
Explainable AI in Workflow Development

and Verification Using Pi-Calculus

by

Gennaro De Luca

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved October 2019 by the

Graduate Supervisory Committee:

Yinong Chen, Co-Chair

Huan Liu, Co-Chair

Sharon Hsiao

Dijiang Huang

ARIZONA STATE UNIVERSITY

December 2019

i

ABSTRACT

 Computer science education is an increasingly vital area of study with various

challenges that increase the difficulty level for new students resulting in higher attrition

rates. As part of an effort to resolve this issue, a new visual programming language

environment was developed for this research, the Visual IoT and Robotics Programming

Language Environment (VIPLE). VIPLE is based on computational thinking and

flowchart, which reduces the needs of memorization of detailed syntax in text-based

programming languages. VIPLE has been used at Arizona State University (ASU) in

multiple years and sections of FSE100 as well as in universities worldwide. Another

major issue with teaching large programming classes is the potential lack of qualified

teaching assistants to grade and offer insight to a student’s programs at a level beyond

output analysis.

 In this dissertation, I propose a novel framework for performing semantic

autograding, which analyzes student programs at a semantic level to help students learn

with additional and systematic help. A general autograder is not practical for general

programming languages, due to the flexibility of semantics. A practical autograder is

possible in VIPLE, because of its simplified syntax and restricted options of semantics.

The design of this autograder is based on the concept of theorem provers. To achieve this

goal, I employ a modified version of Pi-Calculus to represent VIPLE programs and Hoare

Logic to formalize program requirements. By building on the inference rules of Pi-

Calculus and Hoare Logic, I am able to construct a theorem prover that can perform

automated semantic analysis. Furthermore, building on this theorem prover enables me to

ii

develop a self-learning algorithm that can learn the conditions for a program’s

correctness according to a given solution program.

iii

I dedicate this dissertation to my mother and late father who supported me throughout my

journey as a Ph.D. student.

iv

ACKNOWLEDGEMENTS

 I would like to thank Dr. Yinong Chen, who has guided me on the path of

research, education, and teaching since I started working with him as an undergraduate

student. His guidance helped my project grow from the initial ideas I had to a realistic,

feasible endeavor. I attribute a large part of the success of VIPLE and my research to his

work, and advice. I am very grateful for all his hard work.

 I would also like to thank my co-chair, Dr. Huan Liu, who has offered me very

helpful advice concerning post-PhD career opportunities. He has helped broaden my

horizons and more seriously consider my future career. He has also helped me grow as a

professional, especially in terms of communication.

 Additionally, I would like to thank both of my committee members, Dr. Sharon

Hsiao and Dr. Dijiang Huang, who helped inspire my research, especially when I

struggled with burnout.

 I would also like to thank my friends and family members who listened to me

when I would become stuck in the research process or achieve a goal in my work.

Without all of you, this process would have been significantly more difficult.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES ... viii

CHAPTER

 1 INTRODUCTION ... 1

 1.1 Dissertation Overview ... 1

 1.2 Contributions ... 8

 1.3 Previously Published Work ... 9

 2 VISUAL IOT AND ROBOTICS PROGRAMMING LANGUAGE

ENVIRONMENT ... 11

 2.1 VIPLE Introduction ... 11

 2.2 VIPLE versus Microsoft VPL ... 12

 2.3 VIPLE Activity Definitions .. 14

 2.4 VIPLE Robotics Interface ... 17

 3 VISUAL IOT/ROBOTICS PROGRAMMING LANGUAGE IN PI-CALCULUS . 20

 3.0 Abstract ... 20

 3.1 Introduction ... 21

 3.2 The Definition of VIPLE ... 26

 3.3 Representing VIPLE in Pi-Calculus .. 28

 3.3.1 Terminology ... 28

 3.3.2 Definitions .. 29

vi

CHAPTER Page

 3.4 VIPLE Model Definition ... 32

 3.5 Applications .. 43

 3.6 Conclusions ... 44

 4 SEMANTIC ANALYSIS OF CONCURRENT COMPUTING IN

DECENTRALIZED IOT AND ROBOTICS APPLICATIONS 47

 4.0 Abstract ... 47

 4.1 Introduction ... 48

 4.2 The definition of VIPLE in Pi-Calculus .. 53

 4.3 Reasoning About Program Correctness .. 56

 4.3.1 Issue of Parallelism... 56

 4.3.2 Issue of Halting... 57

 4.4 Applying Verifier to NP-Complete Problems ... 59

 4.5 Applying Verifier to Finite State Machines .. 62

 4.6 Applying Verifier to Decentralized Applications ... 63

 4.7 Conclusions ... 66

 5 EXPLAINABLE SELF-LEARNING THEOREM PROVER 67

 5.1 Theorem Prover Introduction .. 67

 5.2 Ontology .. 68

 5.3 Verifiable Conditions .. 70

 5.3.1 Hoare Triplet Commands ... 71

vii

CHAPTER Page

 5.3.2 Hoare Triplet Conditions .. 72

 5.3.3 Hoare Triplet Example ... 74

 5.4 Knowledge Reasoning ... 76

 5.4.1 Pi-Calculus Inference Rules ... 76

 5.4.2 Hoare Logic Evaluation in Pi-Calculus .. 79

 5.4.3 Knowledge Reasoning Example ... 82

 5.5 Self Learning Hoare Triplets ... 84

 6 CONCLUSIONS AND FUTURE RESEARCH ... 93

REFERENCES ... 96

APPENDIX

 A PERMISSION TO USE CO-AUTHORED PAPERS .. 98

viii

LIST OF FIGURES

Figure Page

1.1 Multithreaded Sum.. 5

1.2 Sequential Sum ... 5

1.3 Directly Printing Output ... 5

2.1 Basic Activities in VIPLE and Microsoft VPL... 12

2.2 Services in VIPLE... 13

2.3 Microsoft VPL Generic, Vendor, and Simulated Services ... 14

2.4 Merge Activity .. 16

2.5 Unfolded Merge Activity .. 16

2.6 VIPLE Counter Activity Block ... 16

2.7 Join Example ... 17

2.8 VIPLE Robot/IoT JSON Interface .. 18

2.9 VIPLE Robot Communication .. 19

2.10 Robot Connection Interface .. 19

3.1 Activities: ASU VIPLE... 26

3.2 ASU VIPLE Services Categorized by Functionality .. 27

3.3 A Join Activity .. 34

3.4 A Merge Activity with Multiple Input Connections ... 35

3.5 An If Activity .. 36

3.6(a) A Loop Using the While Activity .. 39

3.6(b) A Loop Using the If and Merge Activities ... 39

3.7 A Robot Distance Sensor Activity .. 42

ix

Figure Page

3.8 Finite State Machine for a Garage Door Opener .. 43

3.9(a) VIPLE Diagram Implementing a Garage Door Opener (Remote Button Press) 45

3.9(b) VIPLE Diagram Implementing a Garage Door Opener (Limit Sensor Touched) . 46

4.1 Platforms Supported in VIPLE ... 51

4.2 Convert VIPLE Program into Pi-Calculus for Verification .. 53

4.3 Basic Activities in VIPLE ... 54

4.4 Simple Join in Pi-Calculus Example... 55

4.5 Calculate and Variable in Pi-Calculus .. 56

4.6 VIPLE Program for Finding Hamiltonian Path .. 60

4.7 Pi-Calculus Representation of the Hamiltonian Path Finding VIPLE Code 61

4.8 Vending Machine Example ... 63

4.9 General Purpose and Robot/IoT Services ... 65

4.10 Two Robot/IoT Controllers Used in VIPLE ... 65

5.2 Sum Example .. 69

5.3 Trivial Assignment.. 75

5.4 Merge Loop Counter ... 85

5.5 Merge Loop Counter Pi-Calculus ... 86

5.6 Merge Loop Counter Learned Hoare Triplets .. 86

5.7 While Loop Counter ... 87

5.8 While Loop Counter Pi-Calculus .. 87

5.9 Dog Finite State Machine ... 88

5.10 Dog Finite State Machine Pi-Calculus .. 88

x

Figure Page

5.11 Dog Finite State Machine Learned Hoare Triplets ... 89

5.12 Updated Dog Finite State Machine ... 89

5.13 Updated Dog Finite State Machine Pi-Calculus ... 90

5.14 Self-Adjusting Right Wall Following Algorithm ... 91

5.15 Maze Navigation Pi-Calculus ... 92

5.16 Maze Navigation Learned Hoare Triplets ... 92

1

CHAPTER 1

INTRODUCTION

1.1 Dissertation Overview

 Artificial Intelligence (AI) has become a popular area of Computer Science (CS),

both within and outside of academia. AI can reference a large variety of different topics,

including Machine Learning (ML) to Knowledge Representation and Reasoning (KRR),

both of which are incorporated in this dissertation research. One of the major challenges

of AI is its inexplicability. Especially in more complex systems with self-learned

concepts, explaining the behavior of an AI system is typically infeasible at best.

Furthermore, defining the concept of explainability in AI provides its own set of issues.

As discussed in the paper by Doshi-Velez and Kim, interpretability (i.e. explainability) of

AI is a difficult concept to define and implement, yet has high value in certain use cases.

One of these cases is “Scientific Understanding” or the pursuit of knowledge [1]. This

dissertation will focus on the pursuit of knowledge for the purpose of software

development, particularly, for novice developers. These developers understand the

application logic, but are not trained in programming with complex and detailed syntax.

These developers include professionals in non-CS disciplines and young students in K-12

classes. We have developed tool called Visual IoT and Robotics Programming Language

Environment (VIPLE) that can help the novice developers to develop software without

learning complex syntax first. The explainable AI is used in developing the auto-grader

of code written in VIPLE.

2

 As software development becomes an increasingly vital facet of society, it is

increasingly important to teach students how computers work and how to develop their

own software at younger ages. The CS for All initiative requires that CS and

programming courses are offered in K-12 classes [2]. In an effort to support this goal,

various introductory level computer science courses have been created that teach the

fundamentals of computational thinking, rather than only the basics of programming. One

such example is CSE101 at Arizona State University (ASU), recently rebranded as

FSE100 [3]. This course made use of Microsoft’s Robotics Developer Studio (MSRDS)

and Visual Programming Language (VPL) in an effort to reduce attrition rates of

introductory computer science students as well as to facilitate the learning of

computational thinking without forcing the new students to focus on the syntax of a

programming language. With Microsoft ending development and support for their VPL in

2014 [4], the courses that relied on this software were forced to find alternatives, ranging

from standard text-based programming languages such as Java to specialized languages

such as MATLAB. In response to this issue, we developed the Visual IoT and Robotics

Programming Language Environment (VIPLE) as a replacement to Microsoft’s VPL.

While Microsoft’s VPL was based on their Concurrency and Coordination Runtime and

Decentralized Software Services [4], VIPLE employs modern open interface solutions,

including Windows’ standard multithreading libraries and REST/SOAP services. VIPLE

has been used in several sections of FSE100 at ASU starting in Spring 2016 as well as in

universities worldwide.

 In order to help students maximize their knowledge of these studied areas,

teaching assistants play a vital role in education. By grading student assignments and

3

offering feedback on their performance, including specific issues, next steps, and strong

aspects of their work, teaching assistants can offer students additional help that will allow

the student to more quickly learn the material. However, the job of teaching assistants is

essentially the semantic analysis of student programs combined with feedback. As such,

the former job can be replaced with an AI that is able to perform semantic analysis of

such programs. As discussed in the paper on interpretable ML, an explainable AI

perfectly serves the purpose given here, namely the use of feedback from an AI to assist

in the pursuit of knowledge [1].

 In order to accomplish this feat and develop such an AI-based auto-grader, several

goals have been pursued in this dissertation. The first several goals of this research focus

on the advancement of VIPLE functions and the components that compose the semantic

analyzer. These goals focus on the construction of a theoretical framework upon which a

software application written in VIPLE can be analyzed at the semantic level (i.e. an AI

which can perform semantic analysis and grading of VIPLE programs). These goals will

culminate in a theoretical framework and an implementation in VIPLE demonstrating the

framework.

 As a semantic level analyzer, this AI is essentially a novel method of performing

autograding. Autograder implementations currently in use, such as the use of a Jupyter

Notebook in Vocareum, typically perform analysis of user output, potentially accepting a

margin of error in the output [5]. Essentially, such an autograder is performing numerical

or string comparisons on the output of the program and not analyzing the behavior of the

program. Often, a series of test cases or unit tests are used to generate the output for

comparison. As a workflow-based language with limited semantic scope, VIPLE is not

4

subject to all of the restrictions which typically make automated semantic analysis

difficult or impossible to perform.

 In contrast to these existing autograding frameworks, the semantic analyzer to be

developed in this research provides several novel features that contribute to the

importance of its research. First, as the name suggests, the semantic analyzer performs

semantic level analysis of the code rather than a comparison of the output of test cases.

Consider the three programs in Figures 1.1, 1.2, and 1.3. Clearly the operations that these

three programs perform are significantly different. The first program spawns 3 threads

and partitions the work to produce the sum from 0 to 1500. The second program performs

the work sequentially, on a single thread. The third program only prints out the answer. If

these programs were given to an output comparison-based autograder, all three would be

marked as correct, despite only the first program demonstrating the expected level of

content mastery. With the semantic analyzer, these three cases, as well as many others,

can be distinguished between and correctly graded.

5

Figure 1.1 Multithreaded Sum

Figure 1.1 Sequential Sum

Figure 1.2 Directly Printing Output

6

 The first goal of this research is the advancement of VIPLE in order to support the

development of the AI for use in the classroom. In Chapter 2, the original development of

VIPLE is discussed. As mentioned above, VIPLE was developed in an effort to enable

students to learn computational thinking without focusing on the syntax of a text-based

programming language. As such, the details of VIPLE’s development reveal the value in

employing VIPLE as the platform for this research. The current implementation of

VIPLE has included some AI examples for students to learn AI, including image

recognition and autonomous driving simulation.

 The second goal of this research is the development of a mathematical framework

for VIPLE, upon which the research can be developed. Chapter 3 details the use of Pi-

Calculus to create this framework. Pi-Calculus is a process calculus that can be used to

model languages or networks in terms of processes and their communication. It is based

on the Calculus of Communicating Systems and is a simple yet complete foundation for

this research. It can be used in two ways. The first is to represent the language using the

concept of processes as a primitive, in the same way as a Turing Machine uses the tape as

a primitive. The second is to model a general network of processes. This latter method is

employed by treating activities in the workflow language as processes. This natural

application of Pi-Calculus enables a simpler conversion and the direct application of Pi-

Calculus logic to VIPLE.

 The third goal of this research is the development of a logic framework upon

which the semantic analysis can be performed. Chapter 4 details the two components of

this goal. First, the Pi-Calculus representation is updated to fully support and model

7

VIPLE applications. Using this model, Hoare Logic is employed to perform reasoning

about the Pi-Calculus in order to provide a semantic analysis of the VIPLE program.

