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ABSTRACT

Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium telluride (CdTe) solar cells. The

point defect formalism employed there could not be extended to chlorine or arsenic

due to numerical instabilities with the dopant chemical reactions. To overcome these

shortcomings, an advanced version of the Unified Solver called PVRD-FASP tool was

developed. This dissertation presents details about PVRD-FASP tool, the theoretical

framework for point defect chemical formalism, challenges faced with numerical al-

gorithms, improvements for the user interface, application and/or validation of the

tool with carefully chosen simulations, and open source availability of the tool for the

scientific community.

Treating point defects and charge carriers on an equal footing in the new formalism

allows to incorporate chemical reaction rate term as generation-recombination(G-R)

term in continuity equation. Due to the stiff differential equations involved, a reaction

solver based on forward Euler method with Newton step is proposed in this work.

The Jacobian required for Newton step is analytically calculated in an elegant way

improving speed, stability and accuracy of the tool. A novel non-linear correction

scheme is proposed and implemented to resolve charge conservation issue.

The proposed formalism is validated in 0-D with time evolution of free carriers

simulation and with doping limits of Cu in CdTe simulation. Excellent agreement of

light JV curves calculated with PVRD-FASP and Silvaco Atlas tool for a 1-D CdTe

solar cell validates reaction formalism and tool accuracy. A closer match with the Cu
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SIMS profiles of Cu activated CdTe samples at four different anneal recipes to the

simulation results show practical applicability. A 1D simulation of full stack CdTe

device with Cu activation at 350oC 3min anneal recipe and light JV curve simulation

demonstrates the tool capabilities in performing process and device simulations. CdTe

device simulation for understanding differences between traps and recombination

centers in grain boundaries demonstrate 2D capabilities.
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Chapter 1

INTRODUCTION

Technology Computer-Aided Design (TCAD) refers to the use of computers in

understanding and designing of new semiconductor processes, new device and devel-

oping compact circuit models for large scale simulation of integrated circuits. TCAD

plays a vital role in the design cycles of new semiconductor processes and devices.

TCAD modeling helps to reduce the research and development (R&D) cost, improves

the fast characterization of processes and devices and shortens the design life cycles.

Figure 1. Different Elements of TCAD Simulation.
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TCAD consists of three levels of modeling namely process level, device level and

circuit level modeling (see Fig. 1). Process level modeling tools are physics based and

help in understanding the process steps like ion implantation, diffusion, oxidation etc.

They are called Process TCAD tools. Device level modeling tools are also physics

based useful to model the device characteristics in terms of IV, CV etc., and are called

Device TCAD tools [1]. Circuit level modeling tools are generally not physics based

but helpful in compact model generation useful for performing large scale integrated

circuit simulations.

TCAD also models issues related to reliability [1]. Commercially available TCAD

tools [2, 3] have capabilities to perform reliability simulations. These commercial tools

are useful in performing statistical variability of process and their effects in device

behavior. The reliability issues are mainly related to the statistical variations (SV) in

process and device fabrication and the time dependent variability (TDV) incurring

due to the operational conditions of the device [4]. The TDV includes potential

induced degradation(PID), light induced degradation (LID), temperature induced

degradation (TID), bias temperature instability (BTI), electromigration, hot carrier

injection degradation etc. In most of these processes a common underlying mechanism

responsible for the degradation is due to the point defect dynamics and their chemical

nature. Hence, the study of point defect dynamics along with free carriers plays a

vital role in understanding the degradation mechanisms involved in many reliability

studies.

The state of the art degradation models available in commercial tools [2, 3]

are sufficient to understand the bias temperature instability, hot carrier injection

degradation and other aging effects. These models are insufficient to explain the

metastable behavior in devices. This was one of our motivations to develop a new

2



modeling and simulation approach to explain copper (Cu) metastability and reliability

issues in cadmium telluride (CdTe) solar cell. The previously developed Unified Solver

as part of the PREDICTS project was successful in explaining the Cu diffusion profiles

and metastability issues in CdTe. One of the short comings of PREDICTS Unified

Solver was the inability to extend the formulation to other dopant defect system

like chlorine (Cl) or Arsenic (As). The reason for the short comings is due to the

non user friendly incorporation of defect parameters and due to numerical algorithm

instabilities and inaccuracies involved with chain reactions.

We resolved these issues in this present work by improving the graphical user

interface and implementing advanced numerical algorithms that ensures the numerical

accuracy and stability. In doing so we developed a generic framework that can be

adapted to any material system and defects. We next present a brief review of similar

work present in the literature.

1.1 Literature Review

The device TCAD started with work done by Gummel in 1964 on the one di-

mensional (1D) simulation of bipolar junction transistors by sequentially solving the

partial differential equations (PDE) for the drift diffusion and Poisson equation self

consistently [5]. The major breakthrough in the device modeling came through the

introduction of Scharfetter-Gummel discretization of the continuity equation [6]. The

process TCAD started with the development of SUPREME 1D process tool by Robert

Dutton at Stanford University[7]. Statistical variability analysis was intrinsically a

part of the process and device TCAD simulations. TCAD calibration for process and

device model parameters was done against carefully designed experiments to improve
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the predictive nature of TCAD simulations [4]. The time dependent variability or

aging effects also occur in devices due to the operational conditions. The leading

TCAD models to explain negative-bias temperature instability (NBTI) are reaction

diffusion (RD) model and defect-centric (DC) model as given in Ref. [8]. In RD

model, NBTI is explained with the de-passivation/passivation of defects present at the

oxide/channel interface by hydrogen activated under stress conditions [8]. Hot carrier

injection degradation is studied with trap degradation model and hot carrier stress

model. The trap degradation model is based on the hydrogen transport in gate oxide

using reaction-diffusion model and hot carrier stress model is based on trap formation

at oxide/semiconductor interface due to field enhancement thermal interaction with

the lattice [8]. Kirchheim and Kaeber explained the cause of electromigration as the

annihilation and generation of defect vacancies in metals [9]. Other reliability effects

in CMOS are described in Ref. [10]

In photovoltaic devices the main reliability issues are related to PID, LID and TID.

The root cause analysis for LID in p-type PERC modules was presented in Ref. [11],

where the authors associate the degradation of the cell to the dynamics of deep level

donor point defects. Light and elevated temperature induced degradation (LeTID) is

one of the main issue affecting the stability of perovskite solar cells (PSC) for long

term operation. In Ref. [12], the authors show that gold diffusion into the active layer

is one of the reasons for the instability and improved stability by using silver metal

contact instead of gold. In that paper, it was suggested that the gold point defects

act as recombination centers in the active layer of PSC. In Ref. [13], it was concluded

that sodium ion diffusion in high defect density of silicon wafers is the main reason

for the PID leading to smaller shunt resistance, open circuit voltage and efficiency.

From the above studies it is evident that the study of point defect dynamics
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is important to understand and develop innovative ways to improve reliability of

electronic and photovoltaic devices. Point defects are well studied in modeling

the diffusion/thermal activation of dopants in silicon [14]. Sentaurus (Synopsys

commercial TCAD tool) has ChargedReact model for diffusion [15], while Victory

(Silvaco commercial TCAD tool) has five-stream model for diffusion [16]. Both of these

models treat dopant diffusion in materials comprehensively by solving the continuity

equations for five species namely dopant, two point defects (interstitial and vacancies)

and two dopant-defect pairs [15, 16]. As noted in the user manuals, these are the

most advanced and accurate models available in the corresponding commercial tools

and also computationally expensive as they involve solving large number of equations.

For example, to study diffusion of a m dopant in a structure, a system of at least

3m + 2 non-linear coupled partial differential equations are needed to be solved as

suggested in the tool manual. Usually, these models are not coupled self-consistently

to Poisson equation to account for the electric fields although there are few flags to

change the behavior. Electric fields are, by default, incorporated using the charge

neutrality conditions.

The five stream models are not activated in device simulation or degradation

simulation[17, 18]. Both tools comprehensively treat the transport of charge carriers

in device simulations but not of point defects. Silvaco’s Victory Device tool recently

(from 2017 release ) has added support to incorporate point defects in a limited way

through chemical reactions [18], but user has to redefine these reactions again to

incorporate the five stream model reactions. For degradation simulations both tools

support degradation models with support only for Si-H point defect dynamics [17, 18].

Other degradation models incorporate the trap transients useful for MOS transistor

degradation.
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With these limitation on the available models in the state of the art tools, we were

unable to study the microscopic origin of Cu metastability arising in the CdTe solar

cells. Most of the degradation models are developed to handle unary material systems

(like Si, Ge etc) but not for binary material system (like CdTe, GaAs etc). Thus, our

goal was to develop a Unified Solver that comprehensively addresses the transport

of point defects in CdTe by treating the same level of complexity for charge carriers

and point defects in process, device and degradation simulations. This resulted in

development of our tool called Unified Solver or more precisely PREDICTS1D[19]

and PREDICTS2D[20]. With these tools, we were successful in explaining the Cu

reliability and metastability in CdTe solar cell[21].

Da Guo et al., first explained the SIMS measurement of Cu profiles from single

crystal CdTe measurements[22] using the point defects Cu+
i ,V

2−
Cd ,Cu

−
Cd,Cd

2
i+ and

Cd0
Cd in CdTe and their respective defect chemical reactions. The theoretical and

numerical details about methodology adopted for that simulation is given in Ref. [23].

The simulation used density functional theory(DFT) calculated parameters (namely

diffusion barriers, diffusion prefactors, transistion levels, formation energies etc.),

and provided a path to integrate the defect chemical reaction formalism into TCAD

modeling. Further studies incorporated point defect ionization reactions and were

used to explain the light soaking effects in CdTe solar cells [24]. [CuiCuCd]
0 point

defect complex was needed to explain the mismatch between the DFT calculated

diffusion barrier and the numerical simulation assumed diffusion barrier for Cu+
i and

Cd2+
i [21]. Hence with the PREDICTS Unified Solver it was possible to understand

the underlying mechanism contributing the reliability issues in CdTe solar cells.

The main shortcomings of the PREDICTS Unified Solver were :
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• Inability to incorporate new defect chemistry for Cl, As dopants in CdTe in a

user friendly manner.

• Numerical instabilities arising with As defect chemical reactions, as the reactions

involve chain reactions.

• Understanding Cl diffusion alongside with grain boundary (GB) segregation was

not clear with the existing modeling assumptions [25].

To address the above shortcomings and improve the numerical algorithms we started

to develop a second generation solver called PVRD-FASP Unified Solver. In this solver

we created a new graphical user interface (GUI) with the help of the collaborators

involved in the research project, improved the stability and accuracy of numerical

algorithms and adopted a generalized theoretical formulation for comprehensively

treating point defects and charge carriers on equal footing.

In subsequent chapters we describe the details about the theoretical formulation,

numerical algorithms, GUI and finally provide simulation test cases for validating

the solver and demonstrating the applications of the solver.The organization of this

document is as listed below

• Chapter 1 provided introduction about the solver, the literature review about the

modeling issues with reliability studies, and the shortcomings of the PREDICTS

Unified Solver.

• Chapter 2 provides the theoretical framework details adopted in the PVRD-FASP

Unified Solver.

• Chapter 3 presents the details about the numerical algorithms used and issues

resulted with the implementation of the new algorithms (and how are they

resolved).
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• Chapter 4 gives details about the GUI and its flexibility for creating and running

projects with the PVRD-FASP Unified Solver.

• Chapter 5 shows nine simulation examples that validate our solver and/or

demonstrate the application of our solver in practical examples.

• Chapter 6 concludes our work and presents directions for future work.

In addition, appendices are added wherever there is a need for detailed explanations.

Appendices also provide a few complimentary works that are present in the main text

for completeness.
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Chapter 2

THEORETICAL FRAMEWORK

Our theoretical framework closely follows the formulation given in Ref. [26]. The

main equations that have been solved for describing transport of charge carriers are:

the continuity equations, drift diffusion equation and the Poisson equation. These are

given as

∂n

∂t
= −∇ ·

−→
Jn +Gn −Rn, (2.1)

−→
Jn = −µnn

−→
E −Dn∇n, (2.2)

∂p

∂t
= −∇ ·

−→
Jp +Gp −Rp, (2.3)

−→
Jp = −µpp

−→
E −Dp∇p, (2.4)

∇ · (ε∇φ) = −p+ n−ND +NA, (2.5)

where
−→
Jn and

−→
Jp are the flux densities rather than the usual current densities used

in semiconductor books,
−→
E is the electric field, φ is the electrostatic potential, G and

R are the generation recombination rates modeled for radiative, Shockley Read Hall

(SRH), Auger process etc., ND and NA are net donor and acceptor concentrations.

The above equations are written for homogeneous structures. For heterostructures,

a gradient term should be added to the drift-diffusion equations (2.2) and (2.4) (see

Ref. [27]).

One can arrive at the same equations (see Appendix A) by treating diffusion flux

as negative gradient of electrochemical potential (µ) defined as
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µ = G0
f + qφ+ kT ln

(
u

Ns

)
, (2.6)

where G0
f is the formation energy of the species, φ is the electrostatic potential, q

is the charge of the species, T is the temperature, k is the Boltzmann constant, u

is the concentration of species and Ns is the maximum number of microstates the

species can occupy. The above definition defines the chemical potential to be based

on the formation energies and configuration entropies in dilute limit approximation

[26, 28, 29]. Then, the diffusion flux is

−→
J = − D

kT
u∇µ (2.7)

We note that in writing equations (2.6) and (2.7), we used the Einstein relationship

between mobility and diffusivity (valid for non-degenerate statistics). Then, our

transport equations for any arbitrary species (both charge carriers and point defects)

can be written as

∂u

∂t
= −∇ ·

−→
Ji +Gi −Ri, (2.8)

−→
Ji = −Di

kT
ui∇

(
G0
f,i + q0ziφ+ kT ln

(
ui
Ns,i

))
, (2.9)

−∇ · (ε∇φ) = q0

∑
i

ziui, (2.10)

where i is the index of the species, q0 is the charge of an electron, z stands for the

ionization number of the charge state with sign.

Next, we describe how to compute generation and recombination rates for both

charge carriers and defects using defect chemical reaction kinetic theory.
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2.1 Generation and Recombination Rates

The interactions between charge carriers and defect species can be represented as

a defect chemical reaction [30]. Thus, one can use reaction kinetics to determine their

time evolution. In this work, we consider defect chemical reaction involving at most two

reactants and at most two products (i.e., bimolecular reactions). This approximation

is always valid in the dilute limit, and most of the higher order interactions can be

approximately modeled with bimolecular chemical reaction. The rate equation for a

general defect chemical reaction with at most two reactant and two products

aA + bB
Kf−−⇀↽−−
Kb

cC + dD, (2.11)

is given as

−1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
= Kf [A]a[B]b −Kb[C]c[D]d. (2.12)

The above rate equation is still complex and we further restrict ourselves to

stoichiometric coefficients a,b,c and d of either d=1 or d=0. Although this looks like

a strong simplification to the domain of defect chemical reactions, it is still sufficient

to cover the defect chemical interaction of interest.

