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ABSTRACT

An airborne, tethered, multi-rotor wind turbine, effectively a rotorcraft kite,

provides one platform for accessing the energy in high altitude winds. The craft is

maintained at altitude by its rotors operating in autorotation, and its equilibrium

attitude and dynamic performance are affected by the aerodynamic rotor forces, which

in turn are affected by the orientation and motion of the craft. The aerodynamic

performance of such rotors can vary significantly depending on orientation, influencing

the efficiency of the system. This thesis analyzes the aerodynamic performance of

an autorotating rotor through a range of angles of attack covering those experienced

by a typical autogyro through that of a horizontal-axis wind turbine. To study the

behavior of such rotors, an analytical model using the blade element theory coupled

with momentum theory was developed. The model uses a rigid-rotor assumption

and is nominally limited to cases of small induced inflow angle and constant induced

velocity. The model allows for linear twist. In order to validate the model, several

rotors – off-the-shelf model-aircraft propellers – were tested in a low speed wind tunnel.

Custom built mounts allowed rotor angles of attack from 0 to 90 degrees in the test

section, providing data for lift, drag, thrust, horizontal force, and angular velocity.

Experimental results showed increasing thrust and angular velocity with rising pitch

angles, whereas the in-plane horizontal force peaked and dropped after a certain

value. The analytical results revealed a disagreement with the experimental trends

especially at high pitch angles. The discrepancy was attributed to the rotor operating

in turbulent wake and vortex ring states at high pitch angles, where momentum theory

has proven to be invalid. Also, aerodynamic design constants, which are not precisely

known for the test propellers, have an underlying effect on the analytical model. The

developments of the thesis suggest that a different analytical model may be needed

for high rotor angles of attack. However, adding a term for resisting torque to the

model gives analytical results that are similar to the experimental values.
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Chapter 1

INTRODUCTION

In addition to their functionality for producing lift and thrust on flying vehicles,

rotating wings have proven effective for extracting energy from the motion of the

atmosphere. Wind energy has become the most comprehensive and mature type

of intermittent renewable power. The installed capacity of wind in the United

States by the end of second quarter, 2019 was at 97,960 MW [1]. Wind energy has

enormous potential for further development. However, conventional wind turbines

have drawbacks, such as saturation of inland windy areas, bird and bat mortality,

noise, aesthetic impacts, and fitful wind speeds.

(a). 30m altitude (b). 100m altitude

Figure 1. United States Average Annual Wind Speed [2]

It has been a known fact that the wind speed increases with height from the surface

to the upper troposphere. There are several reasons associated with this tendency.

Firstly, the horizontal pressure gradient increases with height. The height of the

troposphere is taller in warmer air, since warm air is less dense and thus occupies

a greater volume. Going up in altitude, the pressure gradient between the warm

1



and cold air increases with height. This results in a greater pressure gradient, thus

stronger wind. Secondly, the wind speed is lower near the ground due to surface

friction. Surface objects such as trees, rocks, houses, etc. slow the air as it collides

into them. The influence of this friction is less with height above the ground, thus

the wind speed increases with height. Lastly, the density of the air is highest at the

surface and decreases with height. A force imparted on air will move the air more

easily when the mass of the air is lesser. Denser air requires a greater force to make

it flow. With air density decreasing with height, the lower density air flows with a

relatively higher speed. Figure 1 (a) and 1 (b) show the average wind speeds at 30m

and 100m altitude respectively in the United States. At the higher altitude the wind

speeds are observed to be significantly higher. Also, a typical profile of wind speed

variation with altitude is shown in Figure 2.

Figure 2. A Typical Wind Speed Profile [3]

The power available in wind is generally given by the formula P = 0.5ρAV 3
∞. This

implies that even a small increase in velocity can have a large positive effect on the

available power. Therefore, if power could be extracted at higher altitudes, a lot more

power can be gained with the same area of blades, or by reducing the diameter of

blades to a large extent. Airborne wind turbines are machines that operate on this
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idea to harness high altitude wind power. Most airborne wind turbines are effectively

a kite tethered to the ground. Airborne wind turbines are broadly classified as ground

based generators and airborne generators. The later type can be like an aircraft or

drone carrying an on-board generator which can tap high velocity winds and convert

the rotational energy to electrical energy. The energy can then be transmitted to the

ground through the tether. A great advantage in this scenario is the relatively high

wind velocity avoids the use of gearboxes which contributes to a required light weight

design. The alluring feature about this system is the on-board generator that can

be switched to act as a motor during take off and landing. The turbines can act as

propellers to produce thrust to maneuver the aircraft to the ground, or vice versa.

A particular development here, classified in the category of airborne generators, is

a tethered rotor-craft concept or also called the “Flying Electric Generator”. This

concept, based on autorotation was introduced and developed from the late 1970’s by

Robert and Shepard [4]. The tethered rotorcraft is variation of the an autogyro, where

the rotors concurrently extract power and produce lift to keep the kite airborne.

1.1 Autorotation

Autorotation is a common phenomenon experienced by helicopters where the

vehicle’s rotors generate lift by rotating as its loses altitude. Leishman [5] defines

autorotation as a self sustained rotation of the rotor without the application of any

shaft torque (Q = 0). The energy to drive the rotor comes from conversion of potential

energy to kinetic energy from the descending rotor. The phenomenon of autorotation

had been first observed in nature with the sycamore seeds when they free fall. The

first application of autorotation was developed by Juan de la Cierva in 1920 with

the autogyro. Since then the phenomenon has been used for helicopters, and other

advancements in autogyro.

To begin with, the basics physics behind the operation of this system is discussed.

In general, for rotors, the actuator disk setup using the momentum theory has been

3



the simplest principle used to model rotors. Using the standard helicopter rotor

terminology for a rotor in ascent, the stream velocity direction points downwards.

Applying the control volume analysis, we can define the ratio of induced velocity to

hover induced velocity as

νi
νh

= −
(
Vc
2νh

)
±

√(
Vc
2νh

)2

+ 1 (1.1)

During descent, the direction of slipstream velocity changes, along with the direction

of induced velocity changes. Hence, we have,

νi
νh

= −
(
Vc
2νh

)
±

√(
Vc
2νh

)2

− 1 (1.2)

Where, νi is the average induced velocity, νh is the hover induced velocity and Vc

is the climb velocity. The above equation for descend is only valid for Vc being than

twice the average induced velocity at disk [5]. Plotting these equations for a range of

velocity ratios would have a plot as shown in Figure 3.

Figure 3. Induced Velocity vs Stream Velocity

4



The curve in pink represents the windmill brake state, and the curve in blue

represents the normal working state of a helicopter in climb. The dashed curves

represent the extension of the axial climb state into negative velocities or the descend

state with the other solution of the quadratic equation above. The dashed curves

violate the assumed direction of flow, hence may be treated as an unviable solution.

As originally suggested by Hafner [6] and Lock [7], the state between descend velocities

between −2νh and 0, can a have a slipstream in any direction. As there is no definite

control volume that can be applied to the region, the momentum theory fails to

apply. Leishman [5] states that the velocities in this region gets difficult to define

even empirically as the rotor tip interactions makes the flow unsteady and turbulent.

This state is usually defined as the Vortex Ring State. This usually occurs when a

helicopter begins to descend vertically and continues to descend at a high rate till it

reaches the windmill brake state. Approaching this region, the induced velocities in

the center change direction with the high rate of descend. In the vortex ring state,

the upward and downward velocities start interacting and causing circulation along

the span of the blade. This can cause a severely loss of lift, as the power from the

rotor is just used to form the vortexes. If the rotor continues to descend at higher

rate, crossing the turbulent wake region it finally enters the wind brake state. The

point between the two regions is where the ideal autorotation lies.

1.2 Momentum Theory Validity

Figure 4 shows the working states of a general rotor in axial flight. Typically the

state of autorotation lies between the region −2 ≤ Vc/νh ≤ 0, where the classical

momentum theory fails to apply directly, as also shown in Figure 3. Leishman [5] also

defines a region of a ideal autorotation where Vc + νi = 0. This is region where 0 net

power is required by the rotor.

5



Figure 4. Working States of Rotor in Axial Flight [8]

In general, investigators studying these conditions from the wind-energy perspective,

utilize a different terminology, including the idea of the axial flow factor. To understand

better, the following discussion will bridge the helicopter terminology to the wind

turbine terminology.

The axial induction factor is defined as,

a =
Induced velocity at rotor

Free stream velocity
=
V∞ − Vdisk

V∞

Comparing the above equation to the axial induced velocity of a helicopter, νi

would be negative, as wind turbine terminology assumes a positive velocity in the

downstream direction. Vc now represents the free stream velocity.

a =
−νi
Vc

=
−νi
Vc

νh
νh

=
−νi/νh
Vc/νh

As discussed earlier, autorotation typically would occur in the region −2 ≤ Vc/νh,

and the point of ideal autorotation Vc + νi = 0. Therefore, evaluating this region in

terms of axial induction factor.
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• Vc/νh = −2

Since momentum theory is valid for descend in this region, using equation 1.2,

νi
νh

= −
(
Vc
2νh

)
±

√(
Vc
2νh

)2

− 1 = −
(
−2

2

)
±

√(
−2

2

)2

− 1

νi
νh

= 1

Therefore,

a =
−νi/νh
Vc/νh

=
−1

−2

a = 0.5

• Vc/νh = 0

Similarly at the point of ideal autorotation, Vc = −νi

a =
−νi
Vc

=
−νi
−νi

a = 1

Hence, with the above deductions, we can say that autorotation primarily occurs

in the region, 0.5 ≤ a ≤ 1. Eggleston and Stoddard [9], illustrated a plot (Figure )

depicting the coefficient of thrust vs axial induction factor for the momentum theory.

The normal windmill operating stage is valid in the region of 0 < a < 0.5. The region

of a < 0 refers to the normal operating stage of a propeller or helicopter, where power

is being supplied to the rotor.

When the axial induction factor is greater than 0.5, the rotor encounters the

turbulent wake state, where momentum theory has proved to be invalid (denoted

by dashed line). Reverse flow regions encountered here, tend to increase the axial

induction factor and force the rotor into the vortex ring state. Early, experimental

results by Glauert [11], and Lock [12], have show that thrust tends to increase in

the region from 0.5 ≤ a ≤ 1. The symbols on the plot denote experimental data
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Figure 5. Validity of Momentum Theory [10]

by Glauert. The abrupt increase of the coefficient of thrust after a greater than 0.4

can be associated with flow separation and stall. Glauert suggests and empirical

relationship at about a = 0.4, that connects the curve from the momentum theory

to the limiting value of coefficient of thrust. CT = 2 represents the drag coefficient

of a flat plate perpendicular to the flow [10].In 2005, Buhl [13] suggests that CT

is simply not a function of the axial induction factor in the turbulent wake state

because there is a wide spread in experimental data in comparison to the analytical

expressions. He develops a new quadratic relation which reduces the discontinuity at

CT ≈ 0.4. Various researchers have attempted to improve the empirical relationship

for the turbulent wake state or vortex ring state, but none are associated with physical

realization of thrust increasing in the flow state.

