
Proactive Identification of Cybersecurity Threats Using Online Sources

by

Mohammed Almukaynizi

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2019 by the
Graduate Supervisory Committee:

Paulo Shakarian, Chair
Dijiang Huang

Ross Maciejewski
Gerardo I. Simari

ARIZONA STATE UNIVERSITY

December 2019

ABSTRACT

Many existing applications of machine learning (ML) to cybersecurity are focused

on detecting malicious activity already present in an enterprise. However, recent high-

profile cyberattacks proved that certain threats could have been avoided. The speed of

contemporary attacks along with the high costs of remediation incentivizes avoidance

over response. Yet, avoidance implies the ability to predict—a notoriously difficult

task due to high rates of false positives, difficulty in finding data that is indicative of

future events, and the unexplainable results from machine learning algorithms.

In this dissertation, these challenges are addressed by presenting three artificial

intelligence (AI) approaches to support prioritizing defense measures. The first two

approaches leverage ML on cyberthreat intelligence data to predict if exploits are

going to be used in the wild. The first work focuses on what data feeds are gen-

erated after vulnerability disclosures. The developed ML models outperform the

current industry-standard method with F1 score more than doubled. Then, an ap-

proach to derive features about who generated the said data feeds is developed. The

addition of these features increase recall by over 19% while maintaining precision. Fi-

nally, frequent itemset mining is combined with a variant of a probabilistic temporal

logic framework to predict when attacks are likely to occur. In this approach, rules

correlating malicious activity in the hacking community platforms with real-world

cyberattacks are mined. They are then used in a deductive reasoning approach to

generate predictions. The developed approach predicted unseen real-world attacks

with an average increase in the value of F1 score by over 45%, compared to a baseline

approach.

i

To my son, Fahd

ii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Dr. Paulo

Shakarian for his experienced guidance, tremendous assistance, and continuous en-

couragement throughout this journey; without which, this dissertation would not have

been possible. I am extremely grateful to my committee members, Dr. Huang, Dr.

Maciejewski, and Dr. Simari for their insightful comments and constructive feedback,

which helped better improve my dissertation. Special thanks go to Dr. Simari for the

fruitful scientific collaboration during the last year.

I have also had the pleasure of collaborating with multiple researchers during my

Ph.D. I would like to thank Jana Shakarian, Dr. Kristina Lerman, Nazgol Tavabi,

Palash Goyal, Malay Shah, Malav Shah, Krishna Dharaiya, Manoj Senguttuvan,

Alexander Grimm, Dipsy Kapoor, and Timothy Siedlecki. Thank you to my col-

leagues in the Cyber-Socio Intelligent Systems (CySIS) Lab at ASU—Dr. Eric Nunes,

Dr. Elham Shabani, Vivin Paliath, Soumajyoti Sarkar, Ericsson Marin, Hamidreza

Alvari, Abhinav Bhatnagar, Ashkan Aleali, and Ruocheng Guo—for productive dis-

cussions and for enabling such enjoyable environment.

Most of all, my deepest thanks go to every member of my lovely family for being

the enduring source of inspiration for me to pursue my Ph.D. Words cannot express my

gratitude to my parents, Basil and Suaad, for showering me with love, and putting me

through the best education possible. I would not have gotten through this doctorate

if it was not for them. My lovely wife, Sumayyah, has made incredible sacrifices over

the years of this journey. Without her immense support and understanding, I would

not have made it this far.

Finally, this dissertation would not have been possible without funding from King

Saud University (Riyadh, Saudi Arabia), and the Office of Naval Research, grant

N00014-15-1-2742 and NEPTUNE program. I would also like to thank Cyber Re-

iii

connaissance, Inc. (CYR3CON) for supplying the cyberthreat intelligence data. Any

opinions, findings, and conclusions or recommendations expressed in this dissertation

are those of the author and do not necessarily reflect the views of the funding agencies.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES. ix

CHAPTER

1 INTRODUCTION . 1

2 PROACTIVE IDENTIFICATION OF EXPLOITS IN THE WILD THROUGH

VULNERABILITY MENTIONS ONLINE . 6

2.1 Introduction . 6

2.2 Related Work . 11

2.3 Background . 13

2.3.1 Supervised Learning Approaches . 13

2.3.2 Challenges . 14

2.4 Exploit Prediction Model . 17

2.4.1 Data Sources . 18

2.4.2 Feature Description . 22

2.5 Vulnerability and Exploit Analysis . 24

2.6 Experimental Setup . 30

2.6.1 Performance Evaluation . 32

2.6.2 Results . 33

2.7 Adversarial Data Manipulation . 41

2.8 Discussion . 45

2.9 Conclusion . 47

3 COMBINING SOCIAL NETWORK ANALYSIS WITH ML TECHNIQUES

TO PREDICT EXPLOITS IN THE WILD . 49

3.1 Introduction . 49

v

CHAPTER Page

3.2 Approach . 50

3.2.1 Data Collection . 50

3.2.2 Feature Description . 53

3.2.3 Classifier Training and Prediction . 55

3.3 Hacker Social Network . 55

3.3.1 Social Graph . 55

3.3.2 Social Network Measures . 56

3.4 Social Network Analysis . 58

3.5 Experimental Setup . 60

3.5.1 Performance Evaluation . 62

3.5.2 Results . 62

3.6 Discussion . 63

3.7 Related Work . 65

3.7.1 Vulnerability Exploitation Prediction . 65

3.7.2 Social Network Analysis . 66

3.8 Conclusion . 67

4 A RULE LEARNING-BASED APPROACH TO PREDICT ORGANIZATION-

TARGETED EXTERNAL THREATS . 68

4.1 Introduction . 68

4.2 Related Work . 71

4.3 Preliminaries . 73

4.3.1 Syntax . 73

4.3.2 Semantics . 75

4.4 Dataset Description . 77

vi

CHAPTER Page

4.4.1 D2web Crawling Infrastructure . 78

4.4.2 Enterprise-Relevant External Threats. 78

4.5 Extracting Indicators of Cyberthreat . 79

4.6 A Novel Logic Programming-Based Cyberthreat Prediction System. 80

4.6.1 Learner . 81

4.6.2 Predictor . 81

4.7 Predicting Enterprise-Targeted Attacks . 83

4.7.1 Experimental Settings . 83

4.7.2 Evaluation . 84

4.7.3 Results . 84

4.8 Technical Challenges . 87

4.9 An Extension to the Current Approach . 88

4.9.1 Extracting Entity Tags . 88

4.9.2 Results . 90

4.10 Conclusion . 92

5 CONCLUSION AND FUTURE WORK . 95

5.1 Conclusion . 95

5.2 Future Work . 96

REFERENCES . 100

vii

LIST OF TABLES

Table Page

2.1 Number of Vulnerabilities (2015–2016). 19

2.2 Summary of Features. 22

2.3 Number of Vulnerabilities, Number of Exploited Vulnerabilities, Per-

centage of Exploited Vulnerabilities That Appeared in Each Source,

and Percentage of Total Vulnerabilities That Appeared in Each Source. 25

2.4 Evaluation Metrics. TP: True Positives, FP: False Positives, FN: False

Negatives, and TN: True Negative. 33

2.5 Precision, Recall, F1 Measure for RF, SVM, LOG-REG, DT and NB

to Predict Whether a Vulnerability Will Likely Be Exploited. 34

2.6 Precision Comparison between [1] and the Proposed Model While Main-

taining Recall. 36

2.7 Precision, Recall, F1 Measure for Vulnerabilities Mentioned on D2web,

ZDI, and EDB. 39

2.8 Performance Improvement Attained by Applying SMOTE for the BN

Classifier Using Different Oversampling for the Exploited Samples. 40

3.1 Summary of Features. 53

3.2 Statistics for the Graph G With All Users With at Least One Edge (an

In-Edge or an Out-Edge), the Subset of Users That Have Discussed

Vulnerabilities vulUsers, Subgraph (Gvulns(vulUsers, vulEdges)), and

Subgraph (GvulNei(vulNeis, vulNeiEdges)). 59

4.1 Evaluation Results. 86

4.2 Examples of Preconditions of Rules That Would Have Generated Warn-

ings Preceding Attack Incidents. 92

viii

LIST OF FIGURES

Figure Page

2.1 Exploit Prediction Model. 17

2.2 Vulnerabilities Disclosed per Month. 19

2.3 Day Difference Between CVE First Published in the NVD and the

Symantec Attack Signature Date vs. the Fraction of Exploited CVEs

on the NVD Reported (Cumulative). 26

2.4 Day Difference Between the Date of Availability of PoC on EDB and

the Symantec Attack Signature Date vs. the Fraction of Exploited

CVEs With PoCs on EDB Reported (Cumulative). 27

2.5 Day Difference Between CVE First Mentioned in D2web and Symantec

Attack Signature Date vs. the Fraction of Exploited CVEs on D2web

Reported (Cumulative).. 28

2.6 Most Exploited Vendors/Systems in Each Data Source. 29

2.7 Number of Exploited Vulnerabilities Mentioned by Each Language (Left),

and the Number of Vulnerabilities Mentions in Each Language (Right). 30

2.8 Precision-Recall Curve for Proposed Features of Microsoft-Adobe Vul-

nerabilities (RF). 35

2.9 Precision and Recall for Classification Based on CVSS Base Score Ver-

sion 2.0 Threshold. 36

2.10 Precision-Recall Curve for Classification Based on CVSS Score Thresh-

old (RF). 37

2.11 ROC Curve for Classification Based on Random Forest Classifier.. 38

2.12 ROC Curves for Adversary Adding Noise to Both the Training and the

Testing Data. 42

2.13 ROC Curves for Adversary Adding Noise to Only the Testing Data. . . . 43

ix

Figure Page

2.14 ROC Curves for Adversary Adding Noise to Both the Training and the

Testing Data. 44

2.15 ROC Curves for Adversary Only Adding Noise to the Testing Data. . . . 44

3.1 An Overview of the Predictive Model. 51

3.2 Vulnerabilities Reported per Year From NVD (per Disclosure Year),

D2web (per Disclosure Year), and Symantec (per Exploitation Year). . . 51

3.3 Degree Distribution—a Scale-Free Network With an Exponent γ of 1.07. 56

3.4 The Subgraph of G That Is Induced by the Set of Users Who Have

Mentioned Vulnerabilities in Their Postings. 61

3.5 The Classification Performance Achieved by Applying Ablation Test

With 5-Fold Cross-Validation. 64

3.6 The Classification Performance Achieved by Individual Feature Sets. . . 64

4.1 Logic Programming-Based Cyberthreat Prediction System. 80

4.2 Percentage Increase in Attack Likelihood Over Attack Prior Probabil-

ity for the Learned Rules, per ∆t per Event Type, and for the Two

Companies (a) Armstrong, and (B) Dexter. 82

4.3 Two Screenshots From a Deployed System That Uses Our Approach. . . 82

4.4 Precision-Recall Curves for the Fused Approach, Our Approach, and

the Baseline Model, Respectively for Four Months: July, August, Septem-

ber, and October.. 91

4.5 A Word Cloud Generated From the Text of Postings that Resulted in

a Positive Warning on August 23. 93

x

Chapter 1

INTRODUCTION

Proactive identification of cyberattacks is critical for prioritizing the process of

deploying security measures and allocating resources. Being proactive requires the

ability to predict if and when cyberattacks will likely occur. To do so, two envi-

ronments need to be taken into consideration: the defender’s environment and the

attacker’s environment. In practice, the dominant viewpoint of cyber-defense solely

focuses on the defender’s environment. For example, consider the current tools and

systems used for quantifying, monitoring, and managing cyber-risk. On the one hand,

most tools and systems for quantifying cyber-risk only consider technical character-

istics of the defender’s networked assets and their vulnerabilities, such as the number

of public-facing hosts, the number of vulnerable software products they run, and the

ease of exploiting these software vulnerabilities. These tools use a wide range of data

sources, such as security advisory databases, software vendor websites, penetration

testing tools, and vulnerability databases. On the other hand, most tools and systems

for cyber-defense focus on detecting abnormalities already present in the defender’s

systems and networks, such as intrusion detection and spam filtering. This viewpoint

to cybersecurity has a main shortcoming: the lack of a holistic consideration of the

attacker’s activity, a key aspect to proactively identify if and when cyber-attacks will

occur. Fortunately in the recent few years, significant interest has grown towards

tools, systems, and analyses for understanding and monitoring the hacker activity us-

ing cyberthreat intelligence gathered from the hacking community online platforms.

This trend arose as a response to the growing broad realization of the importance of

the attacker’s role.

1

In addition to organizations, cybersecurity has lately become a common concern

to public individuals. Part of that is due to the large-scale, highly-destructive cyber-

security incidents that took place in the past few years. For example, the NotPetya

ransomware, first identified in June 2017, exploits a vulnerability in various Microsoft

operating systems (CVE-2017-0144),1 and it is believed to have resulted in an over

$10 billion total loss in damage [2]. Also, the Equifax data breach, due to an exploit

to an Apache Struts vulnerability (CVE-2017-5638),2 in August 2017, affected over

140 million customers with a direct cost of at least $575 million [3]. The commonality

across these incidents is the use of exploits to known software vulnerabilities that had

patches released by the software vendors a long time before attacks are observed.

These attacks would have been avoided if the victims had installed the patches early

enough. Yet, deploying all patches as they become available is impossible due to the

increasing number of patches that are released every day and the high cost of deploy-

ing patches (e.g., some hosts need to be taken offline to install patches). Therefore,

prombtly patching vulnerabilities that are at high risk of being exploited could not

be easy without the ability to predict if and when exploits will be circulated in the

wild.

Within the research community, most data-driven studies leveraging machine

learning (ML), and artificial intelligence (AI) in general, for cybersecurity applications

are primarily focused on developing mechanisms to improve the detection of malicious

behavior (e.g., network intrusion detection [4, 5, 6], malware detection [7, 8, 9], phish-

ing attack detection [10, 11], botnet detection [12, 13]). Although these studies signif-

icantly improved the performance of traditional signature-based tools of cyberthreat

detection, they only detect abnormalities that already exist at the systems being de-

1https://nvd.nist.gov/vuln/detail/CVE-2017-0144

2https://nvd.nist.gov/vuln/detail/CVE-2017-5638

2

fended. Other studies developed mechanisms analyzing human behavior, including

hacker engagement, to support a better understanding of the cybersecurity landscape

(e.g., cyber forensics, deception, and attribution [14, 15], analysis of cybercrime on

darkweb3 and deepweb4 sites (D2web) [16, 17, 18, 19], and understanding the impact

of adversarial ML [20, 21]). However, these studies do not predict cyberthreats.

The literature that is most related to this dissertation is the work on predicting

cyberthreats (e.g., predictive domain and IP blacklisting [22, 23, 24, 25], predicting

enterprise-targeted outsider attacks [26, 27, 28], and predicting exploits in the wild [29,

1, 30, 31, 32]). Predicting cyberthreat is a notoriously difficult task due to high rates

of false positives, difficulty in finding data that is indicative of future events, and

the unexplainable results from machine learning algorithms. For example, Soska and

Christin [22] developed a ML-based approach that predicts whether a given website

will turn malicious in the future using features such as webpage structure, content,

and traffic statistics. The approach achieved a true positive rate of 66% and a false

positive rate of 17%, making its utility questionable. Moreover, Bullough et al. [30]

discussed the current methods that use social media (e.g., Twitter5) to predict exploits

in the wild. Due to the poor performance, the authors noted that such methods would

not be useful in practice for patch prioritization.

The central objective of this dissertation is to proactively identify cyberthreats

that are likely to be leveraged by malicious hackers—in particular, we want to identify

if and when attacks are likely to occur in the future. The developed approaches are

designed to support prioritizing the daily cyber-defense tasks. In all parts of this

3“Darkweb” refers to the anonymous communications offered by encrypted networks, such as
“Tor”.

4“Deepweb” refers to Internet websites that are not indexed and have restricted access, such as
“invite-only” Web forums.

5https://twitter.com

3

dissertation, we empirically show the utility of the developed approaches by using

real-world hacker and security incident data. This dissertation is organized as follows:

• Chapter 2: Proactive identification of exploits in the wild through

vulnerability mentions online. This chapter focuses on (1) discovering the

current sources of threat intelligence that are indicative of future availability

of exploits in the wild (a key principle to reducing false positives), (2) demon-

strating the viability of the proposed models under deployment settings, and (3)

providing empirical analysis about the likelihood of exploitation for vulnerabili-

ties when they are mentioned on each data source, considering the availability of

such information relative to the time an exploit is found in the wild. Our results

outperform the best performance achieved by the widely-used standard severity

scoring system (a.k.a., CVSS6), with F1 score more than doubled, demonstrat-

ing the viability of our approach for practical use.

• Chapter 3: Combining social network analysis with ML techniques

to predict exploits in the wild. This part focuses on (1) introducing an

approach that uses the users’ post/reply activities to generate a directed social

graph, (2) demonstrating the value of the approach in supporting predictive

features to ML models, and (3) providing observations from the connectivity

measures of the individuals who authored postings preceding exploits in the

wild. We specifically demonstrate that social network data improves the value

of F1 score by about 6% compared to the highest F1 score achieved by a model

that does not use these features.

• Chapter 4: A rule learning-based approach to predict organization-

targeted external threats. In this chapter, we develop an approach that

6https://www.first.org/cvss

4

combines ML with knowledge representation and reasoning to learn rules with

indicators of certain future cyberthreats, such as spam email campaigns. The

rules are then used in a detective approach to generate actionable warnings.

This approach was integrated into an intelligent system that submits warnings

to security operations centers [28]. Our key goal is to use reasoning to generate

improved, timely, transparent, and actionable predictions that are understand-

able by a human analyst. Two datasets are used in this work: (a) a dataset

of historical records of attack attempts that were recorded and noted from the

network traffic logs of a defense-industrial-base organization, and (b) an online

access to a commercially-available streaming API supplying data about D2web

activity. Our approach produced predictions with improved performance com-

pared to statistical baseline predictive models.

• Chapter 5: Conclusion and future work. This chapter provides a summary

of the main ideas and results presented in this dissertation. It concludes with

some future directions to extend the work developed in this dissertation.

5

Chapter 2

PROACTIVE IDENTIFICATION OF EXPLOITS IN THE WILD THROUGH

VULNERABILITY MENTIONS ONLINE

2.1 Introduction

Software vulnerabilities are weaknesses in software products that can be exploited

by attackers to compromise the confidentiality, integrity, or availability of the sys-

tem hosting these products and cause harm [33]. An exploit is a piece of code or a

chunk of data that modifies the functionality of a system using an existing vulnerabil-

ity [34]. Today, vulnerability exploitation is perhaps the most common method used

by hackers to compromise these three objectives of cybersecurity. Defending against

vulnerability exploitation is a difficult task that is widely-recognized by cybersecu-

rity researchers and practitioners [35, 31, 1]. Part of this comes from the difficulty

in keeping pace with the ever-increasing number of vulnerabilities that are publicly

disclosed. Moreover, malicious actors continue to smartly target a smaller fraction

of published vulnerabilities. Therefore, identifying if a vulnerability will likely be

exploited by hackers is key for a holistic security defense.

The National Institute of Standards and Technology (NIST)1 maintains a compre-

hensive list of publicly disclosed vulnerabilities in the National Vulnerability Database

(NVD).2 The NVD also provides information regarding targeted software products

(CPE),3 Common Vulnerability Scoring System (CVSS)4 that evaluates the vulnera-

1https://www.nist.gov

2https://nvd.nist.gov

3https://nvd.nist.gov/cpe.cfm

4https://nvd.nist.gov/vuln-metrics/cvss

6

bilities in terms of exploitability and impact, and the date a vulnerability was pub-

lished. In 2018 alone, more than 16,500 vulnerabilities have been disclosed in the

NVD, an increase of over 13% from 2017, and of over 150% from 2016.

Once vulnerabilities are publicly disclosed, the likelihood of their exploitation

raises drastically [36]. With limited resources, organizations often look to prioritize

which vulnerabilities to patch. They do so by assessing the impact on their assists

and reputation if vulnerabilities are exploited. In this chapter, the exploits that

have been used to target systems in real-world attacks are referred to as real-world

exploits. On the other hand, a proof-of-concept exploit (PoC) is typically developed

to verify a reported software flaw in order to reserve a CVE number or illustrate how

a vulnerability can be exploited. PoCs generally require additional functionalities to

be weaponized and be useful by malicious hackers. While the presence of a PoC is a

leverage for hackers, it does not necessarily imply exploitation in real-world attacks.