If any of the species are involved in more than one chemical reaction, then the

rate equation for that particular species have contribution from both reaction rate
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constants of all the involved reactions. For example, if the reaction system is given as

A + B
Kf1−−⇀↽−−
Kb1

C + D, (2.13)

A
Kf2−−⇀↽−−
Kb2

E + F, (2.14)

Null
Kf3−−⇀↽−−
Kb3

A + G, (2.15)

then the rate equation for the time evolution of species A is given as

d[A]

dt
= −Kf1[A][B] +Kb1[C][D]−Kf2[A] +Kb2[E][F ] +Kf3 −Kb3[A][G]. (2.16)

The above rate equation can be elegantly represented as

d[A]

dt
= UTQAU + PAU +KA, (2.17)

where U is a concentration vector (column) of length 7 given as

U = ([A], [B], [C], [D], [E], [F ], [G])T , (2.18)

QA is a 7×7 matrix with all zero elements except for

qA12 = qA21 = −Kf1

2
, qA34 = qA43 =

Kb1

2
, qA56 = qA65 =

Kb2

2
, qA17 = qA71 = −Kb3

2
, (2.19)

PA is a row vector of length 7 with all elements zero except

pA1 = −Kf2, (2.20)

and KA is the constant term given as Kf3.

The representation of rate as (2.17) can be extended to any species and we can

write the corresponding Q,P,K as functions of reaction rate constants. Consider a

general reaction rate equation

dui
dt

=
M∑
k=1

M∑
j=1

aijkujuk +
M∑
j=1

bijuj + ci, (2.21)
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for i = 1, 2, ...,M where M is the total number of species and a,b,c are the reaction

rate constants in which the species i is involved.

Then the variable Qi, P i, Ki can be calculated as

qijk = qikj =


1
2
aijk, if j 6= k

aijk, if j = k

0, otherwise

(2.22)

pij = bij, K = ci. (2.23)

Thus, the generation recombination rate can be expressed as

Gi −Ri =
dui
dt

∣∣∣∣∣
reactions

= UTQiU + P iU +Ki. (2.24)

With this form we can write the net rate as reaction operator R(U) as

R(U) = UTQU + PU +K, (2.25)

where Q is M×M×M array, P is M×M array and K is M×1 array. The major

advantage of writing R(U) in this form is with the calculation of the Jacobian of the

reaction operator with the formula

JR(U) = (Q+QT )U + P (2.26)

With this, we complete the formulation of generation recombination rates using

the defect chemical reaction kinetics. Next, we show that we can recover the standard

expressions for radiative and SRH generation recombination rates for charge carriers

using this formulation.
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2.2 Correspondence with Radiative and SRH Recombination

For a radiative process, the generation-recombination rates in the continuity

equation of charge carriers can be expressed as

G−R = b
(
n2
i − np

)
. (2.27)

Considering the radiative process as a chemical reaction, we can write the equivalent

reaction as

Null
Kf−−⇀↽−−
Kb

ec
− + hv

+, (2.28)

where e−c and h+
v denote free electron and hole in conduction and valence band of the

material. Hence, the rate equation is given as

d[e−c ]

dt
=
d[h+

v ]

dt
= Kf −Kb[e

−
c ][h+

v ]

= Kb

(
Kf

Kb

− [e−c ][h+
v ]

)
. (2.29)

Thus, if the ratio of forward to backward rate constant is n2
i we can easily see that

(2.27) and (2.29) are equivalent. The thermodynamics of reactants and products

results in such condition in the ratio (see Section 2.3).

For SRH processes, the generation and recombination rate on a single defect in

steady-state is given as in Ref. [31]

G−R =
(n1p1 − np)

n+ n1

Cp
+
p+ p1

Cn

. (2.30)

The equivalent reaction representing the SRH process in case of acceptor type

species can be written as
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A0
Kf1−−⇀↽−−
Kb1

A− + hv
+,

A−
Kf2−−⇀↽−−
Kb2

A0 + ec
−. (2.31)

The rate equations can be written as

d[A0]

dt
= −d[A−]

dt
= −Kf1[A0] +Kb1[A−][h+

v ] +Kf2[A−]−Kb2[A0][e−c ], (2.32)

d[e−c ]

dt
= Kf2[A−]−Kb2[A0][e−c ], (2.33)

d[h+
v ]

dt
= Kf1[A0]−Kb1[A−][h+

v ]. (2.34)

From (2.32) we note that [A0] + [A−] is constant in time (say [A]tot). Hence in

steady state equilibrium for [A0] and [A−] we have

[A0] =
Kf2 +Kb1p

Kf1 +Kf2 +Kb1p+Kb2n
[A]tot, (2.35)

[A−] =
Kf1 +Kb2n

Kf1 +Kf2 +Kb1p+Kb2n
[A]tot,

where [h+
v ] = p and [e−c ] = n is used for notational simplicity. Using (2.35) in (2.33)

and (2.34) with few algebraic simplifications we can write

dn

dt
=
dp

dt
=

Kf1Kf2 −Kb1Kb2np

Kf1 +Kf2 +Kb1p+Kb2n
[A]tot. (2.36)

Now if the ratio of the reaction rate constants is restricted as

Kf1

Kb1

= p1 = Nve
Ev−ET
kT ,

Kf2

Kb2

= n1 = Nce
−Ec−ET

kT , (2.37)
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then (2.36) can be simplified further as

G−R =
(n1p1 − np)

n+ n1

Kb1

+
p+ p1

Kb2

[A]tot, (2.38)

which is equivalent to (2.30). Equation (2.37) will hold based on the thermodynamics

of reactants and products as shown in the next section (see Section 2.3). A similar

equivalence can be shown for donor type centers as well. Similar analysis can be

performed for the case of Auger generation recombination as well.

2.3 Thermodynamic Relationship between Forward and Backward Rate Constants

Consider a generation reaction

N∑
i=1

xiXi

Kf−−⇀↽−−
Kb

M∑
j=1

yjYj, (2.39)

with N reactants and M products. At thermodynamic equilibrium the difference in

the chemical potential of reactants and products should be zero. Thus, we have

∆rG =
N∑
i=1

xiµXi −
M∑
j=1

yjµYj , (2.40)

where ∆rG is the Gibb’s free energy change of reaction, µ is the chemical potential of

the species which can written from (2.6) neglecting the electrostatic potential as

µXi = G0
f,Xi

+ kT ln

(
[Xi]

Ns,Xi

)
. (2.41)

Note that the chemical potential here is defined as the sum of species formation energy

and its configurational entropy in the dilute limit as expressed in Ref. [26, 28, 29].

Thus, at equilibrium we have

N∑
i=1

(
xiG

0
f,Xi

+ kT ln

(
[Xi]

xi
eq

Nxi
s,Xi

))
=

M∑
j=1

(
yjG

0
f,Yj

+ kT ln

(
[Yj]

yj
eq

N
yj
s,Yj

))
(2.42)
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Upon simplification we obtain
M∏
j=1

[Yj]
yj
eq

N∏
i=1

[Xi]
xi
eq

=

M∏
j=1

N
yj
s,Yj

N∏
i=1

Nxi
s,Xi

exp

(
−∆rG

0

kT

)
, (2.43)

where ∆rG
0 is the standard enthalpy change of reaction or standard reaction Gibb’s

energy defined as

∆rG
0 =

M∑
j=1

yjG
0
f,Yj
−

N∑
i=1

xiG
0
f,Xi

. (2.44)

We also know that at equilibrium we have

Kf

N∏
i=1

[Xi]
xi
i,eq −Kb

M∏
j=1

[Yj]
yj
j,eq = 0. (2.45)

Hence using (2.43) and (2.45) we can write the equilibrium constant as

Keq =
Kf

Kb

=

M∏
j=1

N
yj
s,Yj

N∏
i=1

Nxi
s,Xi

exp

(
−∆rG

0

kT

)
(2.46)

Therefore, the reaction rate constants follow a fixed ratio. Applying this for the

reaction (2.28) we have

Kf

Kb

= Ns,e−c
Ns,h+

v
exp

(
−
G0
f,e−c

+G0
f,h+

v

kT

)
(2.47)

The number of microstates for electrons in conduction band and hole in valence band

are NC and NV respectively. The formation energies of electrons in conduction band

and holes in valence band referenced from vacuum level is

G0
f,e−c

= −χ,G0
f,h+

v
= χ+ Eg, (2.48)

where χ is the electron affinity of the material and Eg is the band gap of the material.

Thus, we have the ratio as

Kf

Kb

= NCNV exp

(
−Eg
kT

)
= n2

i . (2.49)
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Considering the reactions in (2.31), we have

Kf1

Kb1

=
Ns,A−Ns,h+

v

Ns,A0

exp

(
−
G0
f,A− +G0

f,h+
v
−G0

f,A0

kT

)
, (2.50)

Kf2

Kb2

=
Ns,A0Ns,e−c

Ns,A−
exp

(
−
G0
f,A0 +G0

f,e−c
−G−f,A−

kT

)
(2.51)

where the formation energies are given as

G0
f,A0 = Ef,A0 − χ− Eg,

G0
f,A− = Ef,A0 − sign(A−)ET − χ− Eg, (2.52)

G0
f,e−c

= −χ,G0
f,h+

v
= χ+ Eg.

Here sign(A−) is the sign of the charge on the species, ET is the trap level (transition

level from 0/- see Ref. [32]) with respect to vacuum and Ef,A0 is the defect formation

energy of neutral species calculated through Density Functional Theory (DFT) (see

Appendix B for details on how transistion levels of species are related to the formation

energies of its corresponding neutral species). Assuming that the microstates for

neutral and charged species are nearly same, we arrive at

Kf1

Kb1

= NV exp

(
−χ+ Eg + ET

kT

)
= NV exp

(
EV − ET

kT

)
,

Kf2

Kb2

= NC exp

(
−−χ− ET

kT

)
= NC exp

(
−EC − ET

kT

)
(2.53)

where we have used the relations

EC = −χ,EV = −χ− Eg (2.54)

Hence, the thermodynamics guarantees that the SRH process is recovered from our

reaction formulation. Thus, the thermodynamics guarantees the equivalence as a

defect chemical reaction.
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2.4 Models

We have described the theory behind our approach and the differential equations

involved in the transport of charge carriers and point defects. In this section we

describe the models we have employed in our solver.

2.4.1 Reaction Models

Although thermodynamics provides the ratio of forward and backward rate con-

stants, we still have to find either one of the rate constants. For this, we use reaction

models that provide the rate constant of the reaction either forward rate or backward

rate. Consider a general reaction

AzA +BzB K−−→ CzC + dDzD (2.55)

where d can be either 0 or 1 with 0 being single product reaction and 1 being two

product reaction, zX is the ionization of species X. The diffusion-controlled reaction

rate constant [26, 33] is given as

K = 4πRcapt (DA +DB) exp

(
−EA
kT

)
, (2.56)

where Rcapt is the capture radius, DX is the diffusivity of the species X, EA is the

activation energy of reaction (EA ≥ 0) representing the probability of a collision

resulting in the formation of product. The various type of reaction models used in the

solver [34] are as given below.
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2.4.1.1 Diffusion Limited with Attraction Model

This model is used when the two reactants or products have opposite charges i.e.,

zA× zB < 0. In such a case, there is Coulombic force of attraction between the species

and hence activation barrier is zero. Also, the capture radius is given by the Onsager

radius, which is the radius at which the Coulombic energy is equal to the thermal

energy. The Onsager radius can be calcuated as

ROnsager = q2 |zAzB|
4πεkT

. (2.57)

Hence the rate constant is given as

K = q2 |zAzB|
εkT

(DA +DB) (2.58)

2.4.1.2 Capture Radius Limited Model

This model is used for reaction when zA × zB ≥ 0 and assumes the activation

energy of the reaction to be zero. Thus, the rate constant is given as

K = 4πRcapt (DA +DB) (2.59)

For this model, the user has to specify the capture radius Rcapt as an input.

2.4.1.3 Capture Cross Section Limited Model

If one of the reactant of (2.55) is charge carrier, then the sum of diffusivities can

be approximated as

DA +DB ≈ De/h (2.60)
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Also, it is common to represent charge carrier capture reaction rate constant as product

of capture cross section and thermal velocities. Thus, the rate constant is given as

K = σe/hvth,e/h (2.61)

In case of diffusion limited with attraction model with charge carrier, the capture

cross section of carrier is given as

σe/h =
4πROnsagerDe/h

vth,e/h
(2.62)

For capture radius limited model, with charge carrier as reactant, the user has to

input the capture cross section as a parameter.

2.4.1.4 Barrier Limited Model

This model is used for reactions with single reactant and single product. The rate

constant is given as

K = ν exp

(
−Eb
kT

)
(2.63)

where ν is the attempt frequency of reaction (pre-factor), and Eb is the activation

barrier height of reaction.

2.4.1.5 Thermal Generation-Recombination Model

This model is used when the reaction is given by (2.28). The backward rate

is equated to the band-to-band recombination rate coefficient B of the material.

Currently, we assume that the coefficient B is independent of temperature, although

Refs. [35, 36] show it as being temperature dependent.
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2.4.2 Diffusion Models

2.4.2.1 Arrhenius Diffusion Model

The diffusion coefficient of species is assumed to have Arrhenius relationship with

temperature given as

D(T ) = D0 exp

(
−ED
kT

)
(2.64)

where D0 is the diffusion pre-factor, ED is the diffusion barrier. For this model, the

user should specify the pre-factors and barriers for the species.

2.4.2.2 Free Carrier Diffusion Model

The diffusion coefficient of free carriers are assumed to follow Einstein relationship

given as

De/h = µe/h
kT

q
(2.65)

Mobility of the free carriers is a material parameter. Hence, the diffusivities of

free carriers are dependent on the mobility models of the material being studied.
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2.4.3 Material Models

2.4.3.1 Band Gap Model

The temperature dependence of the bandgap of a material is assumed to follow

the Varshni model [37], given as

Eg(T ) = E0 − α
T 2

T + β
, (2.66)

where E0 is the band gap at 0K, α and β are fitting parameters.

2.4.3.2 Density of States Model

The density of states for free carriers are computed through

Ns,e/h = 2

(
2πmeff,e/hm0kT

h2

) 3
2

(2.67)

For defect species the density of microstates are given as

Ns = gatom × gelec ×N0 (2.68)

where gatom, gelec are the atomic and electronic degeneracy factor of the defect species

and N0 is the lattice site density of the site the defect is occupying in the host material

[34]. The sites available to the point defects in the host material depends on the host

crystal structure, size of the point defect, etc. For example interstitial defects can be

stable in a hexagonal site or tetrahedral site in a zinc-blende crystal structure.
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2.4.3.3 Free Carrier Mobility Model

The free carrier mobility is assumed to follow the relationship

µe/h = µe/h,300K

(
T

300

)− 3
2

(2.69)

2.4.3.4 Formation Energy of Species Model

For charge carriers the formation energy is given as

∆Hf (e) = −χ, ∆Hf (h) = χ+ Eg(T ) (2.70)

For point defect species the formation energy [34] is given as

∆Hf (X
zX ) = ∆Hf (X

0)− sign(zX)×
(
T

300
∆ET − χ− Eg(T )

)
(2.71)

where ∆ET is the transition level with respect to the valence band of the material.

This information is generally available with DFT calculations.
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Chapter 3

NUMERICAL ALGORITHMS

The equations (2.8)-(2.10) are solved numerically by discretizing them in space

and time. The equation (2.9) can be rewritten as

−→
Ji = −Die

−Ψi∇
(
uie

Ψi
)

(3.1)

where

Ψi =
G0
f,i + q0ziφ− kT lnNs,i

kT
(3.2)

Thus, the differential equations to be solved are given as

∂ui
dt

= ∇ ·
(
Die

−Ψi∇
(
uie

Ψi
))

+Gi −Ri,

−∇ · (ε∇φ) = q0

∑
i

ziui. (3.3)

for i = 1, 2, ...,M(total number of species) and subjected to the defined boundary

conditions given by the user. We consider our simulation domain to be always

rectangular, and the boundaries on the left and right to have zero flux and zero field

as shown in Figure 2.