1.3 Autorotation Model Literature Survey

As explained in the previous section, autorotation lies in the region where momen-

tum theory is invalid, hence cannot be directly modeled with it. Glauert [14] initially

modeled an autorotating rotor by coupling the blade element theory with momentum
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theory. Importantly the inflow was based on the momentum theory. This method is

still largely used today for modeling of autogyros rotors.

In 1928, Glauert[14] developed a model based on the assumption that the angles of

incidence on each blade element are small that the interference flow is similar to that

caused by an ordinary airfoil. With this fact he ignores the higher order harmonics in

his analysis. Using an average axial induced velocity, constant chord and fixed uniform

pitch he derives the coefficient of thrust, horizontal force and torque coefficients, and

solves the equations to determine the coefficient of lift and drag. He concludes that

the coefficient of lift non-dimensionalized by the free stream velocity is maximized at

0.5 to 0.6. The maximum lift to drag is in the ratio of 6 to 8.

Wheatley [15] extends Glauert’s and Lock’s theory by introducing variable pitch

along with the inclusion of the effect of blade tip losses and influence of reversed

velocities on retreating blades. He shows that the induced velocity has a secondary

effect on the net rotor forces, wheres the effect of flapping is substantial. He discusses

how the consideration of uniform induced velocity affects the analysis at low and high

tip speed ratios. He inherently specifies to use two different methods for analysis, one

for low incidence and for high incidence.

Setter and Rosen [16] investigate a steady state axial motion of autorotation for

rotary decelerators. Their initial parametric study theoretically and experimentally

show the aerodynamics for a generalised auto-rotating rotor. Concerning this thesis,

the most important take away from their research is the flow states for autorotation.

They base the relationship between the normalized induced velocity and the normalized

descent velocity for the vortex ring state and windmill brake state. It is also suggested

that the inner cross sections of the blades experience relatively high angles of attack,

and these cross sections tend to experience stall and are not dealt by simplified models.

Each elemental cross-sectional properties influence the state of steady autorotation.

They conclude on the fact that in order to accurately model theoretical steady
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autorotation, a definite database of aerodynamic characteristics at each cross-section

is required.

Rimkus and Das [17], applied an aerodynamic analyses of the autogyro for airborne

wind energy extraction applications. The configuration of the device is very similar

the one introduced by Robert [4]. Rimkus and Das, model the energy extraction as

an additional braking torque. The results depicted with steady state conditions are

developed with specific parameters for a particular rotor. The results show various

aerodynamic performance parameters as function of angle of incidence for both an

ideal autogyro and an airborne wind turbine.

The work by Kentfield and Brophy [18], explore another application of application

with the theory of Cierva-Rotor Wind turbines. To maximize power production a

wind turbine rotor is tilted 40◦ to 50◦ relative to the vertical. The author develops

a custom code called CIERVACALC to model massively tangential flow conditions.

The code customizes the classical Glauert’s theory to apply to an modified actuator

disc on elliptical cross-section.Azimuthal variations in the flow are accounted for in

the code. The results show a equivalent match, when the angle is set to operate as a

horizontal axis wind turbine. Also, the code imbibes static flat plate aerodynamic

drag coefficient characteristics for high angles of attack. The authors, conclude with

discussing the advantages of the configuration of not having flap-wise bending moments

under running conditions, ground level yaw system and lowering of turbines during

dangerous hurricanes.

1.4 Characterizing Autorotation for Highly Pitched Rotors

In regards to all the applications and discussions above, this thesis aims to model

autorotation for a range of pitch angles, from the state of a helicopter or autogyro rotor

to a horizontal axis wind turbine. The thesis includes both an analytical derivation and

an experimental study. The analytical study extends Glauert’s theory of the autogyro

[14], including higher-order terms in advance ratio and higher rotor angles of attack.
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A linear twist is also introduced into the model. A hingeless rotor without flapping

will be assumed to simplify the model and provide a comparison to the experimented

rotors. To understand the aerodynamic performance of practical autorotating rotors,

various experiments are conducted in a low speed wind tunnel. The experiments

measure the lift, drag, thrust and horizontal force. The effects of blade pitch are

evaluated on the basis of the experimental results. A comparison is made between

the analytical and experimental results. Lastly, an explanation is offered for how the

effects of flow states affect the analytical results for an autorotating rotor.
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Chapter 2

DEVELOPMENT OF AN ANALYTICAL MODEL FOR ROTOR THRUST

A rotor operating in the state of autorotation can develop significant thrust in

order to sustain flight. In this chapter we will investigate the derivation of thrust and

horizontal forces of a rotor in autorotation using the blade element momentum theory,

as introduced by Glauert [14]. It has been a successful tool in analyzing all kinds of

rotors. The theory combines the momentum theory to the blade element theory. Blade

Element theory breaks down the rotor into multiple elements, computing the elemental

forces acting on a quasi-static 2D element. The rotor performance parameters can

then be obtained by integrating over the entire length and averaging about the entire

azimuth. For this analysis we will assume that the angles of incidence of relative

velocity on a blade element are small and we have no flapping at the rotor hinge. In

simple sense it can be considered as a hingeless rotor. This work below will be used

to develop an analysis of the rotor parameters for autorotation.

Figure 6. Incoming Flow on an Auto-Rotating Rotor

Consider a rotor of radius R with Nb blades, which rotate at an angular velocity

of Ω. The case is similar to a forward flight condition of rotor, but instead we have an
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oncoming wind at a velocity V∞ as shown in Figure 6. The rotor is inclined backward

to the horizontal wind at an angle α to the horizontal. This is exhibiting the condition

of autorotation. The shaft is normal to the plane of rotation. The free stream velocity

will act in two directions, along the rotor axis and along the rotor plane outwards

as shown. The radial component component of velocity will be ignored, for clarity

and ease. In reality there are multiple complications due to flapping, compressibility

effects, unsteady effects, non linear aerodynamics, stall and reverse flow. These are

difficult to model and often complicate the process of derivation.

The advance ratio (µ),and induced inflow ratio are defined as, respectively:

µ =
V∞
ΩR

λi =
νi

ΩR

where, νi is the induced velocity at the rotor. As discussed later, we assume an average

induced velocity for the entire rotor. In reality the induced velocity varies over the

entire span of the blade.

In forward flight, the rotor thrust is given by the relation [14],

T = 2(ρAV ′)νi

= 2ρAνi
√

(V∞ cosα)2 + (V∞ sinα− νi)2

where, A is the area of the rotor disk, ρ is the density of air, and V ′ is the resultant

velocity experienced by the rotor. Rearranging and non-dimensionalizing both sides

by (ΩR)2.

T

2ρA(ΩR)2
=

νi
ΩR

√
(V∞ cosα)2 + (V∞ sinα− νi)2

ΩR

=
νi

ΩR

√(
V∞
ΩR

cosα

)2

+

(
V∞
ΩR

sinα− νi
ΩR

)2

CT
2

= λi
√

(µ cosα)2 + (µ sinα− λi)2
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where, the dimensionless thrust coefficient is given by,

CT =
T

ρA(ΩR)2

Therefore,

λi =
CT

2
√

(µ cosα)2 + (µ sinα− λi)2
(2.1)

Now defining the total inflow ratio as,

λ = µ sinα− λi (2.2)

Equation 2.1 can be expressed as,

λi =
CT

2
√

(µ cosα)2 + λ2

Hence, we have,

λ = µ sinα− CT

2
√

(µ cosα)2 + λ2
(2.3)

This is one of the most important equations obtained, and will be referenced later on.

It must be noted, this a result is derived on the basis of the momentum theory.

(a). Top view along the rotor axis (b). Front view along the rotor plane

Figure 7. Incident Velocities on Blade

As sketched in Figure 7 (a) the rotor elements encounter a tangential velocity

which is a combination of two velocities: one from the oncoming flow which eventually

becomes a function of the azimuth and, secondly, the linear velocity originating from
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the angular rotation of the rotor. ΩR is defined such that it is the oncoming velocity

to the rotor. Similarly, when looked at from the hub plane as shown in Figure 7

(b), the perpendicular velocity is a combination of the component of the free-stream

velocity perpendicular to the rotor plane and the induced velocity. Due to the forces

exerted on the rotor, the undisturbed flow in the vicinity is affected which gives rise

to local induced velocities. The complexity of flow makes it difficult to solve for a

non-uniform induced velocity over the rotor. To develop a relatively simple model we

will assume a constant induced velocity over the entire length [19].

Figure 8. Aerodynamic Environment at a Typical Blade Element

Figure 8 shows a diagrammatic representation of the forces on a blade element.

The relative velocity U is shown, which is a combination of UT and UP . θ depicts

the blade pitch angle, usually measured at 75% radial length. The first analysis will

assume a constant pitch over the radial length, but a linear twist will be introduced

later. The relative inflow angle φ is produced primarily due to the the induced velocity

by the rotor and the wake. Therefore, the induced velocity serves to adjust the angle

of the relative flow velocity vector and so modifies the angle of attack at each blade

element from its two dimensional value [5]. In the process of deriving, φ will later be

considered as a small angle. The angle of attack for a rotor element can therefore

be defined as, αb = θ + φ. For ease, the chord length of c has been presumed to be
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constant for each blade. The shape of the blade will be assumed having simple form

in subsequent analysis. As described in the figure, dL is the elemental lift, dD is the

elemental drag. The elemental thrust is denoted by dT , while the elemental force for

torque is named dFQ. By geometry, the thrust and torque force can be resolved as,

dT = dL cosφ+ dD sinφ

dFQ = −dL sinφ+ dD cosφ (2.4)

The velocities can be established as,

U =
√
U2
T + U2

P (2.5)

U2 = U2
T + U2

P

UT = U cosφ = V∞ cosα sinψ + Ωr UP = U sinφ = V∞ sinα− νi (2.6)

Note that the induced velocity is opposite to the êp axis. The non-dimensionalized

radial distance (r̄) is defined as, r̄ = r/R.

Expanding the square of dimensionless tangential and perpendicular velocity as,

U2
T

(ΩR)2
=

V 2
∞

(ΩR)2
cos2 α sin2 ψ +

Ω2r2

(ΩR)2
+ 2

V∞
(ΩR)

sinψ
Ωr

(ΩR)

= µ2 cos2 α sin2 ψ + r̄2 + 2µ cosα sinψr̄ (2.7)

UP
(ΩR)

=
V∞

(ΩR)
sinα− νi

ΩR
= µ sinα− λi = λ (2.8)

As defined by equation 2.2. Therefore,

U2
P

(ΩR)2
= (µ sinα− λi)

2 = λ2 (2.9)

To develop an analytical equation, we must assume small angle φ assumptions, in

order to integrate non-numerically. These assumptions break down over the root of

the blade and over a wide range of retreating blades, since the angle φ discontinues to
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be small [14]. Glauert suggests the tangential velocity component UT must be positive

over the outer half of the retreating blade. He sets the limiting parameter as,

µ cosα <
1

2

With a small φ assumption, it can be assumed that, U ≈ UT , cosφ ≈ 1 and sinφ ≈ φ.

