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ABSTRACT

Social networking sites like Twitter have provided people a platform to connect

with each other, to discuss and share information and news or to entertain themselves.

As the number of users continues to grow there has been explosive growth in the data

generated by these users. Such a vast data source has provided researchers a way

to study and monitor public health. Accurately analyzing tweets is a difficult task

mainly because of their short length, the inventive spellings and creative language

expressions. Instead of focusing at the topic level, identifying tweets that have personal

health experience mentions would be more helpful to researchers, governments and

other organizations. Another important limitation in the current systems for social

media health applications is the use of a disease-specific model and dataset to study a

particular disease. Identifying adverse drug reactions is an important part of the drug

development process. Detecting and extracting adverse drug mentions in tweets can

supplement the list of adverse drug reactions that result from the drug trials and can

help in the improvement of the drugs.

This thesis aims to address these two challenges and proposes three systems. A

generalizable system to identify personal health experience mentions across different

disease domains, a system for automatic classifications of adverse effects mentions in

tweets and a system to extract adverse drug mentions from tweets. The proposed

systems use the transfer learning from language models to achieve notable scores

on Social Media Mining for Health Applications(SMM4H) 2019 (Weissenbacher et

al. 2019) shared tasks.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Introduction

The latest Pew Research Report 1, states that nearly half of adults worldwide and

two-thirds of all American adults (72%) use social networking. Social media mining is

the process of extracting and analyzing patterns from user data available online. The

information available online is often used for marketing campaigns, advertisement,

capturing consumer feedback, keeping track of competing products. There is another

critical use of the social media data as highlighted by the Pew Research Report

which states that of the total users, 26% have discussed health information, and, of

those, 30% changed behavior based on this information, and 42% discussed current

medical conditions. Around 500 million tweets are posted every day, according to

recent estimates. Such a massive data source that can be used to develop numerous

public health applications. Recent advances in machine learning and Natural language

processing make it an exciting opportunity to work on social media health mining

problems.

Studies done in the past have focused on identifying different health topics on

Twitter. Various health issues like Allergies, Aches/Pains, Cancer, Obesity, Flu, etc.

have been discovered to be discussed on Twitter (Paul and Dredze 2011). Extensive

work has been done in investigating about specific diseases like tracking the spread

of flu epidemics (Lamb, Paul, and Dredze 2013), cancer analysis (Lee, Agrawal, and

1https://www.pewinternet.org/fact-sheet/social-media/

1

https://www.pewinternet.org/fact-sheet/social-media/


Choudhary 2013),and depression prediction (De Choudhury et al. 2013). Such studies

have had a significant impact on public health, medical resource allocation, health

policy, and education (Neiger et al. 2013).

1.1.1 Generalizable Systems

The studies have proved the effectiveness of analyzing and monitoring public

health. There is still a long way to go towards building more robust systems that can

automatically identify a health mention in tweets. A lot of traditional systems under-

perform, especially at data that is usually imbalanced, noisy and consist of creative

language expressions. Often to build a classification model to track a particular disease

or health concern, it becomes necessary to use a health concern specific data set.

Such a model only works for that particular health concern and performs poorly for

other health issues. Building a general model to classify tweets across various health

concerns would be of great use to the research community and allow using existing

tools and techniques to solve new problems. Another type of generalization is in

building model that work well on future data as well. Previous work has shown that

classification performance usually varies across different time intervals (Huang and

Paul 2018).

1.1.2 Adverse Drug Reaction Detection and Extraction

Adverse Drug Reaction(ADR)

An Adverse Drug Reaction is any injury that is caused by medication intake. It can

range from simpler side effects like headaches, drowsiness to more complicated ones
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like heart issues or skin rashes. An adverse effect mention is any injury that occurs

during the medication intake but it’s cause is not yet attributed to the drug. ADR is

a specific case of an adverse effect mention.

Every year the pharmaceutical industry spends millions of dollars developing

new drugs. Identifying adverse drug reactions(ADR) is extremely important part of

the drug development process. Pharmacovigilance is a set of tasks relating to the

collection, detection, assessment, monitoring, and prevention of adverse effects with

pharmaceutical products. During its development process drugs are subject to various

trials which can often reveal any ADR resulting from the use of the drug. However,

the ADR data collected in such trials is limited, centralized and often not exhaustive.

Once the drug hits the market, it becomes difficult to collect ADR data from numerous

sources and report the health professionals. It is one of the most significant and

expensive public health problem. To solve this problem the pharmacovigilance has

turned to social media in order to monitor the adverse drug reactions that develop

outside the clinical trial and tests. The number of people sharing details about their

medication intake has increased in recent years. Identification and extraction of

adverse effect mentions in tweets has proved to be a challenging task because of the

excessive use of hyperbole, sarcasm, and ambiguous language used by people online.

1.2 Social Media Mining for Health Applications Shared Tasks

The Social Media Mining for Health Applications (SMM4H) Workshop 2019

(Weissenbacher et al. 2019) proposed four tasks to address these challenges. These

thesis addresses 2 of those tasks.

3



1.2.1 Generalizable System To Identify Personal Health Mentions

The challenge is a binary classification task to classify whether a given tweet

contains a personal health mention as opposed to a general comment, suggestions, or

unrelated mention of the health issue.

Positive example:

Personal mention: “However, I worked hard and ran for Tokyo Mayer Election

Campaign in January through February, 2014, without publicizing the cancer”

Negative examples:

General comment: “A Month Before a Heart Attack, Your Body Will Warn You

With These 8 Signals”

Unrelated mention: “Now I can have cancer on my wall for all to see <3”

Previous work has shown that people often use words like “heart attack” or “cancer”

for emphasis or convey sarcasm. Therefore, the number of such tweets drastically

outnumber the personal mention tweets. Combining this with the short length of tweets

and the presence of typos, creative spellings, and misspellings make it challenging.

The training data in this task has tweets of one health domain - influenza across

two contexts flu vaccination or flu infection. The test data will contain tweets from the

same domain across different context and also a completely different health domain in

some context.

1.2.2 Automatic Classification of Adverse Effect Mentions in Tweets

The task is to build a system that can distinguish between a tweet reporting an

adverse effect mention from those that do not.

4



Adverse effect mentions are unwanted or harmful reactions resulting from correct

medical use.

For example:

Presence of adverse effect: Not that anyone noticed, but my #ambienwith-

drawl only lasted a few days. Why? Because I got another scrip. I need it while I’m

on Levaquin.

Absence of adverse effect: @C4Dispatches Eeeeek. Just chucked my Victoza

in the bin. I will take my chances with the diabetes #diabetes

1.2.3 Extraction of Adverse Effect Mentions

The task is to build a system that can identify and extract adverse drug reaction

(ADR) spans from a tweet. ADRs are multi-token, descriptive, expressions so this is

essentially a Named Entity Recognition (NER) challenge.

For example:

another night of ’light’ sleep. feel low. subdued. sad. #venlafaxine #day12

ADR extraction: feel low

Span: 32 40

1.3 Related Work

There has been limited research done towards building general models to classify

different diseases. (Paul and Dredze 2011) use an LDA topic model-based system to

discover mentions of over a dozen ailments. They further incorporate prior knowledge

into this model and apply it to tasks like tracking illnesses, measuring behavior risk.

5



(Prieto et al. 2014) proposed a two-step process to detect the health mentions in

social text data. The first step is to collect the tweets using keywords and regular

expressions, and the second step is to use a high-precision classifier – in this case, by

using a correlation-based feature extraction method. The system was designed for the

analysis of flu, depression, pregnancy, and eating disorders.

(Yin et al. 2015) reported using a dataset of tweets across 34 health topics and

investigated the accuracy of the classifiers trained over multiple diseases and tested on

new diseases. The authors conclude that training a classifier on four diseases: cancer,

depression, hypertension, and leukemia can lead to a general health classifier with

77% precision using standard SVM classifiers.