 The fourth goal of this research is the formalization of the semantic analyzer as an

AI. Chapter 5 details the advanced aspects of the semantic analyzer, including how

analysis is employed to determine correctness of programs. In addition, that chapter

provides a detailed overview of how the semantic analyzer can be formally treated as an

AI. This formalism is important for a couple of reasons. First, as the semantic analyzer is

in actuality an AI, and this formalism allows this research to directly contribute to the

area of explainable AI, especially since the ultimate goal remains the pursuit of

knowledge for the user. Secondly, this formalism facilitates the development of the final

component which is dependent on this AI foundation.

 The final goal of this research is the application of ML to create a self-learning AI

that can fully replace the teaching assistant’s job of software analysis in VIPLE

environment. Chapter 6 provides the full details of this AI and the learning process. In the

teaching assistant use case, they may be given a solution (or create their own) and

develop guidelines for determining correctness of a student program. For example, these

guidelines may include correct algorithm structure, correct values at intermediary points

in the program, etc. This AI is able to learn from a sample solution the foundational rules

that define unique correctness of that program. Applying these rules to the

aforementioned semantic analyzer AI enables the AI to become self-explainable without

the manual introduction of feedback by the human user. Rather, the AI can both learn

rules and determine human explainable reasons for user program mistakes.

8

1.2 Contributions

This dissertation contributes to the areas of Computer Science Education and

Artificial Intelligence. In this section, I will briefly discuss the contributions my

dissertation research has made to these disciplines. Specifics of my work will be

discussed in full in the remaining chapters.

The first set of contributions my work makes is in the area of Computer Science

Education. As mentioned in Section 1.1, there are a variety of existing autograders used

in education for grading and offering feedback on student programming assignments.

These autograders are limited in their capabilities as they can only perform output

comparison. This research, however, focuses on semantic analysis. Essentially, this

research provides a methodology to analyze the behavior of student code in a sort of

white box analysis, as opposed to the typical black box analysis of standard autograders.

Furthermore, this research is performed on the visual programming language VIPLE, as

discussed above. The development of VIPLE is also a part of the contributions to the

education discipline. Note that VIPLE handles syntactic errors in the same way as

standard programming language compilers do, namely when the code is initially

compiled or interpreted. This work is focused on the semantic errors of the code.

The Artificial Intelligence research is focused mainly on the area of Knowledge

Representation and Reasoning. The first part of this work is in the representation of

programming languages and rules for programming language correctness. The former is

done by employing and modifying the Pi-Calculus to represent VIPLE programs. The

rules are represented by employing Hoare Logic. Knowledge Reasoning is performed by

combining the Pi-Calculus and Hoare Logic representations in conjunction with the Pi-

9

Calculus and Hoare Logic inference and reasoning rules. By combining these

representations and rules together, a program can be analyzed for semantic correctness

according to a desired set of rules.

In addition to the aforementioned aspect of Artificial Intelligence, one of the final

contributions of this work is to the area of Machine Learning. One of the original goals of

this research is to develop a system that is usable by instructors regardless of their

background knowledge. To this end, requiring an understanding of the Hoare Logic

representation would serve as a barrier to entry to this work. As such, inductive machine

learning is employed to learn a set of rules according to a set of concepts from a given

answer key program. In addition, explainability is introduced into the system to serve two

purposes. First, these explanations provide the instructors reasoning about why the given

rules were generated. Second, these explanations provide specific feedback to the

students if they make an error related to that rule.

1.3 Previously Published Work

The contents of Chapter 3 are the work on Pi-Calculus in VIPLE, “Visual

IoT/Robotics Programming Language in Pi-Calculus” [6]. These contents detail the

application of Pi-Calculus to formally model VIPLE, which is a vital component in the

logical analysis of VIPLE. Chapter 4 contains the work on the initial semantic analyzer,

“Semantic Analysis of Concurrent Computing in Decentralized IoT and Robotics

Applications” [7]. The contents of this chapter build on the previous chapter in order to

10

provide full detail on the semantic analysis framework and the use of Pi-Calculus to meet

the prerequisites of the framework.

11

CHAPTER 2

VISUAL IOT AND ROBOTICS PROGRAMMING LANGUAGE ENVIRONMENT

2.1 VIPLE Introduction

 In 2006, Microsoft released a software suite that had the potential to improve

computer science education. This software, the Microsoft Robotics Developer Studio

(MSRDS) and Visual Programming Language (VPL), provided an environment to

develop workflow applications and interface with various robots, such as the Lego NXT

devices [4]. In addition to being a workflow language, Microsoft VPL offers support for

parallel computing, a relatively innovative and forward thinking feature set for a software

engineering and computer science education application of the time. This software was

used to help teach computer science concepts at various high schools and universities,

including at Arizona State University (ASU). On September 22, 2014, Microsoft’s

robotics research division was suspended due to internal restructuring [3]. In order to

resolve this, various efforts were made to develop a new VPL to continue the curriculum.

Although Microsoft VPL was still available, it lacks support for the robots that are

currently on the market, such as Lego EV3 [3]. A solution that arose from this work is a

new visual programming language, the Visual IoT and Robotics Programming Language

Environment (VIPLE). Unlike Microsoft VPL, VIPLE offers support for open platform

robots and Internet of Things (IoT) devices. Further details on what support VIPLE offers

and how I developed certain features under the guidance of Dr. Yinong Chen will be

discussed in this chapter.

12

2.2 VIPLE versus Microsoft VPL

 When developing VIPLE, Microsoft VPL was used as inspiration. This

development process served two goals. First, this enabled the full set of requirements to

be met in VIPLE development. Namely, VIPLE must support a similar programming

paradigm to Microsoft VPL with similar code blocks and interactions between these

blocks. Within VIPLE, these code blocks are called “activities” and “services.”

Secondly, this development method resulted in software that could be very easily used by

anyone who has previously used Microsoft VPL. With similar interfaces and identical

activity behavior, even old Microsoft VPL curriculums could be easily applied to VIPLE

in most cases. The major exceptions to this similarity are the set of simulators offered and

the robot connectivity options. Figure 2.2 demonstrates the similarities between VIPLE

basic activities and Microsoft VPL basic activities. For most activities, there is a direct

one-to-one correlation.

Figure 2.1 Basic Activities in VIPLE and Microsoft VPL

ASU VIPLE Basic Activities

Microsoft VPL

Basic Activities

13

 In addition to basic activities, Microsoft VPL offers a large number of services,

most notably their vendor specific services. These services can be divided into categories

such as general services, simulator services, iRobot services, and Lego NXT services.

General services include simple operations such as Text to Speech, Simple Dialog, and

Timer. As shown in Figure 2.2, VIPLE currently offers three sets of services, General

Purpose Services, Robot/IoT Services, and Lego Services.

Figure 2.2 Services in VIPLE

 The Robot and Lego Services contain all the services required to connect to,

communicate with, and control any open hardware robot, simulator, or a Lego EV3 brick.

The General Purpose Services includes many services that were originally offered in

Microsoft VPL. These services include the Simple Dialog, Text to Speech, and Timer.

The set of Microsoft VPL generic, vendor, and simulated services is shown in Figure 2.3

to highlight the similarities with VIPLE’s services.

14

Figure 2.3 Microsoft VPL Generic, Vendor, and Simulated Services

2.3 VIPLE Activity Definitions

 As shown above in Figure 2.1, VIPLE has a set of basic activities that define

standard computation behavior. VIPLE is a multithreaded workflow language. Behavior

between threads is handled internally, eliminating the requirement for users to employ

synchronization mechanisms such as locks or semaphores. This section will cover the

behavior of each of the basic activities, in order to facilitate the explanation of later

examples.

 The Activity Block is the equivalent of a method and enables definition of a

reusable set of activities. Variable enables reading and writing to variables with primitive

types. These variables are guaranteed to be atomic. However, race conditions may still

occur if variables are written to in concurrent threads. Data provides a simple method for

declaring a value of a primitive data type. Calculate, on the other hand, enables the

15

application of a VIPLE expression. These expressions are evaluated using a custom

VIPLE text compiler. The set of legal expressions is a subset of C# combined with

expressions that were offered in Microsoft VPL, in an effort to support all previous

Microsoft VPL expressions. The If, Switch, While, Break, and End While activities all

act as standard control flow operations, as in a procedural programming language. These

activities all act synchronously, and do not coordinate multiple threads.

In order to perform coordination and communication between multiple threads in

VIPLE, the Merge and Join activities are offered. Merge defines an n-to-one connection.

Whenever an input thread arrives at the Merge, it is immediately forwarded. The code

following the Merge is essentially cloned. Figure 2.4 demonstrates an application of the

Merge activity. Figure 2.5 shows the internal behavior of using a Merge activity. By

employing this behavior of Merge, looping can be performed without employing the

While activity. An example of a counter loop is shown in Figure 2.6. In this example, the

code is implemented inside an Activity Block rather than in the main code section. In the

Activity Block, there is a single input, denoted by the arrow on the left side. There are

also two outputs. The arrow on the right denotes the synchronous output, which enables

continuation of program flow directly out of the activity. Note that if an Activity Block

exits multiple times, replication is performed in the same way as in the Merge activity

example. The circle on the right demonstrates the event output. Employing this output

enables the definition of custom events, for creation of custom event-driven programs.

16

Figure 2.4 Merge Activity

Figure 2.5 Unfolded Merge Activity

Figure 2.6 VIPLE Counter Activity Block

 Join activities act as a coordination mechanism between multiple threads. An

example is shown in Figure 2.7. The Join activity awaits all input threads (similar to the

17

Join method in C#). Once all threads have reached the join, a single thread continues

execution after the Join. This thread contains the data from each input thread in the form

of named data. In this example, the thread data is named “a” and “b” for use after the

Join. In some cases, certain threads may reach the Join activity multiple times before all

the threads are reached. Furthermore, the same thread may deliver different data to the

Join each time. For these cases, a queue is employed for each thread input to the Join.

Whenever every queue in the Join has at least one value in it, execution continues past

the join. The data contained in the thread is a combination of the first value from each of

the queues. These values are named as denoted in the Join.

Figure 2.7 Join Example

2.4 VIPLE Robotics Interface

 In order to support parallelism, Microsoft VPL employs a special set of

parallelism libraries, the Concurrency and Coordination Runtime (CCR) and the

Decentralized Software Services (DSS). These libraries support not only parallelism in

robotics, but also parallelism in workflow programming and service-oriented applications

[4]. However, these libraries lack support for standard solutions such as RESTful services

or open platform robots without significant additional work. In contrast, VIPLE employs

18

standard solutions to these problems. For parallelism, it employs standard threading

libraries. For service-oriented applications, it employs support for RESTful and SOAP

services. For robot and IoT applications, VIPLE supports Wi-Fi and Bluetooth

connections that communicate over a standard JSON interface. That interface is shown in

Figure 2.8. An interested user could interface with VIPLE using any custom-built robot

assuming that these interface requirements were met.

Figure 2.8 VIPLE Robot/IoT JSON Interface

 To communicate with a device over this interface, VIPLE offers a set of

standardized services. As mentioned above, these are the Robot/IoT services. Figure 2.9

demonstrates an application of these services. In this example, values are being read from

the robot’s touch sensor, distance sensor, and color sensor. These three results are all

printed out to the output window. Unlike with vendor specific services, these services are

generalized, meaning they support any robot with that standard interface. For example, a

ASU VIPLE

Visual IoT

Programming

IoT / Robot

An object pair, with

the second element

an array of objects

19

simulator could be employed to test the code. Then, the exact same code can be used with

physical hardware by only changing the connection settings inside the Robot activity.

Figure 2.10 shows the interface for changing the Robot activity connection settings.

Figure 2.9 VIPLE Robot Communication

Figure 2.10 Robot Connection Interface

20

CHAPTER 3

VISUAL IOT/ROBOTICS PROGRAMMING LANGUAGE IN PI-CALCULUS

3.0 Abstract

As IoT/robotics research and applications expand explosively into many domains

in computing, information, and control systems, schools and universities must prepare

students to understand and be able to program IoT devices and robots. However,

programming IoT and physical devices is hard and depends on good understanding of

hardware and low-level programming. Workflow and visual programming environments

have been developed to address this issue, including MIT App Inventor, Microsoft

Robotics Developer Studio and VPL (Visual Programming Language), and Intel Service

Orchestration Layer. We have developed a new visual programming language and its

development environment: ASU VIPLE (Visual IoT/Robotics Programming Language

Environment). ASU VIPLE is specifically developed to support different device

platforms. It supports LEGO EV3 and all IoT devices based on an open architecture.

ASU VIPLE integrates engineering design process, workflow, fundamental programming

concepts, control flow, parallel computing, and event-driven programming seamlessly

into the curriculum. It has been pilot tested at Arizona State University in summers 2015

and 2016, and is now taught in an ASU regular class, Introduction to Engineering. It has

been adopted by numerous universities around the world. This paper focuses on the

mathematical model of ASU VIPLE. π-calculus is used to describe the basic activities in

VIPLE, as well as the workflow defined by the basic activities.

21

3.1 Introduction

The development of Internet and cloud computing has pushed the desktop-based

computing platform into an internet and Web-based computing infrastructure. It has

changed the concept of physical products or things into services. The endorsement and

commitment to building and utilizing cloud computing environments as the integrated

computing and communication infrastructure by many governments and major

computing corporations around the world have led the rapid development of many

commercial and mission-critical applications in the new infrastructure, including the

integration of physical devices, which gives Internet of Things the unlimited computing

capacity.

Internet of Things (IoT) was initially proposed and applied in the Radio-

Frequency Identification RFID-tags to mark the Electronic Product Code (Auto-ID Lab)

[8]. IoT concept is extended to refer to the world where physical objects are seamlessly

integrated into the information network, and where the physical objects can become

active participants in business processes [9]. Internet of Intelligent Things (IoIT) deals

with intelligent devices that have adequate computing capacity. Distributed intelligence is

a part of the IoIT [10]. According to Intel’s report, there are 15 billion devices that are

connected to the Internet, of which 4 billon devices include 32-bit processing power, and

1 billon devices are intelligent systems [11].

An autonomous decentralized system (ADS) is a distributed system composed of

modules or components that are designed to operate independently but are capable of

22

interacting with each other to meet the overall goal of the system. ADS components are

designed to operate in a loosely coupled manner and data are shared through a content-

oriented protocol. This design paradigm enables the system to continue to function in the

event of component failures. It also enables maintenance and repair to be carried out

while the system remains operational. ADS and the related technologies have a large

number of applications in industrial production lines, railway signaling, and robotics

[14][15]. ADS concepts are the foundation of later technologies such as cloud computing

and Internet of Things.

