

∂H

∂t
+

∂H

∂yc

Jcyc − JsH = wsi. (2.51)

This partial differentiation equation is approximately solved by expanding the known and

the unknown periodic coefficient functions (h̄i(t)) into finite Fourier series as,

hi(yc, t) =
s∑

j=1

∑
m̄

∞∑
ν=−∞

hjm̄νe
īνωt|yc|mej

wsi(yc, t) =
s∑

j=1

∑
m̄

∞∑
ν=−∞

ajm̄νe
īνωt|yc|mej,


(2.52)

where |yc|m = ym1
1 ym2

2 · · · ymr
r , ω = π/T , ī =

√
−1, m1 + . . .+mr = i; i = 2, 3, . . . , k.

ajm̄ν are the unknown Fourier coefficients of themanifold and ej is the jth member of the

natural basis. A term-by-term comparison of the Fourier coefficients yields,

hjm̄ν =
ajm̄ν

(̄iνω) +
∑r

ℓ=1(mℓλℓ − λ̄p)
, (2.53)
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where λ1, λ2, . . . , λr are the eigenvalues of the Jordanmatrix Jc and λ̄p; p = 1, 2, . . . , s are

the eigenvalues of Js. Therefore, the reducibility condition is;

(̄iνω) +
r∑

ℓ=1

(mℓλℓ − λ̄p) ̸= 0

∀ν = 0,±1,±2, . . . ; p = 1, 2, . . . , s.

(2.54)

Satisfying the reducibility condition evaluates vectorH(yc) hence the stable states can be

expressed in terms of the critical states.

For ν = 0, a resonance occurs when some linear combination of λℓ (Floquet expo-

nents corresponding to the critical states) and λp̄ (Floquet exponent of the stable states)

add up to zero. Thismay be referred to as the true internal resonance. For the autonomous

case, λn = ±iωn (where ωn are the natural frequencies corresponding to the original co-

ordinates). Equation (2.54) provides conditions for the conventional internal resonance

widely discussed in the literature.For ν ̸= 0 the denominator in equation (2.53) goes to

zero when the parametric excitation frequency is a linear combination of λℓ and λp. This

situation is referred to as the true combination resonance case. If Jc matrix contains a pair

of zeros, then the order reductionprocess necessarily boils down tofinding a time-periodic

center manifold relation between the stable and the critical states. Since Floquet multipli-

ers are either -1 or+1; the systemundergoes a ‘flip’ or a symmetry breaking (or transcritical)

bifurcation, respectively. The reduced order model does not contain any linear terms; it

is strictly a nonlinear model. Once H(wr, t) has been determined, we obtain the equa-

tion for the critical states yc in the y domain as shown in equation (2.47). Results in the

original coordinates are obtained through back transformation via inverse L-F and inverse

modal transformations.
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2.4.2 Constant Coefficients Center Manifold Reduction

The procedure for constructing center manifolds for nonlinear systems with constant

coefficients is very similar to the preceding case of periodic coefficients. The major dif-

ference will be absence of time-dependent parameters and terms. Consider such a system

with constant coefficients shown below

ẋ = Ax+ f(x). (2.55)

A is an n×n constantmatrix. f(x) is an n×1 nonlinear vector containing homogeneous

monomials in x. Then, it can be shown that following a similar procedure described in

from equations (2.43) to (2.54), the reducability condition will be,
r∑

ℓ=1

(mℓλℓ − λ̄p) ̸= 0 p = 1, 2, . . . , s. (2.56)

Parameters in equation (2.56) are as previously defined.

2.5 Analysis of Nonlinear SystemsWith External Periodic Excitation

Thepreceding two sections constitute crucial techniques that facilitate analysis of com-

plex nonlinear motion. However, as noted previously, presence of periodic coefficients

and/or external periodic excitations presents unique challenges to conventional normal-

ization and model order reduction. The conventional normal forms methodology is ap-

plicable to nonlinear systems with constant coefficients and without a forcing term. Pres-

ence of variant coefficients and/or periodical external excitation renders the conventional

near-identity transformation methodology inapplicable. Accordingly, forced nonlinear

dynamical systems have been mostly analyzed using averaging and perturbations tech-

niques. However, the main drawback to these two mentioned approaches is that they are
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restricted to minimally excited systems with relatively small nonlinearity coefficients[36],

[75]. Presence of external periodic excitation and/or periodic coefficients in the system

dynamics introduces unique challenges that similarly render direct application of the con-

ventional nonlinear order reductionmethodologies infeasible. A number of authors have

presented different approaches to address this type of problem. Some approaches incorpo-

rate a means to augment the state space by treating the forcing as an additional state while

others construct invariant manifolds composed of temporal and dominant state variables.

Consequently we introduce and apply the intuitive state augmentation technique to fa-

cilitate a lucid and plain analysis of periodically forced nonlinear system via normal forms

and center manifold reduction.

2.5.1 Normal Forms of Nonlinear Systems with External Periodic Excitation

In addressing this problem, authors such as [37], [38], [36] and [39] have traditional

applied special strategies that encompass ‘book-keeping’ parameters, detuning parameters

ad-hoc unsolved equations, ad-hoc variables, etc. Principally, the foregoing expansion of

system parameters hardly embraces a consistent and plain affiliation with the pertinent

terms of the nonlinear equations under analysis. Consequently, suchmethodologies tend

to appear daunting and convoluted stymieing their seamless broad application.

For instance, to construct the normal form of a 2-degree of freedom system with

external periodic excitation, [36] propose an elaborate modification to the regular near-

identity transformation shown in equation (2.57) to obtain the near-identity transforma-

tion shown below,
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y1
y2

 =

v1
v2

+

h1(0)

h2(0)

+ ε

h1(1,0)v1 + h1(0,1)v2

h2(1,0)v1 + h2(0,1)v2



+ε

h1(2,0)v
2
1 + h1(1,1)v1v2 + h1(0,2)v

2
2

h2(2,0)v
2
1 + h2(1,1)v1v2 + h2(0,2)v

2
2



+ε

h̃1(0)v
3
1 + h̃1(2,1)v

2
1v2 + h̃1(1,2)v1v

2
2 + h̃1(0,3)v

3
2

h̃2(0)v
3
1 + h̃2(2,1)v

2
1v2 + h̃2(1,2)v1v

2
2 + h̃2(0,3)v

3
2

 .

(2.57)

ε is a small book-keeping parameter, hr,i(m1,m2) are time-periodic parameter and h̃r,i(m1,m2)

are parameter independent (constant) coefficients. After application of the transforma-

tion, like powers of v are collected to evaluate the unknown constants hr. As shown by

[36] this will lead to nonlinear differential and homological equations which are subse-

quently solved in the publication.

Therefore, we shall present a relativelymore direct, plain and intuitive approach to ob-

tain normal forms for nonlinear systems with external periodic excitation. Our approach

does not require elaboratemodifications to the conventional near-identity transformation,

a detuning parameter or a ‘book-keeping’ parameter. Furthermore, this approach is em-

powered through augmenting the systems states by transforming the exciting frequency

terms into system states. The augmented states directly emanate from the exciting fre-

quency terms, hence they are neither ad-hoc nor arbitrary. As a result, the state aggran-

dizement is intuitive and consistently applicable over a broad range of nonlinear systems

with external periodic excitation.

Because this state augmentation approach annihilates the original non-autonomous

periodic forcing term, the conventional near-identity transformations presented in equa-
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tion (2.23) can hence be innocuously applied to normalize the periodically forced nonlin-

ear system. The intuitive state augmentationproposedhere shouldbe implemented imme-

diately prior to normalization of forced nonlinear systems. Formulation of the intuitive

state augmentation technique will be conducted separately for forced nonlinear systems

with constant coefficients; and, forced nonlinear systems with periodic coefficients.

2.5.1.1 Systems with Constant Coefficients

We first consider external periodically excited nonlinear systems with constant coeffi-

cients. Therefore, the pertinent nonlinear system is of the form shown below,

ẋ = Ax+ f̆(x) + F (t), (2.58)

where f̆(x) is an n × 1 vector representing all the nonlinear monomial terms in x and

A is as previously defined. F (t) is the n × 1 periodic vector whose elements are periodic

forcing terms as shown below,

F (t) =



B1g1(t)

B2g2(t)

...

Bigi(t)


, i = 1, 2, 3, . . . , n. (2.59)

Bi is the amplitude of the forcing term and gi(t) represents a sine or cosine trigonometric

function of ithforcing angular frequency ‘ω’ i.e. sin(ωit) or cos(ωit). We augment the

system states by delineating,
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p1 = g1(t) ṗ1 = ∓ω1ġ1(t) = ∓q1 q̇1 = ±ω2
1g1(t) = ±ω2

1p1,

p2 = g2(t) ṗ2 = ∓ω2ġ2(t) = ∓q2 q̇2 = ±ω2
2g2(t) = ±ω2

2p2,

... ... ...

pn = gn(t) ṗn = ∓ωnġn(t) = ∓qn q̇n = ±ω2
ngn(t) = ±ω2

npn.


(2.60)

Consequently, the augmented ℓ× 1 state vector is,

x̃ = [x, p1, p2, . . . , pn, q1, q2, . . . , qn ]
T . (2.61)

Further, the augmented states nonlinear vector F̆ (x̃) containing augmented monomial

terms will be as shown in the equation below,

F̆ (x̃) =



B1f(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

B2f(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

...

Bnf(x, p1, p2, . . . , pn, q1, q2, . . . , qn)

0

0

0

0

...

0

0



, n = 3, 4, . . . . (2.62)

The state augmentation transforms (2.58) from nonautonomous to autonomous as

shown below,
˙̃x = Ãx̃+ F̆ (x̃). (2.63)
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Equation (2.63) is of the same form as equation (2.20) despite capturing the forced non-

linear dynamics shown in equation (2.58). After applying the modal transformation

x̃ = Mỹ to equation (2.63), we obtain,

˙̃y = J̃ ỹ +M−1F̆ (Mỹ). (2.64)

J̃ is the ℓ×ℓ Jordan canonical form of the augmented linearmatrix Ã. Let s = (ℓ− n)/2 be

the count of the number of forcing frequencies in the system. Then J̃ will be structured

as shown below,

J̃ =



λ1

λ2

. . .

λn

λn+1

λn+2

. . .

λℓ



. (2.65)

To determine the resonant condition for the normal forms of the augmented system; let

λ̃ be the vector containing eigenvalues of linear matrix Ã as below,

λ̃ = [λ1, λ2, . . . , λn, λn+1, λn+2, . . . , λℓ−1, λℓ]
T , (2.66)

where λn+1 = iω1, λn+2 = −iω1, λn+3 = iω2, λn+4 = −iω2, . . . , λℓ−1 = iωs, λℓ =

−iωs.

and, m̃r = (m1,m2, . . . ,mℓ), then similar to equation (2.27), the resonant condition for

the state augmented system will be,

m̃r · λ̃− λk ̸= 0, (2.67)
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where k = 1, 2, 3, . . . , n.

If the above solvability condition is not satisfied, then the corresponding resonant

terms will be retained in the simplified augmented system.

Consequently the conventional normalization principles outlined in section 2.3 are

essentially applied to simplify the state augmented forced nonlinear system to its nor-

mal forms. Application of this state augmentation approach will be illustrated in section

2.5.2.1.

2.5.1.2 Systems with Periodic Coefficients

In order to analyze a periodically excited nonlinear system with periodic coefficients,

consider the system below,

ẋ = A(t)x+ f̆(x, t) + F (t), (2.68)

where f̆(x, t) is ann×1 vector representing all the nonlinearmonomial terms inxwithT -

periodic coefficients. All the other terms are as previously defined. The L-F transformed

equation (2.68) is given below,

ż = Rz +Q−1(t)f̆(Qz, t) +Q−1(t)F (t). (2.69)

We augment the system states as previously explained via equations (2.59), (2.60), (2.61)

and (2.61) to obtain the system similar to equation (2.62) as shown below,

˙̃z = R̃z̃ +Q−1(t)F̆ (z̃). (2.70)

Here, state vector z̃ = [z, p1, p2, . . . , pn, q1, q2, . . . , qn]
T and F̆ (z̃) contains augmented

nonlinear monomial terms in z̃. R̃ is the augmented states linear matrix. The Jordan

canonical form of R̃ is the matrix J̃ whose structure is as previously shown in equation
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(2.65). However, elements of vector λ̃ in the rangeλ1, . . . , λn as defined in equation (2.66)

will be Floquet exponents. If fresh linear periodic coefficients emerge from the interaction

of F̆ (t) with Q−1(t); then an additional L-F transformation is necessary to render the

linear terms parameter-invariant.

Subsequently, the non-resonance condition to be satisfied for corresponding terms to

be annihilated from the simplified augmented normal form is,

ilω +mr · λ̃− λk ̸= 0, (2.71)

where k = 1, 2, 3, . . . , n. All the other terms remain as previously defined in section

2.5.1.1.

2.5.2 Illustrative Normal Forms Application

Here, we apply the intuitive system state augmentation technique to expeditiously ob-

tain normal forms of forced nonlinear systems with both constant and periodic coeffi-

cients. We shall utilize forced nonlinear dynamics with parameter values similarly applied

by [36] to facilitate comprehensive comparison of our approach with existing approaches.

2.5.2.1 Forced Nonlinear SystemsWith Constant Coefficients

We consider the forcedDuffing’s equation to illustrate applicationof the intuitive state

augmentation methodology in analyzing forced nonlinear systems via normal forms as

given below, ẋ1

ẋ2

 =

 0 1

−a −d


x1

x2

− ε

 0

cx3
1

+B

 0

cos(ωt)

 , (2.72)
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where a, d, c, and ε are system parameters, while B is amplitude of the external peri-

odic forcing term. To convert the forced nonlinear system from non-autonomous to au-

tonomous via state augmentation, let

p = cos(ωt),

ṗ = −ω sin(ωt) = −q,

q̇ = ω2 cos(ωt) = ω2p.


(2.73)

After substituting equations (2.73) into (2.72)weobtain the augmented system state space

representation shown below

ẋ1

ẋ2

ṗ

q̇


=



0 1 0 0

−a −d B 0

0 0 0 −1

0 0 ω2 0





x1

x2

p

q


− ε



0

cx3
1

0

0


. (2.74)

Nextwe apply themodal transformation x̃ = Mỹ, (where: x̃ = [x1 x2 p q]
T ) to equation

(2.74) and obtain the following equation,

˙̃y = J̃ ỹ −M−1ε



0

c(M11ỹ1 +M12ỹ2)
3

0

0


, (2.75)

where J̃ is in the Jordan canonical form. Equation (2.75) is hence of the form described

in equation (2.21) as,
˙̃y = J̃ ỹ +M−1f3(Mỹ). (2.76)

The normal form is evaluated by successive application of the near identity transforma-

tion,

ỹ = v + h3(v). (2.77)
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To obtain the closed form analytical solution of the Duffing’s equation via normal forms;

we shall consider 3 cases delineated by different values of system parameters.

Case (i): Nonresonant excitation.

Here, a = 3, d = 0.3, c = 1, B = 2, ω = 4 and ε = 0.5. The Time Independent

Normal Form (TINF) subsequently realized after successive application of near-identity

transformations is given below

v̇1

v̇2

v̇3

v̇4


=



i4v1

−i4v2

(−0.15 + i1.72554)v3 + i0.00117255v1v2v3

(−0.15− i1.72554)v4 − i0.00117255v1v2v4


. (2.78)

When the external forcing term is augmented as a system state; the linear terms of the nor-

mal forms are made up of: i)magnitude of forcing frequency appearing as purely imagi-

nary conjugate coefficients, i.e. 4, and ii) conjugate eigenvalues of the original linearmatrix

A, i.e. (−0.15±i1.72554).This is consistentwith the structure of J̃ presented in equation

(2.65). Solving the normal form differential equation system (2.78) yields the closed form

analytical solution as,

v1(t) = C1e
i4t,

v2(t) = C2e
−i4t,

v3(t) = C3e
[−0.15+i(1.7255+0.00117255C1C2)]t,

v4(t) = C4e
[−0.15−i(1.7255+0.00117255C1C2)]t,


(2.79)

C1,2,3,4 are respective constants of integration. The closed form analytical solutions of

v1(t), v2(t), v3(t), and v4(t), are then back transformed to the original coordinates and
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(a) x1(t)

(b) x2(t)

Figure 4: State Response Comparison for Nonresonant Excitation Case

the responses plotted. Figure 4 shows the closed form analytical solution compared to the

numerically integrated solution for states x1(t) and x2(t) of the non-resonant forcing case.

Case (ii): Superharmonic resonance excitation.

Here, a = 5, d = 0.3, c = 0.1, B = 4, ω = 0.745 and ε = 0.5. The TINF subse-

quently realized after successive near-identity transformations is given below
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

v̇1

v̇2

v̇3

v̇4


=



(−0.15 + i2.23103)v1 + i0.0193193v1v3v4

(−0.15− i2.23103)v2 − i0.0193193v2v3v4

i0.745v3

−i0.745v4


. (2.80)

Consistentwith the structure of J̃ in equation (2.65); the linear terms of the normal forms

are made up of: i)magnitude of forcing frequency appearing as purely imaginary conju-

gate coefficients, i.e. 0.745, and ii) conjugate eigenvalues of the original linear matrix A,

i.e. (−0.15±i2.23103). Solving the normal formdifferential equation system (2.80) yields

the closed form analytical solution as,

v1(t) = C1e
[−0.15+i(2.23103+0.0193193C3C4)]t,

v2(t) = C2e
[−0.15−i(2.23103+0.0193193C3C4)]t,

v3(t) = C3e
i0.745t,

v4(t) = C4e
−i0.745t.


(2.81)

The closed form analytical solutions of v1(t), v2(t), v3(t), and v4(t), are then back trans-

formed to the original coordinates and the responses plotted. Figure 5 shows the closed

form analytical solution compared to the numerically integrated solution for states x1(t)

and x2(t).
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(a) x1(t)

(b) x2(t)

Figure 5: State Response Comparison for Superharmonic Excitation Case

Case (iii): Subharmonic resonance excitation.

Here, a = 4, d = 0.1, c = 7.972, B = 10, ω = 6.6 and ε = 0.5.The TINF obtained

after successive near-identity transformations is given below,

v̇1

v̇2

v̇3

v̇4


=



i6.6v1

−i6.6v2

(−0.05 + i1.99937)v3 + i0.00805922v1v2v3

(−0.05− i1.99937)v4 − i0.00805922v1v2v4


. (2.82)
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Similarly, the linear terms of the normal forms are made up of: i) magnitude of forcing

frequency appearing as purely imaginary conjugate coefficients, i.e. 6.6, and ii) conjugate

eigenvalues of the original linear matrix A, i.e. (−0.05 ± i1.99937). Solving the normal

form differential equation system (2.82) yields,

v1(t) = C1e
i6.6t,

v2(t) = C2e
−i6.6t,

v3(t) = C3e
[−0.05+i(1.99937+0.00805922C1C2)]t,

v4(t) = C4e
[−0.05−i(1.99937+0.00805922C1C2)]t.


(2.83)

The closed form analytical solutions of v1(t), v2(t), v3(t), and v4(t), are then back trans-

formed to the original coordinates and the responses plotted. Figure 6 shows the analytical

solution compared to the numerically integrated solution for states x1(t) and x2(t).

We note that, all the foregoing closed-form analytical solutions of the periodically

forced Duffing oscillator (with zero initial conditions) exactly match the transient and

steady behaviors of the numerically integrated solutions.

2.5.2.2 Forced Nonlinear SystemsWith Periodic Coefficients

We employ the intuitive state augmentation methodology to analyze a Mathieu-

Duffing equation whose linear and nonlinear terms possess periodic coefficients as shown

below,ẋ1

ẋ2

 =

 0 1

−(a+ b cos(2πt)) −d


x1

x2

− ε cos(πt)

 0

x3
1

+

 0

B cos(4πt)

 ,

(2.84)
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(a) x1(t)

(b) x2(t)

Figure 6: State Response Comparison for Subharmonic Excitation Case

wherea, b, c and ε are systemparameters. Weconsider a casewithpurely imaginaryFloquet

exponents which occurs when a = 3, b = 1, d = 0, B = 1 and ε = 0.5. To construct the

normal forms of this system, we first transform the linear parameter-varying terms into

parameter-invariant terms using LFTmatrixQ(t) obtained via the procedure outlined in

section 2.2. The computed Floquet Transition Matrix (monodromy matrix), Φ(T ) and

constantRmatrix are given below,

Φ(T ) =

−0.16575 0.61105

−1.59156 −0.16574

 , R =

 0 1.076478

−2.8038 0

 . (2.85)
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The L-F transformation converts equation (2.84) into,

ż = Rz −Q−1

ε cos(πt)

 0

(Q11z1 +Q12z2)
3


+Q−1

 0

B cos(4πt)

 . (2.86)

The above system is hence amenable to system states augmentation. Consequently, we let,

p1 = cos(πt),

ṗ1 = −π sin(πt) = −q1,

q̇1 = π2 cos(πt) = π2p1,

p2 = cos(4πt)

ṗ2 = −4π sin(4πt) = −q2,

q̇2 = 16π2 cos(4πt) = 16π2p2.



(2.87)

Substituting equation (2.87) into equation (2.86) yields the following augmented system

whose highest nonlinearity is of degree 4,
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

ż1

ż2

ṗ1

q̇1

ṗ2

q̇2


=



0 1.07647 0 0 0 0

−2.8038 0 0 0 0 0

0 0 0 −1 0 0

0 0 π2 0 0 0

0 0 0 0 0 −1

0 0 0 0 16π2 0





z1

z2

p1

q1

p2

q2



−



Q−1
12 {εp1(Q11z1 +Q12z2)

3 −Bp2}

Q−1
22 {εp1(Q11z1 +Q12z2)

3 −Bp2}

0

0

0

0


.

(2.88)

After applying the modal matrix followed by application of successive near-identity trans-

formation given in equation (2.34), we obtain the following linear normal form in equa-

tion (2.89). As outlined in section 2.3.2, the resulting TDNF is characterized by a large

set of nonlinear monomial terms as shown in Appendix A.1. Consequently, by averaging

out the periodic terms and discarding the infinitesimal terms, we obtain the TINF below,

v̇1

v̇2

v̇3

v̇4

v̇5

v̇6


=



−i1.7373v1

i1.7373v2

−iπv3

iπv4

−i4πv5

i4πv6


. (2.89)
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Consistent with the previously established structure of J̃ , the linear normal forms are

composed of conjugate Floquet exponents i.e. ±i1.7373; conjugate magnitude of first

forcing frequency i.e. ω1 = π, and; conjugate magnitude of second forcing frequency i.e.

ω2 = 4π.

The solutions of the normal forms ODEs are straightforward. These analytical closed

form solutions are then back-transformed via inverse near-identity and inverse modal

transformation into the original coordinates. The corresponding solutions are then plot-

ted and compared to the numerical solution of the original forced periodic system as

shown in figure 7. The initial conditions considered are x1(0) = x2(0) = 0.1.

The numerical and analytical results for forced nonlinear system with periodic coef-

ficients similarly match as was the case for constant coefficients cases in section 2.5.2.1.

Therefore, the relatively simpler, more straightforward and intuitive state augmentation

approach for analysis of forced nonlinear systems via normal forms is demonstrated to be

accurate.

2.5.3 Center Manifold Reduction of Nonlinear Systems with External Periodic Exci-

tation

In this section we demonstrate how to intuitively augment system states in order to fa-

cilitate lucid centermanifold reductionof nonlinear systems subjected to external periodic

excitation.

The conventional center manifold reduction approach presented in the section 2.4 is

inapplicable onnonlinear systems subjected to external periodic excitation. Consequently,

externally forced nonlinear systems require a valid alternative approach to decouple the
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(a) x1(t)

(b) x2(t)

Figure 7: State Response Comparison for Mathieu-Duffing System

critical states from the stable ones as described in equation (2.46) and subsequently reduce

the systemmodel order on the invariant manifold.

To address this problem, a number of leading authors have proposed several ap-

proaches. For instance, [47] apply a form of state augmentation in NNM using pertur-

bation techniques to realize a formulation applicable only to minimally excited systems.

Further, NNM-based approaches are similarly suggested by [48] who involve PDEs, poly-

nomial expansions and numerical techniques. [51], [53] and [52] employ an extended

invariant manifold methodology that treats the center manifold as time modulated non-
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linear functions with a special structure in temporal and spatial terms. This approach

requires a ‘book-keeping’ parameter designated as ‘ε’ to be associated with the nonlinear-

ity.

Formulation of prevailing methodologies to realize center manifold MOR, therefore,

require special ad-hoc strategies. These strategies include the need for ‘book-keeping’ pa-

rameters, detuning parameters, minimal excitation, etc. The foregoing aggrandized pa-

rameters lack consistent, direct and plain affiliations with the pertinent terms of the an-

alytical model. Consequently, implementation of these techniques becomes convoluted

and increasingly arduous–stifling their seamless broad application.

Therefore, to address this matter, we demonstrate a relatively plain, direct and intu-

itive approach to accomplish center manifold reduction of nonlinear systems subjected to

external periodic excitation. Our formulation is based on augmenting the system states

by transforming the excitation frequency terms into system states. The state augmenta-

tion approach here is intuitive because the augmented states directly emanate from the

excitation frequency terms –hence they are neither ad-hoc nor arbitrary. Moreover, this

approach is liberated from the need for special treatment such as a ‘book-keeping’ parame-

ter, detuningparameter,minimal excitation and soon. Therefore, this approach is broadly

applicable in a seamless manner over a wide range of nonlinear systems.

The introduced state augmentation annihilates the original non-autonomousperiodic

forcing terms making it possible to innocuously apply the conventional center manifold

reduction theory (see 2.4) on nonlinear systems with external periodic excitation.
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2.5.3.1 Systems with Periodic Coefficients

When the nonlinear system in equation (2.42) is subjected to periodic external excita-

tion, we obtain the system in equation below,

ẋ = A(t)x+ f(x, t) + F (t), (2.90)

where F (t) is the n× 1 vector of periodic forcing terms as shown in equation (2.59). All

the terms are as previously defined.

Prior to system state augmentation, a requisite L-F transformation is undertaken to

transform the periodic linear matrix into an invariant one. The L-F transformed equation

(2.90) is given below,

ż = Rz +Q−1(t)f(Q(t)z, t) +Q−1(t)F (t). (2.91)

We augment the system states as delineated in equation (2.60). Consequently, the aug-

mented k× 1 state vector is,

z̃ = [z, p1, p2, . . . , pn, q1, q2, . . . , qn ]
T . (2.92)

Further, the augmented states nonlinear vector F̆ (z̃) containing augmented monomial

terms will be as shown below,
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F̆ (z̃) =



B1f(z, p1, p2, . . . , pn, q1, q2, . . . , qn)

B2f(z, p1, p2, . . . , pn, q1, q2, . . . , qn)

...

Bnf(z, p1, p2, . . . , pn, q1, q2, . . . , qn)

0

0

0

0

...

0

0



, n = 3, 4, . . . . (2.93)

The state augmentation transforms (2.91) from nonautonomous to autonomous as

shown in equation below,
˙̃z = R̃z̃ +Q−1(t)F̆ (z̃). (2.94)

Here, state vector z̃ = [z, p1, p2, . . . , pn, q1, q2, . . . , qn]
T and F̆ (z̃) contains augmented

nonlinear monomial terms in z̃. R̃ is the augmented states constant linear matrix. Equa-

tion (2.94) is generally of the same form as equation (2.42) despite capturing the forced

nonlinear dynamics introduced in equation (2.90). If fresh linear periodic coefficients

emerge from the interaction of F̆ (t)withQ−1(t); then an additional L-F transformation

is necessary to render the linear terms parameter-invariant.

After applying the modal transformation z̃ = Mỹ to equation (2.94), we obtain,

˙̃y = J̃ ỹ +M−1Q−1(t)F̆ (Mỹ), (2.95)

where J̃ is the k × k Jordan canonical form of the augmented linear matrix R̃. The

diagonal elements in J̃ are Floquet exponents of the system. Clearly, equation (2.95) is of
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the same form as equation (2.44) i.e Jy+w(y, t), hence amenable to the centermanifold

reduction criteria described in section 2.4.1. However, the structure of J̃ will include

additional critical eigenvalues due to the augmented periodic dynamics. Let d = (k− n)/2

be the count of the number of considered forcing frequencies in the system. Then J̃ will

be structured as shown below,

J̃ =



Jc 0

0 Js

iω1

iω2

. . .

iω2d

.


(2.96)

LetJ∗
c = [Jc, iω1, iω2 . . . iω2d]

T be thediagonal of the (r+2d)×(r+2d) augmented critical

eigenvalues matrix. Therefore by re-arranging the modal matrix columns, equation (2.95)

can be expressed in the form given in equation (2.45) as,ẏc

ẏs

 =

J∗
c 0

0 Js


yc

ys

+

wc(yc,ys, t)

ws(yc,ys, t)

 . (2.97)

To determine the reducibility condition of the augmented system, we follow the con-

ventional procedure outlined in equations (2.46) to (2.53). The reducibility condition for

nonlinear systems subjected to periodic external excitation will hence be,

(̄iνω) +
r+2d∑
ℓ=1

(mℓλ
∗
ℓ − λ̄p) ̸= 0,

∀ν = 0,±1,±2, . . . ; p = 1, 2, . . . , s,

(2.98)

where λ∗
1, λ

∗
2, . . . , λ

∗
r+2d are the eigenvalues of the Jordanmatrix J∗

c and λ̄p; p = 1, 2, . . . , s

are the eigenvalues of Js.
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2.5.3.2 Systems with Constant Coefficients

Consider the system with constant coefficients subjected to a periodic external excita-

tion given below,

ẋ = Ax+ f(x) + F (t). (2.99)

The parameters are as previously defined. Next, the system states are augmented using the

procedure described in equations (2.60), (2.92), (2.93) and (2.94). The resulting nonau-

tonomous system is,
˙̃x = Ãx̃+ F̆ (x̃). (2.100)

Here, state vector x̃ = [x, p1, p2, . . . , pn, q1, q2, . . . , qn]
T and F̆ (x̃) contains augmented

nonlinear monomial terms in x̃. After applying the modal transformation x̃ = Mỹ to

equation (2.100), we obtain the Jordan canonical of the system as,

˙̃y = J̃ ỹ +M−1F̆ (Mỹ), (2.101)

where J̃ is then×n Jordan canonical formof the augmented linearmatrix Ã. At this point,

equation (2.101) is of the form shown (2.95); the only difference being the time-invariant

nonlinear term. Consequently, a similar subsequent procedure described in equations

(2.96) to (2.98) is followed to obtain the following reducibility condition,

r∑
ℓ=1

(mℓλℓ − λ̄p) ̸= 0 p = 1, 2, . . . , s, (2.102)

where λ1, λ2, . . . , λr are the eigenvalues of the Jordanmatrix Jc and λ̄p are the eigenvalues

of Js.
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2.5.4 Illustrative Center Manifold Reduction Application Cases

In this sectionwe consider two types of illustrative cases to demonstrate application of

the intuitive system state augmentation technique in centermanifold reduction of nonlin-

ear systems with periodic external excitation. A periodically forced nonlinear systemwith

periodic coefficients will be considered first. In the second case a nonlinear system with

periodic external excitation and constant coefficients is analyzed.

2.5.4.1 SystemsWith Periodic Coefficients

We consider a coupled periodic-quasiperiodic nonlinear system subjected to periodic

external excitation given in equation below,ẋ1

ẋ2

 =

 1 + α cos2 t 1− α sin t cos t

−1− α sin t cos t −1 + α sin2 t


x1

x2

+ β

x3
1

x3
2

+

 0

B sinωt

 .

(2.103)

This equation is of the form given in equation (2.90); it is special system with known L-F

transformation in closed form and stable for β < 0. Here, α and β are system parameters

whileB is amplitude of the external periodic forcing. The L-F transformed systemwill be

as shown in equation (2.91) where:

R =

α− 1 0

0 −1

 , Q =

 cos t sin t

− sin t cos t

 , Q−1 =

cos t − sin t

sin t cos t

 . (2.104)
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In applying the intuitive state augmentation, we first apply the trigonometric identity;

[sinωt = 2 sin(ω
2
t) cos(ω

2
t)] to the external periodic excitation term. The let,

p = sin(ω
2
t),

ṗ =
ω

2
cos(ω

2
t) = q,

q̇ = −ω2

4
sin(ω

2
t) = −ω2

4
p.


(2.105)

Therefore, substituting equation (2.105) into the L-F transformed system we obtain the

state augmented system as,

ż1

ż2

ṗ

q̇


=



α− 1 0 0 0

0 −1 0 0

0 0 0 1

0 0 −ω2/4 0





z1

z2

p

q



+β



Q−1
11 x

3
1 +Q−1

12

(
x3
2 +

4

ω
pq

)
Q−1

21 x
3
1 +Q−1

22

(
x3
2 +

4

ω
pq

)
0

0


,

(2.106)

where x1 = Q11z1 +Q12z2 and x2 = Q21z1 +Q22z2.

After settingα = 1, β = −0.75, B = 1 and ω = 1weapply themodal transformation

to obtain the system represented by equation (2.95) and subsequently obtain:

• Eigenvalues of the augmented states linear matrix are,

Critical: λ∗
1 = 0, λ∗

3 = i0.5 and λ∗
4 = −i0.5 .

Stable: λ∗
2 = −1 .
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• Parametric equation of the center manifold is,

z2 = cos t(0.5p2 + 2pq − 2q2). (2.107)

• Reduced system is,

ż1 =− sin t(4pq − 0.75(−z1 sin t+ cos t(2pq cos t− 2q2 cos t

+ 0.25p2(cos t− i sin t)(1 + cos 2t+ i sin 2t)))3)

− 0.75 cos t(z1 cos t+ sin t(2pq cos t− 2q2 cos t

+ 0.25p2(cos t− i sin t)(1 + cos 2t+ i sin 2t)))3,

ṗ =q,

q̇ =− p

4
.

(2.108)

It should be noted that z2 = h(z1, p, q, t). In equation (2.107) the coefficient of the z1

nonlinearity is zero. Though z1(0) = 0 for the original and reduced systems; z2(0) = 0.5

for the reduced system and zero for the original system. Consequently, x2(0) = 0.5 as well

due the structure of the system’s LFTmatrixQ shown in equation (2.104).

Equation (2.105) completely model the dynamics p(t) and q(t) which are hence sub-

stituted in the reduced system to yield a system represented by ż1 = h(z1, t) in equation

below,

ż1 =− 0.4956 + 0.5073 cos 2t− 0.011 cos 6t− 0.00073 cos 10t

− 0.0146 cos t sin t− 0.0117 sin 4t− 0.0066 sin 6t

+ 0.0007 sin 10t+ (cos t)4(sin t)2(−1.125 + 2.25 cos t sin t)z1

+ (−0.0703 cos 2t+ 0.0703 cos 6t+ 0.1406 cos t sin t

+ 0.1406 sin 4t+ 0.0703 sin 6t)z21

+ (−0.5625− 0.1875 cos 4t)z31 .

(2.109)
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The long term behavior of the reduced system in the original coordinates is obtained by

numerically solving for z1(t) then applying the inverse L-F transformation, z = Q−1x.

Figure 8 shows the comparison of long term states response evolution between the original

system (equation (2.103)) and the reduced system (equation (2.108)). Further, a compar-

ison of the original and reduced system’s phase portrait is shown in figure 9.

(a) x1(t)

(b) x2(t)

Figure 8: Periodic System State Response Comparison

The above analyses show that the transient and long term behaviors (with zero initial con-

ditions) of the original system are reasonably comparable to those of the reduced system.

63



Figure 9: Periodic System Phase Portrait

Figure 10: 2-dof Spring-Mass-Damper System

2.5.4.2 SystemsWith Constant Coefficients

In this case we shall demonstrate center manifold order reduction of a 2-dof mass-

spring-damper system consisting of linear springs and dampers. An additional nonlinear

spring is connected between massm2 and the wall as shown in figure 10.