To be on the safe side, standard risk assessment systems such as the CVSS score,

Microsoft Exploitability Index,5 and Adobe Priority Rating6 report many vulnerabil-

ities to be severe. The foregoing systems are broadly viewed as guidelines to supply

vulnerability management teams with tools that help in patch prioritization. One

commonality across those systems is that they rank vulnerabilities based on histor-

ical attack patterns that are relevant to the technical details of vulnerabilities that

are evaluated, rather than what malicious hackers discuss and circulate in the under-

ground forums and marketplaces. This does little to alleviate the problem since the

great majority of the highly-rated vulnerabilities will never be attacked [35].

In practice, current methods of patch prioritization appear to fall short [37, 35].

Verizon reported that over 99% of breaches are caused by exploits to known vul-

5https://technet.microsoft.com/en-us/security/cc998259.aspx

6https://helpx.adobe.com/security/severity-ratings.html

7

nerabilities [37]. Cisco also reported that “the gap between the availability and the

actual implementation of such patches is giving attackers an opportunity to launch

exploits,” [38]. For some vulnerabilities, the time window to patch the system is very

small. For instance, exploits targeting the Heartbleed7 bug in the OpenSSL8 crypto-

graphic software library were detected in the wild 21 hours after the vulnerability was

publicly disclosed [39]. Hence, organizations need to efficiently assess the likelihood

that a vulnerability is going to be exploited in the wild, while keeping the false alarm

rate low.

Only a small fraction (less than 3%) of vulnerabilities disclosed in the NVD are

exploited in the wild [32, 40, 35, 41, 1, 42]—a result confirmed in this chapter. In

addition, previous studies have found that the CVSS score provided by NIST is not

an effective predictor of exploitation [35, 1, 31]. It has previously been proposed that

other methods such as the use of social media [43, 1], darkweb markets [16, 44, 45], and

certain white hat9 websites like Contagio,10 would be suitable alternatives. However,

these approaches have their limitations. For instance, methodological concerns on

the use of social media for exploit prediction were recently raised in [30]; and data

feeds for exploit and malware were limited to single sites and were only used for

analysis to provide insights on economic factors of those sites [44, 45]. While other

studies demonstrate the viability of data collection, they do not quantify the results

of prediction [16, 43].

After reviewing the literature, including studies on data gathered from darkweb

and deepweb (D2web) [46, 47, 35, 16, 48], conducting analyses on data feeds collected

7http://heartbleed.com

8https://www.openssl.org

9White hat, or white-hat, is an Internet term that is often used to refer to ethical hackers and
penetration testers.

10http://contagiodump.blogspot.com

8

from various online sources (e.g., SecurityFocus11 and Talos12), and after over one

hundred interviews with professionals working for managed security service providers

(MSSPs),13 firms specializing in cyber-risk assessment, and security specialists work-

ing for managed (IT) service providers (MSPs), three data sources have been identified

that can represent the current threat intelligence used for vulnerability prioritization:

(1) ExploitDB (EDB),14 contains information on PoC exploits for vulnerabilities pro-

vided by security researchers from various blogs and security reports; (2) Zero Day

Initiative (ZDI),15 is curated by a commercial firm called TippingPoint and uses a

variety of reported sources focusing on disclosures by various software vendors and

their security researchers; and (3) a collection of information scraped from over 120

sites on the D2web from a system introduced in [18, 49] and currently maintained by

the cybersecurity firm CYR3CON.16 The intuition behind each of these feeds was not

only to utilize information that was aggregated over numerous related sources, but

also to represent feeds commonly used by cybersecurity professionals.

This chapter focuses on vulnerabilities that have been publicly disclosed in 2015

or 2016. The presented models employ supervised machine learning techniques using

Symantec17 attack signatures as ground truth. Specifically, in this chapter,

11http://www.securityfocus.com

12https://www.talosintelligence.com/vulnerability_reports

13An MSSP is a service provider that provides its clients with tools that continuously monitor
and manage wide range of cybersecurity-related activities and operations, which may include threat
inelegance, virus and spam blocking, and vulnerability and risk assessment.

14https://www.exploit-db.com

15http://www.zerodayinitiative.com

16https://www.cyr3con.com

17https://www.symantec.com

9

• The utility of the proposed machine learning models in predicting exploits in the

wild is demonstrated with true positive rate (TPR)18 of 90% while maintaining a

false positive rate (FPR)19 of less than 15%. In addition, the proposed model is

compared to a recent benchmark model that utilized online mentions for exploit

prediction [1]. The proposed model achieves a significantly higher precision

while maintaining recall. The robustness of the presented model against various

adversarial data manipulation strategies is also discussed.

• Using vulnerability mentions on EDB, ZDI, and D2web, the increase in the vul-

nerability exploitation likelihood over vulnerabilities only disclosed on the NVD

is studied. We provide results demonstrating that the likelihood of exploitation

given vulnerability mention on EDB (9%), ZDI (12%) and D2web (14%) as

compared to the NVD (2.4%). The availability of such information relative to

the time an exploit is found in the wild is also studied.

• Exploited vulnerabilities are analyzed based on various other features derived

from these data sources, such as the language used. Apparently, Russian lan-

guage sites on the D2web discussing vulnerabilities are 19 times more likely to

be exploited than random vulnerabilities, more likely than vulnerabilities de-

scribed on websites in any of the other languages. Additionally, the probability

of exploitation is investigated in terms of both data source and software vendor.

The rest of the chapter is organized as follows. Related work is discussed in

Section 2.2. Section 2.3 outlines some challenges related to the problem addressed

in this chapter. Section 2.4 provides an overview of the presented exploit prediction

18A metric that measures the proportion of exploited vulnerabilities that are correctly predicted
from all exploited vulnerabilities.

19A metric that measures the proportion of non-exploited vulnerabilities that are incorrectly pre-
dicted as being exploited from the total number of all non-exploited vulnerabilities.

10

model and describes the data sources used. Vulnerability analysis is discussed in

Section 2.5. In Section 2.6, experimental results are provided for predicting the

likelihood of vulnerability exploitation. The robustness of the presented machine

learning model against adversarial data manipulation is demonstrated in Section 2.7.

A discussion on the viability of the proposed model and the cost of misclassification

is provided in Section 2.8.

2.2 Related Work

Predicting cybersecurity events is one of those domains that have recently received

a growing attention [50, 22, 51, 52, 40]. While important for prioritizing defense mea-

sures, only little work in this line of research has been proposed so far compared

to work proposed on detecting cyberthreats that are already present in an organiza-

tion’s network. Previous studies have attempted to address this problem using both

standard scoring systems (in particular, the CVSS base score) and machine learning

techniques. An approach to predict the likelihood that a software contains a yet-

to-be-discovered vulnerability was proposed in [53]. In this study, data feeds from

the NVD were leveraged to predict the time a next vulnerability will be discovered

in a given software product. The results showed a poor predictive capability of the

NVD data. The CVSS version 2.0 is a poor indicator of predicting whether a vul-

nerability will be exploited, as demonstrated by [35]. The authors’ analysis showed

that deciding to patch a vulnerability because of a high CVSS score is equivalent to

randomly guessing which vulnerability to patch. Yet, integrating information about

whether a PoC exploit is available should significantly improve the accuracy of such

a decision [35].

Our approach closely resembles previous work on using publicly disclosed vulner-

ability information as features to train machine learning models to predict whether a

11

given vulnerability will be exploited. Bozorgi et. al. [52] proposed a model that engi-

neered features from two online sources, namely Open Source Vulnerability Database

(OSVDB)20 and the NVD to predict whether PoCs will be developed for a particular

vulnerability. In their data, 73% of the vulnerabilities are labeled as exploited, a per-

centage that are orders of magnitude higher than what is reported in recent literature

(less than 3%) [40, 35, 41, 1]—a result confirmed in this chapter. The reason behind

this is that the authors considered the existence of PoC as weaponized exploitation,

which is incorrect for most cases. Using this assumption, and using a support vec-

tor machine classifier, their approach predicts whether vulnerabilities will have PoCs

available, a problem that is different from the one studied in this chapter. A simi-

lar technique was employed by [40] using the NVD as the data source. They used

Exploit-DB as ground truth, with 27% vulnerabilities labeled as exploited (having

PoC exploits). High accuracy was achieved on a balanced dataset. Our analysis aims

to predict vulnerabilities that will be weaponized for real-world attacks and not just

have PoC exploits available.

Building on the work on using publicly disclosed vulnerabilities, Sabottle et al. [1]

looked into predicting exploitation of vulnerabilities discussed on Twitter.21 In that

study, Twitter short posts, called tweets,22 that had references to CVE numbers were

collected. A linear SVM classifier is trained for prediction. As the source of ground

truth data, Symantec attack signatures are used to label positive samples. Comparing

to previous predictive studies, even though the authors of [1] maintained the class

ratio of 1.3% vulnerabilities exploited, they used a resampled and balanced dataset

to report the results. Additionally, the temporal aspect (training data should precede

20https://blog.osvdb.org

21https://twitter.com

22In Twitter platform, a post is called a tweet, and each tweet is limited to 280 characters.

12

testing) of the tweets is not maintained while performing the experiments. This

temporal intermixing causes future events to influence the prediction of past events,

a practice that is shown to lead to unrealistic predictions [30]. In this chapter, the

class imbalance and the temporal aspect are respected while reporting the results.

Particularly for the cybersecurity incident prediction problem, the impact of ad-

versarial interference for hackers aiming to poison and evade the machine learning

models has been discussed. Hao et al. [54] proposed a prediction model to predict

the web domain abuse based on features derived from the behavior of users at the

time of registration. They study different evading strategies an attacker can use and

demonstrate that evading attempts are expensive to attackers, and their model’s re-

liance on different sets of features allows for limiting the decrease in false positive

rate. Other researchers have also discussed the robustness of their models against

adversarial attacks such as [50, 1]. In this chapter, we run simulation experiments

and demonstrate that the impact is very limited, as discussed in Section 2.7.

2.3 Background

2.3.1 Supervised Learning Approaches

A brief explanation of the machine learning approaches that are used in this study

is provided below:

Support Vector Machine (SVM). Support vector machine (SVM) was proposed

by Vapnik [55]. SVM works by finding a separating margin that maximizes the

geometric distance between classes (in our case exploited and not exploited). The

separating margin is termed as hyperplane. When a separating plane cannot be found

to distinguish between the two classes, the SVM cost function includes a regularization

13

penalty and a slack variable for the misclassified samples. Varying these parameters,

trade-off between precision and recall can be observed.

Näıve Bayes Classifier (NB). Näıve Bayes is a probabilistic classifier, which uses

Bayes theorem with independent attribute assumption. During training, we compute

the conditional probabilities of a sample of a given class having a certain attribute.

We also compute the prior probabilities for each class, i.e., fraction of the training

data belonging to each class. Näıve Bayes assumes that the attributes are statisti-

cally independent; therefore the likelihood for a sample S represented with a set of

attributes a associated with a class c is given as Pr(c∣S) = P (c) ×∏d
i=1 Pr(ai∣c).

Bayesian Network (BN). BN is a generalized form of NB such that not all features

are assumed to be independent. Instead, variable dependencies are modeled in a graph

learned from the training data.

Decision Tree (DT). Decision tree is a hierarchical recursive partitioning algorithm.

We build the decision tree by finding the best split attribute, i.e., the attribute that

maximizes the information gain at each split of a node. To avoid overfitting, the

terminating criteria is set to less than 5% of the total samples.

Logistic Regression (LOG-REG). Logistic regression classifies samples by com-

puting the odds ratio. The odds ratio gives the strength of the association between

the attributes and the class.

2.3.2 Challenges

Previous work has pointed out methodological issues with exploit prediction stud-

ies [30]. We also note that there is a balance between ensuring an evaluation is

conducted under real-world conditions and conducting an evaluation on an adequate

sample size. Some of those challenges are reviewed below.

14

Class imbalance. As mentioned earlier, evidence of real-world exploits is found for

only around 2.4% of the reported vulnerabilities. This skews the distribution towards

one class in the prediction problem (i.e., not exploited). In such cases, standard ma-

chine learning approaches favor the majority class, leading to poor performance on

the minority class. Some of the prior work in predicting the likelihood of exploitation

considered the existence of PoCs as an indicator of real-world exploit weaponization,

which substantially increases the number of exploited vulnerabilities in the studies

adopting this assumption [52, 40, 30]. However, out of the PoC exploits that are

identified, only a small fraction are ever used in real-world attacks [41]—a result con-

firmed in this chapter (e.g., only about 4.5% of the vulnerabilities having PoCs were

subsequently exploited in the wild.) Other prior work used class balancing techniques

on both training and testing datasets and reported performance achieved using met-

rics like TPR, FPR, and accuracy [22, 50].23 Resampling the data to balance both

classes in the dataset leads to training the classifier on a data distribution that is

highly different from the underlying distribution. The impact of this manipulation,

whether positive or negative, cannot be observed when testing the same classifier on

a manipulated dataset, e.g., a testing set with the same rebalancing ratio. Hence,

the prediction performance of the proposed models in deployed, real-world settings is

questionable. In this chapter, oversampling techniques (in particular SMOTE [56])

are examined to confirm the impact of highly imbalanced dataset used on the machine

learning models. Note that the testing dataset is not manipulated because we aim

to observe a performance that can be reproduced under the settings of a model run-

ning on real-world deployment (e.g., streaming predictions). Doing so, only marginal

improvement is observed for some classifiers as reported in Section 2.6.2, while other

23Note that these metrics are sensitive to the underlying class distribution and sensitive to the
ratio of class rebalancing

15

classifiers have shown a slightly negative impact when they are trained on oversampled

dataset.

Evaluating models on temporal data. Machine learning models are evaluated

by training the model on one set of data and then testing the model on another

set that is assumed to be drawn from the same distribution. The data split can

be done randomly or in a stratified manner, where the class ratio is maintained in

both training and testing. A key aspect of the exploit prediction task is that it is

time-dependent [32, 30]. Randomly splitting data violates this aspect because events

that happen in the future would be used to predict events that happened in the past.

Prior research has ignored this aspect while designing their experiments [1, 52]. In this

work, this temporal mixing is avoided in most experiments. However, experiments

with a very small sample size, in which this is not controlled, are included (this is

because one of the used ground truth sources does not have date/time information).

It is explicitly noted when this is the case.

Limitations of ground truth. As mentioned, attack signatures reported by Syman-

tec are used as the ground truth of the exploited vulnerabilities, similar to previous

work [1, 35]. This ground truth is not comprehensive because the distribution of

the exploited vulnerabilities over software vendors is found to differ from that for

overall vulnerabilities (i.e., vulnerabilities that affect Microsoft products have a good

coverage compared to products of other OS vendors.) Although this source is lim-

ited in terms of coverage [1], it is still the most reliable source for labeling exploited

vulnerabilities because it reports attack signatures of exploits detected in the wild

for known vulnerabilities. Other sources either report whether a piece of software is

malicious without proper mapping to the exploited CVE number (e.g., VirusTotal24)

or rely on online blogs and social media sites to identify exploited vulnerabilities (e.g.,

24https://www.virustotal.com

16

SecurityFocus25). In this chapter, Symantec data is used while taking into account

the false negatives. To avoid overfitting the machine learning model on this not-so-

representative ground truth, we omit the software vendor from the set of examined

features.

2.4 Exploit Prediction Model

Using machine learning models to address this problem has interesting security

implications in terms of prioritizing which vulnerabilities need to be patched first

to minimize the risk of cyberattacks. Figure 2.1 gives an overview of the proposed

exploit prediction model. It consists of the following phases:

Darkweb

Zero Day
Initiative

ExploitDB

NVD

Machine
learning

Symantec attack signatures
(Exploits detected in the wild)

Exploit prediction

CVSS and description
features

Proof-of-Concept
feature

Vulnerability disclosure
feature

Vulnerability description
language

Ground truth

Feature
selection

Figure 2.1: Exploit Prediction Model.

• Data collection: Three data sources are used in addition to the NVD. These

data sources are EDB (ExploitDB), ZDI (Zero Day Initiative) and data mined

25https://www.securityfocus.com. There are many examples where attack signatures are re-
ported by Symantec, but not reported by SecurityFocus. Also, there are vulnerabilities SecurityFocus
reports as exploited, and those exist in software whose vendors are well-covered by Symantec, yet
Symantec does not report them.

17

from D2web markets and forums, focusing on malicious hacking. Ground truth

is assigned to the binary classification problem studied in this chapter using

Symantec attack signatures of exploits detected in the wild. The data sources

are discussed in Section 2.4.1.

• Feature selection: Features are extracted from each of the data sources. The

features include bag-of-words features for vulnerability description and discus-

sions on the D2web, binary features that check for the presence of PoC exploits

in EDB, vulnerability disclosures in ZDI and the D2web. Additional features

are also included from the NVD, including CVSS score and CVSS vector.

• Prediction: Binary classification is performed on the selected features to de-

termine whether the vulnerability will likely be exploited or not. To address this

classification problem, several standard supervised machine learning approaches

are evaluated.

2.4.1 Data Sources

Our analysis combines vulnerability and exploit information from multiple open

source databases, namely: the NVD, EDB, ZDI, and the D2web. The D2web database

is obtained from an API maintained by CYR3CON. Our experiments cover vulner-

abilities that were published in 2015 or 2016. Table 2.1 shows the vulnerabilities

identified from each of the data sources between 2015 and 2016 as well as the number

of vulnerabilities that were exploited in real-world attacks. A brief overview of each

of the data sources, including ground truth, is provided below.

NVD. The National Vulnerability Database maintains a database of publicly dis-

closed vulnerabilities. Each vulnerability is identified using a unique CVE number.

Our dataset contains 12,598 vulnerabilities. Figure 2.2 shows the disclosure of vulner-

18

Table 2.1: Number of Vulnerabilities (2015–2016).

Database Vulnerabilities Exploited % Exploited

NVD 12,598 306 2.4%

EDB 799 74 9.2%

ZDI 824 95 11.5%

D2web 378 52 13.8%

abilities per month. At the time of data collection, there were only 30 vulnerabilities

disclosed in December 2016, hence the small bar at the end of 2016. For each vul-

nerability, the description, the CVSS score and vector, and the publication date are

collected. Organizations often use the CVSS score to prioritize which vulnerabilities

to patch. The CVSS vector lists the components from which the score is computed.

More details about CVSS components are provided in Section 2.4.2.

0

200

400

600

800

2015 2016

o

f
V

u
ln

er
ab

ili
ti

es

Month

Figure 2.2: Vulnerabilities Disclosed per Month.

EDB (white hat community). The Exploit Database is an archive of PoC ex-

ploits maintained by Offensive Security.26 PoC exploits for known vulnerabilities

26https://www.offensive-security.com

19

are reported with CVE numbers of target vulnerabilities. Using the unique CVE

numbers from the NVD for the period between 2015 and 2016, EDB was queried

to find out whether a PoC exploit is available. The availability date of PoCs has

also been recorded. By querying EDB, verified PoCs have been found for 799 of the

vulnerabilities studied.

ZDI (vulnerability detection community). Zero Day Initiative maintains a

database of vulnerabilities that are identified and reported by security researchers.

Reported software flaws are first verified by ZDI before disclosure. Monetary incen-

tives are provided to researchers who report valid vulnerabilities. Before ZDI publicly

discloses a vulnerability, the software vendors of the target products are notified and

allowed time to implement patches. The ZDI database has been queried for the vul-

nerabilities, and 824 common CVE numbers between the NVD and ZDI were found.

The publication date has also been noted.

D2web (hacker community). The data collection infrastructure maintained by

CYR3CON was originally described in [18]. In this paper, the authors built a system

that crawls sites on the D2web, both marketplaces and forums, to collect data relating

to malicious hacking. They first identify sites before developing scripts for automatic

data collection. A site is put forward to script development after it has been deter-

mined whether the content is of interest (i.e., hacking-related) and is relatively stable.

The population size of a site is observed, though not much decisive power is assigned

to it. While a large population is an indicator of the age and stability of a site, a

small population number can be associated with higher-value information (i.e., closed

forums).

D2web users advertise and sell their products on marketplaces. D2web market-

places provide a new avenue to gather information about vulnerabilities and exploits.

Forums, on the other hand, feature discussions on newly discovered vulnerabilities and

20

exploit kits. Data related to malicious hacking is filtered from the noise and added

to a database using a machine learning approach with high precision and recall. Not

all exploits or vulnerability items in the database have CVE numbers associated with

them. First, the database was queried to extract all items with CVE mentions. Some

vulnerabilities are mentioned in the D2web using their Microsoft Security Bulletin

Number27 (e.g., MS16-006). Every bulletin number was mapped to its corresponding

CVE number, making ground truth assignment easy. These items can be products

sold on markets or posts extracted from forums discussing topics relating to malicious

hacking. We found 378 unique CVE mentions between 2015 and 2016 on more than

120 D2web websites, much more than what a previous work discovered [35]. We also

queried the posting date and descriptions associated with all the CVE mentions in-

cluding product title and description, vendor information, entire discussion with the

CVE mention, author of the posts, and the topic of the discussion.