Geometrically, φ can be defined as,

φ = tan−1
UP
UT

But, with the small angle assumption, we can say

φ ≈ UP
UT

(2.10)

The elemental Lift and Drag can be defined to determine Thrust, Horizontal Force,

and Torque in the subsequent sections. It can be given as,

dL =
1

2
ρU2cCldr

dD =
1

2
ρU2cCddr

The coefficient of lift of an airfoil section corresponds to two dimensional motion at

the angle of incidence. It is related as,

Cl = Clααb = Clα(θ + φ)

where, Clα is the lift curve slope, and θ is the pitch of airfoil cross-section. For

simplicity we will assume an average lift curve slope Clα for the entire rotor. Lastly,

the solidity ratio of a rotor is defined as the ratio of blade area to disk area. It is an

important design parameter for rotors.

σ =
NbcR

πR2
=
Nbc

πR
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2.1 Thrust Force

The total elemental thrust and elemental thrust coefficient as previously established

is,

dT = NbdL cosφ+NbdD sinφ

dCT =
dT

ρA(ΩR)2
= dCTL + dCTD

The lift component of thrust coefficient can be hence put forward as,

dCTL =
dTL

ρA(ΩR)2
=

dTL
ρ(πR2)(Ω2R2)

=
1

2

Nbc

πR

ρ

ρ
Cl
dr

R
cosφ

=
1

2
σ

U2

(ΩR)2
Cldr̄ cosφ (2.11)

Similarly the drag component of thrust coefficient can be derived as,

dCTD =
dTD

ρA(ΩR)2
=

1

2
σ

U2

(ΩR)2
Cddr̄ sinφ (2.12)

To evaluate the total thrust coefficients, the differential coefficients must be integrated

over the entire azimuth from 0 to 2π, and also over the complete radial distance of

the blade from 0 to 1.

2.1.1 Lift Component

The Lift component of thrust can therefore be integrated as,

CTL =
1

2π

∫ 1

0

∫ 2π

0

dCTL dψ dr̄ (2.13)

CTL =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cl cosφ dψ dr̄

=
1

4π
σ

∫ 1

0

∫ 2π

0

U2

(ΩR)2
Cl cosφ dψ dr̄

Hence, with the small φ assumption,

CTL =
1

4π
σ

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
Clα(θ + φ) dψ dr̄

=
1

4π
σClα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
φ dψ dr̄

)
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Substituting above equation with equation 2.10, we have

CTL =
1

4π
σClα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
UP
UT

dψ dr̄

)
=

1

4π
σClα

(
θ

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
dψ dr̄ +

∫ 1

0

∫ 2π

0

UTUP
(ΩR)2

dψ dr̄

)
By equation 2.7 and equation 2.9, the above would reduce to,

CTL =
1

4π
σClα

(
θ

∫ 1

0

∫ 2π

0

(µ2 cos2 α sin2 ψ + r̄2 + 2µ cosα sinψ r̄) dψ dr̄

+

∫ 1

0

∫ 2π

0

(µ cosα sinψ + r̄) λ dψ dr̄

)

CTL =
1

4π
σClα

[
θ
π

3
(3µ2 cos2 α + 2) + πλ

]
=

1

12
σClα (3θµ2 cos2 α + 2θ + 3λ)

2.1.2 Drag Component

The Drag component even though not significant in comparison to the Lift component,

can be solved as,

CTD =
1

2π

∫ 1

0

∫ 2π

0

dCTD dψ dr̄ (2.14)

CTD =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cd sinφ dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

U2

(ΩR)2
sinφ dψ dr̄

With the small φ assumption,

CTD =
1

4π
σCd

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
φ dψ dr̄

Substituting above equation with equation 2.10, we have

CTD =
1

4π
σCd

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
UP
UT

dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

UTUP
(ΩR)2

dψ dr̄
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By equation 2.7 and equation 2.9, the equation would reduce to,

CTD =
1

4π
σCd

∫ 1

0

∫ 2π

0

(µ cosα sinψ + r̄)λ dψ dr̄

=
1

4π
σCd[πλ]

=
1

4
σCdλ

The thrust coefficient is therefore,

CT = CTL + CTD

=
1

12
σClα (3θµ2 cos2 α + 2θ + 3λ) +

1

4
σCdλ

CT =
1

12
σ
[
Clα (3θµ2 cos2 α + 2θ + 3λ) + 3Cdλ

]
(2.15)

2.2 Horizontal Force

The horizontal or H-force is the rotor-produced force acting in the plane of the rotor

and, nominally, in the direction opposing the oncoming flow. [14]. For a helicopter or

autogyro, the H-force is also known as the rotor drag. Mathematically we can define

it as,

dH = NbdD cosφ sinψ −NbdL sinφ sinψ

Breaking down the two parts, such that

dHpr =
1

2
NbρU

2Cddr cosφ sinψ

dHind =
1

2
NbρU

2Cldr sinφ sinψ

The first part can defined as the profile component which arises due to from frictional

resistance of the blades passing through the air, while the second is the induced

component, incurred as a result of production of lift. The horizontal force coefficient

can therefore be defined as,

dCH =
dH

ρA(ΩR)2
= dCHpr − dCHind
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The Profile Horizontal coefficient is,

dCHpr =
dHpr

ρA(ΩR)2
=

1

2
σ

U2

(ΩR)2
Cddr̄ cosφ sinψ (2.16)

The Induced Horizontal coefficient can be expanded as,

dCHind =
dHind

ρA(ΩR)2
=

1

2
σ

U2

(ΩR)2
Cldr̄ sinφ sinψ (2.17)

Similarly, to determine the total horizontal force coefficient the differential coefficients

must be integrated over the entire azimuth from 0 to 2π and over the complete radial

distance from 0 to 1.

2.2.1 Profile Drag Component

The profile drag horizontal force coefficient can therefore be integrated as,

CHpr =
1

2π

∫ 1

0

∫ 2π

0

dCHpr dψ dr̄ (2.18)

CHpr =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cd cosφ sinψ dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

U2

(ΩR)2
cosφ sinψ dψ dr̄

With the small φ assumption,

CHpr =
1

4π
σCd

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
sinψ dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

(µ2 cos2 α sin2 ψ + r̄2 + 2µ cosα sinψ r̄) sinψ dψ dr̄

=
1

4π
σCd[πµ cosα]

=
1

4
σCd µ cosα

2.2.2 Induced Drag Component

The induced drag horizontal force coefficient can found similarly,

CHind =
1

2π

∫ 1

0

∫ 2π

0

dCHind dψ dr̄ (2.19)
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CHind =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cl sinφ sinψ dψ dr̄

=
1

4π
σ

∫ 1

0

∫ 2π

0

U2

(ΩR)2
Cl sinφ sinψ dψ dr̄

With lift curve slope expansion and the small φ assumptions, we have

CHind =
1

4π
σ

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
Clα(θ + φ) φ sinψ dψ dr̄

=
1

4π
σClα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ φ sinψ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
φ2 sinψ dψ dr̄

)
Substituting above equation with equation 2.10, we have

CHind =
1

4π
σClα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ
UP
UT

sinψ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
U2
P

U2
T

sinψ dψ dr̄

)
=

1

4π
σClα

(
θ

∫ 1

0

∫ 2π

0

UTUP
(ΩR)2

sinψ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
P

(ΩR)2
sinψ dψ dr̄

)
By equation 2.7 and equation 2.9, the equation would reduce to,

CHind =
1

4π
σClα

(
θ

∫ 1

0

∫ 2π

0

(µ cosα sinψ + r̄)λ sinψ dψ dr̄ +

∫ 1

0

∫ 2π

0

λ2 sinψ dψ dr̄

)
=

1

4π
σClα (θ π µλ cosα + 0)

=
1

4
σClα θ µ cosα λ

The horizontal force coefficient can be given as,

CH = CHpr − CHind

=
1

4
σCd µ cosα− 1

4
σClα θ µ cosαλ

CH =
1

4
σµ cosα (Cd − Clα θλ) (2.20)

2.3 Torque

The total elemental torque of the rotor can be mathematically established as,

dQ = r(NbdD cosφ−NbdL sinφ)
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Breaking them down as the profile and induced component.

dQpr =
1

2
NbρU

2Cdrdr cosφ

dQind =
1

2
NbρU

2Clrdr sinφ

The coefficient of torque can therefore be defined as,

dCQ =
dQ

ρA(ΩR)2R
= dCQpr − dCQind

The Profile Torque is,

dCQpr =
dQpr

ρA(ΩR)2R
=

1

2
σ

U2

(ΩR)2
Cd

r

R
dr̄ cosφ =

1

2
σ

U2

(ΩR)2
Cd r̄ dr̄ cosφ (2.21)

The Induced Torque is expanded as,

dCQind =
dQind

ρA(ΩR)2R
=

1

2
σ

U2

(ΩR)2
Cl
r

R
dr̄ sinφ =

1

2
σ

U2

(ΩR)2
Cl r̄ dr̄ sinφ (2.22)

Similarly to thrust and horizontal force the total torque coefficient can be obtained

by integrating over the azimuth from 0 to 2π and over the non-denationalised radial

distance from 0 to 1.

2.3.1 Profile Torque

The Profile torque coefficient is given as,

CQpr =
1

2π

∫ 1

0

∫ 2π

0

dCQpr dψ dr̄ (2.23)

CQpr =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cd r̄ cosφ dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

U2

(ΩR)2
r̄ cosφ dψ dr̄

With the small φ assumption,

CQpr =
1

4π
σCd

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
r̄ dψ dr̄

=
1

4π
σCd

∫ 1

0

∫ 2π

0

(µ2 cos2 α sin2 ψ + r̄2 + 2µ cosα sinψ r̄) r̄ dψ dr̄

=
1

4π
σCd

[π
2

(µ2 cos2 α + 1)
]

=
1

8
σCd (µ2 cos2 α + 1)
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2.3.2 Induced Torque

The induced torque coefficient is,

CQind =
1

2π

∫ 1

0

∫ 2π

0

dCQind dψ dr̄ (2.24)

CQind =
1

2π

∫ 1

0

∫ 2π

0

1

2
σ

U2

(ΩR)2
Cl r̄ sinφ dψ dr̄

=
1

4π
σ

∫ 1

0

∫ 2π

0

U2

(ΩR)2
Cl r̄ sinφ dψ dr̄

With lift curve slope expansion and the small φ assumptions, we have

CQind =
1

4π
σ

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
Clα(θ + φ) r̄φ dψ dr̄

=
1

4π
σ Clα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ φ r̄ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
φ2 r̄ dψ dr̄