Robot as a Service (RaaS) is a cloud computing unit that facilitates the seamless

integration of robot and embedded devices into Web and cloud computing environments

[12][20]. In terms of service-oriented architecture (SOA), a RaaS unit includes services

for performing functionality, a service directory for discovery, and service clients for the

user's direct access [13]. The current RaaS implementation facilitates SOAP and RESTful

communications between RaaS units and the other cloud computing units. Hardware

support and standards are available to support RaaS implementations. For example,

Devices Profile for Web Services (DPWS) defines implementation constraints to enable

secure Web Service messaging, discovery, description, and eventing on resource-

constrained devices between Web services and devices. The recent Intel IoT-enabled

architecture, such as Galileo and Edison, made it easy to program these devices as Web

services. From different perspectives, an RaaS unit can be considered a unit of Internet of

Things (IoT), Internet of Intelligent Things (IoIT) that have adequate computing capacity

to perform complex computations [3], a Cyber-physical system (CPS) that is a

23

combination of a large computational and communication core and physical elements that

can interact with the physical world [4], and an autonomous decentralized system (ADS).

As IoT/robotics research and applications expand explosively into many domains

in computing, information, and control systems, schools and universities must prepare

students to understand and to be able to program IoT devices and robots. However,

programming IoT and physical devices is hard and depends on good understanding of

hardware and low-level programming. Workflow and visual programming languages

have been developed to address this issue.

MIT App Inventor [16] uses drag-and-drop style puzzles to construct phone

applications on the Android platform. Carnegie Mellon’s Alice is a 3D game and movie

development environment [17] on desktop computers. It uses a drop-down list for users

to select the available functions in a stepwise manner. App Inventor and Alice allow

novice programmers to develop complex applications using visual composition at the

workflow level. Intel Service Orchestration Layer is a workflow language that allows

quick development of IoT applications on Intel’s IoT platforms, such as Edison and

Galileo.

Microsoft Robotics Developer Studio (MSRDS) and Visual Programming

Language (VPL) are specifically developed for robotics applications [18], and they are

milestones in software engineering, robotics, and computer science education from many

aspects. MSRDS VPL is service-oriented; it is visual and workflow-based; it is event-

driven; it supports parallel computing; and it is a great educational tool that is simple to

learn and yet powerful and expressive. Sponsored by two Innovation Excellence awards

from Microsoft Research in 2003 and in 2005, the author participated in the earlier

24

discussion of service-oriented robotics developer environment at Microsoft. MSRDS

VPL was immediately adopted at Arizona State University (ASU) in developing the

freshman computer science and engineering course CSE101 in 2006. The course grew

from 70 students in 2006 to over 350 students in 2011. The course was extended to all

students in Ira A. Fulton Schools of Engineering (FSE) at ASU in 2011 and was renamed

FSE100, which is offered to thousands of freshman engineering students now [20].

Unfortunately, Microsoft stopped its development and support to MSRDS and

VPL in 2014 [4], which led to our FSE100 course, and many other schools’ courses using

VPL, without further support. Particularly, the latest version of VPL (MSRDS R4) does

not support LEGO’s third generation EV3 robot, while the second generation NXT is out

of the market.

To keep our course running and also help the other schools, we take the challenge

and the responsibility to develop our own visual programming environment at Arizona

State University (ASU). We name this environment VIPLE, standing for Visual

IoT/Robotics Programming Language Environment [3].

ASU VIPLE is based on our previous eRobotics development environments [19].

It is designed to support as many features and functionalities that MSRDS VPL supports

as possible, in order to better serve the MSRDS VPL community in education and

research. To serve this purpose, VIPLE also uses a similar user interface, so that the

MSRDS VPL development community can use VIPLE with little learning curve. VIPLE

does not replace MSRDS VPL. Instead, it extends MSRDS VPL in its capacity in

multiple aspects. It can connect to different physical robots, including EV3 and any

robots based on the open architecture processors. ASU VIPLE has been pilot tested at

25

ASU in summer 2015 and in spring 2016 as well as at several other universities. ASU

VIPLE software and documents are free and can be downloaded at:

http:// neptune.fulton.ad.asu.edu/WSRepository/VIPLE/

The main goal of this paper is to provide a model to represent VIPLE using π-

calculus. As VIPLE is a workflow language, this paper will expound and improve a pre-

existing model for workflow languages. In their paper on workflow patterns, Puhlmann

and Weske present a model for representing general workflow languages [23]. They

begin with a model for basic control flow patterns and proceed to cover several advanced

branching and synchronization patterns [23]. This paper will reduce the size of the model

to succinctly express VIPLE’s various patterns. Of additional note is their use of τ

throughout their model to represent actions performed by each activity that cannot be

represented by π-calculus [23]d. As VIPLE is a well-defined (i.e. the behavior is well-

defined) workflow language, these actions can be simplified, and in some cases removed,

to more specifically detail the behavior of each activity.

The rest of the paper is organized as follows. Section II presents ASU VIPLE, the

Visual IoT/Robotics Programming Language Environment, which makes IoT/Robotics

device programming as easy as drawing and connecting functional boxes. Section III

provides an introduction to VIPLE and π-calculus terminology and definitions to

facilitate the creation of the model. Section IV presents the model for VIPLE in π-

calculus. Section V provides examples of applications facilitated by using VIPLE.

Section VI concludes the paper.

26

3.2 The Definition of VIPLE

The basic building blocks of an ASU VIPLE program (diagram) is listed and

explained in Figure 3.1.

Figure 3.1 Activities: ASU VIPLE

The usability of a language largely depends on the availability of library functions

or called services. Figure 3.2 shows the three sets of ASU VIPLE services.

The first set contains the general services, including input/output services (Simple

Dialog, Print Line, Text to Speech, and Random), event services (Key Press Event, Key

Release Event, Custom Event, and Timer), and RESTful services.

The second set is the generic robotic services. VIPLE offers a set of standard

communication interfaces, including Wi-Fi, TCP, Bluetooth, USB, and WebSocket

interfaces. The data format between VIPLE and the IoT/Robotic devices is defined as a

o Activity: Construct a composite activity (block)

o Variable: Support basic types (Int32, double,

string, boolean, etc)

o Calculate: Calculate the value of typical

expression that is supported by C++, Java

o Data: Introduce the constant values in regular

programming language

o Join: proceed when all threads arrive; It can be
used for waiting parallel data or threads.

o Merge: proceed when one of the data or threads
arrives. It can be used for waiting alternative data,
e.g., creating the returning point of a loop;

o If: same as regular programming language
construct; It allows multiple conditions.

o Switch: same as regular programming language
construct;

o While: start a loop;

o Break exits a loop, and

o End While returns to While

27

standard JSON (JavaScript Object Notation) object. Any robot that can be programmed

to support one of the communication types and can process the JSON object can

communicate with VIPLE and be programmed in VIPLE. As shown in the second part of

Figure 3.2, all VIPLE services that start with “Robot” are generic robotic services. We

can use these services to program our simulated robots and custom-built physical robots.

Figure 3.2 ASU VIPLE Services Categorized by Functionality

The third set is the vendor-specific services. Some robots, such as LEGO robots

and iRobots, do not offer an open communication and programming interfaces. In this

case, we can offer built-in services in VIPLE to access these robots without requiring any

programming efforts on the device side. Currently, the services for accessing LEGO EV3

robots are implemented, so that VIPLE can read all EV3 sensors and control EV3 drive-

motors and arm-motors, as shown in the third column in Figure 3.2. For those who do not

want to build their own robots, they can simply use VIPLE and an EV3. The addition of

General-purpose

and event services Vendor-specific

robotic services

Generic robotic

services

28

EV3 services to VIPLE is significant, as it allows the Microsoft VPL developers who

used NXT robots now to use the new EV3 robots.

The generic robot services allow the developers to use VIPLE to connect to an

open architecture robot. In Microsoft VPL, DSS services developed specifically for

MSRDS can be added into the VPL service list. In ASU VIPLE, RESTful services can be

accessed in VIPLE diagrams. As RESTful services are widely used in today’s Web

application development, the access to RESTful services extends the capacity of VIPLE

to a wide range of resources. ASU VIPLE does not have simulated services at this time,

although the generic robot services can be used to interface with a custom simulation

environment.

3.3 Representing VIPLE in Pi-Calculus

In order to define a mathematical model to represent the VIPLE workflow

language, several standards for how VIPLE functions must be defined.

3.3.1 Terminology

First, we introduce the terminology for defining the needed standards.

In VIPLE, an activity represents a single unit of computation. An activity may

perform a task such as input, output, calculate, save value, or load value. However, an

activity may also act as a control flow, either by analyzing the input, or simply

performing some sort of synchronization or merging. Activities can be connected by

29

drawing lines from the output of one activity to the input of another. These lines will

hereafter be called connections.

When discussing a single activity, the input pin is the triangle pin on the left-hand

side of the activity, the output pin is the triangle pin on the right-hand side, and the event

pin is the circle pin on the right-hand side. Therefore, an input connection is a connection

drawn to the input pin of the activity, and an output connection is a connection drawn

from the output or event pin of the activity.

The model defined below will consider two different groups of activities. The first

group will be called the standard activities and the second group will be the nonstandard

activities. Standard activities permit either 0 or 1 input connections and n output

connections (n ≥ 0). Standard activities have 1 input pin, 1 output pin, and 0 event pins.

Nonstandard activities are those activities that do not meet these standard activity criteria.

As such, nonstandard activities may have a variable number of input, output, and event

pins as well as support for a variable number of input or output connections. Nonstandard

activities will be separately defined in their own sections in the model.

3.3.2 Definitions

As defined by Milner [22], the π-calculus “can play two distinct roles. First, it

models networking…in which messages are sent from site to site. …Second, the π-

calculus can be seen as a basic model of computation. The π-calculus rests upon the

primitive notion of interaction” [22]. As such, the model presented for VIPLE will be

based on these roles. First, the model will describe the networking between activities (i.e.

30

how messages are synchronized and passed between various activities). Second, the

model will only describe the interaction between activities. The model will not include a

description of what each activity performs internally. However, as mentioned earlier, the

use of τ allows a representation of a black box action that fits within the definitions of π-

calculus.

To improve the clarity of the model, below is a brief introduction to the π-

calculus, based on Milner’s definition.

Message passing will be standardized in this model using the concept of action

prefixes. Action prefixes represent the sending or receiving of some message and are

defined as follows [22]:

𝑥(y) receive y along x

�̅�⟨𝑦⟩ send y along x.

The formal definition of π-calculus is below.

Definition 9.1 The π-calculus [22]: The set Pπ of π-calculus process expressions is

defined by the following syntax:

𝑃 ∷= ∑ 𝜋𝑖. 𝑃𝑖 | 𝑃1|𝑃2 |
𝑖∈𝐼

 𝑛𝑒𝑤 𝑎 𝑃 | ! 𝑃

where I is any finite indexing set. The processes ∑ 𝜋𝑖 . 𝑃𝑖𝑖∈𝐼 are called summations

or sums.

Additional important operators are |, which executes processes in parallel, new a P

which defines a private channel a belonging to process P, and !P, the replication operator,

which allows the explicit definition of parametric processes.

31

There are two general versions of the π-calculus, namely the monadic and

polyadic versions. In the monadic version, a message consists of exactly one name. In the

polyadic version, multiple names can be sent in a message along a channel with no

interference from other processes [22].

Below are two definitions used in proofs within the model, for later reference.

 Definition 9.7 Structural congruence [22]: Two process expressions P and Q in

the π-calculus are structurally congruent, written 𝑃 ≡ 𝑄, if we can transform one into the

other by using the following equations (in either direction):

(1) Change of bound names (alpha-conversion)

(2) Reordering of terms in a summation

(3) 𝑃|0 ≡ 𝑃, 𝑃|𝑄 ≡ 𝑄|𝑃, 𝑃|(𝑄|𝑅) ≡ (𝑃|𝑄)|𝑅

(4) 𝑛𝑒𝑤 𝑥 (𝑃|𝑄) ≡ 𝑃|𝑛𝑒𝑤 𝑥 𝑄 𝑖𝑓 𝑥 ∉ 𝑓𝑛(𝑃), 𝑛𝑒𝑤 𝑥 0 ≡ 0, 𝑛𝑒𝑤 𝑥𝑦 𝑃 ≡

𝑛𝑒𝑤 𝑦𝑥 𝑃

(5) ! 𝑃 ≡ 𝑃|! 𝑃

 Definition 4.5 Process congruence [22]: Let ≅ be an equivalence relation over P,

i.e. it is reflexive (𝑃 ≅ 𝑃), symmetric (if 𝑃 ≅ 𝑄 then 𝑄 ≅ 𝑃) and transitive (if 𝑃 ≅ 𝑄 and

𝑄 ≅ 𝑅 then 𝑃 ≅ 𝑅). Then ≅ is said to be a process congruence if it is preserved by all

elementary contexts; that is, if 𝑃 ≅ 𝑄 then

𝛼. 𝑃 + 𝑀 ≅ 𝛼. 𝑄 + 𝑀

𝑛𝑒𝑤 𝑎 𝑃 ≅ 𝑛𝑒𝑤 𝑎 𝑄

𝑃|𝑅 ≅ 𝑄|𝑅

𝑅|𝑃 ≅ 𝑅|𝑄

32

3.4 VIPLE Model Definition

This section defines the behavior of workflow activities that are applicable in

VIPLE diagrams.

Sequential Process

𝑆 ∷= 𝑛𝑒𝑤 𝑎(𝐴|𝐵). 𝟎

𝐴 ∶≔ 𝜏𝐴. �̅�⟨𝑥⟩. 𝟎

𝐵 ∷= 𝑎(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩. 𝟎

This definition describes the behavior of two standard activities where A is the

first activity and B is the second. A performs its action, then outputs a value onto the

private channel a. B receives that value from the channel a, performs its own action, and

then outputs its own value on any number of channels. Note that the channel b is used to

represent a non-negative number of channels. B will output the same value y along all of

these channels.

In the definition of S, the keyword new is used to show that the channel a is

private within the system. The value sent along the channel will be sent to its destination

and nowhere else (i.e. no other activities can listen to the channel other than the ones

defined in S). The channel b is not designated as new since such a definition would be

redundant. For example, by reapplying the sequential process definition, b would be

designated as new in the second iteration. Also note the use of 0 (nil) at the end of each

process, symbolizing that the process dies after performing its task. In the remainder of

the model definition, the 0 will be removed. However, all processes implicitly end with 0.