Attack signatures (ground truth). For our ground truth, we identified vulnera-

bilities that were exploited in the wild using Symantec anti-virus attack signatures28

and Intrusion Detection Systems (IDS) attack signatures.29 The attack signatures are

associated with the CVE number of the vulnerability that was exploited. We mapped

these CVEs to the CVEs mined from the NVD, EDB, ZDI, and the D2web. This

ground truth indicates actual exploits that were used in the wild and are not just PoC

exploits. For the NVD, around 2.4% of the disclosed vulnerabilities were exploited,

which is consistent with previous studies. We do not have data regarding the volume

and frequency of attacks leveraging the detected exploits; hence we consider all ex-

ploited vulnerabilities to have equal importance. This assumption has been adopted

27https://technet.microsoft.com/en-us/security/bulletins.aspx

28https://www.symantec.com/security_response/landing/azlisting.jsp

29https://www.symantec.com/security_response/attacksignatures

21

by previous works as well [35, 1]. Additionally, we define the exploitation date of

a vulnerability as the date it was first detected in the wild. Symantec IDS attack

signatures are reported without recoding the dates when they were first detected, but

its anti-virus attack signatures are reported with their exploitation date. Between

2015 and 2016, 112 attack signatures have been reported without and 194 with their

exploitation date.

2.4.2 Feature Description

We combine features from all the data sources discussed in Section 2.4.1. Table 2.2

gives a summary of these features. We now discuss each of them.

Table 2.2: Summary of Features.

Feature Type

NVD and D2web description TF-IDF on bag of words

CVSS Numeric and categorical

D2web Language Categorical

Presence of PoC Binary

Vulnerability mention on ZDI Binary

Vulnerability mention on the D2web Binary

NVD and D2web description. The NVD description provides information on

the vulnerability and what it allows hackers to do when they exploit it. D2web

description often provides rich context on what the discussion is about, and is often

synthesized from forums rather than marketplaces since items are described in fewer

words. Patterns can be learned based on this textual content. We obtained the

description of published vulnerabilities from the NVD, and we queried the D2web

database for CVE mentions between 2015 and 2016. This description was appended

to the NVD description with the corresponding CVE. We observed that some of

22

the descriptions on the D2web are in a foreign language as discussed in Section 2.5.

We first translated the foreign text to English using the Google Translate API.30 We

then vectorized the text features using the term frequency-inverse document frequency

(TF-IDF) model that is learned from the training set and used to vectorize the testing

set. TF-IDF creates a vocabulary of all the words in the description. The importance

of a word feature increases with the number of times it occurs, but is normalized by

the total number of words in the description. This eliminates common words from

being important features. We limited our TF-IDF model to the 1,000 most frequent

words (using more word features has no benefit in terms of performance, however, it

would increase the computational cost.)

CVSS. The NVD provides us with a CVSS score and the CVSS vector from which

the score is computed, indicating the severity of each disclosed vulnerability. We

used the CVSS base metric version 2.0 rather than version 3.0 because the latter is

only present for a fraction of the vulnerabilities we study. The CVSS vector lists the

components from which the score is computed. The components of the vector in-

clude Access Complexity, Authentication, Confidentiality, Integrity, and Availability.

Access Complexity indicates how difficult it is to exploit the vulnerability once the

attacker has gained access. It is defined in terms of three levels: High, Medium and

Low. Authentication indicates whether authentication is required by the attacker to

exploit the vulnerability. It is a binary identifier taking the values Required and Not

Required. Confidentiality, Integrity, and Availability indicate what loss the system

would incur if the vulnerability is exploited. They take the values None, Partial and

Complete. All the CVSS vector features are categorical. We vectorize these features

by building a vector with all possible categories. Then if that category is present, we

insert “1”, otherwise “0”.

30https://cloud.google.com/translate/docs

23

Language. D2web feeds are posted in different languages. We found 4 languages

that are used in the D2web posts that reference vulnerabilities. These languages

are English, Chinese, Russian, and Swedish. Since there is a limited number of non-

English postings, giving the model little chance to learn proper representation for each

language, we opted to use the text translation as described. To this end, we believe

translation can result in a loss of important information, although we can retain the

impact of knowing the language by using it as a feature. We show analysis on the

languages of D2web feeds and their variation in the exploitation rate in Section 2.5.

Presence of proof-of-concept. The presence of PoC exploits in EDB increases the

likelihood of a vulnerability being exploited. We treat it as a binary feature indicating

whether a PoC is present for a vulnerability or not.

Vulnerability mention on ZDI. ZDI acts similar to the NVD, i.e., both disclose

software vulnerabilities. Given that a vulnerability is disclosed on ZDI, its exploita-

tion likelihood raises. Similar to the presence of PoCs, we use a binary feature to

denote whether a vulnerability was disclosed in ZDI before it is exploited.

Vulnerability mention on the D2web. We use a binary feature indicating whether

a vulnerability is mentioned on the D2web.

2.5 Vulnerability and Exploit Analysis

To assess the importance of aggregating different data sources for early identi-

fication of threatened vulnerabilities, we first analyze the likelihood of exploitation

given that a vulnerability is mentioned on each data source. Time-based analysis is

then provided for the exploited vulnerabilities that have reported exploitation dates

(n = 194) to show the difference in days between when vulnerabilities are exploited

and when they are mentioned online. In our time-based analysis, we ignore the ex-

ploited vulnerabilities without reported dates because we cannot make any assump-

24

tions regarding their exploitation dates. Furthermore, we analyze our ground truth

and compare it to other sources to identify the vendors of highly vulnerable software

and systems. As previous works reported, Symantec reports attack signatures for vul-

nerabilities of certain products [35, 1]. We study the distribution of affected software

vendors by vulnerabilities from each data source. We base this analysis on the vendor

mentions by CPE data from the NVD. Finally, we provide a language-based analysis

on the D2web data to reveal some socio-cultural factors present in the D2web that

seem to affect the likelihood of exploitation.

Likelihood of exploitation. For each data source, Table 2.3 shows the vulnerability

exploitation probability for the vulnerabilities mentioned in that data source. This

analysis emphasizes the value of open data sources in supplementing the NVD data.

As mentioned in Section 2.4.1, about 2.4% of the vulnerabilities in NVD are exploited

in the wild. Hence, including other sources can increase the likelihood of correctly

identifying the vulnerabilities that will be exploited.

Table 2.3: Number of Vulnerabilities, Number of Exploited Vulnerabilities, Percent-
age of Exploited Vulnerabilities That Appeared in Each Source, and Percentage of
Total Vulnerabilities That Appeared in Each Source.

EDB ZDI D2web ZDI ∨ D2web EDB ∨ ZDI ∨ D2web

Number of vulnerabilities 799 824 378 1,180 1,791

Number of exploited vulnera-
bilities

74 95 52 140 164

Percentage of exploited vul-
nerabilities

21% 31% 17% 46% 54%

Percentage of total vulnerabil-
ities

6.3% 6.5% 3.0% 9.3% 14.2%

Time-based analysis. Most software systems are attacked repeatedly using vul-

nerabilities after exploits to such vulnerabilities have been detected in the wild [57].

As a matter of fact, vulnerabilities may take a long time between the date they are

disclosed and the date they are patched by vulnerability management teams. Here,

25

250 200 150 100 50 0
Difference between the Symantec exploitation date and the NVD publication date in days

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 v

ul
ne

ra
bi

lit
ie

s

Figure 2.3: Day Difference Between CVE First Published in the NVD and the
Symantec Attack Signature Date vs. the Fraction of Exploited CVEs on the NVD
Reported (Cumulative).

we only analyze the population of exploited vulnerabilities that are reported with

their exploitation date (194 vulnerabilities).

Figure 2.3 shows that for more than 93% of the vulnerabilities, they are disclosed

by NIST before any real-world attacks are detected. In the other few cases, attacks

were detected in the wild before NIST published the vulnerabilities (i.e., zero-day

attacks). This could be caused by too many reasons: (1) the vulnerability infor-

mation is sometimes leaked before the disclosure, (2) by the time NIST disclosed a

vulnerability in the NVD, other sources have already validated and published it, then

exploits rapidly started using it in real-world attacks, or (3) the attacker knew that

what they were doing was successful and continued to exploit their targets until dis-

covered [36]. Additionally, ZDI and NVD have limited variation on the vulnerability

disclosure dates (median is 0 days). It is important to note that because ZDI disclo-

sures come from the industry, reserved CVE numbers are shown earlier here than in

other sources.

26

0 100 200 300 400 500
Difference between the Symantec exploitation date and the EDB date in days

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 v

ul
ne

ra
bi

lit
ie

s

Figure 2.4: Day Difference Between the Date of Availability of PoC on EDB and
the Symantec Attack Signature Date vs. the Fraction of Exploited CVEs With PoCs
on EDB Reported (Cumulative).

In the case of EDB database, almost all of the exploited vulnerabilities that have

PoCs archived in EDB were found in the wild within the first 100 days of the PoCs

availability. Such a short period between the availability of PoCs and actual attacks

in the real-world indicates that having a template for exploits (in this case PoCs)

makes it easy for hackers to configure and use in real-world attacks. Figure 2.4 shows

the difference in days between the availability of PoCs and exploitation dates.

In the case of the D2web database, more than 60% of the first-time mentions to

the exploited vulnerabilities are within 100 days before or after the exploitation dates.

The remaining mentions are within the 18 months time frame after the vulnerability

exploitation date (see Figure 2.5).

Vendor/system-based analysis. As noted, Symantec reports vulnerabilities that

attack the systems and software configurations used by their customers. For the

vulnerabilities we studied, more than 84% and 36% of the exploited vulnerabilities

reported by Symantec exist in products solely from, or run on, Microsoft and Adobe

27

100 50 0 50 100 150 200 250 300
Difference between the Symantec exploitation date and the D2web date in days

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 v

ul
ne

ra
bi

lit
ie

s

Figure 2.5: Day Difference Between CVE First Mentioned in D2web and Symantec
Attack Signature Date vs. the Fraction of Exploited CVEs on D2web Reported
(Cumulative).

products, respectively; whereas less than 16% and 8% of vulnerabilities published

in the NVD are related to Microsoft and Adobe, respectively. Figure 2.6 shows

the percentage from the exploited vulnerabilities that can affect each of the top five

vendors in every data source. It is important to note that a vulnerability may affect

more than one vendor (e.g., CVE-2016-4272 exists in Adobe Flash Player,31 and

it allows attackers to execute arbitrary code via unspecified vectors and can affect

products from all five vendors.) This explains why some operating systems (e.g.,

Linux) with less coverage from Symantec data are targeted by vulnerabilities reported

by Symantec.

In addition, D2web data appears to have more uniform vendor coverage. Only

30% and 6.2% of the vulnerabilities mentioned in the D2web during the period we

study are related to Microsoft and Adobe, respectively. Additionally, ZDI favors

products from these two vendors (57.8% for Microsoft and 35.2% for Adobe). This

31https://www.adobe.com/products/flashplayer.html

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Microsoft Linux system Google Apple Adobe

V
u

ln
er

ab
ili

ty
 e

xp
lo

it
ed

NVD Darkweb ZDI ExploitDB

Figure 2.6: Most Exploited Vendors/Systems in Each Data Source.

provides evidence that each data source covers vulnerabilities targeting varying sets

of software vendors.

Language-based analysis. Interestingly, we found notable variations on the ex-

ploitation likelihood depending on the language used on D2web data feeds that refer-

ence CVEs. In D2web feeds, four languages are detected with different vulnerability

post and item distributions. Not surprisingly, English and Chinese have far more

vulnerability mentions (242 and 112, respectively) than Russian and Swedish (13 and

11, respectively). However, vulnerabilities mentioned in Chinese postings are char-

acterized by the lowest exploitation rate. For example, of those vulnerabilities, only

12 are exploited (about 10%), while 32 of the vulnerability mentioned on English

postings are exploited (about 13%). Although vulnerability mentions in Russian or

Swedish postings are few, these vulnerabilities have very high exploitation rates. For

example, about 46% of the vulnerabilities mentioned in Russian were exploited (6),

and about 19% for vulnerabilities mentioned in Swedish (2). Figure 2.7 shows the

number of vulnerability mentions by each language as well as the number of exploited

vulnerabilities mentioned by each language.

29

112

13
242

11

Overall

Chinese

Russian

English

Swedish

12

6
32

2

Exploited

Figure 2.7: Number of Exploited Vulnerabilities Mentioned by Each Language
(Left), and the Number of Vulnerabilities Mentions in Each Language (Right).

2.6 Experimental Setup

We perform a series of experiments with our models to evaluate our approach.

First, we compare our model to a benchmark work presented in [1]. For our model,

we found that Random Forest (RF) gives us the best F1 measure.32 Random forest is

an ensemble method proposed by Breiman [58]. It is based on the idea of generating

multiple predictors (decision trees in this case), which are then used in combination

to classify a newly disclosed vulnerability. The strength of the random forest lies in

introducing randomness to build each classifier and using random, low-dimensional

subspaces to classify the data at each node in a classifier. We use a random forest that

combines bagging [58] for each tree with random feature selection [59] at each node

to split the data. The final result is, therefore, an ensemble of decision trees, each

having their own independent opinion on class labels (i.e., exploited or not exploited

for a given disclosed vulnerability). Therefore, a new vulnerability is classified inde-

pendently by each tree and assigned a class label best fit for it. Multiple decision trees

32The harmonic mean of precision and recall.

30

may result in having multiple class labels for the same data sample; hence, a majority

vote is taken and the class label with most votes is assigned to the vulnerability.

In [1], the authors temporally mix their samples i.e., vulnerabilities exploited in

the future are used to predict vulnerabilities exploited in the past, a practice that

is discussed in [30]. Additionally, to account for the severe class imbalance, only

vulnerabilities that occur in Microsoft or Adobe products were used in training and

testing (477 vulnerabilities, 41 of which were exploited). We compare our model to [1]

under the same conditions.

For the second experiment, we restrict the training samples to the vulnerabili-

ties published before any of the vulnerabilities in the testing samples were published.

Also, we only use data feeds that are present before the exploitation date. Thus,

we guarantee that our experimental settings resemble the real-world case. Since we

cannot make any assumptions regarding the sequence of events for the exploited vul-

nerabilities reported by Symantec without the exploitation date (n = 112), we remove

these vulnerabilities from our experiments. The fraction of exploited vulnerabilities

becomes 1.2%. We compare the performance of our model to the CVSS score.

The goal for exploit prediction is to predict whether a disclosed vulnerability will

likely be exploited in the future or not. Few vulnerabilities are exploited before they

are published [36]. Prediction for such vulnerabilities does not add any value to the

goal of the prediction task, considering that they had been already exploited by the

time those vulnerabilities are revealed. That being said, knowing what vulnerabilities

are exploited in the wild can help organizations with their cyber defense strategies,

but this is out of the scope of this chapter.

31

2.6.1 Performance Evaluation

We evaluate our classifiers based on two classes of metrics that have been used

in previous work. The first class is used to demonstrate the performance achieved

in the minority class (in our case 1.2%). The metrics under this class are precision

and recall. They are computed as reported in Table 2.4. Precision is defined as the

fraction of vulnerabilities that were exploited from all vulnerabilities predicted to be

exploited by our model. It highlights the effect of mistakingly flagging non-exploited

vulnerabilities. Recall is defined as the fraction of correctly predicted exploited vul-

nerabilities from the total number of exploited vulnerabilities. It highlights the effect

of unflagging important vulnerabilities that were used later in attacks. For highly

imbalanced data, these metrics give us an intuition regarding how well the classifier

performed on the minority class (i.e., exploited vulnerabilities). The F1 measure is

the harmonic mean of precision and recall. It summarizes precision and recall in a

common metric. The F1 measure can be varied based on the trade-off between pre-

cision and recall. This trade-off is dependent on the priority of the applications. If

keeping the number of incorrectly flagged vulnerabilities to a minimum is a prior-

ity, then high precision is desired. To keep the number of undetected vulnerabilities

that are later exploited to a minimum, high recall is desired. We further report the

Receiver Operating Characteristics (ROC) curve as well as the Area Under Curve

(AUC) of the classifier. ROC graphically illustrates the performance of our classifier

by plotting the true positive rate against the false positive rate at various thresh-

olds of the confidence scores the classifier outputs. In binary classification problems,

the overall TPR is always equivalent to recall for the positive class, while FPR is

the number of not exploited vulnerabilities that are incorrectly classified as exploited

from all not exploited samples. ROC is a curve, thus, AUC is the area under ROC.

32

The higher the AUC value, the closer the model to perfection (i.e., a classifier with

an AUC of 1 is a perfect classifier).

Table 2.4: Evaluation Metrics. TP: True Positives, FP: False Positives, FN: False
Negatives, and TN: True Negative.

Metric Formula

Precision TP
TP+FP

TPR (recall in case of binary classification) TP
TP+FN

F1 2 ⋅ precision⋅recall
precision+recall

FPR FP
FP+TN

2.6.2 Results

We utilize and compare the performance of several standard supervised machine

learning approaches for exploit prediction. Parameters for all approaches were set in

a way to provide the best performance. We use the scikit-learn Python package [60].

Examining Classifiers. We maintain the temporal information for all the classifiers.

The vulnerabilities are sorted according to the date they were posted on the NVD.

The first 70% are reserved for training, along with the features that are available by

the end of the training period. The remaining vulnerabilities are used for testing.

Table 2.5 shows a comparison between the classifiers with respect to precision,

recall, and F1 measure. Random forest performs the best with F1 measure of 0.4

as compared to Support Vector Machine (SVM): 0.34, Bayesian Network (BN): 0.34,

Logistic Regression (LOG-REG): 0.33, Decision Tree (DT): 0.25, and Näıve Bayes

(NB): 0.27. Note that even though RF has the best F1 measure, it does not have

the best recall—NB does. We choose RF with high precision, which makes the model

reliable as compared to low precision, which results in a lot of false positives.

33

Table 2.5: Precision, Recall, F1 Measure for RF, SVM, LOG-REG, DT and NB to
Predict Whether a Vulnerability Will Likely Be Exploited.

Classifier Precision Recall F1 measure

RF 0.45 0.35 0.40

BN 0.31 0.38 0.34

SVM 0.28 0.42 0.34

LOG-REG 0.28 0.4 0.33

DT 0.25 0.24 0.25

NB 0.17 0.76 0.27

Benchmark test. We compare our model to a recent work that uses vulnerability

mentions on Twitter to predict the likelihood of exploitation [1]. In the study, the

authors use SVM as their classifier, while our model works best with a Random Forest

classifier. Although it would be straightforward to think that our approach would

achieve better performance than the work proposed in [1], we only compare to this

work because: (1) to the best of our knowledge, there is no existing work on predicting

exploits in the wild using D2web data, and (2) we compare all major approaches, and

currently using feeds from social media is the best one.

In [1], the authors restricted the training and evaluation of their classifier to vul-

nerabilities targeting Microsoft and Adobe products, because Symantec does not have

attack signatures for all the targeted platforms. They performed a 10-fold stratified

cross-validation, where the data is partitioned into 10 parts while maintaining the

class ratio in each part. They trained on 9 parts and tested on the remaining one.

The experiment was repeated for all 10 parts. Hence, each sample gets tested once.

For comparison, we also perform the same experiment, under highly similar as-

sumptions. We use all exploited vulnerabilities regardless of whether the date is

reported by Symantec or not. In our case, we have 2,056 vulnerabilities targeting

34

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Classifier (RF)

Figure 2.8: Precision-Recall Curve for Proposed Features of Microsoft-Adobe Vul-
nerabilities (RF).

Microsoft and Adobe products. Out of 2,056 vulnerabilities, 261 are exploited, a

fraction that is consistent with previous works. We perform a 10-fold stratified cross-

validation. We plot the precision-recall curve for our model (see Figure 2.8). The

precision-recall curve shows us the trade-off between precision and recall for different

decision thresholds. Since the F1 measure is not reported in [1], we use the precision-

recall curve reported for comparison. By maintaining the recall value constant, we

compare how precision varies. Table 2.6 shows the comparison between the two mod-

els by comparing precision for different values of recall. For a threshold of 0.5 we

get an F1 measure of 0.44 with precision 0.53 and recall 0.3. Maintaining recall, the

precision value displayed in the graph in [1] is 0.3, significantly lower than 0.4. We

perform the same experiment on different recall values to compare precision. At each

point, we obtain higher precision than the previous approach.

Baseline comparison. In [30], the authors argue that the problem of predicting the

likelihood of exploitation is sensitive to the sequence of vulnerability-related events.

Temporally mixing such events leads to future events being used to predict past ones,

35

Table 2.6: Precision Comparison between [1] and the Proposed Model While Main-
taining Recall.