)
Substituting above equation with equation 2.10, we have

CQind =
1

4π
σ Clα

(∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
θ
UP
UT

r̄ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
T

(ΩR)2
U2
P

U2
T

r̄ dψ dr̄

)
=

1

4π
σ Clα

(∫ 1

0

∫ 2π

0

UTUP
(ΩR)2

θ r̄ dψ dr̄ +

∫ 1

0

∫ 2π

0

U2
P

(ΩR)2
r̄ dψ dr̄

)
By equation 2.7 and equation 2.9, the equation would reduce to,

CQind =
1

4π
σ Clα

(
θ

∫ 1

0

∫ 2π

0

(µ cosα sinψ + r̄)λ r̄ dψ dr̄ +

∫ 1

0

∫ 2π

0

λ2 r̄ dψ dr̄

)
=

1

4π
σ Clα

(
θ

2

3
πλ+ πλ2

)
=

1

12
σ Clα λ (2θ + 3λ)

The coefficient of torque can be established as,

CQ = CQpr − CQind

=
1

8
σCd (µ2 cos2 α + 1) − 1

12
σR Clαλ (2θ + 3λ)

CQ =
1

4
σ

[
Cd
µ2 cos2 α + 1

2
− Clα

2θλ+ 3λ2

3

]
(2.25)

In steady motion, the torque must be set to zero and hence the state of rotation is

given by the equation,

3 Cd(µ
2 cos2 α + 1) − 2 Clα(2θλ+ 3λ2) = 0 (2.26)
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2.4 Summary

On the basis of the above three coefficients, the aerodynamic characteristics of an

auto-rotating rotor is defined by four essential parameters [14]:-

θ - pitch angle of blades

σ - solidity ratio

Clα - lift curve slope

Cd - coefficient of drag

Substituting the above known or assumed values, a system of equations with four

unknowns are developed. Summarizing from equation 2.3, 2.15, 2.20 and 2.26,

λ = µ sinα− CT

2
√

(µ cosα)2 + λ2

CT =
1

12
σ
[
Clα (3θµ2 cos2 α + 2θ + 3λ) + 3Cdλ

]
CH =

1

4
σµ cosα (Cd − Clα θλ)

3 Cd(µ
2 cos2 α + 1) − 2 Clα(2θλ+ 3λ2) = 0

(2.27)

The four unknowns being µ, λ, CT and CH . The above coefficients are non-

dimensionalized with respect to the tip speed, where in it is required to non-

dimensionalize with the free stream velocity V∞ for standardization. Hence,

C ′T =
T

ρAV 2
∞

CT =
T

ρA(ΩR)2
V 2
∞
V 2
∞

=
T

ρAV 2
∞

V 2
∞

(ΩR)2
=
C ′T
µ2

Therefore,

C ′T =
CT
µ2

C ′H =
CH
µ2

(2.28)

The rotor lift and drag coefficients can be therefore calculated as,

C ′L = C ′T cosα− C ′H sinα C ′D = C ′T sinα + C ′H cosα (2.29)

The above set of equations are solved on a MATLAB solver, similar to as described

by the code in APPENDIX A.
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Glauert [14], develops a theory, on the assumption that angles of incidence of the

blade elements are small, and only first order harmonics of periodic terms need to

be retained in the equations. Also, Glauert ignores all periodic terms while deriving

the inflow angle φ. The work here mainly differs in a way that it includes the higher

order periodic terms, also φ includes the periodic terms. But it considers no flapping,

where as Glauert does. Glauert’s [14] original work, only shows the performance

parameters varying from 0◦ to 45◦. But since this thesis is focused on the range from

0◦ to 90◦, Glauret’s model is run for the range of 0◦ to 90◦. Glauert’s model is solved

on MATLAB as well with the code as described in APPENDIX B. Both model’s

solvers on MATLAB blow up near 0◦, hence the calculations are initiated from 2◦.

The following aerodynamic parameters are assumed for the analysis:

θ = 2◦

σ = 0.2

Clα = 6

Cd = 0.006

Figure 9. Glauret’s Model Compared with Thesis Model
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It can be clearly visualized that the thesis’ model works with very close match

with Glauert’s model. The slight overshoots are due to the considerations of higher

order periodic terms of velocities. Similarly in the section below, a model including

linear twist is developed, and results are again compared with Glauert’s model.

2.5 Linearly Twisted Rotor

All rotors, contain some span-wise twist, in different forms and magnitudes. They

allow to avoid blade stalling and also to gain a little uniform distribution of lift

over the span. Different applications call for different optimizations for twist. For

simple models, ideal twist and linear twist are two very common. Ideal twist tries to

maintain an uniform inflow, but it becomes physically unrealizable near the root due

its hyperbolic nature. But they are often used with hub and root cut out. Linear twist

models are also a good approximation of the ideal twist. They prove to be reasonable

the same towards the tip [5]. With a linear twist, the localised blade pitch can be

given as,

θ(r̄) = θ0 + r̄θtw or θ(r̄) = θ75 + (r̄ − 0.75)θtw

where, θ0 is the pitch measured near the root of the blade, θ75 is measured at radial

distance 75% of the radius, and θtw represents the blade twist rate per radius of the

rotor (degrees per rotor radius) [5]. In this analysis the θ75 form is used, as practically

it is easier to measure.

2.5.1 Thrust Coefficient

As from the previous Section 2.1, the lift component of thrust coefficient can be

integrated as,

CTL =
1

4π
σClα

(∫ 1

0

∫ 2π

0

(θ75 + (r̄ − 0.75)θtw)(µ2 cos2 α sin2 ψ + r̄2 + 2µ cosα sinψ r̄)

dψ dr̄ +

∫ 1

0

∫ 2π

0

(µ cosα sinψ + r̄) λ dψ dr̄

)
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CTL =
1

4π
σClα

[ π
12

(8θ75 + 12µ2θ75 cos2 α− 3µ2θtw cos2 α) + πλ
]

=
1

48
σClα

(
8 θ75 + 12 θ75µ

2 cos2 α− 3 θtwµ
2 cos2 α + 12λ

)
The drag component isn’t affected by the twist since it has no coefficient of lift.

Therefore the thrust coefficient including linear twist can be given as,

CT = CTL + CTD

=
1

48
σClα

(
8 θ75 + 12 θ75µ

2 cos2 α− 3 θtwµ
2 cos2 α + 12λ

)
+

1

4
σCdλ

CT =
1

48
σ
[
Clα
(
8 θ75 + 12 θ75µ

2 cos2 α− 3 θtwµ
2 cos2 α + 12λ

)
+ 12Cdλ

]
(2.30)

2.5.2 Horizontal Force Coefficient

As from the previous Section 2.2, the profile component of H-force does not the

change. But the Induced component, can be integrated as,

CHind =
1

4π
σClα

(∫ 1

0

∫ 2π

0

(θ75 + (r̄ − 0.75)θtw)(µ cosα sinψ + r̄)λ sinψ dψ dr̄

+

∫ 1

0

∫ 2π

0

λ2 sinψ dψ dr̄

)

CHind =
1

4π
σClα

[π
4

(4θ75 − θtw) µλ cosα + 0
]

=
1

16
σClα (4θ75 − θtw) µ cosα λ

The horizontal force coefficient including linear twist can be given as,

CH = CHpr − CHind

=
1

4
σCd µ cosα− 1

16
σClα (4θ75 − θtw) µ cosα λ

CH =
1

16
σµ cosα (4Cd − 4θ75Clαλ+ θtwClαλ) (2.31)
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2.5.3 Torque Coefficient

Similarly, from Section 2.3, the profile component of torque does not the change.

But the Induced component, can be integrated as,

CQind =
1

4π
σ Clα

(
θ

∫ 1

0

∫ 2π

0

(θ75 + (r̄ − 0.75)θtw)(µ cosα sinψ + r̄)λ r̄ dψ dr̄

+

∫ 1

0

∫ 2π

0

λ2 r̄ dψ dr̄

)

CQind =
1

4π
σ Clα

(
2π

3
θ75λ+ πλ2

)
=

1

12
σ Clα λ (2θ75 + 3λ)

The coefficient of torque including linear twist can be given as,

CQ = CQpr − CQind

=
1

8
σCd (µ2 cos2 α + 1) − 1

12
σR Clαλ (2θ75 + 3λ)

CQ =
1

4
σ

[
Cd
µ2 cos2 α + 1

2
− Clα

2θ75λ+ 3λ2

3

]
(2.32)

For autorotation,

3 Cd(µ
2 cos2 α + 1) − 2 Clα(2θ75λ+ 3λ2) = 0 (2.33)

2.5.4 Summary of Equations using Linear Twist

Based on linear twist model, the equations 2.3, 2.30, 2.31 and 2.33 give,

λ = µ sinα− CT

2
√

(µ cosα)2 + λ2

CT =
1

48
σ
[
Clα
(
8 θ75 + 12 θ75µ

2 cos2 α− 3 θtwµ
2 cos2 α + 12λ

)
+ 12Cdλ

]
CH =

1

16
σµ cosα (4Cd − 4θ75Clαλ+ θtwClαλ)

3 Cd(µ
2 cos2 α + 1) − 2 Clα(2θ75λ+ 3λ2) = 0

(2.34)
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Similar to what is done in the previous section, using the same aerodynamic

parameters the model with linear twist of −5◦ is compared. The code to solve the

system of equations is described in APPENDIX A.

Figure 10. Glauret’s Model Compared with Thesis Model with Twist

2.6 Additional Analysis

Figure 11. Coefficient of Lift and Drag for Varying Pitch
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Figure 12. Thrust Coefficient and Horizontal Force for Varying Pitch

To observe the effect of varying the pitch, θ75 is varied as 0,2,4,6 and 8 degrees.

Using the same aerodynamic parameters, the lift and drag coefficient variation over

α is shown in Figure 11. Similarly the variation of pitch angle is plotted for thrust

coefficient and horizontal force coefficient in Figure 12. It is being observed that as

pitch increases, the coefficients of lift, drag and thrust increase. The horizontal force

coefficient decreases with increasing pitch angle.

Figure 13. Verification of Small Angle Assumption for φ
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In the beginning it was assumed that φ was a small angle. To verify this assumption,

φ was calculated and plotted for 10 radial elements.

φ = tan−1
UP
UT

= tan−1
UP/ωR

UTωR
= tan−1

λ

µ cosα sinψ + r̄

Ignoring the periodic term for ease of solving, hence:

φ = tan−1
λ

r̄

It can observed from Figure 13 that 80% of the blade encounters an induced inflow

angle less than 5◦, hence we can conclude that the small angle assumption is an good

assumption.

In the subsequent chapters, the model developed here will be used to simulate results

using the aerodynamic parameters of experimented rotors.
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Chapter 3

WIND TUNNEL

There have been various research reports available which provide information

about rotor being supplied with torque. But rarely any data is found to correlate the

state of autorotation at various angles of the rotor plane. To envision the condition

of autorotation experimentally various rotors are simulated in the wind tunnel. An

auto-rotating rotor can posses the capability to sustain flight just on the basis of

aerodynamic forces generated due to flow passing through it. In this scenario the

net torque supplied to or extracted from the rotor is zero. To maintain an analogy

of the condition, the rotor was introduced into the wind tunnel such that it can

free-wheel. The rotor plane angle was then varied from being parallel to the flow, to

being perpendicular to the flow while carrying out force measurements. The total

angular sweep was 90◦. For this particular research study the custom built Low Speed

Wind Tunnel at Arizona State University was used.

