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ABSTRACT

Due to the rapid penetration of solar power systems in residential areas, there has

been a dramatic increase in bidirectional power flow. Such a phenomenon of bidi-

rectional power flow creates a need to know where Photovoltaic (PV) systems are

located, what their quantity is, and how much they generate. However, signif-

icant challenges exist for accurate solar panel detection, capacity quantification,

and generation estimation by employing existing methods, because of the limited

labeled ground truth and relatively poor performance for direct supervised learn-

ing. To mitigate these issue, this thesis revolutionizes key learning concepts to (1)

largely increase the volume of training data set and expand the labelled data set by

creating highly realistic solar panel images, (2) boost detection and quantification

learning through physical knowledge and (3) greatly enhance the generation es-

timation capability by utilizing effective features and neighboring generation pat-

terns. These techniques not only reshape the machine learning methods in the GIS

domain but also provides a highly accurate solution to gain a better understanding

of distribution networks with PV penetration. The numerical validation and per-

formance evaluation establishes the high accuracy and scalability of the proposed

methodologies on the existing solar power systems in the Southwest region of the

United States of America. The distribution and transmission networks both have

primitive control methodologies, but now is the high time to work out intelligent

control schemes based on reinforcement learning and show that they can not only
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perform well but also have the ability to adapt to the changing environments. This

thesis proposes a sequence task-based learning method to create an agent that can

learn to come up with the best action set that can overcome the issues of transient

over-voltage.
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Chapter 1

INTRODUCTION

United States has witnessed a dramatic growth in rooftop PV systems–around 50%

every year, since 2012. The falling prices and the nature of clean and reliable power

have been responsible for such a rapid growth [1]. Research estimates that 50 - 530

GW of solar-based power will potentially be available in the United States by the

year 2040 [2]. The boom in modern ways of generating electricity has driven an en-

thusiasm in scientists and engineers alike to study PV systems in detail and asses

the incoming challenges as well as out of the box solutions to the pressing prob-

lems, associated with them. The grid-connected solar power systems are expected

to penetrate much rapidly into the picture than the off-grid ones [3]. The safety

and stability of the system have to be ensured at all times, for that matter grid

with PV integrations must meet the corresponding requirements of active power

control, power quality, low voltage ride through, voltage regulation, frequency

stability, system protection and load characteristics [4, 5, 6]. The generation of

a solar power system is highly dependent on solar irradiance, terrain, weather,

soiling and multiple other non-convex factors rendering the optimization prob-

lem a non-convex one [7]. Indeed, it is a far more difficult task to model such

factors and deduce conclusions, with the currently available computational capa-
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bility. This paper proposes a holistic approach to tackle this situation. Supervisory

Control and Data Acquisition (SCADA) demands the research community to hunt

for innovative solutions as is proposed by [8]. But, with the current outburst of

uncertainties and variabilities in the distribution networks like renewable energy

resources and demand response [9]. It is inevitable to channelize the investment

of time and money to build up artificial intelligence (AI) based solutions, so that

SCADA is well prepared to tackle the modern day challenges.

Ever since the distribution networks have faced a plethora of bidirectional gen-

eration at the secondary distribution level the necessity to locate them and predict

their generations have been keenly explored. The interest lies in both long-term

[10] as well as short-term [11] generation forecasting. [10] only considered the so-

lar irradiation for a long period of time at a particular region and is unable to ad-

dress the concern of limited features. [11] has introduced Support Vector Machine

(SVM) as a base learner and meta learner of the Stacking algorithm, the K-means

algorithm is used to cluster the training set for predicting the short term solar

power generation. [12] details the performance of widely used machine learning

techniques on weather data, irradiation, and geographical parameters and claims

that Artificial Neural Networks should be preferred over Gaussian process, kernel

ridge regression, boosted trees and regression trees. The generation of the past is

also a key consideration while forecasting solar power generation. The accessibil-

ity to all such locations for gathering data is also a key to these studies. However,
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we aim to identify the location of solar panels and predict the solar power genera-

tion for regions with limited accessibility.

Moreover, the topology of the distribution system is also gaining importance

due to the active power generation at that level. The increasing penetration of

distributed energy resources (DERs) posits several reliability issues. Topology es-

timation is also compromised [13]. The foreseeable future challenges due to the PV

power-sharing [14] and its economics presents the challenge to have overwhelm-

ing access to the PV data and system topology. The PV generation data is scattered

and there are several different sources, like solar panel manufacturers, inverter

manufacturers, PV system development companies, utilities, and consumers. But,

there are insufficient mechanisms in operation for data aggregation. The local data

clouds not exhaustive. The paper provides a road map to combine publicly avail-

able cloud data with the validated local databases to achieve a more exhaustive

database. Google Maps are one of the most widely used publicly accessible data

[15]. But, the access is not utilized to its full potential for the rooftop solar power

systems, that are scattered and abundant.

The boom in solar power system in recent past, gave rise to the pressing is-

sues of the effects of renewable energy integration on the previously existing grid

infrastructure. That may cause concerns related to situational awareness, plan-

ning, operations, and maintenance of the power system. The challenge can be

addressed by a mechanism that can recover all the missing links in the knowledge
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of the current power system. The inability to access certain data sources and the

segregation of many independent cloud sources, are the responsible prime factors.

The geospatial information of solar panels has been one of the victims of the un-

derscored factors. To overcome such issues, the satellite images of solar power

systems are a rich source and have been widely used for making predictions about

places and events that are difficult to record by other means [16]. The feasibility

of the fast, scalable and inexpensive scheme of detection of solar panels in satellite

images is proposed in [16]. But, it fails to address the data deficiency issue. The

rooftop solar panel detector tool is also discussed in [17], but it does not provide

the details on achieving an estimate for PV generation.

A scheme is proposed in this paper that can help alleviate these issues of miss-

ing information. The privately available data is limited and it is possible to com-

bine more than one source of data. But, this can not be achieved with rudimentary

methods, as the growth in this domain has been explosive, but there is a need to

develop robust methodologies that can help in fulfilling the need to a reasonable

extent. This paper is focuses on systematic approach to connect the dots and pro-

vide thorough machine learning based solution.

Furthermore, the solar panels are mounted on the rooftops of the houses in

large numbers. Many rooftop PV systems are also connected to the grid. The first

part is the detection and localization of solar modules. Support Vector Machines

(SVMs) are the popular machine learning techniques and have been widely used
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for the classification and regression problems for various applications, including

detection of PV systems as mentioned in [16]. The satellite images are subjected

to SVM to capture the changes in PV generation due to moving clouds [18], builds

up a strong contention in favor of applicability of SVM to problem set under dis-

course. The images are acquired from Google Earth in a specific ZIP Code area

with dimensions 24 × 18 pixels. The methodology adopts a semi-supervised ap-

proach to detect, quantify and estimate the power generation capability. This pa-

per combines the ideas together to solve a bigger problem. The operation and con-

trol of a distribution system rely heavily on the bidirectional power flow capability,

hence the detection schemes need to be highly reliable, we propose a systematic

mechanism for achieving accurate results. But, there exists the issues of deficiency

of ground truth that needs to addressed first. Therefore, we propose to increase

the data volume by numerous techniques. Methods such as flipping images have

been popularly used. But we propose to gain more information by rotating slices.

Such an approach helps in capturing the effect of different orientation angles of PV

installations. In addition, the artificially created images with labels aid the learn-

ing process, as the model may not see all the possible cases in the real data, but

artificially created data can provide such an insight. For example, it is possible

that images with 5 solar panels may never appear in training data, then we can ar-

tificially create such labelled instances and add them to boost the training process.