Recall Precision* Precision (our work)

0.20 0.30 0.41

0.40 0.18 0.40

0.70 0.10 0.29

*Numbers derived from Figure 6.a. from [1].

resulting in inaccurate prediction results. To avoid the temporal mixing of events, we

create time-based splits, as described in this section.

1 2 3 4 5 6 7 8 9 10
CVSS score

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

Precision

Recall

Figure 2.9: Precision and Recall for Classification Based on CVSS Base Score Ver-
sion 2.0 Threshold.

For a baseline comparison, we use the CVSS version 2.0 base score to classify

whether a vulnerability will be exploited or not based on the severity score assigned

to it. CVSS score has been used as a baseline in previous studies [35, 1]. CVSS

tends to be overly cautious, i.e., it tends to assign high scores to many vulnerabilities,

resulting in many false positives. Figure 2.9 shows the precision-recall curve for the

CVSS score. It is computed by varying the decision threshold (x-axis), on which

36

we determine the class label of each vulnerability. CVSS gives high recall with very

low precision, which is not desired for real-world patch prioritization tasks. The

best F1 measure that could be obtained is 0.15. Figure 2.10 shows the performance

comparison between our proposed RF model and the CVSS-based model that yields

the highest F1 score. Our model outperforms the baseline with an F1 measure of 0.4,

a precision of 0.45, and a recall of 0.35. Additionally, our classifier shows very high

TPR (90%) at low FPR (13%), with an AUC of 94%, as depicted in Figure 2.11.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Classifier (RF)

CVSS score

Figure 2.10: Precision-Recall Curve for Classification Based on CVSS Score Thresh-
old (RF).

Evaluation with individual data sources. We study what effect introducing each

data source has on the prediction of vulnerabilities mentioned in that source. This is

important for understanding if the addition of a particular data source benefits the

vulnerabilities that have been mentioned in that data source. We find that the time-

based split used in the previous experiments leaves very few vulnerabilities mentioned

in these data sources in the test set (ZDI: 18, D2web: 4, EDB: 2). Hence, we increase

the numbers by (1) performing a 10-fold cross-validation without sorting the vulner-

abilities (2) increasing the ground truth by considering the exploited vulnerabilities

37

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

AUC = 0.94

Figure 2.11: ROC Curve for Classification Based on Random Forest Classifier.

that did not have exploit date (these were removed from earlier experiments because

it was not clear whether these were exploited before or after the vulnerability was

exploited). Using these two techniques, we have 84 vulnerabilities mentioned in ZDI

that have been exploited, 57 in EDB, and 32 in the D2web. We report the results

(precision, recall, and F1) for the vulnerabilities mentioned in each data source. Also,

we mention the prediction of these vulnerabilities by using only the NVD features.

For the vulnerabilities mentioned in the D2web, we only consider the D2web features

along with the NVD features. The model predicts 12 vulnerabilities as exploited with

a precision of 0.67 and a recall of 0.38. By only considering the NVD features, the

model predicts 12 vulnerabilities as exploited with a precision of 0.23 and a recall of

0.38. Consequently, using the D2web features, the precision improved significantly

from 0.23 to 0.67. Table 2.7 shows the precision-recall with corresponding the F1

measure. D2web information was thus able to correctly identify positive samples

mentioned in the D2web with higher precision.

38

Table 2.7: Precision, Recall, F1 Measure for Vulnerabilities Mentioned on D2web,
ZDI, and EDB.

Source Case Precision Recall F1 measure

D2web
NVD 0.23 0.38 0.27

NVD + D2web 0.67 0.375 0.48

ZDI
NVD 0.16 0.54 0.25

NVD + ZDI 0.49 0.24 0.32

EDB
NVD 0.15 0.56 0.24

NVD + EDB 0.31 0.40 0.35

For ZDI, we have 84 vulnerabilities mentioned. By just utilizing the NVD features,

we get an F1 measure of 0.25 (precision: 0.16, recall: 0.54) as compared to adding

the ZDI feature with F1 measure of 0.32 (precision: 0.49, recall: 0.24)—a significant

improvement in precision. Table 2.7 also shows the precision-recall with corresponding

F1 measure for samples mentioned on ZDI.

We perform a similar analysis for the vulnerabilities that have PoCs available on

EDB. For EDB, there are 57 vulnerabilities with PoCs. With only the NVD features,

the model scored an F1 measure of 0.24 (precision: 0.15, recall: 0.56); while adding

the EDB feature boosted the F1 measure to 0.35 (precision: 0.31, recall: 0.40)—a

significant improvement in precision, as shown in Table 2.7.

Feature importance. To better explain our choices to the features, we examine and

provide an understanding on where our prediction power primarily derives from. We

report the features that have the most contribution to the prediction performance.

A feature vector for a sample has 28 features computed from the non-textual data

(summarized in Table 2.2) as well as the textual features—TF-IDF computed from

the bag of words for the 1,000 words that have the highest frequency in the NVD

description and the D2web. For each of the features, we compute the Mutual Infor-

mation (MI) [61], which expresses how much a variable (here a feature xi) tells about

39

another variable (here the class label y ∈ {exploited, not exploited}). The features

that contribute the most from the non-textual data are {language Russian = true,

has D2web = true, has PoC = false}. In addition, the features that contribute the

most from the textual data are the words {demonstrate, launch, network, xen, zdi,

binary, attempt}. All of these features received MI scores over 0.02.

Addressing class imbalance The problem of class imbalance has gained a lot of

research interest (see [62] for a survey). Since our dataset is highly imbalanced, we use

SMOTE [56] and measure the improvement in classification performance. SMOTE

oversamples the minority class by creating synthetic samples with features similar

to those of the exploited vulnerabilities. This data manipulation is only applied

to the training set. Using SMOTE, no performance improvement is achieved for

our RF classifier. However, SMOTE introduces a considerable improvement with a

Bayesian Network (BN) classifier. Table 2.8 reports different oversampling ratios and

the change in performance. The best oversampling ratio is experimentally determined,

i.e., high oversampling ratios lead the model to learn from a distribution that differs

significantly from the real distribution.

Table 2.8: Performance Improvement Attained by Applying SMOTE for the BN
Classifier Using Different Oversampling for the Exploited Samples.

Oversampling percentage Precision Recall F1 measure

100% 0.37 0.42 0.39

200% 0.40 0.44 0.42

300% 0.41 0.40 0.40

400% 0.31 0.40 0.35

40

2.7 Adversarial Data Manipulation

We study the effects of adversarial data manipulation only on D2web data. For

the presence of PoCs, we only consider PoCs that are verified by EDB. Adversaries

need to hack into EDB to add noise or remove PoCs from the EDB database. In

this analysis, we assume such action cannot be taken by adversaries. Similarly, ZDI

publishes only vulnerabilities that are verified by its researchers; hence there is a very

small chance of manipulating these data sources.

On the other hand, the public nature of D2web marketplaces and forums gives

an adversary the ability to poison the data used by the classifier. They can achieve

this by adding vulnerability discussions on these platforms with the intent of fooling

the classifier to make it produce high false positives. Previous works discuss how an

adversary can influence a classifier by manipulating the training data [63, 64, 65].

In our prediction model, we use the presence of the vulnerability in the D2web,

the language of the market/forum on which it was mentioned, and the vulnerability

description as features. An adversary could easily post discussions regarding vulner-

abilities he does not intend to exploit, nor does he expect that they will be exploited.

To study the influence of such noise on the performance of the model, we experiment

with two strategies:

1. Adversary adding random vulnerability discussions. In this strategy, the

adversary initiates random vulnerability discussions on the D2web and reposts them

with different CVE numbers. So the CVE mentions on the D2web increases. For our

experiment, we consider two cases with different amounts of noise added. In case 1,

we assume that the noise is present in both the training and the testing data. We

consider varying fractions of noise (5%, 10%, 20% of the total data samples) randomly

distributed in training and testing data. The experimental setup follows conditions

41

discussed in Section 2.6. Vulnerabilities are first sorted according to time, and the

first 70% are reserved for training and the remaining for testing. Figure 2.12 shows

the ROC curve showing the false positive rate (FPR) vs the true positive rate (TPR).

For different amounts of noise introduced, our model still maintains a high TPR with

low FPR and AUC of at least 0.94, a performance similar to the experiment without

adding noise. This shows that the model is highly robust against noise such that it

learns a good representation of the noise in the training dataset and can distinguish

them in the testing dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

5%(AUC = 0.95)

10%(AUC = 0.94)

20%(AUC = 0.94)

Figure 2.12: ROC Curves for Adversary Adding Noise to Both the Training and
the Testing Data.

For case 2, we randomly add vulnerability discussion found on the D2web with

different CVE numbers to only the test data and repeat the same experiment. Fig-

ure 2.13 shows the ROC plot. In the case, even though there is a slight increase in

the FPR, the performance is still on par with the experiment without noise (AUC of

0.87 or more). Hence, noisy samples affect the prediction model slightly, if no noise

was introduced in the training data.

2. Adversary adding vulnerability discussion similar to the NVD descrip-

tion. In the previous strategy, the adversary adds vulnerability discussions randomly

42

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

5%(AUC = 0.89)

10%(AUC = 0.87)

20%(AUC = 0.87)

Figure 2.13: ROC Curves for Adversary Adding Noise to Only the Testing Data.

without taking into account the actual capability of the vulnerability. For instance,

CVE-2016-335033 is a vulnerability in Microsoft Edge, as reported by the NVD. If

the vulnerability is mentioned on the D2web as noise by an adversary but targeting

Google Chrome, then it might be easy for the prediction model to detect it as seen in

previous experiments. But what if the adversary crafts the vulnerability discussion

such that it is a copy of the NVD description or consistent with the NVD description?

In this strategy, the adversary posts the NVD description with the CVE number on

the D2web. For case 1, we consider this noise to be randomly distributed in both

training and testing. Figure 2.14 shows the ROC curves for different levels of noise.

The performance decreases as the number of noisy samples increases, but there is no

significant decline (AUC of 0.88 or more).

We repeat the experiment by adding noise only in the test data for case 2. In this

experiment, we observe that the biggest drop in performance results in an AUC of

0.78 when 20% of the samples are noise (see Figure 2.15). This shows that adding

correct vulnerability discussions does affect the prediction model, except if a large

33https://nvd.nist.gov/vuln/detail/CVE-2015-3350

43

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

5%(AUC = 0.95)

10%(AUC = 0.92)

20%(AUC = 0.88)

Figure 2.14: ROC Curves for Adversary Adding Noise to Both the Training and
the Testing Data.

number of such samples are added. Also, the effect can be countered by also adding

such noisy samples to the training data for the model to learn from.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver Operating Characteristic

5%(AUC = 0.88)

10%(AUC = 0.84)

20%(AUC = 0.78)

Figure 2.15: ROC Curves for Adversary Only Adding Noise to the Testing Data.

Note that an adversary would need to add a large number of noisy samples to

lower the performance of the prediction model. Previous research on using data feeds

like Twitter for exploit prediction mentions that an adversary can register a large

number of Twitter accounts and flood Twitter with vulnerability mentions [1]. In the

D2web markets and forums, the creation of accounts needs verification and, in some

cases, technical demonstration of skills. While fake accounts are often themselves sold

44

on the D2web, it is difficult to purchase and maintain thousands of such fake accounts

to post with them. Also, if one person is posting a large volume of discussions with

CVE mentions, he/she can be identified from their username or can be removed from

the market/forum if many of their posts get downvoted for being irrelevant. It is also

important to note that such forums also function as a meritocracy [48], where users

who contribute more are held in higher regard (which also makes it difficult to flood

discussions with such information).

2.8 Discussion

Viability of the model and cost of misclassification. The performance achieved

by our model as a first-line defense layer is very promising. Recall that a random

forest classifier outputs a confidence score for every testing sample. A threshold can

be set to identify the decision boundary. We shall note that all the results we report

in this chapter are achieved based on hard-cut thresholds, such that all samples that

are assigned confidence scores greater than a threshold thr are predicted as to be

exploited. Relying solely on a hard-cut threshold may not be a good practice in real-

world threat assessments; rather, thr should be varied in accordance to other variables

within an organization such that different thresholds can be set to different vendors

(i.e., thrven1, thrven2), or information systems (i.e., thrsys1, thrsys2). For instance, if

an organization hosts an important website on an Apache server, and the availability

of this site is of top priority for the organization, then any vulnerability of the Apache

server should receive high attention and put forward to remediation plans regardless

of other measures. Other vulnerabilities, tens of which are disclosed on a daily bases,

may exist in many other systems within the organization.

Since it is very expensive to be responsive to that many security advisories (e.g.,

some patches may be unavailable, some systems may need to be taken offline to apply

45

patches), assessing the likelihood of exploitation can help in quantifying risk and plan-

ning mitigation. Risk is always thought of as a function of likelihood (exploitation)

and impact. The cost of classifying negative samples as exploited is the effort made

to have them fixed. This involves patching or other remediation such as controlling

access or blocking network ports. Similarly, the cost of falsely classifying threatened

vulnerability as not to be exploited depends on the impact it will cause if exploited.

For example, if two companies run the same database management system, and one

hosts a database with data about all business transactions, while the other hosts a

database with data that is of little value to the company, the resulting cost of a data

breach would be significantly different.

Model success and failure cases. By analyzing the false negatives and false posi-

tives, we gain an understanding of why and where our model performs well and where

it is ineffective. We first look into false negatives. The 10 exploited vulnerabilities

(about 18% of the exploited samples in the testing dataset) that received the lowest

confidence scores seem to have common features. For example, 9 of these appear in

Adobe products, namely Flash Player (5 vulnerabilities) and Acrobat Reader (4 vul-

nerabilities). Flash Player vulnerabilities seem to have very similar description from

the NVD. The same is observed for Acrobat Reader. We also observe that they were

assigned CVE numbers on the same day (April 27, 2016), and 7 out of these 9 were

published on the same day as well (July 12, 2016), and assigned a CVSS base score

of 10.0 (except for one, assigned 7.0). The other vulnerability exists in the Windows

Azure Active Directory (CVSS score of 4.3). Out of these 10 vulnerabilities, one

had a verified PoC archived on EDB before it was detected in the wild, and another

one had a ZDI mention, while none were mentioned in the D2web. We attribute

misclassifying these vulnerabilities to the limited representation of these samples in

46

the training dataset. Moreover, this observation signifies the importance of avoiding

experiments on time-intermixed data, a point discussed in Section 2.3.2.

We also study false positive samples that receive high confidence score—samples

our model predicted as exploited while they are not. For our random forest classifier,

all false positives we examine exist in products affecting Microsoft products although

we do not use vendor as a feature. Our model is able to infer the vendor from other

textual features. We assume that this level of overfitting is unavoidable and marginal,

and we attribute this largely to the limitations on our ground truth. The model is

highly generalizable though. We find examples of vulnerabilities from other vendors

with confidence scores close to thr we set; however, we cannot assume that they are

exploited.

2.9 Conclusion

In this chapter, we proposed an approach that aggregates early signs of vulner-

ability exploitation from various online sources to predict if vulnerabilities will be

exploited, a problem that is directly related to patch prioritization. Our machine

learning models not only outperform existing severity scoring standards but also out-

perform approaches that combine information from social media sites like Twitter

for exploit prediction. Existing scoring standards suffer high false positive rates: too

many vulnerabilities are overrated, making it impossible for the patching teams to

prioritize what to patch first. Our approach; however, achieves a high true positive

rate while maintaining false positive rate low. In the future, we look to use other

47

intelligence sources, including penetration testing platforms such as Metasploit34 and

hacker community in social media platform such as Twitter and Chan sites.35

34https://www.metasploit.com

35A type of Internet forums, mostly image boards, that encourage visitors to anonymously post
content. Some Chan sites are found to be leveraged by activists, such as the well-known hacking
activist group Anonymous.

48

Chapter 3

COMBINING SOCIAL NETWORK ANALYSIS WITH ML TECHNIQUES TO

PREDICT EXPLOITS IN THE WILD

3.1 Introduction

Existing studies suggest that D2web sites are among the best sources for gathering

cyberthreat intelligence supporting cyber defense operations [46, 35, 48, 31]. Until

recently, the value of such intelligence in predicting exploits in the wild was not

well studied. In Chapter 2, we show that information about what activity emerges

following public disclosure is a key to predict exploits in the wild. We also illustrate

the importance of the content of malicious hacker discussions on the D2web, i.e., when

added to other threat intelligence sources, it significantly improved the performance

of ML models. Yet, the utility of information about who discusses vulnerabilities is

to be discovered in this chapter. Here, we continue to address the same task, but

with a different approach. This approach focuses on harnessing ML techniques on

features derived from the social network of hackers participating in D2web forums,

as well as features derived from the NVD. We demonstrate the viability of such data

in predicting exploits in the wild through a series of experiments. We believe this is

because social network structures related to certain exploit authors is indicative of

their ability to write exploits that are subsequently employed in an attack. Specific

contribution of this chapter includes:

• Introducing an approach that uses the users’ post/reply discussions in D2web

to generate a directed social graph. We also provide observations on the con-

nectivity measures for the individuals who authored postings preceding exploits

49

in the wild. We specifically show that the users who discussed vulnerabilities

that are subsequently exploited in the wild are about 4 times more active in

posting than other users.

• Empirically demonstrating the viability of the approach through a suite of ex-

periments on real-world hackers and exploits data. We specifically demonstrate

that the addition of social network data improves the value of recall by about

19%, F1 score by about 6% while maintaining precision.

The remainder of this chapter is organized as follows. In Section 3.2, we present

our data and modeling approach. Section 3.3 describes the hacker social network

generation approach. Section 3.4 presents analysis and observations from the hacker

social network. Empirical prediction results are presented in Section 3.5. The impli-

cations of the results for vulnerability management tasks are discussed in Section 3.6.

Section 3.7 provides an overview about the works related to ours, and Section 3.8

concludes this chapter.

3.2 Approach

Similar to Chapter 2, we view the problem of predicting exploits in the wild as a

binary classification problem, where the positive class is exploited, and the negative

class is not exploited. Figure 3.1 gives an overview of our proposed approach.

3.2.1 Data Collection

Our machine learning models use features derived from two sources: vulnerability

data feeds collected from the NVD and a D2web database of posts with cybersecurity-

related content collected and filtered from 151 D2web forums [18]. The class labels

are determined based on a ground truth set of attack signatures of exploits detected

50

Posts in Darkweb and
Deepweb Forums

Vulnerability Data
from NVD

Machine learning
Approach

Symantec Attack
Signatures

Data Collection

Social network
features, post

content, language,
DW date – NIST
publication date

CVSS base vector,
description, CWE

CVE-ID, detection date

Feature Extraction

Likelihood of
Exploitation

Ground Truth

Figure 3.1: An Overview of the Predictive Model.

in the wild and reported by Symantec. For this chapter, we focus our study on data

collected from all the mentioned sources between January 2010–March 2017. Fig-

ure 3.2 shows the number of vulnerabilities published on NVD per year, the number

of vulnerabilities mentioned on D2web, and the number of vulnerabilities reported

by Symantec. Next, we provide details on the data collection process for the three

sources we use.

1

10

100

1000

10000

2010 2011 2012 2013 2014 2015 2016 2017

N
u

m
b

er
 o

f
V

u
ln

er
ab

ili
ti

es

Year

NVD D2web Symantec

Figure 3.2: Vulnerabilities Reported per Year From NVD (per Disclosure Year),
D2web (per Disclosure Year), and Symantec (per Exploitation Year).

51

NVD. Every vulnerability in the NVD is assigned a unique CVE number. To collect

vulnerability data, we use the JSON data feeds provided by the NVD and extract

information about the vulnerabilities we study (extracted information is discussed

in Section 3.2.2). Further, a web scraper is developed to retrieve from the NVD’s

vulnerability webpages the data elements that are missing in the JSON files (e.g., the

disclosure date).

D2web forums. We use a database of posts collected from 151 darkweb and deep-

web forums. The data collection system is described in Chapter 2, and originally

introduced in [18]. In summary, the system extracts the hacking-related content from

D2web sites using a learning algorithm with high accuracy. The database we use con-

tains over 2,290,000 posts under 223,074 distinct forum topics and from 151 distinct

forums. From these posts, only 3,082 have explicitly mentioned 624 distinct vulner-

abilities by referencing their CVE numbers. Of those, 502 are within the period we

focus on, and they are found in 46 different forums. We only use these forums to

build the social network of users, as described in Section 3.3.

Symantec attack signatures. We label vulnerabilities as exploited in the wild if

CVE numbers are identified in the description of the attack signatures reported by

Symantec’s anti-virus1 or Intrusion Detection Systems’ attack signatures.2 The frac-

tion of exploited vulnerabilities is found to be very small as shown in Figure 3.2, and

it varies from one year to another. The maximum value for the fraction of exploited

vulnerabilities is 2.7% (for vulnerabilities published in 2016), and minimum value

is less than 1% (for vulnerabilities published in 2017)—previous work has reported

fractions comparable to our findings [1, 35].