We define our mixed (Robin) boundary condition as

Aiui +BiJ
x
i = Ci, (3.4)

specified on the top and the bottom boundaries of the simulation domain. Here A,

B can only take values either 0 or 1. If A is zero then the boundary condition is

Neumann and if B is zero then it is Dirichlet.
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Figure 2. Finite Volume Mesh (FVM) Used for Discretizing Differential Equations.

We express (3.3) in terms of operators as

∂U

∂t
= (TφU +RU) ,

P̂ φ = QTU, (3.5)

where Tφ is the transport operator which depends on the potential with inclusion

of the boundary conditions, RU is the reaction operator, P̂ is the Poisson operator

(that includes the boundary conditions) and QT is the transpose of charge vector.

The transport and Poisson operators are space dependent and reaction operator is

space independent but dependent on the concentrations. Based on the choice of the

discretization scheme and the numerical method, we can express the operators as

matrices as follows

Tφ = Tφ, P̂ = P , RU = RU (3.6)
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The size of the matrices are (NxNyM)× (NxNyM) where Nx is the total number of

discretized steps in the X-direction, Ny is the total number of discretized steps in

Y-direction and M is the total number of species. In this work, we use Scharfetter-

Gummel discretization scheme [6] and finite volume method to write the discrete

differential equation and form operator matrices (see Appendix 3.3 for details).

We use backward time or implicit Euler scheme and hence we have

U t+∆t − U t

∆t
=
(
Tφt+∆tU t+∆t +RUt+∆t

)
,

Pφt+∆t = QTU t+∆t. (3.7)

For a two-dimensional problem the complete operator matrix Tφ + R has large

bandwidth with relatively small sparsity. To efficiently solve the problem we split the

operators (called time operator splitting) and rearrange the concentration vector such

that the bandwidth of the matrices R, Tφ is less than the maximum value between

Nx, Ny, M . We first solve the equation

U t+∆t − U t

∆t
= RUt+∆t , (3.8)

for U t+∆t with Newton method. The solution is achieved iteratively by solving the

equation

(I −∆tJUk) δUk = −
(
Uk −RUk − U t

)
,

Uk+1 − Uk = δUk, (3.9)

until the convergence criteria is achieved, which is given as

||δUk||2
||Uk||2

≤ Tol. (3.10)

We use this solution (say Ũ) as initial condition and solve the coupled equations

U t+∆t − Ũ
∆t

= Tφt+∆tU t+∆t, Pφt+∆t = QTU t+∆t, (3.11)
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for U t+∆t and φt+∆t through Gummel iteration [38]. We also use linearization for

the Poisson equation to improve the solver stability. The linearized Poisson equation

is iteratively solved inside each Gummel iteration. We can represent the linearized

Poisson equation as

Pφ+ Lφ = QTL1U + Lφold, (3.12)

where L is a diagonal matrix dependent on previous Gummel iteration solution of φ,

U , φold and L1 is also a diagonal matrix that depends only on the previous Gummel

iteration solution of φ and φold. Here φold is the current Gummel iteration’s previous

solution of linearized Poisson solver iteration. See the Appendix C for details on L

and L1.

In the mth Gummel iteration we first update the concentrations with the equation

(I −∆tTφm−1)Um = Ũ . (3.13)

We then use this updated solution Um in the linearized Poisson equation. In the mth

Gummel iteration with kth linearized Poisson iteration we update the potential as

(
P + L(Um, φmk−1, φ

m−1)
)
φmk = QTL1(φmk−1, φ

m−1)Um + L(Um, φmk−1, φ
m−1)φmk−1.

(3.14)

The Poisson iteration is run until convergence is achieved within a fixed number of

iterations (say kmax) and Gummel iteration potential is updated as

φm =

 φmk , if k < kmax

φmkmax, otherwise
(3.15)

Then convergence condition to stop the Gummel iteration is given as:

||Um+1 − Um||2
||Um||2

≤ TolGum,Conc, and |φm+1 − φm| ≤ TolGum,pot. (3.16)
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The concentrations and the potential after the convergence of Gummel iteration

will be the solution of the differential equations at time t+ ∆t computed from solution

at t. If the convergence is not achieved in either reaction iteration or Gummel iteration,

i.e., (3.10) or (3.16) conditions are not met in fixed number of iterations, then we

reduced the time step ∆t by half and rerun the time loop. If the convergence is

achieved continuously for 16 steps, then we increase the time step ∆t by a factor of

2. The value of 16 steps is chosen arbitrarily after we tested our code with simple

simulations.

With such numerical algorithm scheme, we can simulate problems not only in 2D,

but also in 1D and 0D. The 0D problem refers to solving only reactions which are a

system of first order non-linear stiff differential equations.

Because of the choice of implicit scheme, the algorithm is numerically stable. Also,

because of the Newton step in the reactions and solving reactions in simultaneous

fashion as compared to sequential fashion in our previous generation solver [23, 39],

we get improvements in the numerical accuracy and speed. For a 0D test case with

16 species and 20 reactions we compared the speeds of our new solver with that of

our previous generation solver and we achieved a speed improvement of about 17×

[40]. Chain reactions with intermediate species and very fast reactions are handled

extremely efficiently by the L-stable reaction scheme.

Although the numerical algorithms imporved speed, stability and accuracy, we

still faced few challenges in the numerical methods. Some of them arise because of

finite precision arithmetic involved in the computational machine, others are related

to the conditioning of the matrices. We next describe the challenges we have solved

and comment on few unsolved challenges.
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3.1 Mass and Charge Conservation in Reactions

The total mass and charge in any chemical reaction has to be a conserved quantity

of the reaction. In our numerical simulations, we observed that the net mass and

charge are not conserved to a required accuracy in the reaction solver. This is shown

in Figure 3 (a) and (b) subplots. We verified that this issue occurs mainly because

of the finite precision arithmetic involved in the numerical algorithm. We first show

that the analytical equations do not have this issue. For simplicity we illustrate this

problem for the case of 0D (and the same can be extended to 1D and 2D problem

with operators).

Consider the equation given in (2.25), which can be written as

dU

dt
= R(U) = UTQU + PU +K. (3.17)

We know that there exist conservation vectors such that

CTU = const. (3.18)

Thus, we have

d

dt
CTU = 0

=⇒ CT d

dt
U = 0

=⇒ CTR(U) = 0

=⇒ CT d

dU
R(U) = 0

=⇒ CTJR(U) = 0 (3.19)

Applying this to (3.9), it can be shown that in exact arithmetic

CTU t+∆t = CTU t. (3.20)
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Figure 3. (a) Net Charge (b) Net Mass Without Corrections, (c) Net Charge and (d)
Net Mass With Corrections.

But in finite arithmetic we are seeing

CTR(U) 6= 0, CTJR(U) 6= 0. (3.21)

In some simulations even when both equations are satisfied, we still find conservation

issue. In that case we observed that

CT (I −∆tJR(U))−1 6= CT ,

CT (I −∆tJR(U)) = CT . (3.22)
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This clearly shows that the matrix (I −∆tJR(U)) is ill conditioned. Based on these

observations we propose a non linear projection scheme to correct this problem. This

scheme is described next.

Suppose that we have Unumerical and Uexact as the numerical solution and the exact

solution. Let the difference between them be projected in the direction of unit normal

concentration vector P = U
||U ||2 with a weight α. Then we can write

CT (Unumerical − αP ) = CTUexact = CTU t,

=⇒ αCTP = CT (Unumerical − U t),

=⇒ Uexact = Unumerical −
CT (Unumerical − U t

CTP
P,

=⇒ Uexact =

(
I − PCT

CTP

)
Unumerical +

PCT

CTP
U t. (3.23)

Thus, one can correct the solution using the above expression. One issue with this

approach is that it cannot be applied whenever we have CTP = 0. To avoid such

conditions, we perturb the direction P with a random number between 1 and 2. This

makes P vector close to unit normal vector in the direction of concentrations but

CTP 6= 0. Even with this, there are some initial conditions that still give CTP = 0.

This happens with zero initial conditions whenever elements of C are non-zero. To

avoid those cases as well, we restrict the initial conditions to non-zero values of

negligible concentrations around 1cm−3 or 1e-16 cm−3. With these corrections we get

the net charge and mass conservation in reactions to an accuracy we expected. This

is illustrated in Figure 3 (c) and (d) subplots. Note that without corrections the net

charge conservation differs by 1e17 cm−3 whereas after corrections it differs by 1e3

cm−3 order of magnitude. In case of net mass conservation, it differs by 1e13 cm−3

and after correction it is 1e3 cm−3.
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3.2 Mass Conservation in Diffusion

Another issues we resolved in the PVRD-FASP solver is related to the diffusion

operator. Under insulating boundary conditions (i.e., zero field and zero flux condi-

tions), a long time simulation (in decades time scale) was not conserving the total

mass of the species. We observed that this was happening only at large time steps

(∆t). We concluded that with large time steps the diffusion/transport matrix was

becoming ill conditioned. We resolved this issues by using an augmented system with

conservation equations. This scheme was inspired from the method of pseudo inverses

whenever the matrix becomes ill conditioned.

3.3 Derivation of Discrete Differential Equations and Matrix Operators used in the

Solver

As mentioned in the previous section, (3.5) has space dependent operators namely

transport and Poisson operator. Thus, based on the choice of the numerical scheme

the differential equations have to be discretized. We use finite volume numerical

discretization method (FVM) in our solver. The discretized equations for transport

and Poisson operators in FVM scheme are derived in the following subsections.

3.3.1 Poisson Operator

From (3.3) and (3.5), the Poisson operator is given as

P̂ ≡ −∇ · (ε∇) (3.24)

33



Since ε is material dependent, the discretized equations should ensure the continuity

of the displacement electric vector. The displacement vector is given as

−→
D = −ε∇φ (3.25)

The condition guaranteeing the continuity (see 3.3.3) is given as

Dxi+1/2,j = − 1

hxi,j

2
1

εi,j
+

1

εi+1,j

(φi+1,j − φi,j) (3.26)

Dxi−1/2,j = − 1

hxi−1,j

2
1

εi−1,j

+
1

εi,j

(φi,j − φi−1,j) (3.27)

Dyi,j+1/2 = − 1

hyi,j

2
1

εi,j
+

1

εi,j+1

(φi,j+1 − φi,j) (3.28)

Dyi,j−1/2 = − 1

hyi,j−1

2
1

εi,j−1

+
1

εi,j

(φi,j − φi,j−1) (3.29)

where

hxi,j = xi+1,j − xi,j (3.30)

The Poisson equation can be written as

∇ ·
−→
D = ρ (3.31)

Thus using the finite volume method we can write the above as∫
∇ ·
−→
D dx dy =

∫
ρ dx dy (3.32)

=⇒
∮ −→
D · n̂ dl =

∫
ρ dx dy (3.33)

where n̂ is unit normal vector in the direction normal to the circle.Thus, at node (i, j)

we have∮
rect{(xi−1/2,yj−1/2),(xi+1/2,yj+1/2)}

−→
D · n̂ dl =

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

ρi,j dx dy (3.34)
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The circular integral on the lhs can be simplified as∮
rect{(xi−1/2,yj−1/2),(xi+1/2,yj+1/2)}

−→
D · n̂ dl

=

∫ xi+1/2

xi−1/2

(
Dyi,j+1/2 −D

y
i,j−1/2

)
dx+

∫ yj+1/2

yj−1/2

(
Dxi+1/2,j −Dxi−1/2,j

)
dy

=
hxi−1,j + hxi,j

2

(
Dyi,j+1/2 −D

y
i,j−1/2

)
+
hyi,j−1 + hyi,j

2

(
Dxi+1/2,j −Dxi−1/2,j

)
(3.35)

To simplify the notation complexity we denote

Hx
i,j =

hxi−1,j + hxi,j
2

Hy
i,j =

hyi,j−1 + hyi,j
2

(3.36)

Thus, at node (i, j) we have the discretized differential equation as

−
Hx
i,j

hyi,j

2
1

εi,j
+

1

εi,j+1

(φi,j+1 − φi,j) +
Hx
i,j

hyi,j−1

2
1

εi,j−1

+
1

εi,j

(φi,j − φi,j−1)

−
Hy
i,j

hxi,j

2
1

εi,j
+

1

εi+1,j

(φi+1,j − φi,j) +
Hy
i,j

hxi−1,j

2
1

εi−1,j

+
1

εi,j

(φi,j − φi−1,j)

= Hx
i,jH

y
i,jρi,j (3.37)

for all interior nodes (i, j). At boundaries the above equations differs. At top boundary

we have

Dtopi +
Hx
i,j

hyi,j−1

2
1

εi,j−1

+
1

εi,j

(φi,j − φi,j−1)

−
Hy
i,j

hxi,j

2
1

εi,j
+

1

εi+1,j

(φi+1,j − φi,j) +
Hy
i,j

hxi−1,j

2
1

εi−1,j

+
1

εi,j

(φi,j − φi−1,j)

= Hx
i,jH

y
i,jρi,j (3.38)

where Dtopi can be found from boundary condition equation

Atopi φi,j +Btop
i D

top
i = Ctop

i (3.39)
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Using 2D 5-point stencil the above equations can be written as

sNi,jφi,j+1 + sSi,jφi,j−1 + sEi,jφi+1,j + sWi,jφi−1,j + sCi,jφi,j = sFi,j (3.40)

where the coefficients are given as

sNi,j = −
Hx
i,j

hyi,j

2
1

εi,j
+

1

εi,j+1

(3.41)

sSi,j = −
Hx
i,j

hyi,j−1

2
1

εi,j−1

+
1

εi,j

(3.42)

sEi,j = −
Hy
i,j

hxi,j

2
1

εi,j
+

1

εi+1,j

(3.43)

sWi,j = −
Hy
i,j

hxi−1,j

2
1

εi−1,j

+
1

εi,j

(3.44)

sCi,j =
Hx
i,j

hyi,j

2
1

εi,j
+

1

εi,j+1

+
Hx
i,j

hyi,j−1

2
1

εi,j−1

+
1

εi,j

(3.45)

+
Hy
i,j

hxi,j

2
1

εi,j
+

1

εi+1,j

+
Hy
i,j

hxi−1,j

2
1

εi−1,j

+
1

εi,j

(3.46)

sF = Hx
i,jH

y
i,jρi,j (3.47)

At boundaries the changes are given as

sCi,j

∣∣∣
j=1

= sCi,j

∣∣∣
j=1

+Hx
i,1

Abottomi

Bbottom
i

sFi,j

∣∣∣
j=1

= sFi,j

∣∣∣
j=1

+Hx
i,1

Cbottom
i

Bbottom
i

(3.48)

sCi,j

∣∣∣
j=Ny

= sCi,j

∣∣∣
j=Ny

−Hx
i,1

Atopi
Btop
i

sFi,j

∣∣∣
j=Ny

= sFi,j

∣∣∣
j=Ny

−Hx
i,1

Ctop
i

Btop
i

(3.49)
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The matrix in FVM for the Poisson operator is thus given as

[P ]



φ1,1

φ1,2

...

φ2,1

φ2,2

...

φi,j
...



=



sF1,1

sF1,2

...

sF2,1

sF2,2

...

sFi,j
...



(3.50)

where

P =



sC1,1 sN1,1 . . . sE1,1 . . . . . . . . . . . . . . . . . .

sS1,2 sC1,2 sN1,2 . . . sE1,2 . . . . . . . . . . . . . . .

... . . . . . . . . . ...
... . . . . . . . . . . . .

sW2,1 . . . sS2,1 sC2,1 sN2,1 . . . sE2,1 . . . . . . . . .

0 sW2,2 . . . sS2,2 sC2,2 sN2,2 . . . sE2,2 . . . . . .

...
... . . . ... . . . . . . . . . ... . . . ...

...
...