(Karisani and Agichtein 2018) developed a system called as WESPAD that combines

lexical, syntactic, word embedding-based, and context-based features. The authors

report that the system can generalize from a few examples by automatically distorting

the word embedding space to most effectively detect the true health mentions.

(Kiritchenko et al. 2018) developed support vector machine classifiers using a

variety of surface-form, sentiment, and domain-specific features. To reduce of class

imbalance they use an under-sampling technique.

(Hakala et al. 2017) use an ensemble of neural networks with features generated

by word and character-level convolutional neural network channels and a condensed

weighted bag-of-words representation

(Xherija 2018) use a variant of the Message-level Sentiment Analysis (MSA) a

word- level stacked bidirectional Long Short-Term Memory (LSTM) network.

(Shen et al. 2018) used a neural approach with hierarchical tweet representation

and multi-head self-attention. Their system uses a three module approach where the

first module learns the word representations from the character embeddings, next

6



the module learns the tweet representation from the words and finally a classifica-

tion module. This work has been extended by (Ge et al. 2019) where they utilize

additional features like word2vec Twitter(Godin and Vandersmissen 2015), POS tags

and sentiment lexicon along with embeddings from a language model ELMo(Peters

et al. 2018).

(Shen et al. 2018) combine different word level embeddings and use a multi channel

Convolutional Neural Networks to identify adverse drug reaction information. The

multiple channels help to learn features from character level embeddings of the words.

(Nikfarjam et al. 2015) introduce ADRMine, a machine learning based extraction

approach that uses conditional random fields (CRF) using variety of features like

ADR lexicon, Part Of Speech(POS), negation and context based features.

(Gupta et al. 2018) introduced a joint multi-task learning method that uses

adverse drug event detection as an auxiliary task to improve performance on the ADR

extraction task. They generate weak supervision dataset for the auxiliary task using

a large pool of unsupervised dataset.

(Sarker and Gonzalez 2015) use a large set of features based on semantic properties

such as sentiment, polarity and topic. They also combine training of different corpora

to enhance the classifier performance.

1.4 An Overview to the Approach

Generalizable system for personal health mentions:

We use the feature representations generated by the BioBERT model fine-tuned on

the training data. In this approach the tweets are first preprocessed where in, the
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underlying tweet text is cleaned and some twitter specific features are extracted. The

next step is to replace(term generalization) all the mentions of a disease in the tweet.

Our system uses the the BioBERT model that is fine-tuned on original tweets. This

fine-tuned model is then used to extract representation for both the term generalized

tweets and original tweets. The feature representation are the weights of the last 4

layers of the BioBERT model for the CLS token is concatenated together to form a

3072 dimensional vector. The feature representation for term generalized tweets and

original tweets are concatenated together. These are input to a fully connected dense

neural network with two hidden layers.

In order to enhance the performance of the system we create an ensemble model

where we combine the weights of 10 different models based on their performance on

the development data set.

Automatic classifications of adverse effects mentions in tweets:

We have used the feature representation generated by the BioBERT model fine-tuned

on the training data. In this approach the tweets are just preprocessed and the feature

representation for the tweets are extracted from the fine-tuned BioBERT model. The

representation is then run through a neural network with two hidden layers and a

softmax output layer.

In order to improve the performance of the system we use additional datasets like

the CADEC corpus(Karimi et al. 2015). We also collected around 750K tweets related

to ADRs to pretrain the BioBERT model.

Extraction of adverse effect mentions in tweets:

We use the BioBERT model with the Named Entity Extraction task and modify it by

adding a Conditional Random Field layer on top of the model to get more accurate

predictions. The system can be improved by using external datasets like SIDER(Kuhn
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et al. 2015), CADEC(Karimi et al. 2015) along with pretrainng the BioBERT model

on around 750K tweets.

The rest of the Thesis is organized as follows. We go over the recent progress

and the background behind the language models. We describe the datasets, model

descriptions, evaluation criteria and results for each of the tasks in subsequent chapters.
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Chapter 2

LANGUAGE MODELS

Transfer learning is a technique used in areas like computer vision and more

recently NLP where the model that has been trained on a particular task is used for a

different but related task. This process is often used to jump-start the development

of a new model by fine-tuning the pretrained model. Typically the weights learned

by the pre-trained model are used to initialize the new model and the weights are

re-learned. The main benefit of transfer learning is that it can speed up the model

development process considerably. Another advantage is that the pre-trained models

can be used on a smaller dataset to achieve good results. Recent progress in NLP

has come from the use of transfer learning. Language models like BERT (Devlin

et al. 2018), ELMo (Peters et al. 2018) and OpenAI-GPT (Radford et al. 2019) have

had considerable success in wide variety of NLP tasks.

2.1 BERT

BERT, which stands for Bidirectional Encoder Representations from Transformers

is a language representation model that is designed to pre-train deep bidirectional

representations from unlabeled text by jointly conditioning on both left and right

context in all layers. At the time of its release BERT obtained state-of-the-art results

on eleven NLP tasks. Pretrained representations are often used in a downstream tasks

with the help of two techniques - Fine-tuning and feature embeddings.
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We have experimented with both the above mentioned techniques in the aim of

obtaining better results. The authors have released two versions of BERT model -

base and large. We have used the BERT-Base model in the experiments which has

the following attributes:

2.1.1 Transformer Specifications

BERT’s architecture is a multi-layer bidirectional Transformer encoder. In the

BERT-Base, model there are 12 transformer layers , 768-hidden states, 12 attention

heads resulting in overall 110M parameters.

Figure 1: How to use BERT for classification

Source: (Devlin et al. 2018)
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2.1.2 Tokenization

The BERT model learns the contextual representations using both the left and

the right contextual information starting from the very first layer of the network. To

achieve the deep bidirectionality in the model BERT uses an approach that masks

out 15 percent of the words in the input and runs the entire sequence through a

deep bidirectional Transformer encoder, and then predicts only the masked words.

BERT uses its own tokenization to achieve the masking of words and it also adds the

following special tokens.

CLS Token: A classification token which is normally used in conjunction with a

softmax layer for classification tasks. For anything else, it can be safely ignored.

SEP Token: A sequence delimiter token which was used at pre-training for

sequence-pair tasks (i.e. Next sentence prediction). Must be used when sequence pair

tasks are required. When a single sequence is used it is just appended at the end.

After the model is fine-tuned, the features are extracted which are nothing but

the contextual representation generated for the individual tokens and the CLS and

SEP tokens. There are a number of ways to use the hidden layer representations -

using the final hidden layers, concatenating last few hidden layers, summing up last

few hidden layers and so on. The authors state that using a concatenation of last 4

hidden layer representation gives the best result on the various tasks. We have used

this very same combination in our experiments.
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2.2 BioBERT

BioBERT2 which stands for Bidirectional Encoder Representations from Trans-

formers for Biomedical Text Mining is a domain specific language representation model

based on the BERT architecture. Though the BERT model has two versions base and

large the BioBERT model only uses the BERT-Base model. So the attributes of the

BioBERT model are same as that of BERT.

2.3 RoBERTa

A Robustly Optimized BERT Pretraining Approach (RoBERTa) (Liu et al. 2019)

builds on BERT’s language masking strategy, wherein the system learns to predict

intentionally hidden sections of text within otherwise unannotated language examples.

RoBERTa modifies key hyperparameters in BERT, including removing BERT’s next-

sentence pretraining objective, and training with much larger mini-batches and learning

rates. This allows RoBERTa to improve on the masked language modeling objective

compared with BERT and leads to better downstream task performance. RoBERTa

has achieved better results on the GLUE Benchmark compared to BERT We use

RoBERTa-base in our models.

2BioBERT version 1.0
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2.4 Fine-tuning

Fine-tuning is one way of taking advantage of pre-trained representation. The fine-

tuning process remains same for the BERT and BioBERT models with the exception

of the pre-trained weights3,4 used in those models.