Split (Parallel Processes)

𝑛 ≥ 2

33

𝑆 ∷= 𝑛𝑒𝑤 𝑎1𝑎2 … 𝑎𝑛(𝐴|𝐵1|𝐵2| … |𝐵𝑛)

𝐴 ∶≔ τA. 𝑎1̅̅̅̅ ⟨𝑥⟩. 𝑎2̅̅̅̅ ⟨𝑥⟩. … . 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵𝑛 ∷= 𝑎𝑛(𝑥). τBn. 𝑏𝑛̅̅̅̅ ⟨𝑦⟩

This part of the model covers the case where one activity spawns more than 1

activity (in parallel). In such a case, A’s output value is passed along all n channels to the

receiving activities (denoted by B1, B2, …, Bn). Note that although passing values along

the channels occurs sequentially, the receiving processes are not waited on. Thus, the

receiving processes are able to run concurrently. Since passing data along a channel in

VIPLE takes a negligible amount of time (compared to an activity’s run time), the

receiving processes essentially receive their input and run at the same time.

As in the sequential process model, note that all activities in this system are

standard. In addition, note that multiple different model definitions can be combined. For

example, a sequential process can be added immediately following B1 while another

parallel split can be added immediately following B2. In this way, various instances of

the model may run in parallel. In the example, the sequential processing will occur

concurrently with the parallel split. If another sequential process is added after B3, that

process will be performed in parallel with B1’s sequential process and B2’s parallel split.

Join

𝑛 ≥ 1

𝑆 ∷= 𝑛𝑒𝑤 𝑎1𝑎2 … 𝑎𝑛(𝐴1|𝐴2|… |𝐴𝑛|𝐵)

𝐴𝑛 ∶≔ τAn. 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵 ∷= 𝑎1(𝑥1). 𝑎2(𝑥2). … . 𝑎𝑛(𝑥𝑛). �̅�⟨𝑦⟩

34

Join is the first example of a nonstandard activity in this model. A join activity, as

shown in Figure 3.3, has n input pins, n ≥ 1. Each pin still only accepts a single input

connection. The job of a join, as formalized in the model, is to synchronize multiple

incoming connections. A join will not allow values to be passed further (thereby

preventing the execution of the proceeding activities) until values are received from all

incoming connections (i.e. until all preceding activities complete their tasks). Also note

that although the preceding activities perform computation (τAn), there is no computation

inherent to the join activity. The join’s only job is to perform synchronization, which is

fully represented in the model for B.

Figure 3.3 A Join Activity

Also of note in this model is that a single value (y) is output from the join once

the synchronization has completed, even though n distinct values are being output (x1,

x2, …, xn). A join may also be modelled using the polyadic version of π-calculus to

support n outputs. However, in its implementation in VIPLE, the join activity outputs a

single object containing all the values. To remain true to this implementation, the

monadic version of π-calculus is used in defining join.

Merge

𝑛 ≥ 1

𝑆 ∷= (𝐴1|𝐴2|… |𝐴𝑛|𝐵)

35

𝐴𝑛 ∶≔ τAn. �̅�⟨𝑥⟩

𝐵 ∷= ! 𝑎(𝑥). �̅�⟨𝑦⟩

Merge is another nonstandard activity. A merge activity, as shown in Figure 3.4,

has a single input pin and a single output pin. However, unlike standard activities, the

merge activity will accept n input connections (n ≥ 0). The merge activity automatically

forwards any incoming values to the output connection(s). The merge activity performs

no calculations, and does not perform any synchronization, unlike the join activity. The

main purposes of the merge activity are to provide the abilities to create loops and reuse

code.

Figure 3.4 A Merge Activity with Multiple Input Connections

Of note in the above model is the use of the replication operator and the lack of a

private input channel. As a merge activity supports multiple input connections to a single

input pin, the input channel can be used by any activity. To preserve thread safety, the

replication operator is used. In this way, any activities following the merge activity (i.e.

output connections) will be replicated (a new instance will be created) for each merge

input connection. This replication can be likened to the replication of a method on a stack

when the method is called concurrently from multiple different threads.

Theorem 1 A merge with a single input is congruent to 0 (the nil process).

Proof

Consider a merge with a single input and n outputs (for 𝑛 ∈ ℕ 𝑤ℎ𝑒𝑟𝑒 ℕ =

{0, 1, 2, … }). For all values of n, the merge activity receives only 1 input, thereby

36

removing the need for replication by the replication operator. In addition, merge performs

no operations, so the output value is equal to the input value.

When n = 0, a merge activity is clearly equivalent to 0 as it has no output

connections, so the process ends immediately upon reaching the merge. In the cases

where n > 0, the value from the input connection is passed directly to all output

connections. As such, connecting the output of the previous activity directly to the inputs

of the following activities will result in a congruent process.

Choice (Generalized)

𝑛 ≥ 2

𝑆 ∷= 𝑛𝑒𝑤 𝑎1𝑎2 … 𝑎𝑛(𝐴|𝐵1|𝐵2| … |𝐵𝑛)

𝐴 ∶≔ 𝑎1̅̅̅̅ ⟨𝑥⟩ + 𝑎2̅̅̅̅ ⟨𝑥⟩ + ⋯ + 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵𝑛 ∷= 𝑎𝑛(𝑥). τBn. 𝑏𝑛̅̅̅̅ ⟨𝑦⟩

The choice activities are nonstandard activities since they may have n output pins

(n ≥ 1). Other than this difference, the choice activities follow the same rules as the

standard activities (1 input pin, 1 input connection, m output connections per output pin

(m ≥ 0)). An example of one of the choice activities, the if activity, is shown in Figure

3.5.

Figure 3.5 An If Activity

37

Of immediate notice in this model is that the choice activities share the same

process diagram as the split operation. The main difference between the choice activities

and the split operation is that only a single output (e.g. a2) is followed.

In this part of the model, the goal is to represent choice activities in general. To

meet this goal, a summation is used. The model can be further developed to concisely

define a single choice activity.

Choice (If)

The if activity (Figure 3.5) will follow the output pin corresponding to the first

boolean expression (bexprn) which evaluates to true. If none of the n-1 conditions

evaluate to true, the output pin corresponding to else will be followed. This behavior can

be modelled using the if/then/else construct. The syntax for this construct is:

if bexp then P else Q

where P and Q are processes and bexp is a boolean expression [21].

 Following this construction, the model for an if activity becomes:

𝑛 ≥ 2

𝑆 ∷= 𝑛𝑒𝑤 𝑎1𝑎2 … 𝑎𝑛(𝐴|𝐵1|𝐵2| … |𝐵𝑛)

𝐴 ∶≔ 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟1 𝒕𝒉𝒆𝒏 𝑎1̅̅̅̅ ⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟2 𝒕𝒉𝒆𝒏 𝑎2̅̅̅̅ ⟨𝑥⟩

𝒆𝒍𝒔𝒆 𝒊𝒇 … 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟(𝑛 − 1)𝒕𝒉𝒆𝒏 𝑎(𝑛 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟨𝑥⟩

𝒆𝒍𝒔𝒆 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵𝑛 ∷= 𝑎𝑛(𝑥). τBn. 𝑏𝑛̅̅̅̅ ⟨𝑦⟩

where bexprn represents the nth boolean expression in the if activity.

Choice (Switch)

38

The switch activity can be modelled in an identical fashion to the if activity with

the exception that the cases of a switch activity can be any expression, and those values

are compared to the input value to create a boolean expression. An important difference

between if and switch is that switch requires an input value to compare with its

expressions.

Supposing that the switch activity (process A) has an input channel c from

process C, the switch activity can be modelled as follows:

𝑛 ≥ 2

𝑆 ∷= 𝑛𝑒𝑤 𝑐𝑎1𝑎2 … 𝑎𝑛(𝐶|𝐴|𝐵1|𝐵2| … |𝐵𝑛)

𝐶 ∶≔ 𝑐̅⟨𝑧⟩

𝐴 ∶≔ 𝑐(𝑧). 𝒊𝒇 𝑒𝑥𝑝𝑟1 = 𝑧 𝒕𝒉𝒆𝒏 𝑎1̅̅̅̅ ⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑒𝑥𝑝𝑟2 = 𝑧

𝒕𝒉𝒆𝒏 𝑎2̅̅̅̅ ⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝒊𝒇 … 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑒𝑥𝑝𝑟(𝑛 − 1) = 𝑧

𝒕𝒉𝒆𝒏 𝑎(𝑛 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵𝑛 ∷= 𝑎𝑛(𝑥). τBn. 𝑏𝑛̅̅̅̅ ⟨𝑦⟩

where exprn represents the nth expression in the switch activity.

Loop

As mentioned above, the merge activity can be used to design loops within

VIPLE. However, VIPLE also provides simplified methods of defining loops, such as the

while/end while activities. The goal of this section is to prove that the model defining

loops built from merge can be transformed into the model defining while loops, which

would prove that they are structurally congruent.

39

Figure 3.6(a) A Loop Using the While Activity

Figure 3.6(b) A Loop Using the If and Merge Activities

The model for a while loop such as the one shown in Figure 3.6(a) is:

𝑆 ∷= 𝐴|𝐵|𝐶

𝐴 ∷= 𝑑(𝑦). 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟 𝒕𝒉𝒆𝒏 �̅�⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝑐̅⟨𝑦⟩

𝐵 ∷= 𝑎(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩

𝐶 ∷= 𝑏(𝑦). �̅�⟨𝑦⟩

where channel c is the output channel(s) from C to the activity following the while loop

and bexpr is the boolean expression in the while activity. Note that this model assumes

some initial input to A, which will be 0 (nil) if the while activity has no input

connections.

The model for an if/merge loop such as the one shown in Figure 3.6(b) is:

𝑆 ∷= 𝐴|𝐵|𝐶|𝐷

𝐴 ∷= 𝑑(𝑥). 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟 𝒕𝒉𝒆𝒏 �̅�⟨𝑥⟩ 𝒆𝒍𝒔𝒆 �̅�⟨𝑦⟩

40

𝐵 ∷= 𝑎(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩

𝐶 ∷= 𝑏(𝑦). 𝑐̅⟨𝑦⟩

𝐷 ∷= 𝑐(𝑦). 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟 𝒕𝒉𝒆𝒏 �̅�⟨𝑥⟩ 𝒆𝒍𝒔𝒆 �̅�⟨𝑦⟩

where channel e is the output channel(s) from D (and A) to the activity following the

while loop and bexpr is the boolean expression in the if activity (note that the boolean

expression is assumed to be the same in both if activities). As above, process A is

assumed to receive some input, which will be 0 (nil) if A has no input connections.

An important note about this model is that identical output channels are used from

both A and D. Since standard activities do not support multiple inputs, a merge activity

can be placed before the output channels. Since that merge will only receive a single

input (only the first time bexpr is false will the merge be used), that merge is equivalent

to 0 according to Theorem 1. As such, inserting the merge will create a structurally

congruent process.

As the if activities (processes A and D) do not modify their input values, have the

same boolean expressions, and output to the same channels in the same cases, processes

A and D are congruent processes. Thus, instead of inputting a value to process A along

channel d, channel c will be used to pass the value directly to process D. Since the

processes are congruent, this new model is structurally congruent to the previous if/merge

model. As process A no longer receives input along channel d, it can no longer perform

any operations and is removed from the model. The model then becomes:

𝑆 ∷= 𝐵|𝐶|𝐷

𝐵 ∷= 𝑎(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩

𝐶 ∷= 𝑏(𝑦). 𝑐̅⟨𝑦⟩

41

𝐷 ∷= 𝑐(𝑦). 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟 𝒕𝒉𝒆𝒏 �̅�⟨𝑥⟩ 𝒆𝒍𝒔𝒆 �̅�⟨𝑦⟩

With alpha-conversions (rename c to e, d to c, e to d, and D to A, the model

becomes:

𝑆 ∷= 𝐴|𝐵|𝐶

𝐴 ∷= 𝑑(𝑦). 𝒊𝒇 𝑏𝑒𝑥𝑝𝑟 𝒕𝒉𝒆𝒏 �̅�⟨𝑥⟩ 𝒆𝒍𝒔𝒆 𝑐̅⟨𝑦⟩

𝐵 ∷= 𝑎(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩

𝐶 ∷= 𝑏(𝑦). �̅�⟨𝑦⟩

Therefore, according to the definition of structural congruence, the if/merge loop

model is structurally congruent to the while loop model. Therefore, the while activity

construction can be reduced to using merge and if activities, and does not require a

formal definition within the model.

Event Handling

𝑛 ≥ 1

𝑆 ∷= 𝐴|𝐵1|𝐵2| … |𝐵𝑛|𝐶

𝐴 ∶≔ 𝑐(𝑥). 𝑎1̅̅̅̅ ⟨𝑥⟩. 𝑎2̅̅̅̅ ⟨𝑥⟩. … . 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵𝑛 ∷= ! 𝑎𝑛(𝑥). 𝜏𝐵. �̅�⟨𝑦⟩

To explain the general model offered, a specific example of event handling will

be constructed. One example of an event in VIPLE is the robot distance sensor activity (a

nonstandard activity with 0 input ports, 0 output ports, 1 event port, and n output

connections for n ≥ 1). A distance sensor activity is shown in Figure 3.7. Without any

distance input on a specified port, that event will never trigger, and the proceeding code

will never execute. As such, an additional component is required for all event handling

activities, namely the event generator. In this example, there may be an IoT board with an

42

attached ultrasonic sensor which sends data to VIPLE every 200ms on port c. This board

can be modelled as such:

𝑛 ≥ 1

𝐶 ∷= 𝐶1|𝐶2| … |𝐶𝑛

𝐶1 ∷= 𝜏𝑠𝑙𝑒𝑒𝑝. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑). 𝑐̅⟨𝑑⟩

In this implementation, the IoT board has n concurrently running sensors, where

C1 is the process controlling the distance sensor and communicating on port c. The

process C1 waits until the polling time has passed (e.g. it calls sleep for the specified

amount of time) and then it receives the distance and sends it to VIPLE over port c.

Returning to the above model for general event handling, VIPLE receives the distance

value and passes that value to all output connections. As an event can be triggered

multiple times, the replication operator is used so that each distance value is forwarded to

its own replicated set of processes.

Figure 3.7 A Robot Distance Sensor Activity

This model can be extended to all event activities in VIPLE. Each event activity

awaits an event to occur from an external source. That event may occur at a timed

interval as above, or when an event occurs in the physical world (e.g. a button is pressed).

43

3.5 Applications

VIPLE is a general-purpose programming language and is Turing complete in its

capacity. It can be used for any kind of computational tasks. In VIPLE, a program is

represented as a workflow diagram, and the components are defined as activities or Web

services in the diagram.

However, VIPLE’s strength is in event-driven programming that can respond to a

sequence of events. The event-driven applications are best described by finite state

machines consisting of states and transitions between the states. The transitions are

triggered by events. As an example, Figure 3.8 shows the finite state machine for a

garage door opener. The control system consists of a single button remote controller and

a limit sensor. The button on the remote controller controls the door open, stop, and close

functions. The limit sensor is a built-in sensor in the motor. When the door reaches the

limit, the sensor will generate a notification and stop the motor.