Along with a good training data, we need a robust detection algorithm, there-
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fore we carefully design the detection model that takes advantage of prominent

characteristics related to chromatic, geometric and relative relationship of the solar

modules. Such an approach enables the model to produce robust and highly accu-

rate detection results. Once the location of PV system is determined accurately, we

need to know its quantity. While quantifying the modules, we provide the quanti-

zation approach instead of the area covered to overcome the approximation errors

and get high accuracy.

Knowing the quantity has its advantage of gaining insight into the generation

capability, but its effectiveness can be enhanced by having the real time PV gen-

eration profile. So to estimate generation, we consider the effect that the PV gen-

eration patterns of neighboring houses are similar, because of their exposure to

similar sunshine. Therefore, we propose to utilize the generations from the nearest

neighbors. But such an information alone can add a bias and may not deliver the

accurate generation profile. Therefore, we add relevant features for improving the

information gain, like the geographical position and altitude for measuring “close-

ness” and temperature due to its high correlation with PV generation. Hence, we

conduct nearest neighbor approach based on weighted estimation. The perfor-

mance of the proposed method shown in Fig. 1.1, is verified by simulations on the

SunPower Inc. data for 200 distinct locations from two different states namely, Ari-

zona and California. The images are acquired from Google Earth. All simulations

are conducted via Python. The results indicate that the method is highly accurate
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Figure 1.1: Scheme Proposed Technique.

and outperforms the previous methods.

Moving on to the control of the distribution grid, due to increase in the de-

velopment of urban areas overhead distribution system control has been very sig-

nificant. Also, the advancements in the manufacturing of cross-linked polythene

(XLPE) extruded insulation technology has increased the use of Extra High Volt-

age (EHV) underground cables. In certain areas a combination of both overhead

and underground cables is used and are typically referred to as hybrid circuits or

mixed circuits. As a result of transient nature of faults on overhead transmission

lines, auto-reclosing is the preferred method among Utilities. However, reclosing

isnt recommended for underground cables as faults are permanent and can cause

significant damage to the cables. In extra high voltage applications, metal oxide

surge arresters and breaker with closing resistors are two basic methods to re-

strict switching surges [3]. In high voltage transmission systems, switching surges

are destructive to electrical equipment, so surge arresters are typically installed

near large transformers and online terminals to suppress surges [5]. Whereas in
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medium and low voltage levels, as the penetration of distributed energy resources

gets deeper, it is still not clear whether the arresters are a viable solution.

Figure 1.2: The Temporal Sequence Reward Mechanism For TOV Mitigation.
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Chapter 2

MODELLING

In this section, we first describe the Google Earth solar panel images as given

vectors. Such a definition enables us to process the PV panel images and formally

define the problem of solar panel detection in images and their respective gener-

ation prediction. Here, the raw solar panel images are xxxraw ∈ Rp, where p is in-

dicative of the dimensions of PV panel image. The images are segmented into 100

smaller images and also flattened to get xpi , where p = 1, · · · , P is the dimension

of each vector and i = 1, · · · , N is the number of samples (images). The existence

of solar panels is depicted by the label Ci ∈ {1,−1}, where 1 shows the existence

and −1 shows non-existence. The quantity qi gives the count of solar modules in

the solar panel image. Moreover, yt, where t = 1, · · · , T time points, is the genera-

tion prediction of the corresponding solar power system, given the generation gkt ,

t = 1, · · · , T of k nearest neighbors.

2.0.1 Problem Definition

The problem is defined as follows.

• Problem: location detection, quantity assessment and power generation esti-

mation of rooftop solar power systems.

9



• Given:

1. raw image xxxraw from Google Earth,

2. known PV generation time series gkt of solar panel systems covered in

the xxxraw solar panel image.

• Find: for a single segment xpi image of solar panel,

1. existence Ci of solar panels,

2. quantity qi of solar modules,

3. power generation time series yt prediction.
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Chapter 3

PV DETECTION AND GENREATION ESTIMATION

3.0.1 Detection Methodology

SVMs are supervised machine learning methods that were originally devel-

oped for classification but they can also be used for regression by maximizing the

distance between the decision boundary and the closest training sample for finding

the optimum decision boundary. The margin describes shortest distance between

the decision boundary and the closest data element, so, SVM can also be called as

maximum margin classifier [19]. Each training sample is segmented and flattened

PV image vector xpi , i = 1, · · · , N and p = 1, · · · , P . Let us assume an adjustable

solar panel vector of weights ω, which is the depiction of the slope of hyperplane

at each point in the feature space and a bias term b representing the intercept of

the hyperplane. Then, the optimization problem for linearly separable cases can

be depicted as

min
ω,b

1

2
ωTω, (3.1)

subject to

Ci(ω
Txpi + b) ≥ 1. (3.2)

The above constraint enforces the hyperplane to distribute the samples into

two linearly separable groups. But, the PV image data are not linearly separable.
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Figure 3.1: Decision Boundary of SVM.

Since, there are several different technologies available in market, e.g., Thin-Film,

Mono-Crystalline and Poly-Crystalline Silicon panels. Moreover, the inclination

and orientation angles are subject to the geography. So, a slack variable ςi is in-

troduced for each solar panel image to minimize the classification error. So, the

updated primal optimization problem is

min
ω,b,ς

1

2
ωTω + γ

n∑
i=1

ςi, (3.3)

subject to

Ci(ω
Txpi + b) ≥ 1− ςi, (3.4)

ςi ≥ 0, (3.5)

γ is a scaling factor, controlling the weight between complexity of the machine and

the number of non-separable points. Using Lagrange multipliers method with

the Kuhn-Tucker conditions [20], we may formulate the dual problem for non-
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Figure 3.2: Real Image Slices.

separable patterns. A kernel function help SVMs to solve the non-linear classifi-

cation problem. The input space of solar panel image vectors is transformed by φ

into a feature space of a higher dimension, where it is easier to find a separating

hyperplane [21]. So, the inner product of φ(xpi ) and φ(xpj) gives the kernel

K(xpi , x
p
j) = φ(xpi )

Tφ(xpj). (3.6)

The polynomial kernel function with degree 3 is widely used in power system

applications.

K(xi, xj) = (xi · xj + 1)3. (3.7)

Thus, the kernel can side-step the problem of data being non-linearly separa-

ble by implicitly mapping them into a feature space, where a linear threshold can

be used directly. Using a kernel is equivalent to solving a linear SVM in some

new higher-dimensional feature space [21]. Therefore, a non-linear SVM score is
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a linear combination, but with new variables, which are derived through a kernel

transformation of the solar PV images xpi .