Fine-tuning is done end-to-end by providing the data and the labels. The authors

have provided a set of data processors to handle the input to the model. We have

used the CoLA processor and converted our data to the CoLA (GLUE version (Wang

et al. 2018)) dataset format. The dataset was converted into the following format:

Tweet id | Label | * | Tweet text

The fine-tuning process has very high variance in dev set accuracy for smaller

datasets. So for our experiments we ran the fine-tuning process for 5 iterations every

time and the best performing model is used further.

2.5 Feature Extraction

Another way to using the pre-trained representations in a downstream task is

to extract the fixed contextual representations from the pre-trained model and use

them in another model. These representations are the weights of the neurons in the

hidden layers. Here we have used feature extraction after fine-tuning the model. The

reason behind this order is that since tweets are quite different from the usual English

3BERT pre-trained weights used: https://storage.googleapis.com/bert_models/2018_10_18/
uncased_L-12_H-768_A-12.zip

4BioBERT pre-trained weights used: https://github.com/naver/biobert-pretrained/releases/
download/v1.0-pubmed/biobert_pubmed.tar.gz
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language text the models were trained on it makes sense to fine-tune the pre-trained

model so the weights get updated according to the new data.

There are two ways to use word embeddings in a neural network. The first is

to learn the word embeddings for a particular problem. This approach requires a

large amount of training data. The second approach is to use a pre-trained word

embeddings like word2vec and GloVe(Pennington, Socher, and Manning 2014). These

models have a vocabulary associated with them and an embedding matrix where each

row is a vector representation for a particular word. In case of BERT there is no

embedding matrix which can be directly loaded since it takes care of tokenization and

initializing the model, so we need to create our own custom embedding matrix to take

care of this issue. To achieve this we tokenize the data using the tokenizer provided

and create a mapping of the tokens to the token ids. Once we have this mapping

we use the fine-tuned model and get the weights of the final layer. So we create a

768-dimensional feature representation for each of the words in the vocabulary, thereby

generating our own embedding matrix.

2.6 Pre-training

The performance of the language model largely depends on the corpora on which

it was trained on. Since BERT was trained to be a general purpose language model it

was trained on Wikipedia and Book Corpus. Since biomedical text often has domain

specific proper nouns like (eg. BRCA1, c.248T>C) and terms (e.g., transcriptional,

antimicrobial) which are understood mostly by biomedical researchers.(Lee et al. 2019)

So general purpose models perform poorly on biomedical NLP tasks. BioBERT
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improves upon BERT by pretraining on additional biomedical datasets like PubMed

abstracts (PubMed) and PubMed Central full-text articles (PMC).

Figure 2: BERT pre-training

Source: (Devlin et al. 2018)

Tweets often consist of novel/creative phrases and misspellings, and frequent use

of idiomatic, ambiguous and sarcastic expressions (Weissenbacher et al. 2019). Thus

in order to increase performance we have pretrained BioBERT model on a corpus

of medical tweets. There are two unsupervised tasks that are used to pre-train the

model - Masked language modeling and Next sentence prediction.

Masked Language Modeling

Since BERT is deep bidirectional model which allows each word to indirectly “see

itself” and the model would trivially predict the target word. So to train bidirectional
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representations the BERT/BioBERT masks some percentage of the input tokens and

then predict those masked tokens.

Next Sentence Prediction

In order to understand the relationship between two sentences which is essential

for NLP tasks like natural language inference and question answering, BERT has been

trained on the next sentence prediction task.

During pre-training process we have used the masked language modeling task and

not the next sentence prediction. The reason behind this is that tweets are often just

one sentence long and so the next sentence prediction task does not make sense here.

The exact parameter used to pre-train the model are mentioned in the appendix.
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Chapter 3

GENERALIZABLE SYSTEM TO IDENTIFY PERSONAL HEALTH MENTIONS

IN TWEETS

3.1 Dataset Description

The data set provided by the SMM4H organizers consisted of two data sources

across different contexts - flu infection and flu vaccination both in the flu domain.

Each data set consisted of Tweet ids and the label indicating the presence of personal

health mention. The flu infection data set had 1046 records of flu infection, but around

1023 tweets were available for download. The flu vaccination data set had around

9800 records out of which only 6659 were available for download. The tweets were

downloaded using the Twitter API. The combined data set has 7682 tweets in total.

Approximately 54 percent of the data in the flu infection set is labeled as positive,

and approximately 30 percent of the data in the flu vaccination set belongs to the

positive class.

For example:

Positive: Got my flu shot today &amp; my body hurts so bad. Especially my arm

Negative: NJ Getting Swine Flu Vaccine Next Week http://ff.im/-8URDd

The test data included tweets from the influenza domain and also tweets from a

separate domain, in order to help test the generalizability of the classifiers. Testing
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data from the influenza domain contains data collected years after the original training

data, to test the generalizability of the classifiers to future data.

Data Context Tweets

Train set Flu infection 1023
Flu vaccination 6659

Test set Flu and unknown health context 285

Table 1: Dataset Description

3.2 Term Generalization

The challenge in this task is to train a model on one disease domain and test

on another, so it is necessary to introduce generalization in the model. One way to

achieve this is to mask specific terms like flu or influenza mentions with an AILMENT

token. A list of all flu-related terms was created using a pretrained Word2Vec model

for Twitter (Godin and Vandersmissen 2015) to find similar terms to flu. The list was

expanded using human knowledge and ConceptNet5 (Speer, Chin, and Havasi 2017).

This list of terms was used to replace all the flu mentions in the dataset. We have also

experimented with some models that use the tweets without using the generalized

term to replace the flu mentions.

5www.conceptnet.io
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3.3 Preprocessing

The preprocessing library Ekphrasis provides several methods to clean and process

social media text (Baziotis, Pelekis, and Doulkeridis 2017). This library is used to

preprocess all the tweets.

• All @user mentions were replaced by user token.

• All HTTP URLs were replaced by url token.

• Hashtags were preprocessed by removing the # symbol and keeping the words.

• Emojis, dates, numbers, etc. are removed.

• The text is converted to lowercase.

For example:

Raw tweet:

Calling for medical advice. Verdict already in though: Tonsillitis (& getting flu

treatment just in case). http://twitpic.com/pk2q0

Preprocessed tweet without term generalization:

calling for medical advice . verdict already in though : tonsillitis ( & getting flu

treatment just in case ) . url

Preprocessed tweet with term generalization:

calling for medical advice . verdict already in though : ailment ( & getting

ailment treatment just in case ) . url
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3.4 Traditional Machine Learning approaches

Traditional feature-based models have found some success in building generalizable

systems. We have experimented with such feature-based logistic regression and Support

Vector Machines.

3.4.1 Features

Before proceeding with the models and the results obtained, we first explain the

different features that are used in our experiments. These features are only used in

the logistic regression and SVM models.

3.4.1.1 N-grams

N-grams are used extensively in traditional NLP models. N-grams are set of

co-occurring words within a given range. The N-gram range varies according to

the application. Since the language used on Twitter is short in length, we have

experimented with n-grams in the range 1 to 3 i.e., unigrams, bigrams, and trigrams.

As we are replacing the presence of flu-mentions, we create one n-gram feature set

without replacing the flu mentions and another with the flu-mentions replaced. So

this way we have both domain dependent and domain-independent set of features.
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3.4.1.2 Twitter Specific Features

Tweets have a 280-character limit and given such a small number of characters

available users often resort to the use of emojis6 to convey themselves better. Tweets

often have links used to direct the people to different web pages. Use of hashtags

allows users to share their post with other people who are interested in the same topic.

All these parts of a tweet can be used as features as shown by the authors in their

work on classifying adverse drug mentions in tweets (Kiritchenko et al. 2017).

• Number of hashtags

• presence or absence of emojis

• Number of elongated words

• Number of words with all letters in uppercase

• Number of question marks

• Number of exclamation marks

These features are extracted before preprocessing the tweet.