1A complete list is found here https://www.symantec.com/security_response/landing/

azlisting.jsp. The detection date is labeled with “Discovered”.

2https://www.symantec.com/security_response/attacksignatures

52

3.2.2 Feature Description

Table 3.1 summarizes the features we extract from both data sources discussed in

Section 3.2.1. Here we provide discussions on each of these sets of features.

Table 3.1: Summary of Features.
Source Feature Set Type

NVD
CVSS base score Numeric and Categorical
Description TF-IDF word uni-grams
CWE Categorical

D2web
Social Network Features Numeric
Post content TF-IDF uni-grams

Combined D2web date - NVD date Numeric

CVSS base score. CVSS is a vulnerability severity scoring framework designed to

measure the exploitability and impact of software vulnerabilities. We use the ver-

sion v2.0 CVSS base score. There are two components for this set of features: (1)

the base score (numeric): a given severity score ranges from 0 to 10 (10 is the most

severe), and (2) the CVSS vector: a vector of the metrics that determine the base

score (categorical). The measures in the vector are Access Vector, Access Complex-

ity, Authentication, Confidentiality Impact, Integrity Impact, and Availability Impact.

Each one of these measures can take one value from a predetermined set of possible

values. For example, Access Vector indicates how the vulnerability is exploited. It

can take one of these three possible values: Local (L), Adjacent Network (A) and

Network (N).3

NVD description. NIST provides a textual description of the vulnerability when it

is released. The description summarizes the system/software in which the flaw exists

and gives information on how it can be exploited. Each vulnerability description un-

dergoes a preprocessing pipeline including stemming (reducing the words to their root

3See https://www.first.org/cvss/v2/guide for a complete documentation.

53

forms) and stop word removal (e.g., and, or, then). The preprocessed documents are

then turned into numerical feature vectors using Term Frequency-Inverse Document

Frequency (TF-IDF) computed for the 250 most frequent words in the collection of

documents. Informally, TF-IDF assigns higher values to the words that appeared

in a document with higher frequency while rarely did these words appear in other

documents in the corpus.

CWE. It is a community-effort project comprising enumerating common software

security weaknesses (categorical). These are categories of flaws that can be uninten-

tionally made during software development and can exist in software architecture,

design, or code.

D2web social network features. Contains measures computed from the social

connections of users posting hacking-related content. The basic social network fea-

tures (e.g., in-degree and out-degree) indicate how active a user is in the social graph.

More advanced features measure the centrality of users in the social graph. Highly

central users are more important; thus the vulnerability mentions should take more

consideration. We compute the features for the set of users who explicitly mentioned

one or more CVE numbers in their posts.

Post content. We found evidence for many vulnerability mentions with content

ranging from exploit offers to content irrelevant of the mentioned vulnerability. This

set of features is extracted the same way as the NVD description features, except

that for non-English posts, we automatically translate the content to English using

Google Translate API,4 then the TF-IDF is computed over the translated corpus.

4https://cloud.google.com/translate

54

3.2.3 Classifier Training and Prediction

We use a supervised machine learning approach to train classifiers on the presented

features. The output of the classifiers is confidence score. A threshold can be set on

confidence score to determine the best decision boundary. The experimental settings

and results are described in Section 3.5.

3.3 Hacker Social Network

In Section 3.2.2, we describe the features we use, while here, we elaborate on the

social network creation approach. We then provide our observations on the created

graphs in Section 3.4. In this work, we adopt the same assumption made in much

of the previous work on D2web data, where they consider the same usernames (case

insensitive) across different D2web sites to belong to the same person(s) [49]. This al-

lows for generating one network comprising a large number of D2web sites as opposed

to a social network for each site [66].

3.3.1 Social Graph

Formally, the user social graph G = (V,E) is a weighted, directed graph with no

self-loops (i.e., every edge has a weight, every edge points away from one node to

another node, and there exists at most one edge between any pair of nodes). V is the

set of vertices (D2web users) and E is the set of edges.

The graph is created using posts between January 2010 and June 2016 (747,351

posts under 109,413 forum topics), and for every topic tx, posts under tx are grouped

in a list lx ordered by the date and time of posts. Then, an edge is created (with

weight = 1) from user vi to vj and labeled with the date of vi’s posting date only if:

(1) vi ≠ vj, (2) both vi and vj have posts in lx, and vi has posted after vj, (3) the

55

101 102 103

Degree

10 4

10 3

10 2

10 1

Fr
ac

tio
n

of
 U

se
rs

Figure 3.3: Degree Distribution—a Scale-Free Network With an Exponent γ of 1.07.

number of posts between vi’s post and vj’s post in lx is less than thr (it is set to be

10 in all experiments in this chapter), and (4) there is no existing edge originating

from vi to vj and labeled with the same date. Once the edges are created, they are

added to a multi-directed graph with parallel edges of weights = 1. The multi-graph

is then transformed to a directed graph G by summing the weights of the parallel

edges pointing to the same direction.

Degree distributions, for both incoming and outgoing edges, of G are found to

resemble the power-law distribution as depicted in Figure 3.3. This means that there

exist very few users with a very large number of connections, and many users with

few connections - this observation is known to be common for social media sites [67]5.

3.3.2 Social Network Measures

After creating the social network, we compute measures derived from the network

structure. In this chapter, we consider three categories of social network measures:

5In the D2web database, there are few users, each has exactly one post. Some of these posts are
found in topics with a number of postings greater than thr; hence, the little up-tick in Figure 3.3.

56

Network structure measures: the measures under this category are: (1) In-degree:

the number of edges pointing to the user, (2) Out-degree: the number of edges origi-

nated from the user, (3) Sum of In-degree weights : the sum of the weights for all edges

pointing to the user, (4) Sum of out-degree weights : the sum of the weights for all

edges pointing away from the user. These measures describe the type of activities in

which the user engages. For example, higher in-degree than out-degree may indicate

the user tendency towards creating new topics or posting under topics shortly after

they are created.

Centrality measures: three measures are computed: (1) In-degree centrality : it

measures the popularity of a user vi by normalizing vi’s in-degree by the maximum

possible in-degree, (2) Out-degree centrality : measures how actively a user vi replies to

others by normalizing vi’s out-degree measure by the maximum possible out-degree,

(3) Betweenness centrality : for a user vi, Betweeness centrality measures the impor-

tance of vi by computing the fraction of shortest paths between all pairs of users that

pass through vi.

Importance measures: the number of connections user vi has with other users, by

itself, may not be indicative of importance; rather, vi is important if his/her posts

make other important users reply. Hence, influence metrics incorporate the centrality

of users with outgoing edges to vi into vi’s centrality (i.e., if an important user vj

replies to vi, then the importance of vi increases). Two measures are computed under

this category: (1) Eigenvector centrality : measures the importance of vi by assigning a

centrality proportional to the sum of in-neighbors’ centralities. Eigenvector centrality

of vi is the ith value of the eigenvector Ce corresponding to the largest eigenvalue of the

network adjacency matrix At, and (2) Pagerank centrality : measures the centrality of

vi by incorporating fractions of the centralities of in-neighbors, such that each of vi’s

57

in-neighbors passes the value of his/her centrality divided by the number of outgoing

edges.6

3.4 Social Network Analysis

In this section, we report our observations on the computed measures. Table 3.2

shows statistics for the D2web social graph G created according to our description,

as well as statistics for (1) the subset of users who have discussed vulnerabilities

in D2web (i.e., vulUsers ⊂ V), (2) the subgraph of G induced by the vulUsers,

Gvulns(vulUsers, vulEdges), (i.e., vulEdges ⊂ E), and (3), a subgraph induced by

vulUsers as well as all their in- and out- neighbors GvulNei(vulNeis, vulNeiEdges),

(i.e., vulNeis ⊂ V and vulNeiEdges ⊂ E). We create these three graphs to un-

derstand the differences in the user connectivity for the subset of users mentioned

vulnerabilities (i.e., vulUsers, less than 1% of the total population) as opposed to

the total user population.

6In all the experiments, the damping factor is set to 0.85.

58

T
a
b
le

3
.2

:
S
ta

ti
st

ic
s

fo
r

th
e

G
ra

p
h
G

W
it

h
A

ll
U

se
rs

W
it

h
at

L
ea

st
O

n
e

E
d
ge

(a
n

In
-E

d
ge

or
an

O
u
t-

E
d
ge

),
th

e
S
u
b
se

t
of

U
se

rs
T

h
at

H
av

e
D

is
cu

ss
ed

V
u
ln

er
ab

il
it

ie
s

vu
lU

se
rs

,
S
u
b
gr

ap
h

(G
v
u
ln
s
(v
u
lU
se
rs
,v
u
lE
d
g
es

))
,

an
d

S
u
b
gr

ap
h

(G
v
u
lN

ei
(v
u
lN
ei
s,
v
u
lN
ei
E
d
g
es

))
.

P
ro

p
e
rt

y
D

2
w

e
b

u
se

rs
U

se
rs

m
e
n
ti

o
n
in

g
v
u
ln

e
ra

b
il
it

ie
s

as
a

su
b
se

t
of

n
o
d
es

as
a

su
b
gr

ap
h

as
a

su
b
gr

ap
h

w
it

h
al

l
1-

h
op

n
ei

gh
b

or
er

s
N

o
d
e
s

53
,1

78
36

5
36

5
10
,4

69
E

d
g
e
s

73
0,

74
0

u
n
d
efi

n
ed

1,
49

2
20

2,
07

0
T

h
e

a
v
e
ra

g
e

o
f:

In
-d

e
g
re

e
13
.7

4
64
.9

0
4.

08
19
.3

0
O

u
t-

d
e
g
re

e
13
.7

4
51
.4

5
4.

08
19
.3

0
S
u
m

o
f

in
-d

e
g
re

e
w

e
ig

h
ts

35
.8

0
25

0
48
.0

7
75
.7

3
S
u
m

o
f

o
u
t-

d
e
g
re

e
w

e
ig

h
ts

35
.8

0
21

5
48
.0

7
75
.7

3
In

-d
e
g
re

e
ce

n
tr

a
li

ty
2.

59
e−

4
1.

22
e−

3
1.

12
e−

2
1.

84
e−

3

O
u
t-

d
e
g
re

e
ce

n
tr

a
li

ty
2.

59
e−

4
9.

68
e−

4
1.

12
e−

2
1.

84
e−

3

B
e
tw

e
e
n
e
ss

ce
n
tr

a
li

ty
7.

2e
−
5

1.
29
e−

3
1.

89
e−

4
2.

35
e−

4

E
ig

e
n
v
e
ct

o
r

ce
n
tr

a
li

ty
2.

18
e−

4
4.

68
e−

4
5.

95
e−

3
8.

21
e−

4

P
a
g
e
ra

n
k

1.
90
e−

5
1.

27
e−

4
2.

74
e−

3
9.

6e
−
5

59

These individuals, or vulUsers, are spread across many D2web forums (46 forums

out of 151). Further, they are generally more active than other users in the same

forums. As depicted in Table 3.2, the average in-degree (64.90) and out-degree (51.45)

for the subset of vulUsers are orders of magnitude higher than the same measures

for all users in the graph (13.74)—about 5 times higher in-degree and 4 times higher

out-degree. This shows that the average hacker in vulUsers is exposed to a larger

population of hackers than a normal hacker. Expectedly, we observe that a hacker

from vulUsers is more likely to engage in discussions with another hacker from the

same group than he/she does with others. For example, the average in-degree and out-

degree (4.08) for the subgraphGvulns indicates that, on average, a user has connections

with about 4 other vulUsers (about 1% of the population of vulUsers); whereas he/she

would reply to about 51 users and make about 64 other users reply to his/her post,

less than 0.1% of the total population. For these reasons, vulUsers generally, exhibit

significantly higher centrality and importance measures as compared to normal users

in G. However, we observe that the distribution of network measures vary largely

within this group of users. We also observe that about 30% of the vulUsers have no

communication history with other users within the same group. Figure 3.4 shows a

visualization for the subgraph Gvulns, which confirms the two observations. Finally,

about 25% of vulUsers joined the D2web community less than three days before their

first vulnerability mention.

3.5 Experimental Setup

We perform experiments on the set of vulnerabilities mentioned on D2web forums

in the period from January 2010 to March 2017. We exclude the vulnerabilities

that were mentioned by users with no communication history. We also exclude the

vulnerabilities that had been detected in the wild by Symantec before they were

60

Figure 3.4: The Subgraph of G That Is Induced by the Set of Users Who Have
Mentioned Vulnerabilities in Their Postings.

mentioned in any of the D2web posts since those vulnerabilities could be retrieved by

querying the database without prediction. Our resultant dataset contains 157 distinct

vulnerabilities, 24 of which have the class label exploited.

Different machine learning classifiers are compared,7 but we only report the perfor-

mance achieved by the best performing classifier, which is Random Forest (RF) [58].

RF is an ensemble of decision trees generated from the training data. Each tree pro-

duces a prediction independent of other trees, with the algorithm taking the majority

vote at the end. In each of the experiments, we report an averaged performance of

five runs.

7Classifiers used include: Support Vector Machine (SVM), Logistic Regression, and Naive Bayes.

61

3.5.1 Performance Evaluation

We evaluate the performance of the predictors using precision, recall, and the har-

monic mean of precision and recall, which is F1 measure. As explained in Chapter 2,

precision is the fraction of vulnerabilities that were exploited from all vulnerabilities

predicted as being exploited, and recall is the fraction of correctly predicted exploited

vulnerabilities from the total number of exploited vulnerabilities.

We also compute Receiver Operating Characteristics (ROC) for each run and

report Area Under Curve (AUC) of the classifier. ROC graphically illustrates the

classification performance by plotting the true positive rate (TPR) against the false

positive rate (FPR) at different points of the decision boundary.

3.5.2 Results

Experiments under real-world conditions. In this set of experiments, we sort the

vulnerabilities by their D2web date, then we train our classifiers on the vulnerabilities

mentioned before June 2016 (125 vulnerabilities), and test on the vulnerabilities from

June 2016 to March 2017 (32 vulnerabilities, only 3 are exploited). The classification

performance achieved by our RF model has an average precision of 0.57, recall of

0.93, and F1 of 0.67. The same classifier is able to achieve on average AUC of 0.95.8

The lower score of precision is attributed to the fact that Symantec’s data is biased

towards reporting exploits targeting vulnerabilities that exist in software products

from certain software vendors such as Microsoft and Adobe [1]. Since our model is

found to predict vulnerabilities as being exploited from other vendors as well, we

believe that some false positives were exploited in the wild but never detected by

Symantec.

8The results of 5 runs show relatively high variance due to the small number of samples on which
the models are tested.

62

Ablation test and cross-validation. Since the number of vulnerabilities in our

testing dataset in the previous experiment is relatively small, we further apply strat-

ified 5-fold cross-validation on the whole dataset. In this experiment, the samples

are intermixed; hence, these conditions do not reflect the conditions of real-world

streaming prediction (i.e., predicting the likelihood of exploitation at the time of the

vulnerability mention). The average F1 achieved is 0.72, with a precision of 0.61, a

recall of 0.89, and an AUC of 0.88.9

To measure the impact of individual feature sets on the overall classification per-

formance, we apply two tests: (1) an ablation test (depicted in Figure 3.5) where

the change in precision, recall, F1, and AUC is recorded when each set of features is

removed from the prediction model, and (2) a test on individual feature sets (depicted

in Figure 3.6) where the classification performance is reported for models trained on

only one set of features at a time. In the ablation test, when the set of social network

features is removed from the model, some decrease in performance was recorded as

depicted in Figure 3.5. In the individual feature tests, the social network measures

resulted in an improvement in performance that is significantly higher than the im-

provement recorded from the inclusion of other feature sets. We note that the simple

classifier - which labels all vulnerabilities as being exploited, results in a precision of

0.16, a recall of 1, at an F1 of 0.27 and an AUC of 0.5.

3.6 Discussion

In the ablation test, the largest drop in F1 occurred when the CVSS set of features

was removed, followed by the removal of social network measures with a comparable

drop in F1. It is important to note that CVSS vector is designed to assess the

9Standard deviation for the evaluation metrics across the five runs is between 0.02 (F1 and AUC)
and 0.06 (recall).

63

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

All Features CVSS Vector
(removed)

Social network
measures
(removed)

CWE (removed) D2web language
(removed)

D2web content &
NVD description

(removed)

Pe
rf

o
rm

an
ce

Precision Recall F1 AUC

Figure 3.5: The Classification Performance Achieved by Applying Ablation Test
With 5-Fold Cross-Validation.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

All Features CVSS Vector Social network
measures

CWE D2web language D2web content &
NVD description

Pe
rf

o
rm

an
ce

Precision Recall F1 AUC

Figure 3.6: The Classification Performance Achieved by Individual Feature Sets.

64

vulnerability exploitability and impact, and the assignment of values to the different

components of the vector is manually done by domain experts.10 Therefore, being able

to achieve performance comparable to the expensive CVSS vector when social network

features are used is very promising. However, we do note that even the experiments

here where we only use the CVSS vector differ substantially from previous work. As

we have selected a-priori on vulnerabilities that have appeared on D2web, we observe

a superior performance of CVSS score in this chapter when compared to previous

work.

Additionally, when the individual feature sets were examined, the best performing

features were the TF-IDF computed from both the content of D2web postings and

the vulnerability description retrieved from the NVD. The second-best performing

features were the social network measures, scoring F1 that is significantly higher than

F1 scores achieved by the other individual feature sets, excluding the textual features.

The D2web textual content provides rich information about the context in which the

vulnerability is discussed. Furthermore, the software vendor (e.g., Microsoft, Adobe)

can be easily derived from the NVD description; leading the model to potentially over-

fit the biased ground truth. In all experiments, social network measures demonstrated

their viability as predictors of potential cyber threats.

3.7 Related Work

3.7.1 Vulnerability Exploitation Prediction

A recent study found that CVSS base score metrics are poor indicators of exploita-

tion [35]. Many vulnerabilities are assigned high scores, resulting in very high false

positive rates. Sabottle et al. [1] proposed an SVM classifier that leverages data feeds

10https://www.first.org/cvss/v2/guide

65

from Twitter with explicit mentions to legitimate CVE identifiers to predict whether

a vulnerability will have proof-of-concepts available in one experimental setup, and

predict whether a vulnerability will be detected in the wild in other experimental

setup. Results in their work are reported on time-intermixed samples (i.e., samples

in testing set may have appeared before samples in training set), and including sam-

ples where the exploitation date is before any of the tweets are posted. Both practices

have been discussed in [30] to measure their impact on real-world proactive exploita-

tion prediction settings. The work in [30] replicates the experiments done in [1] (with

data feeds spanning different periods) to predict the existence of proof-of-concept

exploits from EDB. They found that the experimental methodology highly influence

the results. In both papers, the dynamics of user connectivity are not studied.

3.7.2 Social Network Analysis

An extensive amount of work has focused on the usage of measures computed from

a social network of actors to identify malicious actions [68, 69, 70]. For example, Cao

et al. [70] proposed a method called SybilRank that relies on social network measures

to identify fake accounts (Sybils). Across multi-disciplines, hacker communities in un-

derground hacking forums have been widely studied to understand the dissemination

of information among hackers, the motives for hacking, and the reputation and skill

level of hackers to detect threats [71, 72, 73]. However, the dynamics of connections

within hacker communities have not been quantified as predictors for vulnerability

exploitation. We find the measures computed from social connections to be promising

predictors of future cyber attacks.

66

3.8 Conclusion

Our work in this chapter contributes toward understanding user connectivity in

D2web forums and extracting measures that serve as predictors of cyberattacks. Using

these measures, the developed models predict if exploits are going to be detected in

the wild. Our experimental results demonstrate that the addition of predictors derived

from the social network structure improves recall by about 19% while maintaining

precision. Besides, these predictors support models that generalize well with biased

ground truth (i.e., under-representing vulnerabilities affecting software from certain

vendors).

67

Chapter 4

A RULE LEARNING-BASED APPROACH TO PREDICT

ORGANIZATION-TARGETED EXTERNAL THREATS

4.1 Introduction

The majority of recent cyber incidents, such as data breaches at Equifax, Veri-

zon, Gmail, Instagram, and others [74, 75], are believed to be originated from threat

actors sending malicious emails—emails with malicious attachments or with links to

destinations that serve malicious content [76, 77]. A 2017 Verizon investigation report

stated that 75% of breaches were perpetrated by outsiders exploiting known vulnera-

bilities [78]. Although the cybersecurity research community constantly demonstrates

that these incidents could have been avoided, proactively identifying and systemati-

cally understanding when and why such events are likely to occur is still challenging.