The dual has linear constraints, which implicates that the problem solution be-

comes convenient. Hence, for the primal in expression 3.3 can be converted to its

dual, where λi, i = 1, · · · , N is the Langrange multipliers

min
λ

1

2

N∑
i=1

N∑
j=1

λiλjCiCjK(xpi , x
p
j)−

N∑
i=1

λi, (3.8)

subject to

λiCi = 0, (3.9)

0 ≤ λi ≤ γ, (3.10)

where, i = 1, · · · , n is the formulation for evaluating optimal Langrange multipli-

ers. The decision function for test images xptest is

sgn(
N∑
i=1

CiλiK(xptest, x
p) + b). (3.11)

3.0.2 Quantification Methodology

Support Vector Regression (SVR) is widely applied for the regression problems,

as discussed indepth in [22]. By using a mapping, Φ : X → F , where X is the

domain and F is a high-dimensional feature space. SVR approximates unknown

functions in an output space Y , while operating in feature space F . Thereby using

nonlinear functions to linearly estimate an unknown regression [23]. In a nutshell,

SVR models a way to generalize the inputs in accordance with the training image

dataset xpi , where i = 1, · · · , N image samples and p = 1, · · · , P is the dimension of
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each image vector. The solar panel count qi, i = 1, · · · , N , is to be determined. Un-

like SVC, SVR has two different slack variables, one for upper decision boundary

and another one for lower decision boundary. Hence, ς∗i is also introduced and the

optimization problem becomes

min
ω,b,ς,ς∗

1

2
ωTω + γ

n∑
i=1

(ςi + ς∗i ), (3.12)

subject to

Ci − ωTxpi − b ≤ ε+ ςi, (3.13)

ωTxpi + b− yi ≤ ε+ ς∗i , (3.14)

ςi ≥ 0 (3.15)

ς∗i ≥ 0, (3.16)

where ε is a hyperparameter that gives a margin of tolerance. The higher its value

is, the larger is the allowable error, thus helps controlling the complexity of the

model. Similarly, a kernel matrix K is used, and with that the computational com-

plexity of the model is reduced because the actual high-dimensional mapping is

not there anymore. For making the solution more convenient, the dual is used and

a new Langrange multipliers λ∗i is also introduced in [23].

min
λ

N∑
i=1

N∑
j=1

λiλjK(xpi , x
p
j)−

N∑
i

qi +
N∑
i=1

|λi|ε, (3.17)

subject to
N∑
i

λi = 0, (3.18)
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λi ≥ −γ, (3.19)

λ∗i ≤ γ, (3.20)

where i = 1, · · · , N . The polynomial kernel function of degree 3 can be applicable

here as well. The final decision for test images xpi , i = 1, · · · , N and p = 1, · · · , P is

q∗i =
N∑
i=1

(λi − λ∗i )K(xpi , x
p) + b. (3.21)

Since, q∗i ∈ R and have non integral values, but the problem set should have quan-

tified integral values. The solar panel count can only be a positive real integral

value. So, the floating point samples should first be discretized into the algebraic-

integer representation [24],

qi = nearest integer(q∗i ). (3.22)

3.0.3 Power Generation Estimation Methodology

The Euclidean distance is a promising measure for the distance between any

two samples in a feature space. It is described in detail along with some other

distance metrics in [25]. The coordinates of PV system location are well known,

because the location has been identified. Let qi, xlatitudei and xlongitudei , i = 1, · · · , N ,

form the features of SSSi ∈ R3. Now, the distances of a new test sample SSStest ∈ R3

comprising of three features qtest, Slatitudetest and Slongitudetest with k number of training

samples can be calculated in Euclidean manner.

dk(Sk,Stest) =

√√√√ 3∑
f=1

(Sfk − S
f
test)

2, (3.23)
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where k = 1 · · · , K and dk is the vector of distances. In the feature space, the closest

K points to SSStest are used for the training purposes. Their respective distances are

used as the weights dk and the PV generation time series of k nearest neighbors are

represented as gkt . For t = 1, · · · , T time points, the PV generation of the unknown

solar power system is given by yt. The optimization problem becomes

min
d,g

N∑
i=1

K∑
k=1

T∑
t=1

|yt − dkgkt |2. (3.24)

This procedure gives an estimate of power generation for the unknown rooftop

solar power system. The proposed procedure is elaborated in the algorithm.
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Chapter 4

DATA ENHANCEMENT

The data source for images is always limited as compared to the volume of sce-

narios that exist in the real world. The performance of machine learning models is

affected by the size of the training set [26]. So, we came up with a methodology to

increase the size of the training dataset, in order for the machine learning model to

achieve better performance. We propose that the images should be cropped first in

a circular fashion since the traditional approach of using rectangular images would

lose information upon rotating about a fixed axis as proposed in [27] and [28]. For

example, the information around edges and vertices will be compromised, and the

performance will suffer. Circular segmentation based approach is touted in [29],

which is invariant of rotation and can show promise in reliable data generation.

Furthermore, an in-depth analysis is carried out to illustrate the effect of rota-

tion of the image. Since Google Earth images may have any possible orientation,

but all of them might not appear in the training scenarios. Hence, a rotation scheme

is developed to enable the model to perform well in scenarios with newly created

orientations, as well. Several image rotation techniques are proposed in literature

[30]. The training images are rotated by 45◦, 90◦, 135◦, 180◦, 235◦ and 270◦. The

intention to retain as much information as possible leads to the approach of the
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circular crop. It helps in having complete control over the rotation without losing

any information. The images are fed to the model and testing results are recorded.

The results show, that the number of solar panels in the rotated images are de-

termined with reasonable accuracy by the proposed model of SVR. The rotated

images are shown in Fig. 4.1.

Taking a case of image with vectors P = P1, P2, P3, · · · , Pn

l2(O,P ) = ||P ||2 =
n∑
i=1

p2r. (4.1)

The similar result can also be obtained by the inner product of the two vectors,

||P ||2 =

(
p1, p2, · · · , pn

)



p1

p2

p3

...

pn


= P TP. (4.2)

The distances or the ratios among the distances remain the same while the points

are transformed about the center. From these properties it can be shown that a

rotation is a linear transformation of the vectors, and thus can be written in matrix

form QP . So, the equation 4.2

P TP = (QP )TQP, (4.3)

P TP = P TQTQP. (4.4)
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If I is the identity matrix, then

P T IP = P T (QTQ)P. (4.5)

Hence, the rotation matrix should fulfil the first condition

QQT = I, (4.6)

and it should preserve the handedness, i.e., the determinant of the matrix should

be unity, which is the second condition

det(Q) = 1. (4.7)

If both the conditions are satisfied, thenQ is regarded as a rotation matrix, thus the

rotated raw image will be

xxxraw,rotatedi = Q xxxrawi , (4.8)

where i = 1, · · · , N.

The numerical validation of the algorithm is discussed in the following section.
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Figure 4.1: Data Generation Through Rotation.
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Chapter 5

NUMERICAL VALIDATION

5.1 Data Preparation

The publicly available image dataset of PV systems is available in abundance,

in the form of Google Earth. The images are acquired by fixing altitude to 900ft

and elevation angle to 0◦. The images might either be of Joint Photographic Experts

Group (JPEG) or Portable Network Graphics (PNG) format, both are similarly pro-

cessed. The size of the image is kept 24 × 18 pixels because each large image is

sliced into 100 small images as shown in Fig. 3.2. These images are sliced through

an image slicer package of python.

5.2 Why Support Vector Machine Works While Others Do Not

For the current application, an algorithm based on Support Vector Machine

(SVM) is developed on Python framework for the detection of solar panels. It

has an established upper hand over other techniques. The data particular to so-

lar power systems is scarce, and that is one of the fundamental problems we are

trying to address in this paper. The deep learning based algorithms were also de-

veloped to locate and quantify the solar panels in the images, but could not achieve

convincing results, as supported by [31] Convolutional Neural Networks (CNNs)
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have limitations when it comes to the real settings and scarce data. The over-Fitting

is another major concern. [31] also proves a point about performance degradation

of CNNs when subjected to real world images of average visual quality. As the

satellite images are of varying qualities, SVM based regression has a upper hand

over Neural Networks die to the limited amount of accessible data. SVMs deliver

a unique solution because the optimization problem is convex. Whereas, Neu-

ral Networks, have multiple solutions associated with local minima and for this

reason may not be a robust for such a problem. Another important aspect is the

kernel, which can help in the detection of the depth of the image well, whereas the

CNNs lack in identifying it unless there is a very large amount of training data.