... sWi,j
... sSi,j sCi,j sNi,j

... sEi,j
...

...
...

...
...

...
...

...
...

...



(3.51)

3.3.2 Drift-Diffusion Operator

The transport (drift-diffusion) equation is given as

∂u

dt
= −∇ ·

−→
J where

−→
J = −De−Ψ∇

(
ueΨ

)
(3.52)
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Using Scharfetter-Gummel discretization and applying similar analysis as above we

can write

Jxi+1/2,j = − 1

hxi,j

2
1

Di,j

+
1

Di+1,j

(
Ber(−∆Ψx

i,j)ui+1,j −Ber(∆Ψx
i,jui,j

)
(3.53)

Jxi−1/2,j = − 1

hxi,j

2
1

Di−1,j

+
1

Di,j

(
Ber(−∆Ψx

i−1,j)ui,j −Ber(∆Ψx
i−1,jui−1,j

)
(3.54)

Jyi,j+1/2 = − 1

hyi,j

2
1

Di,j

+
1

Di,j+1

(
Ber(−∆Ψy

i,j)ui,j+1 −Ber(∆Ψy
i,jui,j

)
(3.55)

Jyi,j−1/2 = − 1

hyi,j

2
1

Di,j−1

+
1

Di,j

(
Ber(−∆Ψy

i,j−1)ui,j −Ber(∆Ψy
i,j−1ui,j−1

)
(3.56)

Thus the discretized transport differential equations are given as

Hx
i,jH

y
i,j

ui,j − uti,j
∆t

=
Hx
i,j

hyi,j

2
1

Di,j

+
1

Di,j+1

[
Ber(−∆Ψy

i,j)ui,j+1 −Ber(∆Ψy
i,j)ui,j

]
(3.57)

−
Hx
i,j

hyi,j−1

2
1

Di,j−1

+
1

Di,j

[
Ber(−∆Ψy

i,j−1)ui,j −Ber(∆Ψy
i,j−1)ui,j−1

]
(3.58)

+
Hy
i,j

hxi,j

2
1

Di,j

+
1

Di+1,j

[
Ber(−∆Ψx

i,j)ui+1,j −Ber(∆Ψx
i,j)ui,j

]
(3.59)

−
Hy
i,j

hxi−1,j

2
1

Di−1,j

+
1

Di,j

[
Ber(−∆Ψx

i−1,j)ui,j −Ber(∆Ψx
i−1,j)ui−1,j

]
(3.60)
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Using the same 2D 5-point stencil we can express the coefficients as

sN = −
Hx
i,j

hyi,j

2
1

Di,j

+
1

Di,j+1

Ber(−∆Ψy
i,j) (3.61)

sS = −
Hx
i,j

hyi,j−1

2
1

Di,j−1

+
1

Di,j

Ber(∆Ψy
i,j−1) (3.62)

sE = −
Hy
i,j

hyi,j

2
1

Di,j

+
1

Di+1,j

Ber(−∆Ψx
i,j) (3.63)

sW = −
Hy
i,j

hxi−1,j

2
1

Di−1,j

+
1

Di,j

Ber(∆Ψx
i−1,j) (3.64)

sC =
Hx
i,jH

y
i,j

∆t
+
Hx
i,j

hyi,j

2
1

Di,j

+
1

Di,j+1

Ber(∆Ψy
i,j) (3.65)

+
Hx
i,j

hyi,j−1

2
1

Di,j−1

+
1

Di,j

Ber(−∆Ψy
i,j−1) (3.66)

+
Hy
i,j

hyi,j

2
1

Di,j

+
1

Di+1,j

Ber(∆Ψx
i,j) (3.67)

+
Hy
i,j

hxi−1,j

2
1

Di−1,j

+
1

Di,j

Ber(−∆Ψx
i−1,j) (3.68)

sF = Hx
i,jH

y
i,j

uti,j
∆t

(3.69)

As usual one has to modify the equations at the top and bottom boundaries as

sCi,j

∣∣∣
j=1

= sCi,j

∣∣∣
j=1

+Hx
i,1

Abottomi

Bbottom
i

, sFi,j

∣∣∣
j=1

= sFi,j

∣∣∣
j=1

+Hx
i,1

Cbottom
i

Bbottom
i

(3.70)

sCi,j

∣∣∣
j=Ny

= sCi,j

∣∣∣
j=Ny

−Hx
i,1

Atopi
Btop
i

, sFi,j

∣∣∣
j=Ny

= sFi,j

∣∣∣
j=Ny

−Hx
i,1

Ctop
i

Btop
i

(3.71)

The matrix Tφ for the transport operator can be similarly obtained.
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3.3.3 Flux Continuation in Discontinuous Media

Consider a general flux equation given as

−→
J = −D∇u (3.72)

For simplicity we consider a 1D case with the discretized mesh as given in Fig. 4.

Figure 4. 1D Mesh for Discontinuous Media.

For this the flux evaluated from the lhs of point i+ 1/2 is given as

J−i+1/2 = −D−i+1/2

du

dx

∣∣∣−
i+1/2

(3.73)

= −Di

ui+1/2 − ui
hi/2

(3.74)

The same flux evaluated from the rhs is given as

J+
i+1/2 = −D+

i+1/2

du

dx

∣∣∣+
i+1/2

(3.75)

= −Di+1

ui+1 − ui+1/2

hi/2
(3.76)
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Thus we should have

Di

ui+1/2 − ui
hi/2

= Di+1

ui+1 − ui+1/2

hi/2
(3.77)

=⇒ ui+1/2

(
Di +Di+1

hi

)
= ui+1

(
Di+1

hi

)
+ ui

(
Di

hi

)
(3.78)

=⇒ ui+1/2 = ui+1
Di+1

Di +Di+1

+ ui
Di

Di +Di+1

(3.79)

Substituting this back in (3.73) we get

J−i+1/2 = −2Di

hi

(
ui+1

Di+1

Di +Di+1

+ ui
Di

Di +Di+1

− ui
)

(3.80)

= −2Di

hi

(
Di+1

Di +Di+1

ui+1 +

(
Di

Di +Di+1

− 1

)
ui

)
(3.81)

= − 2DiDi+1

hi(Di +Di+1)
(ui+1 − ui) (3.82)

= − 2

hi

1
1

Di

+
1

Di+1

(ui+1 − ui) (3.83)

We also note that

J+
i+1/2 = J−i+1/2 = − 2

hi

1
1

Di

+
1

Di+1

(ui+1 − ui) (3.84)

= −Deq

hi
(ui+1 − ui) (3.85)

where

Deq =
2

1

Di

+
1

Di+1

(3.86)

With this we conclude the discussion of numerical algorithms used in our solver.
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Chapter 4

USER INTERFACE

The user interface of the solver allows one to properly and easily setup the

simulation problem of interest and correctly input the required parameters to the

species and reactions. Because of the complexity of the intended problems for the

solver, we classify the entire program flow into eight software modules as shown in

Fig. 5. The user interaction is mainly with Graphical User Interface (GUI) module

of the program. The numerical algorithms and schemes used in the solver are coded

and comprise the Numerical Engine module of the program. The Physical Model

Library provides the required code for implementing the physical models from Section

2.4. The Stress Measurement Library is responsible for setting up the process recipes,

stress recipes, measurement recipes etc. The Reporting Engine module implements

code for plotting the results like concentration distribution profiles, potential profiles,

performance characteristics, like current-voltage plots, etc. The Database module

stores all of the parameter values used in the physical models for materials, species,

reactions etc., in dictionaries and projects. The Task Manager module manages all

the operations requested by the user and acts as a central hub to communicate with

other modules. The Documentation Package module documents the programming

structure of the implemented code, user manuals, developer manuals, technical notes

about models, etc.

The GUI interface as seen by the user is shown in Fig. 6. On the left panel

of the interface we have complete database (named as APL_111_poor in the Fig.

6) to hold dictionaries and projects. Inside the dictionaries we have collection of
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Figure 5. Software Modules Used in the Coding of the Solver.

Elements, Lattice Sites, Species, Reactions, Materials and Mechanisms. Projects

hold the collection of user’s created projects that define the simulation structure,

reactions in the structure and process recipe/device measurement recipe to be applied

for structure. The complete database can be saved and shared with other users.

Dictionaries are intended to hold a read only data so that users while creating a

project can avoid accidentally editing the first principle parameters. They can be

edited in projects locally, but those edits will not be reflected in dictionaries.

In the right-hand panel, the user can edit and modify the project. In the General

panel group user can set the name of the project, and the description about the

project. In Project properties panel group, the user can set or modify the type of

the structure and define new structure. Currently, 0D, 1D and 2D are supported.
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Figure 6. GUI for the User to Setup a Simulation Problem.

In the project collection group panel user can define or modify the process recipes,

reactions, species to the user’s simulation task. The Lattice Sites and Elements option

in the project collection group panel are for verification purposes. Mechanisms option

is mainly used to set the collection of reactions useful for a simulation of interested

processes involving specific dopant. For example, to study Cu doping/activation in

CdTe the user does not need to know reactions responsible for Cu doping/activation.

Mechanisms helps user to pick up reactions applicable to a specific dopant of interest.

The Misc panel group is useful to set non-uniform initial concentration profiles through

initial conditions files.
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4.1 Software Architecture of Numerical Engine Module

We follow object-oriented programming paradigm of MATLAB to code the Nu-

merical Engine Module. The entire numerical engine is implemented in a top level

class named as Numerical_Engine. The solvers used in the numerical engine class

are classified as reaction, diffusion and Poisson solvers. Each solver has an abstract

class with the required initialization method and declaration for the common method

called ‘solver(dt)’. This method takes time step as input and returns the solution of

the solver after the time step. With these abstract classes, a developer can implement

solver classes for different numerical schemes and can easily integrated with numerical

engine class. Also, we have a class implementing the numerical algorithm of the engine.

With these class based programming, we were able to implement many variations of

solvers and algorithms. They are

• Diffusion Solvers (DS)

– Slotboom discretization based DS (unstable)

– Scharfetter Gummel (SG) discretization based DS (stable and default)

– SG discretization and pseudo inverses based DS (diffusion mass corrections)

• Reaction Solver (RS)

– Serialized block matrix operation based RS

– Vectorized block matrix operation based RS (improved speed and default)

• Poisson Solver (PS)

– Simple PS without linearization (unstable)

– Linearized PS (stable and default)

– Linearized PS neglecting Gummel iteration feedback (unstable)
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– Damped PS (stable but damping factor is unknown and simulation depen-

dent)

– Differential Algebraic Equation (DAE) based PS (slower)

• Solver Algorithm

– Operator splitting scheme (faster but suffers numerical issues)

– Full operator scheme (slower but does not suffer numerical issues and

default)

To develop the numerical algorithms and solvers in parallel, without affecting the

development of the other software modules in the simulation software package (see Fig.

5) we defined the interface between the Numerical Engine module and other modules.

The interface provides the variables in and out of the Numerical Engine module and

these variables have a specific dimensions (for examples variables can be constants

or vectors or matrices or 3D arrays, etc). With the interface and class structure the

architecture of the numerical engine class is well defined as shown in Fig. 7. This

architecture gives flexibility to easily incorporate new solver classes and algorithms into

numerical engine without affecting the parts of global software code. Such architecture

provided the defect chemistry model development, GUI development and numerical

algorithm development in a concurrent way improving the overall productivity of the

software. Also it acts as a testing hub to run numerical algorithm experiments on

realistic test cases providing ways to identify and propose new solution schemes. This

methodology helped to identify the mass and charge conservation issues in particular

part of the numerical engine code, which otherwise would be harder to debug.
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Figure 7. Software Architectural Organization of the Numerical Engine.
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Chapter 5

APPLICATION/VALIDATION OF SOLVER

In this section we present 9 simulations which illustrate the validation and appli-

cation of the developed solver.

5.1 0-D Simulation of Thermally Generated Electrons and Holes

In this simulation, we take reaction (2.28) in CdTe material and run a 0D simulation

with initial concentration of electrons and holes as 0, for a total time of 1e25 sec. This

simulation shows how fast thermal generation and recombination processes drive the

system towards equilibrium. For this simulation we can write the exact analytical

expression for the time evolution of the concentrations (see Appendix D):

p(t) = n(t) = ni +
2(

1

ni
+

2

n(0)− ni

)
exp(2Kbnit)−

1

ni

(5.1)

Here n2
i =

Kf
Kb

, Kf , Kb are the forward and backward rates of the reaction (2.28),

n(0) = p(0) is the initial electron and hole concentration, and t is the time. The

numerical values are given in Table 1. We can compare the numerical solution and

analytical solution and this validates the numerical algorithm for the 0D solver. The

comparison results are as shown in Fig. 8.
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Figure 8. Comparison of Analytical vs Numerical Solution for Time Evolution of
Electrons and Holes Generated Thermally.

5.2 0-D Simulation Study of Copper Defects in CdTe

In this study we use the solver to study the thermodynamic limits of Copper defect

concentrations in CdTe. The simulation follows the work from Ref. [41] (APL). The

authors Yang et al., calculate the formation energies, defect transition levels under

different conditions for Cu0
i , Cu0

C and their charge states, and by finding the solution

of a constrained equilibrium problem together with charge neutrality condition, they

compute the thermodynamic limits of doping concentration of copper defects using

49



Table 1. Numerical Values Used in the Simulation.

Parameter Value Units
Kf 7.5576 cm−3s−1

Kb 1e-11 cm−3s−1

n2
i 7.5576e11 cm−6

n(0) 0 cm−3

p(0) 0 cm−3

analytical expression. The equations applied in Ref. [41] are

[Cu0
C ] = NCuC ×

g0e
−∆Hf (Cu0

C)/kT

g0e−∆Hf (Cu0
C)/kT + g−1e−∆Hf (Cu−C)/kT

[Cu−C ] = NCuC ×
g−1e

−∆Hf (Cu−C)/kT

g0e−∆Hf (Cu0
C)/kT + g−1e−∆Hf (Cu−C)/kT

[Cu0
i ] = NCui ×

g0e
−∆Hf (Cu0

i )/kT

g0e−∆Hf (Cu0
i )/kT + g+1e−∆Hf (Cu+

i )/kT
(5.2)

[Cu+
i ] = NCui ×

g+1e
−∆Hf (Cu+

i )/kT

g0e−∆Hf (Cu0
i )/kT + g+1e−∆Hf (Cu+

i )/kT

[Cu0
C ] + [Cu−C ] + [Cu0

i ] + [Cu+
i ] = NCuC +NCui = NCu

[Cu−C ] + [e−] = [Cu+
i ] + [h+]

where NCu is the total copper concentration, NCuC is the total copper at cation

defect concentration, NCui is the total interstitial copper defect concentration, [X]

and ∆Hf(X) are the concentration and formation enthalpy of the defect species X

and g’s are the degeneracy factors. With the calculated enthalpies for defects and

self consistently solving (5.2), the authors were able to compute the thermodynamic

doping limits for the Cu defects in CdTe.

We applied our solver to do the same computation but with the reaction formalism.
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The reactions employed to reproduce the results are:

Cu0
i
−−⇀↽−− Cu0

C

Cu0
C
−−⇀↽−− Cu−C + h+

Cu−C −−⇀↽−− Cu0
C + e− (5.3)

Cu0
i
−−⇀↽−− Cu+

i + e−

Cu+
i
−−⇀↽−− Cu0

i + h+

The formation energies, degeneracies, capture rates are all the same as that of Ref.

[41] for the Cd-poor case and we ran a simulation varying total copper concentration

from 1e15 to 1e19 cm−3. We got the comparison results as shown in Fig. 9 and Fig.

10.