We demonstrate in Chapters 2 and 3 how cyberthreat intelligence, collected from

various sources such as D2web, is useful for predicting if exploits are going to be cir-

culated in the wild. In this chapter, we present an approach to predict when, in the

future, certain organization-targeted cyberattacks are likely to occur, an important

prediction task for cybersecurity analysts, i.e., allowing to prioritize what defense

measures to deploy first.

With predictive features and enough data, statistical learning approaches often

provide accurate predictions in terms of standard performance measures, such as

precision and recall, which, for many prediction tasks, are most desirable. For other

tasks, generating transparent and explainable predictions that allow human experts

to understand the reasoning that leads to certain predictions could be more valuable

68

than the predictions themselves [79]. These two notions, accuracy and interpretability,

are equally considered in this work.

In this chapter, we describe the technical approach that identifies indicators of

certain enterprise-targeted cyberattacks from unconventional sources of threat intel-

ligence (D2web) and uses them to predict attacks in the future. In doing so, we

use concepts from logic programming, in particular, the concepts of Point Frequency

Function (pfr) from Annotated Probabilistic Temporal Logic (APT- logic) [80, 81, 82].

The rules it learns are of the form “if certain hacker activity is observed in a given

time point, then there will be an x number of attacks of type y, targeting organization

o in exactly ∆t time points, with probability p.” Similar to the previous chapters, we

obtain real-world hacker discussion data from a commercially available API, main-

tained by a cyberthreat intelligence firm (called CYR3CON)1. We also obtain over

600 historical records of targeted real-world cyberattack incidents. These incidents

are recorded from the logs of two large enterprises participating in the IARPA Cyber-

attack Automated Unconventional Sensor Environment (CAUSE) program.2

During the execution of the CAUSE program, our approach was integrated into

a deployed system that submitted real-time warnings that originated from multiple

predictive models. Our original approach—explained in this chapter and originally de-

veloped and presented in [28]—produced warnings often connected to a single source.

However, the ephemeral nature of many D2web sources led to challenges in modeling

and predicting over an extended period of time. Therefore, we extend the capabilities

of the original approach using indicators that capture aggregated discussion trends

1https://cyr3con.ai

2https://www.iarpa.gov/index.php/research-programs/cause

69

across multiple and additional hacker community platforms (see Section 4.9). These

platforms include D2web as well as environments such as Chan sites3 and social media.

The main goal that devised the design of the current approach was to generate

warnings that predict when cyberattacks that are likely to occur. These warnings are

required to be:

• Timely: to indicate the exact point in time when a predicted attack will occur;

• Actionable: to provide metadata/warning details, i.e., the target enterprise,

type of attack, volume, software vulnerabilities and tags identified from the

hacker discussions;

• Accurate: to predict unseen real-world attacks with an average increase in F1

of over 45% for one enterprise and 57% for the other, compared to a baseline

approach; and

• Transparent: to allow analysts to easily trace the warnings back to the rules

triggered, discussions that fired the rules, etc.

The rest of the chapter is organized as follows. Section 4.2 presents related work.

Section 4.3, presents technical preliminaries formally explaining our logic program-

ming approach. Section 4.4 provides detailed explanation of the data. Processing

flow is described in Section 4.5. Section 4.6 offers an overview of the design and com-

ponents of the developed approach. Empirical self-assessment results are provided in

Section 4.7.3. Section 4.8 introduces technical challenges that arose with predictions

over an extended period of time. Section 4.9 provides a technical extension over the

developed approach to address these challenges. Section 4.10 concludes this chapter.

3A type of Internet forums, mostly image boards, that encourage visitors to anonymously post
content. Some Chan sites are found to be leveraged by activists, such as the well-known hacking
activist group Anonymous.

70

4.2 Related Work

The task of selecting and deploying cybersecurity countermeasures is generally

expensive [83, 84, 85]. Therefore, the problem of predicting cybersecurity-related

events has gained a growing interest. Yet, much of the current literature focuses on

producing accurate predictions. Our work, however, considers other goals, such as

producing interpretable predictions that support human-in-the-loop-driven decisions.

This section reviews works that are related to both these goals.

Predicting cyberattack events. Recently, predicting cybersecurity events has re-

ceived an increasing attention [86, 22, 87]. For example, Soska and Christin [22]

developed an ML-based approach that predicted whether a given website will turn

malicious in the future using features derived from the webpage structure as well as

content and traffic statistics. Their approach was evaluated on a corpus of 444,519

websites (highly imbalanced, with only about 1% of the sites belonging to the pos-

itive class). The approach achieved a true positive rate of 66% and a false positive

rate of 17%. Although they used the C4.5 decision tree classifier, the predictions

were made by a single-layered ensemble approach using 100 features. The authors

reported that the classification of non-malicious sites was generally less trivial. Other

studies focused on predicting cybersecurity events of certain types, such as vulnera-

bility exploitation [1, 31, 30, 29]. In [31], the authors proposed ML classifiers that

predicted the likelihood of vulnerability exploitations in the future. They tested a

population of over 12,000 software vulnerabilities using features computed from the

activities of white-hat and black-hat hacking communities following official vulner-

ability disclosures. The proposed method outperformed the widely-used standard

severity scoring system (a.k.a., CVSS4), with F1 more than doubled. These studies

4https://www.first.org/cvss

71

focused on vulnerability-targeted attacks, whereas our focus is on attacks targeting

particular commercial enterprises. Similar to our prediction task, the works presented

in [26, 27, 88] focused on (1) identifying and analyzing enterprise-targeted attack indi-

cators from online cybersecurity-related discussions, and (2) producing predictions of

possible future events. These studies identified attack indicators from (1) hacker sen-

timents from posts in hacking forums [26], (2) word-counts from hacker discussions

on D2web, blogs, and Twitter [27], or (3) social network structure generated from

D2web forum discussions [88]. All these works used ML approaches solely focusing

on producing accurate predictions, while we consider predictions that are accurate

and transparent.

Supporting interpretable decisions. Knowledge representation and reasoning

(KRR) supports formally explainable reasoning, which is desired for many applica-

tions, including cybersecurity incidents prediction [89, 90]. Nunes et al. [15] developed

an argumentation model for cyber-attribution using a dataset from the capture-the-

flag event held at DEFCON,5 a famous hacking conference. The model was based

on a formal reasoning framework called Defeasible Logic Programming [91]. Using

a two-layered hybrid KRR-ML approach, the ML classification accuracy increased

from 37% to 62%. While their approach supported automated reasoning, it was used

for cyber-attribution only after the attacks were observed. Moreover, human-driven

classification was not a desirable propriety. Instead, the reasoning framework was

used to reduce the search space, thereby improving accuracy. Furthermore, Marin et

al. [92] investigated user adoption behavior to predict in which topic of a darkweb

hacker forum will users post in the future, given the influence of their peers. The

authors formulated the problem as a sequential rule mining task [93], where the goal

is to mine for the user posting rules through sequences of user posts and produce

5https://www.defcon.org

72

predictions. Each rule of the form X ⇒ Y is interpreted as follows “if X (a set of

hackers) engages in a given forum topic, Y (a single hacker) is likely to engage in

the same topic (or adopt it) with a given confidence afterward, mainly because of

the influence of X.” They obtained prediction precision results of up to 0.78, with a

precision gain approaching 800%, compared to a baseline created with the prior prob-

abilities of hacker posts. While their approach is rather impressive, they addressed a

prediction task that is different from ours.

4.3 Preliminaries

In this section, we define the syntax and semantics of Annotated Probabilistic

Temporal Logic (APT-logic) applied to our domain, which is built upon the earlier

work of Shakarian et al. [81].

4.3.1 Syntax

Herbrand base. We use BL to denote the Herbrand base (a finite set of ground

atoms) of a first order logical language L. Then, we divide BL into two disjoint sets:

BL{conditions} and BL{actions}, so that BL ≡ BL{conditions} ∪ BL{actions}. BL{conditions}

comprehends the atoms allowed only in the premise of APT rules, representing con-

ditions or user activity performed on hacker community websites, e.g.,

mention on(forum 1, debian)

On the other hand, BL{actions} comprehends the atoms allowed only in the conclu-

sion of APT rules, representing actions or malicious activities reported by the data

73

providers in their own facilities, e.g.,

attack(data provider ,malicious email , x)

Formulas. Complex sentences (formulas) are constructed recursively from atoms,

using parentheses and the logical connectives (¬ negation, ∨ disjunction, ∧ conjunc-

tion).

Time formulas. If F is a formula, t is a time point, then Ft is a time formula, which

states that F is true at time t.

Probabilistic time formulas. If φ is a time formula and [l, u] is a probability

interval ⊆ [0,1], then φ ∶ [l, u] is a probabilistic time formula (ptf). Intuitively,

φ ∶ [l, u] says φ is true with a probability in [l, u], or using the complete notation,

Ft ∶ [l, u] says F is true at time t with a probability in [l, u].

APT rules. Suppose condition F and action G are formulas, t is a natural number,

[l, u] is a probability interval and fr ∈ F is a frequency function symbol that we will

define later. Then F
fr↝ G ∶ [t, l, u] is an APT (Annotated Probabilistic Temporal)

rule, which informally saying, computes the probability that G is true in exactly ∆t

time units after F becomes true. For instance, the APT rule below informs that the

probability the data provider is being attacked by a malicious email, in exactly 3-time

units after users mention “debian” on forums 1, is between 44% and 62%.

mention on(set forum 1, debian) pfr↝

attack(data provider,malicious email) ∶ [3,0.44,0.62]
(4.1)

74

4.3.2 Semantics

World. In general, a world is a set of ground atoms that belongs to BL. It describes

a possible state of the (real) world being modeled by an APT-logic program. Some

possible worlds in our context are:

• {spike(Amazon AWS)},

• {mention on(forum 1 ,debian),attack(data provider ,malicious email , x)},

• {attack(data provider ,malicious email , x)},

• {}

Thread. A thread is a series of worlds that models the domain over time, where

each world corresponds to a discrete time-point in T = {1, ..., tmax}. Th(i) specifies

that according to the thread Th, the world at time i will be Th(i). Given a thread

Th and a time formula φ, we say Th satisfies φ (denoted Th ⊧ φ) iff:

• If φ ≡ Ft for some ground time formula Ft, then Th(t) satisfies F ;

• If φ ≡ ¬ρ for some ground time formula ρ, then Th does not satisfy ρ;

• If φ ≡ ρ1 ∧ ρ2 for some ground time formulas ρ1 and ρ2, then Th satisfies ρ1 and

Th satisfies ρ2;

• If φ ≡ ρ1 ∨ ρ2 for some ground time formulas ρ1 and ρ2, then Th satisfies ρ1 or

Th satisfies ρ2;

Frequency functions. A frequency function represents temporal relationships within

a thread, checking how often a world satisfying formula F is followed by a world satis-

fying formula G. Formally, a frequency function fr belonging to F maps quadruples

75

of the form (Th,F,G, t) to [0,1] of real numbers. Among the possible ones proposed

in [80], we investigate here alternative definitions for the point frequency function

(pfr), which specifies how frequently action G follows condition F in “exactly” ∆t

time points. To support ongoing security operations, we need to relax the original

assumption of a finite time horizon tmax in [80, 81]. Therefore, we introduce here a

different but equivalent formulation for pfr that does not rely on a finite time horizon.

To accomplish that, we first need to define how a ptf can be satisfied in our model.

If we consider A as the set of all ptf’s satisfied by a given thread Th, then we say

that Th satisfies Ft ∶ [l, u] (denoted Th ⊧ Ft ∶ [l, u]) iff:

• If F = a for some ground a, then ∃at ∶ [l′, u′] ∈ A s.t. [l′, u′] ⊒ [l, u];

• If Ft ∶ [l, u] = ¬F ′
t ∶ [l, u] for some ground formula F ′, then Th ⊧ F ′

t ∶ [1−u,1− l];

• If Ft ∶ [l, u] = F ′
t ∶ [l, u] ∧ F ′′

t ∶ [l, u] for some ground formulas F ′ and F ′′, then

Th ⊧ F ′
t ∶ [l, u] and Th ⊧ F ′′

t ∶ [l, u];

• If Ft ∶ [l, u] = F ′
t ∶ [l, u] ∨ F ′′

t ∶ [l, u] for some ground formulas F ′ and F ′′, then

Th ⊧ F ′
t ∶ [l, u] or Th ⊧ F ′′

t ∶ [l, u];

The resulting formulation of pfr is shown in Equation 4.2, which is equivalent to

the original one proposed in [80] when tmax comprises the whole thread Th (all time

points):

pfr(Th,F,G,∆t) =

⎡⎢⎢⎢⎢⎢⎢⎣

∑
t∣Th⊧Ft∶[l,u]∧Th⊧Gt+∆t∶[l′,u′]

l′

∑
t∣Th⊧Ft∶[l,u]

u
,

∑
t∣Th⊧Ft∶[l,u]∧Th⊧Gt+∆t∶[l′,u′]

u′

∑
t∣Th⊧Ft∶[l,u]

l

⎤⎥⎥⎥⎥⎥⎥⎦

(4.2)

76

Satisfaction of APT rules and programs. Th satisfies an APT rule F
pfr↝ G ∶

[∆t, l, u] (denoted Th ⊧ F pfr↝ G ∶ [∆t, l, u]) iff:

pfr(Th,F,G,∆t) ⊆ [l, u] (4.3)

Probability intervals. For this application, the possible values for l, l′, u, and u′

are either 0 or 1. Therefore, the rules learned using Equation 4.2 always have point

probabilities. To derive a probability interval [l, u] corresponding to a point prob-

ability p of rule r, we use standard deviation (i.e., σ) computed from the binomial

distribution—remember that the possible outcome of event G following event F is

either 0 or 1. We subtract/add one standard deviation from/to the point probability

to determine the lower/upper bounds of the probability range, i.e., [p−σ, p+σ]. The

standard deviation is computed as follows:

σ =
√
support F ∗ p ∗ (1 − p)

support F
(4.4)

where support F is the number of times the precondition or F is observed. For

example, the precondition of rule 4.1 was satisfied by the thread 32 times. Of these,

17 times the postcondition of the rule was also satisfied, resulting in a point probability

of approximately 0.53. The value of σ is approximately 0.09, hence the probability

range [0.44,0.62].

4.4 Dataset Description

This section explains the ground truth data, obtained from the data providers,

and provides discussions about the data collection infrastructure that supplies hacker

discussion data feeds.

77

4.4.1 D2web Crawling Infrastructure

Similar to the data used in Chapters 2 and 3, here we summarize the D2web crawl-

ing infrastructure that CYR3CON maintains—originally introduced in [18]. Cus-

tomized lightweight crawlers and parsers were built for each site to collect and extract

data. Data is collected from more than 300 platforms (forums and marketplaces). To

ensure the collection of relevant data, machine learning models are used to only retain

discussions related to cybersecurity and omit irrelevant data.

4.4.2 Enterprise-Relevant External Threats

To construct rules and evaluate the performance of the learned model, we use

data from historical records of attack attempts that are recorded from the logs of

two enterprises participating in the IARPA CAUSE program. One of the two en-

terprises is a defense industrial base (referred to as Armstrong) while the other is a

financial services organization (referred to as Dexter). The database is distributed

to the CAUSE performers in increments, once every few months. Each data point

is a record of a detected deliberate, malicious attempt to gain unauthorized access,

alter or destroy data, or interrupt services or resources in the environment of the

participating organizations. Those malicious attempts were detected in an uncon-

trolled environment and by different security defense commercial products such as

anti-virus, intrusion detection systems, and hardware controls. Each ground truth

(GT) record includes ID, Format Version, Reported Time, Occurrence Time, Event

Type, and Target Industry6. The types of attacks included in the GT dataset are:

6We intentionally skip some details about other fields of the GT records due to the limitation in
space and irrelevance to the scope of this chapter.

78

• Malicious email (M-E). A malicious attempt is identified as a Malicious

Email event if an email is received by the organization, and it either contains

a malicious email attachment, or a link (embedded URL or IP address) to a

known malicious destination.

• Malicious destination (M-D). A malicious attempt is identified as a visit

to a Malicious Destination if the visited URL or IP address hosts malicious

content.

• Endpoint malware (E-M). A Malware on Endpoint event is identified if

malware is discovered on an endpoint device. This includes, but not limited to,

ransomware, spyware, and adware.

Other events related to insider threats are out of the scope of this work. A

summary of the time periods and the number of records for each attack type is

provided in Section 4.7.3.

4.5 Extracting Indicators of Cyberthreat

Common Vulnerabilities and Exposures (CVE) numbers are unique identifiers as-

signed to software vulnerabilities reported in the National Vulnerability Database

(NVD). Common Platform Enumeration (CPE) is a list of software/hardware prod-

ucts that are vulnerable to a given CVE. CPE data can be obtained from the NVD.

We query the database using API calls to look for postings with software vulnerability

mentions (in terms of CVE numbers). Regular expressions are used to identify CVE

mentions.7 We map each CVE to pre-identified groups of CPEs. Each is a set of

CPEs belonging to similar software vendors and/or products. We identified over 100

groups of CPEs, e.g., Microsoft Office, Apache Tomcat, and Intel. Moreover, CVEs

7For more explanation, see https://cve.mitre.org/cve/identifiers/syntaxchange.html.

79

are mapped to some nation-state threat actors who are known to leverage certain

CVEs as part of their attack tactics—perhaps among the most well-known threat

actors is the North Korean group HIDDEN COBRA, which was recently identified to

be responsible for an increasing number of cyberattacks to US targets [94]. This map-

ping is determined based on an encoded list of threat actors along with vulnerabilities

they favor. The list is compiled by manually analyzing cyberthreat reports that were

published by cybersecurity firms.8 The final CPE groupings and nation-state actor

mappings are used as preconditions by the learner.

4.6 A Novel Logic Programming-Based Cyberthreat Prediction System

This section provides discussions about the components of our state-of-the-art

prediction system, as well as the input and output data. Fig. 4.1 shows the system

design, which has two main components: the learner and the predictor.

Hacker Community Discussions
(CYR3CON API)

LEARNER

Ground Truth
(Data Provider)

APT-logic Rules

PREDICTORWarnings

SOC

Figure 4.1: Logic Programming-Based Cyberthreat Prediction System

8See the Kaspersky Lab’s 2016 report as an example, https://media.kaspersky.com/en/

business-security/enterprise/KL_Report_Exploits_in_2016_final.pdf

80

4.6.1 Learner

The learner learns APT-logic rules that link indicators of cyberthreats and real-

world attack events. The indicators of threats are annotated from a collection of

hacker discussions with vulnerability mentions, following the approach discussed in

Section 4.5. The real-world attack events are cyberattack attempts observed by the

data providers. Each event, a CPE group or an attack attempt, is annotated with the

date when the corresponding vulnerability was mentioned or when the incident was

recorded. These dates are mapped to discrete time-points to construct the thread,

which is used in the rule learning approach discussed in Section 4.3. The output of

the learner is an APT-logic program, i.e., a set of APT rules. These rules, along with

indicators annotated from the hacker community discussions are used by the predictor

to produce warnings. Figure 4.2 depicts the percentage increase in the likelihood of

attacks, from the rules learned, compared to the prior probability of attacks—the

probability of attacks with no knowledge of hacker activity. The increase is significant,

which is a promising observation for accurate predictions

4.6.2 Predictor

The predictor uses the output of the learner, i.e., the APT-logic program and

the indicators annotated from D2web hacker discussions. It triggers rules if any

indicators are observed that match the preconditions of the rules in the APT-logic

program [28]. If a match exists, the system generates a warning with metadata, such

as the probability, event type, and target organization. This allows analysts to easily

trace the warnings back to the rules that were triggered, discussions that fired the

rules, etc. Figure 4.3 shows two screenshots taken from a deployed system that uses

our approach.

81

0 1 2 3 4 5 6 7
tmali

cio
us

-em
ailmali

cio
us

-de
sti

na
tio

nen
dp

oin
t-m

alw
are

Ev
en

t t
yp

e

0

150

300

450

600

750

%
 in

cr
ea

se
 in

 li
ke

lih
oo

d
of

 o
cc

ur
re

nc
e

(a) Armstrong

0 1 2 3 4 5 6 7
t

mali
cio

us
-em

ail

en
dp

oin
t-m

alw
are

Ev
en

t t
yp

e

0

150

300

450

600

750

%
 in

cr
ea

se
 in

 li
ke

lih
oo

d
of

 o
cc

ur
re

nc
e

(b) Dexter

Figure 4.2: Percentage Increase in Attack Likelihood Over Attack Prior Probability
for the Learned Rules, per ∆t per Event Type, and for the Two Companies (a)
Armstrong, and (B) Dexter.

Figure 4.3: Two Screenshots From a Deployed System That Uses Our Approach.