The masses can vibrate in x−direction with no friction and are individually subjected

to disparate external excitation frequencies, i.e. (F1 cos(ω1t)) and (F2 cos(ω2t)) acting on
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m1 andm2 respectively. Thedynamical system is describedby the following full state-space

equations of motion with spring nonlinearities assumed to be of the cubic form,

ẋ1

ẋ2

ẋ3

ẋ4


=



0 0 1 0

0 0 0 1

A31
k2/m1 A33

c2/m1

k2/m2 A42
c2/m2 A44





x1

x2

x3

x4


+



0

0

−αx3
1

−αx3
2


+



0

0

F1 cos(ω1t)

F2 cos(ω2t)


, (2.110)

where:

• A31 = −(k1 + k2)/m1, A33 = −(c1 + c2)/m1.

• A42 = −(k2 + k3)/m2 , A44 = −(c2 + c3)/m2.

Intuitive state augmentation is implemented by first designating;

p1 = cos(ω1t),

ṗ1 = ω1 sin(ω1t) = −q1,

q̇1 = ω2
1 cos(ω1t) = ω2

1p1,

p2 = cos(ω2t),

ṗ2 = ω2 sin(ω2t) = −q2,

q̇2 = ω2
2 cos(ω2t) = ω2

2p2.



(2.111)

Substituting equation (2.111) into (2.110) yields the augmented 8× 8 state space system

as represented in equation (2.100). This system is shown below,
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

ẋ1

ẋ2

ẋ3

ẋ4

ṗ1

ṗ2

q̇1

q̇2



=



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

A31
k2/m1 A33

c2/m1 F1 0 0 0

k2/m2 A42
c2/m2 A44 0 F2 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 ω2
1 0 0 0

0 0 0 0 0 ω2
2 0 0





x1

x2

x3

x4

p1

p2

q1

q2



+



0

0

−αx3
1

−αx3
2

0

0

0

0



. (2.112)

We setm1 = m2 = 1, k1 = 1, k2 = 1, k3 = 1, c1 = 0, c2 = 1, c3 = 0, F1 = 1, F2 =

2, ω1 = 4, ω2 = 8 and α = 1. Then, after applying the modal transformation x̃ = Mỹ,

we obtain the system equivalent to the one described by equation (2.101). Computation

of the center manifold via the reducability condition outlined in the section titled Con-

stant Coefficients Center Manifold Reduction is undertaken on the Jordan form system

of equations resulting in:

Eigenvalues of the augmented states linear matrix are,

Critical: λ∗
1 = i8, λ∗

2 = −i8, λ∗
3 = i4, λ∗

4 = −i4, λ∗
5 = i and λ∗

6 = −i

Stable: λ∗
7 = −1 + i

√
2 and λ∗

8 = −1− i
√
2

Weconsidered a cubic order of expansion for the centermanifold hence the parametric

equations and the reduced system contain equations with very many terms (> 1800 for ẏ1

and ẏ2). We shall hence only show the few first and last terms of such equations here.

Moreover, the full y7 and y8 equations are shown in Appendix A.2. Parametric equations
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of the center manifold are;

y7 =(8.41688− i44.0124)y21y3 − (5.25571− i151.631)y1y2y3

− (107.972 + i145.859)y22y3 + · · ·+ (4.41791× 1010

− i1.76106× 1010)y5y
2
6 − (5.79082× 109 − i1.13602× 109)y36,

y8 =(28.043− i1.97305)y21y3 − (75.8602− i9.05606)y1y2y3

+ · · ·+ (4.22011× 1010 + i5.28005× 1010)− (3.34833× 109

+ i5.73262× 109)y36.

(2.113)

The reduced system is,

ẏ1 =
1

12

{
i6y31 − i9y21(2y2 − 233y3 + 233y4 − 7954y5) − i12y1 + i18y22

+ i12y1(17550.+ i29217.8)y23 + · · ·+ (4.41791× 1010 − i1.76106× 1010)y5y
2
6

− (5.79082× 109 − i1.13602× 109)y36
}
,

ẏ2 =
1

12

{
i6y31 − i6y32 + i9y22 [233y3 − 233y4 + 7954(y5 − y6)]− i9y21(2y2 − 233y3

+ 233y4 − 7954y5 + 7954y6) + i18y1y
2
2 + (210600 + i350613)y1y

2
3

− (210600− i350613)y1y
2
4 + · · ·+ (4.41791× 1010 − i1.76106× 1010)y5y

2
6

− (5.79082× 109 − i1.13602× 109)y36
}
,

ẏ3 = −i4y3,

ẏ4 = i4y4,

ẏ5 = −i8y5,

ẏ6 = i8y6.

(2.114)

Initial conditions for all the states were set to zero. It should be noted that this will trans-
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late to p1(0) = p2(0) = 1 as per the delineation in equation (2.111). Dynamics in the

original coordinates are obtained via the modal matrix back-transformation. Figures 11

and 12 show the comparison of transient and long-term state behaviors of the original

and reduced systems.

(a) x1(t)

(b) x2(t)

Figure 11: Spring-Mass-Damper System State Response Comparison

Moreover, comparison of the original and reduced system’s phase portraits are shown in

figure 13.

Once again, results of the constant coefficients system analysis show that; i) the tran-
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(a) x3(t)

(b) x4(t)

Figure 12: Spring-Mass-Damper System State Response Comparison

sient behavior of the original system is reasonably comparable to that of the reduced sys-

tem, and ii) the long-term steady-state behavior of the reduced system is exactly the same

as that of the original system. This agreement is observed in all the states. Further, though

not shown here, the sinusoidal augmented states behaviors are globally preserved in the

reduced order system.
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(a) x1(t) − x2(t) (b) x3(t) − x4(t)

Figure 13: Spring-Mass-Damper System State Response Comparison

2.6 Summary and Discussion

Analysis and control law synthesis of nonlinear systems with external periodic exci-

tation that describe the motion of our space system is not a trivial task. Therefore, we

proposed to employ system state augmentation, Normal Forms theory and MOR tech-

niques in our methodology. A summary of the theoretical framework behind these tech-

niques is described in this section. In doing so, we demonstrated how parametrically ex-

cited and constant coefficient nonlinear systems subjected to external periodic excitation

can be transformed into more amenable forms via normalization and model order reduc-

tion.

We demonstrated a relatively more lucid and straightforward approach to obtain the

normal forms of nonlinear systems with external periodic excitation. We further demon-

strated analysis of the nonlinear systems via the computed normal forms and compared
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the results with numerically integrated solutions. Nonlinear systems with either constant

coefficients or parametric excitation that were externally excited periodically were consid-

ered in this methodology.

Unlike the prevailing comparable approaches in literature, our unifying approach is

based on intuitive system state augmentation and does not involve detuning parameters,

‘book-keeping’ parameters, ad-hoc unsolved equations, mandatory minimal excitation.

The augmented states have a plain and direct affiliation with the existing excitation fre-

quency terms. This attribute enables a consistent and broad application of this methodol-

ogy over a wide range of nonlinear systems with external periodic excitation.

By augmenting the states accordingly, periodic coefficients associated with nonlinear

terms can be similarly converted from non-autonomous to autonomous in the sameman-

ner as elements of the periodic forcing vector,F (t). Therefore, the intuitive state augmen-

tation technique innocuously facilitates construction of normal forms for a previously

non-autonomous system. This was illustrated in the alternative approach to obtain nor-

mal forms of the Mathieu-Duffing equation in section 2.5.2.2.

Four cases of the forced Duffing’s equation and two cases Mathieu-Duffing equation

case were considered to validate the accuracy of our methodology. Results of all the time-

history analyses demonstrated compliance between numerically integrated and analyti-

cally obtained normal forms time-history analysis.

Frequency response analysis of the Duffing oscillator similarly validated the accuracy

of the normal form approach here. Our future work will improve the normal forms back-

transformation strategy to obtain multiple amplitude values corresponding to the same

frequency on overlapping paths of frequency response curves.

Therefore, our relatively direct and simpler approach to obtain normal forms facili-

tates a relatively lucid analysis of forced nonlinear system via normal forms.
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The demonstrated centermanifoldmethodologymethodology for obtaining reduced-

order nonlinear dynamical system models–characterized by a lesser number of state vari-

ables and equations compared to the original system model. This is realized by via the

center manifold reduction approach which constructs an invariant subspace on which a

lesser number of equations represent the dynamics of a given system. In doing so, we for-

mulated a unified approach that extends the conventional center manifold reduction to

nonlinear systems subjected to external periodic excitation.

Our approach presented is based on intuitive state augmentation and does not require

special treatment such as the inclusion of ‘book-keeping’ parameters, detuning parame-

ters, minimal excitation, etc. Further, ad-hoc variables and equations are avoided since

the augmented states have plain direct affiliations with the exciting frequency terms. Our

methodology was validated as accurate by the agreements in the time-history and phase

space behaviors of the derived reduced-order models and corresponding numerically inte-

grated original system.

Though itmay appear as if the demonstratedmethodology increases the dimension of

the system model instead of reducing it; judicious scrutiny exposes the deficiency of such

a misleading perception. Firstly, the augmented states are fictitious states whose simple,

sinusoidal dynamics are comprehensively understood. Secondly, the model dimension

described by ODEs of the actual states was reduced by half in all the illustrative applica-

tions considered. Finally, the simplified order reduction methodology that captures the

unwieldy external periodic excitations far outweighs the addition of innocuous dynamics

due to simple virtual states.

The chapter concluded by demonstrating application of state augmentation in nor-

malization and center manifold order reduction analysis of nonlinear systems with exter-

72



nal periodic excitation. The relatively direct and unified approach was verified to be accu-

rate by comparing the obtained results with numerical integration outcomes.
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Part I

ATTITUDEMOTIONOF AGRAVITY GRADIENT STABILIZED

SPACECRAFT IN ECCENTRICORBIT
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Chapter 3

GRAVITY GRADIENTATTITUDE STABILIZATION IN ECCENTRICORBIT

In this section, we shall describe and analytically characterize the attitude motion of

a gravity gradient stabilized spacecraft in an eccentric orbit. This will be followed by a

comprehensivemotion analysis using themethodologies presented inChapter 2. We shall

investigate the motion time trace, stability, chaos, periodicity, bifurcation, resonance etc.

3.1 Dynamical Model Development

A gravity gradient stabilized spacecraft attains a state of stable relative equilibrium

when its Iz points along the radius vector, Iy points along the normal to the orbit plane,

and Ix is along the tangent to the orbit in the LVLH frame (Hill frame) as shown in figure

14(a). In addition, the condition, Iy > Ix > Iz must similarly be satisfied.

If the work done by external perturbing torques is greater than the rotational kinetic

energy of the spacecraft about its COM,motion of the spacecraft in an elliptical orbit will

be libratory as illustrated in figure 14(b). Equations representing the spacecraft orbitalmo-

tion are identical with those of a pointmass in an inverse square-law force field. To analyze

the attitude dynamics, the spacecraft orbital motion (motion of COM) can be reasonably

assumed to be independent of the spacecraft attitudemotion (motion aboutCOM). This

assumption is justifiable because the satellite is small compared to the dimensions of the

orbit. Under this assumption, the spacecraft’s orbital motion can hence transfer energy to

the attitude motion, but the converse is assumed not to be possible. Thus, orbital param-
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(a) Geometry of Orbit and Attitude Parameters

(b) Pitch Angle Librations

Figure 14: Gravity Gradient Stabilization

eters as determined functions of time are considered in analyzing attitude motion [15],

[103].

When the spacecraft is considered as a rigid body in an inverse-square force field along

an elliptical orbit a complete formulation of equations ofmotion can be derived [13], [15],

[57]. The resulting six second-order differential equations of motion are nonlinear and

coupled. These equations of motion cannot be solved analytically in this exact form.

Ignoring other torques such as aerodynamic, magnetic, thermal bending and solar ra-

diation pressure we can derive the equations of spacecraft attitude motion under the in-
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fluence of inverse-square force field in an elliptical orbit. Additional assumptions are; an

ideal, perfect sphere earth without oblateness; largest spacecraft dimensions are extremely

small compared to the orbit radius, and the spacecraft mass is negligible compared to the

mass of the central body [103].

We further assume that the exact equations of motion can be linearized in small-angle

motion characterization. Subsequently, the attitude dynamics models maybe considered

to consist of two equations with coupled roll-yaw angles and a third uncoupled equation

describing the pitch angle dynamics. The pitch motion equation is hence independent of

roll-yawmotion. The coupled roll-yaw equations are homogeneous and can be solved for

Ψ = Ψ̇ = Ω = Ω̇ = 0. [13], [15], [57], [103].

Consequently, the exact problem is reduced to the equation of pitch motion with or-

bital parameters as functions of time and spacecraft mass parameters as shown below,

Θ̈ + 3
µ

r3
σ sinΘ cosΘ = −ω̇, (3.1)

Here, 0 ≤ σ ≤ 1 is a dimensionless ratio of the spacecraft’s principal moments of inertia

given by,

σ =
Ix − Iz

Iy
=

Iroll − Iyaw
Ipitch

. (3.2)

To analyze attitude motion in eccentric orbit, we substitute time with true anomaly, f

as the independent variable. Moreover, the COMwill obey the following Keplerian orbit

relations,

r =
P

1 + e cos f , (3.3)

ω =
df

dt
=

√
µP

r2
=

√
µP

P 2
(1 + e cos f)2. (3.4)

Thus,

ω̇ = −2
µ

r3
e sin f, (3.5)
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Θ̈ = (1 + e cos f) µ
r3

(
d2Θ

df 2

)
− 2

µ

r3
e sin f

(
dΘ

df

)
. (3.6)

Substituting equations (3.5) and (3.6) into (3.1) yields,

(1 + e cos f)Θ′′ − 2e sin fΘ′ + 3σ sinΘ cosΘ = 2e sin f. (3.7)

This is thewell-knownequationofplanepitch angle libratorymotion in elliptical orbit

[13], [15], [57], [103]. The primes indicate differentiation with respect to f. The planar

pitch attitudemotion equation is hence nonlinear with periodic coefficients in f. Analysis

of thismotion and subsequent synthesis of a fitting controller is not a trivial task. Wehence

intend to analyze this motion and synthesize suitable controllers to stabilize the system.

3.2 Implicit Time History Analysis

Strictly speaking the behavior of the motion is characterized in terms variation in true

anomaly, f as shown in equation (3.7). However, the true anomaly similarly varies with

time hence the implicit time history is preferred. To demonstrate implicit time history be-

havior, we initially select e = 0.2 and σ = 0.3. Later on in section 3.3 we shall analyze the

impact of different e − σ pair values on the motion. Both the motion in original coor-

dinates, equation (3.7) and the corresponding state augmented systemwill be scrutinized.

Figure 15 shows the implicit time history behavior of the motion in original coordinates.

Similarly, we scrutinize the history behavior of the state augmented system as outlined

in section 2.5.1 on themotion represented in equation (3.7). In accordancewith binomial

expansion theorem [104], since |e cos f | < 1 and |(−1)e cos f | ≪ 1, then the magnitude

of the terms in the binomial series progressively become smaller. Therefore, the binomial

expansion of the term (1+e cos f)−1 can be approximated as (1−e cos f). Equation (3.7)
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(a)Θ andΘ′ (b) Phase Portrait

Figure 15: State Response of the Motion in Original Coordinates

becomes,

Θ′′ = (1− e cos f)(2e sin fΘ′ − 3σ sinΘ cosΘ+ 2e sin f). (3.8)

Let
p = cos(f),

p′ = − sin(f) = −q,

q′ = cos(f) = p.


(3.9)

After further substituting the trigonometric product term with its series approximation

given in equation (3.12) to the 7th order, the motion in equation (3.8) can be expressed as,

Θ′′ = (1− ep)

[
2eqΘ′ − 3σ

(
Θ− 2

3
Θ3 +

2

15
Θ5 − 4

315
Θ7

)
+ 2eq

]
. (3.10)

Therefore, the augmented system state space representation with (Θ′
1 = Θ2,Θ

′
2 = Θ′′

1) is

shown in the equation below,
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

Θ′
1

Θ′
2

q′

p′


=



0 1 0 0

−3σ 0 2e 0

0 0 0 1

0 0 −1 0





Θ1

Θ2

q

p



+



0

2eq [ep(1−Θ2) + Θ2]− 3σepΘ1 − 3σ(1 + ep)

(
−2

3
Θ3

1 +
2

15
Θ5

1 −
4

315
Θ7

1

)
0

0


.

(3.11)

Figure 16 shows the augmented state system history behavior. Allowing for the expected

minordiscrepancies due to series andbinomial expansion approximations; the systemstate

response is comparable to that of the system in original coordinates shown in figure 15.

From figures 15 and 16(a,b) the attitude motion is quasiperiodic as characterized by

absence of closed trajectory attractors in the phase space. The pitch angle librates roughly

between −1.5 < Θ < +1.5 radians while the pitch angle rate of change varies between

−1.0 < Θ′ < +1.5. The orbits generally appear to follow a ’heart-shaped’ path starting at

the origin with two non-closing lobes on either side. Conversely, the augmented states are

periodic as characterized by the closed circular limit cycle attractor centered at the origin in

figure 16(d). The motion behavior discussed here indicates that Θ and Θ′ are susceptible

to instability, unpredictability and chaos. Consequently, these aspects of the motion flow

will be investigated next. Neither the eigenvalues of the linear periodic term of equation

3.7 nor of the state augmented system (3.11) can be used to determine stability. Conse-
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(a)Θ andΘ
′ Response (b)Θ andΘ

′ Phase Portrait

(c) q(f) and p(f)Response (d) q(f) and p(f) Phase Portrait

Figure 16: State Response of Augmented States System

quently, we’ll have to construct the Floquet TransformationMatrix (FTM) to analyze the

dynamical system’s stability.

3.3 Stability and Chaos

Stability analysis is preceded by computation of the state transition matrix as outlined

in section 2.1. We first prepare the motion in equation (3.7) for expansion via shifted

Chebyshev polynomials of the first kind by normalizing the principal period. This is be-

cause shifted Chebyshev polynomials are only valid for the period interval [0 , 1]
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The pitch angle trigonometric product term in equation (3.7) can be represented as a

product of the respective Taylor series expansion of sine and cosine as,

sinΘ cosΘ = Θ− 2

3
Θ3 +

2

15
Θ5 − 4

315
Θ7 + . . .+ akΘ

2k−1 (3.12)

where k = 1, 2, 3, 4 . . ., Also, series coefficient: ak −→ 0 , as k −→ ∞.

We can ignore the terms of order greater than 7 in equation (3.12) without signifi-

cant loss of accuracy because the follow-on terms have relatively small successive coeffi-

cients that rapidly approach zero. For instance, the 9th order term has the coefficient

a5 = 6.7791 × 10−4 while the 11th order term’s coefficient is a6 = 1.98412 × 10−5. Sub-

stituting the expanded trigonometric product in equation (3.7), we obtain,

Θ′′ =
1

(1 + e cos f)

2e sin fΘ′ − 3σ

(
Θ− 2

3
Θ3 +

2

15
Θ5 − 4

315
Θ7

)
+ 2e sin f

 .

(3.13)

To normalize the principal period, let f = 2πζ . Equivalently, ζ ∈ [0 , 1] represents dura-

tion within the principal period. Let Z represent the principal period, then this implies

that for a periodic term;A(ζ) = A(ζ + Z). It follows,

Θ′ =
dΘ

dζ
· 1

2π
, Θ′′ =

1

4π2

d2Θ

dζ2
. (3.14)

After substituting Θ′ and Θ′′ from equation (3.14) into (3.13), the obtained state space

representation of the normalized attitude motion is given below,
x̊1

x̊2

 =


0 1

−12π2σ

(1 + e cos 2πζ)
4πe sin 2πζ

(1 + e cos 2πζ)



x1

x2



+
12π2σ

(1 + e cos 2πζ)


0

2

3
x3
1 −

2

15
x5
1 +

4

315
x7
1

+


0

8π2e sin 2πζ
(1 + e cos 2πζ)

 ,

(3.15)
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where, dΘ/dζ = x̊1 and d2Θ/dζ2 = x̊2. Further, {Θ(0) = 0, Θ̊(0) = 0} constitute the initial

conditions of the represented motion which correspond to pitch librations at position 1

of figure 14(b).

It is clear that equation (3.15) is of the form,

x̊(ζ) = A(ζ)x(ζ) + f(ζ,x) + F (ζ). (3.16)

3.3.1 Floquet Multipliers and Exponents

To facilitate computation of STM, FTM and LFT matrices using Chebyshev poly-

nomials, we utilized the Chebfun software package on MATLAB™[105]. Summarily,

Chebfun applies piece-wise Chebyshev polynomial interpolation to construct smooth

functions over the interval [−1 ,+1]. Recall that ζ = f
2π

and Z is the normalized prin-

cipal period, hence the computed FTM = Φ(Z) is,

Φ(Z) =

0.9462 −0.0529

1.9796 0.9462

 . (3.17)

The computed Floquet multipliers are critical since they lie on the unit circle with

values of (0.9462±0.3236i) as shown in figure 17. Consequently, this reveals amarginally

stable system for the chosen e-σ pair. It follows that the corresponding Floquet exponents,

(0±0.3295i) are purely imaginary. This is consistent with the quasi-periodic system phase

portraits that illustrate a librational motion.

The motion is hence stable in the sense of Lyapunov but the inherent oscillations are

disruptively significant to jeopardize nominal execution of the spacecraft mission.
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Figure 17: Floquet Multipliers Location

Figure 18: Poincaré Section of the Attitude Motion

3.3.2 Poincaré Map

Figure 18 shows the constructed Poincaré section of the flow. There is a discernible

main cluster of points in close proximity to the origin but restricted to the positive side

ofΘ′. Relatively scanty, isolated discrete points occupy the lower bottom half of the plot

bound by−1 < Θ < 2.

The Poincaré section composition suggests two possible flow behaviors. The group-
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ings suggests a quasi-periodic trajectory. On the other hand, the scanty random points

devoid of clustering could be due to transient behavior or chaos. A chaotic motion can

briefly dwell on a near periodic trajectory before changing to a disparate trajectory with a

period that is a multiple of the preceding motion. Consequently, it is needed to further

investigate the presence of chaos in the attitude motion dynamics.

3.3.3 Chaos

We define chaos as a bounded aperiodic steady-state motion behavior that is not in

equilibrium and is sensitive to initial conditions. A minuscule divergence in the input

rapidly grows to spawn an overwhelming difference in the system response. We begin in-

vestigating chaos in the attitudemotion by plotting the system implicit time historywith a

minute divergence to the initial condition of the state,Θ. We set the first initial condition

to zero; the divergent second initial condition is obtained by adding ϵ = 10−12 to the zero

initial condition. The obtained implicit time history of the two curves reveal the onset and

progression of an overwhelming difference in the system response as illustrated in figure

19. The slightly divergent initial condition results in an overwhelming difference in re-

sponse that begins in the second half of the 4th orbit then rapidly grows in the subsequent

orbits. The attitude motion in hence chaotic.

3.3.4 Lyapunov Exponents

To determine the average rate of divergence between the initially neighboring trajec-

tories defined locally in the state space; we shall scrutinize the dynamic behavior of the

motion’s Lyapunov exponents. Lyapunov exponent stability analysis afford a means of
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Figure 19: Chaos: Attitude Motion Sensitivity to Initial Conditions

quantifiable expression for initial conditions sensitivity-dependence (i.e. chaos), by de-

scribing the exponential rate of growth or decay of a perturbation to a trajectory as time

progresses [79]. Lyapunov exponent, λ is numerically expressed as,

λ = lim
t→∞

1

t
ln

∥∥∥∥ δy(t)δy(0)

∥∥∥∥ , (3.18)

where δy(t) is the tiny separating perturbation vector between the trajectories. The value

of Lyapunov exponent will distinguish the nature of the trajectory according to the fol-

lowing criteria: i) λ < 0 : Trajectory is stable and the motion is asymptotically stable. ii)

λ = 0 : Trajectory is neutral and the motion is characterized by some sort of steady-state.

iii) λ > 0 : Trajectory is unstable and chaotic. The Lyapunov exponents behavior for the

motion given equation (3.15) is illustrated in Figure 20.

The computed Lyapunov exponents are equal inmagnitude but opposite in sign with

increasing periods because the flow in equation (3.15) is non-autonomous Hamiltonian.

Hamiltonian systems are conservative. Therefore the magnitude of λ1 which measures

expansion in one direction; is equal to the magnitude of λ2 which measures contraction

in another direction. Since λ1 > 0 always, then as prescribed by the above distinction for

λ, the attitude motion is chaotic. This outcome is consistent with the preceding chaos

analyzes that scrutinized motion sensitivity to initial conditions.
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Figure 20: Dynamics of Lyapunov Exponents for the Attitude Motion

3.3.5 Stability Charts

The orbit eccentricity and spacecraft’s ratio of principal moments of inertia are respec-

tively defined as e ∈ {0 , 1} and σ ∈ {0 , 1}. On the other hand, our stability analysis

so far has been illustrated courtesy of arbitrarily set values of (e = 0.2 , σ = 0.3). Conse-

quently is it essential to holistically scrutinize themotion behavior for all possible values of

e and σ. Constructing stability charts which partition the e-σ plane into stable and unsta-

ble regions enable scrutiny of motion stability as e and σ vary simultaneously. Transition

curves in stability charts constitute frontiers that separate stable regions from unstable re-

gions. We can derive transition curves in closed formvia the FTM.Floquet theory requires

a stable system to have a Floquetmultiplier ofmagnitude, |ρk| ≤ 1. It can hence be proved

that the transition from stability to instability occurs when both Floquet multipliers are

equal to 1 or both are equal to -1 (See figure 17). Therefore, the transition curves in the

e-σ plane where the solution to the linear periodic term of equation (3.16) changes from

stable to unstable (or vice versa) are determined by the conditions, Trace[FTM ] = ±2,

or |ρk| = 1.
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Figure 21: Stability Chart of the Attitude Motion

Even thoughwe can only construct transition curves associatedwith the linear term of

the attitude motion equation; the outcome provides insightful perusal into the behavior

of the whole equilibrium solution. The complete solution behavior can be arrived at by

augmenting the evaluated linear periodic stability behaviorwith the combined effect of the

nonlinear term f(x, ζ) and forcing term F (ζ) in equation (2.1). For instance, if a given

{e, σ} pair is initially located in the unstable region of the FTM-dependent stability chart;

then, the nonlinear and forcing terms will tend to exacerbate this instability rendering the

complete solution unstable for that particular {e, σ} combination. A similar argument

can be made for an {e, σ} pair located in a stable region. The constructed stability chart

of the attitude motion is shown in figure 21.

The darker regions constitute stable points while the lighter regions are unstable. The
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Table 1: Stability of Representative e− σ Pairs

Stability Region e σ Floquet Multipliers, (ρ1, ρ2) |ρ1| |ρ2|
0.82 0.6 -1.06522 , -0.93877 1.06 0.94

Unstable 0.6 0.1 -0.20126 , -4.96854 0.20 4.96
0.8 0.14 -0.10212 , -9.79244 0.10 9.79

Marginal 0.2 0.5 0.1346± 0.99099i 1 1
0.4 0.4 0.7971± 0.60382i 1 1

Stable 0.6 0.5 −0.1117± 0.9937i 1 1
0.8 0.9 0.7156± 0.6984i 1 1

stability chart has a slightly larger stable region than the unstable region. Unstable solu-

tions appear to be dominated by two regions approximately defined by i) σ ∈ {0 , 0.2}

and increasing values of e plus ii) e ∈ {0 , 0.3} and increasing values of σ. Essentially, a

spacecraft with mass distribution such that σ > 0.2 is amenable to a wider range of eccen-

tricity values above 0.2 to achieve an intended stable pitch angle motion.

For instance, we have previously considered the pair {e = 0.2, σ = 0.3}; this pair is

located in the stable region corresponding to critical Floquet multipliers confirmed in fig-

ure 17. The motion at this location is stable in the sense of Lyapunov. The stability chart

further accords a means of scrutinizing generalized stability behavior trends or common-

alities between disparate e− σ pairs. By picking representative e− σ pairs from different

regions, we tabulate the resultant illustrative Floquet multipliers as shown in Table 1.

From the table, we note that both selected marginal and stable regions are associated

with critical Floquet multipliers. This implies that the pertinent e-σ pair characterizes a

motion stable in the sense of Lyapunov; i.e. the pitch angle librations are bound by Θ ∈

{−π ,+π}. This is consistent with the dynamics presented in figures 17 and 15. However,

in the unstable regions, Floquet multipliers have magnitudes |ρk| > 1, implying that the

pitch angle wanders beyond±π.
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Figure 22: Resonance in Linear and Forcing Terms

3.4 Resonance

The attitude dynamics are dominated by the linear and forcing terms delineated in

equation (3.16). This is because if we consider the motion composed of only the linear

and forcing terms i.e x̊(ζ) = A(ζ)x(ζ) + F (ζ),the numerical solution is unbounded

as shown in figure 22. This is not the case if we consider motion composed of any of

the following term combinations; x̊(ζ) = A(ζ)x(ζ), x̊(ζ) = A(ζ)x(ζ) + f(x, ζ), or

x̊(ζ) = f(x, ζ) + F (ζ).

Moreover, if we consider the L-F transformed motion in equation (2.58), Floquet ex-

ponents (eigenvalues ofR) represent frequencies associatedwith the linear term. Periodic

elements of the nonlinear matrix are a product of the truncated Fourier series matrices

Q(ζ) andQ−1(ζ). On the other hand, periodic elements of the forcingmatrix are likewise

multiplied byQ−1(ζ). Subsequently, resonance between the Floquet exponents and any
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of the periodic terms in the forcing matrix elements will trigger instability in the motion

as well.

Bifurcation triggers the system’s equilibrium solutions to transition between the dis-

parate regions of the stability chart. The orbit eccentricity, e is the bifurcation parameter

for the attitude motion (see equation (3.15)). This is because the general on-orbit space-

craft mass properties represented by σ, typically tend to be constant for a gravity gradient

stabilized spacecraft. Therefore, it is essential to analyze the equilibrium solution dynam-

ics as small increments are applied on the bifurcation parameter. We develop the normal

form of our dynamics in the next section to facilitate bifurcation behavior analysis. Nor-

mal forms are not unique, consequently near identity transformation for the state aug-

mented system and the L-F transformed system will be undertaken separately.

3.5 Versal Deformation of the Normal Form and Bifurcation Analysis

Versal deformation refers to embedding the system in a parameterized family of sys-

tems containing all possible dynamics that can occur near the bifurcation point. More-

over, the family of systems should be transverse to the bifurcation surface with the num-

ber of parameters equal to the codimension of the bifurcation [106]. The attitudemotion

undergoes a codimension one bifurcation because only one parameter, e is responsible for

the loss of stability (for gravity gradient stabilization to be maintained, σ has to remain

fixed). Because our critical Floquet multipliers are complex and lie on the unit circle; this

system will experience a Hopf bifurcation. Further, it is “well-known” that Hopf Bifur-

cation is a codimension one bifurcation. Firstly, we shall formulate the normal forms of

nonlinearities up to the cubic order in equations (3.15) and (3.11) to demonstrate the
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intended approach. Normalization of dynamics with higher order nonlinearities can be

accomplished via the same techniques.

3.5.1 State Augmented System

To normalize the augmented states system, we first apply the modal transformation

Θ = My (here,Θ = [Θ1 Θ2 q p]T ) to equation (3.11) and obtain the equation below,

y′ = Jy +M−1



0

2eq [ep(1−Θ2) + Θ2]− 3σepΘ1 − 3σ(1 + ep)

(
−2

3
Θ3

1

)
0

0


.

(3.19)

This systemnowpossesses 4th order nonlinearity. J is in the Jordan canonical form. Equa-

tion (3.19) is hence of the formdescribed in equation (2.33). Thenormal form is evaluated

by successive application of the near identity transformation,

y = v + h4(v, f). (3.20)

The state augmented system is independent of periodic coefficients hencewe solely obtain

the TINF as,

v′1

v′2

v′3

v′4


=



−iv1

iv2

−i0.948683v3 + i30.4002v1v2v3 + i1.05409v23v4

i0.948683v4 − i30.4002v1v2v4 − i1.05409v3v
2
4


. (3.21)

When the external forcing term is augmented as a system state, the magnitude of the ex-

ternal forcing frequency appears as solitary, linear, imaginary conjugate coefficients in the
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normal form, i.e. 1 (see equation (3.8)). Eigenvalues of the linearmatrix in equation (3.11)

constitute the conjugate coefficients in the linear terms of the reducednonlinearity normal

forms, (i.e. ±i0.948683).

Moreover, after obtaining the straightforward solutions of v1(f) and v2(f) then sub-

stituting these values in the equations for v′3(f) and v′4(f); the last two equations of the

normal form can be expressed as,

v′3 = i(−0.948683 + 30.4002C1C2)v3 + i1.05409v23v4,

v′4 = i(0.948683− 30.4002C1C2)v4 − i1.05409v3v
2
4.

Here,C1 andC2 are the integration constants originating from the analytical solutions of

v1(f) and v2(f) respectively.

We shall investigate the bifurcation of equation (3.11) via its normal form given above.

Because the periodic systemmaintains the same general structure, wemay treat the respec-

tive limit cycles as equilibria and study their bifurcations. Weutilize the versal deformation

of the normal form to investigate the change in the stability structure of the dynamics

in the neighborhood of the critical point of the bifurcation parameter. Essentially, con-

struction of versal deformation of the normal form facilitates characterization of system

dynamics at the critical point and its small neighborhood. Therefore, we handily gain

complete understanding of the qualitative phase space dynamics of the dynamical system

in the neighborhood of the critical point.

We define the normal form versal deformation parameter as µ1. The parameter µ1

represents a small change in the eigenvalues of the normal form corresponding to a small

change in the bifurcation parameter in the original system coordinates. It is a prerequi-

site condition to obtain a relationship between the the versal deformation parameter, µ1

and the original system bifurcation parameter e. Incorporating µ1 in equation (3.21) we
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obtain,

v′1

v′2

v′3

v′4


=



µ1 − i 0 0 0

0 µ1 + i 0 0

0 0 µ1 −ϖ 0

0 0 0 µ1 +ϖ





v1

v2

v3

v4


+



0

0

i1.05409v23v4

−i1.05409v3v
2
4


, (3.22)

whereϖ = i(0.948683− 30.4002C1C2).

By defining small increments on the bifurcation parameter as η, we can write ek =

ec+ηk to represent thek disparate sets of bifurcationparameter in theneighborhoodof the

critical parameter ec = 0.2. We employ the least squares, curve-fitting technique proposed

by [107] to obtain the relationship between µ1 and η as, µ1 = (1.47476 + i0.301628)η −

(1.82052 + i0.414608)η2. N.B. Values of C1 and C2 in equation (3.22) were evaluated by

forward action transformations of initial conditions in the original coordinates i.e Θ1 =

Θ2 = 0, p = 1, q = 0.

The closed form analytical solutions for v1(f) and v2(f) in the versal deformation

equation (3.22) is straightforward. To obtain v3(f) and v4(f) we introduce the complex

changes of variable; v3(f) = u1 − iu2 and v4(f) = u1 + iu2 followed by the polar coordi-

nates u1 = R cos θ and u2 = Rsin(θ). The last two equations in (3.22) become,

R′ = Re(µ1)R,

θ′ = 0.948683− 30.4002C1C2 − 1.05409R2.

 (3.23)

After solving equation (3.23), we utilize the results to complete the closed form analytical

solution of equation (3.22) as,
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v1(f) = eµ1fC1 exp (−if),

v2(f) = eµ1fC2 exp (if),

v3(f) = eµ1fC3 exp−
(0.948683− 30.4C1C2)f − 0.52705e2µ1tC2

3

µ1

+ C4

 i,

v4(f) = eµ1fC3 exp
(0.948683− 30.4C1C2)f − 0.52705e2µ1fC2

3

µ1

+ C4

 i.

