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ABSTRACT

The grand transition of electric grids from conventional fossil fuel resources to

intermittent bulk renewable resources and distributed energy resources (DERs)

has initiated a paradigm shift in power system operation. Distributed energy

resources (i.e. rooftop solar photovoltaic, battery storage, electric vehicles, and

demand response), communication infrastructures, and smart measurement de-

vices provide the opportunity for electric utility customers to play an active role in

power system operation and even benefit financially from this opportunity. How-

ever, new operational challenges have been introduced due to the intrinsic charac-

teristics of DERs such as intermittency of renewable resources, distributed nature

of these resources, variety of DERs technologies and human-in-the-loop effect. De-

mand response (DR) is one of DERs and is highly influenced by human-in-the-loop

effect. A data-driven based analysis is implemented to analyze and reveal the cus-

tomers price responsiveness, and human-in-the-loop effect. The results confirm

the critical impact of demographic characteristics of customers on their interaction

with smart grid and their quality of service (QoS). The proposed framework is

also applicable to other types of DERs. A chance-constraint based second-order-

cone programming AC optimal power flow (SOCP-ACOPF) is utilized to dispatch

DERs in distribution grid with knowing customers price responsiveness and en-

ergy output distribution. The simulation shows that the reliability of distribution

gird can be improved by using chance-constraint.
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Chapter 1

INTRODUCTION

1.1 Background

With the increasing penetration of DERs in distribution systems, more and

more customers are transitioning from the role of mere consumers into “prosumers”

(producers and consumers, in one). However, this active involvement of con-

sumers along with the ever-increasing penetration level of DERs also causes new

challenges in power systems. These challenges are mainly caused due to the es-

sential nature of DERs, namely, increased uncertainty and variability, which makes

scheduling of DERs a sophisticated task [1] [2]. Successful transition from the con-

ventional power system to this new paradigm requires an accurate planning and

efficient management of these ressources.

Advanced measurement devices, which are enriched with communication tech-

nologies such as Advanced Metering Infrastructure (AMI) provides a high vol-

ume of reliable data such as daily household consumption data [3]. This infor-

mation, along with other data such as weather forecast and social composition

of customers, enables leveraging data analytical methods to enhance smart grid

operation. These data-driven based analyses can be leveraged to estimate the par-

ticipation of prosumers in grid services and assess their quality of service (QoS).
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The ratio of peak electric load to average load is generally increasing [4]. The

increasing peak load results in problems standing by more fast generators needed

to prepare for the huge demand in a very short period of time. Starting more gener-

ators will not only cost a lot, but also be polluted since these generators operate in

an inefficient manner. In order to handle the peak load condition issue, utilities are

seeking approaches to improve capacity utilization. Instead of adapting generators

to match the big change of the load demand, the demand itself can be more flexible

to follow the requirement on the operation of the smart grid [5]. Demand response

(DR) is one method that utilities use to shift peak customer’s load and improve the

operation of the smart grid. It has existed within a utility’s arsenal as a means to

manage the power system for decades. For one type of the DR programs, utility

provides incentives and benefits to customers so that customers can reduce their

load during on-peak periods and shift it to off-peak periods. The most common

DR pricing structure adopted by utilities is the time of use (TOU), which is defined

as different electricity price for different period of the day [6]. Currently, more and

more residential household customers are participating in TOU DR programs in

the distribution system. However, with the increasing number of the customers

participating in DR programs, this brings system operational issues into the dis-

tribution grid since the customers’ consumption behavior becomes different in a

day due to the difference in the energy prices in distinct periods of the day. Florida

Power and Light’s (FPL) tested a DR program focused on two-way communication
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based programmable thermostats where FPL could control the thermostat but that

could also be overridden by the customer. The ex-post analysis by FPL showed

that customers who enrolled in the program had increased consumption of 12 per-

cent compared with both earlier usage and that of non-enrollees [7]. This issue

points to a fundamental need to consider prosumers’ interactions with the electric

grids and the uncertainty of their responses.

1.2 Social Impact on Power System

Recent research from social science fields has revealed that energy is not merely

a technological and economic phenomenon, but is rather deeply embedded within

social and geopolitical landscapes [8] [9] [10]. For example, a general daily sched-

ule of the customers, their social composition, and other demographic information

may affect their QoS and participation in DR programs. Different DR programs

have existed within a utility’s arsenal as a means to manage the power system for

years. One key hurdle that, to this day, has not been overcome is the human-in-

the-loop challenge. The societal dependency of such method and lack of adequate

incentives to unleash this potential, the societal desire to participate, are main rea-

sons DR programs are underutilized. As a result, to fulfill the vision of the smart

grid on a sustainable scale, socially-aware engineering solutions are needed.
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1.3 Methodology and Data

This thesis aims to apply and extend concepts of the social value of energy to

design a methodology to better operate DERs in distribution gird. This thesis ex-

plores this multifaceted problem in two stages. The first stage leverages advanced

machine learning algorithms and available social and historical consumption data

to evaluate customers’ price responsiveness and consumption behavior during

both the on-peak and off-peak periods. Various machine learning algorithms are

examined and compared in order to find the most suitable approach. Artificial

neural network (ANN) has a very strong ability to fit highly nonlinear functions

[11]. K-nearest Neighbors (KNN), which is a nonparametric algorithm, requires

a decent data structure. Kernel ridge regression (KRR) is a powerful regression

algorithm that can have pretty good performance in terms of the linear function.

The second stage shows the advantages of using the proposed method of the first

stage via a chance-constraint based AC optimal power flow (ACOPF) scheduling

tool. This model considers both technical and economic constraints in the distri-

bution grid. There are various methods for implementing chance-constraint in the

ACOPF problem including scenario approach, sample average approximation, ro-

bust optimization based method. In this thesis, a Monte Carlo Simulation based

method is used to apply chance-constraint in the ACOPF model accounting for the

uncertainty and variability nature of DERs.

In this thesis, firstly customers are classified based on customers’ demographic
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information. Papers show that groups of individuals with similar demographic

characteristics exhibit similar behavior towards electric energy [12] [13]. In order

to accurately estimate and evaluate the participation of prosumers in the smart

grid, some papers already addressed demographic data in their work as a boost-

ing strategy [12] [13]. Reference [12] utilizes demographic data from Mosaic, which

is Experian’s system for geodemographic classification of households, and divides

customers into three subsets in order to improve the accuracy of the model. Refer-

ence [13] uses demographic data as indicators showing the similarity of customers’

behavior. Secondly, several machine learning (ML) algorithms are leveraged to

obtain each group’s baseload during on-peak periods. The customers’ baseload

is defined as the answer to the question of “How much they would consume if

they do not participate in DR”. In [4], the authors apply a demographic data-

based decision tree method and k-mean to cluster the customers, and then they

propose three baseline calculation approaches which are regression-based, similar

day-based and morning adjustment. One consumption baseline load prediction

method focuses on finding the control group, which is defined as a group of se-

lected customers whose daily consumption will be treated as a baseline for other

[14]. Reference [15] studies the impact of less accurate customers’ consumption

baseline load on customers and utility benefits. Reference [16] [17] [18] [19] ap-

ply deep neural network to predict the customers’ consumption without any price

program involved. In this thesis, three regression-based ML algorithms are ap-
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plied to attain customers’ baseload using the consumption data points in off-peak

periods. Thirdly, we calculate the consumption reductions and evaluate the cus-

tomers’ responsiveness from the same category to different DR programs. Finally,

chance-constraint based SOCP-ACOPF is used to improve the reliability of the dis-

tribution grid by searching for the best proportion of DERs.

In order to show the effectiveness of the proposed data-driven strategy, elec-

tricity consumption, generation, weather, and demographic data of prosumers in

a local electric utility in Phoenix area are used. Four different datasets from the

local utility including different TOU plans are utilized in this thesis.

1.4 Literature Review

Load forecasting is an important research area in the power system. A pre-

cise short-term load forecasting in the residential level places a significant role in

system operation. In [20], the author proposes a load decomposition-based fore-

casting method in order to have a better forecasting result by summing several dis-

aggregated sub-load predictions. Unlike the load decomposition-based method, a

load forecasting method in [21], which is based on measurement data from smart

meters, is applying clustering methods to identify the groups of customers who

have similar behaviors and load consumption patterns. Since machine learning

has achieved lots of success in prediction, the application of machine learning in

the power system has become an irresistible trend for many researchers. The ap-

proaches in [16] [17] [18] [19] explore the customers’ behavior learning using deep
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neural network (DNN), which recently has become a highly prevalent research

field in many areas. Almost all of the paper studying in machine learning applica-

tion area are applying recurrent neural network (RNN), which is a special type of

DNN and have strong capability dealing with time-series data, and capturing the

hidden factors behind the huge amount of measurement data.

Demand response is one of DERs. Before analyzing the effect of any type of

demand response program, researchers should understand the calculation of con-

sumption baseline, which is defined as the energy consumption that customers

will consume, if customers did not participate in the DR program at that time.

However, the customers’ consumption baseline is tricky in some sense because no

one can answer the question such as “what if the customers didn’t participate in

the demand response program, what would be their energy consumption?”. In

[22], the authors apply a demographic data-based decision tree method and k-

mean to cluster the customers, and then they propose three baseline calculation

approaches which are regression-based, similar day-based and morning adjust-

ment. The regression-based method in [22] is piecewise linear regression. How-

ever, all the methods and framework mentioned in load forecasting [20] [21] [16]

[17] [18] [19] can be directly exploited as customers’ consumption baseline calcu-

lation routines. The similar day-based method selects the days that have similar

temperature as event, and use the consumption in those days to calculate base-

line. The morning adjustment method use the actual metered load in the morning
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to adjust the consumption baseline for that day. There is a consumption baseline

method mainly focusing on finding the control group in [14], which is defined

as a group of selected customers whose daily consumption is treated as the base-

line for others. Reference [15] studies the impact of social welfare loss and error

analysis for customers’ consumption baseline. A comprehensive discussion of DR

consumption baseline calculation has been exhibited in [23].

The participation of DERs in the power system introduces the risk of dispatch-

ing residential DERs because of its characteristic of high uncertainty and variabil-

ity, which is mainly caused by the human-in-the-loop effect. A more accurate

DERs output prediction method can be really influential when integrating DERs

in the electric market. Multiple price elasticity-based methods have been devel-

oped in [24] [25] [26] [27] in order to capture the customers’ price responsiveness

under different DR programs. Reference [25] utilizes five decreasing curve func-

tions and seven sensitivity categories to represent customers’ price responsiveness.

Reference [26] considers rational customer model maximizing welfare with utility

functions and self and cross-time elasticity. Reference [27] builds a mathematical

price elasticity model to simulate customers’ responsiveness. In [28], the authors

construct an implementation framework using long short-term memory (LSTM),

which is recurrent neural network, to predict customers’ response behavior during

different DR programs’ events. In [13], the authors construct possibility distribu-

tion to represent the price responsiveness of the EV owners considering electricity
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price and demographic information. Monte Carlo method in [29] is applied for

simulating the EV owners’ charging and discharging behavior. There is a satel-

lite image based solar generation prediction method using SVM in [30] with com-

paratively high accuracy. Reference [31] advances a hybrid algorithm utilizing

an optimization model to provide initial parameters of artificial neural network

which is trained later by shuffled frog leaping algorithm. Reference [32] applies

deep neural network framework to solar energy prediction problems and gains

a satisfactory performance. An advanced diffusion-based kernel density estima-

tor equipped with a fuzzy inference system and adaptation function is utilized

to achieve high quality and accuracy of wind power generation in [33]. A wind

power forecasting approach is proposed in [34] in which the author obtains the

stochastic distribution of locally wind energy by applying neural network-based

classification method utilizing global forecast system information. Reference [35]

models the load demand, wind speed, and generator location are modeled accord-

ing to Gaussian, Weibull, and discrete uniform distribution functions, respectively.

For solar irradiance modeling, they cluster the data into two states which are high-

irradiance state at daytime and low-irradiance state at night, and then they utilize

a kernel smoothing technique to estimate the pdf of the solar irradiance of two

states. Reference [36] uses k-mean to cluster daily PV output data and implements

Epanechnikov kernel estimating technique to estimate the probability distribution

of PV output. They also propose a way to approximate optimal solution of house-
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hold energy management system using deep learning, SVM and ANN. Reference

[37] proposes a deep learning-based short-term wind power forecasting algorithm

by combining autoencoders, the back-propagation algorithm, and the genetic al-

gorithm.

Since the human-in-the-loop aspect of emerging distributed smart grid tech-

nologies and energy prediction error, the uncertainty of DERs is necessary to be

highly addressed in the power system operation scheme. In [38], the authors han-

dle the uncertainty by applying stochastic dominance constraints, which is widely

used in economics and finance due to its relation to models of risk-averse pref-

erence. References [39] [40] [41] [42] employ conditional value-at-risk (CVaR) in

their optimization model to evaluate and control the risk of profit and cost vari-

ability of dispatching virtual power plant (VPP) because of its uncertainty and

variability nature. In [43] [44], the authors come up with various special risk in-

dices to assess the risk of DERs when integrating them into the power system. A

fuzzy chance constrained programming approach to day-ahead scheduling VPP

considering the uncertainty of DERs and its risk of dispatching is proposed in [45].

In this paper, the author associates uncertain factors in VPP with fuzzy parame-

ters and fuzzy chance constraints, and also provide different confidence levels for

the economy and risk sensitively of VPP. Reference [46] utilizes expected value

and zero-mean normally distributed random variable with a standard deviation

to represent the output and uncertainty of DERs. A scenario-based risk analysis
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of VPP is introduced in [47], which accounts for the temporal correlation of solar

and wind generation. Unlike [47], the authors in [48] directly generate scenarios

based on price and load and applies stochastic programming to risk analysis ap-

proach with approximation. Reference [48] presents a robust optimization-based

daily and weekly scheduling of VPP. The authors in [48] treats uncertainty of DERs

as uncertainty control parameters embedded in their robust optimization model.

Reference [49] combines chance-constraint with second-order-cone ACOPF. Refer-

ence [50] formulates an optimization model as an estimator to predict a group of

DERs injection for the next time period. Their objective function is minimizing the

square error between estimated values and true values, which subjects to a DERs

controller’s biased term.

1.5 Organization of this thesis

In chapter 2, the data, machine learning algorithms and analysis approach de-

scription are presented. In chapter 3, the results of the local utility project are

exhibited. Simulation results, using chance-constraint based SOCP-ACOPF, are

shown in chapter 4.
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Chapter 2

DATA DESCRIPTION AND APPROACH

In the chapter, the description of local utility datasets and the explanation of

the analyzing approach will be presented. The results of the local utility work will

be shown in the next chapter.

2.1 Data Description

Four different residential customers’ consumption datasets from the local util-

ity are used for the purpose of this project. The first, second and third consumption

datasets are used to analyze customers’ behavior and price responsiveness in the

local utility time of use (TOU) price plan. It is pertinent to note that three differ-

ent TOU plans are mainly analyzed in this project, which are E21, E23 and E26.

The detailed information of those three TOU plans is exhibited in the following

section. The fourth dataset is used to analyze the customers’ behavior during the

emergency DR events in the local utility system. In the following subsections, these

four consumption datasets are explained in detail.