3.1 Low Speed Wind Tunnel

The ASU Flow Visualization Wind Tunnel is an Open Circuit type configuration

with a 0.5m long and 0.5m diameter octagonal test section. A maximum wind speed of

30 m/s can be achieved with an empty test section. The four major duct components

of the wind tunnel are the contraction, the test section, the diffuser and the fan housing.

The contraction contour is defined by a fifth order polynomial with a contraction

ratio of 25:1. The test section walls diverge from inlet to outlet to reduce buoyancy

effects due to boundary layer thickness. The diffuser is a linearly expanding octagonal

section which decelerates the flow without stalling. A transition area at the end of the

diffuser changes the cross section from octagonal to circular to accommodate the fan.

The diffuser’s total-included shallow divergence angle 4◦ allows to eliminate diffusion
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Figure 14. ASU Wind Tunnel

effects in the tunnel. The fan and motor is a separate unit attached to the tunnel.

It has its own stand to isolate vibrations from the tunnel. The fan is connected by

10 HP motor which has a maximum rotational speed of 57.3 Hz. The fan speed is

controlled by a Variable Frequency Drive (VFD). The open circuit tunnel draws fresh

air from the surrounding environment which is filtered and straightened out by a an

inlet fairing attached around the entrance to the tunnel, four honeycomb matrix cell

sheets and four tensioned turbulence-reducing screens. These allow to eliminate axial

velocity variation in the flow. The wind speed inside the tunnel is determined using

static pressure sensing in the test section followed by post processing of raw data.

The NI Labview data acquisition code reports a real-time value for the wind velocity

in the tunnel. The system is equipped with mainly two electronic instrumentation

components, a solid state differential pressure transducers and a three component sting

Force/Moment balance. Figure 14 above shows a picture of the ASU wind tunnel. The

force balance data acquisition system is interfaced with a Aerolab software platform.

This software reads raw balance data, filters it with a root mean squared averaging

function and passes it through data reduction matrix to derive forces. The balance

module in the DAQ tool, reports raw and tared component loads in either SI or BG
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unit systems. The acquired data is filtered and processed for any derivations at a

specified data rate. All readings taken for this research were configured for a data

rate of 10Hz.

A Force balance by Aerolab (schematic shown below in figure 15) with 3/8-inch

diameter cylindrical “sting” and a parallelogram base is installed in the test section

in the wind tunnel. The strain gauge allows to measure two forces and one moment

simultaneously. The default configuration has been used which provides signals for

Normal Force, Axial Force, and Pitching Moment. The maximum specified load

limits is 111.2 N for Normal Force, 44.5 for Axial Force and 5.65 N-m for Pitching

Moment. The manufacturer suggests to allow 45 minutes for warm-up to permit

optimal stabilization of the signals [20]. It must me noted that the weight of the

mounted model, affect all three component readings as a function of angle of attack.

Hence, it is imperative to perform a zero wind speed pitch sweep to gauge gravitational

corrections for each component over the outlined pitch angle range. With the current

setup, the force balance can traverse an angle of +30◦ and −20◦.

Figure 15. “Pistol Grip” Sting Balance [20]
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3.2 Mount and Model Development

To mount a test model on the sting, it must be equipped with a cylindrical socket

like the one shown in Figure below. The dimensions are such that Length A must

be 0.900 inches (22.86mm), Diameter B 0.375 inches (9.525mm), Diameter C 0.625

inches (15.875mm), Length D must not exceed 5.0 inches (127mm), and Length E

is the distance between the end of the socket and the center of the set screw where,

E must be 0.50 inches (12.7mm). A set screw of #8 or smaller should be used to

constraint the machined aluminum mount.

Figure 16. Custom Model Mounting Socket [20]

With regards to the above dimensions a generalised aluminium machined mount

was developed, which could be used to fit wings, propellers, aircraft models, etc. The

mount had been designed and manufactured by ASU’s SEMTE Student Machine

Shop. The Figure 17 below (not to scale) shows the mount.

Now, to fit a rotor on to force balance, a secondary customized mount was designed.

This mount was an intermediate attachment between the rotor and the generalised

aluminium mount. This secondary mount would assemble over the aluminium mount

and the rotor would then fit over it. As per our experimentation objectives, we would

like to traverse from zero degrees to ninety degrees, but this was limited to the force

balance as it allowed only a 50 degree pitch. Hence, it was envisioned to build the
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Figure 17. Generalized Force Balance Mount

secondary mounts in such a way that it would posses a relative angle between the

rotor axis and force balance axis.

Figure 18. Propeller Sleeve Mounts

37



The first mount was designed at angle of 60◦ and the other at 10◦ relative to the

horizontal axis. Therefore, the first mount allowed the rotor to encounter the flow

from being at zero degrees (90◦ − 60◦ − 30◦) to fifty degrees (90◦ − 60◦ + 20◦) relative

to the wind flow and the second mount supported the rotor to encounter the flow

from fifty degrees (90◦ − 10◦ − 30◦) to hundred degrees (90◦ − 10◦ + 20◦), where the

fifty degree angle was a cross over point. It must be noted that the upper limit for

the force balance pitch was +30◦ and the lower limit was −20◦. The two mounts

have been shown in Figure 18 (not to scale). These mounts, were manufactured by

Fused Deposition Modelling (FDM). The parts were printed by a Stratasys Mojo

machine, where the material used was ABS plastic. A layer thickness of 0.17mm with

an infill density of 15% was used. The support material was removed by bath of

sodium hydroxide (NaOH).

Further to select rotors, it was needed that autorotation can be experimented

with a more optimized rotor functioning for example like an airborne wind turbine.

Hence, it would be great to design our own customized rotor for this purpose. But,

this would require machining of nylon, aluminium like materials and/or developing

molds for fibreglass on a small scale to constrain the rotor diameter size to the wind

tunnel test section. This could have been time consuming and expensive, therefore

for simplicity standard UAV propellers which are easily available in the market were

selected. Brands like Master Airscrew, Graupner, APC and Xoar were used for trial

runs. The final results are all from propellers of Master Airscrew.

To prepare the selected model for testing it was needed to fit a bearing in the

propeller so that it can free-wheel on its axis of rotation. To obtain slightly higher

magnitude of forces, larger diameter propellers were selected. All test propellers had

a hub diameter of greater than 20mm and a hub thickness greater than 14mm. With

regards these geometric dimensions, Shielded Ball Bearings were selected to allow the

propeller to freely rotate along its axis.
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Bearing Specifications:

Model: R4 ZZ

Brand: PGN International

Material: 100% Chrome Steel

Protection: Metal Shield on both sides

Greased / Lubricated: Yes

Bore (Inner) Diameter: 1/4”

Outer Diameter: 5/8”

Width (Thickness): 0.196”

Supported RPM: 38,000

Load Rating: 1489 N

Static Load Rating: 618 N

(a). General (b). Wind Tunnel

Figure 19. Autorotation

These bearings were inserted with an interference fit into the propeller which had

been earlier milled to create a housing for the bearing. Also, the propeller center

hole must be enlarged to 0.42 inches before the bearing insertion to later allow clear

movement of the constraining bolt. It must be carefully noted that the bearings were

fit on the front (top) facing side of the propeller. This was intentionally done as

the force balance can only pitch with its mounting edge pointing to the oncoming

flow. In the most common sense to envision autorotation we must orient the rotor as

shown in Figure 19 (a). But since the propeller cannot be pitched in this way on the

wind tunnel, the configuration was mirrored about the horizontal axis, with the shaft

flipped to the other side as in Figure 19 (b).
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Figure 20. Exploded View of Propeller Mount Assembly

To assemble the setup for testing, the 3-D printed sleeve was first fixed on to

aluminium mount by two 8-32 UNC socket headed screws. Now, to attach the propeller

to the mount, a machined 1/4-20 UNC socket headed bolt was needed. The bolt

head was machined to a diameter of 0.38 inches, so that the head would just rest on

the bearing’s inner race (diameter of 0.4 “), allowing no contact point between the

rotating propeller and the static sleeve. For all free wheeling rotational frequency

measurement an Infrared Reflective sensor by Honeywell (HOA0149-001) was utilized.

The sensor consists of an infrared emitting diode and an NPN silicon phototransistor

encased side-by-side on converging optical axes in a black thermoplastic housing.The

sensor was fixed on the sleeve by a 2-64 UNC screw. Lastly this entire assembly was

delicately mounted onto the force balance pistol, and slowly tightened by the a 8-32
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set screw. It must be taken care not apply excessive force on the Force Balance as

it might change the calibration. Figure 20 shows the exploded view of the entire

assembly.

3.3 Experimental Procedure

(a). Aeroware (b). NI Labview

Figure 21. Software Tools used for Data Acquisition

Conducting the experiment consisted of setting up the experimental hardware,

data acquisition (DAQ) system and calibration of measuring instruments. This thesis

does not include the methodology for setting up the DAQ systems nor the calibration

of instruments. An already established and calibrated test setup was used. The

data was recorded through two data acquisition software, Aeroware by Aerolab for

the force measurements, and NI Labview for the Velocity and RPM measurements.

Figure 21 (a) shows the screenshot of the Aerolab tool and Figure 21 (b) shows the

NI Labview User Interface. This section will first discuss the initial developments

with the experimentation. Then lastly will outline the procedural steps to carryout

measurements and recording of data.

3.3.1 Initial Runs

After successful assembly mountings on to the wind tunnel, various rotors were

tested to determine the lift, drag, thrust and horizontal force. During several test

runs it was noticed there were discontinuities between in the curves of forces at the
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overlapping region of two mounts. Ideally the magnitudes of resolved forces should

equate, for the same angles. Figure 22 shows the sudden change in forces at a 50◦

angle.

Figure 22. Discontinuities in Force Curves

The reason of the discontinuity was broken down to two major causes:-

• The magnitudes of forces are very small, the profile drag on the individual

mounts can be significantly varying.

• At the extreme pitch angle ends of the force balance, the strain gauge is not

being consistent.

To investigate the first idea, the mounts were placed in the wind tunnel without any

rotors. The profile axial and normal forces only for the mounts were measured. Later

these forces were subtracted from the axial and normal forces measured with the

propeller. These effective forces were used to calculate Lift, Drag, etc. Figure 28

shows the comparison forces for a Master Airscrew 12 × 7 propeller for accounting

42



and not accounting the profile drag for a velocity of 10.8 m/s. Similarly, Figure 24

shows the same for a wind tunnel air velocity of 15 m/s. The 15Hz and 20Hz denote

the fan speed of the tunnel.

Figure 23. Effect of Profile Drag on Force Plots - 15Hz Fan Speed

It can be clearly noted that the profile drag on the mounts was a major influence for

the discontinuities seen earlier. Accounting for these losses greatly improve the curves.

The profile drag on mounts can be also seen to loose its effects on the force calculations

with higher velocities as the loads on the rotor start to increase in magnitude, except

for the case of horizontal force.

Even though subtracting the profile drag forces reduced the discontinuities largely,

there a few disruptions left which could be seen on the horizontal force plot particularly.