Example: “@hot995: VIDEO: Watch as this girl getting a FLU SHOT goes NUTS!

LOL! http://t.co/M73KmdK9lr http://t.co/MlDDDzUxAD”

Feature vector generated: [0, 1, 0, 4, 2,0]

6https://en.wikipedia.org/wiki/Emoji
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3.4.1.3 Sentiment Scores

For each token in the tweet we use a lexicon containing approximately 155,000

English words associated with a sentiment score between −1 and 1.(Liu, Hu, and

Cheng 2005)(Sarker and Gonzalez 2015)

Example words:

Positive words: awed, best, cozy, excite, fervor

Negative words: ache, adverse, anxiously, concern, despair

3.4.2 Logistic Regression Model

Logistic regression is a technique under the supervised learning paradigm that

works quite well for various classification tasks. Here we have tried various logistic

regression models with different feature sets as follows:

LR Model 0: Baseline Logistic Regression Model with n-grams without

preprocessing.

For our baseline model, we experimented with combinations of different n-gram

with n from 1 to 5 as features on unprocessed tweets. The best score resulted from a

combination of unigrams, bigrams. This is more likely because of the short length of

tweets. We decided to use this n-gram range in further models.

LR Model 1: Logistic Regression Model with n-grams with preprocessing.

In this model, we experimented with different combinations of unigrams and

bigrams as features on preprocessing tweets without replacing the flu-mentions with

generalized term.
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LR Model 2: Logistic Regression Model with n-grams with preprocessing

and term generalization

This model uses unigrams, bigrams as features on preprocessing tweets with with

generalized flu-mentions.

LR Model 3: Logistic Regression Model with top 1200 n-grams with pre-

processing and term generalization.

Instead of using the entire vocabulary of n-grams, we decided to experiment with a

particular number of features. We used the previous models to find the ideal number

of features. Logistic regression model gives weight to the features, the higher the

weight the more relevant the feature is for positive class and vice-versa for the negative

class.

Top features for positive class:

• getting over

• pain

• fever

• health emergency

• very sick

Top features for negative class:

• url

• my immune

• not got

• feel better

• someone
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The graph below represents the f1 score comparison between different number of

features.

Figure 3: Number of Features vs F1 Score

LR Model 4: Logistic Regression Model with top 1200 n-grams with pre-

processing and generalized tokens combined with top 1200 n-grams with

preprocessing and original tokens.

This model used n-grams of both generalized and original tweets as features

LR Model 5: Logistic Regression Model with top 1200 n-grams with pre-

processing and generalized tokens and Twitter specific features.

This model uses Twitter specific features along with textual features.
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LR Model 6: Logistic Regression Model with top 1200 n-grams with pre-

processing and generalized tokens and Twitter specific features and Senti-

ment features.

This model uses sentiment scores along with the previous set of features.

This model uses change phrase features along with the previous set of features.

LR Model 7: Best Logistic regression model with top 1200 n-grams with

preprocessing and generalized tokens and selective Twitter specific fea-

tures.

3.4.2.1 Feature Selection

As we used feature selection for selecting the top 1200 n-grams, we used the same

technique to see whether the Twitter-specific features, sentiment scores, and change

phrase features were contributing to the classification decision.

Remarkably change phrase feature did not make any contribution to the model as

the feature was mainly designed for adverse drug reaction tweets. Also, sentiment

scores and some of the Twitter-specific features did not contribute to the classification

process. Out of the 7 Twitter specific features, only two features - number of

exclamation marks and number of question marks had weight more than 0.
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Model F1 score
LR Model 0 0.61
LR Model 1 0.63
LR Model 2 0.66
LR Model 3 0.67
LR Model 4 0.67
LR Model 5 0.67
LR Model 6 0.68
LR Model 7 0.71

Table 2: Logistic Regression Model Scores

3.4.2.2 Training Process

All models follow a similar training process. We used k-fold cross validation with

train test split of 80:20.

3.4.3 Support Vector Machine Model

Similar to the various logistic regression models mentioned above we also used an

SVM classifier on the different feature configurations as used in the logistic regression

section.

SVM Model 1: SVM Model with n-grams with preprocessing

In this model, we experimented with different combinations of unigrams and

bigrams as features on preprocessing tweets without replacing the flu-mentions.
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SVM Model 2: SVM Model with top 1200 n-grams with preprocessing

and term generalization

This model used n-grams of both generalized and original tweets as features

SVM Model 3: SVM Model with top 1200 n-grams with preprocessing

and term generalized tokens and Twitter specific features

This model uses Twitter specific features along with textual features.

SVM Model 4: SVM Model with top 1200 n-grams with preprocessing

and term generalized tokens and Twitter specific features and Sentiment

features

This model uses sentiment scores along with the previous set of features.

SVM Model 5: SVM Model with top 1200 n-grams with preprocessing

and term generalized tokens and Twitter specific features and Sentiment

features and change phrase features

This model uses change phrase features along with the previous set of features.

Best SVM model with top 1200 n-grams with preprocessing and generalized tokens

and Twitter specific features.

While the Logistic regression and SVM models performed well, we decided to

experiment with language models like BERT and see how they perform on the text

that’s present in tweets. In particular we wanted to see if the language structure of

the tweets have any effect on the BERT models’ performance.
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Model F1 score
SVM Model 1 0.78
SVM Model 2 0.79
SVM Model 3 0.81
SVM Model 4 0.82
SVM Model 5 0.84

Table 3: SVM Model Scores

3.5 Transfer Learning Approach

We tried both the fine-tuning based and feature embeddings approaches. The

background for both these tasks is explained in the previous chapter. We describe the

various models we experimented with here using these transfer learning approaches

here. At the time of writing the organizers of the SMM4H shared task 2019 did not

release the test dataset gold labels. All the transfer learning models were evaluated

on the system provided by the organizers.

3.5.1 End-to-End Model

TL Model 0: BERT model fine-tuned end-to-end without any preprocess-

ing

This is a baseline model using just raw tweets.

TL Model 1: BERT model fine-tuned end-to-end

This is BERT base model trained on preprocessed tweets with term generalization.
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TL Model 2: BioBERT model fine-tuned end-to-end

This is BioBERT base model trained on preprocessed tweets with term generaliza-

tion.

3.5.2 Fully Connected Neural Network Model

The following three models use concatenated feature representation of the CLS

token from the last 4 layers of the fine-tuned BERT/BioBERT model. The concatena-

tion is a 3072-dimensional vector. Figure 2. represents the neural network architecture

used in the model. A dropout layer is added between the two hidden layers, and the

hyperparameters are tuned accordingly.

Figure 4: Generalizable System Model Architecture

Source: Figure adapted from (Alammar 2018)
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Model Accuracy F1 score Precision Recall
TL Model 0 0.82 0.8 0.79 0.82
TL Model 1 0.86 0.85 0.86 085
TL Model 2 0.87 0.85 0.87 0.85
TL Model 3 0.90 0.89 0.94 0.86
TL Model 4 0.91 0.91 0.97 0.85
TL Model 5 0.93 0.92 0.97 0.88

Table 4: Transfer Learning Models Scores

Test set Accuracy F1 score Precision Recall
health concern
overall 0.84 0.80 0.97 0.68

health concern
condition 1 0.92 0.92 0.98 0.86

health concern
condition 2 0.69 0.51 0.91 0.35

health concern
condition 3 0.80 0.59 1 0.42

Table 5: Final Scores on the Test Set for Fully Connected Neural Network.