(3.24)

Similarly,C3 andC4 are the integration constants originating from the analytical solutions

of v3(f) and v4(f) respectively. The values of these integration constants is evaluated from

the initial conditions specified in the original coordinates. After back transformation of

the normal form closed form analytical solutions above, we obtain the motion in the orig-

inal coordinates.

The back transformed v1(f) and v2(f) constitute the augmented states given in figure

16(c). Moreover, µ1 ̸= 0; but is generally small in the order of magnitude 10−4. The in-

tegration constants on evaluation are imaginary whose magnitudes are close to identity.

Consequently, from equation (3.24), back transformation of the sinusoidal v1(f) and

v2(f) will result in the trigonometric augmented states whose amplitude is determined

by the magnitude of the integration constants. From equation (3.23), we can express the

transient solution of R as R = ei(∓iµ1±|C|). Since µ1 ̸= 0, the motion is characterized by

a locally stable limit cycle in the neighborhood of the bifurcation point. The limit cycle

is stable in the sense of Lyapunov but not asymptotically stable. Post bifurcation attrac-

tors that transform into quasi-periodic attractors portraying a limit cycle in the original

coordinates are obtained via back transformation and subsequently shown in figure 23

(η = 0.00001).
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Figure 23: Poincaré Map of State AugmentedMotion Post-Bifurcation Behavior

3.5.2 L-F Transformed System

Here, we also demonstrate analysis of bifurcation behavior subject to different values

of e-σ pair. Consequently, by utilizing the developed stability chart (figure 21) we select

{e = 0.1 , σ = 0.2}. This e-σ pair lies on a transition curve hence the system is guaranteed

to be bifurcating. Again, by considering up to the cubic nonlinearity, the history behavior

from equation 3.15 is shown in figure 24.

The system likewise possesses critical Floquetmultipliers that lie on theunit circle of values

(0.1435± 0.9896i ) and purely imaginary Floquet exponents, 0± 1.4268i. The computed

FTM andRmatrices are;

Φ(Z) =

0.1435 −0.1914

5.1161 0.1435

 , R =

 0 −0.276

7.376 0

 . (3.25)

The computed periodic LFTmatrix,Q(ζ) andQ−1(ζ) are plotted in figure 25.
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(a) x1 and x2 (b) Phase Plot

Figure 24: L-F Transformed System Implicit Time History Response

We consider the L-F transformed dynamics in equation (3.26) up to the cubic nonlin-

earity. After applying the LFT matrix given in equation (3.18) on the attitude motion in

equation (3.15), we obtain the system,

z̊ = Rz +Q−1

 0

12π2σ

(1 + e cos 2πζ)

{
2

3
(Q11z1 +Q12z2)

3

}
+Q−1

 0

8π2e sin 2πζ
(1 + e cos 2πζ)

 .

(3.26)

To normalize this externally excitedmotion the system states are augmented to convert the

system from non-autonomous to autonomous. We define additional states as

p(ζ) = cos(2πζ),

p̊(ζ) = −2πsin(2πζ) = −q(ζ),

q̊(ζ) = 4π2 cos(2πζ) = 4π2p(ζ),


(3.27)

which are further plotted in figure 26.

After substituting the above augmented states into equation (3.26), we obtain the sys-

tem shown in equation (3.28)–whose order of nonlinearity increases to four. The trans-
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(a) Qij(ζ)

(b)Q−1
ij (ζ)

Figure 25: Plot of Elements of the LFTMatrix and its Inverse

(a) p(ζ) and q(ζ) (b) Phase Portrait

Figure 26: Augmented System States
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formed denominator term (1 + e cos(2πζ))−1 has been approximated by the binomial

expansion equivalent i.e. (1 + ep)−1 ≈ (1− ep).

Apart from raising the order of nonlinearity, state augmentation further introduces

periodic linear terms, 4πeQ−1
12 q and 4πeQ−1

22 q as shown below,

z̊1

z̊2

p̊

q̊


=



0 −0.276 0 0

7.376 0 0 0

0 0 0 −1

0 0 4π2 0





z1

z2

p

q


+ 8π2σ



(1− ep)(Q11z1 +Q12z2)
3Q−1

12

(1− ep)(Q11z1 +Q12z2)
3Q−1

22

0

0



+ 4πe



q(1− ep)Q−1
12

q(1− ep)Q−1
22

0

0


.

(3.28)

Consequently, the augmented dynamics with linear parameter variant coefficients neces-

sitate a second LFT to convert the linear term to parameter invariant. The computed

parameters corresponding to the second LFT are as follows; critical Floquet multipliers

0.1435 ± 0.9897i, and purely imaginary Floquet exponents, 0 ± 1.4268i. The computed

second FTMand constantRmatrices are given in equation (3.29) and (3.30) respectively;

Φ∗(Z) =



0.1435 −0.1914 −0.4343 −0.054

5.1161 0.1435 −2.0844 0.307

0 0 1 1

0 0 0 1


, (3.29)
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R∗ =



0 −0.276 −0.6456 −0.0022

7.376 0 −0.1165 0.4524

0 0 0 0

0 0 0 0


. (3.30)

The computed second periodic LFT matrix,Q∗(ζ) and its inverse,Q∗−1(ζ) are similarly

presented as plots in figure 27.

We designate the second L-F transformation as z = Q∗w. Here, z = [z1 z2 p q]T .

After applying the second L-F transformation to the state augmented periodic system we

obtain,

ẘ = R∗w +Q∗−1(8π2σ)



(1− ep)(Q11z1 +Q12z2)
3Q−1

12

(1− ep)(Q11z1 +Q12z2)
3Q−1

22

0

0


−Q∗−1(4πe2)



qpQ−1
12

qpQ−1
22

0

0


.

(3.31)

Applying the modal transformationw = My to equation (3.31) transmutes this system

into,

ẙ = Jy +M−1Q∗−1


(8π2σ)



(1− ep)(Q11z1 +Q12z2)
3Q−1

12

(1− ep)(Q11z1 +Q12z2)
3Q−1

22

0

0


− (4πe2)



qpQ−1
12

qpQ−1
22

0

0




,

(3.32)

where

z1 =
4∑

i=1

Q∗
1iwi, z2 =

4∑
i=1

Q∗
2iwi, p =

4∑
i=1

Q∗
3iwi, q =

4∑
i=1

Q∗
4iwi.
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(a) Q∗
ij(ζ)

(b)Q∗−1
ij (ζ)

Figure 27: Plot of Elements of the Second LFTMatrix and its Inverse
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And

w1 =
4∑

i=1

M1iyi, w2 =
4∑

i=1

M2iyi, w3 =
4∑

i=1

M3iyi, w4 =
4∑

i=1

M4iyi.

J , y and ẙ take the form previously described in equations (3.19) and (3.20).

We first evaluate the TDNF as stipulated in equation (2.39) then as stated in equation

(2.41), average out the periodic terms to obtain the simplified TINF as,

v̊1

v̊2

v̊3

v̊4


=



0

0

−(0.0106945− i2.12186)v3 + i0.0005599v23v4

−(0.0106945 + i2.12186)v4 − i0.0005599v3v
2
4


. (3.33)

The closed form analytical solutions for v1(ζ) and v2(ζ) are constants. Variables v1(ζ) and

v2(ζ) in the v̊3 and v̊4 differential equations are substituted by their respective computed

constants. This computation is carried out through the forward action transform of the

L-F,modal and near-identity transformations of the initial conditions declared in the orig-

inal coordinates. The Floquet exponents are conjugate coefficients in the linear terms of

the normal forms before being multiplied by the substituted constant values equal to v1

and v2.

Similarly, we define the normal form versal deformation parameter as µ2 and incorpo-

rate it into equation (3.33) to obtain,

v̊1

v̊2

v̊3

v̊4


=



0 0 0 0

0 0 0 0

0 0 µ2 − λ3 0

0 0 0 µ2 − λ4





v1

v2

v3

v4


+



0

0

−i0.0005599v23v4

i0.0005599v3v
2
4


, (3.34)

where λ3 = (0.0106945 + i2.12186), and λ4 = (0.0106945− i2.12186).
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After defining small increments on the bifurcation parameter again as η, we express

the k disparate sets of bifurcation parameter in the neighborhood of the critical parameter

ec = 0.1 as, ek = ec + η. The relationship between µ2 and η is evaluated via the procedure

previously stated in section 3.5.1 to yield; µ2 = (0.132784 − i0.842528)η − (3.04196 −

i7.13545)η2.

The closed form analytical solutions for v1(ζ) and v2(ζ) of the versal deformation

normal form are straightforward. To obtain v3(ζ) and v4(ζ) we introduce the complex

changes of variable; v3(ζ) = u1 − iu2 and v4(ζ) = u1 + iu2 followed by the polar coordi-

nates u1 = R cos θ and u2 = Rsin(θ). The last two equations in (3.34) become,

R̊ = [Re(µ2)− 0.0106945]R,

θ̊ = 2.12187 + 0.0005599R2.

 (3.35)

We solve equation (3.35) and use the results to obtain the remaining analytical solutions

of equations (3.34) as shown in equation (3.36)

v1(ζ) = µ2ζ + C1,

v2(ζ) = µ2ζ + C2,

v3(ζ) = e(−0.01069+µ2)ζC3e
−Γi,

v4(ζ) = e(−0.01069+µ2)ζC3e
Γi,

(3.36)

where . Γ =

2.1219ζ +
0.00028e(−0.02138+2µ2)ζRe(C2

3)

µ2 − 0.01069
+Re(C4)

 .

Ci (i = 1, 2, 3, 4), are the respective constants of integration whose value is evaluated

from the initial conditions specified in the original coordinates. C1 andC2 are real whereas

C3 and C4 are complex. µ2 is similarly small in the order of magnitude 10−4. v1(ζ) and

v2(ζ) back transformation via inverse near-identity, modal and single L-F transformations

forms the augmented states given in equation (3.27) and plotted in figure 26. Equation
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Figure 28: Poincaré Map of L-F TransformedMotion Post-Bifurcation Behavior

(3.35) yields a steady state solution of the limit cycle amplitude as R = Re(µ2)
0.0106945

. When

µ2 ̸= 0 the solution of v3(ζ) and v4(ζ) results in locally stable limit cycle with amplitude

corresponding to R = Re(µ2)
0.0106945

. Consequently, the quasi-periodic attractors in the origi-

nal coordinates delineating a limit cycle are obtained after back transformation as shown

in figure 28 (η = 0.0001).

Solutions of the versal deformation equations enable investigation of the post-

bifurcation steady-state behavior in the small neighborhood of the bifurcation point.

However, as observed by [107], this method is only useful for local analysis. This is

because minor errors introduced by back transformation close to the bifurcation points

significantly grow as you move further away
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3.6 Summary and Discussion

In this chapterwepresented and characterized the attitudemotionof a gravity gradient

stabilized spacecraft in eccentric orbit. Ambient torques in the perturbing space environ-

ment engendered attitudemotionmodeled by nonlinear dynamics coupled in the roll-yaw

axes; and, uncoupled planar dynamics in the pitch axis. The non-planar dynamics equa-

tions are homogeneous and analytically solvable. However, the pitch attitude motion is

nonlinear, possesses parameter-varying coefficients and periodically excited.

We demonstrated a technique for analyzing the parameter-varying and periodically ex-

cited nonlinear attitudemotion for a gravity gradient stabilized spacecraft. This approach

is based on system states augmentation, Lyapunov-Floquet transformation and versal de-

formation of the normal forms. The preceding transformations transmute and reduce the

original systemdynamics to schemes that aremore amenable to analyzes of stability, chaos,

periodicity and bifurcation behavior.

Analysis showed that the attitude motion is quasi-periodic, chaotic and stable in the

sense of Lyapunov for particular e-σ pairs. Subsequently the motion stability chart con-

structed facilitated prediction of e-σ combination leading to stable or unstable dynamics.

The stable regions of the stability curvewere found to predictmarginal and not asymptoti-

cally stable dynamics. However, the emanating librations need to be stabilized for nominal

mission operations to be realized. Conversely, the e-σ combinations located in the unsta-

ble regions resulted in aperiodic unstable dynamics. The computed Lyapunov exponents

indicate that the chaotic dynamics also depend on initial values of {Θ, Θ′} pair not just

on the magnitudes of e-σ pairs.

Both outcomes of the two-fold versal deformation analyzes (disparate values of e-σ

pairs considered); indicate establishment of locally stable limit cycles by the quasi-periodic
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flow post bifurcation. Since the eccentricity varies as 0 < e < 1, relatively small deviations

from the critical point, ec of the order 10−4 < η < 10−3 trigger a significant topological

change in the structure of the motion flow.
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Chapter 4

CONTROLOFGRAVITY GRADIENT STABILIZEDATTITUDEMOTION

After setting e = 0.2 and σ = 0.3 then numerically integrate the motion in equation

(3.8) and equation (3.15) to obtain the uncontrolled responses shown in figure 29 (a) and

(b) respectively. (N.B figure 29 (a) is the same as figure 15(a) ). The slight difference in

the long-term motion behavior in figure 29(b) may be attributed to the approximation

of the trigonometric product term by a truncated series in equation (3.12) and possibly

fidelity of the numerical integrator used in the computation. As established in section 3.3,

the attitude motion for the considered (e− σ) pair is quasiperiodic, marginally stable and

chaotic. Despite the system being stable in the sense of Lyapunov, the inherent oscilla-

tions are disruptively significant and require stabilization if the spacecraft is expected to

successfully conduct its mission.

In conformity with our outlined methodology in figure 3, motion controller design

is undertaken on augmented states, L-F transformed or near identity transformed coordi-

(a) Original Coordinates (T = 2π) (b) Normalized Principal Period (T = 1)

Figure 29: Uncontrolled Attitude Motion
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nates. We shall hence first transform the system dynamics into these more amenable but

topologically equivalent dynamical structures that retain the Lyapunov stability and bi-

furcation properties of the original system. Augmentation of the attitude dynamics states

has been conducted in section 4.3.2. Control law development will be first considered in

L-F transformed coordinates then followed by near-identity transformed coordinates of

equation (3.15).

4.1 Lyapunov-Floquet Transformation

Prior to computing the LFT matrix Q(ζ) and its inverse, Q−1(ζ) matrices (for the

e = 0.2, σ = 0.3 case), we computed the FTM andRmatrices over the interval ζ ∈ [0 , 1]

via shifted Chebyshev polynomials of the first kind for the system in equation (3.15). The

evaluated aforementioned matrices are shown below,

Φ(Z) =

0.9462 −0.0529

1.9796 0.9462

 , R =

 0 −0.0539

2.0159 0

 , (4.1)

Q(ζ) =

Q11 Q12

Q21 Q22

 , Q−1(ζ) =

Q−1
11 Q−1

12

Q−1
21 Q−1

22

 , (4.2)

where

Q11 = −0.138896 + 1.24968 cos(2πζ)− 0.121824 cos(4πζ) + 0.0121464 cos(4πζ)

−0.00121854 cos(8πζ) + 0.000122567 cos(10πζ),

Q12 = 0.201902 sin(2πζ)− 0.0196812 sin(4πζ) + 0.00196227 sin(6πt)

−0.000196857 sin(8πζ),
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Q21 = −7.44496 sin(2πζ) + 1.49121 sin(4πζ)− 0.224998 sin(6πζ)

+0.0302284 sin(8πζ),

Q22 = 0.0074811 + 1.20128 cos(2πζ)− 0.24076 cos(4πζ) + 0.0363337 cos(6πζ),

−0.00488192 cos(8πζ) + 0.000615458 cos(10πζ),

Q−1
11 = 0.178684 + 0.831759 cos(2πζ)− 0.00416167 cos(4πζ)

−0.00201274 cos(6πζ)− 0.001088 cos(8πζ)− 0.000706808 cos(10πζ)

−0.000523275 cos(12πζ)− 0.000466034 cos(14πζ)

−0.0258801 sin(2πζ) + 0.000259231 sin(4πζ) + 0.000188365 sin(6πζ)

+0.000136072 sin(8πζ) + 0.000110821 sin(10πζ) + 0.000103106 sin(14πζ),

Q−1
12 = −0.0043031 cos(2πζ)− 0.000772303 cos(4πζ) + 0.00012908 cos(6πζ)

+0.000115479 cos(8πζ) + 0.000107006 cos(10πζ) + 0.000110097 cos(12πζ)

+0.000112704 cos(14πζ)− 0.138297 sin(2πζ)− 0.0123985 sin(4πζ)

+0.00137926 sin(6πζ) + 0.000923347 sin(8πζ) + 0.00068248 sin(10πζ)

+0.000583058 sin(12πζ) + 0.000509416 sin(14πζ),

Q−1
21 = 0.155206 cos(2πζ)− 0.00365144 cos(4πζ)− 0.00363534 cos(6πζ)

−0.00338305 cos(8πζ)− 0.00343186 cos(10πζ)− 0.00327608 cos(12πζ)

−0.00335147 cos(14πζ) + 4.98815 sin(2πζ)− 0.0586199 sin(4πζ)

−0.0388447 sin(6πζ)− 0.0270502 sin(8πζ)− 0.0218882 sin(10πζ)

−0.0173497 sin(12πζ)− 0.0151485 sin(14πζ),
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Q−1
22 = 0.0835005 + 0.844365 cos(2πζ) + 0.0815938 cos(4πζ)− 0.00321618 cos(6πζ)

−0.00173261 cos(8πζ)− 0.0010434 cos(10πζ)− 0.000742632 cos(12πζ)

−0.00062635 cos(14πζ)− 0.0262723 sin(2πζ)− 0.00508249 sin(4πζ)

+0.000300991 sin(6πζ) + 0.00021669 sin(8πζ) + 0.000163595 sin(10πζ)

+0.000140229 sin(12πζ) + 0.000138575 sin(14πζ).

Here, we alternatively present elements of Q(ζ) and Q−1(ζ) as truncated Fourier series

as described in equation (2.19). Previously in figures 25 and 27, we have presented the

periodic plots of these series. Further, recall that ζ = f
2π

andZ is the normalized principal

period, hence FTM = Φ(Z). After applying the L-F transformation, x(ζ) = Q(ζ)z(ζ)

to the attitude motion in equation (3.15), it becomes,

z̊ =Rz +Q−1

 0

12π2σ

(1 + e cos 2πζ)

{
2

3
k3 − 2

15
k5 +

4

315
k7

}
+Q−1

 0

8π2e sin 2πζ
(1 + e cos 2πζ)

 ,

(4.3)

where k = (Q11z1 +Q12z2).

The Lyapunov stability properties are preserved in the new coordinates after the sys-

tem is transformed by the LFT matrix. The L-F transformation theory guarantees that

a suitable controller realized in the L-F transformed coordinates will be correspondingly

efficacious after back transformation into the original system coordinates. Consequently,

we shall endeavor to systematically synthesize suitable controllers to stabilize the motion

in the transformed coordinates. Our control synthesis strategy will first consider linear

control laws before exploring nonlinear control strategies.

In order to formulate appropriate control laws that would stabilize the quasi-periodic

motion analyzed in chapter 3; we introduce a control inputu(t) in equation (3.1) as shown

below,

Θ̈ = −3
µ

r3
σ sinΘ cosΘ− ω̇ + u(t). (4.4)
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Using equations (3.5) and (3.6), we perform a change of independent variable from time

(t) to true anomaly (f ). The closed loop attitude dynamics hence will be,

Θ′′ =
1

(1 + e cos f)

2e sin fΘ′ − 3σ sinΘ cosΘ+ 2e sin f
+ u(f). (4.5)

The control action u(f) will generally represent torque per unit moment of inertia as a

function of true anomaly. Equation (4.5) is first used to synthesize linear control laws

followed by nonlinear control laws development.

4.2 Linear Control

Though linear control law principles are conventionally intended for controlling lin-

ear parameter invariant systems [108]; we initially consider them to control our nonlinear

dynamics as an initial analysis step. Since most linear control methods tend to be rela-

tively simpler to analyze and implement compared to nonlinear control methods, it is pru-

dent to ascertain the suitability of linear control prior to embarking on relatively more

complicated techniques. To implement linear control, we shall consider pole-placement

approach to determine the negative feedback gain required to stabilize the system.

4.2.1 State Augmented System

The autonomous state augmented system in equation (3.11) can be represented in

abbreviated form as,

Θ′ = AΘ(f) + f(Θ, f), (4.6)

where f(Θ, f) constitutes the nonlinear terms. A is the linear matrix and Θ =

[Θ1 Θ2 q p]
T–the state vector.To synthesize the parameter-invariant linear state feedback
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controller, equation (4.5) becomes,

Θ′ = AΘ(f) + f(Θ, f) +G1u(f). (4.7)

The linear state feedback controller is of the form u = −KΘ(f) and the control input

scaling vector isG1 = [0 1 0 0]T . ThoughA is full rank, the linear pair {A ,G1} is not

controllable. This is because the system controllability matrix, CM, shown below has a

rank of 2, instead of rank 4,

CM =



0 1 0 −0.9

1 0 −0.9 0

0 0 0 0

0 0 0 0


. (4.8)

Consequently, a linear state feedback controller cannot stabilize the system dynamics

associated with the e − σ pair considered. It is to be noted that the two states, (p, q) in

equation (4.7) are virtual states serving to simplify the system but are not accessible in the

actual system dynamics. This is illustrated by the fact that controllability matrix does not

have full rank.

4.2.2 L-F transformed System

In this case, the parameter-invariant linear state feedback controller is similarly of the

form u(ζ) = −Kz(ζ). The control input is scaled by the matrix G2 = [1 1]T in L-F

transformed coordinates. Back transformation of the G2u(ζ) product via inverse LFT

matrix will guarantee a single control input in the system original coordinates as will be

demonstrated in equations (4.17) and (4.18). R is full rank and the linear pair {R ,G2}

is controllable. The L-F transformed equation (4.5) will be,

z̊ = Rz(ζ) +Q−1f(z, ζ) +Q−1F (ζ) +G2u(ζ). (4.9)
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Figure 30: Linear Control of L-F Transformed State

Therefore, the system closed-loop dynamics subjected to a linear control lawwill be of the

form,

z̊ = [R−G2K]z(ζ) +Q−1f(z, ζ) +Q−1F (ζ). (4.10)

We initially place poles at (−1 , 0). Then we evaluate the corresponding matrix K =

[K1 K2] to realize this pole-placement. Several stable double pole locations with a decreas-

ing factor of 10 (i.e. -1, -10, -100, -1000…)were considered. None of these pole-placement

locations demonstratednotable success in stabilizing the system. For instance, poles placed

at {p1 = −0.1 , p2 = −0.2} produces a response for a duration of slightly beyond 1.5 cy-

cles before the states abruptly become indeterminate at about ζ ≈ 1.74 as shown in figure

30.

In this analysis, the system response in the original coordinates is realized via the back-

transformation z(ζ) = Q−1(ζ)x(ζ). Therefore, similar to the state augmentation case,

the L-F transformed nonlinear system demonstrates inability to be stabilized by a linear

control law. The presence of periodic coefficients (elements of Q−1(ζ)) associated with

the nonlinear and forcing terms render the system untenable to be controlled via LTI sys-
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tems control approaches. In general, the ‘region of application’ of linear control for non-

linear systems is dependent on magnitude of nonlinearity and initial conditions. Many

times, linear control may stabilize nonlinear systems locally, but this is not guaranteed.

4.3 Nonlinear Control

Nonlinear control appears more suitable than linear control to stabilize the attitude

motion. However, conventional nonlinear techniques are not readily amenable to dy-

namics with periodic coefficients and periodic external excitation. Hence, as illustrated

in figure 3, requisite system state augmentation, L-F or near-identity transformations will

be undertaken prior to controller design. We shall first consider Sliding Mode Control

(SMC), then, bifurcation control will be implemented on the marginally stable system to

stabilize post bifurcation response.

4.3.1 Sliding Mode Control

Sliding mode control is a robust nonlinear feedback control methodology that is suit-

able for achieving accurate tracking for a class of nonlinear systems. SMCmethodology is

based on variable structure control law that results in the state trajectory “sliding” along a

discontinuity surface in the state space [109], [110]. Though SMC is deterministic, non-

linear and robust , its implementation is prone to undesirable “chattering” along the slid-

ing surface [111]. Design of SMC involves i) selection of the switching function (stable

hyperplane in the state space on which the dynamics will be restricted), ii) control law

synthesis.
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4.3.1.1 State Augmented System

Here, we implement a SMC that tracks a desired null pitch angle via a negative rate

of growth. Dynamics in the original coordinates possess periodic coefficients rendering

the dynamics unwieldy and unfavorable to synthesize a SMC. Therefore we develop the

SMC lawbasedon the augmented states dynamics–which are liberated fromperiodic coef-

ficients. To design a slidingmode controller for the state augmented systems, we designate

the switching function as,

s1 = (βΘ1 +Θ2)
2. (4.11)

The switching function represents the actual system state (i.e attitude pitch angle) refer-

ence error (difference between desired and actual pitch angle) that the controller desires

to maintain at zero. Therefore, when s1 = 0,Θ1 −→ 0 asΘ2 −→ 0.

Subsequently, the closed-loop dynamics of the controlled system are similar to equa-

tion (4.5) as shown below,

Θ′
1 = Θ2,

Θ′
2 = 2eq + 2e2pq(1−Θ2) + 2eqΘ2 − 3Θ1σ − 3epΘ1σ

− 3(1 + ep)

{
−2

3
Θ3

1 +
2

15
Θ5

1 −
4

315
Θ7

1

}
σ + u(f),

q′ = p,

p′ = −q,


(4.12)

where u(f) represents the control input. Derivative of the switching function with Θ′
1

andΘ′
2 substituted from equation (4.12) is,

s′1 =
2

105
(βΘ1 +Θ2)

(1 + ep)
(
210eq + σΘ1[−315 + 210Θ2

1 − 42Θ4
1 + 4Θ6

1]
)

+ 105(β − 2e(−1 + ep)q)Θ2

+ u(f).

(4.13)
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Setting β = 1, we derive the following control input,

u(f) =− 2

105
(Θ1 +Θ2)

(1 + ep)
(
210eq + σΘ1[−315 + 210Θ2

1 − 42Θ4
1 + 4Θ6

1]
)

− 105(1− 2e(−1 + ep)q)Θ2

− ϱ sgn(s1),

(4.14)

where

ϱ(Θ) >

∣∣∣∣− 2

105
(βΘ1 +Θ2)

(1 + ep)
(
210eq + σΘ1[−315 + 210Θ2

1 − 42Θ4
1 + 4Θ6

1]
)

− 105(β − 2e(−1 + ep)q)Θ2

∣∣∣∣,
(4.15)

A sigmoid function, s1
|s1|+ε

is preferred instead of the signum function to reduce chatter-

ing around the sliding surface typical of sliding mode controllers. ε is generally small. Em-

ploying a direct Lyapunov approach, stability of the sliding mode controller applied here

is ascertained by setting V = 1
2
s21 to be the Lyapunov function. Hence, V ′ = s1s

′
1. The

guaranteednegative definiteness of theLyapunov functionderivative demonstrated by the

equation below,

V ′ = −2 s
3
2
1

[
ϱ

s1
|s1|+ ϵ

]
< 0 ∀s1 ̸= 0, (4.16)

points to a stable controller. This equation is obtained after subsequent substitution for

s′1 and u(f) in the equation of V ′. Figure 31 shows the sliding mode controlled system

response.

It is observable that the slidingmode controller in the state augmented system achieves

stabilization themotion throughout anynumber of orbits. BothΘ1 andΘ2 are adequately

confined to zero. The augmented states p and q remain unaffected.

117



(a) Θ1 andΘ2

(b) q and p

Figure 31: Sliding Mode Controlled Actual and Augmented States
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4.3.1.2 L-F Transformed System

In this case, we similarly assume a control input u(ζ) first applied to equation (3.15)–

prior to L-F transformation as shown below,x̊1

x̊2

 =

 0 1

−12π2σ

(1 + e cos 2πζ)
4πe sin 2πζ

(1 + e cos 2πζ)


x1

x2


+

12π2σ

(1 + e cos 2πζ)

 0

2

3
x3
1 −

2

15
x5
1 +

4

315
x7
1

+

 0

8π2e sin 2πζ
(1 + e cos 2πζ)

+G3u(ζ).

(4.17)

G3 = [0 1]T is the control input scaling vector. It then follows from equation (4.3) that

the controlled L-F transformed system is,

z̊1 =R11z1 +R12z2 +Q−1
12

 12π2σ

(1 + e cos 2πζ)

[
2

3
k3 − 2

15
k5 +

4

315
k7

]
+

[
8π2e sin 2πζ

(1 + e cos 2πζ)

]
+ u(ζ)

 ,

z̊2 =R21z1 +R22z2 +Q−1
22

 12π2σ

(1 + e cos 2πζ)

[
2

3
k3 − 2

15
k5 +

4

315
k7

]
+

[
8π2e sin 2πζ

(1 + e cos 2πζ)

]
+ u(ζ)

 ,



(4.18)

where k = Q11z1 +Q12z2. We define the sliding function according to the equation,

s2 = αz1 + z2, (4.19)

to ensure that; when s2 = 0, z1 −→ 0 as z2 −→ 0. The sliding surface represents the

reference pitch angle error. The controller attempts to maintain a zero error throughout,

i.e. s2 = 0, ∀f > 0.
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After obtaining the derivative of the sliding function, we substitute for z̊1 and z̊2 from

equation (4.18) to obtain,

s̊2 =R21z1 + αR12z2 + (αQ−1
12 +Q−1

22 )

 12π2σ

(1 + e cos 2πζ)

[
2

3
k3 − 2

15
k5 +

4

315
k7

]
+

[
8π2e sin 2πζ

(1 + e cos 2πζ)

]
+ u(ζ)

 .

(4.20)

Moreover, from equation (4.1), R11 = R22 = 0. From equation (4.20), we set α = 1 and

derive the following sliding mode control law,

u(ζ) =
−R21z1 −R12z2 − (Q−1

12 +Q−1
22 )

{
12π2σ

(1 + e cos 2πζ)

[
2

3
k3 − 2

15
k5 +

4

315
k7

]
−
[

8π2e sin 2πζ
(1 + e cos 2πζ)

]} 1

(Q−1
12 +Q−1

22 )
− ρ sgn(s2),

(4.21)

where

ρ(z) >

∣∣∣∣−R21z1 −R12z2 − (Q−1
12 +Q−1

22 )

{
12π2σ

(1 + e cos 2πζ)

[
2

3
k3 − 2

15
k5 +

4

315
k7

]
−
[

8π2e sin 2πζ
(1 + e cos 2πζ)

]} 1

(Q−1
12 +Q−1

22 )
− ρ sgn(s2)

∣∣∣∣.
(4.22)

To reduce chattering around the sliding surface typical of slidingmode controllers due

to fast switching of the signum function, a sigmoid function is similarly preferred. We

again apply the direct Lyapunov approach to analyze the sliding mode controller stability

by selecting V = 1
2
s22 as the Lyapunov function. Asymptotic stability will be guaranteed if

the sliding function derivative is negative-definite. Hence, the switching function deriva-

tive is V̊ = s2s̊2. Substituting for s̊2 above with the control input like-wise substituted we

obtain the stability-criteria satisfying relationship below,

V̊ = −s2

[
ρ

s2
|s2|+ ϵ

]
< 0 , ∀s2 ̸= 0. (4.23)

Figure 32 shows the sliding mode controlled system in L-F transformed coordinates.
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Figure 32: Sliding Mode Controlled States in L-F Transformed Coordinates

The response in figure 32 is back transformed via the inverse LFT resulting in con-

trolled states in the original coordinates shown in figure 33.

We observe that, similar to the state augmented case, the sliding mode controller sta-

bilizes the the L-F transformed motion as well by invariably confining the states to zero

as desired. Though specific values for the e− σ were used to demonstrate this technique,

stabilization of the planar pitch motion by SMC approach is independent of the assigned

e − σ values. However, the possibility of a synthesized sliding mode controller being im-

practical to implement exists if the required control effort is colossally prohibitive.

4.3.2 Bifurcation Control

The critical Floquetmultipliers corresponding to purely imaginary Floquet exponents

(section ) indicate that the system is in the stability boundary. Consequently, it is essential

to stabilize the system post bifurcation apart frommodifying othermotion characteristics
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(a) x1 State

(b) x2 State

Figure 33: Sliding Mode Controlled States in Original Coordinates
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such as rate of growth. To achieve these objectives, we engage nonlinear bifurcation con-

trol with full state feedback. Synthesis of such a controller is facilitated by the normalized

dynamics which are relatively more tractable compared to the dynamics as represented in

the original coordinates. Periodic coefficients and complexity in structure of the dynam-

ics equations in the original coordinates drastically convolute synthesis of bifurcation con-

trol law. Dynamics of the states in the original coordinates will eventually be obtained via

back transformation of the normal form, modal and L-F transformations. Location of

the complex Floquet multipliers on the unit circle (figure 17) indicates that the pitch atti-

tude motion is undergoing a Hopf bifurcation with a limit cycle attractor of controllable

radius. Therefore, the structure of the normal formwill also verify a Hopf bifurcation oc-

curring in the neighborhood of the critical point of the bifurcation parameter (i.e. orbit

eccentricity).

To illustrate the intended approach, we shall formulate the normal forms of nonlin-

earities up to the cubic order in equations (3.11) and (3.15). Normalization of dynamics

with higher order nonlinearities can be accomplished through the same techniques. Simi-

lar to the preceding cases, we’ll consider the augmented states andL-F transformed systems

separately.

4.3.2.1 State Augmented System

In section 3.5.1, we demonstrated how to obtain the TINF of the state augmented

system–shown in equation (3.22). Obtaining the closed formanalytical solutions for v1(f)

and v2(f) in equation (3.22) is straight forward. On the other hand to evaluate v3(f) and

v4(f) we introduce the complex changes of variable; v3 = u1 − iu2 and v4 = u1 +

iu2 followed by the polar coordinates u1 = R cos(θ) and u2 = R sin(θ). The last two
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(a)Θ andΘ
′ Response (b) Phase Portrait

Figure 34: Uncontrolled Dynamics of the Normalized State Augmented System

equations in (3.22) become,

R′ = 0,

θ′ = 0.948683− 30.4002C1C2 − 1.05409R2.

 (4.24)

Here, C1 and C2 are the integration constants obtained when solving for v1(f) and v2(f)

respectively.

We solve equation (4.24) then utilize the results to complete the closed form analytical

solution of equation (3.22). The closed form solutions of v1(f), v2(f), v3(f), and v4(f)

are then back-transformed to the original coordinates producing the uncontrolledmotion

behavior shown in figure 34. The system response in figure 34 is a cognate approxima-

tion of the originally obtained numerical solution in figures 29 and 16(a). Again, a quasi-

periodic motion is characterized by non-closed curves is observed in the corresponding

phase portrait. Moreover, a codimension one Hopf Bifurcation is verified by the normal

form structure.

To synthesize a bifurcation control law of the normal form, we introduce a control
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input as shown below,

v′1

v′2

v′3

v′4


=



−i 0 0 0

0 i 0 0

0 0 i0.948683 0

0 0 0 −i0.948683





v1

v2

v3

v4



+



0

0

i30.4002v1v2v3 + i1.05409v23v4

−i30.4002v1v2v4 − i1.05409v3v
2
4


+G4u.

(4.25)

Let the scaling matrix and control input respectively be of the form,

G4 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


, u = γ1



0

0

K1v1v2v3 +K2v
2
3v4

K1v1v2v3 +K2v3v
4
2


. (4.26)

Back transformation of the G4u product via inverse normal form and modal trans-

formations will guarantee a single control input in the system original coordinates as

demonstrated in equations (4.17) and (4.18). The proportional gains are custom tuned

to K1 = −5 and K2 = −10. γ1 = 1 is a scalable parameter meant to suppress strange

trajectory behavior according to Poincaré-Bendixson theorem in the system phase space.