82

4.7 Predicting Enterprise-Targeted Attacks

During phase 2 of the IARPA CAUSE program, our approach was integrated into

a deployed system that generates, fuses, and actively submits warnings to a SOC

for performance evaluation purposes. Details about the deployed system, provided

in [28], are out of the focus of this chapter, but we follow some of the evaluation

practices adopted by the CAUSE program (i.e., using the subset of the evaluation

metrics that are relevant to the prediction task). Furthermore, the warnings that are

submitted by each system are evaluated by the SOC on a monthly basis. However,

the said evaluations are aggregated for all models belonging to a single system. To

evaluate our approach, it needs to be isolated from other models used by the same

system. In this section, we internally evaluate our approach before the warnings are

fused with warnings from other models.

4.7.1 Experimental Settings

We perform evaluations on the warnings targeting Armstrong that were submitted

during July, August, and September of 2017. The results are aggregated by months

for the experiments on Armstrong data while aggregating by periods of 7 days for

Dexter. The latter starts from July 1 to July 28, 2016. These time windows differ

because the Armstrong dataset covers a longer period than the one covered by Dexter,

and there is no more Dexter data provided or evaluated by the program. The reported

records of Malicious Destination for Dexter only cover a period that ends before the

testing period starts, hence they are not evaluated. For each data provider, rules are

learned from all the records preceding the testing period.

83

4.7.2 Evaluation

Pairing ground truth events with warnings. To receive a score, each warning

needs to be paired up with a single ground truth event occurring within the same

day, or one day after the attack prediction date, i.e., a 1-to-1 relationship—this is a

requirement by the CAUSE program.9 To do so, we use the Hungarian assignment

algorithm [95] to solve the warning-to-ground truth assignment problem, with the

objective to maximize warning-to-attack lead time. The results of the Hungarian

algorithm (i.e., warning-to-ground truth assignments) are used to evaluate the per-

formance of the system. The same approach is used with predictions produced by

the baseline model.

Evaluation metrics. We use the standard evaluation metrics: precision, recall, and

F1. Precision is the fraction of warnings that match ground truth events, recall is

the fraction of ground truth events that are matched, and F1 is the harmonic mean

of precision and recall. Using these metrics, we present a performance comparison

between our approach and a baseline model. Additionally, we show that a fused model

can benefit from the temporal correlations and statistical characteristics captured by

the system and the baseline model, respectively.

4.7.3 Results

We found that our approach outperforms a baseline system that randomly gen-

erates a x number of warnings on each day such that each value of x has a chance

proportional to its frequency of occurrence in the historical data. We repeat the base-

line for 100 runs and take the average of each metric. In the real-time deployment of

our approach, human experts can evaluate the warnings by leveraging the other capa-

9See [28] for an elaborate explanation.

84

bilities of the system, i.e., transparency and actionable through a Web UI dashboard.

However, in those experiments, any triggered rule is counted, which is not necessarily

important given other details. That said, our approach scored significantly higher

than the baseline system as shown in Table 4.1.

85

T
a
b
le

4
.1

:
E

va
lu

at
io

n
R

es
u
lt

s.

D
a
ta
se
t

ty
p
e

T
es
ti
n
g
st
a
rt
s

#
G
T
-e
v
en

ts
O
u
r
a
p
p
ro
a
ch

B
a
se
li
n
e*

(a
v
er
a
g
e
o
f
1
0
0
ru

n
s)

%
in
cr
ea

se
in

F
1

#
w
a
rn

in
g
s

P
re
ci
si
o
n

R
ec
a
ll

F
1

#
w
a
rn

in
g
s

P
re
ci
si
o
n

R
ec
a
ll

F
1

A
rm

st
ro
n
g

M
-E

J
u
l-
1
7

2
4

3
2

0
.3
1
3

0
.4
1
7

0
.3
5
7

1
1
.7
5
9

0
.4
1
7

0
.2
0
5

0
.2
7
1

3
2
%

A
u
g
-1
7

1
1

3
1
.0
0
0

0
.2
7
3

0
.4
2
9

1
1
.9
6
6

0
.2
8
9

0
.3
1
5

0
.2
9
9

4
3
%

S
ep

-1
7

1
3

1
8

0
.1
6
7

0
.2
3
1

0
.1
9
4

1
2
.7
9
3

0
.2
4
9

0
.2
4
9

0
.2
4
7

-2
1
%

M
-D

J
u
l-
1
7

4
1
2

0
.1
6
7

0
.5
0
0

0
.2
5
0

3
.5
3
4

0
.0
9
9

0
.0
9
1

0
.0
9
0

1
7
8
%

A
u
g
-1
7

9
2
3

0
.1
7
4

0
.4
4
4

0
.2
5
0

3
.1
2
1

0
.2
3
2

0
.0
8
6

0
.1
2
0

1
0
8
%

S
ep

-1
7

3
1
0

0
.1
0
0

0
.3
3
3

0
.1
5
4

2
.9
4
8

0
.0
7
1

0
.0
7
5

0
.0
6
8

1
2
6
%

E
-M

J
u
l-
1
7

1
4

1
0

0
.3
0
0

0
.2
1
4

0
.2
5
0

8
.5
5
2

0
.3
2
6

0
.2
0
0

0
.2
4
2

3
%

A
u
g
-1
7

1
8

4
5

0
.2
0
0

0
.5
0
0

0
.2
8
6

9
.1
5
5

0
.3
2
4

0
.1
6
8

0
.2
1
7

3
2
%

S
ep

-1
7

1
7

2
1

0
.2
8
6

0
.3
5
3

0
.3
1
6

8
.8
7
9

0
.2
4
7

0
.1
2
7

0
.1
6
4

9
3
%

D
ex

te
r

M
-E

1
-J
u
l-
1
6

2
1
3

0
.1
5
0

1
.0
0
0

0
.2
6
7

2
.7
2
0

0
.1
5
7

0
.2
0
5

0
.1
6
9

5
8
%

8
-J
u
l-
1
6

7
1
0

0
.5
0
0

0
.7
1
4

0
.5
8
8

2
.6
1
0

0
.6
5
5

0
.2
5
3

0
.3
4
8

6
9
%

1
5
-J
u
l-
1
6

9
6

0
.3
3
3

0
.2
2
2

0
.2
6
7

2
.7
7
0

0
.6
1
9

0
.1
8
8

0
.2
7
6

-3
%

2
2
-J
u
l-
1
6

4
2

0
.5
0
0

0
.2
5
0

0
.3
3
3

3
.0
5
0

0
.4
6
9

0
.3
5
5

0
.3
8
5

-1
4
%

E
-M

1
-J
u
l-
1
6

1
2

0
.5
0
0

1
.0
0
0

0
.6
6
7

1
.7
9
0

0
.1
8
9

0
.3
3
0

0
.2
2
6

1
9
5
%

8
-J
u
l-
1
6

3
4

0
.2
5
0

0
.3
3
3

0
.2
8
6

1
.7
5
0

0
.2
4
5

0
.1
6
7

0
.1
8
6

5
4
%

1
5
-J
u
l-
1
6

3
1

1
.0
0
0

0
.3
3
3

0
.5
0
0

1
.7
4
0

0
.2
8
1

0
.1
9
0

0
.2
1
7

1
3
0
%

2
2
-J
u
l-
1
6

4
2

0
.5
0
0

0
.2
5
0

0
.3
3
3

1
.7
8
0

0
.3
8
3

0
.2
0
8

0
.2
5
7

3
0
%

*
A

S
im

p
le

B
a
se
li
n
e
M
o
d
el

T
h
a
t
G
en

er
a
te
s
x
N
u
m
b
er

o
f
W

a
rn

in
g
s
o
n
E
a
ch

D
a
y
B
a
se
d
o
n
th

e
P
ri
o
r
P
ro
b
a
b
il
it
y
o
f
E
a
ch

P
o
ss
ib
le

V
a
lu
e
o
f
x
T
h
a
t
W

a
s
S
ee
n
in

th
e

T
ra
in
in
g
D
a
ta
.

86

4.8 Technical Challenges

The desired non-functional requirements related to the generated warnings (i.e.,

timely, actionable, accurate, and transparent, as discussed in Section 4.1), need to

be maintained over time. Due to various factors related to both intelligence data

(the ephemeral nature of D2web sites) and enterprise data (data from a Security

Information Event Manager or SIEM, which can be subject to schema differences due

to policy changes over time), we examine further requirements for our approach.

Changing volume of cyberthreat intelligence data. In many applications of

event prediction, the volume of signals from the monitored sensors is assumed to

remain the same across the learning and the predictive phases. However, this as-

sumption does not hold for cyberthreat intelligence data. This is mainly because of

the ephemeral nature of D2web sites, which is caused by reasons such as law enforce-

ment actions, malicious hackers going “dark”, operational security measures employed

by cybercriminals, and differences induced by adding newer data sources. In the ap-

proach discussed so far, changes in the volume of incoming cyberthreat intelligence

data would have a direct impact on the number of warnings, affecting the system’s

performance.

Concept drift. Hacking tactics advance very rapidly to react to the latest advances

in cybersecurity, i.e., new vulnerabilities are discovered, new exploits are integrated

with malware kits, attack signatures are identified, etc. Likewise, the attacks observed

in the wild and the activities of hackers on hacker community websites, including

social media, are always evolving [30]. This change in the underlying data distribu-

tion for both the hacker discussions and the predicted events is known as “concept

drift” [96].

87

4.9 An Extension to the Current Approach

The approach presented thus far produced warnings connected to single sources.

To account for the challenges presented in Section 4.8, we extend upon the variety

of sources used by considering cyberthreat intelligence sources from sources spanning

hacker communities around the globe, including environments such as Chan sites,

social media, paste sites,10 Gray hat communities,11 D2web, and even surface web.

This includes over 400 platforms and over 18 languages. Non-English postings are

translated to English using various language translation services.

As noted, changes in the volume of the incoming cyberthreat intelligence data can

impact the volume of warnings produced. In this extension, we consider indicators

that are evaluated based on the volume of hacker discussions, i.e., capturing discussion

trends exceeding thresholds computed from a sliding time window—this approach is

further discussed in this section. To account for the potential impact of concept drift,

in each month we run our learner on data from the previous 6 months, and use the

resulting rules to predict events in the examined month, as explained in Section 4.7.3.

4.9.1 Extracting Entity Tags

The threat intelligence sources we use supply a vast amount of textual content over

time. We utilize a commercial natural language processing API, TextRazor,12 which

leverages a wide range of machine learning techniques (including Recurrent Neural

Networks) to recognize entities from the context of postings. Each extracted entity

10Online text-hosting services that allow users to host content in plain text, such as source code
snippets and data dumps, and obtain links to the content, often called pastes, to share them on
other online platforms. Pastes are often found in hacker discussions.

11Hackers who exploit software weaknesses in a computer system without the owner’s permission
or knowledge. The goal is often to bring the weakness to the owner’s attention.

12https://www.textrazor.com

88

is associated with a confidence score quantifying the confidence in the annotation.

We set a lower bound on the confidence score to retain only those entities that are

relevant. Two steps are taken to extract the final indicators: (1) annotating spikes

in the volume of individually extracted tags, and (2) for those tags, identifying sets

that frequently spike together.

Annotating spiking tags. We seek to gain an understanding of abnormal hacker

activities that could correlate with attack events. To do so, we define what abnormal

activities are, and use them as preconditions of APT-logic rules. They may or may not

correlate with actual attack events, but the APT-logic program will only contain the

rules whose precondition is found to correlate with the attack events. To identify such

abnormalities, we consider common entity tags that appear on most days, i.e., on 90

days or more, because training periods are always 180 days. An entity is regarded as

abnormal if it is observed on a given day with a spiking volume. Spikes are determined

using statistical control charts [97], i.e., when the count of times an entity is observed

exceeds a moving median added to a multiplier of a moving standard deviation.13

For instance, let F be an itemset, i.e.,

F = {spike(f1), . . . , spike(fn) ∣ ∀i ∈ {1, . . . , n} ∶ fi ∈ Avar}

We assume the existence of three utility functions:

1. count(f, t), which returns the number of time an entity f is extracted on day t,

2. median(f, t,window), which returns the median of set S:

S = {count(f, i) ∣ i ∈ {t −window, . . . , t}}
13We use a sliding window of 20 days.

89

3. stDiv(f, t,window), which returns the standard deviation of S.

The thread Th satisfies a predicate spike(f) at some time point t, denoted Th(t) ⊧

spike(f) iff:

count(f, t) > (median(f, t,window) + (multiplier × stDiv(f, t,window)))

Frequent itemset mining. As explained, preconditions could be atoms or formulas

(i.e., an itemset). We only consider those formulas that are frequently satisfied in the

historical data. To do so, we use the Apriori algorithm [98]. The Apriori algorithm

takes as input a database of transactions—the annotated spiking tags are grouped by

days, each day corresponds to a transaction. The algorithm then produces all itemsets

of hacker activities that are frequently observed together. The identified itemsets are

considered as preconditions and used by both the learner and the predictor.

4.9.2 Results

Fusion. For these experiments, we use a simple combining strategy to test the

performance of a fused model. We first combine the warnings from the two models,

i.e., our approach and the baseline. The warnings are grouped by their generation

date and prediction data. Then, half of the warnings are removed from each group.

The goal is to leverage the power of the individual approaches while limiting their

intersection, i.e., removing half of the duplicate warnings.

Performance comparison. Fig. 4.4 shows the precision-recall curve for each of

the testing months. By itself, our approach performs comparably to the baseline

in terms of F1—specifically providing higher precision in the case of lower recall.

We note that when our approach is combined with the baseline, the results improve

further. The combined approach can significantly outperform the baseline in terms of

90

0.0 0.2 0.4 0.6 0.8 1.0
Recall (July)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Our approach + Baseline
Our approach
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Recall (August)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Our approach + Baseline
Our approach
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Recall (September)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Our approach + Baseline
Our approach
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
Recall (October)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Our approach + Baseline
Our approach
Baseline

Figure 4.4: Precision-Recall Curves for the Fused Approach, Our Approach, and
the Baseline Model, Respectively for Four Months: July, August, September, and
October.

91

both precision and recall, yielding a recall increase of at least 14%, while maintaining

precision. Furthermore, the baseline does not allow for a tradeoff between precision

and recall while our approach produces warnings with probability values—as discussed

in Section 4.3, enabling not only better tradeoff between performance metrics, but

also a metric approximating the importance of each warning and allowing human

analysts to prioritize investigation.

Transparent predictions. Our approach supports transparent predictions so that

the user knows why certain warnings are generated. The user can trace back to the

rule corresponding to a warning, and view its precondition. Table 1 shows a few ex-

amples of preconditions of rules that generated warnings preceding attack incidents.

The user can further pinpoint the collection of hacker discussions that are responsible

for the warning. For example, Fig. 4.5 shows a word cloud generated from the collec-

tion of posts resulting in a warning submitted on August 23. The warning predicts

an event on August 25, i.e., ∆t of 2. An event of malicious email is then observed by

Armstrong on August 26.

Table 4.2: Examples of Preconditions of Rules That Would Have Generated Warn-
ings Preceding Attack Incidents.

Precondition Probability σ Warning date Lead time [days]
spike(Credit card) ∧ spike(Gmail) 0.88 0.07 Aug. 26 1
spike(Email) ∧ spike(Security hacker) 0.86 0.08 Aug. 16 1
spike(Google Play) 0.92 0.04 Aug. 13 2

4.10 Conclusion

This chapter presents a novel approach used in a system that predicts certain

types of cyberattacks targeting specific commercial enterprises. The chapter explains

the underlying logic programming framework (APT-logic) used to model the prob-

abilistic temporal relationships between hacker activities (from hacking community

online platforms) and attack incidents (recorded by the SIEM the data providers).

92

Figure 4.5: A Word Cloud Generated From the Text of Postings that Resulted in a
Positive Warning on August 23.

The developed approach uses APT-logic to first learn such relationships, captured in

annotated rules, then use the learned rules in a deductive approach to reason about

the possibility of future cyberattacks and generate warnings.

Moreover, this chapter addresses limitations of the original version of the approach,

which used indicators of future attacks connected to single D2web sources—an ap-

proach no longer optimal to use because of the changing volume of intelligence data

and the ephemeral nature of D2web sites. There are multiple reasons behind the

changing landscape of D2web sites, such as law enforcement actions, malicious hack-

ers going “dark”, operational security measures employed by cyber-criminals, and

differences caused by the newly added data sources. Therefore, this chapter (1) ex-

tends the sources used in [28] by using sources from other platforms such as social

media and surface web, and (2) introduces an alternative approach considering indi-

cators that are evaluated based on volume of discussion trends exceeding a threshold

computed from a sliding time window.

We demonstrate the viability of our approach by comparing it to a time series

prediction baseline model. Specifically, we show that our approach performs compa-

rably to the baseline model while supporting a favorable precision-recall tradeoff and

93

transparent predictions. Additionally, our system can benefit from the predictions

produced by the baseline model. With the combined approach, recall improves by at

least 14% compared to the baseline model. Finally, we looked into using the system

for data recorded by other data providers, and using intelligence data gathered not

only from expert-hunted sources, but also from sources gathered by web spiders.

94

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation addresses limitations in the current widely-adopted, industry-

standard systems for prioritizing tasks related to cyber-defense. Our goal is to proac-

tively identify cyberthreats. This requires the ability to predict attacks, which is

achieved by developing AI techniques that harness cyberthreat intelligence. We ac-

complished these goals by developing three pieces of research work: predicting if

attacks will occur by examining what cyberthreat intelligence feeds are observed,

predicting if attacks will occur by examining who generates these cyberthreat intelli-

gence feeds, and predicting when attacks will likely occur in the future.

In Chapters 2 and 3, we consider the problem of predicting exploits in the wild for

known software vulnerabilities. Chapter 2 presents ML-based models that leverage

cyberthreat intelligence collected from four data sources: vulnerability databases,

proof-of-concept exploit archives (White-hat community), vulnerability disclosures

on enterprise websites (commercial firms), and over 150 malicious hacking forums

and marketplaces in the darkweb and deepweb (D2web—Black-hat community). We

view the problem as a binary classification problem (i.e., the positive class is will be

exploited). The developed models outperformed the standard vulnerability severity

scoring system (CVSS base score1) with an F1 score more than doubled.

In Chapter 3, we provide analysis from measures derived from the social network

structure of the forum users in the D2web. We particularly show that users who dis-

1https://nvd.nist.gov/vuln-metrics/cvss

95

cuss software vulnerabilities in their postings are significantly more active in posting

and replying to posts than other individuals. The social network measures are then

used as a set of features to predict exploits in the wild. They are compared to the

different feature sets presented in Chapter 2 in terms of their impact on F1 score.

Two experiments are presented: one tests the performance using individual sets of

features, and the other is an ablation test—which checks the decrease on F1 score

after removing each set of features. Compared to other feature sets, the set of social

network features provides the second-best F1 score, and it resulted in the second-

highest F1 score drop when it is eliminated from the features used in the models.

The addition of these features improved recall by 19% while maintaining precision.

In Chapter 4, we develop a novel approach used in a system that predicts certain

types of cyberattacks targeting specific commercial enterprises. We explain the un-

derlying logic programming framework (APT-logic) used to model the probabilistic

temporal relationships between hacker activities (from online hacking communities)

and attack incidents (recorded by the SIEM of the data providers). To support on-

going security operations, we relax the constraint of a finite time horizon tmax in the

original rule-learning approach in [80, 81]. Our approach outperformed a statistical

forecasting baseline with an average F1 score value increase of over 45%.

5.2 Future Work

The contribution of this dissertation focuses on addressing principal limitations

in the current literature. Yet, it has several limitations that may be addressed in the

future. For example:

• Improving ground truth data. We show in Chapter 2 that Symantec’s

data underrepresents vulnerabilities that do not affect products from vendors

other than Microsoft and Adobe. To address such limitations, we may con-

96

sider other sources of cyberthreat intelligence that supply attack signatures of

exploits in the wild, such as SecurityFocus2 and IBM X-Force.3 The credibil-

ity of such sources is yet a concern, i.e., many sources have high false positive

rate since they consider proof-of-concept exploits as exploits in the wild. One

way to address this challenge is to develop crowdsourcing mechanisms, possibly

supporting human-in-the loop capabilities, that are able to reason about the

correctness of reported exploits.

• Revisiting assumptions about hacker post-reply relationships. Some

of the assumptions made to create edges in the hacker social graph approach

developed in Chapter 3 may not precisely capture the post-reply relationships

between the hackers in the D2web forums. For example, we use a heuristic that

is based on an assumption that is adopted in much of the existing literature:

a post under a given hacker discussion is a reply to all posts preceding it. We

adopt this assumption because the forums we use do not provide information

about which post a given reply is directed to. In the future, we may consider

revising this assumption by leveraging natural language processing techniques

to annotate, from the content of a post, the most related posts. Then, we can

generate edges according to the confidence of this annotation. This should affect

the centrality and influence measures computed from the social graph, which

will possibly improve the prediction performance of the ML models.