Naive Bayes is another popular classifier, but it has a very strong assumption

of independently identically distributed features, which is a rare case in realistic

datasets similarly indicated in [32]. The random forest algorithm has a drawback

of uninterpretability due to the apriori choice of the number of trees and random-

ization predominance in the decision [33], which is not as effective in case of SVM.

5.3 Systematic Approach of PV Detection and Quantification

SVC is implemented to assign the label to each image on the basis of the pres-

ence of a rectangular black block, which is used to show the solar panel presence

in the image. But, in order to reach that result, first, the toy examples are created to

make the problem simpler and gradually increasing the complexity and reaching

close to the ultimate goal, step by step. Hence, software like Microsoft Paint and
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Powerpoint are used to create such toy images. The image sizes are kept suitable

for the model input and the image matrices are developed to loosely match the real

images to be fed to the recognition algorithm. The images have different patterns

and the changes in the patterns are deliberately made so that the performance of

the image recognition algorithm is exploited to its maximum. The images are vec-

torized as proposed by [34].

At first, the image having size 2 × 2 are converted to vectors that are used

for training and testing. The images have four blocks in total, that are arranged

in two rows and two columns without leaving any space between them. Upon

satisfactory image recognition results, the rows and columns are increased to 10

each, then to 100 each and finally adding some random noise to the images. SVM

is put to trial and tuned to get the accurate results.

The black and white grid of the size 2× 2 are formed and one of the four blocks

is colored black, while the other ones are colored white. Whereas one of the images

has all four blocks, white. Thus, there are five images that are depicted in Fig. ??.

SVC is used to identify whether there is a black block in the image. The model

has detected the presence of a black block with 100% accuracy. Hence, it was es-

tablished that the model was successful in classifying the specific image, that does

not have any black block, building the argument on that, further larger and more

complex images are trialed through the proposed model. The evaluation of the

method was then scaled up to 3× 3 grid created by following a similar procedure,
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Figure 5.1: Five Images.

i.e., the images are having nine blocks and each image has one black block except

one, which does not have any dark block. There are nine possible cases of having

a single black block, Figure 5.2 shows all ten images. SVC was trained on the data

set. The testing images are also vectorized and the predictions are monitored care-

fully, for all cases. The image classification method has once again established its

effectiveness with 100% accuracy.

5.4 Black And White Images With Hundred Blocks

The case is extended further for as large as 100 blocks (10 rows and 10 columns).

One of the blocks is darkened in each of the images. The dark blocks were picked

up randomly. The images were passed through the same process of SVC. The result

was once again, an encouraging one. That brings the methodology one step closer

to recognizing the original solar panel representation in real images.
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Figure 5.2: Ten Images.

5.5 Black And White Images With Thousand Blocks

The problem set is then extended to a grid of 100 × 100, rendering the images

to be of 10000 blocks, 1 out of 10000 blocks is darkened. The similar procedure is

reiterated on 10 images, having a dark block at different locations. The images are

then fed to the SVC model to evaluate whether it is recognized or not. The model

is perfectly able to recognize the existence of the dark block in this case.

The same 100 × 100 grid images are converted to blue lines and the blocks are

100× 100 having shapes similar to those of the solar panels (11× 5), i.e., blue with

outliers modeled as green colored randomly sized objects. The rectangular block

is precisely cut to have consistent dimensions for all the images. The images are

then fed to the SVC model for the training. They were being tested one by one.

The result of the test was accurate.
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Figure 5.3: Four Images.

Figure 5.4: Five Images With Noise
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Figure 5.5: Real Colored Images.

5.6 Colored Images With Five Hundred And Four Pixels

All the results obtained in the above sections streamline the process of recog-

nition of real satellite images acquired from Google Earth, the image recognition

of the solar panels with some outliers should be working and on that assumption.

The next step is to take the real satellite images centered at particular coordinates

in the private database. The location is known to have solar panels. The satellite

image is stored as JPEG format. The real image is centered at one of the coordi-

nates from the privately available data. The source of the privately available cloud

is SunPower Inc.

The images are cut into 100 smaller images each with 102 × 76 pixels. Hence,

some images had the solar panels and most of them did not have any solar panels

in them. The images were collated into a test data format by vectorizing every
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image and manually labeling it with 0 (indicating the absence of solar panels) and 1

(indicating the presence of a solar panel). The images are vectorized by shifting all

the columns, resulting in one row, without losing any element. So, all the vectors

are 2356 elements long. It is subjected to the same SVC model. The model is trained

on the images of the same sort. Some of the solar panel images are kept out of the

training set and are later used for testing. The model is able to detect the presence

of solar panels. The result is accurate. The testing is repeated several times by

putting other images in the testing set that were initially present in the training set

alone.

As the solar panel detection has been successfully achieved. Unfolding the

whole procedure depicts that the model is capable of identifying the presence of

a solar panel in the satellite image. An accuracy of 90.72% is obtained with the

satellite images, that is better than the accuracy achieved by [35]. The results have

been bolstered by the semi-supervised approach, by proving it true for the 100×100

blue colored grid with some green outliers. Zooming in and detecting a single

black block in 100× 100 grid. As 10× 10, 3× 3 and 2× 2 grid is already considered

and a single black block is accurately detected.

5.7 Quantification Of Solar Panels In Satellite Images

The presence of solar panels in an image has been identified with a very high

accuracy using the proposed model. The next step is to develop a technique to pre-

dict the quantity of the solar panels in the image so that the generation estimation

29



Figure 5.6: Elecven Images.

can be made with reasonable accuracy. The Support Vector Regression (SVR) is ap-

plied for solving the problem. Again, the training and testing images are converted

into vectors for further processing.

5.8 Image With Hundred Blocks

The images with a grid of 10 × 10 blocks were created and then the incremen-

tal number of blocks were colored black and then the number of black blocks was

used as the labels, shown in Fig. 5.7. The images were then fed to the SVR. The hy-

perparameters were kept at the default value. At first, the kernel was Polynomial

Function, the degree is chosen to be 3. The result was obtained with reasonable

accuracy.

30



Figure 5.7: Panels On White Background.

5.9 Images With Varying Backgrounds

The real images of solar panels were projected on a white background. Those

images were created with an increasing number of solar panels. The images were

vectorized and then labels were assigned on the basis of the number of solar pan-

els, visually recognized in the images. The images are then fed to the SVR model.

Table 5.1: Percentage Accuracies.

Performance Accuracy Without Data Accuracy With Data

Metrics Processing (%) Processing (%)

Solar Panels Present 73.23 90.72

Solar Panels Absent 81.56 96.11

All the images have a white background. The solar panels are cropped and
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Figure 5.8: Real Images From Google Earth.

placed on top of the white background. Five such images are created. However,

all five have a different number of solar panels in them, starting from one to five.

The labels are assigned to the vectors of the images respectively. The images are

subjected to SVR. The number of solar panels in the image present in testing is to

be predicted by the model. The images with one solar panel and five solar panels

are estimated with relatively higher percentage error. Whereas, the other ones are

predicted with high accuracy. For every prediction, only the image to be predicted

is not present in the training set, while the rest of the images are kept in the testing

set. Polynomial kernel of degree 3 is used for SVR. Tolerance and epsilon are kept

at very small values of 0.001 and 0.0001, respectively.

Images with three different types of backgrounds are used as the training and

testing dataset, for the further experimentation. The images are processed before-

hand by cropping the solar panels placing them over different backgrounds, in dif-
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ferent numbers. The number of solar panels in the presence of real backgrounds

are predicted by SVR again. The results show that, there exists an error between

the real and predicted values of the number of solar panels when the backgrounds

change dramatically. The testing is performed for the maximum of 5 number of

solar panels, because the full exposure of maximum number of 5 solar panels in

the specified zoom level.