The resulting response of the bifurcation controlled augmented states system is shown in

figure 35. The augmented states remain unaffected as previously shown in figure 31(b).

The libratory amplitude of the quasi-periodic pitch angle motion is tremendously sta-

bilized and confined to a significantly diminished limit cycle attractor as illustrated in fig-

ure 34.
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(a)Θ andΘ
′ Response (b) Phase Plot

Figure 35: Dynamics of the Bifurcation Controlled State Augmented System

4.3.2.2 L-F Transformed System

As already indicated in section 3.5.2; in addition to synthesizing bifurcation control

law via L-F transformed dynamics, we shall also demonstrate analysis of the spacecraft

attitude dynamics due to different values of e and σ. Therefore, e = 0.1 and σ = 0.2 is

once again considered in this section. L-F transformation analysis of the attitude dynamics

associated with these values of e and σ has been comprehensively conducted in section

3.5.2. Subsequently, the normalized TINF system was obtained in equation (3.33).

In equation (3.33), the closed form analytical solutions for v1(ζ) and v2(ζ) are con-

stants. Variables v1 and v2 in the v̊3 and v̊4 differential equations are substituted by their

respective computed constants. This computation is carried out through the forward ac-

tion transform of the L-F, modal and near-identity transformations of the initial condi-

tions declared in the original coordinates.

The Floquet exponents are conjugate coefficients in the linear terms of the normal

forms before being multiplied by the substituted constant values equal to v1 and v2.

To obtain v3(ζ) and v4(ζ)we introduce the complex changes of variable; v3 = u1− iu2
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(a) Orignial Back Transformed Normalized States (b) Phase Plot

Figure 36: Dynamics of the Normalized L-F Transformed System

and v4 = u1 + iu2 followed by the polar coordinates u1 = R cos(θ) and u2 = Rsin(θ).

The last two equations in (3.33) becomes,

R̊ = −0.0106945R,

θ̊ = 2.12186 + 0.0005599R2.

 (4.27)

Results from the easier to solve equation (4.27) are then used to obtain the closed form

analytical solutions to equation (3.33). Then, [v1(ζ) v2(ζ) v3(ζ) v4(ζ)]
T are then back-

transformed to the original coordinates producing the uncontrolled motion shown in fig-

ure 36. The system response in figure 36 (with nonzero initial conditions) is a cognate

approximation of the originally obtained numerical integration solution in figure 24. The

back transformed augmented states are similarly shown infigure 37 corresponding to equa-

tion (3.27) where the amplitude of q(ζ) is 2π times that of p.

The normal form in equation (3.33) verifies that this is a system undergoing a codi-

mension one Hopf Bifurcation. To synthesize a bifurcation control law, a control input
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Figure 37: Back Transformed Normalized Augmented States

is added to equation (3.33) as below,

v̊1

v̊2

v̊3

v̊4


=



0 0 0 0

0 0 0 0

0 0 −0.0106945− i2.12186 0

0 0 0 −0.0106945 + i2.12186





v1

v2

v3

v4



+



0

0

−i0.0005599v23v4

i0.0005599v3v
2
4


+G5u.

(4.28)

Let the scaling matrix and control input be of the form,

G5 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


, u = γ2



0

0

K1v
2
3v4

K2v3v
2
4


. (4.29)

The proportional gains are custom-tuned to K1 = K2 = −2 and γ2 = 1. Figure 38

shows dynamic behavior of the implemented bifurcation control in original coordinates

with nonzero initial conditions.
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(a) x1 and x2 Response (b) Phase Plot

Figure 38: State Response of the Bifurcation Controlled L-F Transformed System

Figure 39: Preserved Locations of Floquet Multipliers After Bifurcation Control

The oscillating amplitude of the quasi-periodic pitch angle motion is tremendously

stabilized relative to the initial behavior illustrated in figure 36. This hence demonstrates

successful control of the post bifurcation attitude dynamics about the spacecraft center of

mass.

Bifurcation control is a nonlinear control technique that affects the behavior of the

closed loop system by modifying nonlinearity and post bifurcation behavior. Therefore,

the location of Floquetmultipliers (exponents) is generally preserved post bifurcation con-

trol. Figure 39 shows the preserved locations of the Floquet multipliers before and after
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bifurcation control (e = 0.1 and σ = 0.2). This location of Floquet multipliers is con-

sistent with the limit cycle shown in figure 38(b) corresponding to a simply stable system

with relatively subdued librations.

4.4 Summary and Discussion

In this chapter we demonstrated that the quasi-periodic, nonlinear planar pitch atti-

tude motion is challenging to control.

The synthesized linear controller served as starting point for developing more adept

control laws. Not surprisingly, the linear controller failed to stabilize the nonlinear mo-

tion with periodic coefficients and external periodic excitation. As stated, in general the

‘region of application’ of linear control for nonlinear systems is dependent on magnitude

of nonlinearity and initial conditions. Many times, linear control may stabilize nonlinear

systems locally, but this is not guaranteed.

On-orbit perturbations cause disturbing torques that bifurcate the attitudemotion, it

is hence imperative to stabilize the system attitude dynamics in the small neighborhood of

the bifurcation parameter’s critical-point. Local nonlinear bifurcation control law imple-

mented on the attitudemotion undergoing aHopf bifurcation was shown to stabilize the

attitude motion. The bifurcation controller which modifies the nonlinearity and post bi-

furcation behavior–further prevents the attitude motion from becoming chaotic because

bifurcation is the path to chaos. Implemented in the TINF, the bifurcation control law

would subsequently stabilize the secular and periodic attitude perturbations experienced

by a spacecraft in elliptical orbit about its nominal operating point.

Slidingmode control lawwas based on driving both system states to zero on the sliding
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surfacewhen the sliding surface reference error is equal to zero. The SMC lawwas similarly

shown to be successful by invariably restricting the pitch angle to zero.

The numerical and symbolic computation techniques employed in this investigation

are resource intensive. For instance, despite utilizing computer workstations possessing

8th generation Intel™ CPU and up to 48GB RAM; extensively protracted code running

times were frequently observed.
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Part II

SPACECRAFTDYNAMICS IN THE VICINITYOF IRREGULARLY SHAPED

SMALL BODIES
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Chapter 5

MOTION IN THE VICINITYOF IRREGULARLY SHAPED SMALL BODIES

In this investigation, irregularly shaped small bodies (ISSB) refers to celestial objects

that cannot be classified as planets (or moons) due to their relatively diminished size and

are asymmetrically formed. Examples of such objects include asteroids, comets, and other

relatively small objects in space. Correspondingly, ISSB often pose an incomparable chal-

lenge to seamlessly model and analyze motion in their vicinity using point mass Keplerian

and Newtonian principles that are traditionally applied in the vicinity of large objects e.g.

planets. This is because, due to their irregular shape, ISSB are characterized by uncertainty

inmass and orbital parameters, weak gravitational forces, strong susceptibility to 3rd‑body

and solar radiation pressure perturbations, etc [18], [63], [112], [113]. Therefore, to accu-

rately describe the dynamical environment in the vicinity of ISSB, we require the develop-

ment of adaptable analytical models that accurately portray the irregularities of the body’s

total mass distributions in terms of the corresponding gravitational potential. Then, we

may characterize themotion in the vicinity of ISSB asNewtonianbetween a larger arbitrar-

ily shaped body (with distributedmass) and amassless particle (i.e. spacecraft) interacting

with the former’s irregular gravity field.

Therefore, it is essential to develop accurate models that represent the gravitational

attraction of a larger body with an arbitrarily distributed mass on a single point mass ob-

ject. To this end, three common classifications of approaches to model gravitational po-

tential of irregularly shaped bodies are i) spherical harmonics models, ii) closed-form grav-

itational potentials, and iii) other gravity field representations [63]. The closed-formmod-

els encompass gravitational potential models based on ellipsoidal and polyhedron shapes.
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The third category brings together techniques that employ methods such as point mass-

concentrations and logarithmic potential. These different approaches have varyingmerits

and drawbacks that depend on the intended application context. Some offer a good initial

model for analysis but have a low fidelity; while others may be more accurate but are com-

putationally intensive and so on. In the next section, we shall briefly examine the various

common techniques for modeling gravitational potential.

5.1 Gravitational Potential Models

Briefly, according to the theory of potential [114], [115], the potential function V is

a scalar function of position whose derivatives are components of a vector i.e. attraction

of the body. The potential function V for the effect of several particles conglomerated to

form a continuous body of variable density ρ can be integrated over the body as,

V = G

∫
B

1

ρ
dm, (5.1)

where G is the gravitational constant and dm is the differential mass. The potential can

further be expressed in terms of components of attractions along the three Cartesian axes.

These components of attraction can be obtained by differentiating V with respect to x,y,z

and hence can similarly be defined by triple integrals. The significance of the potential

function is outlined in the following expression;

Amount of work done inmoving from one point to another against an attracting force =

Difference in the value of potential function at these two points.

Akey property of the potential function is satisfaction of the Laplacian property at all

exterior points, i.e.,

∇2V = 0. (5.2)

Further, the main characteristics properties of a potential functional are;
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• V is continuous throughout all space.

• The first derivatives of V exist and are continuous everywhere except on a given

surface S on which there maybe a surface distribution of matter.

• On the exterior of S,∇2V = 0.

• On the exterior of S,∇2V is arbitrary.

• V vanishes at infinity.

Having described and outlined the main properties of the potential function in general,

we can now examine how the gravitational potential of an irregularly shaped bodies can

be modeled using various techniques to facilitate investigation of dynamics in the vicinity

of such objects.

5.1.1 Spherical Harmonics Models

To model the gravity field of an arbitrary body, the classical approach considers the

body as a collection of particles (differential elements). Consequently the gravitational

force acting on a point mass located external to the body due to a particular differential

mass element in the body canbe derived using inverse square lawbetween the twoparticles.

To obtain the net force due to all the mass elements is then evaluated by integrating over

the body’s total mass distribution. However, due to uncertainties in the knowledge of

the irregularly shaped body parameters including the total mass, it is hence reasonable to

expand the gravitational potential into harmonic series. The derivation of gravitational

potential model based on spherical harmonics expansion is well documented in literature

e.g. [63], [114]–[118]. Therefore, here we shall briefly outline the main aspects of this

derivation.

The solution to Laplace’s equation corresponding to the total mass distribution of a
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body is essentially the gravitational potential. Solving the Laplace’s equation using sep-

aration of variables in terms of spherical coordinates gives the general form of spherical

harmonic gravitational potential as shown below,

U(r, δ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(ro
r

)
Plm(sin δ)[Clm cosmλ+ Slm sinmλ], (5.3)

where the spherical coordinates corresponding to a positional vector r = xx̂ + yŷ + zẑ

are given by sin δ = z/r and tanλ = y/x. Here, µ = GM , δ is the latitude and λ is the

longitude, µ is the body’s gravitational parameter, ro is the normalizing radius (normally

selected asmean radius ormaximumradius of theobject), Plm are theAssociatedLegendre

Functions, and Clm and Slm are called the gravity field harmonic coefficients (or Stokes

coefficients). These coefficients encode information about the mass distribution of the

extended body. Further, the Associated Legendre Functions can be defined by the closed

form relationship below,

Plm(sin δ) = cosm δ

int[(l − m)/2]∑
i=0

Tlmi sinl−m−2i δ. (5.4)

Tlmi =
(−1)i(2l − 2i)!

2li!(l − i)!(l −m− 2i)!
, (5.5)

where the int[x] function returns the integer part ofx. Spherical harmonic expansion func-

tions are orthogonal, therefore, the gravity coefficients Clm and Slm can be computed if

a mass distribution is given. If the density of the body is specified at each point as σ(ρ),

then the we find the gravity coefficients from the integrals below,

(C, S)lm =
(2− δ0m)

M

(l −m)!

(n+m)!

∫
B

(
r

ro

)
Plm(sin δ)cs(mλ)σdv. (5.6)

σdv = σ(r, δ, λ)r2 cos δdrdδdλ, (5.7)

where cs denotes the cosine or sine function for computation of the Clm or Slm gravity

coefficient, respectively. If the body has a constant density, then one integration can be
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performed over the radius and the above formula reduces to,

(C, S)lm =
σ(2− δ0m)

M

(l −m)!

(n+m)!

∫
S

R3(δ, λ)

l + 3

(
R(δ, λ)

ro

)l

Plm(sin δ)cs(mλ) cos δdδdλ,

(5.8)

where the radiusR(δ, λ) becomes a function of the latitude and longitude and defines the

shape of the body.

5.1.1.1 Types of Spherical Harmonics

The spherical harmonic model in equation (5.3) describes the gravity field of a body

via a potential function consisting of spherical harmonics functions of various degrees

and order. The individual terms in the summation uniquely contribute to the gravity

representation of the body and correspond to a spherical harmonic of a given degree, l and

order, m. Consequently, the effect of a givenharmonic is directly dependent on the degree

and order of the harmonic term. Spherical harmonics can be visualized and classified by

associating zeros to each spherical harmonics and correspondingLegendre polynomials i.e.

Pl,m = 0. Solutions of this equation define lines that divide the reference spherical shape

into different regions depending on the degree and order of the harmonic. Ultimately, the

regions contribute to the total gravitational potential depending on their mass properties

and location. Three types of spherical harmonics are then obtained as follows;

a. l, m = 0 (zonal harmonics)

b. l ̸= m (tesseral harmonics)

c. l = m (sectoral harmonics)

Illustrative examples of different types of spherical harmonics are shown in the figure 40.
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Figure 40: Types of Spherical Harmonics: (a) Zonal, (b) Tesseral, and (c) Sectorial (Cour-
tesy MathWorks ®)

5.1.1.2 A Simple Harmonic Model

Understood relationships exist between gravity coefficients of all degrees and orders

and the high order mass distribution moments of arbitrary bodies. Out of these relation-

ships, those of up to degree and order two are of most interest. The first degree and order

gravity coefficients are related to the body center of mass. When the origin of the body-

fixed reference frame of a body is defined to coincide with the COMof the body; the first

degree and order terms are rendered identically zero,C11 = S11 = C10 = 0.Therefore this

implies that the first term beyond the spherical attraction of the body emanate at the sec-

ond degree and order. We note that if a body has constant density distribution, then the

COM and center of figure of a body will coincide. The second degree and order gravity
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coefficients are related to the moments of inertia of the body as shown below, [63];

Ixx − Iyy = −4Mr2oC22, (5.9)

Iyy − Izz = Mr2o(C20 + C22), (5.10)

Izz − Ixx = −Mr2o(C20 − C22), (5.11)

Ixy = −2Mr2oS22, (5.12)

Iyz = −Mr2oS21, (5.13)

Izx = −Mr2oC21. (5.14)

The above results are independent of internal density heterogeneity. The moments of

inertia can thus be only defined as differences between the second degree and order gravity

coefficients. However, the data obtained by observing small bodies cannot reveal the full

moments of inertia exposing amain drawback in application of this gravitational potential

model. Further, it is always possible to define a set of coordinates such that the products of

inertia (Ixy, Iyz, Izx) equal zero. Therefore, it is also possible to define a coordinate frame

where the following second degree and order gravity coefficients S22 = S21 = C21 = 0

as well. Hence, the second degree and order gravity field can be reduced to the two gravity

coefficients C20 and C22. Consequently, in space missions to small irregularly shaped

bodies, the gravity field is estimated by initially choosing the small body-fixed coordinate

reference frame to be nominally aligned with the constant density principal axis.

Therefore, the simplest form of gravitational potential starts at the second degree and

order with only the coefficientsC20 andC22, ( N.B. In literature, C20 is the often referred

to as “ −J2”). Finally, the simplest, non-trivial gravity field for studying dynamics in the

vicinity of a body is hence,

U =
µ

r

[
1 +

(ro
r

)2{
C20

(
1− 3

2
cos2 δ

)
+ 3C22 cos2 δ cos(2λ)

}]
. (5.15)
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Further, previous studies have established second degree and order gravity accounts for

the most disturbances on the dynamical system further highlighting the significance of

this model.

The spherical harmonic approach is however susceptible to a number of drawbacks.

Key among them include;

• Many small irregularly shaped bodies are characterized by elongated, non-spherical

and extensively cratered shapes. Consequently, representation of the correspond-

ing gravity field for such bodies by conventional spherical harmonic expansion tech-

niques requires high degree and order expansions which are very difficult to obtain

[119]. Moreover, the quantities in spherical harmonicmodels have a global and not

a local scope–incorporating a unique surface feature will generally affect every coef-

ficient.

• Lack of explicit expression of the mass distribution inside a small body makes it

very difficult to directly derive by integration the Clm or Slm gravity coefficients.

Consequently, since these coefficients are central to gravity field modeling, they are

normally estimated via inversion from flight data and approximation involving the

body’s shape and density.

• The spherical harmonic approach assumes that series converge to the true gravity

field. Consequently, when considering the gravitational potential close to a small

irregularly shaped body, then the spherical harmonics are not accurate. Specifically,

the spherical series is divergence is severe within the circumscribing sphere of the

body (Brillouin sphere) rendering the gravitational potential unsuitable for dynam-

ical analysis.

Despite the foregoing limitations, the simple second degree and order spherical har-

monic gravity model converges beyond the circumscribing sphere, reasonably approxi-
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mates the gravity field around ISSB. Nevertheless spherical harmonics gravitational mod-

els are very useful in undertaking preliminary lowfidelity dynamical analysis in the vicinity

of ISSB.

5.1.2 Ellipsoidal Harmonics Models

The ellipsoidal harmonics approach aims to improve the spherical harmonicsmodel in

approximating the irregular gravitational field by considering a constant density ellipsoid

which yields exact closed form solutions up to and on the surface of the body. Equation

(5.16) shows the ellipsoidal harmonic expansion of the potential at a massless point [117],

[120],

U = µ
∞∑
l=0

2n+l∑
m=1

αlm
Flm(λ1)

Flm(λe)
Flm(λ2)Flm(λ3), (5.16)

where λ1, λ2, λ3 are orthogonal ellipsoidal coordinates, λe indicates the reference ellip-

soid (or Brillouin ellipsoid), which defines the convergence domain of equation (5.16).

Flm are the canonical solutions to Lamé equation, which are continuous functions when

λ1 ≥ λe. αlm indicates ellipsoidal coefficients. The illustrative the improvements of the

ellipsoidal harmonicsmethod over the spherical harmonicsmethod are shown in figure 41.

It compares the convergence domains of these two methods about the asteroid Castalia.

The reference sphere due to spherical harmonics approach in figure 41(a) excludes a large

area traversedbyorbits. The reference ellipsoid infigure 41(b) on the other hand envelopes

Castalia’s overall shape better andwidens the convergence domain of the gravitational for-

mulas.

As noted by [63], the gravitational coefficients of the ellipsoid’s shape spherical har-

monics expansion taken about its COM have relatively simple forms. The only non-zero
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Figure 41: The Reference Sphere and Ellipsoid About Asteroid 4769 Castalia. (a) Ref-
erence Sphere of Spherical Harmonics. (b) Reference Ellipsoid of Ellipsoidal Harmonics
(Courtesy: [117] )

gravity coefficients are those of the form C2l,2m, l,m = 0, 1, 2, . . .. The first few terms of

the explicit formula for the ellipsoids gravity field coefficients are;

C20 =
1

5r2o

(
γ2 − α2 + β2

2

)
,

C22 =
1

20r2o

(
α2 − β2

)
,

C40 =
15

7

(
C2

20 + 2C2
22

)
,

C42 =
5

7
C20C22,

C44 =
5

28
C22,



(5.17)

where γ ≤ β ≤ α are the constant density ellipsoid axes.

5.1.3 PolyhedronModels

The polyhedral method has its roots in geological modeling, its application in model-

ing the shape and describing the gravity potential of ISSB was mostly developed in a series
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of works by Werner et al. [119], [121]. The authors derived the expressions of the grav-

itational potential, attraction and gradient matrix of a homogeneous (constant density)

polyhedron based on dyads of the second order to describe the irregular gravitational field

of a small body.

The formulation begins by assuming an arbitrary polyhedron with triangular faces,

then from Euler-Descartes formula for a polyhedron with triangular faces specified by v

vectors theremust be f = 2v−4 faces and e = 3(v−2) edges. Each face is associated with

a set of three vertex vectors rf
i , i = 1, 2, 3, s.t the three vertices taken in order are counter

-clockwise about a normal to the face, n̂f . Two vertices re
i , i = 1, 2, and two faces, f and

f ′ which join at the edge are associated with each edge. A unit vector n̂f
e denotes the edge

normal corresponding to face f and perpendicular to the edge and to n̂f while pointing

away from the center as shown in figure 42. Subsequently, the general formula for the

homogeneous polyhedron is as shown below, [119].

U(r) =
Gσ

2

[ ∑
e∈edges

re ·Ee · reLe −
∑

f∈faces

rf · Ff · rfωf

]
, (5.18)

∇U = −Gσ

[ ∑
e∈edges

Ee · reLe −
∑

f∈faces

Ff · rfωf

]
, (5.19)

∇(∇U) = Gσ

[ ∑
e∈edges

EeLe −
∑

f∈faces

Ffωf

]
, (5.20)

where re is the vector from any point on the edge e to r and rf is the vector from any point

on the face f to r. Also;

Ee = n̂f n̂
f
e + n̂f ′n̂f ′

e ,

Ff = n̂f n̂f ,

Le = ln re1 + r22 + ee
re1 + r22 − ee

,

ωf = 2 arctan
(

rf
1 · r̃f

2 · rf
3

rf1r
f
2r

f
3 + rf1r

f
2 · rf

3 + rf2r
f
3 · rf

1 + rf3r
f
1 · rf

2

)
,


(5.21)
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Figure 42: Polyhedron Faces Denoting the Edges, Vertices and Normal Vectors

where e = |re
1 − re

2| is the actual length of edge. The Laplacian is similarly shown to be

∇2U = −Gσ
∑

f∈faces

ωf , (5.22)

where ωf denotes the signed area of the face f projected onto the unit sphere centered at

the point r. Thus, the total signed projection equals 0 when the point is outside of the

body and it equals 4π when inside the body satisfying the Laplace and Poisson equations.

Consequently, the potential and partials can be used to compute the gravitational field

down to and on the surface.

There are several advantages of the polyhedral method. Firstly, the closed forms of

the polyhedral method avoid truncation errors during computation and gives exact gravi-

tational potential for a given shape and density. This gravitational potential is valid from

infinity to the surface of the body meaning that there is no region of divergence. The res-

olution of the calculated field however depends on the level of discretization chosen for a

given shape. This method enables a quick and convenient judgment of whether a point

has entered the interior of a polyhedron. The quantities that parameterize the potential

expression (and acceleration) are local in scope. Consequently, incorporating a surface
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feature only affects faces in the vicinity unlike harmonic expansion methods whose quan-

tities have a global in scope. Notably, the polyhedron model is still an approximation of

the actual shape of the body and the gravity field accuracy is consistent with the shape

determination.

5.1.4 Other Gravity Field Representations

As described by [63], numerous other methods of approximating the gravitational po-

tential of an arbitrary body employ a collection of simple closed-form potential solutions

that collectively mimic the gravity field of an actual body. One such approach fills the the

irregularly shaped body with point masses (‘mascons’–mass concentrations) on an evenly

spaced grid. The totalmass of the body is realized by the collective combination of the indi-

vidually assigned masses. Similar to the harmonics approach, the mascon approach does

not provide information whether the point is inside or outside the body. Though the

mascon approach does not diverge, the number of individual mascons become arbitrarily

large and there are force computation is prone to significant errors. Themascon approach

is also less accurate than the harmonic approach for a given computational effort in its re-

gion of convergence [121]. Also because this approach models the gravitational field of

“cube” of material as a “sphere”, systematic errors are hence introduced because the two

shapes have demonstratively different gravity fields when in close proximity.

The use of logarithmic potential is also another approach to model the gravitational

potential of ISSB. The logarithmic potential is the gravitational potential of a line element

withwith linear density [122]. Natural logarithms are used to obtain a simple closed-form

of these potentials that collectively mimic the gravitational potential of ISSB when point
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masses are incorporated. Since this methodology is yet to fully mature, its use in practical

scenarios is limited.

5.2 Dynamical Model Development

To effectively study the general motion of a spacecraft about a small body, we require

at least the specification of the body’s gravitational field,U , its rotational dynamics and the

perturbing environment regime. We first consider the spacecraft motion in close proxim-

ity to the body where other perturbations (i.e. solar gravity and radiation ) are small com-

pared to the gravitational attraction of the central body. Dynamics of such a system are

then analyzed by transforming them to a body-fixed coordinate frame which introduces

the angular velocity of the small body, ωT relative to the inertial reference frame. Mak-

ing the assumption that the small body experiences torque-free motion, then, the funda-

mental classical equation ofmotion near a rotating small body expressed in 3-dimensional

Euclidean space as,

r̈ + 2ωT × ṙ + ωT × (ωT × r) + ω̇T × r +
∂U(r)

∂r
= 0, (5.23)

where r is the radius vector from the small body’s COM to the spacecraft’s position in

the rotating body-fixed frame. The time derivatives are taken with respect to the rotating

frame leading to the inclusion of Coriolis and centripetal accelerations. U(r) is the gravi-

tational potential of the small body. Two general cases normally occur for these systems,

i) The angular velocity is vector is time-periodic in the body-frame and hence the term,

ω̇T ̸= 0. In this case, the small body is in an arbitrary rotation state, tumbling in inertial

space and following the torque-free solution. ii)The angular velocity vector is consonant,

ω̇T = 0 and the equations of motion in the body-frame become time-invariant. This is
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the common casewhere the small body is uniformly rotating about itsmaximummoment

of inertia [63], [66], [71], [117], [123], [124].

When the body is rotating at a uniform angular velocity (i.e. ω̇T = 0), the dynamical

system has a conserved Jacobi integral given by, [63], [112], [125] expressed as,

J =
1

2
r̈ · r̈ − 1

2
(ωT × r) · ωT × r +U (r). (5.24)

Existence of the Jacobi integral allows zero-velocity regions to be defined and applied to

establish stability of the motion. Also, it implies the existence of equilibrium points and

dense periodic orbits in the phase space.

In the special body-fixed frame, the dynamical equation (5.23) in component form is

expressed as,

ẍ− ω̇Ty − 2ωT ẏ − ω2
Tx+

∂U

∂x
= 0,

ÿ + ω̇Tx+ 2ωT ẋ− ω2
Ty +

∂U

∂y
= 0,

z̈ +
∂U

∂z
= 0.


(5.25)

The effective potential is independent of z and is related only to the position of the space-

craft in the body-fixed frame as shown in the equation below.

V = U − ω2
T

2
(x2 + y2). (5.26)

Similarly, the Jacobi integral reduces to,

J = U +
1

2
(ẋ2 + ẏ2 + ż2)− ω2

T

2
(x2 + y2). (5.27)

Using the effective potential, the component form of the dynamical equation (5.25) be-

comes
ẍ− ω̇Ty − 2ωT ẏ +

∂V

∂x
= 0,

ÿ + ω̇Tx+ 2ωT ẋ+
∂V

∂y
= 0,

z̈ +
∂V

∂z
= 0.


(5.28)

148



As discussed in section 5.1.1, the second degree and order gravitational potential is

employed as the simplest non-trivial gravity field for studying dynamics in the vicinity of

ISSB. To facilitate this formulation, the initial analysis and design of space missions to

small bodies usually assumes that the COM and center of figure will coincide since the

body is assumed to have a constant mass distribution. Subsequently, close proximity ob-

servation data will verify any existence of the first degree and order gravity coefficients.

The second degree and order gravitational potential given in in equation (5.15) can be

expressed in Cartesian coordinates using the following transformations,

x = r cosλ cos δ,

y = r sinλ cos δ,

z = r sin δ.


(5.29)

Therefore, in Cartesian coordinates, the second degree order gravitational potential be-

comes,

U = −µC20(x
2 + y2 − 2z2)

2r5
+

3µC22(x
2 − y2)

r5
, (5.30)

where r =
√

x2 + y2 + z2 i.e ∥r∥. For definiteness, we shall specify the a body-fixed ref-

erence frame such that Ixx ≤ Iyy ≤ Izz with axes x, y and z. The second degree order

gravitational coefficients will are directly related to the principal moments of inertia of the

body (normalized by the body mass) [124], i.e.,

C20 = −1

2
(2Izz − Ixx − Iyy),

C22 =
1

4
(Iyy − Ixx).

 (5.31)

The gravity coefficients as given here have units of distance squared. If we define a mass-

distribution parameter as,

σ̂ =
Iyy − Ixx
Izz − Ixx

= − 4C22

C20 − 2C22

, (5.32)
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where 0 ≤ σ̂ ≤ 1 for any mass distribution. When σ̂ = 0, the body has a rotational

symmetry about the z-axis (Iyy = Ixx). A value of σ̂ = 1 denotes a body with rotational

symmetry about the x-axis (Iyy = Izz). We can express the gravitational coefficients in

terms of this parameter as,

C20 = −1

2
(Izz − Ixx)(2− σ̂),

C22 =
1

4
(Izz − Ixx)σ̂.

 (5.33)

5.3 Motion Analysis: A case for Asteroid 4179 Toutatis

To comprehensively investigate dynamics in the vicinity of ISSB, we shall consider

a more challenging case of equation (5.23) where the angular velocity is vector is time-

periodic in the body‑frame i.e. ω̇T ̸= 0. In this case, the small body is in an arbitrary

rotation state, tumbling in inertial space and following the torque‑free solution. As previ-

ously stated, the Jacobi integral is not preserved in this case and hence zero‑velocity regions

cannot be defined and applied to establish stability of the motion. Further, the existence

of equilibrium points and dense periodic orbits in the phase space are difficult to predict.

The dynamical nonlinear system describing this motion will hence be parametrically ex-

cited and further subjected to external periodic excitation in the form of perturbing accel-

erations. The variable angular velocity in the body-fixed coordinate frame can generally

be modeled as a periodic quantity with a period T̃ =
2π

ωT

, and with a mean value lying

between the maximum and minimum amplitude peaks as illustrated in the figure below.

Let
ωT = ωo + ωδ sin(ωot),

ω̇T = ωoωδ cos(ωot),

 (5.34)
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Figure 43: Periodic Variation of the Small Body Angular Velocity

where ωo is the mean value of ωT , and

ωo =
ωmax + ωmin

2
,

ωδ =
ωmax − ωmin

2
,

ωT =
2π

T̃
.


(5.35)

We can similarly represent the periodic perturbations as,

F (t) = B sinωρt, (5.36)

whereB the vector of the amplitude of the perturbing accelerations and ωp is the pertur-

bation frequency vector.

Because the actual motion analysis involves very small values of frequency and time

compared to the other quantities like gravitational parameters, mass etc., we introduce a

time scaling in our analysis as shown below,

τ = ωst. (5.37)

Therefore, dτ

dt
= ωs, and if we denote (·)′ = d(·)

dτ
, then,

ẋ =
dx

dt
=

dx

dτ

dτ

dt
= x′ωs, (5.38)
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and the second derivative will be

ẍ = x′′ω2
s . (5.39)

We can similarly represent the second derivatives of y and z with respect to the scaled time

as ÿ = y′′ω2
s and z̈ = z′′ω2

s receptively.

The small body angular velocity and its derivative given in equation (5.34) can be rep-

resented with respect to the scaled time, τ = ωst as,

ωτ = ωo + ωδ sin(ωo/ωsτ),

ω′
τ = (ωo/ωs)ωδ cos(ωo/ωsτ).

 (5.40)

Subsequently, to describe the motion about the ISSB in the most complete sense, we

substitute equations (5.39) and (5.40) into equation (5.28) then include the periodic per-

turbing accelerations given in equation (5.36). We then denote x = x1, x
′
1 = x2, and so

forth to obtain the state space system below,

x′
1

x′
2

y′1

y′2

z′1

z′2


=

1

ω2
s



0 1 0 0 0 0

0 0 ω′
τ 2ωτωs 0 0

0 0 1 0 0 0

ω′
τ −2ωτωs 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





x1

x2

y1

y2

z1

z2


−



0

∂V/∂x

0

∂V/∂y

0

∂V/∂z


+



0

Bx sin(ωρt)

0

By sin(ωρt)

0

Bz sin(ωρt)


,

(5.41)

where Bx,y,z are the disturbance amplitude components along the x, y and z axes respec-

tively. ωτ and ω′
τ are as shown in equation (5.40). The effective potential components

are evaluated as shown in equation (5.26) to obtain,
∂V

∂x
= ω2

τx+
∂U

∂x
,

∂V

∂y
= ω2

τy +
∂U

∂x
,

∂V

∂z
=

∂U

∂z
,


(5.42)
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where the first-order partial derivatives of the second degree and order gravitational poten-

tial (equation (5.30)) are;

∂U

∂x
= −C20x

r5
− 5C20x(x

2 + y2 − 2z2)

2r7
+

6C22x

r5
− 15C22x(x

2 − y2)

r7
, (5.43)

∂U

∂y
= −C20y

r5
+

5C20y(x
2 + y2 − 2z2)

2r7
+

6C22y

r5
− 15C22y(x

2 − y2)

r7
, (5.44)

∂U

∂z
=

C20z

r5
+

5C20z(x
2 + y2 − 2z2)

2r7
− 15C22z(x

2 − y2)

r7
. (5.45)

Note that C20 and C22 will generally be small with respect to unity.

To demonstrate motion analysis in the vicinity of a small body with a variable spin

rate about a given principle axis, we shall consider dynamics in the vicinity of the asteroid

4179 Toutatis. Toutatis is complex rotator with non-uniform angular velocity hence it is

a suitable application case for the equations we have developed above. The asteroid is in

a tumbling long-axis mode and hence we assume that body will follow torque free rigid

body dynamics. Toutatis physical model and orbital parameters have been studied and

presented in several publications such as [65], [126]–[128].

Toutatis is a near-earth asteroid about 4.5 km long and close to a 4:1 orbital resonance

with earth. Since its discovery in 1989, it has made six close earth flybys [128]. Table 2

summarizes Toutatis orbital parameters while Toutatis orbit around the sun is shown in

figure 44.

According to [65], the composition of Toutatis is either homogeneous or its inhomo-

geneitiesmimic the inertia tensor of a homogeneous body. Hencewe shall likewise assume

thatToutatis is homogeneouswith a density of 2.5 g/cc.Our body fixed coordinate frame

will originate at theToutatismodel centroid. The axes (x, y, z)will correspond to the prin-

cipal axes of smallest, intermediate and largest moment of inertia respectively as shown in

figure 45. Toutatis fits into a bounding cuboid of dimensions −2.516 ≤ x ≤ 2.086,
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Figure 44: Toutatis Orbit Around the Sun (Courtesy Dominic Ford)

Table 2: Toutatis Orbital Parameters (Courtesy NASA-JPL)

Epoch 26-Apr-2019
Apoapsis 4.1355 AU
Periapsis 0.9509 AU
Semi-major axis 2.5432 AU
Eccentricity 0.6260903
Inclination 0.4478o

Longitude of asc. node 125.19o

Argument of periapsis 278.08o

Orbital period 4.056 years
Avg. orbital speed 16.69 km/s
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Figure 45: Toutatis Shape and Coordinate Axes

−1.174 ≤ y ≤ 1.116, −0.950 ≤ z ≤ 0.980, it has a volume of 7.670 km3, and a mean

radius of 1.223 km.

Other parameters used in this analysis are; total mass M = 1.917 × 1013 kg, gravita-

tional parameter, µ = 1.279× 10−6 km3/s2. The ratios of the moments of inertia given as,

Ixx
Izz

= 0.31335,

Iyy
Izz

= 0.94471,

 (5.46)

and the gravitational harmonic expansion coefficients are

C20 = 0.77768,

C22 = −0.01634.

 (5.47)

Toutatis is in unforced (torque-free) non-principal axis spin rate [65]. The angular
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Table 3: Periodic Variation of Toutatis Angular velocity Amplitude.