• Human-computer interaction (HCI) limitations. Across all the pieces of

work in this dissertation, the focus has been on developing approaches that: (1)

offer specific capabilities to the human analysts (e.g., understand the reasoning

2https://www.securityfocus.com

3https://www.ibm.com/security/xforce

97

that led to certain predictions), and (2) outperform the existing baseline meth-

ods and the benchmark approaches, if there is any. We accomplish that by: (1)

formally explaining the techniques and providing examples of predictions, and

(2) empirically demonstrating the improvement in performance compared to

standard baseline methods. However, the usability of the developed approaches

to human analysts has not been tested. For example, the ML models developed

in Chapter 2 reduced false positives by over 75% compared to the best CVSS-

based patching strategy. Yet, we do not know whether this is enough for human

analysts to trust these models and use them in production settings. We also

do not know what would be the best precision-recall tradeoff that is favorable

to the user, i.e., one that improves the patch prioritization process but does

not lead to “alert fatigue”, where users become desensitized to predictions of

exploits in the wild. The same human-computer interaction (HCI) limitations

apply to the work developed in Chapter 4. For example, we show how the

human analyst can understand why a warning is generated, the corresponding

rule that is triggered, the D2web discussions, etc. However, we have not tested

the user acceptance to this system after it is deployed. Unlike most cybersecu-

rity AI applications, which are designed to support automated actions, such as

spam filtering and intrusion detection, our system is designed to ultimately sup-

port human decisions, and its acceptance by the users could be an interesting

research direction to pursue in the future.

In addition to addressing the aforementioned limitations, the developed work could

be applied to other problems or be extended in ways that could improve the results,

such as:

98

• Considering extra features for the ML models analyzed in Chapter 2 and 3.

For example, metadata about the website in which vulnerabilities are discussed

such as age, and size of community (or number of users); and metadata related

to users such as the number communities to which they are connected, the

programming languages they use, and the type of weaknesses they focus on.

• Testing the approach developed in Chapter 4 on other types of rule postcon-

ditions, such as postconditions representing attacks observed by a group of or-

ganizations in a given industry, or postconditions representing types of attacks

that are often conducted using a large pool of resources (e.g., DDoS attacks and

51% cryptocurrency attacks4). D2web sites often feature recruiting services for

such attacks.

4“DDoS” refers to distributed Denial of Service, where typically a group of compromised com-
puters are used to flood the victim’s servers with too many requests causing them to go offline.“51%
cryptocurrency attacks” refers to a type of cryptocurrency attack that is carried out by a group of
hackers controlling more than 50% of the computing power.

99

REFERENCES

[1] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability disclosure in
the age of social media: Exploiting twitter for predicting real-world exploits. In
USENIX Security, volume 15, 2015.

[2] Aparna Banerjea. Notpetya: How a russian malware created the world’s worst
cyberattack ever.

[3] CLIFFORD COLBY. Equifax data breach: How to claim as much as $125 with
the ftc settlement.

[4] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion detection
using neural networks and support vector machines. In Neural Networks, 2002.
IJCNN’02. Proceedings of the 2002 International Joint Conference on, volume 2,
pages 1702–1707. IEEE, 2002.

[5] Anna L Buczak and Erhan Guven. A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys
& Tutorials, 18(2):1153–1176, 2016.

[6] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. Net-
work anomaly detection: methods, systems and tools. Ieee communications sur-
veys & tutorials, 16(1):303–336, 2014.

[7] Eric Nunes, Casey Buto, Paulo Shakarian, Christian Lebiere, Stefano Ben-
nati, Robert Thomson, and Holger Jaenisch. Malware task identification: A
data driven approach. In Advances in Social Networks Analysis and Mining
(ASONAM), 2015 IEEE/ACM International Conference on, pages 978–985.
IEEE, 2015.

[8] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H Austin,
and Mark Stamp. A comparison of static, dynamic, and hybrid analysis for mal-
ware detection. Journal of Computer Virology and Hacking Techniques, 13(1):1–
12, 2017.

[9] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey on mal-
ware detection using data mining techniques. ACM Computing Surveys (CSUR),
50(3):41, 2017.

[10] Mohamed Alsharnouby, Furkan Alaca, and Sonia Chiasson. Why phishing still
works: User strategies for combating phishing attacks. International Journal of
Human-Computer Studies, 82:69–82, 2015.

[11] B Brij Gupta, Aakanksha Tewari, Ankit Kumar Jain, and Dharma P Agrawal.
Fighting against phishing attacks: state of the art and future challenges. Neural
Computing and Applications, 28(12):3629–3654, 2017.

100

[12] Kamaldeep Singh, Sharath Chandra Guntuku, Abhishek Thakur, and Chittaran-
jan Hota. Big data analytics framework for peer-to-peer botnet detection using
random forests. Information Sciences, 278:488–497, 2014.

[13] Kamal Alieyan, Ammar ALmomani, Ahmad Manasrah, and Mohammed M Kad-
hum. A survey of botnet detection based on dns. Neural Computing and Appli-
cations, 28(7):1541–1558, 2017.

[14] Jesus Mena. Machine learning forensics for law enforcement, security, and in-
telligence. Auerbach Publications, 2016.

[15] E. Nunes, P. Shakarian, G. I. Simari, and A. Ruef. Argumentation models for
cyber attribution. In 2016 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), pages 837–844, Aug 2016.

[16] Ericsson Marin, Ahmad Diab, and Paulo Shakarian. Product offerings in mali-
cious hacker markets. In Intelligence and Security Informatics (ISI), 2016 IEEE
Conference on, pages 187–189. IEEE, 2016.

[17] Hsinchun Chen. Dark web: Exploring and data mining the dark side of the web,
volume 30. Springer Science & Business Media, 2011.

[18] Eric Nunes, Ahmad Diab, Andrew Gunn, Ericsson Marin, Vineet Mishra, Vivin
Paliath, John Robertson, Jana Shakarian, Amanda Thart, and Paulo Shakarian.
Darknet and deepnet mining for proactive cybersecurity threat intelligence. In
Intelligence and Security Informatics (ISI), 2016 IEEE Conference on, pages
7–12. IEEE, 2016.

[19] Shalini Ghosh, Ariyam Das, Phil Porras, Vinod Yegneswaran, and Ashish
Gehani. Automated categorization of onion sites for analyzing the darkweb
ecosystem. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1793–1802. ACM, 2017.

[20] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adver-
sarial machine learning. Pattern Recognition, 84:317–331, 2018.

[21] Xinbo Liu, Yapin Lin, He Li, and Jiliang Zhang. Adversarial examples: At-
tacks on machine learning-based malware visualization detection methods. arXiv
preprint arXiv:1808.01546, 2018.

[22] Kyle Soska and Nicolas Christin. Automatically detecting vulnerable websites
before they turn malicious. In Usenix Security, pages 625–640, 2014.

[23] Mark Felegyhazi, Christian Kreibich, and Vern Paxson. On the potential of
proactive domain blacklisting. LEET, 10:6–6, 2010.

[24] Luca Melis, Apostolos Pyrgelis, and Emiliano De Cristofaro. On collaborative
predictive blacklisting. ACM SIGCOMM Computer Communication Review,
48(5):9–20, 2019.

101

[25] Amirreza Niakanlahiji, Mir Mehedi Pritom, Bei-Tseng Chu, and Ehab Al-Shaer.
Predicting zero-day malicious ip addresses. In Proceedings of the 2017 Workshop
on Automated Decision Making for Active Cyber Defense, pages 1–6. ACM, 2017.

[26] Ashok Deb, Kristina Lerman, and Emilio Ferrara. Predicting cyber-events by
leveraging hacker sentiment. Information, 9(11):280, Nov 2018.

[27] Palash Goyal, KSM Hossain, Ashok Deb, Nazgol Tavabi, Nathan Bartley,
Andr’es Abeliuk, Emilio Ferrara, and Kristina Lerman. Discovering signals from
web sources to predict cyber attacks. arXiv preprint arXiv:1806.03342, 2018.

[28] M. Almukaynizi, E. Marin, E. Nunes, P. Shakarian, G. I. Simari, D. Kapoor, and
T. Siedlecki. Darkmention: A deployed system to predict enterprise-targeted
external cyberattacks. In 2018 IEEE International Conference on Intelligence
and Security Informatics (ISI), pages 31–36, Nov 2018.

[29] N Tavabi, P Goyal, M Almukaynizi, P Shakarian, and K Lerman. Darkem-
bed: Exploit prediction with neural language models. In Proceedings of AAAI
Conference on Innovative Applications of AI (IAAI2018), 2018.

[30] Benjamin L. Bullough, Anna K. Yanchenko, Christopher L. Smith, and Joseph R.
Zipkin. Predicting exploitation of disclosed software vulnerabilities using open-
source data. In Proceedings of the 2017 ACM International Workshop on Security
and Privacy Analytics. ACM, 2017.

[31] Mohammed Almukaynizi, Eric Nunes, Krishna Dharaiya, Manoj Senguttuvan,
Jana Shakarian, and Paulo Shakarian. Patch before exploited: An approach to
identify targeted software vulnerabilities. In AI in Cybersecurity, pages 81–113.
Springer, 2019.

[32] Haipeng Chen, Rui Liu, Noseong Park, and VS Subrahmanian. Using twitter
to predict when vulnerabilities will be exploited. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, pages 3143–3152. ACM, 2019.

[33] Charles P Pfleeger and Shari Lawrence Pfleeger. Security in computing. Prentice
Hall Professional Technical Reference, 2002.

[34] Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Trammell.
Modeling the security ecosystem-the dynamics of (in) security. In Economics
of Information Security and Privacy, pages 79–106. Springer, 2010.

[35] Luca Allodi and Fabio Massacci. Comparing vulnerability severity and exploits
using case-control studies. ACM Transactions on Information and System Secu-
rity (TISSEC), 17(1):1, 2014.

[36] Leyla Bilge and Tudor Dumitras. Before we knew it: an empirical study of zero-
day attacks in the real world. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 833–844. ACM, 2012.

102

[37] Verizon. 2015 verizon data breach investigations report, 2015.

[38] CISCO. Cisco 2016 midyear cybersecurity report, 2016.

[39] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bai-
ley, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer,
et al. The matter of heartbleed. In Proceedings of the 2014 Conference on In-
ternet Measurement Conference, pages 475–488. ACM, 2014.

[40] Michel Edkrantz and Alan Said. Predicting cyber vulnerability exploits with
machine learning. In SCAI, pages 48–57, 2015.

[41] Kartik Nayak, Daniel Marino, Petros Efstathopoulos, and Tudor Dumitraş. Some
vulnerabilities are different than others. In International Workshop on Recent
Advances in Intrusion Detection, pages 426–446. Springer, 2014.

[42] Luca Allodi and Fabio Massacci. A preliminary analysis of vulnerability scores
for attacks in wild: the ekits and sym datasets. In Proceedings of the 2012
ACM Workshop on Building analysis datasets and gathering experience returns
for security, pages 17–24. ACM, 2012.

[43] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim Finin.
Cybertwitter: Using twitter to generate alerts for cybersecurity threats and vul-
nerabilities. In Advances in Social Networks Analysis and Mining (ASONAM),
2016 IEEE/ACM International Conference on, pages 860–867. IEEE, 2016.

[44] Sagar Samtani, Kory Chinn, Cathy Larson, and Hsinchun Chen. Azsecure hacker
assets portal: Cyber threat intelligence and malware analysis. In Intelligence and
Security Informatics (ISI), 2016 IEEE Conference on, pages 19–24. IEEE, 2016.

[45] Luca Allodi. Economic factors of vulnerability trade and exploitation. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1483–1499. ACM, 2017.

[46] Marti Motoyama, Damon McCoy, Kirill Levchenko, Stefan Savage, and Geof-
frey M. Voelker. An analysis of underground forums. In Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, IMC ’11,
pages 71–80, New York, NY, USA, 2011. ACM.

[47] Thomas J. Holt and Eric Lampke. Exploring stolen data markets online: prod-
ucts and market forces. Criminal Justice Studies, 23(1):33–50, 2010.

[48] Jana Shakarian, Andrew T Gunn, and Paulo Shakarian. Exploring malicious
hacker forums. In Cyber Deception, pages 261–284. Springer, 2016.

[49] John Robertson, Ahmad Diab, Ericsson Marin, Eric Nunes, Vivin Paliath, Jana
Shakarian, and Paulo Shakarian. Darkweb Cyber Threat Intelligence Mining.
Cambridge University Press, 2017.

103

[50] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir,
Michael Bailey, and Mingyan Liu. Cloudy with a chance of breach: Forecasting
cyber security incidents. In Usenix Security.

[51] Mohammed Almukaynizi, Eric Nunes, Krishna Dharaiya, Manoj Senguttuvan,
Jana Shakarian, and Paulo Shakarian. Proactive identification of exploits in the
wild through vulnerability mentions online. In Cyber Conflict (CyCon US), 2017
International Conference on, pages 82–88. IEEE, 2017.

[52] Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.
Beyond heuristics: learning to classify vulnerabilities and predict exploits. In
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 105–114. ACM, 2010.

[53] Su Zhang, Doina Caragea, and Xinming Ou. An empirical study on using the
national vulnerability database to predict software vulnerabilities. In Interna-
tional Conference on Database and Expert Systems Applications, pages 217–231.
Springer, 2011.

[54] Shuang Hao, Alex Kantchelian, Brad Miller, Vern Paxson, and Nick Feamster.
Predator: Proactive recognition and elimination of domain abuse at time-of-
registration. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1568–1579. ACM, 2016.

[55] Corinna Cortes and Vladimir Vapnik. Support-vector networks. pages 273–297,
1995.

[56] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Artif. Int.
Res., 16(1):321–357, June 2002.

[57] Luca Allodi, Fabio Massacci, and Julian M Williams. The work-averse cyber at-
tacker model: Theory and evidence from two million attack signatures. Available
at SSRN 2862299, 2017.

[58] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[59] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[60] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(Oct):2825–2830, 2011.

[61] Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and
minimum mean-square error in gaussian channels. IEEE Transactions on Infor-
mation Theory, 51(4):1261–1282, 2005.

104

[62] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. A review
on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(4):463–484, July 2012.

[63] Marco Barreno, Peter L Bartlett, Fuching Jack Chi, Anthony D Joseph, Blaine
Nelson, Benjamin IP Rubinstein, Udam Saini, and J Doug Tygar. Open problems
in the security of learning. In Proceedings of the 1st ACM workshop on Workshop
on AISec, pages 19–26. ACM, 2008.

[64] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security
of machine learning. Machine Learning, 81(2):121–148, 2010.

[65] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines
under adversarial label noise. ACML, 20:97–112, 2011.

[66] Elizabeth Phillips, Jason RC Nurse, Michael Goldsmith, and Sadie Creese. Ex-
tracting social structure from darkweb forums. 2015.

[67] Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Social media mining: an
introduction. Cambridge University Press, 2014.

[68] Mariam Nouh and Jason RC Nurse. Identifying key-players in online activist
groups on the facebook social network. In Data Mining Workshop (ICDMW),
2015 IEEE International Conference on, pages 969–978. IEEE, 2015.

[69] Alex Beutel, Leman Akoglu, and Christos Faloutsos. Fraud detection through
graph-based user behavior modeling. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pages 1696–1697. ACM,
2015.

[70] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the
detection of fake accounts in large scale social online services. In Proceedings of
the 9th USENIX conference on Networked Systems Design and Implementation,
pages 15–15. USENIX Association, 2012.

[71] Thomas J Holt, Deborah Strumsky, Olga Smirnova, and Max Kilger. Examining
the social networks of malware writers and hackers. International Journal of
Cyber Criminology, 6(1):891, 2012.

[72] Victor Benjamin, Weifeng Li, Thomas Holt, and Hsinchun Chen. Exploring
threats and vulnerabilities in hacker web: Forums, irc and carding shops. In
Intelligence and Security Informatics (ISI), 2015 IEEE International Conference
on, pages 85–90. IEEE, 2015.

[73] Sagar Samtani, Ryan Chinn, and Hsinchun Chen. Exploring hacker assets in
underground forums. In Intelligence and Security Informatics (ISI), 2015 IEEE
International Conference on, pages 31–36. IEEE, 2015.

[74] IdentityForce. Data breaches - the worst breaches, so far, Last Accessed: June
2019.

105

[75] IdentityForce. Data breaches - the worst breaches, so far, Last Accessed: June
2019.

[76] GOV.UK. 2019 cyber security breaches survey., 2019.

[77] Symantec. 2019 internet security threat report, Last Accessed: June 2019.

[78] Verizon. 2017 data breach investigations report, 2017.

[79] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust
you?”: Explaining the predictions of any classifier. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 1135–1144, New York, NY, USA, 2016. ACM.

[80] Paulo Shakarian, Austin Parker, Gerardo Simari, and Venkatramana V. S. Sub-
rahmanian. Annotated probabilistic temporal logic. ACM Trans. Comput. Logic,
12(2):14:1–14:44, January 2011.

[81] Paulo Shakarian, Gerardo I. Simari, and V. S. Subrahmanian. Annotated prob-
abilistic temporal logic: Approximate fixpoint implementation. ACM Trans.
Comput. Logic, 13(2):13:1–13:33, April 2012.

[82] Andrew Stanton, Amanda Thart, Ashish Jain, Priyank Vyas, Arpan Chatterjee,
and Paulo Shakarian. Mining for causal relationships: A data-driven study of the
islamic state. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 2137–2146. ACM, 2015.

[83] P. Nespoli, D. Papamartzivanos, F. G. Mrmol, and G. Kambourakis. Optimal
countermeasures selection against cyber attacks: A comprehensive survey on
reaction frameworks. IEEE Communications Surveys Tutorials, 20(2):1361–1396,
Secondquarter 2018.

[84] Arpan Roy, Dong Seong Kim, and Kishor S Trivedi. Scalable optimal counter-
measure selection using implicit enumeration on attack countermeasure trees.
In IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2012), pages 1–12. IEEE, 2012.

[85] C. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang. Nice: Network intru-
sion detection and countermeasure selection in virtual network systems. IEEE
Transactions on Dependable and Secure Computing, 10(4):198–211, July 2013.

[86] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang, and Y. Xiang. Data-driven
cybersecurity incident prediction: A survey. IEEE Communications Surveys
Tutorials, 21(2):1744–1772, Secondquarter 2019.

[87] Anna Sapienza, Sindhu Kiranmai Ernala, Alessandro Bessi, Kristina Lerman,
and Emilio Ferrara. Discover: Mining online chatter for emerging cyber threats.
In Companion Proceedings of the The Web Conference 2018, WWW ’18, pages
983–990, Republic and Canton of Geneva, Switzerland, 2018. International World
Wide Web Conferences Steering Committee.

106

[88] Soumajyoti Sarkar, Mohammad Almukaynizi, Jana Shakarian, and Paulo Shakar-
ian. Predicting enterprise cyber incidents using social network analysis on the
darkweb hacker forums. CoRR, abs/1811.06537, 2018.

[89] Leslie F. Sikos, Dean Philp, Catherine Howard, Shaun Voigt, Markus Stumpt-
ner, and Wolfgang Mayer. Knowledge Representation of Network Semantics for
Reasoning-Powered Cyber-Situational Awareness, pages 19–45. Springer Inter-
national Publishing, Cham, 2019.

[90] Matt Turek. Explainable artificial intelligence (XAI)., Last Accessed: June 2019.

[91] Alejandro Javier Garćıa and Guillermo Ricardo Simari. Defeasible logic program-
ming: An argumentative approach. Theory Pract. Log. Program., 4(2):95–138,
January 2004.

[92] E. Marin, M. Almukaynizi, E. Nunes, J. Shakarian, and P. Shakarian.
Predicting hacker adoption on darkweb forums using sequential rule min-
ing. In 2018 IEEE Intl Conf on Parallel Distributed Processing with Ap-
plications, Ubiquitous Computing Communications, Big Data Cloud Comput-
ing, Social Computing Networking, Sustainable Computing Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pages 1183–1190, Dec 2018.

[93] Philippe Fournier-Viger, Cheng-Wei Wu, Vincent S. Tseng, and Roger Nkam-
bou. Mining sequential rules common to several sequences with the window size
constraint. In Leila Kosseim and Diana Inkpen, editors, Advances in Artificial
Intelligence, pages 299–304, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[94] CISA. Hidden cobra north koreas ddos botnet infrastructure., 2017.

[95] J. Munkres. Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[96] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift
and hidden contexts. Machine Learning, 23(1):69–101, Apr 1996.

[97] Douglas C Montgomery. Introduction to statistical quality control. John Wiley
& Sons, 2007.

[98] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candi-
date generation. In ACM sigmod record, volume 29, pages 1–12. ACM, 2000.

107