The slight differences can be accounted for the finite precision arithmetic errors as

evident from Fig. 11. Thus, this comparison results show that the reaction formalism

assumed in our solver is valid and can reproduce relevant defect chemistry results

from the literature. Further discussion of the results can be found in Appendix E

5.3 1D Simulation of Hetero-Junction CdTe Device

In this study we use the solver to study a CdTe based solar cell and compare

the results with Silavo simulations. The device structure is shown in Fig. 12. The

structure consists of four layer: 0.2um of zinc telluride (ZnTe), 1um of CdTe, 0.4um

of cadmium sulphide (CdS), and 0.4um of transparent conducting oxide (TCO). The

doping of each layer is as shown in Fig. 12. The ZnTe layer has p-type doping of

1.7e18 cm−3, CdTe has p-type doping of 1e14 cm−3, CdS has n-type doping of 1e16
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Figure 9. Comparison of Hole Concentrations (Fermi Level) vs Total Cu
Concentration.

cm−3 and TCO has n-type doping of 1.2e17 cm−3. The bias applied is with respect to

TCO at ZnTe. The light is AM1.5G and is illuminated from TCO side.

We built the same structure in Silvaco and our solver using the same material

parameters. In our solver we specify the SRH processes and radiative processes

through the reactions as given below:
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Figure 10. Comparison of Cu Defect Concentrations vs Total Cu Concentration.

Null −−⇀↽−− e−c + h+
v

N0
D
−−⇀↽−− N+

D + e−c

N+
D
−−⇀↽−− N0

D + h+
v (5.4)

N0
A
−−⇀↽−− N−A + h+

v

N−A −−⇀↽−− N0
A + e−c

(5.5)

The donor dopant (ND) are in CdS and TCO and acceptor dopant (NA) are present

in ZnTe and CdTe layers with the concentration described.
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Figure 11. Comparison of Total Mass and Charge Errors vs Total Cu Concentration.

The capture rates and all material parameters are kept same for both our simulation

and Silvaco simulation. We computed the JV curves and compared them, as shown

in Fig. 13, with Silvaco simulations of an identical structure. We see that we have

achieved very close match in short circuit current between our simulation (27.26

mA/cm2) and that of Silvaco simulation (27.01 mA/cm2). The open circuit voltage in

our simulation is very close to 0.86V where as that of Silvaco simulation is around

0.86V. This comparison further validates our formalism and methodology to study

point defects and charge carriers on equal footing and the treatment of SRH process

as a defect chemical reaction.
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Figure 12. Schematics of Heterojunction CdTe Device Simulation.

5.4 1-D Simulation of Cu Diffusion in Single Crystal CdTe

In this study we perform copper diffusion simulation in single crystal CdTe and

compare it with the experimentally measured Cu SIMS data as given in Ref. [39].

We perform the numerical simulation with four different annealing recipes namely

3min anneal at 350oC, 6min anneal at 350oC, 10min anneal at 300oC and 20min

anneal at 300oC. The simulation structure consists of a 0.5um ZnTe layer doped with

Cu and an acceptor concentration of 1e19 cm−3 and 19.5um of sX-CdTe layer. The

Cu species present in ZnTe are assumed to form a neutral complex [CuC − Cui]
0

with concentration of 2.5e20 cm−3. Previous simulations done by Da Guo et al. [39],

assumed an effective model in the ZnTe layer that maintains an acceptor doping of

1e19 cm−3. The current solver does not need the effective model and the Cu complex

is close to the real structure of the Cu:ZnTe layer. The reactions considered for this

study are given in Table 2.

The reaction 1 in ZnTe layer is the complex dissociation of [CuiCuC ]0, reaction
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Figure 13. Comparison of JV Curves for CdTe Solar Cell Simulation.

2 is the radiative generation recombination and reaction 3 and 4 are the hole and

electron capture reactions by the acceptor defect. Similarly in CdTe we have reac-

tion 1 as complex dissociation of [CuiCuC ]0, reaction 2 as radiative generation and

recombination of free carriers, reaction 3, 4 represent the copper knock-off reaction

which is the main reaction involved in the Cu acceptor formation in CdTe and other

reactions are the electron and hole capture reactions of the invovled defects resulting

form the knock-off reaction and dissociation reaction. The first principle numbers

are taken from Ref. [32, 42, 43]. Since first principle parameters are not available in

ZnTe, we assumed similar numbers as that of CdTe. We varied the formation energies

in ZnTe and CdTe for Cdi defect and [CuiCuC ]0 complex formation energies in ZnTe
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Table 2. Reactions Considered in the Cu Diffusion in sX CdTe Simulation.

Rx No. Rx in ZnTe Layer Rx in CdTe Layer

1 [CuiCuC ]0 −−⇀↽−− Cu+
i + Cu−C [CuiCuC ]0 −−⇀↽−− Cu+

i + Cu−C

2 Null −−⇀↽−− e− + h+ Null −−⇀↽−− e− + h+

3 N0
A
−−⇀↽−− N−A + h+ Cu+

i + Cd0
C
−−⇀↽−− [CuiCdC ]+

4 N−A −−⇀↽−− N0
A + e− [CuiCdC ]+ −−⇀↽−− Cu−C + Cd2+

i

5 Cu+
i
−−⇀↽−− Cu0

i + h+

6 Cu0
i
−−⇀↽−− Cu+

i + e−

7 Cu0
C
−−⇀↽−− Cu−C + h+

8 Cu−C −−⇀↽−− Cu0
C + e−

9 Cd2+
i
−−⇀↽−− Cd+

i + h+

10 Cd+
i
−−⇀↽−− Cd2+

i + e−

11 Cd+
i
−−⇀↽−− Cd0

i + h+

12 Cd0
i
−−⇀↽−− Cd+

i + e−

to match the experimental SIMS data. Our simulation shows that we need not vary

the diffusion barriers from DFT calculation as was done in Ref [39].

Comparison of measured copper profiles and numerical simulations for samples

prepared by 350oC 3min anneal recipe, 350oC 6min anneal recipe, 300oC 10min anneal

recipe and 300oC 20min anneal recipe are shown in Fig. 14, Fig. 15, Fig. 16 and Fig.

17 respectively. We see that our simulation result closely matches the experimentally
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Figure 14. Copper Profile Comparison for 3min 350oC Anneal Recipe.

measured profiles in the CdTe layer. The measurements near the start of ZnTe layer

show a decrease in Cu concnetration which can be attributed as an artifact of SIMS

measurement. The numerical simulation results are not taken after the cool down

to room temperature although the measurements are taken at room temperature.

Simulations of cool down process is still in progress, however we do not expect the

resulting Cu profiles to change significantly from those presentd in Fig. 14 to Fig. 17.

The DFT parameters used for this simulation are documented in Appendix F
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Figure 15. Copper Profile Comparison for 6min 350oC Anneal Recipe.

5.5 1D Simulation of Cu Diffusion in Full Stack CdTe Device

In this simulation, we build a full stack CdTe device structure similar to the

structure shown in Fig. 12, introduce Cu complexes in ZnTe layer, perform thermal

annealing at 350oC for 3min and cool down to room temperature numerical simulation

and finally extract the device characteristics in terms of light JV curves. The full

stack CdTe device structure dimensions are given in Table 3

The defect chemical reactions considered in ZnTe and CdTe are exactly the same

as the reactions considered in Table 2. The reactions considered in CdS and TCO

are the donor ionization reactions and radiative recombination reactions (i.e., sub
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Figure 16. Copper Profile Comparison for 10min 300oC Anneal Recipe.

Table 3. Full Stack CdTe Device Structure.

Layer Name Width (um)
ZnTe 0.5
CdTe 3
CdS 0.04
TCO 0.46
Total 4

reactions 1,2,3 from reactions (5.4)). The point defects considered in this simulation

are the ones given in the reactions in each layer. The initial conditions of point defects

are all set to one except for the point defect initial concentration listed in Table 21.

The DFT parameters used in this simulation is as given in Appendix F.
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Figure 17. Copper Profile Comparison for 20min 300oC Anneal Recipe.

Table 4. Initial Concentrations Used for the Simulation.

Species ZnTe CdTe CdS TCO
(cm−3) (cm−3) (cm−3) (cm−3)

N0
A 1e19 1 1 1

[CuiCuC ]0 2.5e20 1 1 1
N0
D 1 1 1e16 1e18

The temperature profile for the thermal activation process is as shown in Fig. 18.

This profile mimics a general temperature profile of thermal annealing and the cooling

is modeled with Newton cooling with cooling rate of 0.01 per sec.

The boundary conditions for this simulation until cool down were set to zero
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Figure 18. Temperature Profile Used for CdTe Full Stack Cu Simulation.

field and zero flux conditions (insulating boundary condition). The details about

the distribution of point defect concentration profiles, band diagrams etc are given

in Appendix G. After that a bias was applied under AM1.5G light illumination to

characterize the structure for JV curves. Note that the simulation is performed as a

transient simulation and thus the applied voltage is ramping up in time under light

illumination. The resulting light JV curve is as shown in Fig. 19

We next performed a numerical experiment characterizing JV curves to analyze

the sensitivity of free carrier capture reactions in the CdTe layer. We decreased

the capture cross section by a factor of 100 (i.e., increasing life time of the carrier

by a factor of 100) and performed JV light characterization. It was found that the

reaction 5 of Table 2 (hole capture reaction of Cui point defect in CdTe is limiting
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Figure 19. JV Curve After Cool Down to 300K.

the performance of the CdTe solar considered in our simulation. The Jsc and Voc for

this sensitivity analysis is as shown in Table 5 and Fig. 20.

In this simulation, we clearly demonstrate the application of the PVRD-FASP tool.

We were able to do a process simulation mimicking the thermal annealing and perform

device characterization using the same complex level of modeling for point defects and

charge carrier. This level of complex analysis for point defects as well as charge carriers

is not available in any of the state of the art TCAD tools available in the scientific

community. This is the main contribution of our work that differentiates from the rest

of the available TCAD tools. We also note that we can perform accelerated life test
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Figure 20. JV Curves for Sensitivity Analysis.

simulations as well with the solver or long term simulation in decades scale although

there is a limitation present because of the finite precision arithmetic and conditioning

of the involved matrix. We are still actively trying to understand these limitations

and proposing new algorithms to avoid these issues.

5.6 Efforts on Understanding of Chloride Treatment

In this section we provide our efforts on understanding the effects of chloride

treatment using our developed tool. To understand the nature of chlorine point defects

in the CdTe system first we need to understand how chlorine point defects evolve from
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Table 5. Full Stack CdTe Device Structure.

Reaction Name Jsc Voc

(mA/cm)2 (V)

Cu+
i
−−⇀↽−− Cu0

i + h+ 17.96 0.97

Cu0
i
−−⇀↽−− Cu+

i + e− 14.71 0.95

Cu0
C
−−⇀↽−− Cu−C + h+ 13.47 0.95

Cu−C −−⇀↽−− Cu0
C + e− 13.93 0.95

Cd2+
i
−−⇀↽−− Cd+

i + h+ 13.47 0.95

Cd+
i
−−⇀↽−− Cd2+

i + e− 13.47 0.95

Cd+
i
−−⇀↽−− Cd0

i + h+ 13.47 0.95

Cd0
i
−−⇀↽−− Cd+

i + e− 13.47 0.95

start of its incorporation, its interaction with the intrisic point defects and the defect

chemistry in the grain boundaries. We first tried to address how initial conditions

should be chosen for the intrinsic point defects.

Suppose we grow intrinsic CdTe under Cd rich condition or Te rich condition.

Then, what should be the concentration of intrinsic point defects in CdTe? Our

formulation gives same thermodynamic Gibb’s free energy for balanced point defect

chemical reactions independent of growth conditions even though the formation energy

of each point defect gets shifted with growth conditions. Also, we are setting the

same reaction model with same capture cross sections for different growth conditions.

Hence the equilibrium ratios of the concentration should be the same independent

of the growth conditions, thus leading to paradoxical conclusion that, if the initial

concentrations of point defects in CdTe is same under different growth condition, then
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the final concentration of point defects should be same. This is due to the fact that

we are writing the same stiff ode equations under different growth conditions and thus

should lead to the same final conditions if the initial conditions are same.

Table 6. Unbalanced Chemical Reactions Considered for Growth Simulations.

Null −−⇀↽−− V 0
C Null −−⇀↽−− Te0

i Null −−⇀↽−− Cd0
i

Null −−⇀↽−− V 0
A Null −−⇀↽−− Te0

C Null −−⇀↽−− Te0
A

Null −−⇀↽−− Cd0
C Null −−⇀↽−− Cd0

A Null −−⇀↽−− [Tei − Tei]0

Null −−⇀↽−− [Tei − TeC ]0 Null −−⇀↽−− [TeC − TeC ]0 Null −−⇀↽−− [VC − TeC ]0

But in actual experiments we see different final conditions under different growth

conditions. To mimic the growth conditions leading to different final conditions we

introduce unbalanced point defect chemical reactions as given in Table. 6 and these

reactions model the kinetics between the chemical reservoir and the CdTe growth

substrate. This is similar to the approach used in [41]. We write the unbalanced point

defect chemical reactions only for neutral point defects as charged point defect will

involve charge imbalance for the growth substrate thus leading to numerical instability.

Using this theory we calculated the thermodynamic equilibrium concentrations of

intrinsic point defects grown at 300K, 800K and 1200K including defect complexes

under 3 different growth conditions namely µCd = 0, µCd = −0.75 and µCd = −1.17.

The higher temperature growth is quenched down to room temperature rapidly. During

quenching the unbalanced chemical reactions are removed from the simulation. Also,

we considered all the ionization reactions of the considered point defects.

The documented values after cooling down to room temperature with concentra-
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Table 7. Dominant Point Defect in CdTe for Different Growth Conditions at 300K.

Defect µCd = 0 µCd = −0.75 µCd = −1.17

Name cm−3 cm−3 cm−3

e−c 1.26e8 8.70e5 -
h+
v - 8.78e5 1.25e6

V 2+
A 6.14e7 - -

Cd2+
A 1.96e6 - -

V 2−
C - - 3.33e5

tions of the point defects above 1e6 cm−3 (intrinsic concentration at 300K) are given

in Table 7-9. From the table it is evident that at higher temperature growths, the

concentration and the types of intrinsic point defects both increase.

Also after quenching from high temperature to room temperature, the formation

of defect complexes is evident. Cd-rich (µCd = 0) conditions under any temperature

growth has resulted in n-type nature, moderately Cd-poor (µCd = −0.75) and Cd-poor

resulted in intrinsic behavior at 300K and p-type nature at higher temperatures. At

300K growth V 2+
A is the dominant donor defect under Cd-rich conditions whereas V 2−

C

is the dominant acceptor defect under Cd-poor (Te-rich) conditions. For moderately

Cd-poor conditions at 300K we observe intrinsic behavior. For 800K temperature

growth, under Cd-rich conditions Cd2+
A , V 2+

A are the dominant donor defects. V 2−
C is

dominant acceptor defect under moderately Cd-rich conditions and Cd-poor conditions.

We also observe the formation of complex defects under Cd-poor conditions during

the cool down from 800K to 300K.

When the growth temperature is further increased to 1200K we note an increase

in point defects. In Cd-rich conditions we have Cd2+
A as dominant donor. For

moderately Cd-poor condition V 2−
C acceptor and V 2+

A donor are dominant. In Cd-poor
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Table 8. Dominant Point Defect in CdTe for Different Growth Conditions at 800K
and Rapidly Cool Down to 300K.