2.1.1 First and Second Round Data

For the first and second round customers’ consumption datasets, customers

are randomly pooled from the local utility data system. The first two consump-
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tion data-sets contain the customers’ 15-mins consumption values from May 2017

to April 2018. We also received the customer’s corresponding anonymized demo-

graphic information, which is obtained from a survey study conducted by local

utility. The demographic information includes the following factors.

• Household annual income

• The number of occupants in the house

• Family composition (married, if they have Children)

• Age

• House ownership.

There are totally 3750 customers in these two datasets. There are 1776 cus-

tomers who participated in E21 and 1974 customers who participated in E26. There

is no missing data point in those 3750 customers’ consumption data.

2.1.2 Third Round Data

The third consumption dataset only includes low-income customers in the local

utility system. The resolution of the third consumption data is one hour. The con-

sumption values are collected from May 2017 to April 2018. We also received the

customer’s corresponding anonymized demographic information obtained from a

survey study conducted by local utility, which includes the following factors.

• Household annual income
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• Number of occupants in the house

• Family composition

• Age

• Home ownership

• Livable space

• Rate start date

• Household appliance information

• Number of rooms

• Built year

There are totally 18609 customers in this dataset who are all low-income cus-

tomers in local utility system. There are 8946 low-income customers who partici-

pated in E21 and 9663 low-income customers who participated in E26. There is no

missing data point in those 18609 customers’ consumption data.

2.1.3 Fourth Round Data

The fourth dataset includes the customers of the local utility system who par-

ticipated in emergency DR events (i.e. conservation periods based on nest ther-

mostats) in 2018. There are totally nine DR events that happened in 2018. One of

them happened in Jun 2018. Three of them happened in Jul 2018. The rest of them
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happened in Aug 2018. The duration of each event is from two to three hours. The

information of the above emergency DR events is shown in Table 2.1.

Table 2.1: Emergency Demand Response Event Time Information

Event # Event Date Thermostat Platform Firm Peak

Load Hour

Temp. at

Peak (F)

Event Hours

1 6/22/2018 Nest 17:00 109 5PM - 7PM

2 7/24/2018 Nest 18:00 115 4PM - 6PM

3 7/25/2018 Nest 17:00 115 4PM - 6PM

4 7/30/2018 Nest 17:00 108 3PM- 6PM

5 8/2/2018 Nest 17:00 108 3PM- 6PM

6 8/6/2018 Nest 17:00 113 3PM- 6PM

7 8/13/2018 Nest 18:00 100 4PM - 6PM

8 8/14/2018 Nest 17:00 102 5PM - 7PM

9 8/30/2018 Nest 18:00 102 4PM - 6PM

The resolution of this dataset is one hour. We also received the customer’s

corresponding anonymized demographic information. The demographic factors

are shown below.

• Household annual income

• Number of occupants in the house

• Family composition
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• Age

• Home ownership

There are totally 5180 customers in this fourth dataset. There is no missing data

point in those 5180 customers’ consumption data. There are 1301 customers in

E23. The E23 customers’ behavior during the DR events are mainly analyzed in

this project.

2.1.4 Data Summary

The data information is summarized in the Table 2.2.

2.1.5 Local Utility Demand Response Programs

For the first, second and third datasets, we mainly focus on E21 and E26 of

which information has been shown in Table 2.3. In the local utility system, summer

is defined as the May, June, September, and October billing cycles. Summer Peak

is defined as the July and August billing cycles.

For E21, the on-peak hours are from 3 p.m. to 6 p.m., Monday through Friday,

Mountain Standard Time, excluding the holidays. All other hours are off-peak.

The on-peak and off-peak prices in summer peak are 0.3588 $/kWh and 0.0864

$/kWh, respectively. Furthermore, the on-peak and off-peak price in summer are

0.3033 $/kWh and 0.0840 $/kWh, respectively [6].

For E26, the on-peak hours are from 1 p.m. to 8 p.m., Monday through Friday
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Table 2.2: Summary of Data Information

Data Resolution Number

of Cus-

tomers

Time Pe-

riod

Demographic Factors Rate Data Pulling

First

Round

Data

15-min 1322 May

2017 to

April

2018

Income Level, Number

of Occupants, If having

Children

E21 and

E26

Randomly Pulling

Second

Round

Data

15-min 2428 May

2017 to

April

2018

Income Level, Number

of Occupants, If having

Children

E21 and

E26

Randomly Pulling

Third

Round

Data

1-hour 18609 May

2017 to

April

2018

Livable Space, Number

of Occupants, Start Date

E21 and

E26

All Low-Income Cus-

tomers

Fourth

Round

Data

1-hour 5180 May

2018 to

Sep 2018

Income Level, Number

of Occupants

All Rate

in local

utility

All customers partici-

pating Emergency De-

mand Response

from May 1 through October 31, Mountain Standard Time, excluding the holidays.

On-peak hours from November 1 through April 30 consist of those hours from 5

a.m. to 9 a.m. and from 5 p.m. to 9 p.m., Monday through Friday, Mountain Stan-

dard Time, excluding the holidays. All other hours are off-peak. The on-peak and

off-peak prices in summer peak are 0.2226 $/kWh and 0.0741 $/kWh, respectively.

The on-peak and off-peak price in summer are 0.1957 $/kWh and 0.0738 $/kWh,
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Table 2.3: Local Utility DR Plans for E21 and E26

TOU

DR Pro-

grams

On-Peak Hours Duration On-Peak Price Off-Peak Price

E21 3 p.m. 6 p.m. 3 h
$0.3588 (Jul Aug) $0.0864 (Jul Aug)

$0.3033 (May Jun Sep

Oct)

$0. 0840 (May Jun Sep

Oct)

E26 1 p.m. 8 p.m. 7 h
$0.2226 (Jul Aug) $0.0741 (Jul Aug)

$0.1957 (May Jun Sep

Oct)

$0.0738 (May Jun Sep

Oct)

respectively [6].

The following holidays are off-peak days:

• New Year’s Day (observed)

• Memorial Day (observed)

• Independence Day (observed)

• Labor Day

• Thanksgiving Day

• Christmas Day (observed).

For the fourth dataset, E23 customers are mainly considered. The E23 is the
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basic rate in the local utility residential customers level. The E23 price information

is shown below [6].

• Summer: 1st 700kWh: 0.1102 $/kWh; 701-2000 kWh: 0.1121 $/kWh; All

Add’l kWh: 0.1226 $/kWh

• Summer Peak: 1st 700kWh: 0.1168 $/kWh; 701-2000 kWh: 0.1180 $/kWh;

All Add’l kWh: 0.1331 $/kWh

For the rest of the DR plans, since the number of customers in these DR rate

plans is very small, we excluded them in this data-driven analysis.

2.2 Approach

A data-driven based approach has been proposed in this project. This approach

is implemented to analyze all of the four datasets. The flowchart of the proposed

approach is shown in Fig. 2.1. First, several different categories are formed using

customers’ demographic data. Besides, three regression-based ML algorithms are

applied to attain customers’ baseload using their consumption data in off-peak

periods. After that, the DR reduction values are calculated using the predicted

customers’ baseload and actual consumption during the on-peak periods. Finally,

customers’ behavior during on-peak periods and their price responsiveness are

evaluated from the same category to different DR programs
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Figure 2.1: Approach Flowchart

2.2.1 Machine Learning

Three machine learning algorithms are implemented to predict customers’ baseload

during the on-peak periods. The following well-established regression-based cus-

tomers’ baseload calculation methods, which captures the relationship between

the consumption values vector for the next time period Y and previous consump-

tion values matrix X , are used in this paper.

• Artificial Neural Network (ANN)

• K Nearest Neighbors (KNN)

• Ridge Regression (RR)

2.2.2 Artificial Neural Network (ANN)

ANN, which is inspired by biological neural networks that constitute animal

brains, is a prevalent research topic in many areas recently. The general structure
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of ANN includes input, hidden and output layer.

For the input to hidden units we have:

ath =
I∑

h′=1

wh′hb
t−1
h′ (2.1)

bth = θha(th) (2.2)

where wh′h are the weights between neuron h′ in layer t − 1 and neuron h in

layer t. The bt−1h′ are the inputs of neuron h′ from the last layer t − 1. The I is the

number of neurons in the layer t − 1. The ath is sum of wh′hbt−1h′ from the last layer.

The θ is activation function for the neuron h. The bth are the output of neuron h in

layer t. It will be the input to the layer t+ 1.

For the output unit we have:

atk =
H∑
h=1

whkb
t
h (2.3)

where the whk are weights and bth are inputs from the last hidden layer. The H

is the number of neurons in the last layer. The atk will be the output of the ANN

model, if the output layer is the t-th layer and has k neurons.

Common one-layer ANN structure and ANN neuron mathematical represen-

tation have been shown in Fig. 2.2 and Fig. 2.3.

Due to its structure, ANN can have a higher ability to fit into highly nonlinear

functions. The higher number of hidden layers in ANN results in improved capa-
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Figure 2.2: One-layer ANN Structure

Figure 2.3: ANN Neuron Mathematical Representation

bility of the model to extract more abstracted features from the input. However,

the drawbacks of ANN are its less interpretability and obtaining local optimal so-
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lutions.

2.2.3 K-Nearest Neighbors (KNN)

KNN is a non-parametric ML algorithm used for classification and regression

problems. For the regression problem, KNN first calculates the distance for each

sample. The distance can be calculated by different distance functions such as

Euclidean, Manhattan and Minkowski function. To forecast the response to a new

sample, the trained model uses k samples that are closest to the new data point.

Figure 2.4: A Schema of KNN Algorithm

Fig. 2.4 shows a schema of the KNN algorithm. In Fig. 2.4, we need to predict

the response of the yellow point. The KNN algorithm will find the k points that

are closest to the yellow point and use their values to predict the response of the
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yellow point.

2.2.4 Ridge Regression (RR)

RR is a commonly used algorithm that deals with linear or near-linear data. The

loss function of the ridge regression is the combination of the linear least squares

function and regularization given by the l2-norm (also called Euclidean norm).

The objective function can be mathematically be written as below,

min
N∑
n=1

(Yn −W TXn)2 + λW TW (2.4)

where the N is the number of samples in the training matrix. The Yn is the

response of each sample. The W T is the weight for each independent variable Xn.

The λ is the hyper-parameter used in the regularization term. Note that the RR is

strict convex, which guarantees a global optimal solution.

2.2.5 Baseload Prediction

The customers’ baseload is defined as the answer to the question of “How much

they would consume if they do not participate in DR”.

For the purpose of this study, customers’ consumption usage and their DR on-

peak load reduction are analyzed for groups of customers instead of each individ-

ual household. The off-peak period consumption values and ML algorithms are

used to build the customers’ baseload model for the on-peak periods.
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Since the resolution of the first and second datasets is 15-mins and resolution

of the third and fourth datasets is one hour, we make different assumptions before

building customers’ baseload model.

For the first and second datasets, due to their 15-mins resolution, if we use more

than prior 8 hours consumption values, the accuracy of the baseload model is high

enough to predict customers’ baseload. Besides, the accuracy only slightly changes

if we increase the number of prior hours consumption values that are used for

training the ML algorithms. Thus, we utilize consumption values from 8 previous

hours as features in the training matrix and assume that the group’s consumption

values are only correlated to the previous 8 hours of group’s consumption values.

The presentation of the first and second data baseload models can be presented

using (2.5),

P (Y |x1, x2, ..., x32) (2.5)

where Y is the consumption value of the group for the next time interval.

x1, x2, ..., x32 are the prior 8 hours historical consumption values with 15-min res-

olution. All of the values in (2.5) are the consumption values during the off-peak

period.

For the third and fourth datasets, the accuracy of the baseload model changes

a lot, if we use a different number for previous hours consumption. The relation-

ship between model accuracy and the number of prior hours consumption is tested
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using a group of customers’ data whose demographic information are all 1-2 occu-

pants in the house, livable space less 1500 sqft and start date of becoming local util-

ity customers after 2016. The start date is the date that the customer becomes local

utility’s customer. For the third and fourth data baseload estimation, we finally use

the prior 6 hours of consumption values and assume that the group’s consumption

values for the next time period are only correlated to customers’ consumption val-

ues of the previous prior 6 hours. The prediction error of the baseload model for

different training structures is shown in Fig. 2.5. Root-mean-square error (note

equation (2.7) in the next page) is used as a measure of prediction error. Fig. 2.5

shows that the most accurate baseload prediction is obtained when the off-peak

consumption values of the prior 6 hours are used for training the ML algorithms.

Figure 2.5: Trained Model Accuracy Testing for Third and Fourth Dataset

The presentation of the third and fourth data baseload model can be shown in
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(2.6),

P (Y |x1, x2, ..., x6) (2.6)

where Y is the consumption value of the group for the next time interval.

x1, x2, ..., x6 are the prior 6 hours historical consumption values with one-hour res-

olution. All of the values in (6) are the consumption values during the off-peak

period.

2.2.6 Training

Scikit-learn is used to implement the ANN, KNN and RR algorithms, which

is a machine learning library embedded in Python. A three-hidden-layers ANN

structure is built in this project and the hyper-parameter of KNN is set to be 3. The

coefficient of determination (R2) and root-mean-square error (RMSE) are used to

evaluate the performance of the trained model. These metrics are presented in

(2.7)-(2.8),

R2 = 1−
∑

i(yi − y
predict
i )2∑

i(yi − ymean)2
(2.7)

RMSE =

√∑T
i=1(y

predict
i − yi)2
T

(2.8)

where yi is the actual value for the test sample i. The ypredicti is the predicted

value for the test sample i. The ymean is the average value for the T test samples.
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Note that the closer R2 value is to 1, the more accurate the baseload model is. The

smaller RMSE represents a higher accuracy of prediction.

2.2.7 Consumption Baseline Accuracy: First and Second Datasets

As mentioned before, the customer categories are formed based on customers’

demographic information. For each class of customers, e.g. medium income with

1-2 occupants and no child, groups of 20-100 customers are formed. Different ML

algorithms are trained for each group to predict their baseload load. Table 2.4 lists

the accuracy of the trained model for the first and second datasets where the res-

olution is 15-mins. The prior 8 hours consumption values are used to train the

model. The results suggest that the model accuracy increases when larger sample

groups are used. The more people in the training model, the more accurate the

trained model is. The models trained by ANN and RR have higher accuracy com-

pared with the trained model using KNN. However, ANN needs more training

time. Thus, in most of the cases, RR is utilized to get customers’ baseload.

In order to exhibit the accuracy of the trained model, the actual values versus

predicted values are shown in Fig. 2.6. The test samples are randomly picked

from the test data. The evaluation metric values are shown in the figures. Fig. 2.6

confirms that the trained model is able to predict the baseload consumption with

very high accuracy.

As can be seen, some of the predicted values exactly match the true values.

Furthermore, Fig. 2.7 presents an exemplary result of consumption baseline load
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Table 2.4: Accuracy of the Trained Model for Different Size of Customers’ Group:

Medium Income, 1-2 occupants, no Child

Metrics Number of

Customers

ANN KNN RR

R2 20 0.900 0.880 0.908

RMSE (kW) 20 6.240 6.852 5.986

R2 30 0.943 0.932 0.948

RMSE (kW) 30 7.259 7.900 6.883

R2 50 0.959 0.944 0.962

RMSE (kW) 50 10.001 11.703 9.644

R2 100 0.982 0.974 0.983

RMSE (kW) 100 14.328 17.002 13.961

calculation.