Description Value
ωmax 2.1287× 10−5 rad/s
ωmin 2.1122× 10−5 rad/s
ωδ 8.25× 10−8 rad/s
ωo 2.12045× 10−5 rad/s

velocity vector of Toutatis varies periodically with time. Within one orbit magnitude of

the angular velocity vector varies as shown in the table 3 below.

The period of the rotational velocity in the body-fixed frame is T̃ = 5.42 days. The

angle between the rotational velocity vector and the x-axis also varies between 21.904o◦ and

20.1620◦ while the angular momentum vector varies between 50.456◦ and 49.55◦ with the

x-axis.

Because themagnitudes of angular velocity considered are to the order of 10−5, set the

scaling time as τ =
√
10−6t (i.e. ωs =

√
10−6). Further, letBx = By = 0.1,Bz = 1, and

the perturbing frequency ωρ = 2.1× 10−5 rad/s. We then substitute these values and the

gravitational coefficients values from equation (5.47) into the system in equation (5.41)

to obtain our dynamical model as shown below,
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

x′
1

x′
2

y′1

y′2

z′1

z′2


=



0 0 1 0 0 0

A21 0 A23 A24 0 0

0 0 0 1 0 0

A41 A42 A43 0 0 0

0 0 0 0 0 1

0 0 0 0 1.9893 0





x1

x2

y1

y2

z1

z2



+



0

−2.80011x3
1 − 2.17315x1y

2
1 + 4.97326x1z

2
1

0

−2.80011x2
1y1 − 2.17315y31 + 4.97326y1z

2
1

0

−2.80011x2
1z1 − 2.17315y21z1 + 4.97326z31


+



0

0.1 sin(0.021τ)

0

0.1 sin(0.021τ)

0

sin(0.021τ)


,

(5.48)

where

A21 =(1.1205 + 3.49874× 10−6 sin(0.0212045τ) + 6.80625× 10−9 sin(0.0212045τ)2),

A23 =0.00174937 cos(0.0212045τ),

A24 =(42.409 + 0.165 sin(0.0212045τ)),

A41 =− 0.00174937 cos(0.0212045τ),

A42 =− (42.409 + 0.165 sin(0.0212045τ)),

A43 =(0.869709− 3.49874× 10−6 sin(0.0212045τ)

+ 6.80625× 10−9 sin(0.0212045τ)2).
(5.49)

Notably, the above periodic nonlinear systemwith external periodic forcing is of the form,

x′(τ) = A(τ)x(τ) + f(x, τ) + F (τ), (5.50)
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Figure 46: States Time-History Responses in the Vicinity of Toutatis

and is similar to the one previously given in equation (2.1)

5.3.1 Time History Analysis

We numerically integrate the dynamical model in the original coordinates in equation

(5.48) to gain insight into the time-history behavior of the dynamics in the vicinity of

Toutatis. In this analysis we considered a rather conservative case of initial conditions by

setting x1(0) = 20, y1(0) = z1(0) = 10, while x2(0) = y2(0) = z2(0) = 0. These initial

conditions imply an orbit starting at the prescribed locationwith zero initial velocity. The

time-history behaviors of the positional states ( x1(τ), y1(τ), z1(τ)) are shown in figures

46 and 47.

The numerical integration outcome show a very similar behavior between ( x1(τ)) and

y1(τ). The two states attain roughly similar amplitudes in the positive and negative direc-

tions, are quasi-periodic and their main trajectory-paths are frequently punctuated by mi-
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Figure 47: States Time-History Responses in the Vicinity of Toutatis

nor deflections. However, these two exhibit a time-shift (and phase-shift) in their progres-

sion. This erratic, ’wobbly’ behavior in position of a spacecraft is definitely not conducive

to effectively conduct science missions in the vicinity of small irregularly-shaped bodies.

The third positional state, z1(τ)) appears to be more periodically stable with relatively no

significant interruptions on the smooth flow of its trajectory. The response of this state

is generally periodic, out of phase with the other two states and has amplitude peaks that

are about half the magnitude of the other states.

The time-historybehaviors of themotionpositionderivative states (x2(τ), y2(τ), z2(τ))

are shown in figures 48 and 49. The time-history behavior of the velocity states show an

almost similar behavior to the cases above.

Though ( x2(τ)) and y2(τ) have roughly the same general quasi-periodicity and peak

magnitudes, they have a significantly larger time-shift and higher frequency compared to

x1(τ) and y1(τ). Moreover, these two state responses do not contain any frequent deflec-

tions in their main trajectory-curves. On the other hand, z2(τ)) has a larger frequency
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Figure 48: States Time-History Responses in the Vicinity of Toutatis

Figure 49: States Time-History Responses in the Vicinity of Toutatis
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(a) x1(τ) and x2(τ) (b) y1(τ) and y2(τ) (c) z1(τ) and z2(τ)

Figure 50: Phase Portraits of the Motion in the Vicinity of Toutatis

comparable to that of z1(τ) with amplitude peaks that are slightly smaller in magnitude

relative to those of ( x2(τ) and y2(τ).

The corresponding phase portraits of this motion are shown in figure 50. The phase

portraits in figure 50(a) and (b) lack an enclosed attractor though the trajectories display

a shifting phenomenon of the dominant attracting shape. Therefore, we can conclude

that this is a quasi-periodic behavior. Similarly, the dominant attractor in 50(c) exhibits a

common attractor with a slight shift indicating a generally periodic motion.

By propagating the numerically integrated solutions of x1(τ), y1(τ) and z1(τ) in time

within the small-body centered 3-D coordinate reference frame, we can obtain the geomet-

ric structure of the corresponding orbit. Consequently, our dynamical system prescribes

the orbit shown in figure 51 given the earlier stated initial conditions. These orbits and
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Figure 51: 3-Dimension View of Orbital Motion in the Vicinity of the Small Irregularly
Shaped Body

the ISSB share a common centroid in the illustration. Additional elevations of the orbit

shown in figures 52. Figure 52(a) shows the x−y ‘top’ elevationwhile figure 52(b) shows

the y − z ‘side’ elevation.

As inferred from the state time-history response, figures 51 and 52 show an orbital

configuration with very erratic and complex motion in the vicinity of ISSB. The orbital

motion is characterized by frequent abrupt changes in direction with a constantly shift-

ing phase. Consequently, such an orbit is not conducive to effectively conduct scientific

missions targeting the small irregularly shaped body. As a result, a means to control the

orbital dynamics with the aim of realizing relatively more regular and periodic behavior

which enables a more conducive environment to conduct science missions aimed at the

small irregularly shaped body.

162



(a) x− y ‘Top’ (b) y − z ‘Side’

Figure 52: Additional Elevations of the Orbit Configuration in the Vicinity of the Small
Irregularly Shaped Body–Toutatis

5.3.2 Stability

In addition to the implied quasi-periodicity nature of the motion as deduced above

from the time-history analysis, we further scrutinize the stability of our time-periodic non-

linear motion using Floquet theory as outlined in section 2.1. Further, scrutinizing the

sensitivity of our motion to initial conditions will provide insights into its chaotic behav-

ior.

5.3.2.1 Floquet Multipliers and Exponents

As part of the procedure, we evaluated the motion’s STM to obtain the Floquet Tran-

sitionMatrix (FTM), Floquet multipliers and exponents. The computed FTM is,
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Figure 53: Floquet Multipliers Location for the Uncontrolled Dynamics in the Vicinity
of Toutatis

FTM =



0.815 −0.0268 0.5111 0.0008 0 0

−0.03 0.7816 0.0006 −0.6244 0 0

−0.6585 −0.0008 0.815 −0.0303 0 0

−0.0008 0.6244 −0.0263 0.7816 0 0

0 0 0 0 −0.9952 −0.0692

0 0 0 0 0.1376 −0.9952


. (5.51)

The values of the computed Floquet multipliers are;

0.8150± i0.5795,

0.7816± i0.6238,

−0.9952± i0.0976,

(5.52)

and the corresponding locations are illustrated in figure 53.
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The computed Floquet exponents are;

± i0.0021,

± i0.0023,

± i0.0103.

(5.53)

Location of the Floquet multipliers on the unit circle (and the corresponding purely

imaginary Floquet exponents) indicate that the motion is marginally stable in the sense

of Lyapunov. This is consistent with the quasi-periodic behavior of the motion’s time-

history and phase portraits analyzed in section 5.3.1. Though the motion is stable in the

sense of Lyapunov, the erratic trajectories with abrupt deflections are significantly disrup-

tive to jeopardize nominal execution space missions in the vicinity of the small irregular

shaped body.

5.3.3 Chaos

The motion in the vicinity of the small irregular shaped body was found not to be

chaotic. After subjecting the states initial conditions (individually and collectively) to a

minuscule divergence by adding ϵ = 10−6 to the original initial condition; no difference

in the system response occurred. This outcome is illustrated in figure 54.

5.3.4 Poincaré Map

The constructed Poincaré sections in figures 55(a) and (b) do not contain any isolated

discernible clusters of points or a single point which would indicate transient behavior,

chaos, quasi-periodic or periodic flows. Consequently, in combination with the corre-
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Figure 54: Chaos: Motion Insensitivity to Initial Conditions

sponding time-history results, we can infer that this motion is mostly aperiodic though

we cannot rule out quasi-periodicity as well. Figures 55(c) contains points that are domi-

nantly clustered in to form a main ring. Therefore, this motion is quasi-periodic.

A general conclusion from the constructed Poincaré maps is that the motion in the

vicinity of the small irregularly shaped body is quasi-periodic. This is consistent with the

time-history analyses in section 5.3.1.

5.4 Summary and Discussion

This chapter constitutes the beginning of the second part of this dissertation. Here,

we introduced the parametrically excited nonlinear motion of spacecraft which occurs in

the vicinity of small irregularly shaped bodies. The ensuing dynamics in the vicinity of

small irregularly shaped bodies possess inimitable challenges that necessitate an alternative
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(a) x1(τ) and x2(τ) (b) y1(τ) and y2(τ)

(c) z1(τ) and z2(τ)

Figure 55: Poincaré Sections of the Motion in the Vicinity of ISSB

approach to motion analysis than that traditionally applied to large bodies e.g. planets.

This is due to their irregular shape, weak gravitation forces, strong susceptibility to 3rd-

body perturbation, uncertainty in mass and orbital parameters, etc. Consequently, we

have developed adaptable analytical models that accurately describe the irregularities of

the body’s total mass distributions in terms of the corresponding gravitational potential.

To do so, we summarized the main gravitational potential modeling approaches that are

commonly used in studying dynamics around small irregularity shaped bodies. We exam-

ined four main approaches i.e spherical harmonic models, ellipsoidal models, polyhedron

models and other approaches (mascons and logarithmic potential). Despite having spe-

cific advantages and drawbacks, the different gravitational potential modeling approaches

are generally useful as determined by their intended application context. We proceeded

167



with the simplest non-trivial second degree and order spherical harmonic model of the

gravitational potential.

We considered the dynamical case of a variable angular velocity vector of the small

body and proceeded to analyze the dynamics around asteroid 4179 Toutatis. The time

history and phase portrait analysis indicated a generally quasi-periodic motion. By con-

ducting a progression in time of the positional states numerical solutions in 3-D reference

frame centered in the ISSB, we were able to construct the geometric configuration of the

orbital motion around the small body. The orbit shape is defined by erratic trajectories

with abrupt deflections which would significantly impinge on the ability of a spacecraft

to conduct an effective scientific investigation. This is because special requirements that

complicate themission architecture design and increasing themission costwould emanate.

Such special considerations include prohibitively re-pointing and frequent swiveling of in-

strument configurations; prohibitively attitude control and stabilization of the spacecraft;

excessive sloshing of propellant the tanks leading to frequent changes in the spacecraft

mass properties, etc. Therefore, it is important for the orbit to be controlled in order to

attain a regular smoother trajectory free of undue erratic behavior.

Stability analysis via the Floquet multipliers and exponents indicated a marginally sta-

ble system because the former were located on the unit circle while the latter were purely

imaginary. This is consistent with the time-history analyses results. The Poincaré maps,

however, indicated possible presence of chaotic, aperiodic or quasi-periodic dynamics. Be-

cause the dynamics were insensitive to minuscule variation in the input of prescribed ini-

tial conditions, we concluded that the motion is not chaotic for the considered initial con-

ditions. However, it should be noted that this result is likely confined to this specific case

and a different set of initial conditions could spawn a chaotic motion. The response of
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nonlinear dynamics is largely dependent on the magnitude of the initial conditions and

the strength of nonlinearity.

Sincewehave nowgained knowledge of the uncontrolledmotion behavior in the vicin-

ity of Toutatis, in the next chapter, we shall explore ways to synthesize appropriate dy-

namics control strategies so that we may achieve orbital motion that is more conducive to

nominal scientific space mission architectures targeting small irregularly shaped bodies.
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Chapter 6

CONTROLOFMOTION IN THE VICINITYOF SMALL IRREGULARLY

SHAPED BODIES

Analysis of the dynamics in the vicinity ofToutatis thatwere undertaken in section 5.3

outlined the need to control themotion about the its equilibrium inorder to realize orbital

motion that is more conducive to space mission design. Consequently, we shall develop

the appropriate control laws in this chapter so that realize space-mission favorable dynam-

ics around Toutatis. A nonlinear control law is most likely to succeed in controlling the

unfavorablemotion aroundToutatis. Unfortunately, in general, control law development

techniques are extremely challenging to implement on the parametrically excited nonlin-

ear dynamics with external periodic excitation that model the dynamics around Toutatis

as shown in equation (5.48). Consequently, as summarized in chapter 2, we shall;

a. Apply Lyapunov-Floquet (L-F) transformation to convert the periodic linear coef-

ficients to invariant parameters.

b. Intuitively augment the system states by transforming the excitation frequency

terms into system states.

c. Reduce the dimension of our dynamical model via center manifold reduction ap-

proach.

d. Construct the normal from simplification of our reduced order system.

e. Develop appropriate nonlinear control law on our reduced-order and simplified

model ( but, qualitatively equivalent to the original system).

f. Solve the controlled system and back-transformed the solutions to the original coor-

dinates.
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Figure 56: Motion Analysis and Control Law Development Sequence

The procedure above is illustrated in the schematic shown in figure 56.

6.1 Lyapunov-Floquet Transformation

To begin the Lyapunov-Floquet transformation (LFT) process, we designate the the

L-F transformation here as,

x(τ) = Q(τ)s(τ), (6.1)

where x(τ) is the state in vector original coordinates , Q(τ) is the LFT matrix and s(τ)

is the state vector in L-F transformed coordinates (see equation (2.9)). Note that we shall

subsequently drop the (τ) from our Q and s notations to shorten the typed length of

equations.

As described in section2.5.3, equation (5.50) is the same as equation (2.90). Therefore,

the L-F transformed system of equation (5.50) will similarly be as that shown in equation

(2.91) , i.e.,

ṡ = Rs+Q−1f(Qs, τ) +Q−1F (τ). (6.2)

The computed Floquet constant matrix, R and the periodic LFT matrix, Q and its in-
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verse, Q−1 are;

R =



0 −0.0001 0.0018 0 0 0

−0.0001 0 0 −0.0023 0 0

−0.0024 0 0 −0.0001 0 0

0 0.0023 −0.0001 0 0 0

0 0 0 0 0 −0.0073

0 0 0 0 0.0145 0


, (6.3)

Q =



Q11 Q12 Q13 Q14 Q15 Q16

Q21 Q22 Q23 Q24 Q25 Q26

Q31 Q32 Q33 Q34 Q35 Q36

Q41 Q42 Q43 Q44 Q45 Q46

Q51 Q52 Q53 Q54 Q55 Q56

Q61 Q62 Q63 Q64 Q65 Q66


, Q−1 =



Q−1
11 Q−1

12 Q−1
13 Q−1

14 Q−1
15 Q−1

16

Q−1
21 Q−1

22 Q−1
23 Q−1

24 Q−1
25 Q−1

26

Q−1
31 Q−1

32 Q−1
33 Q−1

34 Q−1
35 Q−1

36

Q−1
41 Q−1

42 Q−1
43 Q−1

44 Q−1
45 Q−1

46

Q−1
51 Q−1

52 Q−1
53 Q−1

54 Q−1
55 Q−1

56

Q−1
61 Q−1

62 Q−1
63 Q−1

64 Q−1
65 Q−1

66


,

(6.4)

where

Q11 =1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ),

Q12 =(−0.2419 + 0.8899 cos(0.0212045τ)− 0.6480 cos(2× 0.0212045τ))10−4

− 0.0208 sin(0.0212045τ),

Q13 =0.0010− 0.0038 cos(0.0212045τ) + 0.0027 cos(2× 0.0212045τ)

+ 0.8815 sin(0.0212045τ),

Q14 =0.0236 cos(0.0212045τ) + 10−3(0.1010 sin(0.0212045τ)

− 0.0735 sin(2× 0.0212045τ)),

Q15 =Q16 = 0,
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Q21 =(−0.0024 + 0.0997 cos(0.0212045τ)− 0.1387 cos(0.0212045τ))10−3

− 0.0233 sin(0.0212045τ), Q22 = cos(0.0212045τ),

Q23 =0.0205 cos(0.0212045τ) + (0.0878 sin(0.0212045τ)

− 0.1222 sin(2× 0.0212045τ))10−3,

Q24 = sin(0.0212045τ), Q25 = Q26 = 0,

Q31 =− 0.0013 + 0.0049 cos(0.0212045τ)− 0.0035 cos(2× 0.0212045τ)

− 1.1357 sin(0.0212045τ),

Q32 =− 0.0236 cos(0.0212045τ) + (−0.1010 sin(0.0212045τ)

+ 0.0735 sin(2× 0.0212045τ))10−3,

Q33 =1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ),

Q34 =(−0.0313 + 0.1147 ∗ Cos(0.0212045τ)− 0.0834 ∗ Cos(2× 0.0212045τ))10−3

− 0.0268 sin(0.0212045τ),

Q35 =Q36 = 0,

Q41 =− 0.0265 cos(0.0212045τ) + (−0.1132 sin(0.0212045τ)

+ 0.1573 sin(2× 0.0212045τ))10−3,

Q41 = sin(0.0212045τ),

Q43 =(−0.0024 + 0.0997 ∗ Cos(0.0212045τ)− 0.1386 cos(2× 0.0212045τ))10−3

− 0.0233 sin(0.0212045τ),

Q44 = cos(0.0212045τ), Q45 = Q46 = 0,

Q51 = Q52 = Q53 = Q54 = 0, Q55 = cos(0.0212045τ), Q56 = 0.7090 sin(0.0212045τ),

Q61 = Q62 = Q63 = Q64 = 0, Q65 = −1.4104 sin(0.0212045τ), Q66 = cos(0.0212045τ).

We alternatively choose to plot the periodic elements of the inverse LFT matrix, Q−1 as

shown in the following figures. Figure 57 plots 18 of the elements ofQ−1, s.t. ∀Q−1
ij , i =
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1, 2, . . . , 6, j = 1, 2, 3. On the other hand, figure 58 plots the other 18 of the elements of

Q−1, s.t. ∀Q−1
ij , i = 1, 2, . . . , 6, j = 4, 5, 6.

By substituting equations (6.3) and (6.4) into equation (6.2) obtain the L-F trans-

formed system that now has invariant linear coefficients. Here, s = [s1 s2 s3 s4 s5 s6]
T ,

and F (τ) is as shown in equation (5.50).

6.2 Center Manifold Reduction

After obtaining the L-F transformed system, next, we convert the system from a non-

autonomous to an autonomous one. This is achieved via the intuitive state augmentation

methodology described in sections 2.5.3.1.

Consider the x−element of the external periodic excitation vector defined in scaled

time variable as,

Fx(τ) = Bx sin
(
ωρ

ωs

τ

)
. (6.5)

We can rewrite equation (6.5) using the double-angle trigonometric identity formula as,

Fx(τ) = 2Bx sin
(

ωρ

2ωs

τ

)
cos
(

ωρ

2ωs

τ

)
. (6.6)

We then augment the states by designating;

p = sin
(

ωρ

2ωs

τ

)
,

p′ =

(
ωρ

2ωs

)
cos
(

ωρ

2ωs

τ

)
= q,

q′ = −
(

ω2
ρ

4ω2
s

)
sin
(

ωρ

2ωs

τ

)
= −

(
ω2
ρ

4ω2
s

)
p.


(6.7)

Substituting equation (6.7) into (6.6) we obtain the autonomous forcing term as,

Fx(τ) = 4Bxpq

(
ωs

ωρ

)
. (6.8)
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Figure 57: Plot of Half of the Elements of LFTMatrix
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Figure 58: Plot of the Remaining Half of the Elements of LFTMatrix
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We can derive similar expressions for the other two forcing vector elements, Fy(τ) and

Fz(τ).

By converting the non-autonomous system to an autonomous one, the dimension of

the nonlinear system increases from six to eight, i.e.,

s′1

s′2

s′3

s′4

s′5

s′6

p′

q′



=



f(s1(τ))

f(s2(τ))

f(s3(τ))

f(s4(τ))

f(s5(τ))

f(s6(τ))

q

− (441p)

4000000



. (6.9)

The full expressions for f(s1,2,3,4,5,6(τ)) contain too many monomial terms to present

them here and are given in Appendix B.1. We then obtain the Jordan form of this sys-

tem via the modal transformation and compute the center manifold reduction using the

procedure outlined in section 2.5.3.1.

Eigenvalues of the augmented states linear matrix are,

Critical: λ∗
1 = i0.0105, λ∗

2 = −i0.0105, λ∗
3 = i0.0102884, and λ∗

4 = −i0.0102884,

Stable: λ∗
5 = −1 × 10−7 + i0.00229784, λ∗

6 = −1 × 10−7 − i0.00229784, λ∗
7 = −1 ×

10−7 + i0.0020759, and λ∗
8 = −1× 10−7 − i0.0020759.

The reduced order system on the invariant center manifold is:
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Parametric equations of the center manifold are;

s1(τ) =P1(τ),

s2(τ) =P2(τ),

s3(τ) =P3(τ),

s4(τ) =P4(τ).

(6.10)

The reduced system is

s′5 =P ′
5(τ),

s′6 =P ′
6(τ),

p′ =q(τ),

q′ =− (441p(τ))

4000000
.

(6.11)

The full expressions for P1,2,3,4(τ) and P ′
5,6(τ) similarly contain too many monomial

terms to present them here and are given in Appendix B.2.

6.3 Normal Forms Simplification

Even though the dimension of our system’s analytical model has been reduced from

eight to two, themodel is still very complex with thousands of nonlinear monomial terms.

We should also note that, despite dealing with a four dimensional reduced system, there

are only two unsolved variables, s5 and s6. This is becasue the dynamics of the other

two variables, p(τ) and q(τ) are fully known as shown in equation (6.7). Consequently,

we shall utilize normal forms simplification as outlined in section 2.3 to obtain a simpler

but qualitatively equivalent nonlinear system with conserved bifurcation and Lyapunov

properties.

We first compute the TDNF, then by averaging out the periodic terms, we shall ob-

tain the simpler TINF of our system. The normal form shown in equation (6.12) is sub-
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sequently obtained after computation as outlined in section 2.3,

v′5

v′6

v′7

v′8


=



−i0.0105v5

+i0.0105v6

−i0.010288v7 + (0.02111598− i0.0007817)v25v
2
6v7 + i745.4783v37v

2
8

+i0.010288v8 + (0.02111598 + i0.0007817)v25v
2
6v8 − i745.4783v27v

3
8


.

(6.12)

Note that we can further simplify this normal form by substituting the straightfor-

ward solutions of v5(τ) and v6(τ) into the third and fourth ODEs of equation (6.12).

Then, by solving this system and obtaining v7(τ) and v8(τ), we can then back transform

these solutions to the original coordinates to obtain the uncontrolled system as previously

shown in sections 3.5.1 and 3.5.2. Because our reason for undertaking the normal from

simplification here is to facilitate development of appropriate control laws for our system,

we shall focus on back-transforming the controlled dynamics.

6.4 Nonlinear Control and Periodic Orbit Realization

To determine the nonlinear controller, we first add a control input to the normal form

in equation (6.12) as shown below,
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

v′5

v′6

v′7

v′8


=



−i0.0105 0 0 0

0 +i0.0105 0 0

0 0 −i0.010288 0

0 0 0 +i0.010288





v5

v6

v7

v8



+



0

0

(0.02111598− i0.0007817)v25v
2
6v7 + i745.4783v37v

2
8

(0.02111598 + i0.0007817)v25v
2
6v8 − i745.4783v27v

3
8


+G6u.

(6.13)

Let the scaling matrix and control input be of the form,

G6 =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


, u = γ3



0

0

K1v
2
5v

2
6v7 +K2v

3
7v

2
8

K1v
2
5v

2
6v8 +K2v

2
7v

3
8


. (6.14)

Therefore, the simplified controlled system becomes,

v′5

v′6

v′7

v′8


=



−i0.0105v5

+i0.0105v6

V31

V41


, (6.15)

where

V31 ={−i0.010288 + (0.02111598− i0.0007817)C2
5C

2
6 + C2

5C
2
6K1}v7

+ (K2 + i745.4783)v37v
2
8,

V41 ={+i0.010288 + (0.02111598 + i0.0007817)C2
5C

2
6 + C2

5C
2
6K1}v8

+ (K2 − i745.4783)v27v
3
8.

180



C5 and C6 are the integration constants from the solutions of v5(τ) and v6(τ).

The proportional gains are custom-tuned to K1 = −20 and K2 = −20while γ3 = 1.

The closed form solutions for v5(τ) and v6(τ) are straight forward. To solve for v7(τ)

and v8(τ)we introduce the complex changes of variable; v7 = u1 − iu2 and v8 = u1 + iu2

followed by the polar coordinatesu1 = R cos(θ) andu2 = R sin(θ). The last twounsolved

equations in the system shown in equation (6.15) become,

R′ =C2
5C

2
6(0.021116 +K1)R +K2R

5,

θ′ =0.0102883 + 0.000781747C2
5C

2
6 − 745.478R4.

 (6.16)

After solving equation (6.16), R and θ are use to find v7(τ) and v8(τ). The evaluated

solutions of the normal form shown in equation (6.15) are as shown below,

v5(τ) =C5 exp(i0.0105τ),

v6(τ) =C6 exp(−i0.0105τ),

v7(τ) =
[NUM(1.30564× 107 + 6.1832× 108K1)

1
4{cos(Γ )− i sin(Γ )}]

DEN ,

v8(τ) =
[NUM(1.30564× 107 + 6.1832× 108K1)

1
4{cos(Γ ) + i sin(Γ )}]

DEN ,

(6.17)

where

NUM = (0.707107− i0.707107)
√

C5C6 ×

exp{C2
5C

2
6(C7(1.30564× 107 + 6.1832× 108K1) + (0.021116 +K1)τ)},


DEN = (−1 + 6.1832× 108K2

exp{(C5C6)
2(C7(5.22258× 107 + 2.47328× 109K1) + (0.0844639 + 4K1)t)})

1
4 ,


Γ = 0.000781747C2

5C
2
6τ + C8 + 0.0102883τ+

186.37 (C2
5C

2
5(C7(2.47328× 109K1 + 5.22258× 107) + (4K1 + 0.0844639)τ))

K2

+
log−K2)

K2

.


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(a) x1 and y1 (b) z1

Figure 59: Controlled States Responses in the Vicinity of Toutatis

C7 and C8 are the integration constants from the solutions of v7(τ) and v8(τ).

We then back transform these obtained closed form solutions v5(τ), v6(τ), v7(τ)

and v8(τ) via inverse near identity transformation to the center manifold reduced or-

der coordinates s. Then, we combine these solutions with the already obtained ones,

s1(τ), s2(τ), s3(τ) and s4(τ) and beck transform the combined closed from solutions to

the original coordinates via inverse modal and inverse L-F transformation. The obtained

the controlled states responses are as shown in figure 59. Similarly, the responses of the

derivative states are shown in figure 60.

By propagating the controlled then back-transformed closed-form solutions of

x1(τ), y1(τ) and z1(τ) in time, we can obtain the geometric configuration of the con-

trolled orbit within Toutatis centered 3-D coordinate frame. This outcome prescribes the

orbit shown shown in figure 61 under the same initial conditions as previously given in

figure 51.

Additional elevations and view angles of the orbit are shown in figures 62 and 63.
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(a) x2 and y2 (b) z2

Figure 60: Controlled States Responses in the Vicinity of Toutatis

Figure 61: 3-Dimension View of Orbital Motion in the Vicinity of the Small Irregularly
Shaped Body

Unlike the previous case, the resulting orbit after the implementation of the nonlin-

ear controller is smoother and regular in the general trajectory path. There are no fre-

quent abrupt deflections and it is periodic. Consequently, such an orbit is ideal and

conducive to effectively conduct scientific missions targeting the small irregularly shaped

body. The nonlinear control law which acts about the stable points of the solutions has

hence been shown to enable a regular periodic orbits to be achieved around the small ir-

regularly shaped body.
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Figure 62: Additional View Angle of the Orbit Shape in the Vicinity of Toutatis

(a) (b)

Figure 63: Additional View Angle and Elevation of the Orbit Shape in the Vicinity of
Toutatis
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6.5 Summary and Discussion

This chapter demonstrated how to control the dynamics in the vicinity of small irreg-

ularly shaped bodies in order to transform the prevailing erratic, quasi-periodic motion

into a regular periodic motion that will facilitate effective scientific space missions target-

ing such bodies.

As we indicated earlier, the ISSB are characterized by inimitable challenges such as un-

certainty in orbital parameters and total mass, irregular shape and gravitational potential,

etc. Consequently, the dynamical models need to be adaptable to model the ensuing dy-

namical behavior of a spacecraft in close proximity to such a body. Since the nonlinear

controller that we developed in this chapter is based on a full state feedback control law,

the controller dynamics are adaptable to control the dynamics in the vicinity of our case

application–Toutatis.

By applying the L-F transformation, we were able to transform the periodic linear co-

efficients in the dynamical model to invariant parameters. Consequently, the system was

amenable to the transformation from non-autonomous to autonomous via intuitive state

augmentation that targeted excitation frequency terms in the external periodic forcing vec-

tor and coefficients of nonlinear monomial terms. When the time is set to zero, the LFT

matrix reduces to a simple identity matrix.

We chose to transform the trigonometric functions to their equivalent product func-

tions prior to state augmentation because this will eliminate the possibility of new linear

periodic terms emanating after state augmentation. Such a case is unfavorable because the

procedure will require a second L-F transformation and possibly another state augmen-

tation. The center manifold reduction reduced the dimension of our analytical model

enabling the normal forms to be obtained. By solving the normal forms, we were able to
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realize a closed-form solution to a dynamical system that was not analytically solvable into

closed-form solutions, to begin with. Without performing a MOR on our system, the

model would be too complex and cumbersome to work with making it extremely chal-

lenging to synthesize a control law. Therefore, all these steps need to be taken in the order

enumerated at the beginning of this chapter. We chose to implement a full-state feedback

nonlinear control law. However, this is not the only control approach possible. Other

nonlinear control approaches e.g. sliding mode control, or even feasible linear control

laws can be implemented.

Though the corresponding phase portraits were plotted for the numerically solved un-

controlled system in the original coordinates, we should note that for a system with a di-

mension greater than two ( as is our case), phase portraits constructed by the parametric

behavior of only two states at a time only portray a partial dynamical picture of our system.

This is because only the isolated contributionof the two considereddynamics are analyzed;

while in actuality, their coupling and dynamical interaction with the other states is what

completes the system’s dynamical portrait in the phase-space.

Finally, the chapter achieved the overall objective of realizing suitable dynamics in the

vicinity of a small irregularly shaped body despite the prevailing intricate and volatile dy-

namical environment
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Chapter 7

CONCLUSIONS AND FUTUREDIRECTIONS

In this final chapter, we shall holistically summarize the methodologies, findings and

contributions of this research. Afterwards, we shall discuss future areas to extend this and

related research.

7.1 Summary and Contributions

The research presented in this dissertation focused on analyzing and controlling intri-

cate and complexly structured nonlinear dynamical models that describe motion of space

systems. In doing so, we pursued approaches that are not commonly applied compared

to other approaches to investigate space system dynamics. Consequently, we had to ini-

tially develop the analytical strategies that would facilitate this investigation by extending

the fundamental theories in periodic dynamics, model order reduction and normal forms

simplification to be applicable on the considered intricate motion in a lucid, straightfor-

ward and broad manner.

Our reliance on space-based technologies as an essential component of our modern

lifestyles is indisputable. Unfortunately, space is a harsh, unwelcoming and uncooperative

environment to operate it. In addition to the inimical physical encounters, space systems

have to endure a perturbing dynamical environment that persistently disorients spacecraft

attitude, dislodges spacecraft from their designated orbital positions and compels space-

craft to follow undesirable orbital trajectories. As a result, accuratemodeling, analysis and
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control of spacecraft dynamics is a fundamental aspect of spacemission analysis anddesign

that continues to receive zealous research attention in the field of astronautics.

Inopportunely, space systems dynamics tend to be commonly represented by large,

coupled, nonlinear analytical models that are parametrically excited and are further sub-

jected to external periodic excitation. It is hence not feasible to obtain closed form analyt-

ical solutions of such systems. The conventional analytical approaches to analyzing and

solving such systems relies on linearization, perturbation and averaging approaches. How-

ever, as we have seen, these methodologies possess inherently limiting drawbacks such as

restriction to minimally excited systems or constrains to small domains about the operat-

ing point. These drawbacks serve to counter the desire to accurately model and analyze

space systems dynamics for effective mission formulation. Consequently, it is the objec-

tive of this dissertation to contribute towards tackling this problem.

In doing so, we chose to rely on a series of fundamental techniques encompassing Flo-

quet theory, center manifold order reduction and normal forms simplification. We then

introduced an intuitive state augmentationmethodology that enabled the preceding tech-

niques to be seamlessly extended to our analysis in a plain and straightforward manner–

hence making the analysis and control of our intricate dynamics possible. This plan of ap-

proach was described in chapter 2 and two schematics used to summarize our dissertation

strategy. Chapter 2 further outlined the fundamental theoretical concepts of Floquet the-

ory, normal forms and center manifold reduction. Floquet theory enables representation

of periodic dynamical models by a product of a periodic matrix and an exponential ma-

trix. Moreover, the periodic Lyapunov-Floquet transformation matrix transforms linear

varying coefficients into invariant parameters. Floquet theory simplifies nonlinear systems

while centermanifold reduction reduces the dynamical model dimension on the invariant
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manifold. In outlining the precedingmethods, we segregated nonlinear systems with con-

stant coefficients from those with periodic coefficients.

After, highlighting the limitations of these techniques when applied to parametrically

excited nonlinear systems with external periodic excitation, we introduced intuitive state

augmentation as a means to address this limitation. The intuitive state augmentation tar-

geted the excitation frequency terms to aggrandize the states hence converting the system

from non-autonomous to autonomous. As a result, steps analogous to the fundamental

theories of normalization and order reduction could be innocuously applied to our aug-

mented system even though the excitation was inherently accounted for. We were able

to verify the accuracy of the developed approaches in normal forms and center manifold

reduction via illustrative examples involving multiple cases that were separated according

to periodic and constant coefficients. Only after verifying the efficacy of these methods

did we feel confident enough to apply them on our actual space system dynamics.

To address a fair representation of complex space systems dynamics, we considered

two different types of motions. The first type addressed the problem ofmotion about the

center of mass of a spacecraft as it orbited a large mass in an eccentric orbit. The second

type addressed the problem of motion of the spacecraft center of mass around a small

irregularly shaped body. Consequently, the dissertation problem is divided into two parts.