• TL Model 3: Neural Network with BioBERT original embeddings

• TL Model 4: Neural Network with BioBERT generalized embeddings

• TL Model 5: Neural Network with BioBERT original embeddings

and generalized embeddings

The TL model 5 was our official submission to the shared task 4 challenge. The

results prove that the transfer learning approach proves to be promising for building

generalizable system for identifying personal health mention. Table 5 describes the

evaluation scores of the system.
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3.5.3 Improvement: Ensemble Model

Each time a neural network model is trained the model we get a different set of

weights. Using an ensemble models helps to leverage these different set of weights

by combining them in some way. One way to combine the weights is to take average

of all weights and the reason that model averaging works is that different models

will usually not make all the same errors on the test set (Bengio, Courville, and

Goodfellow 2016). We improve upon our submission by using an ensemble of the

BioBERT model with generalized and original embeddings. We used a total of 10

models. During fine-tuning process we make sure to choose the model which gives the

best accuracy on the development set, then we extract the embeddings and optimize

the hyperparameters of each individual neural network. Finally we use a weighted

averaging method to combine the model contributions based on the performance on a

separate holdout set.

3.6 Results

The evaluation dataset consisted of tweets related to personal health experience

mentions from influenza and another disease domain, Zika virus. The training data

had tweets from two different contexts - user is sick with influenza and user is getting

treatment for influenza. The Zika virus has contexts - the user is changing their

travel plans in response to Zika concerns, or the user is minimizing potential mosquito

exposure due to Zika concerns.

Evaluation criteria: The models are evaluated with respect to Accuracy, F1 score,

Precision and Recall. Accuracy is the count of correct predictions. The precision is
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Test set Accuracy F1 score Precision Recall
health concern
overall 0.88 0.87 0.87 0.86

health concern
condition 1 0.92 0.92 0.94 0.90

health concern
condition 2 0.75 0.72 0.73 0.70

health concern
condition 3 0.91 0.87 0.81 0.94

Table 6: Scores on the Test Set for the Final Model

the ratio tp/(tp + fp) where tp is the number of true positives and fp the number of

false positives. The recall is the ratio tp/(tp + fn) where fn is the number of false

negatives. The F1 score can be interpreted as a weighted average of the precision and

recall7.

Table 7 describes comparison with other teams. Table 6 describes the scores from

this final ensemble model. Our ensemble model surpasses the top performing system

from table 7 without using any additional resources.

3.6.1 Analysis

We also ran the BioBERT based models separately on the test set. Table 8 shows

the results for using the BioBERT with original embedding. Table 9 shows scores for

the BioBERT with generalized embedding. It is interesting to see that the generalized

embedding model performs better on the health condition 3 but worse on the health

condition 2 thereby proving the effect of using generalizing tokens. The original

7https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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Team Accuracy F1 Precision Recall
Health concerns in all contexts

UZH 0.8772 0.8727 0.8392 0.9091
ASU1 0.8456 0.8036 0.9783 0.6818
UChicagoCompLx 0.8456 0.7913 0.9286 0.6894
MIDAS@IIITD 0.8211 0.783 0.8932 0.697
TMRLeiden 0.793 0.7256 0.9398 0.5909
CLaC 0.6386 0.4607 0.7458 0.3333

Health concerns in Context 1: Flu virus (infection/vaccination)
UZH 0.9438 0.9474 0.9101 0.9878
UChicagoCompLx 0.925 0.9231 0.973 0.878
ASU1 0.925 0.9221 0.9861 0.8659
MIDAS@IIITD 0.8875 0.88 0.9706 0.8049
TMRLeiden 0.8625 0.8493 0.9688 0.7561
CLaC 0.6625 0.5645 0.8333 0.4268

Health concerns in Context 2: Zika virus, travel plans changes
UZH 0.7536 0.7385 0.7059 0.7742
MIDAS@IIITD 0.6667 0.5818 0.6667 0.5161
ASU1 0.6957 0.5116 0.9167 0.3548
UChicagoCompLx 0.6377 0.4681 0.6875 0.3548
TMRLeiden 0.6377 0.4186 0.75 0.2903
CLaC 0.5362 0.2 0.4444 0.129
Health concerns in Context 3: Zika virus, reducing mosquito exposure
UZH 0.8393 0.7692 0.75 0.7895
MIDAS@IIITD 0.8214 0.6667 0.9091 0.5263
ASU1 0.8036 0.5926 1 0.4211
UChicagoCompLx 0.8036 0.5926 1 0.4211
TMRLeiden 0.7857 0.5385 1 0.3684
CLaC 0.6964 0.3704 0.625 0.2632

Table 7: System performance for each team submission at the SMM4H 2019 shared
task 4

Source: (Weissenbacher et al. 2019)
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Test set Accuracy F1 score Precision Recall
health concern
overall 0.8947 0.8790 0.9396 0.8257

health concern
condition 1 0.9375 0.9367 0.9736 0.9024

health concern
condition 2 0.7971 0.7500 0.8400 0.6774

health concern
condition 3 0.8928 0.8235 0.9333 0.7368

Table 8: Scores on the Test Set for the BioBERT with Original Embedding Model

Test set Accuracy F1 score Precision Recall
health concern
overall 0.8807 0.8650 0.9083 0.8257

health concern
condition 1 0.9437 0.9433 0.9740 0.9146

health concern
condition 2 0.7101 0.6428 0.7200 0.5806

health concern
condition 3 0.9107 0.8648 0.8888 0.8421

Table 9: Scores on the Test Set for the BioBERT with Generalized Embedding model

embedding model does the exact opposite. So the combination of the two ends up

evening out the performance across the health concerns 2 and 3.
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Test set Accuracy F1 score Precision Recall
health concern
overall 0.8631 0.8528 0.8496 0.8560

health concern
condition 1 0.9312 0.9316 0.9493 0.9146

health concern
condition 2 0.6521 0.6129 0.6129 0.6129

health concern
condition 3 0.9285 0.9047 0.8260 1.0000

Table 10: Scores on the Test Set using RoBERTa

We also ran the model using RoBERTa representations to see if it will improve

the performance. Table 10 shows the results of using RoBERTa in our system. The

model improves on health conditions 1 and 3 but the performance is very low on the

health condition 2 thereby lowering the overall scores.

According to a 2016 emoji report 8 around 92 percent of the world population use

emojis in an online conversation. As such emojis present a very creative and powerful

way to communicate so much more than we could with words alone. Use of Emojis

has also proven to increase engagement with the rest of the online population. As

online communication is increasingly making use of emojis we decided to run another

model with that use the information conveyed by the emojis. Instead of removing the

emojis during the preprocessing step we convert an emoji present in the tweet into

its equivalent textual meaning. We use the emoji package in python3 9 to convert

the emoji to text. Table 10 shows the results on the test set using the emoji to text

translation.

8http://cdn.emogi.com/docs/reports/2016_emoji_report.pdf

9https://pypi.org/project/emoji/

36

http://cdn.emogi.com/docs/reports/2016_emoji_report.pdf
https://pypi.org/project/emoji/


Figure 5: Tweet with emoji

Test set Accuracy F1 score Precision Recall
health concern
overall 0.8631 0.8560 0.8345 0.8787

health concern
condition 1 0.9000 0.9036 0.8928 0.9146

health concern
condition 2 0.7536 0.7384 0.7058 0.7741

health concern
condition 3 0.8928 0.8500 0.8095 0.8947

Table 11: Scores on the Test Set by Emoji Replaced Model

Figure 4. depicts an example of a tweet containing emojis. After converting the

emojis to text the tweet becomes

Getting my flu shot and the needle broke :hushed_face :: face_with_medical

_mask :: syringe :

Out of the two datasets provided to us - the flu-vaccination and flu-infection tweets,

only the former contained tweets with emojis. So we only process the flu-vaccination

tweets to replace the emoji with the text. Adding emoji text to the data increases the

amount of information available for the model to process but it might not be good

enough. The performance of the model is certainly affected when you compare with

the model where we remove the emojis.
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Figure 6: Tweet with irrelevant emoji

For example figure 5. depicts a tweet with a lot of laughing emojis. The tweet

gets translated as

My mom said give him the flu shot he was damn near bouta cry :

face_with_tears_of_joy :: face_with_tears_of_joy :: face_with_tears

_of_joy :: face_with_tears_of_joy :: face_with_tears_of_joy :

While analyzing the performance of the model, there were certain tweets that were

present in the dataset that were ambiguous. For example in the following tweets the

scope of personal mentions is unclear. In the first example the author talks about

their daughter having flu and so tweet has been labeled as positive in the dataset.