Note that Fig. 2.7 shows the off-peak and on-peak periods in order to provide a

comparison to actual and predicted summed consumption values on Jul. 3rd. Due

to the highly accurate baseload load model, in the following study, the customers’

baseloads predicted by these trained models are considered as their true baseload.
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Figure 2.6: An Example of Trained Model Accuracy for First and Second Round

Dataset

Figure 2.7: An Exemplary Result of Baseload Load Calculation: Aggreated

Consumption of 60 Customers
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2.2.8 Consumption Baseline Accuracy: Third and Fourth Datasets

Similarly, the customer categories are formed based on customers’ demographic

information using third and fourth datasets. Table 2.5 presents the accuracy of the

trained model for the third and fourth datasets, the resolution of which is one hour.

The same effect can be seen in Table 2.5. The model accuracy increases when larger

sample groups are used. The models trained by ANN and RR have higher accu-

racy compared with the trained model using KNN. For the analysis of the third

and fourth dataset, RR is used to predict customers’ baseload model.

Due to the difference of resolution, the accuracy of the trained model and an

exemplary result of baseload calculation are shown in Fig. 2.8 and Fig. 2.9. The

test samples are randomly picked from the test data. Furthermore, the evaluation

metric values are shown in Fig. 2.8.

Figure 2.8: An Example of Trained Model Accuracy for Third and Fourth Round

Dataset
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Table 2.5: Accuracy of the Trained Model for Different Size of Customers’ Group:

1-2 occupants, less1500sqft, after 2016

Metrics Number of

Customers

ANN KNN RR

R2 20 0.935 0.914 0.940

RMSE (kW) 20 4.220 4.871 4.074

R2 30 0.943 0.943 0.942

RMSE (kW) 30 5.601 5.591 5.657

R2 50 0.955 0.940 0.955

RMSE (kW) 50 8.349 9.644 8.354

R2 100 0.974 0.970 0.973

RMSE (kW) 100 13.124 14.028 13.174

As can be seen, the baseload models for the third and fourth datasets are highly

accurate. Some of the predicted values exactly match the true values.
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Figure 2.9: An Exemplary Result of Baseload Calculation: Aggreated

Consumption of 60 Customers

Note that Fig. 2.9 shows the off-peak and on-peak periods in order to provide

a comparison to actual and predicted summed consumption values on Jul. 3rd.

Due to the highly accurate baseload model, in the following analysis of the third

and fourth datasets, the customers’ baseloads predicted by these trained models

are considered as their true baseload.

The datasets provided by SRP is shown in this chapter. The machine learn-

ing algorithms, including ANN, KNN, and KRR, are utilized to predict customers’

baseload during the on-peak period. The trained baseload model is highly accu-

rate. The customers’ consumption baseloads predicted by the trained baseload

model in chapter 3 are considered as customers’ true baseload.
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Chapter 3

PROJECT RESULTS

The first and second datasets analysis will be shown in this chapter first. The

third dataset analysis and corresponding one demographic factor analysis will be

presented next. Finally, the analysis of the fourth dataset, which is emergency

demand response data, will be exhibited.

3.1 First and Second Datasets Analysis

3.1.1 Customers Responsiveness for the First and Second Datasets

For the first and second dataset analysis, a decision-tree-like approach is ap-

plied to categorize customers based on their demographic information such as in-

come level, number of occupants, and if they have Children. However, the cus-

tomers are randomly picked from the local utility data pool and the demographic

data information of those customers is not evenly distributed. For some of the

demographic categories, there are only a few customers, which is not enough to

conduct the data-driven analysis. Due to this issue, we mainly focus on the fol-

lowing seven categories shown in Table 3.1 for this study.

The analysis of the first and second datasets for the E21 has been shown in Fig.

3.1, 3.2 and 3.3. The blue bar shows the average predicted consumption during the
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Table 3.1: Analyzed Demographic Categories for the First Round Dataset

Categories Income Level Number of Occupants Child

1 High-Income 1-2 people no child

2 High-Income 3-5 people no child

3 High-Income 3-5 people have children

4 Medium-Income 1-2 people no child

5 Medium-Income 3-5 people no child

6 Medium-Income 3-5 people have children

7 Low-Income 1-2 people no child

on-peak periods. The orange bars represent the average load reduction during the

on-peak periods. The red percentage values are the percentage of load reduction

for each category. For each demographic category, 60 customers are aggregated

and analyzed as a group. Table 2.4 confirms that an accurate prediction can be

obtained with this number of customers in a group. The detailed baseload model

accuracy can be seen in the Appendix.

As can be seen, the category “High-income, 3 to 5 occupants, having child” has

the highest energy consumption and load reduction during on-peak. It is revealed

that if having children may have a great impact on high-income customer groups.

In contrast, the least percentage reduction is observed for low-income customers.
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Figure 3.1: First Round Dataset Analysis for E21 Summer Peak, 60 Households in

Each Group

Figure 3.2: First Round Dataset Analysis for E21 Summer (May and Jun), 60

Households in Each Group
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Figure 3.3: First Round Dataset Analysis for E21 Summer (Sep and Oct), 60

Households in Each Group

The lower percentage of consumption reduction can have multiple reasons. For

example, this group of customers may not have programmable thermostats, or

maybe pre-occupied with different other life challenges. To further understand this

group, a more detail analysis of this group is conducted using the second dataset.

From this analysis, we can conclude that the income level is greatly related to the

customers’ behavior during the on-peak periods. Comparing Fig. 3.1, 3.2, and

3.3, the load reduction value is higher during the Summer Peak periods, which is

consistent with the designed incentives, i.e. higher on-peak pricing.

The analysis of the first and second datasets for the E26 DR program is also

shown in Fig. 3.4, 3.5 and 3.6.

As can be seen from Fig. 3.4, 3.5, and 3.6, the average load reduction values
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Figure 3.4: First Round Dataset Analysis for E26 Summer Peak, 60 Households in

Each Group

Figure 3.5: First Round Dataset Analysis for E26 Summer (May and Jun), 60

Households in Each Group
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Figure 3.6: First Round Dataset Analysis for E26 Summer (Sep and Oct), 60

Households in Each Group

of E26 customers during on-peak periods are very small compared with the re-

ductions in E21. We even find negative values. However, the variance of load

reduction for E26 is large, and the average representation of results is inconclu-

sive. We further present the result of E26 and E21 in the next section and give the

explanation of why the average load reduction of E26 is small or even negative.

The detailed analysis results in this section are exhibited in Appendix.

3.1.2 Detailed Analysis for the First and Second Datasets

Two exemplary plots of average consumption comparison for E21 and E26 have

been shown in Fig. 3.7 and Fig. 3.8. The blue curve shows the predicted customers’

baseload during the on-peak periods. The red curve represents the actual energy
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Figure 3.7: An Example of Average Consumption Comparison for “High-Income,

3-5 Occupants, No Child” Category During On-Peak Period in July and August

E21

Figure 3.8: An Example of Average Consumption Comparison for “High-Income,

3-5 Occupants, No Child” Category During On-Peak Period in July and August

E26

consumption. As can be seen in Fig. 3.7, there is a clear load reduction and load

shifting effect happening during the on-peak periods. However, in Fig. 3.8, due

to the long on-peak periods and smaller price gap, the customers who participate
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in the E26 tend to reduce their loads at the beginning of the on-peak periods. Af-

ter that, when the time is close to 6 p.m., people may come back home and need

to consume more electricity, such as cooking, which leads to increased electricity

consumption and less responsiveness to on-peak pricing. However, the load re-

duction effect can be seen again when the time is close to the end of the on-peak

periods. We can see the actual load consumption is almost changing around the

predicted consumption.

Figure 3.9: An Example of Daily Consumption Comparison in July 3rd for

“High-Income, 3-5 Occupants, Have Child” Category During On-Peak Period in

July and August E21

Two exemplary plots of daily consumption comparison E21 and E26 are shown

in Fig. 3.9 and Fig. 3.10. Fig. 3.9 and Fig. 3.10 show an example of daily actual and

predicted load consumption curve. Although the red curve is not smooth like the

average load curve, we can still clearly observe the load reduction and load shifting
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Figure 3.10: An Example of Daily Consumption Comparison in July 3rd for

“High-Income, 3-5 Occupants, Have Child” Category During On-Peak Period in

July and August E26

effect in the E21 plot. Moreover, the behavior of the customers who participate in

E26 is further shown in this figure. The predicted baseload values are really close

to the actual consumption values, which means that the customers in E26 provide

less average load reduction during the on-peak periods.

Two histogram examples of load reductions for E21 and E26 customers are il-

lustrated in Fig. 3.11 and Fig. 3.12. The load reduction values during the on-peak

periods almost follow a Gaussian distribution. Most of load reduction values in

E21 are positive. However, almost half of the load reduction values in E26 are neg-

ative, and the center of them is around 0. The variance of load reduction in E26 is

slightly higher than the variance of load reduction in E21, which is mainly due to

the long on-peak periods.
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Figure 3.11: An Example of Load Reduction Histogram for “High-Income, 1-2

Occupants, No Child” Category During On-Peak Period in July and August E21

Figure 3.12: An Example of Load Reduction Histogram for “High-Income, 1-2

Occupants, No Child” Category During On-Peak Period in July and August E26

Two scatter plot examples for the E21 and E26 comparison during the on-peak

period has been shown in Fig. 3.13 and Fig. 3.14.The two scatter plots show the

changing of the uncertainty of customers’ behavior as time changing. For the cus-
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Figure 3.13: An Example of Scatter Plot for the E21 Comparison for

“High-Income, 1-2 Occupants, No Child” Category During On-Peak Period in

July and August E21

Figure 3.14: An Example of Scatter Plot for the E26 Comparison for

“High-Income, 1-2 Occupants, No Child” Category During On-Peak Period in

July and August E26
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tomers in E21, almost all of the load reduction points are positive, and the un-

certainty of customers’ behavior is larger towards the end of the on-peak period.

The behavior uncertainty of customers in E26 becomes more random after 6 p.m.

in Fig. 3.14. This again shows the fact that after around 6 p.m. people come back

home, and the uncertainty of behavior of customers is increased due to their essen-

tial electricity usage, e.g. cooking appliances. These two figures present the impact

of on-peak electric price and duration on customers’ behavior and the changing of

customers’ price responsiveness during the on-peak periods.

3.2 Third Datasets Analysis

3.2.1 Customers Responsiveness for the Third Dataset

The third dataset contains only low-income customers in the local utility. For

analyzing the dataset of low-income customers, we focus on three demographic

factors, including the number of occupants and two new factors: livable space

and start date. The start date refers to when the customer participated in the local

utility program. The customers whose start date is before 2016 are considered old

customers in this study. The customers whose start date is after 2016 are treated

as new customers in this study. The old customers are assumed to have more

knowledge and experience about their current DR plans than new customers. The

same approach is used to analyze low-income customers’ consumption during the

on-peak periods.
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There are 60 households in each group in order to keep a highly accurate baseload

model. There are enough customers to train a highly accurate baseload model, ex-

cept the following three categories for E26 low-income customers.

• 6-max Occupants, Less 1500 sqft, After 2016

• 1 2 Occupants, More 2500 sqft, After 2016

• 6 max Occupants, More 2500 sqft, After 2016

We have not included these three categories in this analysis.

There are a few categories in which there are less than 60 customers. However,

the accuracy of the baseload model is still relatively high with less than 60 cus-

tomers. We included these categories in our analysis. The detailed low-income

customers’ analysis results have been shown in the Appendix. In order to exhibit

better results visualization, several plots are shown below. In these figures, the

impact of the number of occupants and livable space on the customers’ behavior

during the on-peak periods is revealed while the start date is fixed.

Fig. 3.15 and Fig. 3.16 show the same results with two different arrangements

in order to facilitate visual analysis of the impact of the number of occupants and

livable space on low-income customers’ consumption reduction during on-peak

periods when the start date is fixed as ‘after 2016’. As can be seen, the customers’

percentage of load reduction values are increasing as the number of occupants or

the livable space increases. The new local utility customers (start date is ‘after
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Figure 3.15: An Example of Results Visualization for Low-Income Customers in

Summer Peak E21: Fixed Start Date (After 2016), Compare Impact of Number of

Occupants

Figure 3.16: An Example of Results Visualization for Low-Income Customers in

Summer Peak E21: Fixed Start Date (After 2016), Compare Livable Space
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2016’) tend to reduce more load during the on-peak periods, if they have more

livable space or there are more people living in the house.

Figure 3.17: An Example of Results Visualization for Low-Income Customers in

Summer Peak E21: Fixed Start Date (Before 2016), Compare Impact of Number of

Occupants

Fig. 3.17 and Fig. 3.18 exhibit the impact of the number of occupants and

livable space on the old low-income local utility customers’ behavior. As can be

seen, the old low-income local utility customers’ behavior almost follows the same

trend during the on-peak periods, except the customers in 1-2 occupant, “1500 2500

sqft, before 2016” category. In Fig. 3.17 and Fig. 3.18, the behavior of old low-

income local utility customers has been shown. The number of occupants and

livable space play an important role in residential customers’ behavior during the

on-peak periods.

Fig. 3.19 shows the percentage of load reduction comparison for start date (af-
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Figure 3.18: An Example of Results Visualization for Low-Income Customers in

Summer Peak E21: Fixed Start Date (Before 2016), Compare Livable Space

Figure 3.19: An Example of Results Visualization for Low-Income Customers in

Summer Peak E21: Impact of Start Date (Old and New Customers)

ter 2016 and before 2016) for E21. From Fig. 3.19, in most of the cases, the old

customers provide more percentage of load reduction, except three customers cat-
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egories, which are “6 max people, more 2500 sqft”, “1 2 people, more 2500 sqft”,

and “6 max, less 1500 sqft”. However, note that there are not enough customers in

“6 max people, more 2500 sqft” and “1 2 people, more 2500 sqft” categories. Only

22 customers are in “6 max people, more 2500 sqft” category, and 55 customers in

the “6 max people, more 2500 sqft” category. One reason why the load reduction

values don’t follow the same trend (the new customers in these two categories pro-

vide more percentage of load reduction than old customers) is the data bias issue.

However, there is one special category which is the “6 max, less 1500 sqft” for E21.

There are enough customers in this category, but the new customers in this cate-

gory are willing to provide more percentage of load reduction compared with the

old customers.

3.2.2 Detailed Analysis for the Third dataset

The variance of load reduction for E26 low-income customers is large, the aver-

age representation of results is inconclusive. Thus, we present the detailed result

of E26 and E21 low-income customers in the following sections.

Fig. 3.20, Fig. 3.21, Fig. 3.22 and Fig. 3.23 present the average customers’

baseload and average customers actual energy consumption. The blue curve shows

the predicted customers’ baseload during the on-peak periods. The red curve rep-

resents the actual energy consumption. The four figures show the impact of de-

mographic factors, electric price, and duration on customers’ behavior during the

on-peak periods. In Fig. 3.20, the load reduction of customers in “1500 2500 sqft, 1-

50



Figure 3.20: An Example of Average Consumption Comparison for “1500 2500

sqft, 1-2 Occupants, After 2016” Category During On-Peak Period in July and

August E21

Figure 3.21: An Example of Average Consumption Comparison for “More Than

2500 sqft, More Than 6 Occupants, Before 2016” Category During On-Peak Period

in July and August E21
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Figure 3.22: An Example of Average Consumption Comparison for “1500 2500

sqft, 1-2 Occupants, After 2016” Category During On-Peak Period in July and

August E26

Figure 3.23: An Example of Average Consumption Comparison for “1500 2500

sqft, 3-5 Occupants, Before 2016” Category During On-Peak Period in July and

August E26
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2 Occupants, After 2016” category is smaller than the load reduction of customers

in “More Than 2500 sqft, More Than 6 Occupants, Before 2016” category. In Fig.