Figure 3.8 Finite State Machine for a Garage Door Opener

The VIPLE program that implements the finite state machine is given in Figure

3.9. The remote controller button is simulated by the keyboard “Ctrl” key. As shown in

Figure 3.9(a), six states are coded in the If-activity with six conditions. When the Ctrl key

button pressed

door

closing
door

opened

door

closed

door

opening

button pressed

limit

tripped
limit

tripped

opening

stopped

button

pressed

closing

stopped

button

pressed

button

pressed

button

pressed

44

is pressed, the If-activity checks the current state, transits into the next state, and prints

the result in the console using the Print Line service.

The limit sensor built into the motor is simulated by the m-key. As shown in

Figure 3.9(b), when the m-key is pressed while the door is opening or closing, the state

will change and the result will be displayed.

ASU VIPLE is based on the concept of computational thinking, which hides the

technical and programming details from the user, and thus can be used for teaching high

school students and college freshmen as their first programming language. It has been

pilot-tested at Arizona State University to high school students in summer camps in 2015

and 2016. It is used in an ASU regular class, FSE100 (Introduction to Engineering) and

several other universities worldwide. As VIPLE supports open architecture and open

source development [3], VIPLE has been adopted by numerous universities around the

world, and different VIPLE robots have been developed by universities and companies to

support course development. A typical VIPLE robot costs less than $200, while a LEGO

EV3 robot costs around $400.

Two robotics simulation environments have been developed: A Unity-based

simulator and a Web-based simulator. These simulators allow VIPLE application

development without physical robots.

3.6 Conclusions

This paper presented ASU VIPLE (Visual IoT/Robotics Programming Language

Environment) and its mathematical model in π-calculus. ASU VIPLE allows novice

45

programmers to program complex IoT devices and robots, and learn programming

concepts. It supports LEGO EV3 and all IoT devices based on an open architecture. ASU

VIPLE is free and well documented at:

http:// neptune.fulton.ad.asu.edu/WSRepository/VIPLE/

Figure 3.9(a) VIPLE Diagram Implementing a Garage Door Opener (Remote

Button Press)

46

Figure 3.9(b) VIPLE Diagram Implementing a Garage Door Opener (Limit

Sensor Touched)

47

CHAPTER 4

SEMANTIC ANALYSIS OF CONCURRENT COMPUTING IN DECENTRALIZED

IOT AND ROBOTICS APPLICATIONS

4.0 Abstract

As IoT and robotics applications continue to become increasingly complex and

decentralized, there is an increase in the difficulty of verifying requirements such as

guarantees of reliability, efficiency, and correctness of the entire system. Modern IoT and

robotics research and applications employ a variety of technologies to accommodate the

distribution of real world IoT devices. Many of these technologies support the

orchestration of these devices with concurrent computation and workflow-based

processing, e.g., Intel Service Orchestration Layer. We developed a new workflow-based

programming language VIPLE (Visual IoT/Robotics Programming Language

Environment), which supports the orchestration of decentralized IoT and robotics devices

through concurrent computation. VIPLE has been used by many universities for teaching

robotics programming, event-driven computing, service-oriented computing, and parallel

computing concepts. Historically, simple single threaded applications could be verified

by employing formal systems such as Hoare logic. It is difficult to verify parallel and

distributed computing. In our recent research, we developed a novel system to verify the

semantics and other requirements of decentralized applications written in VIPLE. This

system is developed using a combination of the techniques offered in Hoare logic and

Rely-Guarantee logic, and it is applied using the automatically generated Pi-Calculus

48

representation of VIPLE applications. This paper focuses on the foundations of this

system, its ability to handle concurrent computing and decentralized applications, as well

as its ability to support automated verification and semantic analysis.

4.1 Introduction

As software development continues to evolve, the complexities of application

development also grow. IoT and robotics applications also become increasingly complex

and decentralized, bringing an assortment of related problems. These problems include

communication between devices, coordination among devices, and verification of factors

such as reliability, efficiency, and correctness of the entire system.

Internet of Things (IoT) was initially proposed and applied in the Radio-

Frequency Identification RFID-tags for creating the Electronic Product Code (Auto-ID

Lab) [8]. IoT concepts have been extended to refer to any system where physical objects

are seamlessly integrated into the internet, and where the physical objects become active

participants in industrial and business processes [9]. IoT can be a simple sensor

connected to Internet. It can be a full computing unit. Internet of Intelligent Things (IoIT)

deals with intelligent devices that have adequate computing capacity, such as including a

32-bit processor. Distributed intelligence is a part of the IoIT [10]. According to a 2016

ZDNet report, there are 8 billion intelligent devices that are connected to the Internet and

are applied in various information systems [11].

An autonomous decentralized system (ADS) consists of decentralized modules or

subsystems that are designed to operate independently but are capable of collaborating

49

with each other to meet the overall goal of the system. ADS subsystems can cooperate in

a loosely coupled manner and the data are shared through a content-oriented protocol.

Traditional communication protocols route data by address. A content-oriented protocol

route data by a content code, which indicates the purpose or domain of application of the

data. This design paradigm enables the system to continue to function even when some

subsystems fail. It also enables maintenance and repair to be conducted while the overall

system is in operation. ADS and the related technologies have a large number of

applications in manufacture production lines, transportation, and robotics [14][15]. ADS

concepts are the foundation of the later technologies, such as service-oriented computing,

cloud computing, enterprise service bus, and Internet of Things.

Robot as a Service (RaaS), proposed in our previous studies, is a cloud computing

unit that allows the seamless integration of embedded devices, such as sensory,

processing, and actuator devices used in robots, into Web and cloud computing

environments [12][20]. In terms of service-oriented architecture (SOA), a RaaS unit

includes services and activities for performing functionality, a service directory for

discovery, and service clients for the user's direct access [13]. The current RaaS

implementation facilitates SOAP and RESTful communications between RaaS units and

the other Web and cloud computing units. The data transferred between the units is

represented in JSON format. Hardware supports and standards are available to support

RaaS implementations. For example, DPWS (Devices Profile for Web Services) defines

standards and interfaces for enabling secure embedded service messaging, discovery,

description, and eventing on resource-constrained devices between Web services and

devices. The recent embedded SoC (System on a Chip), such as Galileo, Edison,

50

Raspberry Pi, and EPS 8226, as well as the modern embedded system programming

languages, such as Python and JavaScript, made it easy for programming these devices as

Web services.

As IoT and robotics research and applications expand explosively into many

domains in computing, information, machine learning, and control systems, schools and

universities must prepare students to understand and to be able to program IoT devices

and robots. However, programming IoT and physical devices is hard and depends on

good understanding of hardware and low-level programming. Workflow and visual

programming languages have been developed to address this issue.

To serve this purpose, we develop a graphic IoT/robotics programming

environment at Arizona State University (ASU). The environment is called VIPLE,

standing for Visual IoT/Robotics Programming Language Environment [3].

ASU VIPLE is built on our previous RaaS concepts and development

environments [12]. It is designed for supporting different robotics platforms and

simulation environments. It can connect to different physical robots through Wi-Fi and

Bluetooth, including EV3, Wonder Workshop, and any robots based on the open

architecture processors. Figure 4.1 illustrates the platforms and applications currently

supported in VIPLE.

51

Figure 4.1 Platforms Supported in VIPLE

On the left side of Figure 4.1 are the simulation environments supported. It

includes the TORCS racecar and autonomous driving simulator, a traffic simulator

implemented in Unity, a maze navigation simulator in Unity, and two maze navigation

simulators in HTML5. The rest of the platforms in Figure 4.1 are hardware systems. It

includes a drone developed for flight data collection and flight-pattern machine learning,

humanoid/dog robots, Lego EV3, and custom-built vehicles implemented using different

processors. These platforms allow different universities to use simulators only, to

purchase, or to build their hardware to support the course. The custom-built vehicles are

based on open architecture and can also be used in other courses.

ASU VIPLE has been pilot tested at Arizona State University since summer 2015

as well as at several other universities. ASU VIPLE software and documents are free and

can be downloaded at:

http:// neptune.fulton.ad.asu.edu/WSRepository/VIPLE/

http://neptune.fulton.ad.asu.edu/VIPLE/

VIP
Unity Simulator

Web 3D Simulator

Lego EV3

Intel Galileo Robot

Intel Edison Robot

pcDuino Robot

Minnow & Curie Robot
Web 2D Simulator

BIOLOID

Raspberry Pi

TORCS

52

The main goal of this paper is to provide an updated model to represent VIPLE

using Pi-Calculus. The first version of the Pi-Calculus representation of VIPLE was

immediately based on work by Puhlmann and Weske and their model for representing

general workflow languages [23]. We have advanced that model by utilizing a variety of

Pi-Calculus assets discussed in Milner’s book on Pi-Calculus [22]. Furthermore, we

needed a mathematical foundation for performing automated semantic verification of

VIPLE applications. Although Pi-Calculus is immediately suited to describing process

communication and coordination, it lacks an easily accessible formulation of internal

actions. Our previous attempts made use of τ throughout our model to represent actions

performed by each activity that cannot be represented by Pi-Calculus [6]. As VIPLE is a

well-defined workflow language, these actions can be simplified and updated to more

specifically detail the behavior of each activity.

In addition, the work allows the instructors grade the students work automatically.

The instructor can convent the VIPLE programs written by students into Pi-Calculus and

perform semantic analysis and equivalence check with the model solution. Figure 4.2

shows the built-in menu for performing such verification. A few built-in examples have

been giving to demonstrate the use of generating Pi-Calculus expressions and verifying

the correctness of the Pi-Calculus expressions.

53

Figure 4.2 Convert VIPLE Program into Pi-Calculus for Verification

The rest of the paper is organized as follows. Section II presents ASU VIPLE, the

Visual IoT/Robotics Programming Language Environment, as well as its updated Pi-

Calculus representation. Section III discusses our theoretical foundation for verification

and program correctness. Section IV presents an example of using our verifier to check

the correctness of an NP-hard problem. Section V discusses the application of this

verifier to robotic applications that can be characterized by a finite state machine. Section

VI discusses the potential for verification of applications that use decentralized IoT

devices. Section VII concludes the paper.

4.2 The definition of VIPLE in Pi-Calculus

The basic building blocks of an ASU VIPLE program are listed and explained in

Figure 4.3. These activities include the basic constructs of a general-purpose

programming language, and thus VIPLE can implement functionalities that a general-

purpose programming language.

Each of these basic activities in VIPLE can be considered to be a fundamental

process represented in the Pi-Calculus. Many of the definitions are unchanged, according

54

to [6]. However, there are several important new additions. Below is the modified

definition of Join, demonstrating the specialized value passing and calculations.

Figure 4.3 Basic Activities in VIPLE

In the definitions, we consider the “A” processes to be inputs to the defined

process and “B” is the process being defined. A τ action is used to represent that the

previous process(es) perform some operation, but that operation is inconsequential to the

definition. In the Join definition, we assume that the Join variable names are equivalent to

the input channel names. An example of Join is shown in Figure 4.4.

Join

𝑛 ≥ 1

𝑆 ∷= 𝑛𝑒𝑤 𝑎1𝑎2 … 𝑎𝑛(𝐴1|𝐴2|… |𝐴𝑛|𝐵)

𝐴𝑛 ∶≔ τAn. 𝑎𝑛̅̅̅̅ ⟨𝑥⟩

𝐵 ∷= 𝑎1(𝑥1). 𝑎2(𝑥2). … . 𝑎𝑛(𝑥𝑛). 𝑦 = {(𝑎1, 𝑥1), (𝑎2, 𝑥2), … , (𝑎𝑛, 𝑥𝑛)}. �̅�⟨𝑦⟩

Activity: for creating a block or component in VIPLE

diagram.

Variable: supports typical types like int, double,

string, bool, etc.

Calculate: Calculate the value of typical expression

and function that is supported by C#, C++, and Java.

Data: introducing literal values in program. It

determines the type automatically.

Join: proceeds when all threads arrive; It can be used

for parallel data or threads to converge.

Merge: proceeds when one of the data or threads

arrives. It can be used for creating the return point of

a loop.

If: same as regular programming language construct;

It allows multiple conditions.

Switch: same as regular programming language

construct.

While: starts a loop; Break: exits a loop.

End While: returns to While block.

55

Figure 4.4 Simple Join in Pi-Calculus Example

The If, Switch, and Merge activities remain unchanged. In addition, VIPLE

contains a variety of services beyond the Basic Activities shown in Figure 4.3. As these

advanced services typically have no impact on the data (e.g. Print Line outputs the value,

but does not change it), we continue to use τ actions to represent those services.

However, we have added functionality to the Pi-Calculus definitions of the other Basic

Activities. To simplify the definitions, we are only including the modified portions.

Figure 4.4 includes an example of Data and Figure 4.5 includes an example with

Calculate and Variable.

Variable

𝐵 ∷= 𝑎(𝑥). 𝑣𝑎𝑟𝑛𝑎𝑚𝑒 = 𝑥. �̅�⟨𝑥⟩

Calculate

𝐵 ∷= 𝑎(𝑥). 𝑦 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛). �̅�⟨𝑦⟩

Data

𝐵 ∷= 𝑎(𝑥). 𝑦 = 𝑣𝑎𝑙𝑢𝑒. �̅�⟨𝑦⟩

56

Figure 4.5 Calculate and Variable in Pi-Calculus

4.3 Reasoning About Program Correctness

In order to perform verification on the VIPLE programs converted to Pi-Calculus,

we employed a combination of several formal reasoning systems. Starting with a simple

single-threaded application, we are able to perform automated reasoning using Hoare

Logic. In order to verify a program, we define a set of Hoare triplets, P, C, Q, where P is

the precondition, Q is the post-condition, and C is a command [25]. Using this formalism,

we can trace the application’s execution path and determine if the post-condition is met

after the command is executed, assuming the precondition was true. This approach has

several issues, the issue of halting and the issue of parallelism.

4.3.1 Issue of Parallelism

For multithreaded applications, such as decentralized IoT applications, the control

flow cannot be easily followed without executing the application. To resolve the issue of

parallelism, we employed a combination of Rely-Guarantee Logic and Separation Logic.

Essentially, this combination of logics allows analysis of a program by assuming that the

relevant pieces of memory are guaranteed to be the same regardless of order of execution.

In our implementation, we made use of our modified Pi-Calculus representation to

57

analyse all potential memory accesses to determine the maximum possible guarantees.

We add on to the Hoare triple an internal pair of values to each string of processes, R and

G where R is the set of memory values that the thread expects other threads will not

modify and G is the set of memory values that the thread will not modify. Thus, we can

analyse the Pi-Calculus representation of each thread in conjunction with the R and G

sets to perform program verification.

4.3.2 Issue of Halting

In order to perform full formal verification, an application must be able to both

guarantee correctness assuming halting and guarantee halting. The former condition is

handled through our use of the aforementioned formal logics. In order to handle halting,

we must consider the use of loops within an application. Since a Pi-Calculus

representation can be represented as a directed graph [22], finding a loop in the program

becomes a problem of finding a cycle in the Pi-Calculus representation. If no loop is

found, the application is guaranteed to halt. However, determining if a loop will halt is

the Halting Problem and is not always guaranteed to be possible [26].