These were especially seen using other propellers of XOAR, Graupner, etc. (plots not

shown). With this, the second cause of discontinuity was explored. Since the two

mounts were forced to operate at the extremities of the force balance pitch angle, three

mounts were now designed and manufactured which could traverse in an interior range
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Figure 24. Effect of Profile Drag on Force Plots - 20Hz Fan Speed

of angles. Similar to the parts shown in Figure 18, three mounts having a relative

angle of 5◦, 40◦, 75◦ were developed. This angle is the angle measured between the

rotor axis and horizontal. The purpose of this was to primarily work with multiple

overlapping points. The new mounts allowed the rotor encounter the flow in the

following range:

• Mount 1 (75◦) - 0◦ (90◦ − 75◦ − 15◦) to 35◦ (90◦ − 75◦ + 20◦)

• Mount 2 (40◦) - 22.5◦ (90◦ − 40◦ − 27.5◦) to 70◦(90◦ − 40◦ + 20◦)

• Mount 3 (5◦) - 57.5◦ (90◦ − 5◦ − 27.5◦) to 105◦ (90◦ − 5◦ + 20◦)

The force balance pitched between 15◦ and −20◦ for the first mount, while it pitched

between 27.5◦ and −20◦ for the second and third mount. Carrying out the experiments

at in interval of 2.5◦, six overlapping points were obtained in two regions:

• First overlapping region - 22.5◦, 25◦, 27.5◦, 30◦, 32.5◦, 35◦.

• Second overlapping region - 57.5◦, 60◦, 62.5◦, 65◦, 67.5◦, 70◦.
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Using these three mounts, the experiment was performed with the same 12× 7 Master

Airscrew propeller. Figure 25 and Figure 26 show the various plots for forces for a

velocity of 10.8 m/s, and 15 m/s respectively. These plots account for the profile drags

on the respective mounts.

Figure 25. Force Mounts with Multiple Overlapping Points - 15Hz Fan Speed

On both the figures, it can be seen that there are variations at multiple points

in both the overlap regions. The variations are observed to be greater in the case

of lower wind speed. Whereas at the higher wind speeds, the magnitudes of forces

increase, and therefore the magnitude of discontinuities also decrease. Therefore we

can rule out the idea that at the extremities of the force balance pitch angles, there

are variations in readings.
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Figure 26. Force Mounts with Multiple Overlapping Points - 20Hz Fan Speed

The Master Airscrew propeller was run in the test rig several times with two

mounts and three mounts. After the subtraction of profile drag forces, it was observed

that there is a repeatability of the force magnitudes for the particular angle of rotor,

with occasional variations been seen with the discontinuities. On Figure 25 and Figure

26 error bars are plotted with a variation of 0.03 N. Error bars graphical represent the

variability of data and are used to indicate the error or uncertainty in a measurement.

They give a general idea of how precise a measurement is, or conversely, how far from

the reported value the true value might be. With these experimental results, it can

be visualized that most of the readings lie within the range of 0.03 N error. It was

therefore concluded that the slight variation in readings seen for the same rotor angle

from different mounts are associated with inherent calibration of the strain gauge.
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The magnitudes of forces are very small, hence the overall variation is considered to

be acceptable within 1/30th of a newton.

Figure 27. Force Variations due to RPM Sensor - Master Airscrew 12 × 8

Lastly, large variations in force magnitudes were observed when the RPM sensor is

mounted on the 3D printed sleeves. This was mainly due to wire exerting a gravitation

pull on the force balance due to hanging. Figure 27 shows the variations for the

same Mount 1, same wind speed of 15m/s, and same propeller. It is therefore highly

suggested to take the angular velocity measurements separate from for the force

measurements.

3.3.2 Procedure

Having discussed the issues encountered with the experimental setup and having

established the origins of various errors in measurement, this sub-section will enlist a

detailed step by step procedure to conduct the experiment with minimum errors. All

final tests very conducted with 3 mounts, with two regions of overlapping points. The

average of two readings from the overlapping regions were used to evaluate Lift, Drag,

Thrust and Horizontal Force.

1. The first step comprised of assembling the 3-D printed Sleeve Mount 1 (75◦)

over the aluminium mount. Note that at this stage there was no propeller. The

assembled setup was then fixed onto the force balance.
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2. The angle changing knob is turned to physically set the force balance angle at

zero degrees.

3. Ensuring that the wind tunnel fan is switched off, all forces, angles and moments

were tared.

4. The knob was then turned clockwise until the force balance angle was +15◦ read

by the Aerolab software.

5. The data for this angle is recorded by clicking on the single point tab on the

aerolab software.

6. The above step was repeated, traversing from +15◦ to −20◦ in intervals as

required. An interval of 2.5◦ was used for this thesis. Note - there is no wind

velocity at this stage, and will be referred as Mount Gravitational.

7. The data was saved from the Aerolab Software.

8. The force balance was traversed back to +15◦ angle. Ensure that the Lab View

application is running to take note of the wind velocities. Now, the wind tunnel

was switched on to a motor fan speed of 15 Hz.

9. Steps 5,6 and 7 were repeated with at this wind speed.

10. Steps 8 and 9 were reiterated for the fan motor speed now set to 20Hz. These

data points will referred as Mount Velocity.

11. The exact same procedure was rerun using Mount 2 (40◦) and Mount 3 (5◦)

following steps from 1 to 10. But, now the force balance must traverse from

+27.5◦ to −20◦.

12. At this time the assembled mount was carefully removed from the force balance.

Then the propeller was fixed onto the mount assembly, and put back on the

force balance sting as described at the end of Section 3.2 and in Figure 20.

13. Steps 2-11 were repeated with propeller mounted on. For future references, the

“no wind” weight readings will be called Gravitational Data and the readings

with the wind will be referred as Propeller Data.
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14. Carefully dismount the propeller assembly from the force balance. Now, attach

the RPM sensor delicately on the 3-D printed sleeve Mount 1, and constrain

it to the mount with its screw. Put back the assembly on to the force balance.

Ensure to manage the RPM sensor wires carefully to the DAQ hardware so that

there is no interference during the sting movement.

15. Ensure the sting angle is tared at 0◦. Turn the knob and traverse to +15◦.

16. Run the motor at 15Hz, and record the data at each angle at an interval of 2.5◦

from the NI Labview Application. Traverse from +15◦ to −20◦ for Mount 1.

This step would be recording the wind velocity in the tunnel, dynamic pressure

and the RPM of the rotating propeller.

17. Repeat step 16 with the tunnel running at 20Hz fan speed.

18. Repeat steps 14 - 17, for Mount 2 and 3. Ensure to traverse between +27.5◦ to

−20◦ for these mounts.

19. Compile all data for the three mounts, and save.

The angle nomenclature has been explained in Figure below. The rotor plane angle

was established as:

α =
π

2
− γ − δ

Figure 28. Diagrammatic Representation of Various Angles

The following set of equations were used to established to evaluate Lift, Drag, Thrust

and Horizontal Force. All forces were calculated for the entire range of angles.
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Axial Mount = Axial Mount Gravitation - Axial Mount Velocity

Normal Mount = Normal Mount Gravitation - Normal Mount Velocity

Axial Force (A) = Axial Propeller - Axial Gravitation - Axial Mount

Normal Force (A) = Normal Propeller - Normal Gravitation - Normal Mount

Lift(L) = N cos δ − A sin δ

Drag(D) = N sin δ + A cos δ (3.1)

Thrust(T ) = D sinα− L cosα

Horz(H) = D cosα + L sinα (3.2)

The Thrust and Horizontal Force can also be directly calculated from the Axial and

Normal Force as,

T = A cos γ −N sin γ

H = A sin γ +N cos γ

The final experimentation was run on five different propellers, all from Master

Airscrew. Using the procedural steps of this chapter, the results are compiled and

discussed in the following chapter.
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Chapter 4

RESULTS AND DISCUSSION

To develop the results of the analytical model, we need to input specific aerodynamic

parameters as mentioned in Chapter 2. These aerodynamic parameters are specific

to a rotor, and hence we need to select particular rotors to compute the various

coefficients of lift, drag, etc. For the purpose of the thesis, five propellers were selected

from Master Airscrew. Three propellers were 2-bladed, and two were 3-bladed. All

propellers were at 12in diameter, with varying pitch and made of fibre-glass composite.

The 2-bladed propellers were specified as, 12 × 6, 12 × 7, and 12 × 8. Similarly the

3-bladed propellers were specified as, 12 × 6 and 12 × 8.

4.1 Defining Aerodynamic Constants

Solidity ratio plays an important role to estimate the potential of rotor to develop

thrust. To determine the solidity ratio of the rotors, manual measurement was carried

out using a vernier caliper. Each rotor, was divided into 12 sections, of 0.5in. The

chord length at each station was measured and used to compute the elemental blade

area. The measurement at the first station was approximated to the value of second,

as measurement at the blade root is difficult. The sum of all elemental areas, denoted

the total blade area. The solidity ratio can be defined as,

σ =
Blade area
Disk area

=
Nb

∫ R
0
c dr

πR2

Table 1, shows the approximate evaluation of solidity ratio of each propeller.

Similarly, defining the blade pitch at 75% of each blade. Standard propellers are

denoted with nomenclature as such 12 × 7, where 12 is the diameter of the rotor, and

7 is the geometric pitch. Geometric pitch is the distance a propeller should advance

in one revolution with no slippage. Geometric pitch can roughly be related to the
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Radial
Distance Chord length (inch)

r (inch) 2 - Blade
12x6

2 - Blade
12x7

2 - Blade
12x8

3 - Blade
12x6

3 - Blade
12x8

0.5 0.811 0.877 0.671 0.733 0.733
1 0.811 0.877 0.671 0.733 0.733

1.5 0.872 0.909 0.95 0.751 0.853
2 0.931 0.956 1.06 0.801 0.925

2.5 0.974 0.984 1.011 0.859 0.933
3 1.019 1.005 1.044 0.863 0.944

3.5 1.034 1.019 1.074 0.876 0.923
4 0.999 0.987 1.102 0.854 0.882

4.5 0.918 0.894 0.945 0.811 0.865
5 0.818 0.775 0.832 0.754 0.785

5.5 0.717 0.683 0.729 0.686 0.704
6 0.627 0.598 0.637 0.599 0.625

Blade Area
(
∑
c.dr)

5.2655 5.2820 5.3630 4.6600 4.9525

# of blades 2 2 2 3 3
Disk Area

(πR2)
113.0973 113.0973 113.0973 113.0973 113.0973

Solidity 0.0931 0.0934 0.0948 0.1236 0.1314

Table 1. Solidity of Rotors

blade pitch angle at 3/4 radial distance as, Geometric P itch = 2πR θ75. Therefore,

the equation can be rearranged such that,

θ75 = tan−1
Geometric Pitch

2πR

Table 2 shows, the calculated pitch angle at 75% radial distance.