Defect µCd = 0 µCd = −0.75 µCd = −1.17

Name cm−3 cm−3 cm−3

e−c 2.01e14 - -
h+
v - 5.10e12 4.49e13

V 2−
C - 2.94e13 2.88e14
V −C - 1.74e11 1.50e13
V 0
C - 2.37e12 1.79e15

Cd2+
A 1.51e14 - -

Cd0
i 1.98e12 - -

Cd+
i 3.82e10 - -

Cd2+
i 1.69e12 - -

V −A 1.23e12 - -
V 0
A 2.60e15 - -

V +
A 1.54e12 - -

V 2+
A 1.00e14 6.39e11 -

Te2+
i - - 4.84e10

Te2+
C - - 2.28e13

[Tei − TeC ]0 - - 2.18e12
[Tei − TeC ]+ - - 8.03e10
[Tei − TeC ]2+ - - 6.77e12
[Tei − TeC ]3+ - - 3.60e10

conditions V 2−
C is the dominant acceptor and Te2+

C is the dominant donor followed by

[Tei − TeC ]2+. Here we see a strong compensation lowering the hole concentration.

From the concentrations we observe that mass and charge conservation is obeyed

for 300K but not at 800K and 1200K temperatures. We note that we implemented this

unbalanced chemical reactions feature in our PyCDTS code rather in PVRD-FASP

code. PyCDTS codes does not support mass and charge conservation correction
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Table 9. Dominant Point Defect in CdTe for Different Growth Conditions at 1200K
and Rapidly Cool Down to 300K.

Defect µCd = 0 µCd = −0.75 µCd = −1.17

Name cm−3 cm−3 cm−3

e−c 8.07e15 - -
h+
v - 1.25e14 4.43e13

V 2−
C 5.65e13 4.33e14 2.92e16
V −C - 6.30e13 1.50e15
V 0
C - 2.10e16 1.77e17

Cd+
A 2.91e10 - -

Cd2+
A 5.17e15 - -

Cd0
i 1.08e15 - -

Cd+
i 5.19e11 - -

Cd2+
i 5.71e11 2.64e12 2.65e11

V 2−
A 2.39e13 - -
V −A 1.86e15 - -
V 0
A 9.77e16 - -

V +
A 1.44e12 - -

V 2+
A 2.34e12 2.38e14 2.38e13
Te+

i - - 2.21e10
Te2+

i - 5.69e12 3.41e14
Te0

C - - 1.02e11
Te+

C - - 9.76e11
Te2+

C - 6.46e12 2.13e16
[Tei − TeC ]0 - - 2.65e15
[Tei − TeC ]+ - - 9.62e13
[Tei − TeC ]2+ - 5.16e10 8.01e15
[Tei − TeC ]3+ - - 4.21e13
[TeC − TeC ]2+ - - 1.22e10

[VC − TeC ]0 - - 8.23e11
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scheme as of 0.2.0 release version and thus we could not show an accurate simulation

results. This will be corrected in future versions of PyCDTS and we will redo the

above simulation experiment.

The formation energies of the defects we have considered in our CdTe material

database is as given in the Table 10 and Table 11.

Table 10. Donor Type Point Defect for CdTe Material System Considered in
PyCDTS (Cd Rich Conditions).

Name G0 E0/+ E+/2+ E2+/3+ E3+/4+ Ref
eV eV eV eV eV Paper

CdA 2.299 1.500 1.700 - - [32]
Cdi 2.032 1.190 1.390 - - [32]
Tei 2.993 0.385 1.390 - - [32]

[Tei − Tei] 6.426 1.520 1.360 0.200 0.150 [43]
[Tei − TeC ] 4.972 0.250 0.450 0.200 0.080 [43]
[TeC − TeC ] 8.018 1.059 1.259 0.014 0.214 [43]

ClA 1.438 1.285 - - - [32]
[TeC − ClA] 3.952 1.500 0.094 0.294 - [43]
[Cdi − Cli] 4.852 1.500 1.230 1.430 - [43]

Cui 1.936 1.336 - - - [32]
[Cui − CuC ] 2.116 0.184 - - - [43]
[Cui − TeC ] 5.269 1.500 0.084 0.284 - [43]
[Cui − Tei] 4.623 1.500 0.205 0.405 - [43]
[Cdi − CuC ] 3.954 1.600 1.500 - - [43]
[Cui − Cli] 3.380 0.764 0.964 - - [43]

All the formation energies and transition levels are extracted from the reference

papers given in their respective last columns. In some point defect cases only E0/2+ are

provided. We extrapolate the transition levels of E0/+ and E+/2+ to 0.1 eV from E0/2+.
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Table 11. Acceptor/Amphoteric Type Point Defect for CdTe Material System
Considered in PyCDTS (Cd Rich Conditions).

Name G0 E2−/− E−/0 E0/+ E+/2+ E2+/3+ Ref
eV eV eV eV eV eV Paper

VC 3.013 0.259 0.459 - - - [32]
VA 1.510 1.500 1.490 1.100 1.400 - [44]
TeC 3.739 1.151 1.351 0.394 0.594 - [45]

[VC − TeC ] 6.013 0.794 0.994 - - - [43]
Cli] 2.658 - 0.162 1.277 - - [32]

[Cli − Cli] 3.381 1.010 1.210 0.569 0.769 - [43]
[Cli − TeC ] 5.052 - 1.300 1.500 0.170 0.130 [43]
[Cli − ClA] 1.953 - 1.260 0.110 - - [43]
[VC − ClA] 3.145 - 0.000 - - - [43]
[Tei − Cli] 5.403 - -0.170 0.07 1.095 1.295 [43]
CuC ] 1.732 - 0.154 - - - [32]

[Cli − CuC ] 2.617 - 1.300 0.485 0.685 - [43]
[Tei − CuC ] 3.679 - 0.880 1.080 0.100 0.300 [43]
[ClA − CuC ] 1.519 - 1.230 0.130 - - [43]
[CuC − TeC ] 4.751 - 0.834 0.854 0.094 - [43]
[CuC − CuC ] 3.234 0.304 0.164 - - - [43]

For example, in Ref. [32] Cdi defect has E0/2+ given as 1.290 eV. The respective E0/+

level is taken as E0/2+ − 0.1 = 1.190eV and E0/2+ + 0.1 = 1.390eV for E+/2+. We

note that E0/2+ should be a mid value of E0/+ and E+/2+ and these transition states

form unstable point defect structures resulting in higher energy configuration. In a

similar way we can extrapolate the transition levels for acceptor type point defects

as well. We note that the choice of 0.1eV extrapolation is arbitrary and it should be

avoided if the transition level information for the point defect is available.

We next introduced this as initial conditions for performing chlorine incorporation

simulation. For this we started with vertical grain boundary structure as discussed
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in section 5.7. Since we do not know much about the grain boundary chemistry and

chemical nature of chlorine at the surface of the CdTe we are limited with adding

many diligent assumptions about defect chemistry and this still requires considerable

effort to complete the simulation. Thus, we stopped our efforts here and proceeded to

understand a generic CdTe test case without diving into the origins of the chloride

treatment formation.

5.7 Effects of Traps and Recombination Centers in Grain Boundaries

In this section we analyze the effects of traps and recombination centers in grain

boundary of a test CdTe structure with vertical grain boundary as shown in Fig. 21.

We first describe phenomena of trapping and recombination at point defects and what

we call as ideal trapping centers and ideal recombination centers.

Consider the electronic processes occurring at a point defect as shown in Fig. 22.

The point defect can capture an electron and remit the electron back to its original

state. This kind of processes are called ideal electron trapping. The same thing can

be shown for ideal hole trapping as Fig. 23. The ideal recombination center behavior

occurs when an electron (or hole) is first captured and then the process is followed

by a capture of opposite polarity carrier i.e. hole (or electron) as shown in Fig. 24.

Hence, a capture of carrier involves a change in the charge state of point defect. If

the charge state is positive we say the point defect behaves as a donor type and if it

is negative then it is an acceptor type. Thus an ideal acceptor type electron trap can

be written as

T−g,a −−⇀↽−− T 0
g,a + e− (5.6)
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Figure 21. CdTe Device Structure with Vertical Grain Boundary.

Similarly an ideal acceptor type hole trap can be written as

T 0
g,a
−−⇀↽−− T−g,a + h+ (5.7)
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Figure 22. Ideal Electron Trapping.

And an ideal acceptor type recombination center as

R0
g,a + e− −−→ R−g,a (5.8)

R−g,a + h+ −−→ R0
g,a (5.9)

Figure 23. Ideal Hole Trapping.

Non idealities always occur in practical defects and both capture and emission of

charge carriers occur in general. Based on the emission (en, ep) and capture rates of

carriers (cn, cp) we can classify the nature of point defect as trap or recombination

center. The expression relating the capture rates to the trap levels and associated

conditions for the trapping or recombination nature are given in Appendix H.
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Figure 24. Ideal Recombination.

Table 12. Acceptor Type Point Defect from Recombination Nature to Trapping
Nature.

σn σp Voc Jsc FF Eff

cm−2 cm−2 V (mA/cm)2 Nil %
1e-10 1e-10 0.680 19.912 0.562 7.610
1e-15 1e-10 0.862 25.666 0.695 15.390
1e-20 1e-10 1.183 28.050 0.896 29.728
1e-25 1e-10 1.183 28.051 0.897 29.750
0 1e-10 1.183 28.051 0.897 29.750

1e-10 1e-10 0.680 19.912 0.562 7.610
1e-10 1e-15 0.854 26.557 0.776 17.579
1e-10 1e-20 0.965 27.668 0.838 22.373
1e-10 1e-25 1.183 28.219 0.899 30.013
1e-10 0 1.183 28.220 0.899 30.013

To understand the differences between traps and recombination centers we consider

a CdTe solar cell device with vertical grain boundary as shown in Fig. 21. The device

width is chosen as 1um. The strucutre has 3um thick absorber layer (CdTe) with

1e14 p-type doping, 0.5um ZnTe layer with 1e19 p-type doping at top, 0.04um of
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Figure 25. Light JV Curve with Acceptor Type Recombination to Acceptor Type
Electron Trap.

CdS with 1e16 n-type doping at bottom of CdTe Layer followed by 0.46um of TCO

doped with 1e18 donors. The absorber CdTe has two vertical grains with a width of

0.5um and grain boundary thickness is kept around 10nm. We incorporate a trap or

recombination center at this grain boundary region with a concentration of 1e18 cm−3.

We set capture cross section limited rate model for the traps/recombination centers

and allow all the capture and emission processes possible. Controlling the capture
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Figure 26. Light JV Curve with Acceptor Type Recombination to Acceptor Type
Hole Trap.

cross section we can vary the nature of point defect from being a recombination center

type to a trapping center type.

We set the capture cross section of 1e-10 cm−2 for both electron and hole capture

processes and choose the trap level as the intrinsic fermi level. Now reducing the

capture cross section of holes from 1e-10 to 1e-25 leads to reduce the capture rates

of hole to a very low value, and setting to zero will make the point defect an ideal
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Table 13. Donor Type Point Defect from Recombination Nature to Trapping Nature.

σn σp Voc Jsc FF Eff

cm−2 cm−2 V (mA/cm)2 Nil %
1e-10 1e-10 0.592 6.169 0.337 1.231
1e-15 1e-10 0.753 7.117 0.494 2.648
1e-20 1e-10 0.963 24.21 0.811 18.918
1e-25 1e-10 1.183 27.86 0.903 29.754
0 1e-10 1.183 27.861 0.903 29.756

1e-10 1e-10 0.592 6.169 0.337 1.231
1e-10 1e-15 0.854 27.716 0.770 18.228
1e-10 1e-20 1.183 28.050 0.896 29.742
1e-10 1e-25 1.183 28.052 0.896 29.750
1e-10 0 1.183 28.052 0.896 29.750

electron trap. In a similar way reducing the capture cross section of electrons to zero

will lead to an ideal hole trapping nature for the point defect. We varied capture cross

sections for electrons and holes from 1e-10, 1e-15, 1e-20, 1e-25 and zero. Then we

recorded the solar cell performance under AM1.5G light. The documented result is as

given in Table 12 for acceptor type and Table 13 for donor type. The light JV curves

for acceptor type recombination center to acceptor type electron trap is shown in Fig.

25. In this plot we note that ideal acceptor type electron trapping center does not

have any recombination (green curve). For hole capture cross section of 1e-25 cm−2

(violet curve) the performance is still very close to the ideal case even though there is

slight increase in the hole capture rates. An increase in the hole capture rates is going

to increase the recombination rate. When the hole capture cross section is increased

to 1e-20 cm−2 (yellow curve) the recombination rate increases further and we can see

a decrease in the open circuit voltage causing a degradation in the device performance.

We also note that there is a s-kink observed in the curve. We do not try to explain
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Figure 27. Light JV Curve with Donor Type Recombination to Donor Type Electron
Trap.

the physical origin of this although it is sufficiently evident that it occurs through the

changes in the recombination rates. When we further increase the hole capture cross

section to 1e-15 cm−2 (red curve) we still see a decrease in both short circuit current

and open circuit voltage. Finally when we take the hole capture cross section to 1e-10

cm−2 close to the ideal recombination center behavior we observe there is decrease

in the short circuit current, open circuit voltage and fill factor. It is evident, for this

particular simulation, that as the recombination rate increases at the point defect,
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it first affects the open circuit voltage then short circuit current and finally the fill

factor. A similar trend can be observed for the cases of acceptor type recombination

centers to acceptor type hole traps (see Fig. 26), donor type recombination centers

to donor type electron traps (see Fig. 27) and donor type recombination centers to

donor type hole traps (see Fig. 28).

Figure 28. Light JV Curve with Donor Type Recombination to Donor Type Hole
Trap.

From these results we conclude that an ideal trapping behavior of point defect
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in the grain boundaries of CdTe solar cell does not affect the cell performance. It

is the recombination nature of the point defect that degrades the cell performance.

Moreover, as the recombination rate increases, it adversely affects the cell performance.

We observed a similar trend with bulk defects as well, although we have not presented

the results of the study here. We note that the shunting occurs when the point defect

participates in recombination activity. Hence the shunting path could be related to

the distribution of the point defect with the recombination activity.

Figure 29. Downward Band Bending occurring due to Donor Type Point Defect at
CdTe Vertical Grain Boundary.

Another interesting result we observed in these simulations is the band bending

near grain boundary. In case of donor type recombination center or trapping center

we note that the bands are bending down very close to the ZnTe/CdTe interface and

for acceptor type of recombination center or trapping center the bands are bending

up very close to the CdTe/CdS interface. These results are as shown in Fig. 29 and

Fig. 30. From our simulations we conclude that both upward and downward band

bending is possible in the CdTe GB and the bending is dominant if the GB is close
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to the interfaces. This bending looks like Fermi pinning of bands to the point defect

transition level.

Figure 30. Upward Band Bending occurring due to Acceptor Type Point Defect at
CdTe Vertical Grain Boundary.

The results of these simulation cannot be observed in a 1D structure and thus

demonstrate the 2D capabilities of our tool.

5.8 Effects of Recombination Centers on Different Grain Boundary Structures

In this simulation we consider the same simulation structure described in section

5.7 except that we change the structure of the grain boundary in the CdTe layer from

vertical to being a different geometry. The different geometrical structures of grain

boundaries considered in this study are namely 1) vertical 2) horizontal 3) cross 4)

T-shaped 5) inverted T-shaped 6) L-Shaped and 7) inverted L-shaped (as shown in

Fig. 31). In all these geometrical structures we consider an acceptor type and a donor

type defect with a concentration of 1e18 cm−3.
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Figure 31. CdTe Device Structure with Vertical Grain Boundary.

The thickness of the grain boundary is kept around 10nm to 20nnm as the

thickness in our simulation depends on the chosen mesh size. We perform light JV

characterization under AM 1.5G light and record the solar cell performance. The solar

cell performance obtained from the simulation is as given in Table 14 for acceptor

type point defect, and in Table 15 for donor type point defect. The corresponding

light JV curves are as shown in Fig. 32 and Fig. 33 respectively.