The images supplied by Google Earth have several benefits over its rival Geo-

graphic Information Systems (GIS). [36] proves the high resolution imagery archive

have robust positional accuracy. The horizontal and vertical positional accuracies

play a vital role when it comes to solar panel image classification and quantifica-

tion. In addition, the methodology focuses on a GIS, that is essentially open source

like Google Earth, so that the overheads are limited.

5.10 Effects Of Hyper-parameters

The results are tested for different hyper-parameters, in order to have the best

output of the SVR model. The relationship of the degree of the polynomial is stud-

ied. By varying the values of the degree from 1 to 8, the results indicate that 2nd

and 3rd orders have been delivering the best results. Moreover, the effect of the

coefficient is also studied, by using different values such as 0, 0.01, 1 and 10. The

outcome indicates that there is no effect of the coefficient on the problem set under

discussion. The hyper-parameter tuning package named GridSearchCV is used for

further analysis. Its results are validated by comparison with the real scenarios.
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The proposed technique is then evaluated for different case studies and the

performance is elaborated in the next section.
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Chapter 6

PERFORMANCE

The location of solar panels and the number of solar panels are predicted with rea-

sonable accuracy. Both of them, are used as the features for the detection of power

generation of the solar panels. The visualization of the generation characteristics

in Fig. 8.1 shows a clear correlation among the neighboring PV systems. Therefore,

the nearest neighbor approach is used to determine the solar power generation of

the solar panels that are unknown. The areas under consideration are from two

different states of the United States of America, 1) Tempe, Arizona and 2) Santa

Ana, California. They differ in solar irradiance, climate, soiling profile and ter-

rain from one another [37]. The generation of such solar panels is provided by

SunPower Inc., and is is used as the training set for learning. K-Nearest Neighbor

(KNN) method is used for assigning the weights to the time series of the nearest

points on the map.

The time series of the generation for the past three years is used for the training.

The inputs include the coordinates and the count of solar panels. The prediction

of generation for the test case is compared with the original time series. 1 to 6

nearest neighbors are considered for simulation. The mean square errors (MSE)

and mean absolute percentage errors are shown in . MSE is calculated using the

35



2 4 6 8 10 12
Number of Test Case

1

2

3

4

5

No
. o

f P
an

el
s W

ith
ou

t D
isc

re
tiz

at
io

n

Real
Prediction

Figure 6.1: Prediction and Real Number Of Solar Panels Without Discretization.

predicted power generation time series yt and real power generation yt,real, where

t = 1, · · · , T are the time points

MSE =
1

T

T∑
t=1

(yt,real − yt)2. (6.1)

The variance of the distribution can be captured well in mean absolute percentage

error (MAPE)

MAPE =
1

T

T∑
t=1

(yt,real − yt)
yt,real

× 100%. (6.2)

The annual generation of rooftop solar power systems show that over the long

duration of time, neighboring generating units, have the similar trend. The solar

power systems have the similar trends of the peak power generations, if they are

located in the neighboring regions.

The results in Fig. 6.5 clearly show the fact, that 3 is the optimal value of k. If k

is either smaller or larger than 3 the error increases. If it is increased further from

3, the distance keeps on building up the error. If it is lower than 3, than the bias
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Figure 6.2: Prediction and Real Number Of Solar Panels With Discretization.

1/1/2016

2/1/2016

3/1/2016

4/1/2016

5/1/2016

6/1/2016

7/1/2016

8/1/2016

9/1/2016

10/1/2016

11/1/2016

12/1/2016

Date

0

25

50

75

100

125

150

175

200

Po
we

r G
en

ea
tio

n 
(k

W
)

Total PV Generation Curves for one day in each month of year 2016
Zipcode 92704
Zipcode 92705
Zipcode 92707

Figure 6.3: Peaks Of The Sum Of Solar Power Generation.
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Figure 6.4: Raw data From SunPower Inc.
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Figure 6.5: Nearest Neighbors.
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Table 6.1: MSE And MAPE Of Real And Predicted Generations.

No. of Neighbors MSE MAPE (%)

1 0.2422 24.14

2 0.2056 7.80

3 0.1528 5.21

4 0.1819 8.92

5 0.2062 19.85

6 0.2187 21.78
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Figure 6.6: Real And Predicted Downsampled Generation.

introduced into the predictions increase largely. The difference of the prediction

and real power generation with respect to months is also analyzed in Fig. 6.7. The

analysis is expressed in the form of a histogram over five months of year 2015 with

error bars indicating the variance in the prediction, from August to December.
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Figure 6.7: Histogram Of Accumulated Generations.
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Chapter 7

PV ORIENTATION EFFECTS

7.1 Effects of PV Orientation Angles

There are some more observations, it is difficult to say that they would be uni-

versally true. But, prima facie, it can be said that when the solar panels are oriented

towards true South then the total power generation over a whole year is generally

the highest. The system that peaks closest to noon are taking most advantage out

of the energy coming from the sun, in case of the systems that do not have any so-

lar tracking. The southern most peaked closes to the mid value of the time which

has to be close to 150 in the Figure 22. A potential explanation can be its orienta-

tion in the True South direction. Rest of them do not seem to be fully in True South

direction and inclined. So, the farther the panels are from the True South, probably

the farther their peak is from the noon point which in most cases is around 12:00

pm. The curves in Figure 22 are normalized from 0 to 1, in order to make their gen-

erations comparable. The points when they peak will be preserved in the process.

Also, their naming is consistent with that of 7.2. For example, the blue curve in 8.1

show the normalized generation of the solar panels installed at the point labelled

as North in 7.2.
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Figure 7.1: Orientation Angle Differences.

Figure 7.2: Voltage Variation.
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Chapter 8

ARCING FAULT PROTECTION

At the early stage, enhancements of conventional relays are proposed, leading to

a proportional relaying algorithm, impedance-based method, and PC-based fault

locating and diagnosis algorithm. However, these methods are ineffective in de-

tecting AFs with a low fault current. For this problem, harmonics patterns are

utilized to capture AF characteristics, such as magnitudes and angles of 3rd and

5th harmonics, even order harmonic power, and interharnomic currents. Besides,

a Kalman-filter-based method is proposed to monitor harmonics in AFDs. This

type of method actively injects higher than fundamental frequency signals like

positive/zero voltage signals into the grid for AFD. The solar power systems inte-

grated into the grid makes the protection vulnerable to maloperation. The arcing

fault protection in the distribution grid creates false tripping. Hence, a study is

performed by incorporating the solar generation into the distribution grid. The

protection scheme for arcing faults is developed and is presented in the North

American Power Symposium.
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Chapter 9

LOW FREQUENCY DAMPING CONTROL

Inter-area oscillation problem is one of the major stability issues that face inter-

connection of the power systems. Recent development in wide-area measurement

systems (WAMS) provides a great potential to overcome the shortcomings of con-

ventional local controllers and it makes using of remote signals as inputs for con-

trollers feasible. Literature provides a survey of recent research and developments

in the field of wide- area control for inter-area oscillation damping. Moreover, new

researchers can follow recent and future trends in the area of wide-area damping

control system. The typical range of frequency lies between 0.1 -2.0 Hz.

WAMS has a significant advantage where a suitable architecture is selected.

Such an architecture can help increase in stability and reliability of the power grid.

The factors like PMU data acquisition, decision making based on PMU data and

the enactment of actions based on decision making determine the architecture de-

tails of WAMS. Different combinations of such factors can direct towards different

realizable types of WAMS architectures. This thesis focusses on the utilization of

the WAMS architecture and the measurements to implement smart grid.