3.22, the load reduction effect can be seen all over the on-peak periods for the E26

program. However, Fig. 3.23 shows that customers may increase energy consump-

tion level during the on-peak periods. As can be seen, the intersection point of the

baseload curve and actual consumption curve is very close to the time when the

people usually come back home after work. The customers’ consumption is greater

than the predicted baseload. This is the reason why there is negative average load

reduction for some of the categories. These customers consume less energy at the

beginning of the on-peak periods, but when they go home, the energy consump-

tion rise and exceed the predicted baseload. It leads to a negative calculated load

reduction value.

Figure 3.24: An Example of Load Reduction Histogram for “Less 1500 sqft, 3-5

Occupants, After 2016” Category During On-Peak Period in July and August E21
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Figure 3.25: An Example of Load Reduction Histogram for “Less 1500 sqft, 3-5

Occupants, After 2016” Category During On-Peak Period in July and August E26

Fig. 3.24 and Fig. 3.25 show the histogram of on-peak reduction values for E21

and E26 low-income customers. As can be seen, the reduction values almost follow

a Gaussian distribution. In Fig. 3.24, the mean of reduction values is positive and

close to 30 kW. However, the mean of reduction values in Fig. 3.25 is close to 0 kW.

We can observe several negative values in Fig. 3.24, but lots of negative values in

Fig. 3.25. This shows the reason why the most of percentage values of average load

reduction of E26 customers in Appendix table are small or even negative, while

most of the percentage values of average load reduction of E21 customers are large

and non-negative. The two figures also illustrate the impact of on-peak electric

price and duration on the customer’s behavior. Higher on-peak electric price and

smaller duration lead to a higher customers’ price responsiveness during the on-

peak periods.
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Figure 3.26: An Example of Scatter Plot for the E21 Comparison for “1500 2500

sqft, 3-5 Occupants, After 2016” Category During On-Peak Period in July and

August E21

Figure 3.27: An Example of Scatter Plot for the E21 Comparison for “1500 2500

sqft, 3-5 Occupants, After 2016” Category During On-Peak Period in July and

August E26
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Two exemplary scatter plots are shown in Fig. 3.26 and Fig. 3.27, which exhibits

the details of customers’ price responsiveness for each the on-peak intervals. Many

large positive load reduction values are observed in Fig. 3.26. The variance is

almost unchanged. However, as can be seen, the variance of load reduction values

increases over time in Fig. 3.27, which means that the customers’ behavior becomes

more random when it gets close to the end of the on-peak periods. A large load

reduction variance is observed after 5 pm. It is time for people to come home from

work, and people have their own schedule after coming back home. For example,

they may need to use more energy for a series of behavior such as cooking and

watching TV. This results in more negative load reduction values that are observed,

and the increased uncertainty of customers’ behavior.

3.2.3 One Demographic Factor Analysis for the Third Dataset

In this third dataset analysis, one demographic factor analysis is used to reveal

which demographic factors have the largest impact on low-income customers’ be-

havior during on-peak periods. The same approach is used for one demographic

factor analysis. For each demographic factor analysis, all of the customers who

have the same demographic factors are used. This analysis exhibits the impact of

the household’s livable space, number of occupants and start date on low-income

customers’ price responsiveness during the on-peak periods. Percentage of aver-

age load reduction values are considered in this analysis. The detailed analysis

results are shown in the Appendix.
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Figure 3.28: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E21: Livable Space

Figure 3.29: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E26: Livable Space

Fig. 3.28 and Fig. 3.29 show the impact of the household’s livable space. As

can be seen, the household’s livable space plays an important role in low-income
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customers’ responsiveness. The larger the house is, the higher the percentage of

load reduction the customers tend to provide during the on-peak periods for both

E21 and E26 low-income customers. This is expected as people with smaller living

space may have a less flexible load (e.g. only one air conditioning unit versus two

for larger living spaces) to reduce their consumption. E21 low-income customers

provide more load reduction comparing with E26 low-income customers. In Fig.

3.28, the E21 low-income customers who live in a house having more than 2500

sqft provide more than twice the load reduction as much as the customers who

live in a house having 1500 to 2500 sqft. The E21 low-income customers who live

in a house having 1500 to 2500 sqft provide almost twice the load reduction as

much as the customers who live in a house having less than 1500 sqft. In Fig. 3.29,

only a small difference between each class can be observed. The percentage of load

reduction values in Fig. 3.29 are small compared with the values in Fig. 3.28.

Fig. 3.30 and Fig. 3.31 exhibit the impact of the number of occupants. For

E21 low-income customers, the more occupants living in the house, the more load

reduction they tend to provide during the on-peak periods. The households that

have 3-5 occupants reduce twice as much as the households that have 1-2 occu-

pants. The households having more than 6 occupants provide the largest percent-

age of load reduction. However, for E26 low-income customers, the households

that have 3 5 occupants provide the least load reduction, while the households

that more than 6 occupants provide the most load reduction. As can be seen, the
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Figure 3.30: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E21: Number of Occupants

Figure 3.31: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E26: Number of Occupants

E26 low-income customers percentage of load reduction values are much smaller

than E21 low-income customers’ percentage of load reduction values.
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Figure 3.32: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E21: Start Date

Figure 3.33: Percentage of Load Reduction During On-Peak, An Example of One

Demographic Factor Analysis for the E26: Start Date

Another analysis compares the load reduction effect between the new cus-

tomers (start date before 2016) and the old customers (start date after 2016) in Fig.
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3.32 and Fig. 3.33. As can be seen, for E21 low-income customers, the old cus-

tomers tend to provide more load reduction and new customers reduce less dur-

ing the on-peak period. This result shows that the customers start to learn their

price plan policy and how to adjust their consumption in response to the on-peak

pricing after they continue to be local utility customers for more than a certain

period of time. These customers get more knowledge and experience over time.

This knowledge and experience lead customers how to make a rational choice in

order to save some money for their electric bill. However, for E26 low-income cus-

tomers, this start date has the opposite effect. The new customers tend to provide

more load reduction and old customers reduce less during the on-peak period. It is

shown that more experience of their TOU plan makes customers pay less attention

to the on-peak load reduction. The main reason why this happens is that the on-

peak price of E21 is much larger than the on-peak price of E26, while the on-peak

duration of E26 is much longer than the on-peak duration of E21.

3.3 Fourth Dataset Analysis

3.3.1 Customers Responsiveness for the Fourth Dataset

The Fourth dataset contains all local utility customers who participated in the

emergency demand response (EDR) program with different rate policies in 2018.

For each customer in this dataset, there is a smart nest thermostat installed. SPR

communicates each DR event through the customers’ thermostat. Nest thermostat
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allows local utility to control the thermostat temperature, however, the customers

have the right to re-adjust their device at any time. Thermostat settings during an

event may seem extreme and may adjust frequently. These settings are designed to

maximize the pre-cooling or conservation impacts. DR events typically occur be-

tween noon and 9 p.m. on weekdays only (holidays excluded). Customers receive

local utility bill credit for participating in this program.

In this dataset, there are totally 9 DR events in 2018. The event time has been

presented in Table 1. In this analysis, we mainly focus on E23 customers. Note that

E23 is the flat rate for residential customers in local utility. The same strategy in

the third dataset analysis is used to predict customers’ baseload. However, due to

the characteristic of EDR, utility needs to notify customers one hour in advance.

This issue impacts customers electricity consumption within one hour before the

beginning of the DR event. Thus, we predict customers’ baseload from one hour

before the beginning of the DR event.

3.3.2 All E23 Customers Analysis for the Fourth Dataset

An analysis is conducted for all E23 customers in the fourth dataset.

Fig. 3.34 shows an example of baseload prediction for the fourth dataset for

only E23 customers. The blue curve is the predicted baseload. The red curve is

the actual customers consumption. The two red marked points are the start and

end points of the DR event. The DR event time in Fig. 3.34 is 17:00 to 19:00 at

Jun/22/2018. As can be seen, customers reduce their load dramatically after the
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Figure 3.34: An Example of EDR Consumption Baseline and Actual Consumption

Comparison for All E23 Customers at Jun/22/2018 (17:00 - 19:00)

start of the DR event. The customers consumption remains at a very low level

during the DR event. local utility adjusts the nest thermostat temperature setting to

precool the customers houses before the start of DR event and cool their customers

house after the end of DR event, two spikes can be seen in Fig. 3.34. This shows

that the baseload model is accurate enough to detect the abnormal period before

and after the DR event.

Fig. 3.35 and Fig. 3.36 present scatter plots of load reduction values during the

DR events by grouping all E23 customers in the fourth dataset. Fig. 3.35 and Fig.

3.36 exhibit the customers’ load reduction and behavior during conservation pe-

riods from two different aspects. Fig. 3.35 shows consumption reductions during

various time periods of conservation events. Fig. 3.36 shows load reductions for

first, second, and third intervals of all conservation events despite varying start
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Figure 3.35: An Example of All E23 Customers Load Reduction Scatter Plot for

Each Hour During the DR event at Jun/22/2018 (17:00 - 19:00)

Figure 3.36: An Example of All E23 Customers Load Reduction Scatter Plot for ith

Hour During the DR event at Jun/22/2018 (17:00 - 19:00)

and end times of each event. The detailed analysis results are shown in the Ap-

pendix.
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3.3.3 One Demographic Factor Analysis for the Fourth Dataset

One demographic factor analysis has been done in the fourth dataset to reveal

the customers behavior considering different demographic factors. The same ap-

proach is used for one demographic factor analysis. For each demographic factor

analysis, all of the customers who have the same demographic factors are used.

This analysis shows the impact of the household’s income level and the number of

occupants on customers’ price responsiveness during DR events. The percentage

of the average load reduction values is considered in this analysis.

Figure 3.37: One Demographic Factor Analysis, Percentage Load Reduction

Result: Income Level

Fig. 3.37 and Fig. 3.38 show all of the percentage of the load reduction results

for one demographic factor analysis in the fourth dataset. More detailed results
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Figure 3.38: One Demographic Factor Analysis, Percentage Load Reduction

Result: Number of Occupants

are shown in the Appendix.

Figure 3.39: One Demographic Factor Analysis, Average Percentage Load

Reduction Result: Income Level

66



Figure 3.40: One Demographic Factor Analysis, Average Percentage Load

Reduction Result: Number of Occupants

Fig. 3.39 and Fig. 3.40 exhibit the average percentage of load reduction results

for each income level and the number of occupants. The average percentage of

load reduction is computed by calculating the average load reduction values for

each demographic factor group overall 9 EDR periods. In Fig. 3.39, low-income

and medium-income customers perform similarly during the DR events. More-

over, high-income customers tend to provide more load reduction during the DR

events comparing with the other two groups. As can be seen in Fig. 3.40, the aver-

age percentage of load reduction values are increasing as the number of occupants

living in the house is increasing.
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3.4 Summary

The customers’ behavior for different price plans and different demographic

factors during the on-peak period is presented in this chapter.

The results of the first and second dataset analyses show that the demographic

factors play an important role in customers’ behavior, which is reflected by how

much load reduction the customers in each category will provide. The impact

of income level and if having child has been shown in the first round dataset. The

high-income and medium-income level customers have relatively high load reduc-

tion. One reason is that they may have more interruptable loads comparing with

low-income customers. If having child places an important role in high-income

families. Although it leads to higher daily electricity consumption, it also results

in a larger load reduction during the on-peak period.

The impact of the number of occupants, livable space and start date has been

exhibited in the third round analysis. For E21 customers, the more people that

live in the house, the more load reductions the household customers will tend to

provide. For both E21 and E26 customers, if the house is larger, the customers

will have a higher capability to reduce more load during the on-peak period. It’s

also revealed that the start date of becoming customers is related to customers’

behavior during the on-peak period. For E21 customers, the more experience and

knowledge the customers have, the more rational choice the customers will make.

However, for E26 low-income customers, this start date has the opposite effect.
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The new customers tend to provide more load reduction and old customers reduce

less during the on-peak period. It is shown that more experience of their TOU plan

makes customers pay less attention to the on-peak load reduction.

For the fourth dataset analysis (emergency DR), high-income customers tend to

provide more load reduction during the DR events comparing with the other two

groups. Low-income and medium-income customers perform similarly during the

DR events. The more people that live in the house, the more load reductions the

household customers will tend to provide.

The analysis results in this chapter will be further utilized in the distribution

grid operation optimization model. The customers will be divided based on their

demographic information. The price responsiveness of each demographic cate-

gory will be represented by different Gaussian distributions. Monte Carlo Sim-

ulation (MCS) will be utilized to sample scenarios, which are used for chance-

constraint based SOCP-ACOPF, from these Gaussian distributions.

The next chapter will illustrate the chance-constraint based SOCP-ACOPF op-

timization model.
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Chapter 4

CHANCE-CONSTRAINT BASED SOCP-ACOPF

The chance-constraint is utilized to handle the optimization model that has

high uncertainty in its input data. In the distribution grid, the penetration of DERs

is increasing dramatically nowadays. Due to the uncertainty of DERs, the opera-

tion of the distribution system is facing huge challenges. In the distribution grid,

if the operator chooses to use and rely on more energy coming from DERs, the

distribution system will face higher risk due to the characteristic of DERs, namely

uncertainty and variability. However, chance-constraint can be powerful to over-

come uncertainty issues. For example, a violation threshold can be set to guarantee

that the solution of the model can have an acceptable risk level. By implementing

a chance-constraint, the operation of the distribution grid can be improved.

4.1 Uncertainty of Customers’ Price Responsiveness

From chapter 3, the customers’ behavior during the on-peak period for different

demographic categories is analyzed. The customers’ price responsiveness can be

represented as different Gaussian distributions.

An exemplary figure of the customers’ price responsiveness for different time

periods, demographic categories and price plans is exhibited in Fig. 4.1. The five

different Gaussian distributions are the probability density function (PDF) of the
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Figure 4.1: Customers’ Price Responsiveness for Different Time Periods,

Demographic Categories and Price Plans

customer’s price responsiveness. As can be seen from Fig. 4.1, for different elec-

tricity price plans, different time periods, different demographic categories, the

customer’s electricity usage behavior is different. If we don’t consider these dif-

ferences, but only use one Gaussian distribution to represent the price responsive-

ness of all customers at different time periods and different price plans, the green

curve in Fig. 4.1 is what we can obtain. Comparing with the other Gaussian dis-

tributions in Fig. 4.1, the green curve has higher variance, which means higher

uncertainty. This shows that analyzing customers’ behavior based on time peri-

ods, demographic categories and price plans can reduce the uncertainty of DR,

which will then improve the operation of the power system. The utility and opera-

tor can also benefit from these analyzed customers’ price responsiveness distribu-
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tions. For example, they can call the customer groups, which have less uncertainty

of customers’ behavior, to reduce consumption. They can target customer groups

that have larger uncertainty of customers’ behavior and provide less load reduc-

tion in order to find the reasons why these happen.