From the Tables 14 and 15, it is clear that the donor type recombination center is

highly detrimental to the solar cell performance when compared to an acceptor type

recombination center at the grain boundaries. For a given type of point defect, the

solar cell performance is almost similar and when there is some vertical grain boundary

the performance degrades more. Although horizontal grain boundaries result in lower

performance than an ideal solar cell without recombination centers the performance is

dependent on the location of the grain boundary with respect to the interface location.
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Table 14. Comparison of Performance with Different Grain Boundary Strctures with
Acceptor Type Point Defect.

Structure Voc Jsc FF Eff

Name V (mA/cm)2 Nil %
Cross 0.680 19.58 0.562 7.489

Horizontal 0.816 27.55 0.812 18.25
L-Shaped 0.765 27.11 0.738 15.12
T-Shaped 0.680 19.69 0.564 7.562
Vertical 0.680 19.72 0.564 7.568

iL-Shaped 0.680 19.76 0.563 7.576
iT-Shaped 0.738 26.65 0.734 14.43

Table 15. Comparison of Performance with Different Grain Boundary Structures with
Donor Type Point Defect..

Structure Voc Jsc FF Eff

Name V (mA/cm)2 Nil %
Cross 0.453 0.302 0.432 0.059

Horizontal 0.592 0.763 0.681 0.307
L-Shaped 0.605 7.056 0.348 1.484
T-Shaped 0.493 0.206 0.700 0.071
Vertical 0.592 5.973 0.341 1.208

iL-Shaped 0.590 4.008 0.541 1.278
iT-Shaped 0.498 0.765 0.425 0.162

A horizontal grain boundary closer to the CdTe/ZnTe or CdTe/CdS has different

impact than a horizontal grain boundary near to the bulk.
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Figure 32. Comparison of Light JV curves for Different GB structures with Acceptor
Type Recombination Center.

5.9 Experimental Characterization Emulation

In this section we present the application of our solver for emulating practical

experimental characterization techniques. Since our tool solves time dependent

equations, we can emulate experimental characterization techniques by providing time

dependent stimulus. One application we already described is the emulation of light

and dark JV curves for a solar cell type device structure. The tool has time dependent
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Figure 33. Comparison of light JV curves for Different GB Structures with Donor
Type Recombination Center.

stimulus for light, temperature and voltage. This provides potential for emulating

a vast number of experimental characterization techniques like light and dark JV,

light and dark CV (capacitance-voltage), DLTS (Deep Level Transient Spectroscopy),

TRPL (Time Resolved Photo-Luminescence), reverse recovery characterization etc.

We describe few studies where we applied our tool for understanding CV data and

hysteresis curves. Also we describe the progress on support for reverse recovery and

DLTS emulation.
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5.9.1 CV Emulation and Hysteresis

We emulate capacitance-voltage (CV) experimental characterization technique

using the developed time dependent solver to understand the time evolution of interface

traps or recombination centers. For this we collaborated with Prof. Michael Scarpulla

from University of Utah. He provided a test simulation structure that is similar to

the experimental device structure used for CV characterization. The test structure

that we simulate is shown in Fig 34. It consists of a 3.8um of 1e15 cm−3 p-type doped

CdTe layer followed by 10nm of CdTe/MZO interface with 1e18 of interface traps or

recombination centers, 1e16 cm−3 n-type doped magnesium zinc oxide (MZO) and

1e17 cm−3 n-type doped TCO.

Figure 34. Test Structure Schematics for Emulating CV.

The schematics consists of a DC voltage source in series with an AC source. A

constant dc bias with a sinusoidal ac input voltage is applied to the test structure

and the current is measured through the simulation. The current response should
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also be a sinusoidal signal. From the measured current density the capacitance can be

easily calculated by taking the ac sinusoidal amplitude ratio of current density and

input ac sinusoidal voltage. Hence we can measure the capacitance for a given input

bias voltage. Varying the input bias from forward to reverse operation of the device

structure will give the CV profile thus emulating the CV measurement process. Fig.

35 and Fig. 36 shows the forward and backward input voltage and output current

density result applied to the test structure.

Figure 35. Input Stimulus and Output Response of CV Under Forward Bias
Conditions.

Using the forward and reverse bias CV measurements we can determine the

depletion width and dopant density of the test structure, thus we can plot the

Mott-Schottky diagram as shown in Fig. 37.

88



Figure 36. Input Stimulus and Output Response of CV Under Reverse Bias
Conditions.

We note that we are giving the dopant density as input to the tool and thus not

measuring anything new. Instead we are able to look into the dynamics of charging

and discharging during the CV profiling.

Next, we applied 2 cycle stair case input sweeping from -1V to 1V to the test

structure without an ac bias to understand the hysteresis behavior. The slew rate

is kept at 100V/s and we observed a hysteresis as shown in Fig. 38. This hysteresis

is caused by the acceptor type recombination center added at the interface between

CdTe and MZO. When the slew rate is increased or decreased we did not observe any

hysteresis in the simulation. Further simulations are necessary to understand the root

causes of the hysteresis phenomena.
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Figure 37. CV Results and Mott Schottky Plot.

Figure 38. Hysteresis Occurring in the Structure as Observed with Simulation .
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The detailed understanding of microscopic processes causing the degradation in

aging photovoltaic and electronic devices is important in analyzing the reliability

issues and ensuring a long term operation. The state of the art TCAD tools available

are limited in modeling the point defects for device and reliability studies.

For this purpose, we developed a 2D Unified Solver called PVRD-FASP that deals

with detailed point defect dynamics and charge carriers in a comprehensive manner.

The theoretical framework behind the developed solver is extensively discussed and

the treating charge carriers and point defects on equal footing is justified with the

theoretical arguments as well as simulation examples.

The 0D reaction solver was verified through analytical calculation for thermal

generation and recombination of charge carriers, comparison with available published

data on thermodynamic doping limit of copper defects in CdTe. The 1D/2D solver was

verified on the simulation of CdTe/CdS heterojunction solar cell for light JV curves

with Silvaco simulation. Perfect matching between the two simulation experiments was

obtained. Finally, the drift-diffusion-reaction solver was tested on real experimental

data of Cu diffusion into single crystal CdTe. Again, very good agreement with SIMS

profiles with different annealing recipe simulation was obtained. We conclude that the

PVRD-FASP solver can robustly perform relevant and diverse simulations to study

diffusion/activation of dopants, device performance and other relevant processes for

reliability issues. In fact, an advanced version of the solver developed by First Solar

Inc. with our collaboration is currently being used in understanding of the Arsenic

91



activation mechanisms in CdTe [34] and understanding Cu doping in graded CdSeTe

alloy absorber layer [46].

The PVRD-FASP tool is a first step towards the development of advanced reliability

modeling tools with capability of applying same model equations for process and

device TCAD. This kind of modeling is not only useful in reliability studies but also

very helpful in understanding defect dynamics in radiation effects in materials.

6.1 Future Work

Although the tool is robust and efficient of performing diverse set of simulations,

it still requires a lot of intellectual efforts for adaptation in the scientific community.

As part of the PVRD project with DOE, we released a closed source version of our

solver into public domain (available at http://pvrdfasp.com) for community adoption.

Because of the needed intellectual effort required for accurate modeling as well as

the theoretical calculations for DFT parameters, we find that a community based

open source version of the tool is necessary. To achieve this we are working towards

implementing a python based version of the PVRD-FASP tool called PyCDTS. This

python based version is open source tool and any researcher can contribute to its

development as well as use this tool in their research. The source codes are be available

in PyPI repo as well as a gitlab based repo for deployment and development. The

documentation of the tool is hosted in ReadTheDocs site.

In terms of advanced modeling we are planning to incorporate the following

• Support for Fermi-Dirac statistics.

• Support for incorporating gas phase reactions. This require extending the

reaction solver to incorporate higher order reaction rate models.
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• Support for modeling experimental characterization techniques.

• Incorporating advanced mobility models for charge carriers.

• Develop supporting infrastructure for graded material system.

• Implement advanced numerical methods improving the speed.

• Develop supporting infrastructure for radiation effects.

• Improve the predictability of the tool in conjunction with machine learning

algorithms for calibrating model parameters.

6.1.1 Updates on PyCDTS

PyCDTS is released in the public domain at https://gitlab.com/abdul529/pycdts

and is available through PyPI site. To install the tool use the following commands :

$ pip i n s t a l l pycdts

This will install PyCDTS with all the required dependencies. The latest version

released is 0.2.0 and this version supports the simulation of 0D structures. It also

support creation of 1D and 2D projects but there are bugs associated with non uniform

meshing of numerical code. It works for uniform meshing projects for 1D and 2D.

It supports graphical visualization of the results through PyQtGraph package and

output results are saved as HDF file for managing large datasets. In the current

version user can change the growth conditions through the chemical potentials of the

material elemental phase. The tool dependencies are numpy, scipy, scikit-umpfack

for numerical engine code, PyQt5, pyqtgraph, matplotlib, PyOpenGL for GUI code,

h5py for HDF datasets, sqlite3 for databases.
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APPENDIX A

STANDARD SEMICONDUCTOR EQUATIONS FOR CHARGE CARRIERS

FROM ELECTROCHEMICAL FORMULATION
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For charge carriers we can simplify the differential equations given in (2.8)-(2.10)

as

∂n

∂t
= −∇ ·

−→
Jn +Gn −Rn (A.1)

−→
Jn = −Dn

kT
n∇

(
G0
f,n − q0φ+ kT ln

(
n

NC

))
(A.2)

∂p

∂t
= −∇ ·

−→
Jp +Gp −Rp (A.3)

−→
Jp = −Dp

kT
p∇
(
G0
f,p + q0φ+ kT ln

(
p

NV

))
(A.4)

−∇ · (ε∇φ) = −p+ n−ND +NA (A.5)

Using the formation energies of the free carriers as given in (2.48), we can simplify

the flux equation as

−→
Jn = −Dn

kT
n∇ (−χ− kT lnNc)− µnn

−→
E −Dn∇n, (A.6)

−→
Jp = −Dp

kT
p∇ (χ+ Eg − kT lnNV ) + µpp

−→
E −Dp∇p, (A.7)

where we used the definition of electric field and Einstein relationship between

diffusivity and mobility. The above equations are the standard semiconductor equations

for heterostructures (see [27]) and in the case of homogeneous structure the first

gradient term vanishes to zero. Thus, the flux equation reduces to

−→
Jn = −µnn

−→
E −Dn∇n, (A.8)

−→
Jp = µpp

−→
E −Dp∇p, (A.9)

which are the standard flux equations for charge carriers in semiconductors.
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APPENDIX B

RELATIONSHIP BETWEEN TRANSITION LEVEL AND FORMATION

ENTHALPY FOR DEFECTS
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Suppose the formation enthalpies and transition levels of a defect are as shown in

Figure 39. Then it is clear that

∆H+
f = ∆H0

f − (+1)
(
E+/0 − 0

)
,

∆H
′

f = ∆H0
f − (+1)

(
E+/0 − E2+/+

)
,

∆H2+
f = ∆H

′

f − (+2)
(
E2+/+ − 0

)
, (B.1)

∆H+
f = ∆H0

f − (−1)
(
E0/− − 0

)
,

by simple rules of coordinate geometry for straight lines with slopes. For further

details please see Ref. [32]

Figure 39. Defect Formation Energy wrt Valence Band Maxima (VBM).
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APPENDIX C

LINEARIZED POISSON EQUATION
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Consider the system of differential equations given in (3.3) ignoring the generation-

recombination. The reactions conserve charge and therefore do not impact Poisson’s

equation. Transforming to Slotboom variables we have

∂

∂t

(
wie

−Ψi
)

= ∇ ·
(
Die

−Ψi∇wi
)
, wi = uie

Ψi ,

−∇ · (ε∇φ) = q0

∑
i

ziwie
−
G0
f,i+q0ziφ−kT lnNs,i

kT (C.1)

The Poisson equation in (C.1) is nonlinear and linearizing it around φold results in

−∇ · (ε∇φnew) = q0

∑
i

ziwie
−Ψoldi

(
1− q0zi

kT

(
φnew − φold

))
(C.2)

Transforming back from Slotboom to normal variables gives

−∇ · (ε∇φnew) = q0

∑
i

ziuie
q0zi
kT (φG−φold)

(
1− q0zi

kT

(
φnew − φold

))
(C.3)

where φG is the previous Gummel loop solution. Thus, we have

−∇ · (ε∇φnew) +

(
q2

0

kT

∑
i

z2
i uie

q0zi
kT (φG−φold)

)
φnew

= q0

∑
i

ziuie
q0zi
kT (φG−φold) +

(
q2

0

kT

∑
i

z2
i uie

q0zi
kT (φG−φold)

)
φold (C.4)

From this we can write the linearized operator as

L̂ =

(
q2

0

kT

∑
i

z2
i uie

q0zi
kT (φG−φold)

)
, (C.5)

L̂1 = q0

∑
i

zie
q0zi
kT (φG−φold) (C.6)

These operators can be written as matrices for a given numerical discretization scheme

and we get L and L1.
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APPENDIX D

TIME EVOLUTION OF THERMALLY GENERATED CARRIERS
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The reaction representing thermally generated carriers is given in (2.28). The differ-

ential equation for this system is (2.29). Choosing charge neutrality for the initial

condition we have

n(0) = p(0), n(t) = p(t), (D.1)

where n(t) and p(t) represent the concentrations of electrons and holes at time t.

Thus, the differential equation to be solved is given as

dp

dt
=
dn

dt
= Kb

(
n2
i − n2

)
, (D.2)

which is a Ricatti equation with the constant value n(t) = ni as one particular solution.

Obviously, this solution cannot be the physically correct solution to our system. The

other solution can be found by writing the solution as

n(t) = ni +
1

z
(D.3)

Substituting this into (D.2) and simplifying we get

− 1

z2

dz

dt
= Kb

(
n2
i −

(
ni +

1

z

)2
)

(D.4)

=⇒ 1

z2

dz

dt
= Kb

(
2ni
z

+
1

z2

)
(D.5)

=⇒ dz

dt
− 2Kbniz −Kb = 0 (D.6)

=⇒ d

dt

(
ze−2Kbnit

)
= Kb2

−2Kbnit (D.7)

=⇒ z(t)e−2Kbnit − z(0)e0 = Kb
e0 − e−2Kbnit

2Kbni
(D.8)

=⇒ z(t) = z(0)e2Kbnit +
22Kbnit − 1

2ni
(D.9)

The value of z(0) can be found as

n(0) = ni +
1

z(0)
(D.10)

=⇒ z(0) =
1

n(0)− ni
. (D.11)
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Hence the final solution is given as

n(t) = ni +
1

z(t)
(D.12)

= ni +
1(

1

n(0)− ni

)
e2Kbnit − 1

2ni

(D.13)

= ni +
2(

2

n(0)− ni

)
e2Kbnit − 1

ni

(D.14)
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APPENDIX E

COPPER DOPING LIMITS IN CDTE SIMULATION RESULTS
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The authors Yang et al., performed the simulation with total Cu incorporation from

1e15 to 1e19 cm−3. We further performed the simulation from very low doping of

1e0 to 1e19 cm−3 with 1 point per decade (i.e., 1,5,10,...,1e18,5e18,1e19) for Cd-poor

conditions as well as slightly poor Cd condition as given in [41]. The results are as

shown in Fig. 40 and Fig. 41. The figures show the formation energies of the Cu

defects at their respective Cd conditions. As the total Cu incorporation is increased

from 1 to 1e19 cm−3 (right Y-axis) the calculated Fermi level is shown in the blue

dotted curve.