The first part part of dissertation investigated the attitude motion of a gravity gra-

dient stabilized spacecraft about it center of mass as it orbited the earth in an eccentric

orbit. It was shown that the attitude motion culminates into a libratory planar motion

about the pitch axis that is determined in part by the orbital parameters such as eccentric-

ity and true anomaly. The motion analysis showed a quasi-periodic, chaotic motion that

was marginally stable. Further, the post bifurcation behavior indicated the establishment

of locally stable limit cycles through the constructed versal deformations of the normal
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forms intended to scrutinize the attitude dynamics bifurcation behavior. The oscillatory

nature of the pitch attitude necessitated a control regime in order to stabilize the space-

craft’s attitude. As a result we demonstrated how linear and nonlinear control laws can be

developed to control the oscillations. The control laws were developed in the transformed

coordinates of either L-F transformation or normal forms. Only the nonlinear controllers

(i.e. sliding mode and bifurcation control) were shown to be capable of controlling the

attitude dynamics. Consequently, our methodology showed how to analyze and control

the parametrically excited nonlinear attitude dynamics with external periodic excitation

in a more accurate manner using Floquet theory, center manifold reduction and normal

forms.

In the second part of the dissertation, we investigated the motion of spacecraft in the

vicinity of small irregularly shaped bodies. The unique challenges associated with dynam-

ics in the vicinity of such bodies necessitated the construction of adaptable analytical dy-

namicsmodels that accounted for the irregularities in themass properties and gravitational

potential. Consequently, we briefly outlined the main approaches in developing gravita-

tional gradient models highlighting their fundamental concepts, advantages, drawbacks

and applications. Using the simplest non-trivial second degree and order spherical har-

monic model, we formulated the dynamical model for motion in the vicinity of a small

irregular shaped body and considered a more complex scenario involving the small body’s

periodic angular velocity vector about its COM in the local coordinate frame. We ap-

plied this formulation to asteroid 4179 Toutatis and numerically showed how unfavor-

able quasi-periodic, erratic orbits characterized motion in the vicinity of this small body.

Subsequently, using our methodology that involved L-F transformation, center manifold

reduction andnormal forms, wewere able to analyze and control the dynamics in the vicin-

ity of Toutatis and realize a regular periodic trajectory that is more conducive to spacemis-
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sion design. Once again our approach enabled analysis of the dynamics and formulation

of viable control laws that were implemented in closed-form solutions.

This dissertation extendednormal forms simplification and centermanifold reduction

to parametrically excited nonlinear systems with external periodic excitation in a lucid,

straightforward and broadly applicable manner. This accomplishment was definitively

facilitated by the intuitive system states augmentation process we introduced. In doing

so, we made the following contributions as the novelty of our research to these two fields.

Our methodologies,

i) unify analysis of parametrically excited nonlinear systems and nonlinear systems

with constant coefficients.

ii) are liberated from the need for special strategies such as detuning parameters, ‘book-

keeping’ parameters, ad-hoc unsolved ODEs etc., normally included in finding the

normal forms or center manifold reduction of parametrically excited nonlinear

c=systems with external forcing.

iii) do not mandate the system to be minimally excited.

iv) are based on intuitively augmented system states that are neither ad-hoc nor arbitrar-

ily introduced, hence the approaches are applicable in a consistent manner.

v) utilize augmented states that have a consistent, plain and direct affiliation with the

excitation frequency terms.

vi) are seamlessly applicable over a broad range of nonlinear systems subjected to exter-

nal periodic excitation in order to obtain either the normal forms or centermanifold

reduction (or both).

Additional contributions in the specific dynamical problems studies are described below
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7.1.1 Part I: Gravity Gradient Attitude Motion

We demonstrated an analytical methodology for analyzing the parametrically excited

nonlinear dynamics with external periodic excitation of the attitude motion for a gravity

gradient stabilized spacecraft that investigates stability, chaos andperiodicity. Importantly,

this methodology solves the dynamics to yield closed-form analytical solutions.

This dissertation showed that the attitude motion is quasi-periodic and chaotic. Fur-

ther, we constructed a stability chart that facilitated thepredictionof ( e−σ) combinations

that cause stable or unstable dynamics. The stable regions of the stability chartwere found

to predict marginal and not asymptotically stable dynamics.

Our bifurcation analysis established that the attitude motion undergoes a Hopf bifur-

cation in the neighborhood of the critical point, ec.

Our versal deformation analysis showed that the attitude motion’s post bifurcation

behavior establish locally stable limit cycles and relatively small deviations from the critical

point, ec of the order 10−4 < η < 10−3 trigger a significant topological change in the

structure of the attitude motion flow.

We showed how the parametrically excited motion with external periodic excitation

can be transformed into topologically equivalent domains that are amenable to conven-

tional control law synthesis techniques.

Using representative e− σ pairs, we showed that linear control strategies were unable

to control the planar nonlinear attitude motion.

On the other hand, we demonstrated how the robust control slidingmode control law

stabilized the attitude motion and eliminated oscillations of the pitch angle.

To check the chaotic post-bifurcation behavior with undesired librations, we demon-

strated how to design a bifurcation controller via the normal form and showed that this
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nonlinear control strategy stabilizes the motion by significantly diminishing emanating

pitch angle oscillations.

7.1.2 Part II: Motion in the Vicinity of Small Irregularly Shaped Bodies

Wedemonstrated how tomodel the periodic perturbing accelerations in the vicinity of

small irregularly shaped bodies using a generalized periodic function that facilitates anal-

ysis of motion in the vicinity of such bodies. The function can be extended to represent

constant perturbations as well.

We have developed an adaptable analytical model that accurately described the irreg-

ularities of the body’s dynamical environment including the periodic external perturba-

tions.

We demonstrated an analytical methodology for analyzing the parametrically excited

nonlinear dynamicswith external periodic excitation of themotion in the vicinity of small

irregularly shapedbodies. With application toToutatis, we showedhow thismethodology

investigates stability, chaos and periodicity. Importantly, this methodology solves the dy-

namics to yield closed-form analytical solutions.

Our analysis showed that the dynamics in the vicinity of Toutatis spawn erratic trajec-

tories with abrupt deflections which would significantly impinge on the ability of space-

craft to conduct effective scientific mission.

We showed how the parametrically excited dynamics with external periodic excitation

that describes motion in the vicinity of ISSB can be transformed into topologically equiv-

alent but simplified normal forms that are amenable to conventional control law synthesis

techniques.

We demonstrated how the nonlinear control law developed in the normal forms do-
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main stabilized the motion in close proximity of Toutatis by eliminating erratic behavior

to yield regular periodic trajectories that are conducive to mission design.

By solving the system equations in their normal forms, we were able to realize a closed-

form analytical solutions to dynamical systems that were not analytically solvable into

closed-form solutions, to begin with.

7.2 Future Research Directions

The demonstrated plain order reduction methodology can be extended to general

MORof forcednonlinear systemsdespite being appliedhere to strictly obtain centermani-

fold reduction. This is because the external periodic excitation is comprehensively retained

in the augmented system facilitating general model order reduction approaches. Conse-

quently, retention of the forcing term(s) is similarly achieved in the reduced-order system

model irrespective of the MOR technique followed. Therefore, future work will include

the application of the intuitive state augmentation in other MOR techniques for nonlin-

ear systems with external periodic excitation. Another area of future investigation by this

technique includes the application of this methodology in generalMOR techniques to be

employed in the rapid development of fractional systems.

In future, the normal forms simplification technique should be extended to the fre-

quency response analysis of parametrically excited nonlinear systems with periodic exter-

nal excitation. Specifically, how to back-transform the normal forms into original coordi-

nates to specify multiple system amplitudes corresponding to a the same value of external

excitation frequency.

The gravity gradient investigation in future would consider torques generated by

sources such as magnetism and oblateness of the earth, atmospheric drag, solar radiation
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pressure, thermal bending etc. Further, nonlinearities beyond the cubic term in the LFT

and TDNF cases of near identity transformation would also be analyzed.

Also, future work in gravity gradient stabilization should focus on physical implemen-

tation of the controllers and deriving TDNF based control laws. As demonstrated, all the

control effort inputs are single torques per unit moment of inertia which for instance can

be implemented via thrusters. Consequently, sizing and implementation of the control

effort is a crucial task.

Secular perturbations should be modeled and integrated in to the future analysis of

dynamics in the vicinity of small irregularly shaped bodies.

Additionally, further refinement and improvement and refinement of the developed

function to model periodic perturbations is required. This would include validating the

model with observed data.

In future, generalizedmethods tofindperiodic orbits in the vicinity of small irregularly

shaped bodies should be explored.

Also, future work related to control of spacecraft in the vicinity of small irregular

shaped bodies should investigate the physical implementation of the controllers. As

demonstrated, all the control effort inputs are input accelerations which for instance can

be implemented via thrusters. Consequently, sizing and implementation of the control

effort is a crucial task.
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A.1 Sample of periodic TDNF terms in equation (2.89).


v̇1
v̇2
v̇3
v̇4
v̇5
v̇6

 =


V11

V21

−iπv3 + i(2.2204× 10−16)v4
−i(2.2204× 10−16)v3 + iπv4

−i4πv5
i4πv6


where

V11 = −i1.73732v1 + i(3.33067× 10−16)v2 + i(1.85037× 10−17)v31v3
+ i(1.11022 × 10−16)v21v2v3 − i(2.31296 × 10−18)v32v3 + i(3.70074 × 10−17)v31v4 −
i(9.25186 × 10−18)v21v2v4 + i(9.25186 × 10−18)v1v

2
2v4 + i(2.31296 × 10−18)v32v4 +

i(6.93889× 10−18)v5 + i(9.03502× 10−21)v21v3v5 + i(1.807× 10−20)v1v2v3v5
+ i(9.03502 × 10−21)v22v3v5 + i(1.807 × 10−20)v1v2v4v5 − i(9.03502 × 10−21)v22v4v5 −
i(8.82326 × 10−24)v2v3v

2
5 − i(4.41163 × 10−24)v1v4v

2
5 − i(4.41163 × 10−24)v2v4v

2
5 −

i(2.15412 × 10−27)v3v
3
5 + i(2.15412 × 10−27)v4v

3
5 + i(6.93889 × 10−18)v6 − i(1.807 ×

10−20)v1v2v4v6 + i(5.29396× 10−23)v1v3v5v6 + i(1.14702× 10−22)v2v3v5v6
− i(1.76465×10−23)v1v4v5v6+ i(1.76465×10−23)v2v4v5v6+ i(1.29247×10−26)v3v

2
5v6+

i(8.61646 × 10−27)v4v
2
5v6 + i(4.41163 × 10−24)v1v3v

2
6 + i(4.41163 × 10−24)v2v3v

2
6 −

i(4.30823 × 10−27)v4v5v
2
6 + (5.78241 × 10−19 − i9.03502 × 10−21)v31v3 cos(2πt) +

i(3.75857× 10−18 − 6.32451× 10−20)v21v2v3 cos(2πt) + (8.67362× 10−19 + i4.51751×
10−21)v1v

2
2v3 cos(2πt)+i(2.25875×10−21)v32v3 cos(2πt)+(2.74665×10−18−i6.77626×

10−21)v31v4 cos(2πt)− (2.89121×10−19− i4.51751×10−21)v21v2v4 cos(2πt)+(5.64689×
10−22 − i3.5293× 10−23)v21v3v5 cos(2πt)
+ (1.12938× 10−21 − i1.41172× 10−22)v1v2v3v5 cos(2πt)
+ i(5.64689 × 10−22)v22v3v5 cos(2πt) + i(3.5293 × 10−23)v21v4v5 cos(2πt) + (2.25875 ×
10−21 − i7.05861× 10−23)v1v2v4v5 cos(2πt)
− (5.64689 × 10−22 + i3.5293 × 10−23)v22v4v5 cos(2πt) − (5.51454 × 10−25 −
i6.89317 × 10−26)v1v3v

2
5 cos(2πt) − i(1.10291 × 10−24)v2v3v

2
5 cos(2πt) − (5.51454 ×

10−25 − i1.37863 × 10−25)v1v4v
2
5 cos(2πt) + i(1.10291 × 10−24)v2v4v

2
5 cos(2πt) +

(2.69265 × 10−28 + i1.6829 × 10−29)v3v
3
5 cos(2πt) − (2.69265 × 10−28 + i3.36581 ×

10−29)v4v
3
5 cos(2πt)+i(4.33681×10−19)v6 cos(2πt)−i(5.64689×10−22)v22v3v6 cos(2πt)−

(5.64689 × 10−22 + i3.5293 × 10−23)v21v4v6 cos(2πt) + (6.61744 × 10−24 − i3.44659 ×
10−26)v1v3v5v6 cos(2πt) + (1.43378 × 10−23 − i6.89317 × 10−26)v2v3v5v6 cos(2πt) −
i(2.20581×10−24)v1v4v5v6 cos(2πt)+ i(1.10291×10−24)v2v4v5v6 cos(2πt)+(1.07706×
10−27 − i3.36581 × 10−29)v3v

2
5v6 cos(2πt) − i(3.36581 × 10−29)v4v

2
5v6 cos(2πt) +

(1.10291× 10−24 + i6.89317× 10−26)v1v3v
2
6 cos(2πt) + (5.51454× 10−25 + i1.03398×

10−25)v2v3v
2
6 cos(2πt)+(5.51454×10−25+i6.89317×10−26)v1v4v

2
6 cos(2πt)+i(1.6829×

10−29)v3v5v
2
6 cos(2πt)−(5.38529×10−28+i3.36581×10−29)v4v5v

2
6 cos(2πt)−(2.69265×
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10−28 − i1.6829× 10−29)v3v
3
6 cos(2πt)− i(1.6829× 10−29)v4v

3
6 cos(2πt) + i(8.82326×

10−24)v21v3v5 cos(2πt)2 + (1.76465× 10−23 − i4.41163× 10−24)v1v2v3v5 cos(2πt)2 +
· · ·
+ i(1.8684 × 10−45 + i7.47359 × 10−45)v4v

3
6 cos(4πt) sin(4πt)3 sin(2πt)3 − (2.98944 ×

10−43−i1.8684×10−45)v4v
3
5 sin(2πt) sin(4πt)3 sin(2πt)3−(5.97887×10−44−i1.79366×

10−43)v3v
2
5v6 sin(2πt) sin(4πt)3 sin(2πt)3

+ i(5.97887× 10−44)v4v
2
5v6 sin(2πt) sin(4πt)3 sin(2πt)3

+ i(1.19577× 10−43)v3v5v
2
6 sin(2πt) sin(4πt)3 sin(2πt)3

+ i(9.34199 × 10−46)v4v
3
6 sin(2πt) sin(4πt)3 sin(2πt)3 − (2.3355 × 10−i46 + 2.91937 ×

10−47)v3v
3
5 sin(4πt)4 sin(2πt)3 − i(4.67099× 10−46)v3v

2
5v6 sin(4πt)4 sin(2πt)3

+ (4.67099 × 10−i46 + 2.3355 × 10−46)v4v
2
5v6 sin(4πt)4 sin(2πt)3 − (2.3355 × 10−46 +

i4.67099× 10−46)v3v5v
2
6 sin(4πt)4 sin(2πt)3

+ (4.67099 × 10−46 + i2.3355 × 10−46)v4v5v
2
6 sin(4πt)4 sin(2πt)3 − (1.16775 × 10−46 −

i2.91937× 10−47)v3v
3
6 sin(4πt)4 sin(2πt)3

V21 = −i(3.33067 × 10−16)v1 + i(1.73732)v2 + i(4.62593 × 10−18)v31v3 − i(4.62593 ×
10−17)v21v2v3 − i(9.25186 × 10−17)v1v

2
2v3 + i(3.70074 × 10−17)v32v3 − i(7.17019 ×

10−17)v31v4 − i(9.25186 × 10−18)v21v2v4 + i(9.25186 × 10−18)v1v
2
2v4 + i(4.62593 ×

10−18)v32v4−i(6.93889×10−18)v5−i(1.807×10−20)v1v2v3v5−i(9.03502×10−21)v22v3v5+
i(1.807 × 10−20)v1v2v4v5 + i(9.03502 × 10−21)v22v4v5 + i(4.41163 × 10−24)v2v3v

2
5 +

i(4.41163×10−24)v1v4v
2
5 + i(8.82326×10−24)v2v4v

2
5 − i(6.93889×10−18)v6+ i(1.807×

10−20)v21v3v6 + i(9.03502 × 10−21)v21v4v6 + i(1.807 × 10−20)v1v2v4v6 + i(9.03502 ×
10−21)v22v4v6 − i(7.05861× 10−23)v1v3v5v6 − i(9.70559× 10−23)v2v3v5v6 + i(1.14702×
10−22)v1v4v5v6 − i(8.61646 × 10−27)v3v

2
5v6 + i(1.29247 × 10−26)v4v

2
5v6 − i(4.41163 ×

10−24)v2v3v
2
6 − i(8.82326 × 10−24)v1v4v

2
6 + i(4.30823 × 10−27)v3v5v

2
6 + i(8.61646 ×

10−27)v4v5v
2
6 + i(2.15412 × 10−27)v3v

3
6 − i(2.15412 × 10−27)v4v

3
6 + (1.4456 × 10−19 +

i2.25875 × 10−21)v31v3 cos(2πt) − (1.4456 × 10−18 + i1.807 × 10−20)v21v2v3 cos(2πt) −
(3.46945× 10−18 − i4.51751× 10−21)v1v

2
2v3 cos(2πt) + (1.59016× 10−18 + i2.48463×

10−20)v32v3 cos(2πt) − (2.38524 × 10−18 + i2.03288 × 10−20)v31v4 cos(2πt) − (1.4456 ×
10−18+i4.51751×10−21)v21v2v4 cos(2πt)−i(2.25875×10−21)v32v4 cos(2πt)−i(4.33681×
10−19)v5 cos(2πt)+ i(7.05861×10−23)v1v2v3v5 cos(2πt)− (5.64689×10−22− i3.5293×
10−23)v22v3v5 cos(2πt)− i(5.64689× 10−22)v21v4v5 cos(2πt)
+ i(1.12938× 10−21)v1v2v4v5 cos(2πt)
−(5.64689×10−22−i3.5293×10−23)v22v4v5 cos(2πt)+i(1.10291×10−24)v2v3v

2
5 cos(2πt)+

i(5.51454×10−25)v1v4v
2
5 cos(2πt)+(1.10291×10−24−i3.44659×10−26)v2v4v

2
5 cos(2πt)+

i(1.6829× 10−29)v3v
3
5 cos(2πt)− i(1.6829× 10−29)v4v

3
5 cos(2πt)− (5.64689× 10−22 −

i3.5293 × 10−23)v21v3v6 cos(2πt) − i(3.5293 × 10−23)v22v3v6 cos(2πt) + i(5.64689 ×
10−22)v21v4v6 cos(2πt) + (2.25875 × 10−21 + i1.41172 × 10−22)v1v2v4v6 cos(2πt) +
(5.64689 × 10−22 + i3.5293 × 10−23)v22v4v6 cos(2πt) − (6.61744 × 10−24 + i4.30823 ×
10−26)v1v3v5v6 cos(2πt) − (1.10291 × 10−23 − i3.44659 × 10−26)v2v3v5v6 cos(2πt) +
(4.41163× 10−24 + i6.89317× 10−26)v1v4v5v6 cos(2πt)− (5.38529× 10−28 − i1.6829×
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10−29)v3v
2
5v6 cos(2πt)+(5.38529×10−28−i1.6829×10−29)v4v

2
5v6 cos(2πt)+i(5.51454×

10−25)v1v3v
2
6 cos(2πt)−(5.51454×10−25+i6.89317×10−26)v2v3v

2
6 cos(2πt)−(1.65436×

10−24+i6.89317×10−26)v1v4v
2
6 cos(2πt)−i(5.51454×10−25)v2v4v

2
6 cos(2πt)+(5.38529×

10−28 + i3.36581× 10−29)v3v5v
2
6 cos(2πt) +

· · ·
− (5.97887× 10−43 + i1.19577× 10−43)v4v5v

2
6 sin(2πt) sin(4πt)3 sin(2πt)3 − (2.98944×

10−43 + i1.8684× 10−45)v3v
3
6 sin(2πt) sin(4πt)3 sin(2πt)3

− i(2.91937× 10−47)v4v
3
5 sin(4πt)4 sin(2πt)3

− (2.3355 × 10−46 + i4.67099 × 10−46)v3v
2
5v6 sin(4πt)4 sin(2πt)3 − (2.3355 × 10−46 −

i4.67099×10−46)v4v
2
5v6 sin(4πt)4 sin(2πt)3+i(4.67099×10−46)v4v5v

2
6 sin(4πt)4 sin(2πt)3−

(2.3355× 10−46 − i2.91937× 10−47)v4v
3
6 sin(4πt)4 sin(2πt)3

A.2 y7 and y8: Parametric Equations of spring-mass-damper system (2.113)

y7 = (8.41688−i44.0124)y21y3−(5.25571−i151.631i)y1y2y3−(107.972+i145.859)y22y3+
(1724.29− i6168.09)y1y

2
3− (1939.41− i8415.1)y2y

2
3+(20144.2− i316290)y33+(57.678+

i12.9645)y21y4 − (75.8602 + i9.05606)y1y2y4 + (28.043 + i1.97305)y22y4 + (65229.2 +
i41133.7)y1y3y4 − (31153.− i7057.42)y2y3y4 − (1.04042× 106 − i3.48349× 106)y23y4 −
(5774.69+ i314.841)y1y

2
4 +(4681.57+ i149.413)y2y

2
4 − (1.81357×106− i249610.)y3y

2
4 +

(242330. + i63546.5)y34 − (464.764 − i704.989)y21y5 + (1141.9 − i1870.41)y1y2y5 −
(723.749 − i1376.4)y22y5 − (39182.1 + i17021.2)y1y3y5 + (47635.7 + i19690.7)y2y3y5 +
(3.37197 × 106 − i1.28988 × 106)y23y5 − (235156. + i267773.)y1y4y5 + (599725. +
i375592.)y2y4y5− (5.4448× 106+ i1.53458× 107)y3y4y5− (3.92234× 106+ i3.21059×
107)y24y5−(2.20416×106−i2.99324×106)y1y

2
5+(2.49464×106−i3.45527×106)y2y

2
5−

(1.86174×108+i5.35227×107)y3y
2
5−(1.91896×108+i2.79952×108)y4y

2
5−(3.34833×

109 − i5.73262 × 109)y35 − (951.04 − i217.566)y21y6 + (1492.79 − i386.165)y1y2y6 −
(613.667− i170.879)y22y6 − (155575.+ i248414.)y1y3y6 + (120006.+ i165412.)y2y3y6 +
(3.92234 × 106 − i3.21059 × 107)y23y6 − (3016.62 + i39773.6)y1y4y6 + (2981.09 +
i34252.5)y2y4y6+(9.21752× 106+ i6.8046× 106)y3y4y6+(1.93571× 106− i2.32586×
106)y24y6−(8.77683×107+i5.53469×107)y1y5y6+(4.19175×107−i9.49602×106)y2y5y6+
i(2.44511 × 109 + 8.60461 × 108)y3y5y6 − (2.39982 × 108 + i1.28299 × 109)y4y5y6 +
(4.22011×1010−i5.28005×1010)y25y6+(3.37462×106−i1.03693×106)y1y

2
6−(3.00308×

106−i944483.)y2y
2
6+(1.62331×108+i2.13608×108)y3y

2
6−(8.87787×106−i1.67954×

108)y4y
2
6 +(4.41791× 1010− 1.76106× 1010)y5y

2
6 − (5.79082× 109− i1.13602× 109)y36

y8 = (28.043− i1.97305)y21y3− (75.8602− i9.05606)y1y2y3+(57.678− i12.9645)y22y3+
(4681.57−i149.413)y1y

2
3−(5774.69−i314.841)y2y

2
3+(242330.−i63546.5)y33−(107.972−

i145.859)y21y4 − (5.25571 + i151.631)y1y2y4 + (8.41688 + i44.0124)y22y4 − (31153. +
i7057.42)y1y3y4 + (65229.2 − i41133.7)y2y3y4 − (1.81357 × 106 + i249610.)y23y4 −
(1939.41+i8415.1)y1y

2
4+(1724.29+i6168.09)y2y

2
4−(1.04042×106+i3.48349×106)y3y

2
4+
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(20144.2+i316290.)y34−(613.667+i170.879)y21y5+(1492.79+i386.165)y1y2y5−(951.04+
i217.566)y22y5 +(2981.09− i34252.5)y1y3y5 − (3016.62− i39773.6)y2y3y5 +(1.93571×
106 + i2.32586× 106)y23y5 +(120006.− i165412.)y1y4y5 − (155575.− i248414.)y2y4y5 +
(9.21752 × 106 − i6.8046 × 106)y3y4y5 + (3.92234 × 106 + i3.21059 × 107)y24y5 −
(3.00308 × 106 + i944483.)y1y

2
5 + (3.37462 × 106 + i1.03693 × 106)y2y

2
5 − (8.87787 ×

106 + i1.67954× 108)y3y
2
5 + (1.62331× 108 − i2.13608× 108)y4y

2
5 − (5.79082× 109 +

i1.13602× 109)y35 − (723.749 + 1376.4)y21y6 + (1141.9 + i1870.41)y1y2y6 − (464.764 +
i704.989)y22y6 +(599725.− i375592.)y1y3y6 − (235156.− i267773.)y2y3y6 − (3.92234×
106− i3.21059× 107)y23y6+(47635.7− i19690.7)y1y4y6− (39182.1− i17021.2)y2y4y6−
(5.4448×106−i1.53458×107)y3y4y6+(3.37197×106+i1.28988×106)y24y6+(4.19175×
107 + i9.49602 × 106)y1y5y6 − (8.77683 × 107 − i5.53469 × 107)y2y5y6 − (2.39982 ×
108 − i1.28299 × 109)y3y5y6 + (2.44511 × 109 − i8.60461 × 108)y4y5y6 + (4.41791 ×
1010+ i1.76106× 1010)y25y6 + (2.49464× 106 + i3.45527× 106)y1y

2
6 − (2.20416× 106 +

i2.99324×106)y2y
2
6−(1.91896×108−i2.79952×108)y3y

2
6−(1.86174×108−i5.35227×

107)y4y
2
6 +(4.22011×1010+ i5.28005×1010)y5y

2
6 − (3.34833×109+ i5.73262×109)y36
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B.1 Elements of the state augmented autonomous system for the ISSB problem (6.9).



s′1
s′2
s′3
s′4
s′5
s′6
p′

q′


=



f(s1(τ))
f(s2(τ))
f(s3(τ))
f(s4(τ))
f(s5(τ))
f(s6(τ))

q
−(441p)/4000000


where
f(s1(τ)) = −(s2/10000) + (9s3)/5000 + 19.0476pq(−0.00017074 cos(πτ)/148) −
0.0235514 sin(πτ)/148)) + (4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2
(s2((−0.2419 + 0.8899 cos(0.0212045τ)− 0.648 cos(0.042409τ))/10000
− 0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ)+ (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))−
2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ)+(0.101 sin(0.0212045τ)−0.0735 sin(0.042409τ))/1000))3−
2.17315(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))
(−s1(0.0013−0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))
− s4((0.0313− 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) −
s2(0.0236 cos(0.0212045τ)− (0.101 sin(0.0212045τ) + 0.0735 sin(0.042409τ))/1000))2)
(−0.00017074 cos(πτ)/148)− 0.0235514 sin(πτ)/148))
+ 19.0476pq(−0.0236027 cos(πτ)/148) + 0.000171208 sin(πτ)/148))
+ (4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2
(−s1(0.0013−0.0049 cos(0.021205τ)−0.0035 cos(0.042409τ)−1.136 sin(0.0212045τ))+
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) −
s2(0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))+
2.80011(s2((0.2419 − 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))2
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(−s1(0.0013 − 0.005 cos(0.021τ) − 0.0035 cos(0.042409τ) − 1.1 sin(0.0212045τ)) +
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) −
s2(0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) + 0.0735 sin(0.043τ))/1000)) +
2.17315(s1(0.0013− 0.005 cos(0.0212045τ)− 0.0035 cos(0.043τ)
− 1.1357 sin(0.0212045τ)) + s4((−0.0313 + 0.1147 cos(0.0212045τ)
−0.0834 cos(0.042409τ))/1000−0.0268 sin(0.0212045τ))+s3(1.0006 cos(0.0212045τ)+
0.0043 sin(0.0212045τ)) − s2(0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000))3)(−0.0236027 cos(πτ)/148)+0.000171208 sin(πτ)/148))

f(s2(τ)) = −(s1/10000) − (23s4)/10000 + 19.05pq(0.0023 + 1 cos(πτ)/148) −
0.00155 cos(πτ)/74) − 0.00058 cos((3π)τ)/148) − 0.00030921 cos(πτ)/37) −
0.000193188 cos((5π)τ)/148) − 0.000132 cos((3π)τ)/74) − 0.007 sin(πτ)/148)) +
(4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2(s2((−0.2419
+ 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 − 0.0208 sin(0.0212045τ)) +
s1(cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) + s3(0.001 − 0.0038 cos(0.0212045τ) +
0.0027 cos(0.042409τ) + 0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) +
(0.101 sin(0.0212045τ) − 0.0735 sin(0.042409τ))/1000)) − 2.80011(s2((−0.2419 +
0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 − 0.0208 sin(0.0212045τ)) +
s1(cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) + s3(0.001 − 0.0038 cos(0.0212045τ) +
0.0027 cos(0.042409τ) + 0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) +
(0.101 sin(0.0212045τ) − 0.0735 sin(0.042409τ))/1000))3 − 2.17315(s2((−0.2419 +
0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 − 0.0208 sin(0.0212045τ)) +
s1(cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) + s3(0.001 − 0.0038 cos(0.0212045τ) +
0.0027 cos(0.042409τ) + 0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) +
(0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))
(s1(−0.0013 + 0.0049 cos(0.0212045τ) − 0.0035 cos(0.043τ) − 1.1 sin(0.0212045τ)) +
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1. cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) −
s2(0.0236 cos(0.0212045τ)− (0.101 sin(0.0212045τ) + 0.07 sin(0.042409τ))/1000))2)
(0.00230944 + 1.00064 cos(πτ)/148)− 0.00154895 cos(πτ)/74)
− 0.000583 cos((3π)τ)/148) − 0.0003 cos(πτ)/37) − 0.000193 cos((5π)τ)/148) −
0.000132407 cos((3π)τ)/74)− 0.007 sin(πτ)/148)) + 19.0476pq
(−0.00722855 cos(πτ)/148) − 0.998258 sin(πτ)/148) + 0.0030905 sin(πτ)/74) +
0.00173894 sin((3π)τ)/148)+0.00123407 sin(πτ)/37)+0.000963703 sin((5π)τ)/148)+
0.000792617 sin((3π)τ)/74) + 0.00067392 sin((7π)τ)/148)) + (5(s5 cos(0.0212045τ) +
0.709s6 sin(0.0212045τ))2(s1(−0.0013+0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−
1.1 sin(0.0212045τ)) + s4((−0.0313 + 0.1147 cos(0.0212045τ)
−0.0834 cos(0.042409τ))/1000−0.0268 sin(0.0212045τ))+s3(1.0006 cos(0.0212045τ)+
0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) − (0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000)) − 2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) −
0.648 cos(0.042409τ))/10000− 0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) +
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0.0043 sin(0.0212045τ))+s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+
0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ) −
0.0735 sin(0.042409τ))/1000))2(s1(−0.0013 + 0.0049 cos(0.0212045τ)
−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))−s4((0.031−0.115 cos(0.0212045τ)−
0.0834 cos(0.042409τ))/1000− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) +
0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000)) − 2.17315(s1(−0.0013 + 0.0049 cos(0.0212045τ) −
0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))−s4((0.031−0.115 cos(0.0212045τ)−
0.0834 cos(0.042409τ))/1000− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) +
0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000))3)(−0.00722855 cos(πτ)/148)− 0.998258 sin(πτ)/148)+
0.0030905 sin(πτ)/74) + 0.00173894 sin((3π)τ)/148) + 0.00123407 sin(πτ)/37) +
0.000963703 sin((5π)τ)/148)+0.000792617 sin((3π)τ)/74)+0.00067392 sin((7π)τ)/148))

f(s3(τ)) = −((3s1)/1250) − s4/10000 + 19.0476pq(−0.000170573 cos(πτ)/148) −
0.0235491 sin(πτ)/148)) + (4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2
(−s1(0.0013−0.005 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.14 sin(0.0212045τ))+
s4((−0.031 + 0.1147 cos(0.0212045τ)− 0.083 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s2(−0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))−
2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))2
(s1(−0.0013 + 0.0049 cos(0.0212045τ)− 0.0035 cos(0.042409τ)
− 1.1357 sin(0.0212045τ)) + s4((−0.0313 + 0.1147 cos(0.0212045τ)
− 0.0834 cos(0.042409τ))/1000− 0.0268 sin(0.0212045τ))
+ s3(1.0006 cos(0.0212045τ)+0.0043 sin(0.0212045τ))+ s2(−0.0236 cos(0.0212045τ)+
(−0.101 sin(0.0212045τ) + 0.0735 sin(0.042409τ))/1000)) − 2.17315(s1(−0.0013 +
0.0049 cos(0.0212045τ) − 0.0035 cos(0.042409τ) − 1.1357 sin(0.0212045τ)) +
s4((−0.0313 + 0.1147 cos(0.0212045τ)
−0.0834 cos(0.042409τ))/1000−0.0268 sin(0.0212045τ))+s3(1.0006 cos(0.0212045τ)+
0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000))3)(−0.000170573 cos(πτ)/148)−0.0235491 sin(πτ)/148))+
19.0476pq(0.0236067 cos(πτ)/148)− 0.000171079 sin(πτ)/148))
+ (4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2
(s2((−0.2419 + 0.8899 cos(0.0212045τ)− 0.648 cos(0.042409τ))/10000−
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ)+ (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))−
2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
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s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ)+(0.101 sin(0.0212045τ)−0.0735 sin(0.042409τ))/1000))3−
2.17315(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))
(s1(−0.0013+0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))+
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s2(−0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))2)
(0.0236067 cos(πτ)/148)− 0.000171079 sin(πτ)/148))

f(s4(τ)) = (23s2)/10000− s3/10000+ 19.0476pq(0.00230911+ 1.0005 cos(πτ)/148)−
0.00154872 cos(πτ)/74) − 0.000582637 cos((3π)τ)/148) − 0.000309167 cos(πτ)/37) −
0.000193159 cos((5π)τ)/148)−0.000132388 cos((3π)τ)/74)−0.00726049 sin(πτ)/148))+
(4.97326(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))2
(s1(−0.0013+0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))+
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s2(−0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))−
2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) − 0.648 cos(0.042409τ))/10000 −
0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)− 0.0735 sin(0.042409τ))/1000))2
(s1(−0.0013 + 0.0049 cos(0.0212045τ)− 0.0035 cos(0.042409τ)
− 1.1357 sin(0.0212045τ)) + s4((−0.0313 + 0.1147 cos(0.0212045τ)
− 0.0834 cos(0.042409τ))/1000− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ)
+ 0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000)) − 2.17315(s1(−0.0013 + 0.0049 cos(0.0212045τ) −
0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))+s4((−0.0313+0.1147 cos(0.0212045τ)−
0.0834 cos(0.042409τ))/1000− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) +
0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) +
0.0735 sin(0.042409τ))/1000))3)(0.00230911 + 1.0005 cos(πτ)/148)
−0.00154872 cos(πτ)/74)−0.000582637 cos((3π)τ)/148)−0.000309167 cos(πτ)/37)−
0.000193159 cos((5π)τ)/148)−0.000132388 cos((3π)τ)/74)−0.00726049 sin(πτ)/148))+
19.0476pq(0.00722855 cos(πτ)/148)+0.998258 sin(πτ)/148)−0.0030905 sin(πτ)/74)−
0.00173894 sin((3π)τ)/148)−0.00123407 sin(πτ)/37)−0.000963703 sin((5π)τ)/148)−
0.000792617 sin((3π)τ)/74)−0.00067392 sin((7π)τ)/148))+(4.97326(s5 cos(0.0212045τ)+
0.709s6 sin(0.0212045τ))2(s2((−0.2419 + 0.8899 cos(0.0212045τ)
−0.648 cos(0.042409τ))/10000−0.0208 sin(0.0212045τ))+s1(1.0006 cos(0.0212045τ)+
0.0043 sin(0.0212045τ))+s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+
0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ) −
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0.0735 sin(0.042409τ))/1000)) − 2.80011(s2((−0.2419 + 0.8899 cos(0.0212045τ) −
0.648 cos(0.042409τ))/10000− 0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) +
0.0043 sin(0.0212045τ))+s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+
0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ) −
0.0735 sin(0.042409τ))/1000))3 − 2.17315(s2((−0.2419 + 0.8899 cos(0.0212045τ) −
0.648 cos(0.042409τ))/10000− 0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) +
0.0043 sin(0.0212045τ))+s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+
0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ) −
0.0735 sin(0.042409τ))/1000))(s1(−0.0013 + 0.0049 cos(0.0212045τ)
− 0.0035 cos(0.042409τ)− 1.1357 sin(0.0212045τ)) + s4((−0.0313
+ 0.1147 cos(0.0212045τ) − 0.0834 cos(0.042409τ))/1000 − 0.0268 sin(0.0212045τ)) +
s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) + s2(−0.0236 cos(0.0212045τ) +
(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))2)(0.00722855 cos(πτ)/148)+
0.998258 sin(πτ)/148) − 0.0030905 sin(πτ)/74) − 0.00173894 sin((3π)τ)/148) −
0.00123407 sin(πτ)/37)−0.000963703 sin((5π)τ)/148)−0.000792617 sin((3π)τ)/74)−
0.00067392 sin((7π)τ)/148))

f(s5(τ)) = −((73s6)/10000) + 190.476pq(−0.00512964 cos(πτ)/148)
− 0.708169 sin(πτ)/148) + 0.00219243 sin(πτ)/74) + 0.00123671 sin((3π)τ)/148) +
0.000875445 sin(πτ)/37)+0.000683641 sin((5π)τ)/148)+0.000562276 sin((3π)τ)/74)+
0.00048 sin((7π)τ)/148)) + (4.98(s5 cos(0.0212τ) + 0.709s6 sin(0.0212045τ))3 −
2.80011(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))
(s2((−0.2419 + 0.8899 cos(0.0212045τ)− 0.648 cos(0.042409τ))/10000
− 0.0208 sin(0.0212045τ)) + s1(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+0.8815 sin(0.0212045τ))+
s4(0.0236 cos(0.0212045τ)+(0.101 sin(0.0212045τ)−0.0735 sin(0.042409τ))/1000))2−
2.17315(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))
(s1(−0.0013+0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))+
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s2(−0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))2)
(−0.00512964 cos(πτ)/148) − 0.708169 sin(πτ)/148) + 0.00219243 sin(πτ)/74) +
0.00123671 sin((3π)τ)/148)+0.000875445 sin(πτ)/37)+0.000683641 sin((5π)τ)/148)+
0.000562276 sin((3π)τ)/74) + 0.000478077 sin((7π)τ)/148))

f(s6(τ)) = (29s5)/2000 + 190.476pq(0.00231055 + 1.00113 cos(πτ)/148) −
0.00154973 cos(πτ)/74) − 0.000587382 cos((3π)τ)/148) − 0.000309363 cos(πτ)/37) −
0.000193269 cos((5π)τ)/148)−0.000132463 cos((3π)τ)/74)−0.0072671 sin(πτ)/148))+
(4.97326(s5 cos(0.0212045τ)+0.709s6 sin(0.0212045τ))3−2.80011(s5 cos(0.0212045τ)+
0.709s6 sin(0.0212045τ))(s2((−0.2419 + 0.8899 cos(0.0212045τ)
−0.648 cos(0.042409τ))/10000−0.0208 sin(0.0212045τ))+s1(1.0006 cos(0.0212045τ)+
0.0043 sin(0.0212045τ))+s3(0.001−0.0038 cos(0.0212045τ)+0.0027 cos(0.042409τ)+
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0.8815 sin(0.0212045τ)) + s4(0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ) −
0.0735 sin(0.042409τ))/1000))2−2.17315(s5 cos(0.0212045τ)+0.709s6 sin(0.0212045τ))
(s1(−0.0013+0.0049 cos(0.0212045τ)−0.0035 cos(0.042409τ)−1.1357 sin(0.0212045τ))+
s4((−0.0313 + 0.1147 cos(0.0212045τ)− 0.0834 cos(0.042409τ))/1000
− 0.0268 sin(0.0212045τ)) + s3(1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ)) +
s2(−0.0236 cos(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000))2)
(0.00231 + 1.00113 cos(πτ)/148) − 0.0015 cos(πτ)/74) − 0.00058 cos((3π)τ)/148) −
0.0003 cos(πτ)/37) − 0.000193269 cos((5π)τ)/148) − 0.000132463 cos((3π)τ)/74) −
0.0072671 sin(πτ)/148))

B.2 Full center manifold equations for the ISSB problem (6.10).