Whereas in the second tweet the author talks about their mother having flu and that

is being labeled as negative.

1. My daughter has developed the flu so I’m home with her. I’m thinking of putting

on ’Star Wars’ so I can make a joke about R2D2H1N1.

2. Is really worried about my mother, she’s been diagnosed with the swine flu!”

There were also some cases which don’t have personal mentions but were still
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labeled as positive like Watch An Astronaut Give Himself a Flu Shot in Space via

http://t.co/feDNZjZATX http://t.co/HGMZ09MmaH http://t.co/vN5CFkXAWJ

Such cases would not have been an issue if the dataset had a lot more tweets as

deep learning models require a lot of data to train. Another case where the model

fails is when the tweet is too short. Language models like BERT use bidirectional

context to represent the sentence. So in case lack of context affects the performance.

For example:

Just got the flu shot, 23 flu shots today., Time to get a flu shot
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Chapter 4

AUTOMATIC CLASSIFICATIONS OF ADVERSE EFFECTS MENTIONS IN

TWEETS

An adverse drug reaction (ADR) is an injury caused by taking medication.

Adverse drug event (ADE) refers to any injury occurring at the time a drug is used,

whether or not it is identified as a cause of the injury. An ADR is a type of ADE

whose cause can be directly attributed to a drug and its physiologic properties (Schatz

and Weber 2015). A main distinction between ADRs and ADEs is that ADRs occur

despite appropriate prescribing and dosing, whereas ADEs may also be associated with

inappropriate use of the drug or other confounders that occur during drug therapy

but are not necessarily caused by the pharmacology of the drug itself.

4.1 Dataset Description

The data set provided by the SMM4H organizers consisted of 25,672 tweets. Only

2,374 from the entire dataset belonged to positive class so there is a massive class

imbalance. For each tweet, the publicly available data set contains: (i) the user ID,

(ii) the tweet ID, and (iii) the binary annotation indicating the presence or absence of

ADRs.

The tweets were downloaded using the script provided by the organizers of the

shared task. Out of 25,672 only 16,220 were available. The class distribution of the

downloaded tweets is 1407 positive class tweets and 14813 negative class tweets. The

test data had a total of 4575 tweets.
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Example:

Positive: @ProfTimNoakes Tim pre diabetic and insulin resistant. My endocologist

has prescribed Victoza injections.My appetite seems to be suppressed.

Negative: Anyone any experience with Eylea for DME any better than Lucentis.

Been offered both just wondering which is best

4.2 Preprocessing

The preprocessing library Ekphrasis provides several methods to clean and process

social media text (Baziotis, Pelekis, and Doulkeridis 2017). This library is used to

preprocess all the tweets.

• All @user mentions were replaced by user token.

• All HTTP URLs were replaced by url token.

• Hashtags were preprocessed by removing the # symbol and keeping the words.

• Emojis, dates, numbers, etc. are removed.

• The text is converted to lowercase.

4.3 Traditional Machine Learning Approach

We used n-grams as features for our baseline model. We experimented with

unigrams and bigrams, and also with the number of features. The graph below

represents the scores vs the number of features used in the logistic regression model.
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Figure 7: Number of Features Vs Accuracy, Recall, F1 Score

4.4 Transfer Learning Approach

We tried both the fine-tuning based and feature embeddings approaches. We

fine-tuned the models on the training dataset and ran two end-to-end approaches.

Next we extracted feature representations and used that as input to a separate neural

network model. We experimented with the following models

• BERT fine-tune

• BioBERT fine-tune

• BioBERT + FF: CLS token embedding from last 4 layers concatenated + feed

forward + softmax

• BioBERT + FF:CLS token embedding from last layer + feed forward + softmax
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4.4.1 Data Augmentation

In the training set only 8 percent of total tweets that are ADR related, which

indicates a massive class imbalance.So to increase the performance of the model and

to make the system more robust we use external datasets that document adverse

drug reactions online. We use the CSIRO Adverse Drug Event Corpus (CADEC)

(Karimi et al. 2015) and Psychiatric Treatment Adverse Reactions (psyTAR) (Zolnoori

et al. 2019) datasets. CADEC dataset consists of total 1250 text samples and each

sample consists of few sentences. The authors have extracted four entities - ADR, drug,

symptom, disease. We use the ADR entity and extract the sentence corresponding to

the ADR term. We extracted a total of 2407 such instances.

psyTAR dataset consists of drug reviews posted by people on an online forum. The

reviews are split into individual sentences and each sentence is annotated for Adverse

drug reactions(ADRs), Withdrawal Symptoms (WDs), Sign/Symptoms/Illness (SSIs)

and Drug Indications (DIs). We use the ADR annotations to create additional training

samples. We only use sentences which consist of at least 10 words. For example there

are sentences like “Loss of memory”, “Very bad side effects.”,“emotionless, Zombie

effect.”. Adding such phrases may make the additional dataset inconsistent with the

training set. Some of the sentences do not have ADR mentions we still include them

as negative examples.

4.4.2 Pre-training

Pre-training of the language model requires a large corpora, while pre-training is

not always necessary but the language construct of tweets differs from that of the
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Figure 8: ADR Detection Model Architecture

Source: Figure adapted from (Alammar 2018)

biomedical text or the Wikipedia corpus. So to collect data for pre-training we use

the Twitter API to search tweets by using list of drugs10 as search keyword. We

collected around 0.75 million tweets. We then preprocess the tweets by removing

the user mentions and HTTP URLs along with the RT mentions. We pre-train the

BioBERT model we set the next sentence prediction loss to 0 so just the masked

language modeling task contributes to the overall loss required for the model to learn.

10The list of drugs used is compiled by (Sarker and Gonzalez 2015)
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4.5 Results

The evaluation metric was micro-averaged F1-score for the ADR class. The

logistic regression model was submitted to the SMM4H challenge. Table 8 shows the

comparison between various systems submitted to the SMM4H 2019 shared task 1.

Table 9 shows the results on the test set with our models. All of our submissions are

after the official competition deadline. We did not submit any BioBERT based model

during the official competition time frame and all our models have been evaluated

in the post-evaluation period. Though our F1 and recall scores are less it is worth

noting that our models have been trained on a smaller dataset. Out of 25K tweets we

were able to download only about 16K tweets while some of the teams had access to

almost all of the tweets.

4.5.1 Analysis

Since the dataset is highly imbalanced and has very less samples of positive class,

the performance of the model can be improved with additional examples of positive

data as seen in the results.

During analysis of the final model’s performance on specific tweet we found that

some tweets which just have medical terms get classified as positive. For example:

1. Disponible SAXAGLIPTINA 5 MG CAJX14 COMP ONGLYZA

2. @Senor_Andrew, if you can tell me what Augmentin, Vibramycin, Actos,

Fosamax, Paxil and Lipitor... are you have my blessing. #TAMUKNation
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Team F1 Precision Recall
ICRC 0.6457 0.6079 0.6885
UZH 0.6048 0.6478 0.5671
MIDAS@IIITD 0.5988 0.6647 0.5447
KFU NLP 0.5738 0.6914 0.4904
CLaC 0.5738 0.5427 0.6086
THU NGN 0.5718 0.4667 0.738
BigODM 0.5514 0.4762 0.655
UMich-NLP4Health 0.5369 0.5654 0.5112
TMRLeiden 0.5327 0.6419 0.4553
CIC-NLP 0.5209 0.6203 0.4489
UChicagoCompLx 0.4993 0.4574 0.5495
SINAI 0.4969 0.5517 0.4521
nlp-uned 0.4723 0.5244 0.4297
ASU BioNLP 0.4317 0.3223 0.6534
Klick Health 0.4099 0.5824 0.3163
GMU 0.3587 0.4526 0.2971

Table 12: System performance for each team submission for the SMM4H 2019 shared
task 1

Source: (Weissenbacher et al. 2019)

As we have seen in the previous chapter the performance of the model is poor on

short tweets, we find the issue is also present here. For example the tweet Thank God

for trazodone. predicted as positive.