It is evident that for Cd slightly poor conditions the thermodynamic limit sets the

Fermi level to 0.36eV (the crossing of solid black line with red line) which corresponds

to hole concentration of approximately 1e13 cm−3. This occurs at the total Cu doping

of approximately 1e14 cm−3. Any further incorporation of Cu above 1e14 cm−3 does

not increase the hole concentration in the material.

In case of Cd poor conditions the thermodynamic limit does not set the limit to

Fermi level with the incorporation of Cu (mainly because red and black solid lines

never cross and thermodynamically CuC is still favorable). A hole concentration as

high as 5e17 cm−3 is thermodynamically feasible. We note that the material growth

conditions impact the hole concentration limits.

Finally we also note that although thermodynamically the above hole concentra-

tions are feasible it may not be kinetically feasible. The thermodynamic limits gives

the final conditions at the end of universe or a very long time much above the time

frames we are trying to analyze. It will be important to do a kinetic simulations to

determine whether the limits are achievable in the time frame of device fabrication and

if they still hold till the lifetime of the fabricated device. Also we have not included

other point defects in this study that might affect the doping limits.
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Figure 40. Cu Doping Limits in CdTe Under Cd Poor Conditions at 300K.
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Figure 41. Cu Doping Limits in CdTe Under Cd Slightly Poor Conditions at 300K.
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APPENDIX F

DFT PARAMETERS USED IN THE SX CDTE SIMULATIONS AS WELL AS

FULL STACK CDTE SIMULATION
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The DFT parameters given here are mainly taken from [32, 42, 43]. We mod-

ify(calibration) the parameters to match the experimental result at 350oC 3min

anneal recipe. Then we used these parameters to perform simulation at other anneal

recipes. The DFT parameters we list here are mainly formation energies (wrt vacuum)

in eV, transition level (wrt VBM) in eV, diffusion prefactors (cm2/s), diffusion barriers

(eV) and assumed reaction model parameters. The common material parameters are:

Table 16. Material Parameters.

Parmeter Name ZnTe CdTe CdS TCO
NC300 (cm−3) 7.8e17 7.8e17 7.8e17 7.8e17
NV300 (cm−3) 1.8e19 1.8e19 1.8e19 1.8e19

E0 (eV) 2.3815 1.602 2.5825 3.6
α (eV/K) 5.2e-4 4.61e-4 3.06e-3 0
β (K) 165 160.1 2156 160
εr 11 11 11 11

χ (eV) 3.53 4.4 4.4 4.4
µn,300K (V/cm2/s) 300 400 400 400
µp,300K (V/cm2/s) 100 200 200 200

m∗e 0.1 0.1 0.1 0.1
m∗h 0.8 0.8 0.8 0.8

Brad (cm3/s) 1e-11 1e-11 1e-11 1e-11

F.1 sX CdTe simulation parameters

All carrier capture reactions have capture cross section of 1e-15 cm2.
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Table 17. Point Defect Formation Energies and Transition Levels in ZnTe and CdTe.

Defect Name ZnTe CdTe
G0
f (eV) ET (eV) G0

f (eV) ET (eV)
[CuCCui]

0 1.06 –– 1.58 ––
[CuCCdi]

+ 2.71 1.28 (0/+) 2.72 1.28 (0/+)
Cu−C 0.81 0.16 (-/0) 0.81 0.16 (-/0)
Cu0

C 0.81 –– 0.81 ––
Cu+

i 2.19 1.35 (0/+) 2.19 1.35 (0/+)
Cu0

i 2.19 –– 2.19 ––
Cd2+

i 3.4 1.31 (+/2+) 2.64 1.31 (+/2+)
Cd+

i 3.4 1.31 (0/+) 2.64 1.31 (0/+)
Cd0

i 3.4 –– 2.64 ––
N−A 0 0.1 (-/0) 0 0.1 (-/0)
N0
A 0 –– 0 ––

Table 18. Point Defect Diffusion Prefactors and Barriers in ZnTe and CdTe.

Defect Name ZnTe CdTe
D0 (cm2/s) ED (eV) D0 (cm2/s) ED (eV)

[CuCCui]
0 0 0 1.5e-3 0.65

[CuCCdi]
+ 0 0 6.3e-3 1.06

Cu−C 0 0 0 0
Cu0

C 0 0 0 0
Cu+

i 6.3e-3 0.25 6.3e-3 0.46
Cu0

i 3.53e-3 0.28 3.53e-3 0.28
Cd2+

i 3.21e-3 0.25 3.21e-3 0.47
Cd+

i 3.21e-3 0.47 3.21e-3 0.47
Cd0

i 5.2e-3 0.6 5.2e-3 0.6
N−A 0 0 0 0
N0
A 0 0 0 0
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F.2 Full stack CdTe simulation parameters

For full stack CdTe Cu simulation, the same parameters are used as in the case of

sX CdTe simulation. The differences are ND generic donor point defect is added in

CdS and TCO layers. The properties of these defects are listed for completeness.

Table 19. Point defect formation energies and transition levels in CdS and TCO.

Defect Name CdS TCO
G0
f (eV) ET (eV) G0

f (eV) ET (eV)
N+
D 0 2.37 (0/+) 0 3.5 (0/+)

N0
D 0 –– 0 ––

Table 20. Point Defect Diffusion Prefactors and Barriers in CdS and TCO.

Defect Name ZnTe CdTe
D0 (cm2/s) ED (eV) D0 (cm2/s) ED (eV)

N+
D 0 0 0 0

N0
D 0 0 0 0

Similarly, all carrier capture reactions have capture cross section of 1e-15 cm2.
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APPENDIX G

CONCENTRATION PROFILES OF POINT DEFECTS, BAND DIAGRAMS AND

OTHER PLOTS FOR FULL STACK CDTE CU SIMULATION
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Here we present the concentration distribution of point defects in the simulation at

different times. We start with initial concentration profile as given in Fig. 42. The

system is soaking in constant temperature bath at 623K for 3min of annealing time.

The profile we get through the numerical simulation is as shown in Fig. 43. A Newton

cool down model is applied to cool down the sample to room temperature (300K)

with cooling rate of 0.01 per second for 450s. The resulting profile from simulation is

as shown in Fig. 44.

Figure 42. Initial Profile.

A comparison of the potential profile plot at initial time, at after 3mins and at the
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Figure 43. Concentration Profile at the End of Anneal before Cool Down.

end of the simulation is as shown in Fig. 45. We note that the potential difference

(built in) between the ends is 0V, 0.96V, 1.27V. The resulting band diagram profiles

at the above said times is as shown in Fig. 46, Fig. 47 and Fig. 48. From Fig. 47

and 48 it is evident that there is band bending near ZnTe/CdTe interface implying

that during the cool down process the interface ZnTe/CdTe is the place where most

of the activity is happening. This is also evident from Fig. 43, Fig. 44 point defect

concentration profiles, Fig. 49 where net concentration of Cu profile (sum of all point

defect concentration which have Cu element) is plotted.
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Figure 44. Concentration Profile at the End of Anneal after Cool Down.

From Fig. 49 it is also evident that Cu diffuses from CdTe to ZnTe as well as CdS

and TCO layer during the cool down. The Cu diffusion in CdS and TCO layer is

mainly because of [CuiCuC ]0 neutral point defect complex. Because of the chemical

potential difference (since the transition levels are not known, assuming the same

transition level places the positive charged point defect as deep donor levels in CdS and

TCO), no mobile charged point defect is crossing CdTe/CdS interface even though the

electric field pushes them towards the interface. All mobile point defects considered

in this simulation are either neutral or donor type and all acceptor point defects are

immobile. The movement of Cu towards ZnTe during the cool down is mainly due to

the complex dissociation reaction in ZnTe having different equilibrium rate constant
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Figure 45. Electrostatic Potential Profile at Initial Time, at 3mins and at End of
Anneal.

at lower temperature than at higher temperature and this favors the formation of

complex [CuiCuC ]0 back in ZnTe. This is evident from the increased [CuiCuC ]0

concentration at the end of cool down. Most of the diffusion of Cu during cool down

towards ZnTe is in the form of Cu+
i and further movement will be balanced out with

the opposing electric field being developed near the ZnTe/CdTe interface as shown in

Fig. 52.

In the bulk of CdTe, the reaction chain of activity happening is as follows:
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Figure 46. Initial Band Diagram Profile.

• At the beginning of the cool down we have uniform point defect profiles.

• With cool down, equilibrium reaction rate constant favors backward processes.

• Cu−C and Cd2+
i gets consumed favoring the formation of Cu+

i and Cd0
C .

• Cu−C and Cu+
i gets consumed favoring the formation of [CuiCuC ]0.

• The above two are evident from the increased concentration of [CuiCuC ]0, slight

increase in Cd0
C , decrease in Cu−C , decrease in Cu+

i and large decrease in Cd2+
i

in the bulk of CdTe.

• Then Cu+
i reaches steady state except near CdTe/ZnTe interface.

• Finally other point defects reach their steady state eventually.

Because of the bulk process in CdTe, Cd2+
i flows back from ZnTe to CdTe as
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Figure 47. Band Diagram Profile at the End of Anneal Before Cool Down.

evident from the decreased concentration in ZnTe even though it does not participate

in any reactions in CdTe and the field direction opposes its flow towards CdTe from

ZnTe at ZnTe/CdTe interface. Further flow of Cd2+
i is blocked by the same electric

field that is blocking the flow of Cu+
i . The Cu+

i near to ZnTe/CdTe interface is

produced because of bulk processes in CdTe and consumed because of bulk processes

in CdTe and movement towards ZnTe to balance out the complex formation reaction,

Cu−C consumption is more near the interface. This suggests as if the Cu−C is getting

diffused into ZnTe to balance the complex formation reaction in ZnTe. We emphasize

that we kept the Cu−C as immobile species and its diffusion is not a direct diffusion

but a pseudo one mediated through the defect chemical reactions.
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Figure 48. Band Diagram Profile at the End of Anneal After Cool Down.

Another important observation is that near ZnTe/CdTe interface after the cool

down simulation shows a n/p/n type of depletion(space charge) region (as evident

from the net charge density profile shown in Fig. 50). This is because of back flow of

Cu+
i and Cu−C concentration going below that of Cu+

i because of this back flow into

ZnTe. Thus, for very low distances from ZnTe/CdTe layer it might seem to look like

a donor type doping but it is not because the free hole charge from ZnTe balances

out still making it as p type.We finally comment that this might or might not be

happening in real structures, but if the assumptions made by our simulations for

DFT parameters are correct then we are sure that we are going to see the chemical

activity as described in the previous paragraphs. Also, via our modeling we can get a
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Figure 49. Net Copper Concentration at Initial Time, at 3mins and at End of Anneal

deeper insights into the physical and chemical processes involved affecting the device

operation.

G.1 Device Operation Insights

The short-circuit current we get with the device after cool down to room temper-

ature is very low (13.78 mA/cm2) when compared to the simulation we performed

with the full stack hetero-junction CdTe having generic dopants (see section 5.3).

As described in the main text, we are currently figuring out the differences and the

incurred losses for the low short circuit current. In this process we are looking at the
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Figure 50. Net Charge Density Near ZnTe/CdTe Interface at Initial Time, at 3mins
and at End of Anneal.

lifetime differences and presented the sensitivity analysis with changing the lifetimes

in full stack CdTe Cu doping simulation. Another difference we noted is the low

electric field in the bulk of the absorber in full stack CdTe simulation where as in

generic dopant case we have high fields in the absorber layer as evient from Fig. 54

and Fig. 55

We also simulated JV curves at elevated temperature and noted the short circuit

current density and open circuit voltage in Table 21. The JV curves are shown in Fig.

56
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Figure 51. Net Charge Density Near CdTe/CdS and CdS/TCO Interface at Initial
Time, at 3mins and at End of Anneal.

Table 21. Short Circuit Current Density and Open Circuit Voltage From Simulations
Just After 3min Anneal at 623K and at the End of Cool Down at 300K.

Temperature Jsc Voc

K mA/cm2 V
300K 13.75 0.95
623K 17.81 0.275
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Figure 52. Electric Field Near ZnTe/CdTe Interface at Initial Time, at 3mins and at
End of Anneal.

128



Figure 53. Electric Field Near CdTe/CdS and CdS/TCO Interface at Initial Time, at
3mins and at End of Anneal.
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Figure 54. Electric Field Profile in Cu Doped Full Stack CdTe Simulation.
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Figure 55. Electric Field Profile in Generic Dopants Full Stack CdTe Simulation.
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Figure 56. JV Curves Measured with Profiles Just After 3min Anneal at 623K and
After Cool Down at 300K.
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APPENDIX H

CAPTURE AND EMISSION RATES
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In this appendix, we try to clarify the terminology used for recombination centers

and traps used in the context of this dissertation and PyCDTS tool. We refer the

readers to the book “Semiconductor Material and Device Characterization” by Dieter

K. Schroder for reference.

Consider a general donor type reaction given below

D0
Kf1−−⇀↽−−
Kb1

D+ + e− (H.1)

D+
Kf2−−⇀↽−−
Kb2

D0 + h+ (H.2)

The forward reaction in (H.1) is termed as electron emission process and its

backward reaction as electron capture process. The rates of the emission and capture

of electrons are given as

en = Kf1 cn = Kb1n (H.3)

Here the rates are not the production or annihilation of electrons but rather the

number of particles getting emitted or captured in unit time. The units for production

or annihilation of electrons is cm3/s and the emission or capture rate unit is 1/s.

In a similar way we can define the emission and capture rates of hole using the

reaction (H.2) as

ep = Kf2 cp = Kb2p (H.4)

We note that if min(en, cn)� max(ep, cp) then the capture/emission of electron

occurs more frequently than the capture/emission of holes. Thus, such defect center

acts as an electron trap.
Hence we define the following in the context of PyCDTS tool.

We note that the conditions does not exhaust all the possibilities. For example

one can have min(cp, en) � max(ep, cn). In this case, we note that the promotion
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Table 22. Conditions for Trap or Recombination Centers in the context of PyCDTS
tool.

Type Condition

Electron Traps min(en, cn)� max(ep, cp)

Hole Traps min(ep, cp)� max(en, cn)

Recombination Centers min(cn, cp)� max(en, ep)

Generation Centers min(en, ep)� max(cn, cp)

of electrons to conduction band is preferred and thus one can term this a electron

generation center. The fourth row in the above table can be termed as e-h generation

centers.

Next, we describe the expressions for emission/capture rates of electrons/holes.

From thermodynamics we can prove that (see section 2.3 )

Kf1

Kb1

= Nc exp

(
ET − EC

kT

)
= ni exp

(
ET − Ei
kT

)
(H.5)

Kf2

Kb2

= Nv exp

(
EV − ET

kT

)
= ni exp

(
Ei − ET
kT

)
(H.6)

Denoting the capture cross section of the electrons and holes for the defect reaction

(H.1) and (H.2) as σn and σp we have

Kb1 = σnVth,n Kb2 = σpVth,p (H.7)

Thus, we can write the expressions of the emission/capture rates for electrons and
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holes as

cn = σnVth,nni exp

(
Ef,n − Ei

kT

)
(H.8)

en = σnVth,nni exp

(
ET − Ei
kT

)
(H.9)

cp = σpVth,pni exp

(
Ei − Ef,p

kT

)
(H.10)

ep = σpVth,pni exp

(
Ei − ET
kT

)
(H.11)

Since the capture rates depend on the availability of carriers in the corresponding

bands, same defect center can behave differently in space charge region, quasi neutral

region or under external stimuli.
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