The damping of frequency oscillations requires a precise continuous control.

Numerous kinds of Power System Stabilizers (PSS) have been widely used for the
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control of frequency oscillations, but they are localized. Each generating unit have

an independent PSS that takes in the localized inputs. The thesis proposes a wide

area based damping control scheme. The WAMS based damping controller will

take in the wide area inputs and generate control signals for different generating

units simultaneously. The centralized control can provide a higher degree of flex-

ibility. Moreover, a situational awareness of a wide area can help to come up with

a better control strategy.
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Chapter 10

MODELLING

Frequency oscillation control should have a continuous control signal. A special-

ized reinforcement learning (RL) based methodology is introduced in the thesis.

There are several different types of machine learning algorithms, among them, are

the reinforcement learning algorithms. RL algorithms are gaining popularity in

the field of control systems. A major advantage of utilizing RL methods is that,

the control element can learn from its environment. Transmission systems are

highly reliable because of their mesh network. Such a network, pose modelling

challenges, when a centralized control is to be designed. That leaves us with a

reinforcement learning solution.

10.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) has not only a continuous control

but also is an off policy algorithm. The fundamental benefit provided by DDPG

that is not in the other reinforcement learning algorithms is that it can have the

continuous action spaces. DDPG is also called deep Q learning for continuous

action spaces. It is a technique that learns both Q values and action values, con-

currently. This technique has its basis in the conventional Q-learning as well as
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deep learning. For the Q-learning part, Bellman’s equation has been used to mea-

sure the value function Q(s, a), where s is the state and a is the performed action.

We can directly take the gradient of the policy set. As the name of the technique

suggests that, it is a policy gradient method and policy π is itself the optimal set

of applied actions to achieve the objective in minimum number of steps. There are

two segments of such a technique. First one is the Q-learning side. If s′ is the next

state and a′ is the next action, the the optimal action value functionQ∗(s, a) is given

by a Bellman’s Equation

Q∗(s, a) = E
s′∼P

[r(s, a) + γmax
a′

Q∗(s′, a′)], (10.1)

γ remains the discounting factor and s′ ∼ P shows the following state, s′ , is sam-

pled by the environment from a distribution P (·|s, a). The value function approxi-

mator is Q∗(s, a) is a comprises deep neural networks, that in the current scenario

is a 3 neural network have 128 perceptrons in the first layer 32 in the second and 1

in the last layer.

We consider a standard reinforcement learning setup consisting of an agent in-

teracting with an environmentE in discrete timesteps. At each timestep t the agent

receives an observation xt, takes an action, receives a scalar reward rt. Real valued

actions are at ∈ RN . In general, the environment not be completely observed and

the entire history of the observation, action pairs st = (x1, a1, · · · , at1, xt) are neces-

sary to have to show the states. The assumption of fully observed environment is

used here, so st = xt. The output or behavior of an agent is defined by a policy, ,
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which is nothing but a mapping between the states and a probability distribution

for all the actions π : S → P (A). We define environment as E which may also be

stochastic at times. The problem is developed as a Markov Decision Process where

state is S, action space is A ∈ RN , an initial state distribution p(s1), we also define

the transition dynamics p(st+1|st , at), finally there is a reward function r(st, at). Us-

ing the state we can come up with a discounted future rewardRt having a discount

factor γ ∈ [0, 1]. There is an important thing that the return relies on the chosen

actions. The main objective in of reinforcement learning is to maximize the return

reward,

J = Eri,si∼E,ai∼π[R1]. (10.2)

Here we have discounted state visitation distribution for a policy π as ρπ. The

action value function is used here, that describes that upon taking action what will

be the expectation and new state st and thereafter following policy π,

Q = (st, at) = Erit,si>t∼E,ai>t∼π[Rt|st, at]. (10.3)

Bellman equation is used in the iterative process to have the approximation for

value function

Q = (st, at) = Ert,st+1∼E[r(st, at) + γEat+1π[Q(st+1, at+1)]. (10.4)

If the target policy is deterministic we can describe it as a function µ : S → A,

Q(st, at) = Ert,st+1∼E[r(st, at) + γQ(st+1, µ(st+1))]. (10.5)
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The expectation relies highly on the environment we are working in. Hence, we

can learnQµ through simply getting an off-policy method, using transitions of pol-

icy β. Greedy policy is used in the Q-Learning algorithms. We assume function ap-

proximators parameterized by θQ, can have a solution by optimization techniques,

where loss has to be minimized,

L(θQ) = Est∼ρβ ,at∼β,rt∼E[Q(st, at|θQ)]− yt]2, (10.6)

where,

yt = r(st, at) + γQ(st+1, µ(st+1 |θQ), (10.7)

while yt is also dependent given θQ. The use of large, non-linear function ap-

proximators for learning value or action-value functions has often been avoided

in the past since theoretical performance guarantees are impossible, and practi-

cally learning tends to be unstable. Recently, adapted the Q-learning algorithm in

order to make effective use of large neural networks as function approximators.

We employ these in the context of DDPG and explain their implementation in the

domain of low frequency oscillation damping using the measurements from wide

area measurement systems.

The architecture have the environment and reward blocks. The environment

block has been developed on MATLAB Simulink.
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Figure 10.1: Architecture Of Deep Deterministic Policy Gradient Method.

51



Chapter 11

POWER SYSTEM MODELLING

The test system consists of two fully symmetrical areas linked together by two

230kV lines of 220km length. It was specifically designed in to study low frequency

electro-mechanical oscillations in large interconnected power systems. Despite its

small size, it mimics very closely the behavior of typical systems in actual op-

eration. Each area is equipped with two identical round rotor generators rated

20kV/900MVA. The synchronous machines have identical parameters, except for

inertias which areH = 6.5s in area 1 andH = 6.175s in area 2. Thermal plants hav-

ing identical speed regulators are further assumed at all locations, in addition to

fast static exciters with a 200 gain. The load is represented as constant impedances

and split between the areas in such a way that area 1 is exporting 413MW to area

2. Since the surge impedance loading of a single line is about 140 MW, the system

is somewhat stressed, even in steady-state. The reference load-flow with M2 con-

sidered the slack machine is such that all generators are producing about 700MW

each. The results can be seen by opening the Powergui and selecting Machine Ini-

tialization. They are slightly different from benchmark two area system, because

the load voltage profile was improved (made closer to unity) by installing 187Mvar

more capacitors in each area. In addition, transmission and generation losses may
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vary depending on the detail level in line and generator representation.

11.1 Simulation

For an initial understanding of the network behavior, we can simulate its open-

loop responses (PSSmodel = 0) to a 5%-magnitude pulse, applied for 12 cycles at

the voltage reference of M1. This test is activated by opening the timer controlling

the voltage reference of M1 and changing the multiplication factor of the transi-

tion times vector from 100 to 1. Similarly, the line fault should be deactivated by

changing from 1 to 100 the multiplication factor of the transition times vector in

the ”Fault” device and line breakers ”Brk1” and ”Brk2”. After starting the simula-

tion, the signals responses are visualized by opening the ”Machine” and ”System”

scopes on the main diagram. All signals show undamped oscillations leading to

unstability. A modal analysis of acceleration powers of the four machines shows

three dominant modes,

1. An interarea-mode (fn = 0.64Hz, z = −0.026) involving the whole area 1

against area 2: this mode is clearly observable in the tie-line power displayed

in ”System” scope

2. Local mode of area 1 (fn = 1.12Hz, z = 0.08) involving this area’s machines

against each other

3. Local mode of area 2 (fn = 1.16Hz, z = 0.08) involving machine M3 against

M4 (i.e.: the smaller the inertia, the greater the local natural frequency)

53



Figure 11.1: Wide Area Model Principles.