Assuming the remaining aerodynamic coefficients as,

θtw = −5◦

Clα = 5

Cd = 0.02
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2 - Blade
12x6

2 - Blade
12x7

2 - Blade
12x8

3 - Blade
12x6

3 - Blade
12x8

Geometric
Pitch (inch) 6 7 8 6 8

Radius
(inch) 6 6 6 6 6

θ75 9.0431◦ 10.5189◦ 11.9808◦ 9.0431◦ 11.9808◦

Table 2. Pitch Angle at 75% Radial Distance

Using all of the above constants for calculation, the aerodynamic characteristics are

computed below, for all five rotors.

4.2 Analytical Results

4.2.1 2 Blade

Figure 29. Analytical 2 Blade Coefficient of Thrust and Horizontal Force
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Figure 30. Analytical 2 Blade Coefficient of Lift and Drag

Figure 31. Analytical 2 Coefficient of Lift to Drag Ratio and Advance Ratio
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Figure 32. Analytical 2 Blade Inflow Ratio and Induced Inflow Ratio

4.2.2 3 Blade

Figure 33. Analytical 3 Blade Coefficient of Thrust and Horizontal Force
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Figure 34. Analytical 3 Blade Coefficient of Lift and Drag

Figure 35. Analytical 3 Coefficient of Lift to Drag Ratio and Advance Ratio

Observing the plots in Figure 29 and Figure 33, the coefficient of thrust, lift and

drag are observed to increase with pitch. The thrust coefficients are seen to be peaking

between 45◦ and 50◦. Whereas, the coefficients of lift peak between 35◦ and 40◦. The
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Figure 36. Analytical 3 Blade Inflow Ratio and Induced Inflow Ratio

maximum value for coefficient of drag is observed near 60◦. On the contrary, the

horizontal force coefficients are observed to decrease in magnitude with increasing

pitch. Their peaks are observed at around a angle of 35◦. The magnitudes of horizontal

force are seen to be significantly smaller than the other forces.

As expected the ratio of lift to drag coefficients do not change with varying pitch.

The advance ratio and induced inflow ratio vary very little with increasing pitch, but

they are seen to increase with pitch. Over the interior range of angles, the advance

ratio µ, remains relatively constant. The sudden increase near π/2 is unexpected,

and the error could be attributed with the solver. The total inflow ratio λ tends to

decrease with increasing pitch.
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4.3 Experimental Results

4.3.1 2 Blade at V∞ ≈ 11 ms−1

Figure 37. Experimental 2 Blade Thrust and Horizontal Force (V∞ ≈ 11 ms−1)

Figure 38. Experimental 2 Blade Coefficient of Thrust and Horizontal Force
(V∞ ≈ 11 ms−1)

Figure 39. Experimental 2 Blade Lift and Drag (V∞ ≈ 11 ms−1)
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Figure 40. Experimental 2 Rotor speed and Advance Ratio (V∞ ≈ 11 ms−1)

4.3.2 2 Blade at V∞ ≈ 14.9 ms−1

Figure 41. Experimental 2 Blade Thrust and Horizontal Force (V∞ ≈ 14.9 ms−1)

Figure 42. Experimental 2 Blade Coefficient of Thrust and Horizontal Force
(V∞ ≈ 14.9 ms−1)
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Figure 43. Experimental 2 Blade Lift and Drag (V∞ ≈ 14.9 ms−1)

Figure 44. Experimental 2 Rotor Speed and Advance Ratio (V∞ ≈ 14.9 ms−1)

4.3.3 3 Blade at V∞ ≈ 11 ms−1

Figure 45. Experimental 3 Blade Thrust and Horizontal Force (V∞ ≈ 11 ms−1)
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Figure 46. Experimental 3 Blade Coefficient of Thrust and Horizontal Force
(V∞ ≈ 11 ms−1)

Figure 47. Experimental 3 Blade Lift and Drag (V∞ ≈ 11 ms−1)

Figure 48. Experimental 3 Rotor Speed and Advance Ratio (V∞ ≈ 11 ms−1)
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4.3.4 3 Blade at V∞ ≈ 14.9 ms−1

Figure 49. Experimental 3 Blade Thrust and Horizontal Force (V∞ ≈ 14.9 ms−1)

Figure 50. Experimental 3 Blade Coefficient of Thrust and Horizontal Force
(V∞ ≈ 14.9 ms−1)

Figure 51. Experimental 3 Blade Lift and Drag (V∞ ≈ 14.9 ms−1)
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Figure 52. Experimental 3 Rotor Speed and Advance ratio (V∞ ≈ 14.9 ms−1)

4.3.5 Velocity Variations for 3 Blade 12 × 8 Propeller

The effect of velocity variations on the aerodynamic parameters have been observed

to be similar for all rotors, hence the plots for only one rotor has been shown here.

The forces can be non-dimensionalized based on the free stream velocity or by the

tip speed of rotor. The plots of coefficients of thrust and horizontal force have been

shown to be normalized with the free stream velocity, also with the tip speed (ΩR).

CT =
T

1
2
ρA(V∞)2

or CT =
T

1
2
ρA(ΩR)2

Similarly, the coefficient of horizontal force can be defined as,

CH =
H

1
2
ρA(V∞)2

or CH =
H

1
2
ρA(ΩR)2

Figure 53. Experimental Coefficient of Thrust and Horizontal Force based on
V∞ (3 Blade - 12 × 8)
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Figure 54. Experimental Coefficient of Thrust and Horizontal Force based on
ΩR (3 Blade - 12 × 8)

Figure 55. Experimental Rotor Speed and Advance Ratio (3 Blade - 12 × 8)

With respect the experimental analysis, it can be observed in Figures 37, 38, 41, 42,

45, 46, 49, and 50 the thrust tends to increase as rotor turns perpendicular to the flow.

This could be said to be an expected result as at π/2, the rotor is perfectly normal to

the flow. The thrust is observed to decrease with higher rotor pitch. The horizontal

forces are observed to peak at an angle of 50◦, contrary to thrust the H-force increases

with increasing pitch.

As visualized on Figures 39, 43, 47, and 51, the magnitude of Lift and Drag tends

to decrease with higher pitch. Lift is negative due to the orientation of rotor in the

wind tunnel. The maximum lift is observed at about 60◦ rotor angle. The drag,

similar to thrust is a maximum at π/2. With respect to Figures 40, 44, 48, and 52, the

rotor angular speeds are observed to decrease with increasing pitch. The maximum

64



revolutions per minute is realized at and angle of π/2. The advance ratio tends to

infinity near when the rotor is parallel to the flow, since there are no rotations, and

ΩR is zero. The plots do not include the tendency of going to infinity, hence show no

values.

On comparing the variations of velocity, as in Figure 53, the coefficient of thrust

and H-force do not change with velocity. The coefficients are independent of the

free stream velocity when non-dimensionalized with the free stream velocity. On

non-dimensionalizing the forces with the tip speed it is observed that after a particular

rotor plane angle α, the coefficients stabilize at a constant value. These coefficients are

not zero but are very small in magnitude, hence not clearly visible on the plots. On

studying Figure 55, we can see a very common trend of the angular velocity increasing

with the free stream velocity. The advance ratio is seen to independent of the free

stream velocity, as with higher velocities the angular speed is also increasing. On

non-dimensionalizing the free stream velocity with the tip velocity, it basically breaks

down to the same magnitudes of advance ratio.
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4.4 Analysis

Figure 56. Analytical Axial Induction Factor 2-Bladed

On comparing the analytical results to the experimental one, the coefficients of

thrust, and drag have a similar plot trend till a rotor plane angle of about 45◦. Past

that angle, we expect the thrust and drag to keep on increasing till 90◦, but in the

analytical model the thrust and drag coefficients drop. To investigate further, the axial

induction factor was computed for different angles. The plot in Figure 56 depicted

that axial induction factor was greater than 1/2 for angles higher than about 40◦.

Additionally a plot of CT vs α shown in Figure 57, for the analytical model showed a

very similar behavior to Figure 5. At higher angles, the rotor can seen to enter into

the turbulent wake state where we have known that the momentum theory does not
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hold valid. Whereas, the analytical model in this thesis used the fourth order induced

velocity equation which was derived from the momentum theory. At higher angles,

the relationship of induced velocity from momentum theory becomes invalid, and thus

explains the discrepancy in the trend from the analytical model.

Figure 57. Analytical CT vs Axial Induction Factor 2-Bladed

To directly compare the rotor force coefficients, the analytical and experimental

plots are overlapped. The results are just shown for the 12 × 7 propeller. At lower

angles, the trends for thrust can be seen to be similar as in Figure 59. But the

magnitudes of the coefficients are very different. To investigate further, the thrust and

horizontal force coefficients based on ΩR were plotted. They also show a similarity in
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Figure 58. Thrust Coefficient vs Angle (2 Blade - 12 × 7)

Figure 59. Thrust Coefficient based on Tip Speed vs Angle (2 Blade - 12 × 7)

trend but variation in magnitude. The analytical model is observed to over-estimate

the coefficients by a huge margin. This inaccuracy is thought to be coupled with

the assumptions of aerodynamic constants such as the pitch angle at 75% of blade,

twist, lift curve slope, and airfoil coefficient of drag. These constants have a significant
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relation to the calculated force coefficients. Due to the lack of available data, these

constants were needed to be assumed. This is thought to be the primary reason behind

the discrepancies in magnitude.

The horizontal force coefficients, estimated by the analytical model are almost

negligible compared to the experimental values. The horizontal forces are dependent

on the flow interactions due to flapping, radial velocity, etc., which are not considered

in this model. Especially, the horizontal force is affected by reverse flow regions, which

is unaccounted for in the analytical analysis. Horizontal force is usually difficult to

predict, and will need a refined model considering various flow interactions.

Figure 60. Advance Ratio vs Angle (2 Blade - 12 × 7)

Lastly, to understand characteristics, the advance ratio and advance ratio times

cosine of rotor angle was plotted (Figure 60) for various angles of attack. Firstly it

is observed that the analytical model blows up near 90◦. Secondly the experimental

advance ratio is observed to be significantly higher than the analytical model. The

second observation suggests an important idea - the rotor might be rotating slower

than it is expected, yielding a higher advance ratio. On contemplating, in reality it is
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not possible that we would have a ideal torque free case. In the experiment, due to

friction there surely will be some losses. The bearing’s friction loss is highly influenced

by the tightening torque of the propeller constraining bolt and the rotational velocity

of the bearing. The analytical model did not account for these torque losses, which

can be a major setback to the analytical analysis.

Figure 61. Thrust Coefficient Variation Accounting for Torque Loss (2 Blade -
12 × 7)

To further expand on the previous idea, the analytical model was introduced

with a torque loss coefficient. The graph (Figure 61) shows results for the thrust

coefficient (CT ′) from the analytical model for three different values of constant torque

(zero, small and medium values) along with the experimental data for the 2-bladed
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12x7 propeller. A zero-torque rotor operating in this configuration is in a state

of ideal vertical autorotation where the momentum theory is not valid. However,

introducing just a small resisting torque completely alters the character of the curve;

the thrust produced continues to increase up to α = 90◦ as expected and as measured

experimentally. Further increasing the resisting torque results in a curve much closer

to the actual data acquired in the wind tunnel. The real amount of resisting torque

depends on the bearing design and even how tightly the propeller is bolted onto the

mount, so the actual value is currently unknown. However, it is clear that any realistic

analysis should not make the assumption that the rotor is operating in the torque-free

state.
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Chapter 5

CONCLUSION

The dependencies of an autorotating rotor on its pitching angle can be significantly

affect its performance. An analytical model estimating the aerodynamic performance

parameters can essentially provide a guideline for design. The research here aimed

to develop a relatively simple but effective model for autorotation confirmed by an

experimental analysis.