The Monte Carlo Simulation (MCS) is utilized to sample the scenarios from

these Gaussian distributions. However, due to the time limit, fake distributions are

used in this chapter. In future work, the obtained customers’ price responsiveness

distributions will be used for MCS scenarios sampling.

The following sections will illustrate chance-constraint SOCP-ACOPF.

4.2 Flowchart of Chance-Constraint Based Model

A flowchart of implementing chance-constraint in the optimization model is

shown in Fig. 4.2. This algorithm borrows the idea of contingency analysis in the

power system.

Firstly, in the flowchart, second-order-cone-programming (SOCP) ACOPF is

solved by using Cplex in order to obtain the dispatch of the distribution system.

The uncertainty and variability of DERs are not considered in the first step. The ini-

tial proportion of total DERs to total load Ipt % and Iqt % are defined as the dispatch

of the active and reactive power proportion of DERs without any uncertainty and

variability. They are calculated by the total dispatch of active and reactive power

of DERs divided by the total load in the system. Secondly, the Monte Carlo Sim-

ulation (MCS) is used to generate scenarios. In this study, due to the time limit,
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Figure 4.2: A Flowchart of Chance-constraint model

fake distributions are utilized for MCS scenarios sampling. The outputs of six DR

buses are formed by six different distributions. For solar panel generation distri-

butions, two different weather conditions are considered, which are sunny and

cloudy days. OpenDSS is a commercial software for simulating the distribution

grid. Power flow analyses are conducted by using MCS scenarios and OpenDSS.

After solving the power flow, the bus voltage magnitudes, angles, and energy in-

jection from substation are obtained for each MCS scenario. Thirdly, the algorithm

analyzes the result of each scenario, if the scenario violates the threshold. The

percentage of the number of violated scenarios zvio is calculated by the number of
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violated scenarios divided by the total number of scenarios. Fourthly, if the per-

centage of the number of violated scenarios zvio is greater than the violation pos-

sibility ε, the algorithm adjusts the proportion of DERs and retest the result using

MCS scenarios. The violation possibility ε here is defined as either the possibil-

ity of the scenario violating the threshold or the risk of using energy coming from

DERs. The threshold can be voltage deviation, power compensated from trans-

mission grid and if violating line capacity. If zvio is greater than ε, the coefficient τ

increases. The coefficient τ is defined as the reduction of the initial active power

proportion of total DERs to total load Ipt %. The coefficient τ is initialized to be 0,

and the increased τ is put into modified SOCP-ACOPF. The active power propor-

tion of total DERs to total load in the model is decreased by subtracting Ipt % by τ .

Since if the active power proportion of total DERs to total load is decreased, the

reactive power proportion of total DERs to total load will also need to decrease.

Note that Iqt % may not be equal to Ipt %. In this chapter, due to the reactive pro-

portion of DERs should be reduced in order to follow the decrease of the active

proportion of DERs, the reactive proportion of DERs is decreased by (
Ipt %−τ
Ipt %

)Iqt %.

The modified model is solved with less proportion of DERs and get dispatch of

the system. The new dispatch result and MCS scenarios are put in OpenDSS for

solving power flow analysis again. When the percentage of the number of violated

scenarios zvio is smaller than violation possibility ε, then the algorithm stops.
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4.2.1 Second Order Cone Programming (SOCP) ACOPF

For the ACOPF model, the global optimal solution is hard to obtain due to

the non-linear and non-convexity of AC power flow equations. In this section, a

SOCP-ACOPF model is introduced to guarantee the global optimal solution of the

ACOPF model.

The power flow equations are shown in (4.1)-(4.2), if Yi,k = Gi,k − jBi,k

Pi =
N∑
k=1

|Vi||Vk|(Gi,k cos θi,k −Bi,k sin θi,k) (4.1)

Qi =
N∑
k=1

|Vi||Vk|(Gi,k sin θi,k +Bi,k cos θi,k) (4.2)

If there are only two buses, the power flow equations would be presented in

(4.3)-(4.4) from bus i to bus j for time period t.

P line
i,j,t = Gi,jV

2
i,t +Gi,jVi,tVj,t cos θi,j,t −Bi,jVi,tVj,t sin θi,j,t (4.3)

Qline
i,j,t = Bi,jV

2
i,t +Bi,jVi,tVj,t cos θi,j,t +Gi,jVi,tVj,t sin θi,j,t (4.4)

If we introduce auxiliary values (4.5)-(4.7) [51],

Ui,t =
V 2
i,t√
2

(4.5)

Ri,j,t = −Vi,tVj,t cos θi,j,t (4.6)

Ii,j,t = −Vi,tVj,t sin θi,j,t (4.7)

and substitute them into power flow equations (4.3)-(4.4). The equations would be
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[51],

P line
i,j,t =

√
2Gi,jUi,t −Gi,jRi,j,t +Bi,jIi,j,t (4.8)

Qline
i,j,t =

√
2Bi,jUi,t −Bi,jRi,j,t −Gi,jIi,j,t (4.9)

For auxiliary values,

2Ui,tUj,t ≥ R2
i,j,t + I2i,j,t (4.10)

Ri,j,t = Rj,i,t (4.11)

Ii,j,t = −Ij,i,t (4.12)

After making ACOPF convex, the convex SOCP-ACOPF model is formulated.

When modeling SOCP-ACOPF, DERs are considered in the optimization model.

Due to the utility needs to ask customers how much load reduction they will pro-

vide, DR is modeled as the load reduction values that customers are willing to

provide. It depends on residential customers’ behavior. Three types of solar pan-

els are considered. For PV type 1, the reactive power output can be controlled by

its inverter. There is no control over the active power output. The output of the

active power of PV type 1 is always the maximum available active power capacity.

For PV type 2, it has no capability to provide reactive power support. The active

power output can be controlled for PV type 2. For PV type 3, both active and reac-

tive power can be controlled by its inverter. The charging rate, capacity limit, and

power balance are considered in battery storage modeling.

The objective function of the SOCP-ACOPF model is minimizing the total sys-
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tem cost.

Objective function

min
∑
t∈T

∑
(g,n)∈GN

ρDAt P grid
g,n,t +

∑
t∈T

∑
(i,n)∈PV 1

ρDt P
PV 1
i,n,t

+
∑
t∈T

∑
(i,n)∈PV 2

ρDt P
PV 2
i,n,t +

∑
t∈T

∑
(i,n)∈PV 3

ρDt P
PV 3
i,n,t

+
∑
t∈T

∑
(i,n)∈DR

ρDt P
DR
i,n,t (4.13)

Constraints

P line
i,j,t =

√
2Gi,jUn,t −Gi,jRi,j,t +Bi,jIi,j,t (i, j) ∈ L, t ∈ T, n ∈ BUS (4.14)

Qline
i,j,t =

√
2Bi,jUn,t −Bi,jRi,j,t −Gi,jIi,j,t (i, j) ∈ L, t ∈ T, n ∈ BUS (4.15)

2Ui,tUj,t ≥ R2
i,j,t + I2i,j,t (i, j) ∈ L, t ∈ T (4.16)

Ri,j,t = Ri,j,t (i, j) ∈ L, t ∈ T (4.17)

Ii,j,t = −Ii,j,t (i, j) ∈ L, t ∈ T (4.18)

− C line
i,j ≤ P line

i,j,t ≤ C line
i,j (i, j) ∈ L, t ∈ T (4.19)

GL
g,n ≤ P grid

g,n,t ≤ GH
g,n (g, n) ∈ GN, t ∈ T (4.20)

FL
f,n ≤ Qfacts

f,n,t ≤ FH
f,n (f, n) ∈ F, t ∈ T (4.21)

PDR
i,n,t ≤ DRmD

P
n,t (i, n) ∈ DR, t ∈ T (4.22)

P PV 1
i,n,t = Cpv1P

i,n,t (i, n) ∈ PV 1, t ∈ T (4.23)

QPV 1
i,n,t ≤

√
(Cpv1S

i,n,t )2 − (P PV 1
i,n,t )2 (i, n) ∈ PV 1, t ∈ T (4.24)
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P PV 2
i,n,t ≤ Cpv2P

i,n,t (i, n) ∈ PV 2, t ∈ T (4.25)

P PV 3
i,n,t ≤ Cpv3P

i,n,t (i, n) ∈ PV 3, t ∈ T (4.26)

(P PV 3
i,n,t )2 + (QPV 3

i,n,t )
2 ≤ (Cpv3S

i,n,t )2 (i, n) ∈ PV 3, t ∈ T (4.27)

SEi,n,t + P S
i,n,t = αCS,H

i,n (i, n) ∈ SG, t = 1 (4.28)

SEi,n,t + P S
i,n,t = SEi,n,t−1 (i, n) ∈ SG, t ∈ T, t 6= 1 (4.29)

RL
i,n ≤ P S

i,n,t ≤ RH
i,n(i, n) ∈ SG, t ∈ T (4.30)

CS,L
i,n ≤ SEi,n,t ≤ CS,H

i,n (i, n) ∈ SG, t ∈ T, t 6= 1 (4.31)

βCS,H
i,n ≤ SEi,n,t ≤ CS,H

i,n (i, n) ∈ SG, t = 24 (4.32)

∑
(g,n)∈GN

P grid
g,n,t +

∑
(i,n)∈DR

PDR
i,n,t +

∑
(i,n)∈PV 1

P PV 1
i,n,t +

∑
(i,n)∈PV 2

P PV 2
i,n,t

+
∑

(i,n)∈PV 3

P PV 3
i,n,t +

∑
(i,n)∈SG

P P
i,n,t = DP

n,t +
∑
j∈φn

P line
n,j,t t ∈ T (4.33)

∑
(g,n)∈GN

Qgrid
g,n,t +

∑
(i,n)∈DR

QDR
i,n,t +

∑
(i,n)∈PV 1

QPV 1
i,n,t +

∑
(i,n)∈PV 3

QPV 3
i,n,t

+
∑

(f,n)∈F

Qfacts
i,n,t = DQ

n,t +
∑
j∈φn

Qline
n,j,t t ∈ T (4.34)

0.92

√
2
≤ Un,t ≤

1.12

√
2

n ∈ BUS, t ∈ T, n 6= 1 (4.35)

Un,t = 1 n = 1, t ∈ T (4.36)

The constraints (4.14) and (4.15) are line flow from bus i to bus j for time period

t, which are derived from SOCP convex strategy. (4.16)-(4.18) are cone constraints.
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Line capacity limit constraint is given by (4.19) to guarantee that the line flow will

not exceed the line limit. The energy injection of substation and FACTS devices

are limited by (4.20) and (4.21) due to the capacity of substation and FACTS are

not infinite. For DR modeling, if bus n can provide DR service, the maximum

DR reduction is thirty percent of the load in bus n. The DR load reduction values

follow Gaussian distributions. Since the utility needs to ask the customers partici-

pating in DR programs, how much load reduction they are willing to provide for

a certain time period. In the SOCP-ACOPF, the dispatched DR reduction should

be less or equal to DRmD
P
n,t. The coefficient DRm is the maximum percentage of

the load reduction, which is set to 0.3. The DP
n,t is the total active power demand in

bus n. The constraints of PV type 1 are shown in (4.23) and (4.24). Reactive power

is controlled by inverter (4.23) and active power is equal to the maximum capacity

(4.24). The active control of PV type 2 constraint is presented in (4.25). The active

and reactive controls of PV type 3 are introduced in (4.26) and (4.27). The battery

storage power balance constraints are (4.28) and (4.29). For the first period, we as-

sume that there is stored energy in batteries, which is represented by the coefficient

α in (4.28). For the rest of the time period t, the stored and injecting energy should

be equal to the stored energy for the last time period t−1, which is shown in (4.29).

The minimum and maximum charging rates are shown in (4.30), which aims to re-

strict the battery storage energy injecting to the grid. Due to stored energy can not

exceed the capacity of the battery storage, the battery storage constraints are listed
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in (4.31) and (4.32). We assume that the stored energy cannot be zero for the last

time period, which is represented by the coefficient β in (4.32). The node active

and reactive power balancing constraints of the system are exhibited in (4.33) and

(4.34). In order to keep voltage magnitude within reasonable range, voltage limit

constraints are shown in (4.35) and (4.36). Due to the substation is connected to

bus 1, the voltage magnitude of bus 1 is equal to 1 p.u. for any period of time,

which is represented in (4.36).

4.2.2 Modified Second Order Cone Programming (SOCP) ACOPF

If the percentage of the number of violated scenarios zvio is greater than the vio-

lation possibility ε, the algorithm increases the τ , and then runs a modified SOCP-

ACOPF model for obtaining the dispatch of the distribution grid with less pro-

portion of DERs. In order to reduce the proportion of DERs in the SOCP-ACOPF

model, several adjustments are needed to implement.

The first adjustment is (4.37),

P PV 1
i,n,t =

Ipt %− τ
Ipt %

Cpv1P
i,n,t (i, n) ∈ PV 1, t ∈ T (4.37)

From constraint (4.23), the active power output of PV type 1 is equal to the max-

imum available active power capacity. The available active power capacity of PV

type 1 should be shrunk, as the proportion of DERs is reduced by τ . If there is no

Ipt %−τ
Ipt %

term, P PV 1
i,n,t will always be equal to Cpv1P

i,n,t which is a fixed value.

The second and third adjustments are adding another two constraints (4.38)
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and (4.39),

∑
(i,n)∈DR

PDR
i,n,t +

∑
(i,n)∈PV 1

P PV 1
i,n,t +

∑
(i,n)∈PV 2

P PV 2
i,n,t +

∑
(i,n)∈PV 3

P PV 3
i,n,t

≤ (Ipt %− τ)DP
n,t t ∈ T (4.38)

∑
(i,n)∈DR

QDR
i,n,t +

∑
(i,n)∈PV 1

QPV 1
i,n,t +

∑
(i,n)∈PV 3

QPV 3
i,n,t ≤ (

Ipt %− τ
Ipt %

)Iqt %DQ
n,t t ∈ T

(4.39)

the constraint (4.38) is added in order to limit the total active power output of

DERs. The constraint (4.39) is appended to modified SOCP-ACOPF for restricting

the reactive power output of DERs, as the proportion of DERs to load is decreased.

Since if the active power proportion of DERs is decreased, the reactive power pro-

portion of DERs will also need to decrease. Note that Iqt % is not equal to Ipt %. The

reactive proportion of DERs should be reduced to follow the decrease of the active

proportion of DERs. In this chapter, the reactive proportion of DERs is decreased

by (
Ipt %−τ
Ipt %

)Iqt %.

The modified SOCP-ACOPF model includes the same objective function (4.13).