Despite an inability to always reason about loops, we considered the subset of

programs where reasoning is possible. To do so, we first analyse the loop to determine

any potential exit conditions. We formulate a loop invariant so that if both the loop exit

condition and the loop invariant are true, the loop is guaranteed to exit. Then, we use the

loop invariant to prove termination. To prove termination, we first define a value e such

that e is a natural number upon entering the loop and after every iteration. Furthermore,

58

we prove that e is strictly decreasing. For example, e may decrease as a value increases in

case of a condition such as: value <= n. Thus, e will be inversely proportional to value

and will be indicative of whether the loop is continually nearing completion.

Once e is defined, there are two main components to our proof. The first

component is to prove that e is always a natural number, and the second is that e is

strictly decreasing. In the previous example, we would automatically define e to be an

expression such as the absolute value of (n – value). As value increases, e decreases. The

absolute value guarantees non-negative values, and e is guaranteed to be a natural number

if n and value are integers. Floating point numbers are discussed below. With these

preconditions, the proof that the loop terminates is as follows:

Proof: Consider a natural number e with values corresponding to closeness of a

given loop invariant to true, with 0 representing equivalence of the loop invariant and

true and larger numbers representing a greater distance between the loop invariant and

true. Assume that e is strictly decreasing. Then, by the Principle of Well-Ordering, e is

guaranteed to eventually equal 0. By extension, the loop invariant is guaranteed to equal

true, and the loop is guaranteed to exit. Thus, a program using loops where the value e

can be defined as above are guaranteed to halt.

One issue with the definition of e as a natural number is the case of floating-point

values. However, since computer precision is finite and limited by the number of bits

being used (e.g. 64-bit precision for a double), the floating-point value can be guaranteed

to approach 0 in a finite number of steps due to the finite number of possible values that

can be stored in a computing system.

59

4.4 Applying Verifier to NP-Complete Problems

One of the benefits of an automated verification system is the ability to quickly

verify complex problems. In Figure 4.6 is the VIPLE code that finds a Hamiltonian Path

in a given graph, which is represented in a binary format. The Hamiltonian Path finding

problem is NP complex in computation time. However, it can be verified in polynomial

time, despite the complexity of the application. Thus, the application of this verifier is not

limited to simple applications with short Pi-Calculus representations. Figure 4.7 shows

our Pi-Calculus representation for the Hamiltonian Path finding VIPLE code.

As the commands performed in the Hamiltonian Path algorithm are not dependent

on the input, the logic definition discussed in an earlier section will remain relatively

consistent across various inputs. This ease of modifying the corresponding logic files

facilitates advanced testing, such as boundary testing. Such techniques may be especially

valuable in the classroom to help students learn.

60

Figure 4.6 VIPLE Program for Finding Hamiltonian Path

61

Figure 4.7 Pi-Calculus Representation of the Hamiltonian Path Finding VIPLE

Code

62

4.5 Applying Verifier to Finite State Machines

One example of an IoT application commonly developed in VIPLE is a maze

navigation algorithm. One method of implementing maze navigation is through the right-

wall following algorithm, which is essentially a finite state machine. To prepare students

for writing this algorithm, they may create other finite state machines with user input

rather than automated robot input. Due to the Pi-Calculus foundation we used, we are

able to analyze applications that use user input over a given input space. Figure 4.8

demonstrates a simple vending machine example with internal storage. In this example,

key press events are used, which can be represented as standard IoT events [6]. Applying

the verifier will test a collection of test cases as defined in the logic file in the P, C, Q

format discussed earlier. For example, if a student forgets to include the If check after

requesting a soda, the verifier will warn the student about that issue.

63

Figure 4.8 Vending Machine Example

4.6 Applying Verifier to Decentralized Applications

One of the benefits of VIPLE outside of the classroom is its ability to facilitate

communication and processing among decentralized devices. In typical distributed

applications, one of the major development issues is quality assurance and testing. As

64

described above, our verifier facilitates such tests in a variety of applications including

complex problems, finite state machines, and event-oriented applications.

By making use of multiple IoT controllers in a VIPLE application, programming

decentralized devices is greatly facilitated. Events can then be attached to each device to

perform data processing unique to each device, or in conjunction with other devices.

Regardless of processing performed, the underlying Pi-Calculus representation of these

events and services is consistent with the above examples. Thus, the same techniques can

be used to verify complex distributed applications.

Figure 4.9 shows the built-in services that perform general purpose computing

and facilitate the connection and communication between VIPLE diagram and physical

robot/IoT devices, including sensors, motors, and complex devices. The complex services

include Robot/IoT Controller, Robot/IoT Holonomic Drive, Robot/IoT Motion, and all

the TORCS sensors. In the current implementation, these services are modelled as black

boxes and their functions are assumed to be correct.

65

Figure 4.9 General Purpose and Robot/IoT Services

As an example, Figure 4.10 shows our latest application of creating a robotic

guide dog to help the vision-impaired person [27]. The robot dog is an autonomous entity

and the wheelchair that carries the vision-impaired person is another autonomous entity.

These two entities are coordinated through VIPLE code, where two Robot/IoT

Controllers are used.

Figure 4.10 Two Robot/IoT Controllers Used in VIPLE

66

The robot dog has many complex movements. In addition to forward, backward,

left-turn and right-turn, it can perform many actions, such as shaking hand, rolling, and

moving head. It is programmed with Robot/IoT Motion service. The wheelchair hosts an

Intel Up Squared board and an Intel Movidius Neural Compute Stick for processing

sensor data camera image data. The robot dog helps the vision-impaired to avoid

obstacle, cars on the road, and to recognize the traffic signals.

4.7 Conclusions

This paper presented ASU VIPLE (Visual IoT/Robotics Programming Language

Environment), its mathematical model in π-calculus, and our novel automated semantic

verifier. This verifier supported many different applications, with limits only existing

with certain loop invariants, many of which can be transformed into valid conditions. The

verifier can support education, prototyping, or decentralized IoT application

development. ASU VIPLE is an active research and education platform. Software and

hardware components have been constantly added into the platform for broader and

deeper applications around IoT and robotics applications. ASU VIPLE is free and well

documented at:

http:// neptune.fulton.ad.asu.edu/WSRepository/VIPLE/

67

CHAPTER 5

EXPLAINABLE SELF-LEARNING THEOREM PROVER

5.1 Theorem Prover Introduction

The papers published and employed for Chapters 3 and 4 present a strong

mathematical background for VIPLE. This background enables the direct conversion of a

VIPLE program into a Pi-Calculus representation. Furthermore, the modified Pi-Calculus

enables the direct translation of not only VIPLE program communication and

coordination, but also the VIPLE activity behavior. By employing the Hoare Logic

approach discussed in Chapter 4 in conjunction with this modified Pi-Calculus

representation, reasoning can be performed on any VIPLE program. This chapter will go

into greater detail on how this reasoning is performed and formal definitions of the

program behavior and analysis. Building on this reasoner, AI techniques are employed to

develop a Theorem Prover that is also self-learning and an explainable AI.

 With VIPLE, its modified Pi-Calculus representation, and the Hoare Logic

foundation, the explainable self-learning theorem prover can be formally defined. The

approach I have taken is to create a theorem prover that is able to reason about a given set

of rules to determine whether a certain condition is met. Furthermore, the use of a

theorem prover facilitates the introduction of explainability. As the inference rules are

well defined, the AI’s behavior is also well defined and clearly explainable.

 There are three core components that enable the creation of this theorem prover

[28]. They are:

68

1. An ontology that contains all the information about the program being analyzed;

2. A set of conditions to be analyzed for veracity (i.e. “sentences”); and

3. A formal set of rules that enables inference and reasoning about the ontology in

order to verify the conditions.

 This chapter will demonstrate each of these three components to illustrate the

formal definition of the theorem prover.

5.2 Ontology

 To define the ontology used in this theorem prover, I will first return to the formal

definition provided by Milner of Pi-Calculus:

“The set Pπ of π-calculus process expressions is defined by the following syntax:

𝑃 ∷= ∑ 𝜋𝑖. 𝑃𝑖 | 𝑃1|𝑃2 |
𝑖∈𝐼

 𝑛𝑒𝑤 𝑎 𝑃 | ! 𝑃

where I is any finite indexing set. The processes ∑ 𝜋𝑖 . 𝑃𝑖𝑖∈𝐼 are called summations or

sums” [22].

As discussed in Chapter 3, this definition is applied to VIPLE in order to provide a

formal definition of any VIPLE program. The action prefix π is also formally defined by

Milner as:

“𝜋 ∷= 𝑥(𝑦) receive y along x

 𝑥〈𝑦〉 send y along x

 𝜏 unobservable action” [22].

 By the modifications presented in Chapter 4, the unobservable action τ is replaced

by observable actions within VIPLE. These actions do not directly interact with the Pi-

69

Calculus communication or coordination. Rather, these actions may produce values that

can be used to determine branching that is already defined within the Pi-Calculus

expressions. Alternatively, these actions may be employed to interact with the Variable

Table to send or receive values along existing Pi-Calculus channels. The Variable Table

is a two-dimensional data storage mechanism that tracks all defined VIPLE variables

within the given program. The values can only be modified or read by employing one of

the new observable actions. In this way, symbolic execution can be applied to perform

reasoning about certain parts of the program by only analyzing the Pi-Calculus

expressions.

 By employing these Pi-Calculus expressions and the Variable Table, a full

ontology can be automatically generated for any given VIPLE program.

Example 5.1: Consider the example program shown in Figure 5.2.

Figure 5.2 Sum Example

 Applying the Pi-Calculus expression rules defined in Chapter 4, the code will be

translated into the following set of Pi-Calculus expressions:

70

𝑥0 = 1. 𝑎0̅̅ ̅〈𝑥0〉

𝑥1 = 3. 𝑎1̅̅ ̅〈𝑥1〉

𝑎0(𝑥2). 𝑎1(𝑥3). 𝑥4 = {(𝑎, 𝑥2), (𝑏, 𝑥1)}. 𝑎2̅̅ ̅〈𝑥4〉

𝑎2(𝑥5). 𝑥6 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑥5[𝑎] + 𝑥5[𝑏]). 𝑎3̅̅ ̅〈𝑥6〉

𝑎3(𝑥7). 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑇𝑎𝑏𝑙𝑒[𝑠𝑢𝑚] = 𝑥7

 This example will be returned to in the following sections of this chapter, to

illustrate the complete lifecycle of the theorem prover.

5.3 Verifiable Conditions

 The second prerequisite of the theorem prover is the definition of a set of

verifiable conditions that define the correctness of a given VIPLE program. These

verifiable conditions are defined by employing Hoare Logic, which was briefly discussed

in Chapter 4. These conditions are specified by first defining a set of Hoare triplets, P, Q,

R, where P is the precondition, R is the postcondition, and Q is a command [29]. Hoare

specifies the application of these three components in verifying aspects of a program in

his paper. He said, “If the assertion P is true before initiation of a program Q, then the

assertion R will be true on its completion” [29]. This section will examine each of these

three parts of the Hoare triplet and their applications. It will culminate with a

continuation of Example 5.1 with the definition of Hoare triplets for verification of

program correctness.

71

5.3.1 Hoare Triplet Commands

 The first element of the Hoare triplet that I will examine is the command, Q, also

known as the “program” in Hoare’s paper [29]. A single Hoare triplet may not be able to

correctly define all important behaviors of a given program, but only part of a program.

As such, the command is dynamically defined during verification of the program. There

are two mechanisms by which this dynamic definition is performed. First, in the case of

event-driven VIPLE programs, events can be specified as part of the Hoare triplet in

place of the command. As these VIPLE event activities are translated into Pi-Calculus

expressions, the utilization of an event in a Hoare triplet is equivalent to invoking a new

Pi-Calculus term. Consider for example a program that employs the key press event of

‘A’. Then, it may have a Pi-Calculus term that appears as follows:

! 𝐾𝑒𝑦𝑃𝑟𝑒𝑠𝑠𝐴(𝑥0). 𝑎1̅̅ ̅〈𝑥0〉

 This term awaits the receipt of a value along the channel corresponding to A’s key

press event, namely the event KeyPressA. Of important note is the application of the

replication operator, as was discussed in Chapter 3. Events of any variety may be

repeatedly triggered. As such, the formal Pi-Calculus definition reflects this behavior

through the replication operator. To test the code gated behind such an operator, a single

Pi-Calculus expression can be employed to open the channel by sending the expected

value to that specific channel. Specifics of channel communication and coordination will

be covered later in this chapter. Below is the Pi-Calculus expression which performs this

task.

𝑥0 = 𝐾𝑒𝑦𝑃𝑟𝑒𝑠𝑠𝑒𝑑𝐴. 𝐾𝑒𝑦𝑃𝑟𝑒𝑠𝑠𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈𝑥0〉

72

 The second mechanism of dynamic command generation is employed in cases

both with and without events. This mechanism is the continual verification of the VIPLE

program’s Pi-Calculus expressions until either (1) the postcondition is met or (2) the

program terminates. This behavior is also formalized in the later section on Pi-Calculus

channel communication and coordination. By employing these dynamic command

generation mechanisms, multiple Hoare triplets can be analysed sequentially, enabling a

more thorough analysis of a given VIPLE program.

5.3.2 Hoare Triplet Conditions

 I will treat the other two parts of a Hoare Triplet, the precondition P and

postcondition R, together in this section. Both of these parts are conditions and share

syntax. As Hoare mentions in his paper, the main method of evaluating a program is an

assignment condition, 𝑥 ≔ 𝑓, where x is a variable identifier and f is an expression from

the programming language without side effects [29]. Using this condition, Hoare offers

the Axiom of Assignment which forms the foundation for evaluation of multiple

conditions. Namely, ⊢ 𝑃0{𝑥 ≔ 𝑓}𝑃 where P0 is obtained by substituting f in place of x in

P. Building on this rule, more specific rules can be developed, including rules of

consequence, composition, and iteration [29]. In terms of this work, the application of

these rules and axioms enables the analysis of a complete program and its behavior by

analyzing each step of the program. Furthermore, since f can be any expression without

side effects, Hoare Logic enables and facilitates the analysis of VIPLE programs as no

VIPLE expressions have side effects. Thus, the precondition P and postcondition R can

73

be constructed by employing expressions in VIPLE syntax and assignment operators

(which are represented in VIPLE by the use of the Variable activity).