We also experimented with RoBERTa and table 13 shows that the performance of

the model slightly lower than BioBERT. We did expect BioBERT to perform better

than RoBERTa because the data had a lot of biomedical terms and BioBERT being

trained on a lot of biomedical data.
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System Data
Augmentation F1 Precision Recall

Logistic Regression (Baseline) - 0.4317 0.3223 0.6534
Average system scores - 0.5019 0.5351 0.5054
BERT - 0.5633 0.5173 0.6182
BioBERT - 0.5814 0.5280 0.6469
BioBERT(last 4) + FF - 0.5905 0.5420 0.6485
BioBERT(last) + FF - 0.5912 0.5478 0.6421
Ensemble BioBERT + FF Yes 0.6170 0.5832 0.6549
Ensemble BioBERT
Pretrained + FF Yes 0.6430 0.6214 0.6661

Ensemble RoBERTa + FF Yes 0.6114 0.5834 0.6421

Table 13: Final ADR Classification System Scores
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Chapter 5

EXTRACTION OF ADVERSE DRUG REACTIONS IN TWEETS

5.1 Dataset Description

The data set provided by the SMM4H organizers consisted of 2,367 tweets out

of which 1,212 positive and 1,155 negative. Some of the tweets have multiple ADR

mentions which have been documented as separate ADR extraction examples. The

total number of such ADR extractions is 2971.

Data Format:

• Tweet Id: 328059687327109120

• Start: 18

• End: 30

• Type: ADR

• Extraction: light’ sleep

• Drug: venlafaxine

• Tweet: another night of ’light’ sleep. feel low. subdued. sad. #venlafaxine

#day12

• Meddra Code: 10062519

• Meddra Term: poor sleep quality
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5.2 Preprocessing

The tweets are cleaned by replacing all the @user mentions by user token and

HTTP URLs with url token. In order to run the BioBERT Named Entity Recognition

model the data has to converted into a token, tag format. We use the BERT’s basic

tokenizer that removes white spaces and punctuation to tokenize the tweet. We use

the provided ADR extractions to mark the tokens with B or I-tag. In case of the multi

word expressions the B-tag is followed I-tags. All other tokens are marked by O-tag.

For example:

high off tramadol and venlafaxine in school omg help im falling asleep here
O O O O O O O O O O B I O

5.3 Models

BioBERT NER

BioBERT computes the token level B,I,O probabilities from a single output layer

using the representations from the last layer. This is the baseline NER model

configuration used by BioBERT.

BioBERT NER CRF

Traditionally BiLSTM-CRF models have been found successful at biomedical NER

tasks. Since BioBERT is already bidirectional, we add a CRF layer on top of the

representation from the last layer (Miftahutdinov, Alimova, and Tutubalina 2019)
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Figure 9: ADR Extraction Model Architecture

Source: Figure adapted from (Alammar 2018)

5.4 Data Augmentation

We use the same two datasets that we had created from CADEC and psyTAR as

described in the previous chapter. While CADEC dataset has the ADR spans already

extracted with the start and end of the spans, we directly use those to create new

samples. psyTAR on the other hand has the extractions specified without the span.

So we search the ADR span in the text and extract the start and end indices. If there

are multiple ADRs extracted, each ADR becomes part of a separate example in our

dataset, this is done in accordance with the multiple ADR case in the training dataset.

We generated 528 such samples from the CADEC dataset and 438 from the psyTAR

ADR dataset.
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5.5 Pre-trained Model

To improve our scores in the task we use our pre-trained model from the previous

task to classify tweets regarding adverse effect mentions. We use the same model

BioBERT NER CRF with these pre-trained weights.

5.5.1 Results

The evaluation criteria uses two modes - strict and overlapping. Under strict mode

of evaluation, ADR spans are considered correct only if both start and end indices

match with the indices in the gold standard annotations. Under overlapping mode of

evaluation, ADR spans are considered correct only if spans in predicted annotations

overlap with the gold standard annotations. Table 10 describes the system scores for

the submissions to the SMM4H shared task 2. Table 8 describes the performances of

our models. We did not submit any model during the official competition time frame

and all our models have been evaluated in the post-evaluation period.

5.5.2 Analysis

During analysis we found a couple of interesting cases that were present in the

dataset.

Multiple ADR Mentions

The following tweet contains more than one ADR mention. The dataset contains

such tweets with multiple ADRs split into individual samples.
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“@misterak47 @cbs i don’t know what that has to do w/ me. avelox has hurt my

connective tissue,lungs and thyroid. i guess i should feel lucky”

For example there are three different ADRs - connective tissue,lungs and thyroid,

so there are three individual cases in the dataset.

347950374063329280 77 94 ADR connective tissue avelox “@misterak47 @cbs i

don’t know what that has to do w/ me. avelox has hurt my connective tissue,lungs

and thyroid. i guess i should feel lucky” 10061087 connective tissue disorder

347950374063329280 95 100 ADR lungs avelox “@misterak47 @cbs i don’t know

what that has to do w/ me. avelox has hurt my connective tissue,lungs and thyroid.

i guess i should feel lucky” 10025082 lung disorder

In this example it is our assumption that dataset creators have divided the ADRs

based on the comma and conjunctions like ’and’, ’or’. When we pass this example as

input to our model it returns connective tissue,lungs and thyroid as one single ADR.

We found there were many such examples in the dataset. So we do an additional post

processing to handle such cases and split the ADR extraction into multiple spans if

possible.

ADR Mention in Emojis

In case of the above tweet the ADR is heart attack. It is spelled by using heart

emoji for the word heart and attacks is written normally. Now such cases are not

handled by the system, we get partial ADR detection for attacks, thereby affecting

our strict F1 scores.

52



Figure 10: ADR Mention with Emoji

Team Relaxed Strict
F1 Precision Recall F1 Precision Recall

KFU NLP 0.658 0.554 0.81 0.464 0.389 0.576
THU NGN 0.653 0.614 0.697 0.356 0.328 0.388
MIDAS@IIITD 0.641 0.537 0.793 0.328 0.274 0.409
TMRLeiden 0.625 0.555 0.715 0.431 0.381 0.495
ICRC 0.614 0.538 0.716 0.407 0.357 0.474
GMU 0.597 0.596 0.599 0.407 0.406 0.407
SINAI 0.574 0.632 0.527 0.336 0.37 0.307
HealthNLP 0.542 0.612 0.486 0.36 0.408 0.322
ASU BioNLP 0.535 0.415 0.753 0.269 0.206 0.39
Klick Health 0.396 0.416 0.378 0.194 0.206 0.184

Table 14: System performance for each team submission at the SMM4H 2019 shared
task 2

Source: (Weissenbacher et al. 2019)

Model Relaxed Strict
F1 Precision Recall F1 Precision Recall

BioBERT 0.632 0.745 0.549 0.447 0.531 0.385
BioBERT + CRF 0.640 0.733 0.568 0.453 0.523 .400
Pre-trained BioBERT + CRF 0.657 0.731 0.596 0.470 0.528 0.424
RoBERTa 0.617 0.727 0.535 0.430 0.511 0.372

Table 15: ADR Extraction System Scores
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Chapter 6

CONCLUSION AND FUTURE WORK

Chapters 3,4 and 5 have described the systems developed to tackle various tasks.