If one of the two tie-lines is removed by setting the breakers ”Brk1” and ”Brk2” in

an open position, it is possible to achieve another steady-state stable equilibrium

point with the same generation and load patterns. This is called a post-contingency

network, easy to initialize using the Machine Initialization tool of the Powergui.

A modal analysis of this network’s responses to the same 5%-magnitude pulse,

applied for 12 cycles at the voltage reference of M1 reveals that, while the two

local modes remain basically unchanged in both frequency and damping (fn =

1.10Hz, z = 0.09 in area 1 and fn = 1.15Hz, z = 0.08 in area 2), the interarea mode

shifts to a much lower frequency with still a negative damping (i.e.: unstable):

(fn = 0.44Hz, z = −0.015).

The result of DDPG based wide area control of the four generator system show

that there is a better control of the system, whereas the conventional PID (Propor-

tional Integral and Derivative) controller can not handle the time delays if they

keep varying. The DDPG based controller can learn on the distribution of the time
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Figure 11.2: DDPG-Based Control And PID control.

delays also. As the Fig. 11.2 indicates the the speed of the generators in the trained

DDPG model remain consistent for longer period of time, in contrast to what we

see in the PID controller based control, where the speed goes on increasing and the

oscillations in the system will ultimately enforce the system to lose synchronism.
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Chapter 12

EFFECTS OF TRANSIENT OVERVOLTAGE (TOV)

The three pilot protection schemes applied for cable protection are current differen-

tial, phase comparison, and directional comparison. Backup protection of under-

ground cables is provided using phase distance, directional ground over-current,

or ground distance protection.

The most common protection for circuits consisting of underground cables only

is line current differential. Typically, in such a circuit, two-line current differential

relay schemes, a Main One and a Main Two system, are applied, each one interfac-

ing with a digital communications channel connected to separate and independent

communications paths. This application could also have direct transfer tripping

for breaker failure conditions on the same digital channels, taking advantage of

relay-to-relay communications. Autoreclosing is not typically allowed because the

protective circuit consists of an underground cable only.

Quite often, EHV cable circuits terminate in transformers to serve the load of a

major metropolitan area. In such applications, the Main One and Main Two cable

protection systems could consist of either current differential protection and/or

directional comparison protection schemes, using phase distance and negative-

sequence directional elements for sensitive ground fault protection. In these types
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of applications, we can take advantage of digital relay-to-relay communications

and send the direct transfer trip (DTT) bits for transformer faults to the remote

station using the same digital channels that are used for the line current differential

or the directional comparison scheme.

One important difference from cable circuits is that many users allow high-

speed reclosing if the overhead line length is much greater than the underground

cable length. Systems where the cable length is less than 15 to 25 percent of the

total circuit length may have autoreclosing. Another important factor is whether

the cable portion is at the beginning of either terminal or whether it is between two

overhead line sections.

If the cable is at the beginning of the transmission line, and the line length is

much longer than the cable section length. In Fig. a, at the terminal farther away

from the cable, the distance relay has only one Zone 1 element (Z1). The reach of

this element is set at 80 percent of the overhead line positive sequence impedance.

Operation of this element trips the local breaker, sends a DTT to trip the remote

breaker, and allows high-speed reclosing. Operation of the overreaching Zone 2

element (Z2) trips the local breaker and blocks its high-speed reclosing.

If the underground cable is of the pipe type, reclosing may be prohibited un-

less line current differential schemes are protecting the cable portion separately, as

shown in Fig. b. In such a case, we can positively identify that the fault is on the

cable circuit and, via communications, block autoreclosing at the two ends of the
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line.

When the cable is very short (for instance, less than 300 meters) and not a pipe-

type cable, some users ignore the cable and allow high-speed reclosing because

they assume that the majority of the faults will be on the overhead line section. In

some cases, it is economical for short cable lengths to be thermally dimensioned for

autoreclosing. However, for longer cable lengths, autoreclosing may or may not be

feasible, depending on the thermal rating of the cable. A three-terminal application

in which the cable is protected by a separate line current differential scheme for

high-speed detection of cable faults and for blocking highspeed reclosing at the

other two terminals.

The underground transmission cables differ drastically from their overhead

counterparts. These cables have sheaths and shields that are grounded along cable

length. Due to magnetic coupling of phase currents and among currents in cable

sheaths complex calculations are involved in computation of series impedances.

Ground fault can have multiple return paths like the sheath, the ground or a com-

bination of both [1].

• One limitation of symmetrical component theory is the assumption that power

system element impedances are balanced. This is not true in underground

cables because of the different methods used for cable sheath bonding and

grounding [1].

• Another difficulty in applying symmetrical component theory is the require-
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ment to retain the sheaths, including their transpositions and grounding along

the cable path, to properly study faults along the entire cable length or mixed

conductor technology circuit [1].

• The positive-sequence impedance of underground cables is much lower than

the positive-sequence impedance of overhead lines in ohms per unit of length.

In some cases, the total cable circuit positive-sequence impedance may be less

than the minimum distance relay setting range value.

• The cable zero-sequence impedance angle is also much lower than the zero-

sequence impedance angle for overhead lines.

• The presence of water pipes, gas pipes, railways, and other parallel cables

makes the zero-sequence current return path rather complex.

• The zero-sequence impedance may be nonlinear with respect to distance.

Capacitance causes current to flow even when no load is connected to the cable.

This is called line charging current. Underground line capacitance for power cables

is far higher as compared to their overhead counterparts due to closeness of cables

and proximity to earth. As a result, underground lines have 20-75 times the line

charging current.

Switching transient in power systems is related to the operation of breakers and

switches. Among others, the switching surges usually occur upon the energization

of lines, cables, transformers, reactors, or capacitor banks. An underground cable
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Figure 12.1: Cable Failure For Underground System.

Figure 12.2: Cable Failure In Salt River Project.

must be protected against excessive overheating caused by fault currents. Exces-

sive heating could damage the cable, requiring lengthy and costly repairs. Because

most cable faults involve ground initially, ground fault protection sensitivity is of

utmost importance. Long underground cable circuits produce high charging cur-
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rent, which may be an appreciable fraction of the load current. Cable circuit ener-

gization and de-energization create high transient currents. Similar high transient

discharging and charging currents flow in the cable circuit during faults external

to the cable zone of protection.

Upon de-energization, which is usually associated with the fault clearing de-

vices, switching transients prevail as well. Therefore, it is interesting to investi-

gate the effects of reclosing, especially the resulting overvoltage phenomenon in

an electric network, for the practical consideration of eliminating the occurrence of

cable failure.
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Chapter 13

TEMPORARY OVERVOLTAGE PHENOMENON

One of the reasons for the failure of cable is transient over-voltages. Transient over-

voltage can arise from the supply or from switching inductive loads, harmonic cur-

rents, d.c. feedback, mutual inductance, high-frequency oscillations, large starting

currents and large fluctuating loads. Transient over-voltages (TOV) or surges are

temporary high magnitude voltage peaks for a short duration of time, ex: Light-

ning. Switching transients in electrical networks often occur. Although the voltage

magnitude is lower than lightning surge, the frequency at which it occurs causes

ageing of cable insulation and eventually breaks down resulting in flashover.

Besides the aforementioned concerns, the investigation of the effects of reclosing

cannot be conducted without taking into consideration of the following mecha-

nisms that cause TOVs:

• Ground potential rise;

• Derived neutral shift;

• Inductive coupling of fault currents;

• High generation to load ratio;

• Interruption of inductive currents;
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• Over-modulation/saturation of current.