Parametric equations of the center manifold are;

s1(τ) =P1(τ)

s2(τ) =P2(τ)

s3(τ) =P3(τ)

s4(τ) =P4(τ)

The reduced system is
s′5 =P ′

5(τ)

s′6 =P ′
6(τ)

p′ =q(τ)

q′ =− (441p(τ))

4000000

where
P1(τ) = −1.27476 × 10−6p2 + 0.0100999pq + 0.0115624q2 − (0.0574401 +
0.0564899i)p2 cos(0.021227τ) + (1.25218 − 1.26761i)pq cos(0.021227τ) + (520.999 +
512.38i)q2 cos(0.021227τ) − (0.0574401 − 0.0564899i)p2 cos(0.021227τ) + (1.25218 +
1.26761i)pq cos(0.021227τ) + (520.999 − 512.38i)q2 cos(0.021227τ) − (0.00338704 −
0.00675788i)pq cos(0.042454τ)− (0.00387745 + 0.00773132i)q2

cos(0.042454τ) − (0.00338704 + 0.00675788i)pq cos(0.042454τ) − (0.00387745 −
0.00773132i)q2 cos(0.042454τ) − (0.00127421 − 0.00380249i)pq cos(0.0636809τ) −
(0.00145872 + 0.00435022i)q2 cos(0.0636809τ)− (0.00127421 + 0.00380249i)pq
cos(0.0636809τ) − (0.00145872 − 0.00435022i)q2 cos(0.0636809τ) − (0.000676139 −
0.00269849i)pq cos(0.0849079τ)− (0.000774048 + 0.00308719i)q2

cos(0.0849079τ) − (0.000676139 + 0.00269849i)pq cos(0.0849079τ) − (0.000774048 −
0.00308719i)q2 cos(0.0849079τ) − (0.000422438 − 0.0021073i)pq cos(0.106135τ) −
(0.000483603 + 0.00241084i)q2 cos(0.106135τ)− (0.000422438 + 0.0021073i)pq
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cos(0.106135τ) − (0.000483603 − 0.00241084i)q2 cos(0.106135τ) − (0.000289529 −
0.00173319i)pq cos(0.127362τ) − (0.000331453 + 0.00198285i)q2 cos(0.127362τ) −
(0.000289529 + 0.00173319i)pq cos(0.127362τ)− (0.000331453− 0.00198285i)q2

cos(0.127362τ) + (0.00147364i)pq cos(0.148589τ)− (0.00168591i)q2

cos(0.148589τ)− (0.00147364i)pq cos(0.148589τ) + (0.00168591i)q2 cos(0.148589τ)−
(0.0564899 − 0.0574401i)p2 sin(0.021227τ) − (1.26761 + 1.25218i)pq sin 0.021227τ) +
(512.38 − 520.999i)q2 sin 0.021227τ) − (0.0564899 + 0.0574401i)p2 sin 0.021227τ) −
(1.26761 − 1.25218i)pq sin 0.021227τ) + (512.38 + 520.999i)q2 sin 0.021227τ) +
(0.00675788 + 0.00338704i)pq sin 0.042454τ)− (0.00773132− 0.00387745i)q2

sin 0.042454τ) + (0.00675788 − 0.00338704i)pq sin 0.042454τ) − (0.00773132 +
0.00387745i)q2 sin 0.042454τ) + (0.00380249 + 0.00127421i)pq
sin 0.0636809τ) − (0.00435022 − 0.00145872i)q2 sin 0.0636809τ) + (0.00380249 −
0.00127421i)pq sin 0.0636809τ) − (0.00435022 + 0.00145872i)q2 sin 0.0636809τ) +
(0.00269849 + 0.000676139i)pq sin 0.0849079τ)− (0.00308719− 0.000774048i)q2

sin 0.0849079τ) + (0.00269849 − 0.000676139i)pq sin 0.0849079τ) − (0.00308719 +
0.000774048i)q2 sin 0.0849079τ) + (0.0021073 + 0.000422438i)pq
sin 0.106135τ) − (0.00241084 − 0.000483603i)q2 sin 0.106135τ) + (0.0021073 −
0.000422438i)pq sin 0.106135τ) − (0.00241084 + 0.000483603i)q2 sin 0.106135τ) +
(0.00173319 + 0.000289529i)pq sin 0.127362τ)− (0.00198285− 0.000331453i)q2

sin 0.127362τ) + (0.00173319 − 0.000289529i)pq sin 0.127362τ) − (0.00198285 +
0.000331453i)q2 sin 0.127362τ) + 0.00147364pq sin 0.148589τ)− 0.00168591q2

sin 0.148589τ) + 0.00147364pq sin 0.148589τ)− 0.00168591q2 sin 0.148589τ)

P2(τ) = 0.0111306p2+0.232179pq−100.958q2+(2.39392−2.4231i)p2 cos(0.021227τ)+
(50.6112 + 49.7665i)pq cos(0.021227τ) − (21713.5 − 21978.2i)q2 cos(0.021227τ) +
(2.39392 + 2.4231i)p2 cos(0.021227τ) + (50.6112 − 49.7665i)pq cos(0.021227τ) −
(21713.5+21978.2i)q2 cos(0.021227τ)− (0.00373267−0.0074475i)p2 cos(0.042454τ)−
(0.077861 + 0.155359i)pq cos(0.042454τ) + (33.8564 − 67.551i)q2 cos(0.042454τ) −
(0.00373267+0.0074475i)p2 cos(0.042454τ)−(0.077861−0.155359i)pq cos(0.042454τ)+
(33.8564+67.551i)q2 cos(0.042454τ)−(0.00140424−0.00419052i)p2 cos(0.0636809τ)−
(0.0292918 + 0.0874169i)pq cos(0.0636809τ) + (12.7369− 38.0093i)q2 cos(0.0636809τ)
− (0.00140424 + 0.00419052i)p2 cos(0.0636809τ)− (0.0292918− 0.0874169i)pq
cos(0.0636809τ) + (12.7369 + 38.0093i)q2 cos(0.0636809τ) − (0.000745136 −
0.00297386i)p2 cos(0.0849079τ) − (0.0155433 + 0.0620365i)pq cos(0.0849079τ) +
(6.7586−26.9738i)q2 cos(0.0849079τ)−(0.000745136+0.00297386i)p2 cos(0.0849079τ)−
(0.0155433−0.0620365i)pq cos(0.0849079τ)+(6.7586+26.9738i)q2 cos(0.0849079τ)−
(0.000465545− 0.00232234i)p2 cos(0.106135τ)− (0.00971099 + 0.0484454i)pq
cos(0.106135τ) + (4.22263 − 21.0643i)q2 cos(0.106135τ) − (0.000465545 +
0.00232234i)p2

cos(0.106135τ) − (0.00971099 − 0.0484454i)pq cos(0.106135τ) + (4.22263 +
21.0643i)q2 cos(0.106135τ) − (0.000319074 − 0.00191005i)p2 cos(0.127362τ) −
(0.00665574 + 0.0398449i)pq cos(0.127362τ) + (2.89409− 17.3247i)q2 cos(0.127362τ)
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− (0.000319074 + 0.00191005i)p2 cos(0.127362τ)− (0.00665574− 0.0398449i)pq
cos(0.127362τ) + (2.89409 + 17.3247i)q2 cos(0.127362τ) + (0.00162402i)p2

cos(0.148589τ) − (0.033878i)pq cos(0.148589τ) − (14.7303i)q2 cos(0.148589τ) −
(0.00162402i)p2 cos(0.148589τ) + (0.033878i)pq cos(0.148589τ)
+ (14.7303i)q2 cos(0.148589τ) − (2.4231 + 2.39392i)p2 sin(0.021227τ) + (49.7665 −
50.6112i)pq sin(0.021227τ) + (21978.2 + 21713.5i)q2 sin(0.021227τ) − (2.4231 −
2.39392i)p2 sin(0.021227τ) + (49.7665 + 50.6112i)pq sin(0.021227τ) + (21978.2 −
21713.5i)q2 sin(0.021227τ)+(0.0074475+0.00373267i)p2 sin(0.042454τ)−(0.155359−
0.077861i)pq sin(0.042454τ) − (67.551 + 33.8564i)q2 sin(0.042454τ) + (0.0074475 −
0.00373267i)p2 sin(0.042454τ)− (0.155359 + 0.077861i)pq sin(0.042454τ)− (67.551−
33.8564i)q2 sin(0.042454τ) + (0.00419052 + 0.00140424i)p2 sin(0.0636809τ) −
(0.0874169−0.0292918i)pq sin(0.0636809τ)− (38.0093+12.7369i)q2 sin(0.0636809τ)+
(0.00419052− 0.00140424i)p2 sin(0.0636809τ)− (0.0874169 + 0.0292918i)pq
sin(0.0636809τ) − (38.0093 − 12.7369i)q2 sin(0.0636809τ) + (0.00297386 +
0.000745136i)p2 sin(0.0849079τ) − (0.0620365 − 0.0155433i)pq sin(0.0849079τ) −
(26.9738+6.7586i)q2 sin(0.0849079τ)+(0.00297386−0.000745136i)p2 sin(0.0849079τ)−
(0.0620365 + 0.0155433i)pq sin(0.0849079τ)− (26.9738− 6.7586i)q2 sin(0.0849079τ) +
(0.00232234 + 0.000465545i)p2 sin(0.106135τ)− (0.0484454− 0.00971099i)pq
sin(0.106135τ)−(21.0643+4.22263i)q2 sin(0.106135τ)+(0.00232234−0.000465545i)p2

sin(0.106135τ) − (0.0484454 + 0.00971099i)pq sin(0.106135τ) − (21.0643 −
4.22263i)q2 sin(0.106135τ) + (0.00191005 + 0.000319074i)p2 sin(0.127362τ) −
(0.0398449− 0.00665574i)pq sin(0.127362τ)− (17.3247 + 2.89409i)q2 sin(0.127362τ) +
(0.00191005− 0.000319074i)p2 sin(0.127362τ)− (0.0398449 + 0.00665574i)pq
sin(0.127362τ)−(17.3247−2.89409i)q2 sin(0.127362τ)+0.00162402p2 sin(0.148589τ)−
0.033878pq sin(0.148589τ)−14.7303q2 sin(0.148589τ)+0.00162402p2 sin(0.148589τ)−
0.033878pq sin(0.148589τ)− 14.7303q2 sin(0.148589τ)

P3(τ) = 0.0100666pq + 0.00231649q2 + (0.0562962 − 0.0569785i)p2 cos(0.021227τ) +
(0.952311 + 0.936322i)pq cos(0.021227τ) − (510.623 − 516.811i)q2 cos(0.021227τ) +
(0.0562962+0.0569785i)p2 cos(0.021227τ)+(0.952311−0.936322i)pq cos(0.021227τ)−
(510.623+516.811i)q2 cos(0.021227τ)−(0.00337582+0.00673653i)pq cos(0.042454τ)−
(0.000776843− 0.0015438i)q2 cos(0.042454τ)− (0.00337582− 0.00673653i)pq
cos(0.042454τ) − (0.000776843 + 0.0015438i)q2 cos(0.042454τ) − (0.00127001 +
0.00379048i)pq cos(0.0636809τ) − (0.00029225 − 0.000868659i)q2 cos(0.0636809τ) −
(0.00127001− 0.00379048i)pq cos(0.0636809τ)− (0.00029225 + 0.000868659i)q2

cos(0.0636809τ) − (0.00067391 + 0.00268996i)pq cos(0.0849079τ) − (0.000155077 −
0.000616455i)q2 cos(0.0849079τ) − (0.00067391 − 0.00268996i)pq cos(0.0849079τ) −
(0.000155077 + 0.000616455i)q2 cos(0.0849079τ)− (0.00042104 + 0.00210064i)pq
cos(0.106135τ) − (0.0000968892 − 0.000481401i)q2 cos(0.106135τ) − (0.00042104 −
0.00210064i)pq cos(0.106135τ) − (0.0000968892 + 0.000481401i)q2 cos(0.106135τ) −
(0.000288573 + 0.00172771i)pq cos(0.127362τ)− (0.0000664056− 0.000395937i)q2

cos(0.127362τ) − (0.000288573 − 0.00172771i)pq cos(0.127362τ) − (0.0000664056 +

223



0.000395937i)q2 cos(0.127362τ)− (0.00146898i)pq cos(0.148589τ) + (0.000336644i)q2

cos(0.148589τ)+(0.00146898i)pq cos(0.148589τ)− (0.000336644i)q2 cos(0.148589τ)−
(0.0569785+0.0562962i)p2 sin(0.021227τ)+(0.936322−0.952311i)pq sin(0.021227τ)+
(516.811 + 510.623i)q2 sin(0.021227τ) − (0.0569785 − 0.0562962i)p2 sin(0.021227τ) +
(0.936322 + 0.952311i)pq sin(0.021227τ) + (516.811 − 510.623i)q2 sin(0.021227τ) −
(0.00673653− 0.00337582i)pq sin(0.042454τ) + (0.0015438 + 0.000776843i)q2

sin(0.042454τ) − (0.00673653 + 0.00337582i)pq sin(0.042454τ) + (0.0015438 −
0.000776843i)q2 sin(0.042454τ) − (0.00379048 − 0.00127001i)pq sin(0.0636809τ) +
(0.000868659 + 0.00029225i)q2 sin(0.0636809τ)− (0.00379048 + 0.00127001i)pq
sin(0.0636809τ) + (0.000868659 − 0.00029225i)q2 sin(0.0636809τ) − (0.00268996 −
0.00067391i)pq sin(0.0849079τ) + (0.000616455 + 0.000155077i)q2 sin(0.0849079τ) −
(0.00268996 + 0.00067391i)pq sin(0.0849079τ) + (0.000616455− 0.000155077i)q2

sin(0.0849079τ) − (0.00210064 − 0.00042104i)pq sin(0.106135τ) + (0.000481401 +
0.0000968892i)q2 sin(0.106135τ) − (0.00210064 + 0.00042104i)pq sin(0.106135τ) +
(0.000481401− 0.0000968892i)q2 sin(0.106135τ)− (0.00172771− 0.000288573i)pq
sin(0.127362τ) + (0.000395937 + 0.0000664056i)q2 sin(0.127362τ) − (0.00172771 +
0.000288573i)pq sin(0.127362τ) + (0.000395937 − 0.0000664056i)q2 sin(0.127362τ) −
0.00146898pq sin(0.148589τ) + 0.000336644q2 sin(0.148589τ)
− 0.00146898pq sin(0.148589τ) + 0.000336644q2 sin(0.148589τ)

P4(τ) = 0.011129p2−0.232193pq−100.944q2+(2.42843+2.38811i)p2 cos(0.021227τ)−
(49.8879 − 50.5004i)pq cos(0.021227τ) − (22026.6 + 21660.9i)q2 cos(0.021227τ) +
(2.42843 − 2.38811i)p2 cos(0.021227τ) − (49.8879 + 50.5004i)pq cos(0.021227τ) −
(22026.6− 21660.9i)q2 cos(0.021227τ)− (0.0037321+0.00744748i)p2 cos(0.042454τ)+
(0.0778665 − 0.155374i)pq cos(0.042454τ) + (33.8513 + 67.5509i)q2 cos(0.042454τ) −
(0.0037321−0.00744748i)p2 cos(0.042454τ)+(0.0778665+0.155374i)pq cos(0.042454τ)+
(33.8513−67.5509i)q2 cos(0.042454τ)−(0.00140404+0.00419051i)p2 cos(0.0636809τ)+
(0.0292935−0.0874252i)pq cos(0.0636809τ)+(12.7351+38.0092i)q2 cos(0.0636809τ)−
(0.00140404− 0.00419051i)p2 cos(0.0636809τ) + (0.0292935 + 0.0874252i)pq
cos(0.0636809τ) + (12.7351 − 38.0092i)q2 cos(0.0636809τ) − (0.000745034 +
0.00297385i)p2 cos(0.0849079τ) + (0.0155441 − 0.0620424i)pq cos(0.0849079τ) +
(6.75768+26.9737i)q2 cos(0.0849079τ)−(0.000745034−0.00297385i)p2 cos(0.0849079τ)+
(0.0155441+0.0620424i)pq cos(0.0849079τ)+(6.75768−26.9737i)q2 cos(0.0849079τ)−
(0.000465476+0.00232233i)p2 cos(0.106135τ)+(0.00971164−0.04845i)pq cos(0.106135τ)+
(4.22201+21.0643i)q2 cos(0.106135τ)−(0.000465476−0.00232233i)p2 cos(0.106135τ)+
(0.00971164 + 0.04845i)pq cos(0.106135τ) + (4.22201 − 21.0643i)q2 cos(0.106135τ) −
(0.000319029 + 0.00191005i)p2 cos(0.127362τ) + (0.00665613− 0.0398487i)pq
cos(0.127362τ) + (2.89369 + 17.3247i)q2 cos(0.127362τ) − (0.000319029 −
0.00191005i)p2 cos(0.127362τ) + (0.00665613 + 0.0398487i)pq cos(0.127362τ) +
(2.89369 − 17.3247i)q2 cos(0.127362τ) − (0.00162401i)p2 cos(0.148589τ) −
(0.0338812i)pq
cos(0.148589τ) + (14.7303i)q2 cos(0.148589τ) + (0.00162401i)p2 cos(0.148589τ)
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+ (0.0338812i)pq cos(0.148589τ) − (14.7303i)q2 cos(0.148589τ) + (2.38811 −
2.42843i)p2 sin(0.021227τ) + (50.5004 + 49.8879i)pq sin(0.021227τ) − (21660.9 −
22026.6i)q2 sin(0.021227τ) + (2.38811 + 2.42843i)p2 sin(0.021227τ) + (50.5004 −
49.8879i)pq sin(0.021227τ) − (21660.9 + 22026.6i)q2 sin(0.021227τ) − (0.00744748 −
0.0037321i)p2 sin(0.042454τ)− (0.155374+0.0778665i)pq sin(0.042454τ)+(67.5509−
33.8513i)q2 sin(0.042454τ)−(0.00744748+0.0037321i)p2 sin(0.042454τ)−(0.155374−
0.0778665i)pq sin(0.042454τ)+ (67.5509+33.8513i)q2 sin(0.042454τ)− (0.00419051−
0.00140404i)p2 sin(0.0636809τ) − (0.0874252 + 0.0292935i)pq sin(0.0636809τ) +
(38.0092−12.7351i)q2 sin(0.0636809τ)−(0.00419051+0.00140404i)p2 sin(0.0636809τ)−
(0.0874252−0.0292935i)pq sin(0.0636809τ)+(38.0092+12.7351i)q2 sin(0.0636809τ)−
(0.00297385− 0.000745034i)p2 sin(0.0849079τ)− (0.0620424 + 0.0155441i)pq
sin(0.0849079τ) + (26.9737 − 6.75768i)q2 sin(0.0849079τ) − (0.00297385 +
0.000745034i)p2 sin(0.0849079τ) − (0.0620424 − 0.0155441i)pq sin(0.0849079τ) +
(26.9737+6.75768i)q2 sin(0.0849079τ)−(0.00232233−0.000465476i)p2 sin(0.106135τ)−
(0.04845 + 0.00971164i)pq sin(0.106135τ) + (21.0643 − 4.22201i)q2 sin(0.106135τ) −
(0.002+0.000465i)p2 sin(0.106135τ)−(0.04845−0.0097i)pq sin(0.106135τ)+(21.0643+
4.222i)q2 sin(0.106135τ) − (0.0019 − 0.00032i)p2 sin(0.127362τ) − (0.0398487 +
0.00665613i)pq sin(0.127362τ)+(17.3247−2.89369i)q2 sin(0.127362τ)−(0.00191005+
0.000319029i)p2 sin(0.127362τ)− (0.0398487− 0.00665613i)pq
sin(0.127362τ)+(17.3247+2.89369i)q2 sin(0.127362τ)−0.00162401p2 sin(0.148589τ)−
0.0338812pq sin(0.148589τ) + 14.7303q2 sin(0.148589τ)− 0.00162401p2

sin(0.148589τ)− 0.0338812pq sin(0.148589τ) + 14.7303q2 sin(0.148589τ)