Section 6.1 summarizes the work that is done and the contributions made. Section

6.2 discusses some possible future directions.

6.1 Summary

Recent progress in Natural language processing has been due to the rise in trans-

former models like BERT and other BERT-based models.

The system we used for chapter 3 shows that language models like BERT and

BioBERT can be fine-tuned on a small dataset of tweets and still achieve promising

results where the health concern is different from the training set.

The results obtained in chapter 4 and 5 show that language models are not enough

on their own. It was interesting given that these models are trained on Wikipedia

and biomedical text that how well they perform on tweets as tweets often contain

misspellings, sarcasm, and slang. So we pre-trained the models on our collection of

tweets which improved the performance slightly on the ADR detection task but not

so much on the ADR extraction. ADR detection and extraction on electronic health

records have much better performance compared to social media data and it still

remains a challenge and an opportunity for future research.
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The thesis makes the following contributions:

1. Use of term generalization to handle domain adaptation which has not been done

any official submission to the generalizable systems task.

2. Use of data augmentation along with pre-training to improve the performance of

ADR detection and extraction tasks.

3. Conducted experiments on different models and datasets to compare their abilities.

4. Achieved state of the art accuracy in the generalizable systems task.

5. Developed various models using BioBERT representations which can be reused for

similar tasks.

6.2 Future work

BERT and BERT based models require a huge amount of computing power and a

large corpus to pre-train the model. To pre-train a model on tweets, we require a much

larger dataset than the one used in chapters 4 and 5. Recently compressed models

like DistilBERT (Sanh et al. 2019) have managed to achieve similar performances

like BERT on various tasks. DistilBERT is 40 percent smaller and 60 percent faster

than BERT. Pre-training DistilBERT on a larger corpus of tweets may help us to

achieve similar or even better performance on the tasks while managing to minimize

the compute required.

Another way to improve the models would be to try and combine the language

model representations and other syntactic, lexical, semantic features. Since ADR

data on social media is highly imbalanced it would be interesting to see if GPT-2

model (Radford et al. 2019) trained on tweets would be able to generate some positive
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examples of the data which can be used to further improve the system. Additionally

using external knowledge especially in the ADR detection and ADR extraction tasks

by combining knowledge from various ADR databases that exist along with language

models we may get a better performing system.
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APPENDIX A

ABLATION STUDIES
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A.1 Fine-tuning parameters

Fine-tuning on smaller datasets results in a variance in the evaluation accuracy.
The parameters responsible for this variance are the learning rate, number of epochs,
and batch size.

For the BioBERT based models in chapter 2 and 3, we ran an exhaustive search
on these parameters with the following range criteria:
Learning rate: 5e-5, 3e-5, 2e-5
Batch size: 8,16,32
Number of epochs: 2,3,4,5

For chapter 4 since the model runs end-to-end the only parameters that we varied
was the number of epochs.

Number of Epochs Relaxed F1 score Strict F1 score
8 0.677 0.522
10 0.667 0.534
16 0.637 0.519
20 0.662 0.473

Table 16: Number of epochs vs F1 scores

A.2 Embeddings

We experimented with different combination of masked embeddings
1. Average embedding of all tokens
2. Embedding of the CLS token from each of the last two individual layers
3. Average of CLS token embeddings from last 4 layers

A.3 Pre-training steps

This ablation study answers the following two questions:
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Masked Embedding F1 score
Average of all token embeddings 0.88
CLS token from last layer 0.902
CLS token from second-to-last layer 0.893
Average of CLS token from last 4 layers 0.881

Table 17: Embedding configuration vs F1 scores

1. Will evaluation accuracy increase after k training steps?
2. Will the masked language modeling task work effectively on a smaller sequence

and less number of masked tokens?
Figure 8 shows the masked language accuracy (on dev set) which increases and

the loss decreases as the number of training steps increase.

Figure 11: Loss and accuracy for pre-training tasks
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APPENDIX B

LIST OF TERMS USED FOR MASKING FLU-MENTIONS
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• Swine
• flue
• colds
• tonsillitis
• cold/flu
• hayfever
• tonsilitis
• flu
• h1n1
• h5n1
• influenza
• viruses
• Virus
• fluey
• flulike
• flunami
• asian flu
• stomach flu
• superflu
• bird flu
• avian flu
• tonsilitis
• strep
• sinusitis
• bronchitis
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APPENDIX C

NLP PIPELINE IMPLEMENTATION
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Fine-tuning parameters:

python b i obe r t / r u n_c l a s s i f i e r . py \
−−task_name=COLA \
−−do_train=true \
−−do_eval=true \
−−data_dir=data \
−−vocab_f i l e=biobert_v1 . 1_pubmed/vocab . txt \
−−be r t_con f i g_ f i l e=biobert_v1 . 1_pubmed/ bert_conf ig . j son \
−−i n i t_checkpo int =/. ./model . ckpt \
−−max_seq_length=128 \
−−tra in_batch_size=32 \
−−l ea rn ing_rate=5e−5 \
−−num_train_epochs=5.0 \
−−output_dir =/. ./ task1_output/

Pre-training parameters:

python b i obe r t / run_pretra in ing . py \
−−i npu t_ f i l e =/. ./ tf_examples . t f r e c o r d \
−−output_dir =/. ./ p r e t ra ined2 \
−−do_train=True \
−−do_eval=True \
−−be r t_con f i g_ f i l e =/. ./ biobert_v1 . 1_pubmed/ bert_conf ig . j s on \
−−i n i t_checkpo int =/. ./ biobert_v1 . 1_pubmed/model . ckpt−1000000 \
−−tra in_batch_size=256 \
−−max_seq_length=64 \
−−max_predictions_per_seq=5 \
−−num_train_steps=100000 \
−−num_warmup_steps=10000 \
−−l ea rn ing_rate=2e−5

The fine-tuning and training our custom BioBERT models was performed on 2
Tesla V100-SXM2-16GB GPUs.

The pre-training of BioBERT was done on 4 Tesla V100-SXM2-16GB for 10 days.
We followed the author’s instruction regarding the learning rate, training batch sizes.
We decided to keep the maximum sequence length to 64 that since tweets are usually
of shorter length. The default value of maximum predictions per sequence is 20, and
it is likely that a tweet may end up being shorter than 20 tokens and cause an issue
with the training process, we decided to reduce that number to 5.
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APPENDIX D

CODE REPOSITORY
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The Code and intermediate data is available at
https://github.com/ShubhamGondane/Biomedical-NLP-Twitter
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APPENDIX E

LIST OF DRUGS
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The following list has been compiled by (Sarker and Gonzalez 2015) and was used
to collect additional tweets for pre-training.

• humira
• dronedarone
• lamictal
• pradaxa
• paxil
• zoledronic acid
• trazodone
• enbrel
• cymbalta
• quetiapine
• cipro
• lozenge
• dabigatran
• olanzapine
• fluoxetine
• vyvanse
• seroquel
• fosamax
• paroxetine
• nicotine
• effexor
• prozac
• tysabri
• rivaroxaban
• baclofen
• lamotrigine
• venlafaxine
• apixaban
• avelox
• levaquin
• zyprexa
• duloxetine
• ofloxacin
• geodon
• victoza
• metoprolol
• viibryd
• pristiq
• nesina

71



• factive
• gamma-aminobutyric acid
• sabril
• livalo
• denosumab
• bystolic
• xarelto
• floxin
• boniva
• saphris
• ziprasidone
• memantine
• namenda
• latuda
• fycompa
• canagliflozin
• zometa
• etanercept
• lurasidone
• alendronate
• linagliptin
• effient
• vimpat
• eliquis
• liraglutide
• pregabalin
• onglyza
• nicotrol inhaler
• lyrica
• invokana
• commitlozenge
• actonel
• nicotrolinhaler
• synthroid
• albuterol
• nasonex
• spiriva
• suboxone
• nexium
• januvia
• valsartan
• tamiflu
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