The constraints are (4.14)-(4.22), (4.37), (4.24)-(4.36) and (4.38)-(4.39). The modified

SOCP-ACOPF model is exhibited in the following.
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Objective function

min
∑
t∈T

∑
(g,n)∈GN

ρDAt P grid
g,n,t +

∑
t∈T

∑
(i,n)∈PV 1

ρDt P
PV 1
i,n,t

+
∑
t∈T

∑
(i,n)∈PV 2

ρDt P
PV 2
i,n,t +

∑
t∈T

∑
(i,n)∈PV 3

ρDt P
PV 3
i,n,t

+
∑
t∈T

∑
(i,n)∈DR

ρDt P
DR
i,n,t

Constraints

P line
i,j,t =

√
2Gi,jUn,t −Gi,jRi,j,t +Bi,jIi,j,t (i, j) ∈ L, t ∈ T, n ∈ BUS

Qline
i,j,t =

√
2Bi,jUn,t −Bi,jRi,j,t −Gi,jIi,j,t (i, j) ∈ L, t ∈ T, n ∈ BUS

2Ui,tUj,t ≥ R2
i,j,t + I2i,j,t (i, j) ∈ L, t ∈ T

Ri,j,t = Rj,i,t (i, j) ∈ L, t ∈ T

Ii,j,t = −Ij,i,t (i, j) ∈ L, t ∈ T

− C line
i,j ≤ P line

i,j,t ≤ C line
i,j (i, j) ∈ L, t ∈ T

GL
g,n ≤ P grid

g,n,t ≤ GH
g,n (g, n) ∈ GN, t ∈ T

FL
f,n ≤ Qfacts

f,n,t ≤ FH
f,n (f, n) ∈ F, t ∈ T

PDR
i,n,t ≤ DRmD

P
n,t (i, n) ∈ DR, t ∈ T

QPV 1
i,n,t ≤

√
(Cpv1S

i,n,t )2 − (P PV 1
i,n,t )2 (i, n) ∈ PV 1, t ∈ T

P PV 2
i,n,t ≤ Cpv2P

i,n,t (i, n) ∈ PV 2, t ∈ T
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P PV 3
i,n,t ≤ Cpv3P

i,n,t (i, n) ∈ PV 3, t ∈ T

(P PV 3
i,n,t )2 + (QPV 3

i,n,t )
2 ≤ (Cpv3S

i,n,t )2 (i, n) ∈ PV 3, t ∈ T

SEi,n,t + P S
i,n,t = αCS,H

i,n (i, n) ∈ SG, t = 1

SEi,n,t + P S
i,n,t = SEi,n,t−1 (i, n) ∈ SG, t ∈ T, t 6= 1

RL
i,n ≤ P S

i,n,t ≤ RH
i,n(i, n) ∈ SG, t ∈ T

CS,L
i,n ≤ SEi,n,t ≤ CS,H

i,n (i, n) ∈ SG, t ∈ T, t 6= 1

βCS,H
i,n ≤ SEi,n,t ≤ CS,H

i,n (i, n) ∈ SG, t = 24

∑
(g,n)∈GN

P grid
g,n,t +

∑
(i,n)∈DR

PDR
i,n,t +

∑
(i,n)∈PV 1

P PV 1
i,n,t +

∑
(i,n)∈PV 2

P PV 2
i,n,t

+
∑

(i,n)∈PV 3

P PV 3
i,n,t +

∑
(i,n)∈SG

P P
i,n,t = DP

n,t +
∑
j∈φn

P line
n,j,t t ∈ T

∑
(g,n)∈GN

Qgrid
g,n,t +

∑
(i,n)∈DR

QDR
i,n,t +

∑
(i,n)∈PV 1

QPV 1
i,n,t +

∑
(i,n)∈PV 3

QPV 3
i,n,t

+
∑

(f,n)∈F

Qfacts
i,n,t = DQ

n,t +
∑
j∈φn

Qline
n,j,t t ∈ T

0.92

√
2
≤ Un,t ≤

1.12

√
2

n ∈ BUS, t ∈ T, n 6= 1

Un,t = 1 n = 1, t ∈ T

P PV 1
i,n,t =

Ipt %− τ
Ipt %

Cpv1P
i,n,t (i, n) ∈ PV 1, t ∈ T

∑
(i,n)∈DR

PDR
i,n,t +

∑
(i,n)∈PV 1

P PV 1
i,n,t +

∑
(i,n)∈PV 2

P PV 2
i,n,t +

∑
(i,n)∈PV 3

P PV 3
i,n,t

≤ (Ipt %− τ)DP
n,t t ∈ T
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∑
(i,n)∈DR

QDR
i,n,t +

∑
(i,n)∈PV 1

QPV 1
i,n,t +

∑
(i,n)∈PV 3

QPV 3
i,n,t ≤ (

Ipt %− τ
Ipt %

)Iqt %DQ
n,t t ∈ T

This modified SOCP-ACOPF model is used in the flowchart Fig. 4.2 to ob-

tain the new dispatch of the distribution grid with less proportion of DERs, if the

percentage of the number of violated scenarios zvio is greater than the violation

possibility ε.

4.2.3 Scenarios Generation Using Monte Carlo Simulation (MCS)

MCS method is utilized in this study in order to analyze the reliability of the

distribution grid under the uncertainty and variability of DERs. In the distribution

system, there are six buses that can provide DR service. There are five PV type 1,

five PV type 2 and five PV type 3. Because the inverter of PV type 1 can control

the reactive power and PV type 3 can control both active and reactive power, it is

not reasonable to sample active nor reactive power generation for PV type 1 and 3.

In this case, apparent power is sampled for the generation of PV types 1 and 3. In

each MCS scenario, the values include six active power output of DR, five apparent

power output of PV type 1, five active power output of PV type 2 and five apparent

power output of PV type 3. These values are drawn from different Gaussian dis-

tributions. Since the characteristics of residential customers’ behavior towards DR

buses are different from each other, six different Gaussian distributions are used

to sample DR reduction values. Due to PV generation is highly related to weather

conditions, two different Gaussian distributions are utilized to simulate the power
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generation of PV type 1, 2 and 3 under sunny and cloudy weather. The Gaus-

sian distribution for sunny weather has lower forecasting deviation and smaller

variance. The Gaussian distribution for cloudy weather has higher forecasting de-

viation and larger variance. In future work, all of the Gaussian distributions will

be obtained by using machine learning.

4.2.4 Case Study

IEEE 33 bus distribution system is used for the case study. The topology of the

IEEE 33 bus is shown in Fig. 4.3.

Figure 4.3: Topology of IEEE 33 Bus Distribution System

There are one substation and four feeders. All of four feeders are radial.

The DERs information is presented in Table 4.1. The table shows buses that are

connected with DR, PV types 1, 2 and 3, and battery.
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Table 4.1: DERs Information

DR PV1 PV2 PV3 Battery

Bus 7 2 9 2 2

Bus 8 6 15 18 6

Bus 24 12 21 22 12

Bus 25 18 25 25 29

Bus 30 29 33 33

Bus 32

The 13th time period from 12pm - 13pm is considered in this case study. For the

13th time period, the wholesale electricity price is higher than DERs price, which

means that if there is no uncertainty in DERs generation, DERs will provide as

much energy as possible in this time period. Moreover, the sun radiance is strong

during the 13th time period, and the available capacity of PV types 1, 2 and 3 tends

to be large.

4.2.5 Voltage Deviation

In this case study, the voltage deviation from the dispatched voltage value

is considered. The maximum percentage of the voltage deviation from the dis-

patched voltage is defined in 4.40.

If there are N scenarios, the actual voltage V a
i,j is smaller than the dispatch volt-
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age VDis,

V L
D = max{

VDis − V a
i,j

VDis
× 100%, i ∈ BUS, j ∈ {1, 2, ..., N}} (4.40)

The case study is simulated using Python. The SOCP-ACOPF and modified

SOCP-ACOPF optimization are solved by Cplex, and power flow analysis is solved

by OpenDSS. The result of the case study is presented in Fig. 4.4.

Figure 4.4: Voltage Deviation from the Expected Value for Different Proportion of

DERs

In Fig. 4.4, The voltage deviation V L
D is increasing as the proportion of DERs is

increased. This shows that if we reduce the proportion of DERs, the lower bound

of voltage (lowest voltage) will be close to the dispatched value. Comparing with

the small proportion of DERs case, if we use more DERs, the lowest voltage value

may far away from the desired value. Since the dispatched voltage values are

the solutions coming from the SOCP-ACOPF model, greatly deviating from the

dispatched values is not what operators expect. Due to the characteristic of one
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substation distribution grid (voltage is going down from substation to the end),

slightly increasing voltage will not harm the distribution grid, but improve the

power quality of the system. Thus, the voltage deviation that actual voltage is

smaller than desired voltage is considered in this study.

Figure 4.5: Number of Violated Scenarios: Voltage Deviation from the Expected

Value for Different Proportion of DERs

Since voltage values are not desired to greatly deviate from the dispatched

value, the voltage deviation from the dispatched voltage can be considered as one

chance-constraint criterion. We can set the voltage deviation smaller than a speci-

fied threshold and run the algorithm iteration shown in Fig. 4.2. In each iteration,

the algorithm counts how many scenarios violate the voltage deviation threshold.

A threshold of voltage deviation is set to be 1%. The number of violated scenarios

is recorded for each different proportion of DERs if the voltage deviation of the

scenario is greater than 1%. The result is shown in Fig. 4.5.

As can be seen in Fig. 4.5, the number of violated scenarios is decreasing, as
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we reduce the proportion of DERs. This means that the voltage will not be much

lower than the dispatched voltage value if we reduce the proportion of DERs.

We can also set one probability violation ε to stop the algorithm and output the

solution from modified SOCP-ACOPF, when the probability of violation is smaller

than the probability violation ε. The obtained solution can guarantee the possi-

bility of voltage deviation is smaller than the determined value. The probability

violation ε can be considered as the risk that the operator prefers. If the probability

violation ε is set to be 5%, the relationship between voltage deviation thresholds

and dispatched DERs is shown in Fig. 4.6.

Figure 4.6: Sensitivity Analysis of Dispatched DERs for Different Voltage

Deviation Threshold

The dispatched DERs is defined as the solution of modified SOCP-ACOPF sat-

isfying the chance-constraint (4.41).
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zvio ≤ ε (4.41)

From Fig. 4.6, the larger the voltage deviation threshold is, the more DERs

energy will be dispatched for a determined risk level value ε. As can be seen, the

small change of voltage deviation threshold has a large impact on the proportion

of dispatched DERs.

4.2.6 Energy Compensation from Transmission grid

In the case study, the energy that is compensated from the transmission grid

is considered. The compensated energy is equal to the mismatch between the dis-

patched and actual energy from the substation. The compensated can also be de-

fined as the reserves that the distribution grid needs in the real-time operation

from the transmission. The dispatched active and reactive power from substation

are denoted as P grid
Dis and Qgrid

Dis . The actual active and reactive power from substa-

tion are denoted as P grid
i and Qgrid

i .

If there areN scenarios, and the active and reactive power that are compensated

from transmission grid P grid
C and Qgrid

C can be

P grid
C = max{P grid

i − P grid
Dis , i ∈ {1, 2, ..., N}} (4.42)

Qgrid
C = max{Qgrid

i −Qgrid
Dis , i ∈ {1, 2, ..., N} (4.43)

The percentage of active and reactive power that are compensated from trans-
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mission grid P grid
C,% and Qgrid

C,% can be

P grid
C,% = max{P

grid
i − P grid

Dis

P grid
Dis

× 100%, i ∈ {1, 2, ..., N}} (4.44)

Qgrid
C,% = max{Q

grid
i −Qgrid

Dis

Qgrid
Dis

× 100%, i ∈ {1, 2, ..., N}} (4.45)

The case study results are shown in the Fig. 4.7 and 4.8.

Figure 4.7: Active and Reactive Power Compensated from Transmission Grid for

Different Proportion of DERs

The increasing proportion of DERs is corresponding to the increasing uncer-

tainty and variability in the distribution grid. From Fig. 4.7 and 4.8, the active

and reactive power compensated from the transmission grid are increasing, as the

proportion of DERs is increased. This shows that due to the characteristic of DERs,

namely uncertainty and variability, the compensated energy from the transmis-

sion grid is increasing if the uncertainty and variability in the distribution grid are

increased. The compensated energy from the transmission grid can also be consid-

ered as the backup from the transmission grid. The higher the uncertainty in the
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Figure 4.8: Percentage of Active and Reactive Power Compensated from

Transmission Grid for Different Proportion of DERs

distribution grid, the more backup from the transmission grid the substation will

tend to require.

Since the reserves from the transmission grid are sometimes limited, compen-

sating lots of energy from the transmission grid may bring troubles to system oper-

ation and undermine the reliability of the system. Moreover, the real-time electric-

ity price is much higher than the day ahead wholesale price, purchasing too much

energy from the real-time market will seriously affect customers and the utility’s

benefit. Requiring a large amount of backup from the transmission grid should be

avoided when dispatching the system. The compensated energy from the trans-

mission grid constraint can be considered as one chance-constraint criterion. This

case study applies a similar idea as Fig. 4.5. A threshold for compensated energy

is set to be 20%. If the percentage of the compensated energy from the transmis-

sion grid in the scenario is greater than 20%, the scenario is defined as the violated
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scenario. The algorithm records the number of scenarios violating the threshold

for different proportions of DERs. The result is exhibit in Fig. 4.9.

Figure 4.9: Number of Violated Scenarios: Energy Compensated from the

Transmission Grid for Different Proportion of DERs

Fig. 4.9 shows that the number of scenarios that violate the compensated en-

ergy threshold is increasing, as the proportion of DERs is increased. It can be seen

that the number of violated scenarios has increased dramatically after about 60%

of proportion of DERs. Besides, the number of violated scenarios becomes zero, if

the proportion of DERs is less than around 48%. The result indicates that dispatch-

ing more DERs in the distribution grid enlarges the uncertainty of DERs, which

results in requiring more energy compensated from the transmission grid.

A probability violation ε can be set to stop the algorithm when the number of

violated scenarios is lower than the determined value. The probability violation

ε can be considered as the risk that the system will have when dispatching DERs.

The algorithm will output the solution that can guarantee that the possibility of vi-
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olating the compensated energy threshold is less than the determined value. If the

probability violation ε is set to be 5%, the relationship between voltage deviation

thresholds and dispatched DERs is shown in Fig. 4.10.

Figure 4.10: Sensitivity Analysis of Dispatched DERs for Different Compensated

Energy Threshold

From Fig. 4.10, the larger the compensated energy threshold is, the more DERs

energy will be dispatched. The results can also be translated as the more DERs

will be dispatched, if there are enough reverses provided from the transmission

grid for a determined risk level.

4.2.7 Sensitivity Analysis of Probability Violation

The last study is the sensitivity analysis of probability violation. If the voltage

deviation threshold and the compensated energy threshold are set to be 1% and

20%, respectively, the result is shown in Fig. 4.11.

As can be seen, the dispatched DERs energy is increasing as the violation prob-
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Figure 4.11: Sensitivity Analysis of Dispatched DERs for Different Violation

Probability Threshold

ability increases. The small violation probability value refers to a conservative

operation strategy. The large violation probability value means an optimistic op-

eration strategy. Fig. 4.11 shows that the more conservative the operator is, the

less DERs will be dispatched. When operating the distribution grid with DERs,

conservative sometimes is related to higher system costs. The trade-off between

system cost and risk can be further studied in the future.

4.2.8 Summary

Chapter 4 illustrates one chance-constraint based SOCP-ACOPF. The SOCP-

ACOPF is a convex model, which means that the global optimal solution is guar-

anteed. Monte Carlo Simulation is used to sample the scenarios. The case study

results show the impact of the determined threshold on the solution of dispatched

DERs.
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Chapter 5

FUTURE WORK

Machine learning and chance-constraint based SOCP-ACOPF model will be the

main research direction for future work.