P ′
5(τ) = −((73s6)/10000) + 190.476pq(−0.00512964 cos(πτ)/148)− 0.708169

sin(πτ)/148) + 0.00219243 sin(πτ)/74) + 0.00123671 sin((3π)τ)/148)
+0.000875445 sin(πτ)/37)+0.000683641 sin((5π)τ)/148)+0.000562276 sin((3π)τ)/74)+
0.000478077 sin((7π)τ)/148))+(4.97326(s5 cos(0.0212045τ)+0.709s6 sin(0.0212045τ))3−
2.80011(s5 cos(0.0212045τ)+0.709s6 sin(0.0212045τ))((0.001−0.0038 cos(0.0212045τ)+
0.0027 cos(0.042409τ) + 0.8815 sin(0.0212045τ))(p2((0.0562962− 0.0569785i)
(cos(0.021227τ) − i sin(0.021227τ)) + (0.0562962 + 0.0569785i)(cos(0.021227τ) +
i sin(0.021227τ))) + q2(0.00231649 − (510.623 − 516.811i)(cos(0.021227τ) −
i sin(0.021227τ)) − (510.623 + 516.811i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.000776843 − 0.0015438i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.000776843 +
0.0015438i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00029225− 0.000868659i)
(cos(0.0636809τ)−i sin(0.0636809τ))−(0.00029225+0.000868659i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000155077−0.000616455i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000155077+0.000616455i)(cos(0.0849079τ)+ i sin(0.0849079τ))− (0.0000968892−
0.000481401i)(cos(0.106135τ)− i sin(0.106135τ))− (0.0000968892 + 0.000481401i)
(cos(0.106135τ)+ i sin(0.106135τ))−(0.0000664056−0.000395937i)(cos(0.127362τ)−
i sin(0.127362τ))−(0.0000664056+0.000395937i)(cos(0.127362τ)+i sin(0.127362τ))+
(0.000336644i)(cos(0.148589τ)− i sin(0.148589τ))− (0.000336644i)(cos(0.148589τ) +
i sin(0.148589τ))) + pq(0.0100666 + (0.952311 + 0.936322i)(cos(0.021227τ) −
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i sin(0.021227τ)) + (0.952311 − 0.936322i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00337582 + 0.00673653i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00337582 −
0.00673653i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00127001 + 0.00379048i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127001−0.00379048i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.00067391+0.00268996i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.00067391 − 0.00268996i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.00042104 +
0.00210064i)(cos(0.106135τ)− i sin(0.106135τ))− (0.00042104− 0.00210064i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000288573 + 0.00172771i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000288573− 0.00172771i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00146898i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00146898i)(cos(0.148589τ) +
i sin(0.148589τ))))+(1.0006 cos(0.0212045τ)+0.0043 sin(0.0212045τ))(p2(−1.27476×
10−6 − (0.0574401 + 0.0564899i)(cos(0.021227τ) − i sin(0.021227τ)) − (0.0574401 −
0.0564899i)(cos(0.021227τ) + i sin(0.021227τ))) + pq(0.0100999 + (1.25218 −
1.26761i)(cos(0.021227τ)− i sin(0.021227τ)) + (1.25218 + 1.26761i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.00338704 − 0.00675788i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.00338704 + 0.00675788i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00127421 −
0.00380249i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127421 + 0.00380249i)
(cos(0.0636809τ)+i sin(0.0636809τ))−(0.000676139−0.00269849i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.000676139+0.00269849i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.000422438 − 0.0021073i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.000422438 +
0.0021073i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000289529− 0.00173319i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000289529 + 0.00173319i)(cos(0.127362τ) +
i sin(0.127362τ)) + (0.00147364i)(cos(0.148589τ)− i sin(0.148589τ))− (0.00147364i)
(cos(0.148589τ)+i sin(0.148589τ)))+q2(0.0115624+(520.999+512.38i)(cos(0.021227τ)−
i sin(0.021227τ)) + (520.999 − 512.38i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00387745 + 0.00773132i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00387745 −
0.00773132i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00145872 + 0.00435022i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00145872−0.00435022i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000774048+0.00308719i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000774048 − 0.00308719i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000483603 +
0.00241084i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000483603− 0.00241084i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000331453 + 0.00198285i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000331453− 0.00198285i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00168591i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00168591i)(cos(0.148589τ) +
i sin(0.148589τ)))) + (0.0236 cos(0.0212045τ) + (0.101 sin(0.0212045τ)
− 0.0735 sin(0.042409τ))/1000)(p2(0.011129 + (2.42843 + 2.38811i)(cos(0.021227τ)−
i sin(0.021227τ)) + (2.42843 − 2.38811i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.0037321 + 0.00744748i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.0037321 −
0.00744748i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00140404 + 0.00419051i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00140404−0.00419051i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000745034+0.00297385i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000745034 − 0.00297385i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000465476 +
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0.00232233i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000465476− 0.00232233i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319029 + 0.00191005i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000319029− 0.00191005i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00162401i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00162401i)(cos(0.148589τ) +
i sin(0.148589τ))) + pq(−0.232193 − (49.8879 − 50.5004i)(cos(0.021227τ) −
i sin(0.021227τ)) − (49.8879 + 50.5004i)(cos(0.021227τ) + i sin(0.021227τ)) +
(0.0778665 − 0.155374i)(cos(0.042454τ) − i sin(0.042454τ)) + (0.0778665 +
0.155374i)(cos(0.042454τ) + i sin(0.042454τ)) + (0.0292935− 0.0874252i)
(cos(0.0636809τ) − i sin(0.0636809τ)) + (0.0292935 + 0.0874252i)(cos(0.0636809τ) +
i sin(0.0636809τ)) + (0.0155441− 0.0620424i)(cos(0.0849079τ)− i sin(0.0849079τ)) +
(0.0155441 + 0.0620424i)(cos(0.0849079τ) + i sin(0.0849079τ)) + (0.00971164 −
0.04845i)(cos(0.106135τ)−i sin(0.106135τ))+(0.00971164+0.04845i)(cos(0.106135τ)+
i sin(0.106135τ)) + (0.00665613 − 0.0398487i)(cos(0.127362τ) − i sin(0.127362τ)) +
(0.00665613 + 0.0398487i)(cos(0.127362τ) + i sin(0.127362τ))− (0.0338812i)
(cos(0.148589τ)−i sin(0.148589τ))+(0.0338812i)(cos(0.148589τ)+i sin(0.148589τ)))+
q2(−100.944 − (22026.6 + 21660.9i)(cos(0.021227τ) − i sin(0.021227τ)) − (22026.6 −
21660.9i)(cos(0.021227τ) + i sin(0.021227τ)) + (33.8513 + 67.5509i)
(cos(0.042454τ) − i sin(0.042454τ)) + (33.8513 − 67.5509i)(cos(0.042454τ) +
i sin(0.042454τ)) + (12.7351 + 38.0092i)(cos(0.0636809τ) − i sin(0.0636809τ)) +
(12.7351− 38.0092i)(cos(0.0636809τ) + i sin(0.0636809τ)) + (6.75768 + 26.9737i)
(cos(0.0849079τ) − i sin(0.0849079τ)) + (6.75768 − 26.9737i)(cos(0.0849079τ) +
i sin(0.0849079τ)) + (4.22201 + 21.0643i)(cos(0.106135τ) − i sin(0.106135τ)) +
(4.22201− 21.0643i)(cos(0.106135τ) + i sin(0.106135τ)) + (2.89369 + 17.3247i)
(cos(0.127362τ) − i sin(0.127362τ)) + (2.89369 − 17.3247i)(cos(0.127362τ) +
i sin(0.127362τ)) + (14.7303i)(cos(0.148589τ)− i sin(0.148589τ))− (14.7303i)
(cos(0.148589τ) + i sin(0.148589τ)))) + ((−0.2419 + 0.8899 cos(0.0212045τ) −
0.648 cos(0.042409τ))/10000 − 0.0208 sin(0.0212045τ))(p2(0.0111306 + (2.39392 −
2.4231i)(cos(0.021227τ) − i sin(0.021227τ)) + (2.39392 + 2.4231i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.00373267 − 0.0074475i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.00373267 + 0.0074475i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00140424 −
0.00419052i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00140424 + 0.00419052i)
(cos(0.0636809τ)+i sin(0.0636809τ))−(0.000745136−0.00297386i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.000745136+0.00297386i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.000465545 − 0.00232234i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.000465545 +
0.00232234i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000319074− 0.00191005i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000319074 + 0.00191005i)(cos(0.127362τ) +
i sin(0.127362τ)) + (0.00162402i)(cos(0.148589τ)− i sin(0.148589τ))− (0.00162402i)
(cos(0.148589τ)+i sin(0.148589τ)))+pq(0.232179+(50.6112+49.7665i)(cos(0.021227τ)−
i sin(0.021227τ))+(50.6112−49.7665i)(cos(0.021227τ)+i sin(0.021227τ))−(0.077861+
0.155359i)(cos(0.042454τ)− i sin(0.042454τ))− (0.077861− 0.155359i)
(cos(0.042454τ) + i sin(0.042454τ)) − (0.0292918 + 0.0874169i)(cos(0.0636809τ) −
i sin(0.0636809τ))− (0.0292918− 0.0874169i)(cos(0.0636809τ) + i sin(0.0636809τ))−
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(0.0155433 + 0.0620365i)(cos(0.0849079τ) − i sin(0.0849079τ)) − (0.0155433 −
0.0620365i)
(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.00971099 + 0.0484454i)(cos(0.106135τ) −
i sin(0.106135τ)) − (0.00971099 − 0.0484454i)(cos(0.106135τ) + i sin(0.106135τ)) −
(0.00665574 + 0.0398449i)(cos(0.127362τ) − i sin(0.127362τ)) − (0.00665574 −
0.0398449i)(cos(0.127362τ) + i sin(0.127362τ)) − (0.033878i)(cos(0.148589τ) −
i sin(0.148589τ)) + (0.033878i)(cos(0.148589τ) + i sin(0.148589τ))) + q2(−100.958 −
(21713.5− 21978.2i)(cos(0.021227τ)− i sin(0.021227τ))− (21713.5 + 21978.2i)
(cos(0.021227τ) + i sin(0.021227τ)) + (33.8564 − 67.551i)(cos(0.042454τ) −
i sin(0.042454τ))+(33.8564+67.551i)(cos(0.042454τ)+i sin(0.042454τ))+(12.7369−
38.0093i)(cos(0.0636809τ)−i sin(0.0636809τ))+(12.7369+38.0093i)(cos(0.0636809τ)+
i sin(0.0636809τ))+(6.7586−26.9738i)(cos(0.0849079τ)−i sin(0.0849079τ))+(6.7586+
26.9738i)(cos(0.0849079τ) + i sin(0.0849079τ)) + (4.22263− 21.0643i)
(cos(0.106135τ) − i sin(0.106135τ)) + (4.22263 + 21.0643i)(cos(0.106135τ) +
i sin(0.106135τ)) + (2.89409 − 17.3247i)(cos(0.127362τ) − i sin(0.127362τ)) +
(2.89409+17.3247i)(cos(0.127362τ)+ i sin(0.127362τ))− (14.7303i)(cos(0.148589τ)−
i sin(0.148589τ)) + (14.7303i)(cos(0.148589τ) + i sin(0.148589τ)))))2 − 2.17315
(s5 cos(0.0212045τ) + 0.709s6 sin(0.0212045τ))((1.0006 cos(0.0212045τ)
+ 0.0043 sin(0.021τ))(p2((0.056 − 0.056i)(cos(0.021227τ) − i sin(0.021τ)) +
(0.056 + 0.056i)(cos(0.021227τ) + i sin(0.021227τ))) + q2(0.00231649 − (510.623 −
516.811i)(cos(0.021227τ)− i sin(0.021227τ))− (510.623 + 516.811i)
(cos(0.021227τ) + i sin(0.021227τ)) − (0.000776843 − 0.0015438i)(cos(0.042454τ) −
i sin(0.042454τ)) − (0.000776843 + 0.0015438i)(cos(0.042454τ) + i sin(0.042454τ)) −
(0.00029225 − 0.000868659i)(cos(0.0636809τ) − i sin(0.0636809τ)) − (0.00029225 +
0.000868659i)(cos(0.0636809τ) + i sin(0.0636809τ))− (0.000155077− 0.000616455i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000155077+0.000616455i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.0000968892−0.000481401i)(cos(0.106135τ)−i sin(0.106135τ))−
(0.0000968892 + 0.000481401i)(cos(0.106135τ) + i sin(0.106135τ))− (0.0000664056−
0.000395937i)(cos(0.127362τ)− i sin(0.127362τ))− (0.0000664056 + 0.000395937i)
(cos(0.127362τ)+i sin(0.127362τ))+(0.000336644i)(cos(0.148589τ)−i sin(0.148589τ))−
(0.000336644i)(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.0100666 + (0.952311 +
0.936322i)(cos(0.021227τ)−i sin(0.021227τ))+(0.952311−0.936322i)(cos(0.021227τ)+
i sin(0.021227τ)) − (0.00337582 + 0.00673653i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.00337582 − 0.00673653i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00127001 +
0.00379048i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127001− 0.00379048i)
(cos(0.0636809τ)+ i sin(0.0636809τ))−(0.00067391+0.00268996i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.00067391−0.00268996i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.00042104 + 0.00210064i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00042104 −
0.00210064i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000288573 + 0.00172771i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000288573 − 0.00172771i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.00146898i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.00146898i)
(cos(0.148589τ) + i sin(0.148589τ)))) + (−0.0013 + 0.0049 cos(0.0212045τ) −
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0.0035 cos(0.042409τ) − 1.1357 sin(0.0212045τ))(p2(−1.27476 × 10−6 − (0.0574401 +
0.056i)(cos(0.021227τ) − i sin(0.021227τ)) − (0.057 − 0.056i)(cos(0.021227τ) +
i sin(0.021227τ))) + pq(0.0100999 + (1.25218 − 1.26761i)(cos(0.021227τ) −
i sin(0.021227τ)) + (1.25218 + 1.26761i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00338704 − 0.00675788i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00338704 +
0.00675788i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00127421− 0.00380249i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127421+0.00380249i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000676139−0.00269849i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000676139 + 0.00269849i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000422438 −
0.0021073i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000422438 + 0.0021073i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000289529 − 0.00173319i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000289529 + 0.00173319i)(cos(0.127362τ) + i sin(0.127362τ)) +
(0.00147364i)(cos(0.148589τ) − i sin(0.148589τ)) − (0.00147364i)(cos(0.148589τ) +
i sin(0.148589τ))) + q2(0.0115624 + (520.999 + 512.38i)(cos(0.021227τ) −
i sin(0.021227τ)) + (520.999 − 512.38i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00387745 + 0.00773132i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00387745 −
0.00773132i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00145872 + 0.00435022i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00145872−0.00435022i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000774048+0.00308719i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000774048 − 0.00308719i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000483603 +
0.00241084i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000483603− 0.00241084i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000331453 + 0.00198285i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000331453− 0.00198285i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00168591i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00168591i)(cos(0.148589τ) +
i sin(0.148589τ))))+((−0.0313+0.1147 cos(0.0212045τ)−0.0834 cos(0.042409τ))/1000−
0.0268 sin(0.0212045τ))(p2(0.011129 + (2.42843 + 2.38811i)(cos(0.021227τ) −
i sin(0.021227τ)) + (2.42843 − 2.38811i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.0037321 + 0.00744748i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.0037321 −
0.00744748i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00140404 + 0.00419051i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00140404−0.00419051i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000745034+0.00297385i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000745034 − 0.00297385i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000465476 +
0.00232233i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000465476− 0.00232233i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319029 + 0.00191005i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000319029− 0.00191005i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00162401i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00162401i)(cos(0.148589τ) +
i sin(0.148589τ))) + pq(−0.232193 − (49.8879 − 50.5004i)(cos(0.021227τ) −
i sin(0.021227τ)) − (49.8879 + 50.5004i)(cos(0.021227τ) + i sin(0.021227τ)) +
(0.0778665 − 0.155374i)(cos(0.042454τ) − i sin(0.042454τ)) + (0.0778665 +
0.155374i)(cos(0.042454τ) + i sin(0.042454τ)) + (0.0292935− 0.0874252i)
(cos(0.0636809τ) − i sin(0.0636809τ)) + (0.0292935 + 0.0874252i)(cos(0.0636809τ) +
i sin(0.0636809τ)) + (0.0155441− 0.0620424i)(cos(0.0849079τ)− i sin(0.0849079τ)) +
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(0.0155441 + 0.0620424i)(cos(0.0849079τ) + i sin(0.0849079τ)) + (0.00971164 −
0.04845i)(cos(0.106135τ)−i sin(0.106135τ))+(0.00971164+0.04845i)(cos(0.106135τ)+
i sin(0.106135τ)) + (0.00665613 − 0.0398487i)(cos(0.127362τ) − i sin(0.127362τ)) +
(0.00665613 + 0.0398487i)(cos(0.127362τ) + i sin(0.127362τ))− (0.0338812i)
(cos(0.148589τ)−i sin(0.148589τ))+(0.0338812i)(cos(0.148589τ)+i sin(0.148589τ)))+
q2(−100.944 − (22026.6 + 21660.9i)(cos(0.021227τ) − i sin(0.021227τ)) − (22026.6 −
21660.9i)(cos(0.021227τ) + i sin(0.021227τ)) + (33.8513 + 67.5509i)
(cos(0.042454τ) − i sin(0.042454τ)) + (33.8513 − 67.5509i)(cos(0.042454τ) +
i sin(0.042454τ)) + (12.7351 + 38.0092i)(cos(0.0636809τ) − i sin(0.0636809τ)) +
(12.7351− 38.0092i)(cos(0.0636809τ) + i sin(0.0636809τ)) + (6.75768 + 26.9737i)
(cos(0.0849079τ) − i sin(0.0849079τ)) + (6.75768 − 26.9737i)(cos(0.0849079τ) +
i sin(0.0849079τ)) + (4.22201 + 21.0643i)(cos(0.106135τ) − i sin(0.106135τ)) +
(4.22201− 21.0643i)
(cos(0.106135τ) + i sin(0.106135τ)) + (2.89369 + 17.3247i)(cos(0.127362τ) −
i sin(0.127362τ)) + (2.89369 − 17.3247i)(cos(0.127362τ) + i sin(0.127362τ)) +
(14.7303i)(cos(0.148589τ) − i sin(0.148589τ)) − (14.7303i)(cos(0.148589τ) +
i sin(0.148589τ)))) + (−0.0236 cos
(0.0212045τ)+(−0.101 sin(0.0212045τ)+0.0735 sin(0.042409τ))/1000)(p2(0.0111306+
(2.39392− 2.4231i)(cos(0.021227τ)− i sin(0.021227τ)) + (2.39392 + 2.4231i)
(cos(0.021227τ) + i sin(0.021227τ)) − (0.0037 − 0.007i)(cos(0.042454τ) −
i sin(0.042τ))− (0.0037 + 0.007i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00140424−
0.0042i)(cos(0.064τ) − i sin(0.0636809τ)) − (0.0014 + 0.004i)(cos(0.0636809τ) +
i sin(0.0636809τ))− (0.00075− 0.003i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000745136+0.00297386i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.000465545−0.00232234i)(cos(0.106135τ)− i sin(0.106135τ))−
(0.000465545 + 0.00232234i)(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319074 −
0.00191005i)(cos(0.127362τ)− i sin(0.127362τ))− (0.000319074 + 0.00191005i)
(cos(0.127362τ)+i sin(0.127362τ))+(0.00162402i)(cos(0.148589τ)−i sin(0.148589τ))−
(0.00162402i)(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.232179 + (50.6112 +
49.7665i)(cos(0.021227τ)− i sin(0.021227τ)) + (50.6112− 49.7665i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.077861 + 0.155359i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.077861 − 0.155359i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.0292918 +
0.0874169i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.0292918− 0.0874169i)
(cos(0.0636809τ) + i sin(0.0636809τ)) − (0.0155433 + 0.0620365i)(cos(0.0849079τ) −
i sin(0.0849079τ))− (0.0155433− 0.0620365i)(cos(0.0849079τ) + i sin(0.0849079τ))−
(0.00971099 + 0.0484454i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00971099 −
0.0484454i)(cos(0.106135τ) + i sin(0.106135τ))− (0.00665574 + 0.0398449i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.00665574 − 0.0398449i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.033878i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.033878i)
(cos(0.148589τ)+i sin(0.148589τ)))+q2(−100.958−(21713.5−21978.2i)(cos(0.021227τ)−
i sin(0.021227τ))− (21713.5 + 21978.2i)
(cos(0.021227τ) + i sin(0.021227τ)) + (33.8564 − 67.551i)(cos(0.042454τ) −
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i sin(0.042454τ))+(33.8564+67.551i)(cos(0.042454τ)+i sin(0.042454τ))+(12.7369−
38.0093i)(cos(0.0636809τ)−i sin(0.0636809τ))+(12.7369+38.0093i)(cos(0.0636809τ)+
i sin(0.0636809τ))+(6.7586−26.9738i)(cos(0.0849079τ)−i sin(0.0849079τ))+(6.7586+
26.9738i)(cos(0.0849079τ) + i sin(0.0849079τ)) + (4.22263− 21.0643i)
(cos(0.106135τ) − i sin(0.106135τ)) + (4.22263 + 21.0643i)(cos(0.106135τ) +
i sin(0.106135τ)) + (2.89409 − 17.3247i)(cos(0.127362τ) − i sin(0.127362τ)) +
(2.89409+17.3247i)(cos(0.127362τ)+ i sin(0.127362τ))− (14.7303i)(cos(0.148589τ)−
i sin(0.148589τ)) + (14.7303i)(cos(0.148589τ) + i sin(0.148589τ)))))2)
(−0.00512964 cos(πτ)/148) − 0.708169 sin(πτ)/148) + 0.00219243 sin(πτ)/74) +
0.00123671 sin((3π)τ)/148)+0.000875445 sin(πτ)/37)+0.000683641 sin((5π)τ)/148)+
0.000562276 sin((3π)τ)/74) + 0.000478077 sin((7π)τ)/148))

P ′
6(τ) = (29s5)/2000 + 190.476pq(0.00231055 + 1.00113 cos(πτ)/148)

−0.00154973 cos(πτ)/74)−0.000587382 cos((3π)τ)/148)−0.000309363 cos(πτ)/37)−
0.000193269 cos((5π)τ)/148)−0.000132463 cos((3π)τ)/74)−0.0072671 sin(πτ)/148))+
(4.97326(s5 cos(0.0212045τ)+0.709s6 sin(0.0212045τ))3−2.80011(s5 cos(0.0212045τ)+
0.709s6 sin(0.0212045τ))((0.001 − 0.0038 cos(0.0212045τ) + 0.0027 cos(0.042409τ) +
0.8815 sin(0.0212045τ))(p2((0.0562962−0.0569785i)(cos(0.021227τ)−i sin(0.021227τ))+
(0.0562962 + 0.0569785i)(cos(0.021227τ) + i sin(0.021227τ))) + q2(0.00231649 −
(510.623− 516.811i)(cos(0.021227τ)− i sin(0.021227τ))− (510.623 + 516.811i)
(cos(0.021227τ) + i sin(0.021227τ)) − (0.000776843 − 0.0015438i)(cos(0.042454τ) −
i sin(0.042454τ)) − (0.000776843 + 0.0015438i)(cos(0.042454τ) + i sin(0.042454τ)) −
(0.00029225 − 0.000868659i)(cos(0.0636809τ) − i sin(0.0636809τ)) − (0.00029225 +
0.000868659i)(cos(0.0636809τ) + i sin(0.0636809τ))− (0.000155077− 0.000616455i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000155077+0.000616455i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.0000968892−0.000481401i)(cos(0.106135τ)−i sin(0.106135τ))−
(0.0000968892 + 0.000481401i)(cos(0.106135τ) + i sin(0.106135τ))− (0.0000664056−
0.000395937i)(cos(0.127362τ)− i sin(0.127362τ))− (0.0000664056 + 0.000395937i)
(cos(0.127362τ)+i sin(0.127362τ))+(0.000336644i)(cos(0.148589τ)−i sin(0.148589τ))−
(0.000336644i)(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.0100666 + (0.952311 +
0.936322i)(cos(0.021227τ)−i sin(0.021227τ))+(0.952311−0.936322i)(cos(0.021227τ)+
i sin(0.021227τ)) − (0.00337582 + 0.00673653i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.00337582 − 0.00673653i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00127001 +
0.00379048i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127001− 0.00379048i)
(cos(0.0636809τ)+ i sin(0.0636809τ))−(0.00067391+0.00268996i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.00067391−0.00268996i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.00042104 + 0.00210064i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00042104 −
0.00210064i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000288573 + 0.00172771i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000288573 − 0.00172771i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.00146898i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.00146898i)
(cos(0.148589τ)+i sin(0.148589τ))))+(1.0006 cos(0.0212045τ)+0.0043 sin(0.0212045τ))
(p2(−1.27476× 10−6 − (0.0574401+ 0.0564899i)(cos(0.021227τ)− i sin(0.021227τ))−
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(0.0574401 − 0.0564899i)(cos(0.021227τ) + i sin(0.021227τ))) + pq(0.0100999 +
(1.25218− 1.26761i)(cos(0.021227τ)− i sin(0.021227τ))
+ (1.25218 + 1.26761i)(cos(0.021227τ) + i sin(0.021227τ)) − (0.00338704 −
0.00675788i)(cos(0.042454τ)− i sin(0.042454τ))− (0.00338704 + 0.00675788i)
(cos(0.042454τ) + i sin(0.042454τ)) − (0.00127421 − 0.00380249i)(cos(0.0636809τ) −
i sin(0.0636809τ))−(0.00127421+0.00380249i)(cos(0.0636809τ)+i sin(0.0636809τ))−
(0.000676139 − 0.00269849i)(cos(0.0849079τ) − i sin(0.0849079τ)) − (0.000676139 +
0.00269849i)(cos(0.0849079τ) + i sin(0.0849079τ))− (0.000422438− 0.0021073i)
(cos(0.106135τ) − i sin(0.106135τ)) − (0.000422438 + 0.0021073i)(cos(0.106135τ) +
i sin(0.106135τ))− (0.000289529− 0.00173319i)(cos(0.127362τ)− i sin(0.127362τ))−
(0.000289529 + 0.00173319i)(cos(0.127362τ) + i sin(0.127362τ)) + (0.00147364i)
(cos(0.148589τ)−i sin(0.148589τ))−(0.00147364i)(cos(0.148589τ)+i sin(0.148589τ)))+
q2(0.0115624 + (520.999 + 512.38i)(cos(0.021227τ) − i sin(0.021227τ)) + (520.999 −
512.38i)(cos(0.021227τ)+i sin(0.021227τ))−(0.00387745+0.00773132i)(cos(0.042454τ)−
i sin(0.042454τ)) − (0.00387745 − 0.00773132i)(cos(0.042454τ) + i sin(0.042454τ)) −
(0.00145872 + 0.00435022i)(cos(0.0636809τ) − i sin(0.0636809τ)) − (0.00145872 −
0.00435022i)(cos(0.0636809τ) + i sin(0.0636809τ))− (0.000774048 + 0.00308719i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000774048−0.00308719i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.000483603+0.00241084i)(cos(0.106135τ)− i sin(0.106135τ))−
(0.000483603 − 0.00241084i)(cos(0.106135τ) + i sin(0.106135τ)) − (0.000331453 +
0.00198285i)(cos(0.127362τ)− i sin(0.127362τ))− (0.000331453− 0.00198285i)
(cos(0.127362τ)+i sin(0.127362τ))−(0.00168591i)(cos(0.148589τ)−i sin(0.148589τ))+
(0.00168591i)(cos(0.148589τ) + i sin(0.148589τ)))) + (0.0236 cos(0.0212045τ) +
(0.101 sin(0.0212045τ) − 0.0735 sin(0.042409τ))/1000)(p2(0.011129 + (2.42843 +
2.38811i)(cos(0.021227τ)− i sin(0.021227τ)) + (2.42843− 2.38811i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.0037321 + 0.00744748i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.0037321 − 0.00744748i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00140404 +
0.00419051i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00140404− 0.00419051i)
(cos(0.0636809τ)+i sin(0.0636809τ))−(0.000745034+0.00297385i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.000745034−0.00297385i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.000465476 + 0.00232233i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.000465476 −
0.00232233i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000319029 + 0.00191005i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000319029 − 0.00191005i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.00162401i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.00162401i)
(cos(0.148589τ)+i sin(0.148589τ)))+pq(−0.232193−(49.8879−50.5004i)(cos(0.021227τ)−
i sin(0.021227τ)) − (49.8879 + 50.5004i)(cos(0.021227τ) + i sin(0.021227τ)) +
(0.0778665 − 0.155374i)(cos(0.042454τ) − i sin(0.042454τ)) + (0.0778665 +
0.155374i)(cos(0.042454τ)+i sin(0.042454τ))+(0.0292935−0.0874252i)(cos(0.0636809τ)−
i sin(0.0636809τ)) + (0.0292935 + 0.0874252i)(cos(0.0636809τ) + i sin(0.0636809τ)) +
(0.0155441 − 0.0620424i)(cos(0.0849079τ) − i sin(0.0849079τ)) + (0.0155441 +
0.0620424i)(cos(0.0849079τ)+i sin(0.0849079τ))+(0.00971164−0.04845i)(cos(0.106135τ)−
i sin(0.106135τ)) + (0.00971164 + 0.04845i)(cos(0.106135τ) + i sin(0.106135τ)) +
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(0.00665613 − 0.0398487i)(cos(0.127362τ) − i sin(0.127362τ)) + (0.00665613 +
0.0398487i)(cos(0.127362τ) + i sin(0.127362τ)) − (0.0338812i)(cos(0.148589τ) −
i sin(0.148589τ)) + (0.0338812i)(cos(0.148589τ) + i sin(0.148589τ))) + q2(−100.944−
(22026.6 + 21660.9i)(cos(0.021227τ)− i sin(0.021227τ))− (22026.6− 21660.9i)
(cos(0.021227τ) + i sin(0.021227τ)) + (33.8513 + 67.5509i)(cos(0.042454τ) −
i sin(0.042454τ)) + (33.8513 − 67.5509i)(cos(0.042454τ) + i sin(0.042454τ)) +
(12.7351 + 38.0092i)(cos(0.0636809τ) − i sin(0.0636809τ)) + (12.7351 −
38.0092i)(cos(0.0636809τ)+i sin(0.0636809τ))+(6.75768+26.9737i)(cos(0.0849079τ)−
i sin(0.0849079τ)) + (6.75768 − 26.9737i)(cos(0.0849079τ) + i sin(0.0849079τ)) +
(4.22201 + 21.0643i)
(cos(0.106135τ) − i sin(0.106135τ)) + (4.22201 − 21.0643i)(cos(0.106135τ) +
i sin(0.106135τ)) + (2.89369 + 17.3247i)(cos(0.127362τ) − i sin(0.127362τ)) +
(2.89369−17.3247i)(cos(0.127362τ)+ i sin(0.127362τ))+(14.7303i)(cos(0.148589τ)−
i sin(0.148589τ)) − (14.7303i)(cos(0.148589τ) + i sin(0.148589τ)))) + ((−0.2419 +
0.8899 cos(0.0212045τ)− 0.648 cos(0.042409τ))/10000− 0.0208 sin(0.0212045τ))
(p2(0.0111306 + (2.39392 − 2.4231i)(cos(0.021227τ) − i sin(0.021227τ)) +
(2.39392 + 2.4231i)(cos(0.021τ) + i sin(0.02τ)) − (0.004 − 0.007i)(cos(0.042τ) −
i sin(0.042τ)) − (0.004 + 0.007i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00140424 −
0.00419052i)(cos(0.0636809τ)−i sin(0.0636809τ))−(0.0014+0.0042i)(cos(0.0636809τ)+
i sin(0.0636809τ))− (0.00075− 0.003i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000745136+0.00297386i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.000465545−0.00232234i)(cos(0.106135τ)− i sin(0.106135τ))−
(0.000465545 + 0.00232234i)(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319074 −
0.00191005i)(cos(0.127362τ)− i sin(0.127362τ))− (0.000319074 + 0.00191005i)
(cos(0.127362τ)+i sin(0.127362τ))+(0.00162402i)(cos(0.148589τ)−i sin(0.148589τ))−
(0.00162402i)(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.232179 + (50.6112 +
49.7665i)(cos(0.021227τ)− i sin(0.021227τ)) + (50.6112− 49.7665i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.077861 + 0.155359i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.077861 − 0.155359i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.0292918 +
0.0874169i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.0292918− 0.0874169i)
(cos(0.0636809τ) + i sin(0.0636809τ)) − (0.0155433 + 0.0620365i)(cos(0.0849079τ) −
i sin(0.0849079τ))− (0.0155433− 0.0620365i)(cos(0.0849079τ) + i sin(0.0849079τ))−
(0.00971099 + 0.0484454i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00971099 −
0.0484454i)(cos(0.106135τ) + i sin(0.106135τ))− (0.00665574 + 0.0398449i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.00665574 − 0.0398449i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.033878i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.033878i)
(cos(0.148589τ)+i sin(0.148589τ)))+q2(−100.958−(21713.5−21978.2i)(cos(0.021227τ)−
i sin(0.021227τ))−(21713.5+21978.2i)(cos(0.021227τ)+i sin(0.021227τ))+(33.8564−
67.551i)(cos(0.042454τ) − i sin(0.042454τ)) + (33.8564 + 67.551i)(cos(0.042454τ) +
i sin(0.042454τ)) + (12.7369 − 38.0093i)(cos(0.0636809τ) − i sin(0.0636809τ)) +
(12.7369 + 38.0093i)(cos(0.0636809τ) + i sin(0.0636809τ)) + (6.7586− 26.9738i)
(cos(0.0849079τ) − i sin(0.0849079τ)) + (6.7586 + 26.9738i)(cos(0.0849079τ) +
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i sin(0.0849079τ))+(4.22263−21.0643i)(cos(0.106135τ)−i sin(0.106135τ))+(4.22263+
21.0643i)(cos(0.106135τ) + i sin(0.106135τ)) + (2.89409− 17.3247i)
(cos(0.127362τ) − i sin(0.127362τ)) + (2.89409 + 17.3247i)(cos(0.127362τ) +
i sin(0.127362τ))− (14.7303i)(cos(0.148589τ)− i sin(0.148589τ)) + (14.7303i)
(cos(0.148589τ) + i sin(0.148589τ)))))2 − 2.17315(s5 cos(0.0212045τ)
+ 0.709s6 sin(0.0212045τ))((1.0006 cos(0.0212045τ) + 0.0043 sin(0.0212045τ))
(p2((0.0562962 − 0.0569785i)(cos(0.021227τ) − i sin(0.021227τ)) + (0.0562962 +
0.0569785i)(cos(0.021227τ) + i sin(0.021227τ))) + q2(0.00231649 − (510.623 −
516.811i)(cos(0.021227τ)− i sin(0.021227τ))− (510.623+ 516.811i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.000776843 − 0.0015438i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.000776843 + 0.0015438i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00029225 −
0.000868659i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00029225 + 0.000868659i)
(cos(0.0636809τ)+i sin(0.0636809τ))−(0.000155077−0.000616455i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.000155077+0.000616455i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.0000968892− 0.000481401i)(cos(0.106135τ)− i sin(0.106135τ))− (0.0000968892 +
0.000481401i)(cos(0.106135τ) + i sin(0.106135τ))− (0.0000664056− 0.000395937i)
(cos(0.127362τ)− i sin(0.127362τ))− (0.0000664056+0.000395937i)(cos(0.127362τ)+
i sin(0.127362τ))+(0.000336644i)(cos(0.148589τ)−i sin(0.148589τ))−(0.000336644i)
(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.0100666 + (0.952311 + 0.936322i)
(cos(0.021227τ) − i sin(0.021227τ)) + (0.952311 − 0.936322i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.00337582 + 0.00673653i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.00337582 − 0.00673653i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.00127001 +
0.00379048i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127001− 0.00379048i)
(cos(0.0636809τ)+ i sin(0.0636809τ))−(0.00067391+0.00268996i)(cos(0.0849079τ)−
i sin(0.0849079τ))−(0.00067391−0.00268996i)(cos(0.0849079τ)+i sin(0.0849079τ))−
(0.00042104 + 0.00210064i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00042104 −
0.00210064i)(cos(0.106135τ) + i sin(0.106135τ))− (0.000288573 + 0.00172771i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.000288573 − 0.00172771i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.00146898i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.00146898i)
(cos(0.148589τ) + i sin(0.148589τ)))) + (−0.0013 + 0.0049 cos(0.0212045τ) −
0.0035 cos(0.042409τ) − 1.1357 sin(0.0212045τ))(p2(−1.27476 × 10−6 − (0.0574401 +
0.0564899i)(cos(0.021227τ)−i sin(0.021227τ))−(0.0574401−0.0564899i)(cos(0.021227τ)+
i sin(0.021227τ))) + pq(0.0100999 + (1.25218 − 1.26761i)(cos(0.021227τ) −
i sin(0.021227τ)) + (1.25218 + 1.26761i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00338704 − 0.00675788i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00338704 +
0.00675788i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00127421− 0.00380249i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00127421+0.00380249i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000676139−0.00269849i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000676139 + 0.00269849i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000422438 −
0.0021073i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000422438 + 0.0021073i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000289529 − 0.00173319i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000289529 + 0.00173319i)(cos(0.127362τ) + i sin(0.127362τ)) +
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(0.00147364i)(cos(0.148589τ) − i sin(0.148589τ)) − (0.00147364i)(cos(0.148589τ) +
i sin(0.148589τ))) + q2(0.0115624 + (520.999 + 512.38i)(cos(0.021227τ) −
i sin(0.021227τ)) + (520.999 − 512.38i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.00387745 + 0.00773132i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.00387745 −
0.00773132i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00145872 + 0.00435022i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00145872−0.00435022i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000774048+0.00308719i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000774048 − 0.00308719i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000483603 +
0.00241084i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000483603− 0.00241084i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000331453 + 0.00198285i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000331453− 0.00198285i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00168591i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00168591i)(cos(0.148589τ) +
i sin(0.148589τ))))+((−0.0313+0.1147 cos(0.0212045τ)−0.0834 cos(0.042409τ))/1000−
0.0268 sin(0.0212045τ))(p2(0.011129 + (2.42843 + 2.38811i)(cos(0.021227τ) −
i sin(0.021227τ)) + (2.42843 − 2.38811i)(cos(0.021227τ) + i sin(0.021227τ)) −
(0.0037321 + 0.00744748i)(cos(0.042454τ) − i sin(0.042454τ)) − (0.0037321 −
0.00744748i)(cos(0.042454τ) + i sin(0.042454τ))− (0.00140404 + 0.00419051i)
(cos(0.0636809τ)− i sin(0.0636809τ))− (0.00140404−0.00419051i)(cos(0.0636809τ)+
i sin(0.0636809τ))−(0.000745034+0.00297385i)(cos(0.0849079τ)−i sin(0.0849079τ))−
(0.000745034 − 0.00297385i)(cos(0.0849079τ) + i sin(0.0849079τ)) − (0.000465476 +
0.00232233i)(cos(0.106135τ)− i sin(0.106135τ))− (0.000465476− 0.00232233i)
(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319029 + 0.00191005i)(cos(0.127362τ) −
i sin(0.127362τ))− (0.000319029− 0.00191005i)(cos(0.127362τ) + i sin(0.127362τ))−
(0.00162401i)(cos(0.148589τ) − i sin(0.148589τ)) + (0.00162401i)(cos(0.148589τ) +
i sin(0.148589τ))) + pq(−0.232193 − (49.8879 − 50.5004i)(cos(0.021227τ) −
i sin(0.021227τ)) − (49.8879 + 50.5004i)(cos(0.021227τ) + i sin(0.021227τ)) +
(0.0778665 − 0.155374i)(cos(0.042454τ) − i sin(0.042454τ)) + (0.0778665 +
0.155374i)(cos(0.042454τ) + i sin(0.042454τ)) + (0.0292935− 0.0874252i)
(cos(0.0636809τ) − i sin(0.0636809τ)) + (0.0292935 + 0.0874252i)(cos(0.0636809τ) +
i sin(0.0636809τ)) + (0.0155441− 0.0620424i)(cos(0.0849079τ)− i sin(0.0849079τ)) +
(0.0155441 + 0.0620424i)(cos(0.0849079τ) + i sin(0.0849079τ)) + (0.00971164 −
0.04845i)(cos(0.106135τ)−i sin(0.106135τ))+(0.00971164+0.04845i)(cos(0.106135τ)+
i sin(0.106135τ)) + (0.00665613 − 0.0398487i)(cos(0.127362τ) − i sin(0.127362τ)) +
(0.00665613 + 0.0398487i)(cos(0.127362τ) + i sin(0.127362τ))− (0.0338812i)
(cos(0.148589τ)−i sin(0.148589τ))+(0.0338812i)(cos(0.148589τ)+i sin(0.148589τ)))+
q2(−100.944 − (22026.6 + 21660.9i)(cos(0.021227τ) − i sin(0.021227τ)) − (22026.6 −
21660.9i)(cos(0.021227τ)+ i sin(0.021227τ))+ (33.8513+67.5509i)(cos(0.042454τ)−
i sin(0.042454τ)) + (33.8513 − 67.5509i)(cos(0.042454τ) + i sin(0.042454τ)) +
(12.7351 + 38.0092i)(cos(0.0636809τ) − i sin(0.0636809τ)) + (12.7351 −
38.0092i)(cos(0.0636809τ)+i sin(0.0636809τ))+(6.75768+26.9737i)(cos(0.0849079τ)−
i sin(0.0849079τ)) + (6.75768 − 26.9737i)(cos(0.0849079τ) + i sin(0.0849079τ)) +
(4.22201 + 21.0643i)
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(cos(0.106135τ) − i sin(0.106135τ)) + (4.22201 − 21.0643i)(cos(0.106135τ) +
i sin(0.106135τ)) + (2.89369 + 17.3247i)(cos(0.127362τ) − i sin(0.127362τ)) +
(2.89369−17.3247i)(cos(0.127362τ)+ i sin(0.127362τ))+(14.7303i)(cos(0.148589τ)−
i sin(0.148589τ))− (14.7303i)(cos(0.148589τ) + i sin(0.148589τ))))
− (0.0236 cos(0.0212045τ) + (−0.101 sin(0.0212045τ) + 0.0735 sin(0.042409τ))/1000)
(p2(0.0111306 + (2.39392 − 2.4231i)(cos(0.021227τ) − i sin(0.021227τ)) + (2.39392 +
2.4231i)(cos(0.021227τ) + i sin(0.021τ)) − (0.004 − 0.007i)(cos(0.042τ) −
i sin(0.042τ)) − (0.004 + 0.007i)(cos(0.042τ) + i sin(0.042454τ)) − (0.00140424 −
0.00419052i)(cos(0.0636809τ) − i sin(0.063τ)) − (0.0014 + 0.004i)(cos(0.0636809τ) +
i sin(0.0636809τ))− (0.000745136− 0.00297386i)
(cos(0.0849079τ)−i sin(0.0849079τ))−(0.000745136+0.00297386i)(cos(0.0849079τ)+
i sin(0.0849079τ))−(0.000465545−0.00232234i)(cos(0.106135τ)− i sin(0.106135τ))−
(0.000465545 + 0.00232234i)(cos(0.106135τ) + i sin(0.106135τ)) − (0.000319074 −
0.00191005i)(cos(0.127362τ)− i sin(0.127362τ))− (0.000319074 + 0.00191005i)
(cos(0.127362τ)+i sin(0.127362τ))+(0.00162402i)(cos(0.148589τ)−i sin(0.148589τ))−
(0.00162402i)(cos(0.148589τ) + i sin(0.148589τ))) + pq(0.232179 + (50.6112 +
49.7665i)(cos(0.021227τ)− i sin(0.021227τ)) + (50.6112− 49.7665i)(cos(0.021227τ) +
i sin(0.021227τ)) − (0.077861 + 0.155359i)(cos(0.042454τ) − i sin(0.042454τ)) −
(0.077861 − 0.155359i)(cos(0.042454τ) + i sin(0.042454τ)) − (0.0292918 +
0.0874169i)(cos(0.0636809τ)− i sin(0.0636809τ))− (0.0292918− 0.0874169i)
(cos(0.0636809τ) + i sin(0.0636809τ)) − (0.0155433 + 0.0620365i)(cos(0.0849079τ) −
i sin(0.0849079τ))− (0.0155433− 0.0620365i)(cos(0.0849079τ) + i sin(0.0849079τ))−
(0.00971099 + 0.0484454i)(cos(0.106135τ) − i sin(0.106135τ)) − (0.00971099 −
0.0484454i)(cos(0.106135τ) + i sin(0.106135τ))− (0.00665574 + 0.0398449i)
(cos(0.127362τ) − i sin(0.127362τ)) − (0.00665574 − 0.0398449i)(cos(0.127362τ) +
i sin(0.127362τ))− (0.033878i)(cos(0.148589τ)− i sin(0.148589τ)) + (0.033878i)
(cos(0.148589τ)+i sin(0.148589τ)))+q2(−100.958−(21713.5−21978.2i)(cos(0.021227τ)−
i sin(0.021227τ))−(21713.5+21978.2i)(cos(0.021227τ)+i sin(0.021227τ))+(33.8564−
67.551i)(cos(0.042454τ) − i sin(0.042454τ)) + (33.8564 + 67.551i)(cos(0.042454τ) +
i sin(0.042454τ)) + (12.7369 − 38.0093i)(cos(0.0636809τ) − i sin(0.0636809τ)) +
(12.7369 + 38.0093i)(cos(0.0636809τ) + i sin(0.0636809τ)) + (6.7586− 26.9738i)
(cos(0.0849079τ) − i sin(0.0849079τ)) + (6.7586 + 26.9738i)(cos(0.0849079τ) +
i sin(0.0849079τ))+(4.22263−21.0643i)(cos(0.106135τ)−i sin(0.106135τ))+(4.22263+
21.0643i)(cos(0.106135τ) + i sin(0.106135τ)) + (2.89409− 17.3247i)
(cos(0.127362τ) − i sin(0.127362τ)) + (2.89409 + 17.3247i)(cos(0.127362τ) +
i sin(0.127362τ))− (14.7303i)
(cos(0.148589τ)−i sin(0.148589τ))+(14.7303i)(cos(0.148589τ)+i sin(0.148589τ)))))2)
(0.00231055 + 1.00113 cos(πτ)/148)− 0.00154973 cos(πτ)/74)
−0.000587382 cos((3π)τ)/148)−0.000309363 cos(πτ)/37)−0.000193269 cos((5π)τ)/148)
− 0.000132463 cos((3π)τ)/74)− 0.0072671 sin(πτ)/148))
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