 Following from these guidelines, the purpose of the postcondition is clearly to

specify the expected state of the program at any given point. For example, a single, trivial

Hoare triplet such as 𝑡𝑟𝑢𝑒 {𝑥 ≔
𝑓

2
∗ 2} 𝑥 ≔ 𝑓 can be used to evaluate whether the given

program (the part in curly braces) culminates in x being f. Furthermore, true can be used

as a precondition to signify that this postcondition has no prerequisites and can be

evaluated starting at the beginning of the program. However, the precondition serves two

vital roles in cases with multiple Hoare triplets. First, the precondition enables precise

definition of the required state of the program before evaluating the postcondition. For

example, perhaps a program is testing the following Hoare triplet: 𝑡𝑟𝑢𝑒 {𝑥 ≔
2

𝑓
∗ 𝑘} 𝑥 ≔

27. In this case, a precondition could be vital to ensure that attempts to evaluate the

expression avoid invalid states. For example, the precondition 𝑓 ≠ 0 prevents division by

0. Most importantly, a continuation of postcondition to precondition enables the

application of the inference rule from Hoare’s paper, the Rule of Consequence [29]. This

inference rule is vital in cases with multiple Hoare triplets. The Rule of Consequence

states:

𝐼𝑓 ⊢ 𝑃{𝑄}𝑅 𝑎𝑛𝑑 ⊢ 𝑅 ⊃ 𝑆 𝑡ℎ𝑒𝑛 ⊢ 𝑃{𝑄}𝑆.

 The application of the Rule of Consequence implies that the entire program is

correct assuming that each sub-condition is verified and that the sub-conditions are

connected in this manner. Essentially, this rule enables the analysis of the program step

by step while still guaranteeing that the entire program is correct.

74

5.3.3 Hoare Triplet Example

 This section will return to Example 5.1 in order to demonstrate how to manually

construct the Hoare triplets for the given program. This process will follow the rules

described above. First, as mentioned above, the commands are dynamically constructed

during verification. The only case where manual definition of commands is required is in

event driven programs, when a certain postcondition requires an event to occur.

However, in this example there are no events. If both Data at the start of the program

were gated by a Key Press Event activity, a key press event would need to be included in

the first command, in order to start verification of the program. In such a case, a lack of

the event in the command would result in no program execution and immediate

postcondition failure (assuming non-tautological postconditions).

 The number of Hoare triplets (conditions in terms of a theorem prover) is

proportional to the depth of analysis of a given program. In Example 5.1, a weak

verification could be done with a single Hoare triplet, such as 𝑡𝑟𝑢𝑒{ }𝑠𝑡𝑎𝑡𝑒. 𝑠𝑢𝑚 == 4

(note that the conditions in a Hoare triplet are defined in the target language’s (i.e.

VIPLE’s) syntax, not in the Pi-Calculus syntax [29]). This condition is weak, as it can

pass any program that culminates in sum being 4, including the trivial program shown in

Figure 5.3.

75

Figure 5.3 Trivial Assignment

 Adding more conditions can enable more precise analysis of the programs. For

example, perhaps the use of a Join is enforced with those specific values (1 and 3). In this

slightly more detailed approach, multiple Hoare triplets would be required. One such

example is shown below.

𝑡𝑟𝑢𝑒{ }𝑣𝑎𝑙𝑢𝑒["𝑎"] == 1 && 𝑣𝑎𝑙𝑢𝑒["𝑏"] == 3

𝑣𝑎𝑙𝑢𝑒["𝑎"] == 1 && 𝑣𝑎𝑙𝑢𝑒["𝑏"] == 3{ }𝑠𝑡𝑎𝑡𝑒. 𝑠𝑢𝑚 == 4

 In this example, the values in the Join are first verified, which increases the

strength of the set of conditions. As multiple conditions are used in this example, each

postcondition and following precondition matches up for the sake of inference, as

discussed above. Furthermore, the fully detailed VIPLE syntax is employed, such as the

use of value[“a”]. Creating these detailed conditions (instead of only the join variable

name) offers the user more flexibility. Rather than being forced to use Join, any

mechanism they employ that generates the dictionary is acceptable. The condition

developer may choose to enforce specific syntax (i.e. force the use of Join) or to accept

any syntax, assuming correct semantics. Typically, there are very few options for

enforcing syntax. This lack of options is a result of the system’s focus on semantic

verification and VIPLE’s lack of focus on syntax, especially in its expression set. How

these Hoare triplets are used to verify the program through the Pi-Calculus will be

detailed in the following section.

76

5.4 Knowledge Reasoning

 The final prerequisite of the theorem prover is a formal set of rules that enables

inference and reasoning about the ontology in order to verify the conditions. This set of

inference rules will enable the theorem prover to reason about the given ontology (the Pi-

Calculus representation) to verify each of the sentences (the Hoare Logic triplets). There

are two components required for the theorem prover to be able to analyze the Pi-Calculus

expressions and verify the Hoare Logic triplets. First, it must be able to reason about the

Pi-Calculus expressions’ communication and coordination. Second, it must be able to

evaluate the Hoare Logic triplets using the Pi-Calculus expressions and Variable Table.

5.4.1 Pi-Calculus Inference Rules

 In order to accurately represent VIPLE programs, I have employed a specially

modified variant of Pi-Calculus unique to VIPLE. In order to reason about the program,

the inference rules need to be examined for correctness despite those modifications. The

key aspect of analyzing the Pi-Calculus expression lies in the analysis of how these

expressions communicate and coordinate with each other. These behaviors are contained

within the term “reaction” as defined by Milner [22]. There are several vital reaction

rules that are defined by Milner for Pi-Calculus. Those rules are listed below [22].

77

𝑇𝐴𝑈: 𝜏. 𝑃 + 𝑀 → 𝑃

𝑅𝐸𝐴𝐶𝑇: (𝑥(𝑦). 𝑃 + 𝑀)|(�̅�〈𝑧〉. 𝑄 + 𝑁) → {𝑧
𝑦⁄ }𝑃|𝑄

𝑃𝐴𝑅:
𝑃 → 𝑃′

𝑃|𝑄 → 𝑃′|𝑄

𝑅𝐸𝑆:
𝑃 → 𝑃′

𝑛𝑒𝑤 𝑥 𝑃 → 𝑛𝑒𝑤 𝑥 𝑃′

 These rules succinctly define several important reaction concepts that are vital to

the analysis of the Pi-Calculus expressions. First, the REACT rule defines how processes

can communicate and coordinate. Namely, if process P is preceded by the receiving of y

along x and process Q is preceded by the sending of z along x, the communication will

immediately occur, sending z to P (denoted by the replacement of y by z in P).

Concurrently, Q continues execution. Using this rule, complex sets of Pi-Calculus

expressions can communicate with each other. Furthermore, a simple lemma that can be

obtained from the REACT and PAR rules enables sequential coordination. The PAR rule

states that one process can independently execute regardless of other processes executing

in parallel. In other words, parallel processes can execute concurrently. Consider the

below Pi-Calculus expression:

(𝑃. 𝑥(𝑦). 𝟎 + 𝑀)|(�̅�〈𝑧〉. 𝑄 + 𝑁)

 From the PAR rule, P can execute in parallel of the second process. After P

completes execution, the next process in the sequence is executed, namely x(y). From the

REACT rule, this expression becomes:

(𝟎)|(�̅�〈𝑧〉. 𝑄 + 𝑁)

The nil activity further reduces as follows:

(�̅�〈𝑧〉. 𝑄 + 𝑁)

78

 As such, P and Q were forced to execute sequentially, despite their expressions being in

parallel. In this manner, all VIPLE activities are considered to exist in parallel. This

parallelism enables the direct representation of activities as distinct processes, rather than

considering all sequential processes as part of one process. The distinction of processes is

vital to the reasoning of programs, such as in the dynamic generation of Hoare Logic

commands. Furthermore, despite all activities being in parallel, these rules enable both

coordination and communication between the activities.

 The TAU rule must be slightly changed to correctly apply to the updated Pi-

Calculus representation used in VIPLE. In that new representation, tau actions are

replaced by representations of the activities’ actual behavior. However, since these

actions do not directly modify or communicate with the Pi-Calculus channels, they do not

affect the Pi-Calculus process execution or inference rules. By replacing tau with any

VIPLE activity action, the inference rule remains valid. Consider for example the

Calculate action. The rule can be modified as follows while remaining valid:

𝐶𝐴𝐿𝐶𝑈𝐿𝐴𝑇𝐸: 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛). 𝑃 + 𝑀 → 𝑃

Identical rules can be constructed for variable assignment and data values.

 As mentioned above, the Variable Table is completely independent from the Pi-

Calculus channels, so interfacing with the table is also an acceptable action that does not

affect the reaction rules for Pi-Calculus expressions. However, an issue arises in the case

of Join. Join employs the sending and receiving of a vector value (the dictionary), which

is not directly supported in the monadic Pi-Calculus. As such, the polyadic Pi-Calculus

can be employed in such cases. The main difference between the two is the ability to send

multiple values along a single channel. This guarantees that all values are received by a

79

single receiving process and that all values are received at once. In order to support the

polyadic Pi-Calculus, the reaction rule must be updated to support vectors, as explained

by Milner [22]. The updated REACT rule is below (note that the vectors 𝑧 and �⃗� must

have the same length:

𝑅𝐸𝐴𝐶𝑇: (𝑥(�⃗�). 𝑃 + 𝑀)|(�̅�〈𝑧〉. 𝑄 + 𝑁) → {𝑧
�⃗�⁄ } 𝑃|𝑄

 The combination of these rules enables the complete evaluation of any set of

VIPLE specific Pi-Calculus expressions. The next section will detail how the Hoare

Logic triplets can be evaluated, despite being written in VIPLE syntax and not as Pi-

Calculus expressions.

5.4.2 Hoare Logic Evaluation in Pi-Calculus

 By employing those reaction rules, the VIPLE program’s Pi-Calculus

representation can be analyzed for specific communication or coordination behaviors.

However, the conditions to be analyzed are written as Hoare Logic triplets, and therefore

use the VIPLE syntax. I considered two solutions for resolving this issue. First, the Hoare

triplets could be written in the modified Pi-Calculus syntax. However, Pi-Calculus

expressions are restrictive in terms of specifying the behavior of a VIPLE program. By

introducing new Pi-Calculus expressions, the behavior of the system changes, since

communication will be sent to these new terms. One of the rules of Hoare triplets is that

expressions must not have side effects, but Pi-Calculus expressions would break that rule.

Furthermore, I wanted a solution that could ultimately be feasibly employed by

instructors lacking the background Pi-Calculus understanding. VIPLE syntax, on the

80

other hand, is much simpler and lacks side effects. The solution I chose to pursue is an

evaluation of the Hoare triplet conditions by analyzing the effects of the Pi-Calculus

expressions.

 There are three components required to analyze Hoare triplets according to the

effects of the Pi-Calculus expressions. They are (1) the translation of state variables to the

Variable Table, (2) the analysis of values being sent along channels, and (3) the

evaluation of VIPLE expressions. Furthermore, the analysis of Hoare Logic triplets is

dependent on the concept of dynamic command definition, as mentioned above. In order

to dynamically define commands, Pi-Calculus expressions were defined distinctly, with

each activity being its own expression. In this way, the command can be constructed with

a single activity at a time. One of the main issues with this approach is the problem of

parallelism. To resolve this issue, I employed a modified backtracking approach.

Essentially, a tree is constructed based on the Pi-Calculus expressions for the VIPLE

program. A breadth-first analysis is conducted. All Pi-Calculus nodes from that level of

the tree are marked as the Hoare triplet command. Then, the postcondition is checked

according to the rules which will be described below. Note that the precondition is

always checked before constructing the command. Once a specific path through the tree

is found that satisfies the postcondition, all the nodes in that path are marked, and the

other nodes are released. In this way, nodes from other paths (i.e. threads) that do not

contribute to the postcondition are not consumed by the analysis of that Hoare triplet.

With this command construction and postcondition analysis algorithm, solutions to the

aforementioned issues can be defined.

81

 The first issue (translation of state variables to the Variable Table) is easily

resolved by employing the Variable Table, which is already independent of the Pi-

Calculus expressions. Whenever the postcondition needs to be evaluated, references to

state variables (e.g. state.variableName) are replaced by references to the Variable Table

(e.g. VariableTable[“variableName”]).

 The second issue (analysis of values sent along channels) can be resolved during

the application of the backtracking algorithm. Each time a node on the tree is evaluated,

its children are designated according to the Pi-Calculus communication that occurred

following the reaction rules detailed above. Each child will receive a single input along a

single channel from its parent. Since the polyadic Pi-Calculus is employed, even Join

parents are guaranteed to send a single input (a vector) along a single channel to each of

its children. Thus, after a command is evaluated, the values sent along these channels can

be immediately analyzed for the Hoare Logic triplet postconditions. References in these

postconditions to “value” will be replaced by a reference to these values sent down the

tree.

 The final issue (evaluation of VIPLE expressions) can be resolved now that the

previous two issues have been resolved. Since these expressions are guaranteed to not

have side effects, as discussed earlier, the only difficulty in their analysis is the retrieval

of variables (resolved using the Variable Table) and the retrieval of values sent along

channels (resolved during the backtracking algorithm). After these two adjustments are

applied, the expressions can be immediately resolve by employing the VIPLE expression

evaluation algorithm. This algorithm is essentially a stateless (i.e. no side effects)

interpretation engine that inputs the given syntax and offers the resulting value.

82

Employing this approach enables the complete evaluation of any of the Hoare Logic

triplet conditions according to the effects of the Pi-Calculus expressions. These rules will

be applied in the following section to the original example.

5.4.3 Knowledge Reasoning Example

 In order to perform the knowledge reasoning for Example 5.1, both the Pi-

Calculus representation and Hoare Logic triplets are required. That information has been

included here for the reader’s convenience.

Pi-Calculus expressions:

𝑥0 = 1. 𝑎0̅̅ ̅〈𝑥0〉

𝑥1 = 3. 𝑎1̅̅ ̅〈𝑥1〉

𝑎0(𝑥2). 𝑎1(𝑥3). 𝑥4 = {(𝑎, 𝑥2), (𝑏, 𝑥1)}. 𝑎2̅̅ ̅〈𝑥4〉

𝑎2(𝑥5). 𝑥6 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒(𝑥5[𝑎] + 𝑥5[𝑏]). 𝑎3̅̅ ̅〈𝑥6〉

𝑎3(𝑥7). 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑇𝑎𝑏𝑙𝑒[𝑠𝑢𝑚] = 𝑥7

Hoare Logic triplets:

𝑡𝑟𝑢𝑒{ }𝑣𝑎𝑙𝑢𝑒["𝑎"] == 1 && 𝑣𝑎𝑙𝑢𝑒["𝑏"] == 3

𝑣𝑎𝑙𝑢𝑒["𝑎"] == 1 && 𝑣𝑎𝑙𝑢𝑒["𝑏"] == 3{ }𝑠𝑡𝑎𝑡𝑒. 𝑠𝑢𝑚 == 4

 The first step of the theorem proving is the analyze the first precondition of the

first Hoare triplet to verify veracity. The precondition is “true” which is vacuously true.