5.1 Machine Learning

The machine learning integrating with customers’ demographic information

can improve the representation of the uncertainty of DERs, which is already shown

in chapter 3 and chapter 4. One powerful exemplary result figure is Fig. 4.1.

Since demographic information can reduce the uncertainty of customers’ price re-

sponsiveness distribution, the socially-aware aggregation of DERs for operational

scheduling should be studied by implementing different machine learning algo-

rithms.

Combining machine learning in the ACOPF model will be one of the impor-

tant research direction in my future work. The accuracy of the trained model has

a direct impact on the uncertainty of DERs in the chance-constraint based SOCP-

ACOPF model. The higher the accuracy of the trained model, the less the uncer-

tainty of DERs will have. The operation of the distribution grid can be greatly

improved if the uncertainty of DERs is reduced.

Forecasting the generation of DERs is a regression problem. There are many
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well-established machine learning algorithms for regression such as ridge regres-

sion, LASSO, support vector regression, k-nearest neighbors, artificial neural net-

work and recurrent neural network.

Since different types of DERs have different characteristics, it is very important

to find the most appropriate machine learning algorithm for each type of DERs

data. Besides, after training the data using machine learning, providing the in-

terpretation of why this machine learning algorithm performs best is another key

research direction in my future work.

5.2 Chance-constraint

For the chance-constraint based model, there are three primary categories of

existing methods.

• Scenarios approach

• Sample average approximation

• Robust optimization based methods

For the scenarios approach method, multiple scenarios are used to estimate the

chance-constraint based model. Scenarios approach method searches the feasible

region of all scenarios in order to find the optimal solution. Scenarios approach

method can be implemented without any distribution assumption. It is a data-

driven based approach. However, the number of scenarios and the complexity of

scenarios are highly related to the solution. More scenarios and larger complexity
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of the scenarios result in a more conservative solution. If there are N scenarios

{ξi}Ni=1, the scenarios approach method can be formulated in the following [52].

min
x
cTx (5.1)

s.t. f(x, ξi) ≤ 0, ..., f(x, ξN) ≤ 0 (5.2)

In the distribution optimization model, due to the uncertainty and variability of

DERs, scenarios approach method can be utilized to implement chance-constraint

on ACOPF. However, the number of scenarios and the complexity of scenarios

require careful study.

The sample average approximation method is similar to what is applied in

chapter 4. It utilizes empirical distribution to approximate the true distribution

of the targeted problem, which can be formulated in the following [52].

min
x
cTx (5.3)

s.t.
1

N

N∑
i=1

[1{f(x, ξ) > 0}] ≤ ε (5.4)

In sample average approximation, empirical distribution is used to estimate the

possibility of violation. It can be formulated as a mixed integer programming us-
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ing big-M.

min
x,z

cTx (5.5)

s.t.f(x, ξ1)−Mz1 < 0 (5.6)

...

f(x, ξN)−MzN < 0 (5.7)

1

N

N∑
i=1

zi ≤ ε (5.8)

zi ∈ {0, 1} (5.9)

Sample average approximation methods can be utilized to implement chance-

constraint for ACOPF in distribution gird. It is a data-driven method. Scenarios are

needed to generate. However, Big-M is generally weak formulation. This short-

coming requires more research study.

Robust optimization related methods are searching for an optimal solution that

is feasible under a predefined uncertainty set. If the predefined uncertainty set

is defined to be U , uncertainties are represented by ξ ∈ U , the chance-constraint

programming and its robust counterpart can be formulated in the following [52].

min
x
cTx (5.10)

s.t. Pξ(x
i
0 + ξTxi ≤ 0, i = 1, 2, ...) ≥ 1− ε (5.11)

min
x
cTx (5.12)

s.t. xi0 + ξTxi ≤ 0 ∀ξ ∈ U , i = 1, 2, .. (5.13)
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Defining the uncertainty set is the most important part of using robust optimiza-

tion. A properly defined uncertainty set makes problems tractable, and can also

make the solution neither too conservative nor too risky. However, the robust op-

timization always needs huge computation.

In the distribution grid, the uncertainty of DERs should be properly defined in

the uncertainty set, and the robust optimization should be appropriately formu-

lated in the SOCP-ACOPF model.

In a distribution system, due to the characteristic of DERs, some of the con-

straints can be formulated as chance-constraints. For example, the voltage mag-

nitude constraint can be converted into the possibility of voltage magnitude Vi

violating the system criteria should be less than determined violation possibility ε.

P(V L ≤ Vi ≤ V H , i ∈ BUS) ≤ 1− ε

V L and V H are the bus voltage limits.

The line capacity limit constraint can be converted into the chance-constraint in

the following.

P(−C line
i,j ≤ P line

i,j ≤ C line
i,j , (i, j) ∈ L) ≤ 1− ε

The transmission grid repurchasing constraint, which restricts the energy that

is compensated from transmission grid, can be formulated into chance-constraint.

P(Pact − Pdis ≤ αPdis) ≤ 1− ε

P(Qact −Qdis ≤ βQdis) ≤ 1− ε
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The dispatched active power and reactive power purchasing from the transmission

are denoted as Pdis and Qdis. The actual active and reactive power consumption in

the distribution grid are denoted as Pact and Qact. Energy repurchasing threshold

is denoted as αPdis and βQdis. The difference between the actual and dispatched

energy should be within determined threshold.

Since compensated energy from the transmission grid can be considered as the

reserves from the transmission grid, the chance-constraint can be also formulated

in the following.

P(Pgrid ≤ P sched
grid +Rsched

grid ) ≤ 1− ε

P sched
grid and Rsched

grid are the scheduled active power and scheduled available re-

serves from the transmission grid. Pgrid is the actual active power injected from

the transmission grid. The actual injected active power from the transmission grid

should be smaller than the sum of the scheduled injected power and scheduled

reserves.

Other chance-constraints can also be considered in future work.
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APPENDIX A

DETAILED RESULTS FOR THE FOUR DATASETS ANALYSIS
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A.1 FIRST AND SECOND DATASETS

Table A.1: E21 Customers Responsiveness for First and Second Datasets

E21 Summer Peak Summer May and Jun Summer Sep and Oct
Category NO.

of
cus-
tomer
in the
group

Accuracy
of
base-
line
pre-
diction
model
R2

Accuracy
of
base-
line
pre-
dic-
tion
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total
load re-
duction
(kWh)

NO.
of
cus-
tomer
in the
group

Accuracy
of
base-
line
pre-
diction
model
R2

Accuracy
of
base-
line
pre-
dic-
tion
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total load
reduction
(kWh)

NO.
of
cus-
tomer
in
the
group

Accuracy
of
base-
line
pre-
dic-
tion
model
R2

Accuracy
of
base-
line
pre-
diction
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total
load re-
duction
(kWh)

HighIncome + 1-2
people + no child

60 0.968 11.478 182.85 55.39 28731.81 60 0.975 10.622 144.30 32.33 17072.56 60 0.964 9.594 124.67 36.79 18543.84

HighIncome + 3-5
people + no child

60 0.970 11.111 176.96 45.71 23585.27 60 0.979 9.410 131.64 37.68 19894.86 60 0.971 9.832 114.88 31.17 15707.49

HighIncome + 3-
5 people + have
children

60 0.963 13.333 217.54 79.95 41253.90 60 0.975 11.854 170.65 63.45 33500.96 60 0.964 11.005 150.91 48.76 24577.46

MediumIncome + 1-2
people + no child

60 0.969 10.859 173.61 56.81 29313.27 60 0.977 9.814 127.93 39.87 21052.16 60 0.968 9.069 113.41 41.48 20903.90

MediumIncome + 3-5
people + no child

60 0.965 11.510 181.89 47.07 24286.88 60 0.979 9.788 135.69 20.65 10901.54 60 0.972 8.978 120.40 37.98 19139.73

MediumIncome + 3-
5 people + have chil-
dren

60 0.970 11.292 181.58 38.53 19882.29 60 0.981 10.171 138.76 38.89 20534.93 60 0.970 10.253 120.90 32.25 16251.53

LowIncome + 1-2
people + no child

60 0.968 11.134 175.46 21.12 10895.55 60 0.981 9.495 132.04 15.01 7923.87 60 0.974 9.098 110.47 13.00 6549.56

Table A.2: E26 Customers Responsiveness for First and Second Datasets

E26 Summer Peak Summer May and Jun Summer Sep and Oct
Category NO.

of
cus-
tomer
in the
group

Accuracy
of
base-
line
pre-
diction
model
R2

Accuracy
of
base-
line
pre-
dic-
tion
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total
load re-
duction
(kWh)

NO.
of
cus-
tomer
in the
group

Accuracy
of
base-
line
pre-
diction
model
R2

Accuracy
of
base-
line
pre-
dic-
tion
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total load
reduction
(kWh)

NO.
of
cus-
tomer
in
the
group

Accuracy
of
base-
line
pre-
dic-
tion
model
R2

Accuracy
of
base-
line
pre-
diction
model
RMSE
(kWh)

Avg.
con-
sump-
tion
(kWh)
in one
time
inter-
val (15
mins)

Avg.
load
re-
duc-
tion
(kWh)

Total
load re-
duction
(kWh)

HighIncome + 1-2
people + no child

60 0.969 10.910 180.21 8.72 10495.82 60 0.977 9.826 142.10 -11.79 -14521.90 60 0.962 9.517 119.19 4.53 5332.27

HighIncome + 3-5
people + no child

60 0.952 13.090 182.52 -0.60 -727.71 60 0.970 11.164 140.90 -16.78 -20674.75 60 0.963 9.758 122.80 0.19 220.42

HighIncome + 3-
5 people + have
children

60 0.967 11.714 186.25 19.72 23739.08 60 0.978 10.145 140.09 9.57 11789.17 60 0.966 9.981 119.32 -0.27 -318.92

MediumIncome + 1-2
people + no child

60 0.959 11.418 174.05 -1.76 -2114.39 60 0.973 10.372 132.46 -19.36 -23853.17 60 0.952 10.288 117.03 -11.33 -13327.30

MediumIncome + 3-5
people + no child

60 0.961 11.381 178.34 -1.73 -2085.16 60 0.974 10.757 139.07 -20.25 -24949.82 60 0.971 9.519 119.03 3.52 4136.94

MediumIncome + 3-
5 people + have chil-
dren

60 0.964 11.685 175.12 -2.28 -2745.37 60 0.976 10.252 135.81 1.08 1328.10 60 0.961 9.450 114.07 -2.20 -2584.42

LowIncome + 1-2
people + no child

60 0.963 10.802 175.24 2.47 2977.93 60 0.968 10.458 134.75 -2.94 -3623.17 60 0.965 9.462 115.30 5.01 5886.90
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A.2 THRID DATASETS

Table A.3: E21 Customers Responsiveness for Third Datasets (Summer Peak)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9774 7.2194 14.05 6.84
3-5 less1500sqft After2016 60 0.9782 7.6320 25.40 10.73
6-max less1500sqft After2016 60 0.9747 8.9031 45.27 17.75
1-2 1500to2500sqft After2016 60 0.9720 9.3695 17.00 6.84
3-5 1500to2500sqft After2016 60 0.9771 8.7200 52.96 20.15
6-max 1500to2500sqft After2016 60 0.9820 10.1913 61.93 20.25
1-2 more2500sqft After2016 55 0.9563 12.7116 50.57 16.28
3-5 more2500sqft After2016 60 0.9759 13.0941 118.60 27.79
6-max more2500sqft After2016 22 0.9383 6.6320 57.48 41.13
1-2 less1500sqft Before2016 60 0.9727 8.6440 24.43 10.21
3-5 less1500sqft Before2016 60 0.9667 9.3171 47.42 19.30
6-max less1500sqft Before2016 60 0.9703 9.9641 23.64 9.18
1-2 1500to2500sqft Before2016 60 0.9643 10.0608 50.73 19.67
3-5 1500to2500sqft Before2016 60 0.9739 9.8538 69.77 22.92
6-max 1500to2500sqft Before2016 60 0.9741 10.9881 81.59 26.49
1-2 more2500sqft Before2016 60 0.9733 12.9001 51.23 14.19
3-5 more2500sqft Before2016 60 0.9766 13.3278 121.73 29.97
6-max more2500sqft Before2016 60 0.9800 14.6901 139.87 31.78

Table A.4: E21 Customers Responsiveness for Third Datasets (Summer Sep Oct)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9628 8.3739 13.85 9.47
3-5 less1500sqft After2016 60 0.9647 8.1317 25.29 14.47
6-max less1500sqft After2016 60 0.9620 10.4800 36.93 19.99
1-2 1500to2500sqft After2016 60 0.9702 9.1318 21.15 11.46
3-5 1500to2500sqft After2016 60 0.9661 10.3202 49.12 24.67
6-max 1500to2500sqft After2016 60 0.9630 12.0356 49.35 22.71
1-2 more2500sqft After2016 55 0.9719 11.1362 40.78 18.71
3-5 more2500sqft After2016 60 0.9710 12.5142 78.93 25.94
6-max more2500sqft After2016 22 0.9155 7.6169 36.54 39.96
1-2 less1500sqft Before2016 60 0.9492 10.3945 14.77 9.11
3-5 less1500sqft Before2016 60 0.9649 9.0492 34.37 19.47
6-max less1500sqft Before2016 60 0.9620 10.9456 19.48 10.58
1-2 1500to2500sqft Before2016 60 0.9669 9.1223 44.70 23.65
3-5 1500to2500sqft Before2016 60 0.9673 11.2294 35.82 16.73
6-max 1500to2500sqft Before2016 60 0.9718 10.4920 52.42 24.29
1-2 more2500sqft Before2016 60 0.9611 11.8571 38.44 15.05
3-5 more2500sqft Before2016 60 0.9759 11.1032 100.06 32.83
6-max more2500sqft Before2016 60 0.9637 15.7048 99.39 31.29
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Table A.5: E21 Customers Responsiveness for Third Datasets (Summer May Jun)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9742 8.6617 13.20 7.75
3-5 less1500sqft After2016 60 0.9775 9.5824 27.75 13.74
6-max less1500sqft After2016 60 0.9809 9.0808 49.82 22.89
1-2 1500to2500sqft After2016 60 0.9717 10.6510 22.06 10.13
3-5 1500to2500sqft After2016 60 0.9732 9.9266 43.66 20.66
6-max 1500to2500sqft After2016 60 0.9795 11.9005 52.60 20.69
1-2 more2500sqft After2016 55 0.9713 12.5641 40.98 16.27
3-5 more2500sqft After2016 60 0.9804 12.4024 93.99 26.78
6-max more2500sqft After2016 22 0.9528 6.3210 34.25 32.78
1-2 less1500sqft Before2016 60 0.9710 9.7369 23.01 11.23
3-5 less1500sqft Before2016 60 0.9766 9.3173 28.25 14.51
6-max less1500sqft Before2016 60 0.9702 10.4940 15.48 7.41
1-2 1500to2500sqft Before2016 60 0.9771 8.6452 39.51 18.53
3-5 1500to2500sqft Before2016 60 0.9789 9.8773 27.54 11.16
6-max 1500to2500sqft Before2016 60 0.9754 10.9469 70.19 27.18
1-2 more2500sqft Before2016 60 0.9796 13.5768 41.69 13.88
3-5 more2500sqft Before2016 60 0.9843 11.7368 103.57 30.34
6-max more2500sqft Before2016 60 0.9810 14.2655 97.80 26.81