By examining the wind tunnel propeller free-wheeling test data, it can be stated

that the thrust, drag and angular velocity increase with the pitch angle, and have a

maximum value when the rotor is perpendicular to the flow. The lift and horizontal

force are seen to be highest at nearly 50◦, and 40◦ respectively. The increase in blade

pitch decreases the thrust, lift and drag.

By analyzing the thrust and drag coefficients, this thesis has shown experimentally

the thrust should increase with increasing rotor plane angle of attack. Analytically

when torque is set to zero we see differently as, the rotor tends to operate in the

turbulent wake and vortex ring zone when highly pitched. In such operating states,

a different model needs to be developed without dependencies on the momentum

theory. But more importantly we note that, in reality we do not have a torque free

case. A slight loss of torque when modelled into the analytical analysis changes the

nature of graph significantly. A comparably medium value of torque loss coefficient

shows close match to experimental results. Furthermore, the lack of inclusion of actual

blade airfoil data, results in a poorly estimated magnitude of force coefficients. The

blade characteristics are highly sensitive to constants like lift curve slope, coefficient

of drag, blade twist and solidity. It is necessary to accurately determine this data for

persuasive comparison.
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To better understand the implications of these results, future research should incor-

porate accurate values for the experimental torque loss coefficients into the analytical

model. It should also aim to develop an enhanced analytical model for horizontal force

coefficients considering reverse flow regions. The aerodynamic constants used in the

analytical model will need to be determined accurately for the rotor under analysis.

Applications of airborne wind turbines and unconventional turbines like Cierva

rotor wind turbine, have rotors that are highly pitched to the oncoming flow. The

underlying aerodynamics of such rotors, must be investigated to design efficient

systems. Notwithstanding the inherent challenges of aerodynamic modelling of highly

pitched auto-rotating rotors, a clear need for accurate estimation of forces is needed

for the design and dynamic analysis, since available autogyro models can only estimate

with confidence the forces for relatively low pitching angles.
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APPENDIX A

MATLAB CODE TO SOLVE MODEL WITH TWIST
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clc
clear all
alpha=linspace (2*pi/180,pi/2 ,500);
guess = [0.0137 0.1270];

options = optimset('MaxIter ' ,1000000,'MaxFunEval ' ,1000000);

theta_75 = 2*pi/180; %Theta at 75% of blade
theta_tw = -5*pi/180; %Twist angle
C_la =6; %Lift curve slope
C_d = 0.006 ; %Assuming coeff of Drag
sigma = 0.2; %Assuming Solidity

constants =[ theta_75 theta_tw C_la C_d sigma];

lambda=zeros(1,length(alpha));
mu=zeros(1,length(alpha));
C_H=zeros(1,length(alpha));
C_T=zeros(1,length(alpha));

for i=1:1: length(alpha)
if i>1

guess=y;
end
y=fsolve(@(x) rotorfixedpitch(x,constants ,alpha(i)),guess ,
options);
lambda(i)=y(1);
mu(i)=y(2);

C_T(i)= 1/48 * sigma*(C_la *(8* theta_75 ...
+ 12* theta_75 *(mu(i)*cos(alpha(i)))^2 ...

-3*theta_tw *(mu(i)*cos(alpha(i)))^2 + 12* lambda(i))+12* C_d*
lambda(i));
C_H(i)= 1/16 * sigma*mu(i)*cos(alpha(i))...

*(4*C_d -4* theta_75*C_la*lambda(i)+theta_tw*C_la*lambda(i));
end

C_T2=C_T./mu.^2;
C_H2=C_H./mu.^2;

C_L=C_T2.*cos(alpha) - C_H2.*sin(alpha);
C_D=C_T2.*sin(alpha) + C_H2.*cos(alpha);
C_LD_ratio=C_L./C_D;

figure ()
subplot (2,2,1)
plot (alpha *180/pi ,C_T ,'LineWidth ',1.5)
grid on
grid minor
title('C_{T} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{T}')

subplot (2,2,2)
plot (alpha *180/pi ,C_H ,'LineWidth ',1.5)
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grid on
grid minor
title('C_{H} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{H}')

subplot (2,2,3)
plot (alpha *180/pi ,C_T2 ,'LineWidth ',1.5)
grid on
grid minor
title('C_{T}'' vs \alpha '),...

xlabel('\alpha'), ylabel('C_{T}''')

subplot (2,2,4)
plot (alpha *180/pi ,C_H2 ,'LineWidth ',1.5)
grid on
grid minor
title('C_{H}'' vs \alpha '),...

xlabel('\alpha'), ylabel('C_{H}''')

subplot (3,3,5)
plot (alpha *180/pi ,mu,'LineWidth ',1.5)
grid on
grid minor
title('\mu vs \alpha '),...

xlabel('\alpha'), ylabel('\mu')

subplot (3,3,6)
plot (alpha *180/pi ,lambda ,'LineWidth ',1.5)
grid on
grid minor
title('x vs \alpha '),...

xlabel('\alpha'), ylabel('\lambda ')

subplot (3,3,7)
plot (alpha *180/pi ,C_L ,'LineWidth ',1.5)
grid on
grid minor
title('C_{L} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{L}')

subplot (3,3,8)
plot (alpha *180/pi ,C_D ,'LineWidth ',1.5)
grid on
grid minor
title('C_{D} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{D}')

subplot (3,3,9)
plot (alpha *180/pi ,C_LD_ratio ,'LineWidth ',1.5)
grid on
grid minor
title('C_{L}/C_{D} vs \alpha '),...

xlabel('\alpha'), ylabel('C_{L}/C_{D}')
sgtitle('Thesis Model with linear twist')
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function out=rotorfixedpitch(x,constants ,alpha)
lambda=x(1);
mu=x(2);

theta_75=constants (1);
theta_tw=constants (2);
C_la = constants (3);
C_d = constants (4);
sigma = constants (5);

out (1)=mu*sin(alpha) -(1/48 * sigma *(C_la *(8* theta_75 ...
+ 12* theta_75 *(mu*cos(alpha))^2-3* theta_tw *(mu*cos(alpha))^2 ...
+ 12* lambda)+12* C_d*lambda))/(2* sqrt((mu*cos(alpha))^2+ lambda ^2)
)-lambda;

out (2) =3* C_d*((mu*cos(alpha))^2 + 1) -2*C_la *(2* theta_75*lambda +3*
lambda ^2);

end
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APPENDIX B

MATLAB CODE TO SOLVE GLAURET’S MODEL
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clear all
clc

guess1 = [0.01 0.01 0.01 ];

theta = 2*pi/180; % Assuming average Coeff of Lift
delta = 0.006 ; %Assuming coeff of Drag
sig = 0.2; %Assuming Solidity

y=fsolve(@(unkn1) set1(unkn1 ,theta ,delta ,sig),guess1 ,[]);
x=y(1);
T_c=y(2);
zeta=y(3);

alpha=linspace (2*pi/180,pi/2 ,500);

H_c=zeros(length(alpha) ,1);
Lamcosi=zeros(length(alpha) ,1);
mew=zeros(length(alpha) ,1);
k_z=zeros(length(alpha) ,1);
k_x=zeros(length(alpha) ,1);

guess2 =0.01;
guess3 =[0.01 0.01];
for j=1:1: length(alpha)

if j>1
guess2=Lamcosi(j-1);
guess3=y;

end

fun=@(Lam_cos_i) (Lam_cos_i.*tan(alpha(j)) - x) ...
- ((0.5*T_c)./sqrt(( Lam_cos_i).^2 + x^2));

Lamcosi(j)=fzero(fun ,guess2);

mew(j)= Lamcosi(j)/cos(alpha(j));
H_c(j) = sig*zeta*Lamcosi(j);

y=fsolve(@(unkn3) set3(unkn3 ,alpha(j),Lamcosi(j),T_c ,H_c(j)),guess3
,[]);

k_z(j)=y(1);
k_x(j)=y(2);
end

for i=1: length(k_x)
C_T(i)=k_x(i)*sin(alpha(i))+k_z(i)*cos(alpha(i));
C_H(i)=-k_z(i)*sin(alpha(i))+k_x(i)*cos(alpha(i));
end
kz_kx=k_z./k_x;

figure ()
subplot (2,2,1)
plot (alpha *180/pi ,k_z ,alpha *180/pi ,C_L ,'LineWidth ' ,2)
grid on
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grid minor
legend('Glauret ''s','Thesis , -5^{\ circ} twist','Location ','northwest

')
hTitle=title('C_{L} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{L}')
set(hTitle ,'FontSize ' ,20)

subplot (2,2,2)
plot (alpha *180/pi ,k_x ,alpha *180/pi ,C_D ,'LineWidth ' ,2)
grid on
grid minor
legend('Glauret ''s','Thesis , -5^{\ circ} twist','Location ','northwest

')
hTitle=title('C_{D} vs \alpha'),...

xlabel('\alpha'), ylabel('C_{D}')
set(hTitle ,'FontSize ' ,20)

subplot (2,2,3)
plot (alpha *180/pi ,mew ,alpha *180/pi ,mu ,'LineWidth ' ,2)
grid on
grid minor
legend('Glauret ''s','Thesis , -5^{\ circ} twist')
hTitle=title('\mu vs \alpha '),...

xlabel('\alpha'), ylabel('\mu')
set(hTitle ,'FontSize ' ,20)

subplot (2,2,4)
plot (alpha *180/pi ,kz_kx ,alpha *180/pi ,C_LD_ratio ,'LineWidth ' ,2)
grid on
grid minor
legend('Glauret ''s','Thesis , -5^{\ circ} twist')
hTitle=title('C_{L}/C_{D} vs \alpha '),...

xlabel('\alpha'), ylabel('C_{L}/C_{D}');
set(hTitle ,'FontSize ' ,20)

function y1=set1(unkn1 ,theta ,delta ,sig)
x=unkn1 (1);
T_c=unkn1 (2);
zeta=unkn1 (3);

y1(1) = delta - 4*x*(theta +(3*x)/2);
y1(2) = T_c - (sig*delta)/(4*x);
y1(3) = zeta -(8* theta ^2)/3 - (17* theta*x)/2 - (15*x^2) /2;
end

function y3 = set3(unkn3 ,i,Lam_cos_i ,T_c ,H_c)
k_z=unkn3 (1);
k_x=unkn3 (2);

y3(3) = (Lam_cos_i/cos(i))^2 * k_z - T_c*cos(i)+H_c*sin(i);
y3(4) = (Lam_cos_i/cos(i))^2 * k_x - T_c*sin(i)-H_c*cos(i);
end
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