Next, the command building is started. A tree is constructed to store the different Pi-

Calculus expressions. The root node is considered the head, and does not include any

expressions. The head is only a technical requirement, as otherwise the tree may not have

83

a single root (as in this example). No events are included in the Hoare triplet, so no

attention needs to be payed to event handling. The root node has two children, namely

each of the Pi-Calculus expressions that is not gated by an input channel (i.e. the first two

expressions). Neither of these nodes writes to the Variable Table. They both write a

numerical value to their respective channel. The first postcondition is analyzed and

immediately fails, because the channels do not contain the correct data type (a dictionary

containing the values “a” and “b” is expected, but a scalar value is in each of the

channels).

 These two expressions join together with a single child, and send their values to

the same node. Since a Join was employed, both of these nodes are now considered part

of one path for the sake of the backtracking algorithm. This new node outputs a

dictionary, as the postcondition expected. Thus, the first postcondition passes, and the

above notes are marked. No backtracking was needed for this search. The next

precondition is then checked. Since it is identical to the previous postcondition, it also

passes.

 Employing similar reasoning, the next two expressions are evaluated, the

postcondition is evaluated after each one, and the VIPLE expression evaluation algorithm

is employed in conjunction with the Variable Table. After the final Pi-Calculus

expression is evaluated, the postcondition will be true, so all Hoare Logic triplets have

been verified. Thus, this program is marked as correct. Note that since this analysis is

performed according to the reaction rules and other inference rules discussed above, the

reason for errors can be clearly stated to the use. The use of a theorem prover enables

simple explainability as was mentioned in Chapter 1. The final section in this chapter will

84

discuss that application of these rules and concepts to enable the self-learning of the

Hoare Logic triplets.

5.5 Self Learning Hoare Triplets

 With the above inference and reaction rules, the theorem prover can be modified

to not only prove the conditions, but also generate conditions. Returning to the idea of the

dynamically defined command algorithm, the Pi-Calculus expressions can be viewed as a

tree. In order to maximize the correctness of the Hoare Logic triplets, each distinct path

through the tree can be considered as vital to the program’s correctness. Furthermore,

overfitting should be avoided. Thus, a general middle ground approach is taken, where

the defining factors of a program’s behavior are the Variable Table and Join nodes.

 To construct the Hoare triplets, the algorithm starts by searching through the tree

in an identical fashion to the theorem prover. Each time one of those aforementioned

defining conditions is met, a postcondition is defined (and the following precondition).

Events are also handled in an identical fashion, where each event is considered a unique

branch of the tree. As events enable different ordering of the code, the results of an event

path may change depending on ordering of the events. To resolve this issue, the number

of possible paths is permuted in every possible way. The Pi-Calculus expression tree is

analyzed in every ordering of every permutation. The ordering that produces a set

containing every other uniquely met state is considered the testing order. In other words,

that ordering defines the Hoare triplets that will be learned.

85

 Below are several examples demonstrating the automated conversion of a VIPLE

program to Pi-Calculus expressions and the self-learning of the Hoare Logic triplets.

Note that in each case, the learning algorithm provides reasoning for each of the rules that

it learns. In this way, not only the theorem prover but also the self-learning algorithm are

both explainable AI. Figures 5.4, 5.5, and 5.6 are an example of a Merge-based looping

counter. In this example, a counter variable is initialized to 0, incremented, and printed

out. The Merge activity in this example acts as a label would in a standard programming

language, enabling control to return to that point. By employing this Merge followed by

an If, a custom looping structure has been created without using the given While activity.

After the counter reaches 10, the execution no longer returns to the Merge, thereby

ending the loop.

Figure 5.4 Merge Loop Counter

86

Figure 5.5 Merge Loop Counter Pi-Calculus

Figure 5.6 Merge Loop Counter Learned Hoare Triplets

 Figures 5.7 and 5.8 are a While-based looping counter that implements the same

requirements from the previous example. Namely, this While loop program creates a

counter variable and loops until the counter is 10, printing the value each time. Despite

the semantic differences, which are also visible in the Pi-Calculus expressions generated

for this code, the previously created Hoare triplets can effectively verify this program.

This example demonstrates that since the theorem prover analyzes code at a semantic

level, rather than syntactic level, different submissions that meet the requirements will

still be marked as correct. Furthermore, if a submission is tested that skips a specific

value, the theorem prover will detect this issue and explain to the user that the value was

skipped.

87

Figure 5.7 While Loop Counter

Figure 5.8 While Loop Counter Pi-Calculus

 Figures 5.9, 5.10, and 5.11 are a simple dog finite state machine and its Pi-

Calculus and Hoare triplets. This example models the behavior of a dog who may be pet

(p) or may see a squirrel (s). If the dog sees a squirrel, it will bark no matter what state it

is currently in. If the dog is pet while it is barking, it will shake. If it is pet while it is

shaking, it will sit. This simple finite state machine example demonstrates the analysis of

programs containing events. As can be seen from the Hoare triplets generated, the

learning algorithm finds an ordering of events that causes every state to be reached. Note

that since there are only two events, the search depth (i.e. the resulting number from the

88

permutations) is restricted to the default value of two (i.e. the number of events).

However, this search depth can be increased to enable larger, more thorough test cases.

Figure 5.9 Dog Finite State Machine

Figure 5.10 Dog Finite State Machine Pi-Calculus

89

Figure 5.11 Dog Finite State Machine Learned Hoare Triplets

 The layout of the program is changed, as shown in Figures 5.12 and 5.13, to

employ a single If activity and analyze the events together rather than separately. The Pi-

Calculus expressions generated for this program also vary from the previous version.

Despite these changes, note that the behavior is identical to the previous example. As

such, the previously generated Hoare triplets result in the correct verification of this

program.

Figure 5.12 Updated Dog Finite State Machine

90

Figure 5.13 Updated Dog Finite State Machine Pi-Calculus

 Figures 5.14, 5.15, and 5.16 demonstrate the potential of this self-learning

algorithm. The shown code is a right wall following maze navigation algorithm with self-

adjusting code to account for imperfections in physical robots. Despite the complexity of

the code, the algorithm is able to learn a set of simple Hoare triplets that correctly

identify the expected behavior of the program. Note that in all of these examples, the

code used for learning is made as a sort of solution key. This key is assumed to be made

by the instructor and is a bare bones solution to each problem. Furthermore, although this

algorithm provides a set of Hoare triplets, the results can easily be added to or otherwise

modified in order to more precisely define requirements or restrictions for students.

91

Figure 5.14 Self-Adjusting Right Wall Following Algorithm

92

Figure 5.15 Maze Navigation Pi-Calculus

Figure 5.16 Maze Navigation Learned Hoare Triplets

93

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This paper followed the creation of the automated semantic verifier for VIPLE

applications. By leveraging the techniques for developing a standard theorem prover, an

AI-based autograder was created. The application of Pi-Calculus allowed for an initial

definition of VIPLE programs that could be automatically generated. By modifying this

Pi-Calculus representation, the unobservable actions, τ, could be made observable in the

context of a VIPLE program. By instituting the use of the Variable Table, the complete

VIPLE program behavior could be fully modelled.

The application of Hoare Logic enabled the definition of conditions for specifying

the expected behavior of the VIPLE program. These Hoare triplets defined the

precondition, command, and postcondition for the behavior of the program. As the

commands are defined dynamically by the autograder, the conditions are the main focus

of the Hoare triples. Using VIPLE expressions, which have no side effects, the expected

behavior of the VIPLE program can be defined.

By employing the inference rules of Pi-Calculus and Hoare Logic, a conversion

from VIPLE expressions to the modified Pi-Calculus expressions can be performed. By

performing this conversion, the Hoare triplets could be directly employed in the theorem

prover, despite the difference in description languages. Combining the ontology, Hoare

triplet conditions, and inference and reduction rules from both Pi-Calculus and Hoare

Logic, a given VIPLE program could be analyzed semantically. Furthermore, the well-

defined nature of this theorem prover enabled a high degree of explainability, namely the

ability of the AI to explain why a given program passed or failed verification.

94

Building on these concepts, the theorem prover was improved to support self-

learning of conditions. By giving the self-learning program a sample solution, the

required conditions are learned and transcribed as Hoare triplets. Furthermore, this

learning algorithm provides details for each of the generated conditions, explaining why

that condition was chosen. As a result, unexpected behavior in the condition generation

can be directly linked to the given input program.

This self-learning program is the main future work offered by this project. In the

current version, learning is very limited. It inputs a single solution program and outputs a

single set of test cases. Furthermore, the use of events results in the self-learning program

defaulting to permutations of length n, where n is the number of distinct events in the

program. Future work may address both of these problems. The event issue may need a

more detailed analysis of the program to determine the appropriate depth of permutation.

Rather than a single solution, multiple different solutions can be employed. In this way,

the self-learning program will learn more precisely the expected behavior of the VIPLE

programs, rather than overfitting according to a single program. Research can also be

performed to determine if multiple test cases would be beneficial, especially in cases with

event-driven programs where ordering matters. Choosing a different first event, for

example, may result in an irreversible state change that cannot be thoroughly verified

through a single set of Hoare triplets.

Another area of future research is the introduction of support for other

programming languages. The original research is performed on VIPLE which is a visual

workflow language. However, the concepts developed in this work can be applied to

other languages as well. The main components required for support of another

95

programming language are variable introspection, reversible execution (required to

determine the output of a code segment for the backtracking algorithm mentioned above),

and single step execution to support the Pi-Calculus inference rules.

Although the current methodology employs inductive machine learning, future

research could employ deductive machine learning. To this end, verification of the

generated rules would also become a significantly more important research topic. By

combining these research topics together, the generated ruleset could more accurately

represent the expectations of the instructor without requiring a strong knowledge of the

underlying framework.

96

REFERENCES

[1] Doshi-Velez, Finale, and Been Kim. "Towards A Rigorous Science of

Interpretable Machine Learning." (2017). Web.

[2] Barack Obama, “Computer Science for All”, President Obama 2016 State of the

Union Address, January 30, 2016.

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

[3] Yinong Chen, Gennaro De Luca: "VIPLE: Visual IoT/Robotics Programming

Language Environment for Computer Science Education", IPDPS Workshops

2016: 963-971.

[4] MRDS in Wikipedia

https://en.wikipedia.org/wiki/Microsoft_Robotics_Developer_Studio.

[5] How a Columbia University Faculty uses Juypter for Coursework and Lectures

https://www.vocareum.com/2019/02/08/columbia/.

[6] Gennaro De Luca and Yinong Chen, “Visual IoT/Robotics Programming

Language in Pi-Calculus”, 2017 IEEE Thirteenth International Symposium on

Autonomous Decentralized Systems: pp. 23-30, 2017.

[7] Gennaro De Luca and Yinong Chen, “Semantic Analysis of Concurrent

Computing in Decentralized IoT and Robotics Applications,” 2019 IEEE

Fourteenth International Symposium on Autonomous Decentralized Systems,

Utretch, the Netherlands, pp. 95-102, March 2019.

[8] IoT, http://en.wikipedia.org/wiki/Internet_of_Things

[9] Stephan Haller, http://services.future-internet.eu/images/1/16/

A4_Things_Haller.pdf, May 2009.

[10] Yinong Chen, Hualiang Hu, "Internet of Intelligent Things and Robot as a

Service", Simulation Modelling Practice and Theory, Volume 34, May 2013,

Pages 159–171.

[11] Ton Steenman, GM, Intel Intelligent Systems Group: “Accelerating the

Transition to Intelligent Systems”, Intel Embedded Research and Education

Summit, February 2012,

http://embedded.communities.intel.com/servlet/JiveServlet/downloadBody/7148-

102-1-2394/Accelerating-the-Transition-to-Intelligent-Systems.pdf.

[12] Yinong Chen, Zhihui Du, and Marcos Garcia-Acosta, M., "Robot as a Service in

Cloud Computing", In Proceedings of the Fifth IEEE International Symposium on

Service Oriented System Engineering (SOSE), Nanjing, June 4-5, 2010, pp.151-

158.

[13] Yinong Chen, W.T. Tsai, Service-Oriented Computing and Web Software

Integration, 5th Edition, Kendall Hunt Publishing, 2015.

97

[14] Kinji Mori, “Autonomous Decentralized System and Its Strategic Approach for

Research and Development”, Invited Paper, Special Issue on Autonomous

Decentralized Systems Theories and Application Deployments, IEICE

Transactions on Information and Systems, Vol.E-91-D, No.9, pp.2227-2232, Sept.

2008.

[15] Autonomous Decentralized Systems (ads):

https://en.wikipedia.org/wiki/Autonomous_decentralized_system

[16] App Inventor, http://ai2.appinventor.mit.edu/

[17] Alice, http://www.alice.org/

[18] Microsoft Robotics Developer Studio, https://msdn.microsoft.com/en-

us/library/bb648760.aspx

[19] ASU eRobotics programming environment,

http://venus.eas.asu.edu/WSRepository/erobotic/

[20] Yinong Chen and Zhizheng Zhou, “Robot as a Service in Computing

Curriculum”, the 12th International Symposium on Autonomous Decentralized

Systems, Taichung, March 2015, pp. 156-161.

[21] Aceto, L., Larsen, K., & Ingolfsdottir, A. An Introduction to Milner's CCS [PDF

document]. Retrieved from

http://people.cs.ksu.edu/~schmidt/705a/Lectures/intro2ccs.pdf. Web.

[22] Milner, R. Communicating and Mobile Systems: The π-calculus. Cambridge:

Cambridge UP, 1999. Print.

[23] Puhlmann, F., & Weske, M. Using the π-calculus for Formalizing Workflow

Patterns [PDF document]. Retrieved from https://bpt.hpi.uni-

potsdam.de/pub/Public/FrankPuhlmann/bpm2005-pic.pdf

[24] Yinong Chen, Service-Oriented Computing and System Integration: Software,

IoT, Big Data, and AI as Services, 6th edition, Kendall Hunt Publishing, 2018.

[25] Mike Gordon, “Background reading on Hoare Logic”, 2016. Retrieved from

https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf

[26] The Halting Problem: https://en.wikipedia.org/wiki/Halting_problem

[27] CBS News, “ASU students build robotic seeing-eye dog”, retrived on Feburary

14, 2019, from the site: http://www.azfamily.com/story/38904179/asu-students-

build-robotic-seeing-eye-dog?autostart=true

[28] Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach.

3rd ed., Pearson, 2009.

[29] Hoare, C.A.R., “An axiomatic basis for computer programming”,

Communications of the ACM, 12, pp. 576-583, October 1969.

98

APPENDIX A

PERMISSION TO USE CO-AUTHORED PAPERS

99

Chapters 3 and 4 employ previously published papers that were co-authored with

Dr. Yinong Chen. I am the first author of these papers. He has given me permission to

use these articles within this dissertation.