Table A.6: E26 Customers Responsiveness for Third Datasets (Summer Peak)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9714 7.8878 10.41 4.96
3-5 less1500sqft After2016 60 0.9712 9.7310 11.17 5.00
1-2 1500to2500sqft After2016 60 0.9706 10.1515 12.07 4.69
3-5 1500to2500sqft After2016 60 0.9817 9.1397 17.38 6.31
6-max 1500to2500sqft After2016 23 0.9487 5.2721 11.46 10.47
3-5 more2500sqft After2016 38 0.9686 10.1373 5.41 2.17
1-2 less1500sqft Before2016 60 0.9734 8.0724 7.08 3.36
3-5 less1500sqft Before2016 60 0.9753 8.6665 -7.49 -3.54
6-max less1500sqft Before2016 60 0.9787 9.2521 15.01 5.72
1-2 1500to2500sqft Before2016 60 0.9618 10.0778 6.09 2.50
3-5 1500to2500sqft Before2016 60 0.9728 9.7418 0.25 0.09
6-max 1500to2500sqft Before2016 60 0.9749 10.8574 15.86 5.21
1-2 more2500sqft Before2016 60 0.9749 11.3718 -4.81 -1.67
3-5 more2500sqft Before2016 60 0.9687 15.2892 28.77 7.57
6-max more2500sqft Before2016 60 0.9687 15.4258 24.93 6.55

Table A.7: E26 Customers Responsiveness for Third Datasets (Summer Sep Oct)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9541 7.8082 4.23 3.03
3-5 less1500sqft After2016 60 0.9681 8.8777 11.84 7.55
1-2 1500to2500sqft After2016 60 0.9628 9.9307 19.17 9.87
3-5 1500to2500sqft After2016 60 0.9770 9.4999 9.17 4.78
6-max 1500to2500sqft After2016 23 0.9389 5.4865 5.64 5.64
3-5 more2500sqft After2016 38 0.9654 8.5809 2.17 1.27
1-2 less1500sqft Before2016 60 0.9668 7.6298 5.36 3.79
3-5 less1500sqft Before2016 60 0.9650 8.4682 0.73 0.50
6-max less1500sqft Before2016 60 0.9607 10.1398 6.43 3.58
1-2 1500to2500sqft Before2016 60 0.9696 9.1644 24.94 13.25
3-5 1500to2500sqft Before2016 60 0.9777 9.5047 2.49 1.30
6-max 1500to2500sqft Before2016 60 0.9579 11.0347 2.32 1.15
1-2 more2500sqft Before2016 60 0.9756 8.8255 2.96 1.50
3-5 more2500sqft Before2016 60 0.9726 10.9621 27.44 10.31
6-max more2500sqft Before2016 60 0.9628 12.2618 15.63 5.91
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Table A.8: E26 Customers Responsiveness for Third Datasets (Summer May Jun)

NO of Occu-
pants

Livable Space Start Date NO. of Cus-
tomers

R2 RMSE Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

1-2 less1500sqft After2016 60 0.9679 8.8958 2.18 1.31
3-5 less1500sqft After2016 60 0.9715 9.7922 22.12 11.59
1-2 1500to2500sqft After2016 60 0.9730 10.0020 12.65 5.78
3-5 1500to2500sqft After2016 60 0.9806 10.2643 18.49 7.83
6-max 1500to2500sqft After2016 23 0.9494 5.9965 9.30 10.27
3-5 more2500sqft After2016 38 0.9631 10.7319 9.84 4.54
1-2 less1500sqft Before2016 60 0.9783 8.0759 9.13 5.30
3-5 less1500sqft Before2016 60 0.9679 9.0555 5.15 2.86
6-max less1500sqft Before2016 60 0.9707 10.6497 22.41 9.99
1-2 1500to2500sqft Before2016 60 0.9814 8.5932 12.78 6.24
3-5 1500to2500sqft Before2016 60 0.9746 10.3415 10.69 4.62
6-max 1500to2500sqft Before2016 60 0.9765 10.3353 33.73 12.34
1-2 more2500sqft Before2016 60 0.9752 12.1527 -16.80 -7.48
3-5 more2500sqft Before2016 60 0.9791 13.0396 25.94 8.19
6-max more2500sqft Before2016 60 0.9769 15.2741 39.08 11.74

Table A.9: E21 and E26 One Demographic Factor Analysis for Third Dataset
(Summer Peak)

Rate Demographic
factor

NO. of Cus-
tomers

R2 RMSE (kW) Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

E21

less1500sqft 5483 0.9955 311.0858 1592.75 7.97
1500to2500sqft 2939 0.9961 188.3553 1867.76 14.22
more2500sqft 524 0.9907 63.9577 1022.71 29.26
After2016 3202 0.9939 204.7800 1447.95 11.55
Before2016 5744 0.9950 367.3647 3036.02 12.61
1-2 people 5774 0.9950 339.9138 1852.33 8.52
3-5 people 2388 0.9914 204.0060 1826.33 16.85
6-max people 784 0.9909 82.0036 837.64 20.62

E26

less1500sqft 4529 0.9892 345.9386 336.27 2.01
1500to2500sqft 4047 0.9936 316.2021 413.49 2.31
more2500sqft 1087 0.9904 147.2767 195.07 3.00
After2016 666 0.9890 59.5779 118.86 4.34
Before2016 8997 0.9922 754.0461 778.70 2.03
1-2 people 4452 0.9964 240.7565 369.31 2.20
3-5 people 3185 0.9948 235.4018 243.62 1.72
6-max people 2026 0.9919 212.6305 355.21 3.47

Table A.10: E21 and E26 One Demographic Factor Analysis for Third Dataset
(Summer Sep Oct)

Rate Demographic
factor

NO. of Cus-
tomers

R2 RMSE (kW) Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

E21

less1500sqft 5483 0.9921 361.7314 1289.90 9.24
1500to2500sqft 2939 0.9951 196.5508 1416.51 15.32
more2500sqft 524 0.9864 62.4531 631.51 26.33
After2016 3202 0.9943 197.3997 1087.27 12.41
Before2016 5744 0.9920 374.0446 2216.27 13.18
1-2 people 5774 0.9955 314.5156 1399.11 9.29
3-5 people 2388 0.9937 166.4658 1271.79 16.76
6-max people 784 0.9840 92.2772 581.11 20.23

E26

less1500sqft 4529 0.9934 275.9834 778.48 6.50
1500to2500sqft 4047 0.9915 325.0663 586.80 4.69
more2500sqft 1087 0.9909 116.4776 142.67 3.20
After2016 666 0.9888 55.6323 132.83 6.84
Before2016 8997 0.9935 628.9174 1375.78 5.09
1-2 people 4452 0.9939 268.5560 738.13 6.28
3-5 people 3185 0.9920 242.2960 395.52 3.98
6-max people 2026 0.9839 226.2338 289.61 4.04
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Table A.11: E21 and E26 One Demographic Factor Analysis for Third Dataset
(Summer May Jun)

Rate Demographic
factor

NO. of Cus-
tomers

R2 RMSE (kW) Avg. Load Re-
duction (kW)

Percentage Avg.
Load Reduction
(%)

E21

less1500sqft 5483 0.9953 361.8017 1512.03 9.19
1500to2500sqft 2939 0.9946 210.5073 1587.05 14.60
more2500sqft 524 0.9939 64.2697 750.70 26.49
After2016 3202 0.9942 208.1004 1220.18 11.86
Before2016 5744 0.9952 389.3419 2631.11 13.24
1-2 people 5774 0.9971 291.0692 1659.45 9.31
3-5 people 2388 0.9944 198.6030 1490.65 16.71
6-max people 784 0.9890 97.0758 711.21 20.83

E26

less1500sqft 4529 0.9948 313.0059 928.97 6.50
1500to2500sqft 4047 0.9966 264.8593 618.91 4.07
more2500sqft 1087 0.9914 134.8799 378.83 6.46
After2016 666 0.9932 57.1282 213.99 8.98
Before2016 8997 0.9930 708.4868 1984.82 6.08
1-2 people 4452 0.9915 378.9022 912.87 6.43
3-5 people 3185 0.9952 246.9225 684.22 5.68
6-max people 2026 0.9900 233.7112 638.65 7.23

A.3 FOURTH DATASET

Table A.12: All Customers Analysis for Fourth Data

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 3025.46 2185.57 - 52.5% 38.0% -
2018 7 24 16 18 3462.03 1709.89 - 53.1% 26.3% -
2018 7 25 16 18 3073.48 1529.43 - 45.2% 22.9% -
2018 7 30 15 18 3166.47 1718.66 1156.29 55.2% 29.1% 19.6%
2018 8 2 15 18 3443.10 2031.64 1586.98 57.8% 32.6% 25.1%
2018 8 6 15 18 3575.30 2078.12 1340.26 56.5% 31.5% 20.2%
2018 8 13 16 18 2148.12 1672.87 - 44.5% 33.0% -
2018 8 14 17 19 2773.74 1881.96 - 51.1% 34.6% -
2018 8 30 16 18 2668.76 1796.75 - 55.1% 35.9% -

R2 0.992 Avg Consumption for Non-DR-Event Period (kW) 3571.54
RMSE 118.79 Number of Customers 1301
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Table A.13: One Demographic Factor Analysis for Fourth Data: Low Income

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 471.27 350.53 - 50.5% 37.2% -
2018 7 24 16 18 566.98 235.08 - 54.5% 22.8% -
2018 7 25 16 18 475.40 227.24 - 45.6% 22.0% -
2018 7 30 15 18 492.20 327.62 261.26 56.0% 35.8% 28.2%
2018 8 2 15 18 536.33 310.24 231.97 58.7% 32.8% 24.3%
2018 8 6 15 18 540.18 284.19 161.95 56.9% 29.0% 16.4%
2018 8 13 16 18 351.87 285.94 - 45.3% 34.9% -
2018 8 14 17 19 352.82 174.00 - 45.9% 22.8% -
2018 8 30 16 18 376.53 244.74 - 52.4% 32.9% -

R2 0.984 Avg Consumption for Non-DR-Event Period (kW) 561.21
RMSE (kW) 27.22 Number of Customers 249

Table A.14: One Demographic Factor Analysis for Fourth Data: Medium Income

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 2125.08 1523.73 - 52.9% 38.1% -
2018 7 24 16 18 2372.40 1180.46 - 52.4% 26.3% -
2018 7 25 16 18 2100.53 993.36 - 44.5% 21.5% -
2018 7 30 15 18 2227.42 1090.07 656.96 55.8% 26.6% 16.1%
2018 8 2 15 18 2375.84 1313.48 1029.89 57.1% 30.2% 23.4%
2018 8 6 15 18 2461.17 1372.84 839.86 56.1% 30.2% 18.5%
2018 8 13 16 18 1492.07 1121.28 - 44.9% 32.2% -
2018 8 14 17 19 1978.54 1383.75 - 51.6% 36.0% -
2018 8 30 16 18 1910.16 1275.82 - 55.8% 36.1% -

R2 0.992 Avg Consumption for Non-DR-Event Period (kW) 2480.88
RMSE (kW) 87.50 Number of Customers 916

Table A.15: One Demographic Factor Analysis for Fourth Data: High Income

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 434.63 311.85 - 52.8% 38.4% -
2018 7 24 16 18 525.70 284.30 - 55.0% 29.5% -
2018 7 25 16 18 475.11 278.48 - 47.0% 28.0% -
2018 7 30 15 18 422.47 267.32 198.50 50.7% 31.3% 23.3%
2018 8 2 15 18 495.41 352.26 247.66 58.4% 40.0% 28.0%
2018 8 6 15 18 503.26 312.83 181.10 54.5% 32.6% 18.9%
2018 8 13 16 18 305.04 262.12 - 42.1% 34.5% -
2018 8 14 17 19 452.90 342.99 - 53.9% 39.9% -
2018 8 30 16 18 404.99 303.07 - 55.7% 40.3% -

R2 0.981 Avg Consumption for Non-DR-Event Period (kW) 529.45
RMSE (kW) 26.50 Number of Customers 136

Table A.16: One Demographic Factor Analysis for Fourth Data: 1-2 Occupants

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 1676.47 1270.42 - 51.8% 39.1% -
2018 7 24 16 18 1876.68 912.64 - 52.4% 25.4% -
2018 7 25 16 18 1619.47 777.53 - 43.5% 21.3% -
2018 7 30 15 18 1737.88 951.51 681.80 54.6% 29.1% 20.9%
2018 8 2 15 18 1781.43 970.05 771.02 55.3% 29.0% 22.9%
2018 8 6 15 18 1887.83 975.01 662.03 55.6% 27.8% 18.9%
2018 8 13 16 18 1112.18 862.98 - 42.5% 31.6% -
2018 8 14 17 19 1446.97 936.53 - 49.2% 32.0% -
2018 8 30 16 18 1481.90 989.01 - 54.8% 35.6% -

R2 0.991 Avg Consumption for Non-DR-Event Period (kW) 1980.53
RMSE (kW) 70.72 Number of Customers 791
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Table A.17: One Demographic Factor Analysis for Fourth Data: 3-5 Occupants

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 1156.15 770.04 - 52.9% 35.7% -
2018 7 24 16 18 1349.15 652.60 - 53.6% 26.1% -
2018 7 25 16 18 1208.20 606.35 - 46.1% 23.3% -
2018 7 30 15 18 1188.23 581.82 344.50 55.4% 26.4% 15.6%
2018 8 2 15 18 1380.13 850.68 654.86 59.9% 35.1% 26.4%
2018 8 6 15 18 1417.34 885.16 513.13 56.9% 33.9% 19.5%
2018 8 13 16 18 908.90 717.90 - 47.7% 35.5% -
2018 8 14 17 19 1115.45 770.27 - 52.8% 36.1% -
2018 8 30 16 18 1015.09 660.42 - 55.7% 35.1% -

R2 0.991 Avg Consumption for Non-DR-Event Period (kW) 1355.67
RMSE (kW) 51.11 Number of Customers 435

Table A.18: One Demographic Factor Analysis for Fourth Data: 6-9 Occupants

Year Month Day Start
Time

End
Time

Reduction (kW) Percentage Reduction (%)

2018 6 22 17 19 151.17 108.38 - 58.7% 42.5% -
2018 7 24 16 18 174.63 96.01 - 59.2% 33.1% -
2018 7 25 16 18 168.51 87.63 - 53.6% 28.6% -
2018 7 30 15 18 151.04 112.88 64.85 55.8% 41.2% 23.7%
2018 8 2 15 18 177.37 114.96 56.71 61.9% 39.5% 19.7%
2018 8 6 15 18 161.85 106.30 47.58 57.7% 36.9% 16.6%
2018 8 13 16 18 95.96 67.44 - 44.8% 31.0% -
2018 8 14 17 19 178.46 157.03 - 61.3% 52.4% -
2018 8 30 16 18 130.99 111.15 - 55.1% 45.7% -

R2 0.961 Avg Consumption for Non-DR-Event Period (kW) 170.31
RMSE (kW) 12.67 Number of Customers 44
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