The main TOV source in our network is from mechanism 2 the derived neutral

shift, which usually involves single-phase-to-ground fault. When the associated

substation breaker opens upon the fault, the phase conductors might be floating

due to the absence of the ground potential reference. Therefore, during a fault,

the unfaulted phases would have a phase-to-ground voltage magnitude equiva-

lent to phase-to-phase voltage (1.73 times their rated voltages). Moreover, dis-

tributed energy resources (DERs), especially inverter-interfaced DERs, are weak in

maintaining three-phase balanced voltages. Unlike synchronous machines, what

the inverter-interfaced DERs can maintain is the balanced three-phase currents.

Therefore, the main TOV source in distribution network originates from upstream

substation.

Figure 13.1: Benchmark System Under Study.

Such an over-volatge will keep on causing stress in the distribution cables and
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Figure 13.2: Developed TOV at 0◦.

can ultimately lead to the insulation rupture or line failure.
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Figure 13.3: Developed TOV at 90◦.
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Figure 13.4: Developed TOV at 180◦.
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Chapter 14

REINFORCEMENT LEARNING ENVIRONMENT

For each phase p ∈ {0, 1, 2} there are voltage and current measurements from the

bus, located downstream of the breaker under study. The magnitudes of voltage

|Vp| and current |Ip| along with the voltage phase angle θVp and current phase angle

θIp of the measurements are considered for defining a 4-dimensional state space s

of the system

s =



|Vp|

θVp

|Ip|

θIp


. (14.1)

Additionally, we define action space of the controlling system, that suits the system

and can deliver best results. Therefore, we select a binary action space a ∈ {0, 1}.

Here, 0 indicates that the recloser is open, whereas 1 indicates that it is closed.

The reward comprises two parts, the TOV-related reward and the temporal

sequence reward. The TOV can by getting the deviaiton from the reference voltage

of 1 pu. Whereas, the task sequencing can be achieved by having the enablin ghte

model to learn on the number of distinct action sequences, to achieve the desired

policy.

We define the reward function as Ri using an indicator function that can en-
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able the function to generate a high value only when the desired task sequence

is achieved. Here Ind(I
(t)
d > 0, I

(t)
p < 0) is an indicator function which is 1 when

I
(t)
d > 0 and I

(t)
p < 0 are true and is 0 otherwise. That helps the model in learning

not to reclose before the first opening operation takes place. Whereas, once the

reclosure takes place in a desired time range, the rms value of three phase volt-

age helps in keeping the transient overvoltage in check, by making sure that the

deviation from the reference is reduced.

Ri = α · Ind(I
(t)
d > 0, I(t)p < 0)− Ind(I

(t)
d > 0, I(t)p < 0) · β · (|V (t)

d − Vref |) (14.2)

Where the indicator function is the representation of the capability of the task se-

quencing. For example, the operation for a particular breaker can be limited to

a fixed number by updating the indicator function. For the first part the model

should be capable of reclosing only once, while keeping the TOV limited.

Based on the problem formulation in Section aaaaa and the complexity of the

electric grids, we find that the policy iteration method needs to involve intensive

use of simulation for the parametric approximation. To enable self-learning of

the protective relays, an actor-critic system [38] is adopted for approximate pol-

icy evaluation. The critic in this system evaluates the policy, and the actor is the

algorithm that improves the policy value. We use µk to denote the kth policy,

and J̃µk to quantify the kth policy. The actor-critic method generates a sequence

of stationary policies {µk} and a corresponding sequence of the approximate pol-
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icy evaluation {J̃µk} using simulation software such as Matlab, PSCAD, etc. The

actor-critic method update its current policy µk to µk+1 through the following min-

imization:

µk+1(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)(g(i, u, j) + αJ̃µk(j)) (14.3)

Alternatively, the system can compute the minimizing control us at a set of

sample states is, s = 1, ·, q, through

µs ∈ arg min
u∈U(is)

n∑
j=1

pisj(u)(g(is, u, j) + αJ̃µk(j)). (14.4)

We propose to use system identification and simulation to construct a mathe-

matical model of the system, including the current line topology, DER connectivity,

operation mode (microgrid or grid-connected), and grounding types. Then we use

the simulation-based policy iteration method update the protective relay settings.

Since the probability of the system contingency events is rare, we introduce the

importance sampling technique to overcome the large variance issue.

14.0.1 Deep reinforcement learning

Refer to Matlab examples: Preprocessing and Feature Extraction, Signal Gener-

ation and Acquisition https://www.mathworks.com/solutions/deep-learning/deep-

learning-signal-processing.html

However, the system operator lacks of the information on the probability of
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relay malfunctioning. Issues like cascading relay failure arise. Typically, the in-

teraction loop between the agent and the environment is closed since the agent’s

action affects the state of the environment. Therefore the control loop is not closed.

To address this problem, we ... The environment is affected by the agent’s action

that cannot be forecasted [39].

Deep Q-Learning with Experience Replay is shown in detail in [39].

Later, we can have the transfer learning part for the reward function. In order to

achieve that we are trying to have the reward function also fitted in a polynomial

line. Such a polynomial fitting helps to keep the reward function saved for the

later use.

Figure 14.1: Transfer Learning.
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Chapter 15

NUMERICAL VALIDATION OF BREKER CONTROL

The breaker control is performed through the DQN agent. The purpose int o tlearn

the reclosure time so that the reward is maximized and the TOV is minimized.

Figure 15.1: No Reclusure.

The above reclosure times show that actually the model is able to learn that the

reclosure should take place at the optimal time. Since, the reclosure time is taking
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Figure 15.2: Reclosure Too Early.

place the time when the TOV is reduced in other words, the reward is maximized.

Such an effect can be extended to more complex scenarios where the complexity

of model can be increased further. Such as the task sequences are increased. There

can be more tasks like multiple reclosures. Then, Such a learning can be done over

a period of time by running th eenvironment for 1000 episodes and then using then

constantly learning the parameters of the Deep Q Netowk model.

For showing the effect of hyperparameters we trained the model for 1, 000

episodes each and then check the variation of the Epsilon used in the epsilon
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Figure 15.3: Reclosure Too Late.

greedy algorithm and also the discounting factor.
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Figure 15.4: Reclosure At Optimal Time.
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Chapter 16

CONCLUSION

In order to achieve better situational awareness to ensure smooth operation and

control of distribution grids under high bidirectional power flows, we developed

a mechanism by maximizing information gain through combining private data

clouds with public sources. The method involves a detailed and carefully designed

model to locate the solar modules and quantify them by overcoming the chal-

lenges of limited ground truth and low accuracy through rotation of the circular

image slices and semi-supervised method for labelling randomized synthetic im-

ages. The quantity of modules and PV system generation data of neighboring solar

power systems help to estimate the short-term as well as long-term generation of

PV systems through selecting relevant features and employing KNN approach.

High accuracy of results through comprehensive validation process helps to prove

the concept, feasibility, and scalability of the proposed methodology. Thus, we

achieve reliable operation and robust control of distribution systems. With bet-

ter situational awareness and measurement capability, we need a better and more

robust control at the distribution and transmission systems. For transmission sys-

tems the wide area damping control through reinforcement learning based DDPG

Agent shows a promise especially to overcome the time delays in the communi-
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cations. The distribution grid also needs to have a robust control strategy. Such a

controlling strategy is built for the reclosers. The DQN based controller is designed

for the reclosers so that the temporary over-voltage is mitigated.
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