
Three Facets of Online Political Networks: Communities, Antagonisms, and
.

Polarization

by

Mert Ozer

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved September 2019 by the
Graduate Supervisory Committee:

Hasan Davulcu, Chair
Huan Liu

Arunabha Sen
Yezhou Yang

ARIZONA STATE UNIVERSITY

December 2019



ABSTRACT

Millions of users leave digital traces of their political engagements on social media

platforms every day. Users form networks of interactions, produce textual content,

like and share each others’ content. This creates an invaluable opportunity to better

understand the political engagements of internet users. In this proposal, I present

three algorithmic solutions to three facets of online political networks; namely, de-

tection of communities, antagonisms and the impact of certain types of accounts on

political polarization. First, I develop a multi-view community detection algorithm to

find politically pure communities. I find that word usage among other content types

(i.e. hashtags, URLs) complement user interactions the best in accurately detecting

communities.

Second, I focus on detecting negative linkages between politically motivated social

media users. Major social media platforms do not facilitate their users with built-in

negative interaction options. However, many political network analysis tasks rely on

not only positive but also negative linkages. Here, I present the SocLSFact frame-

work to detect negative linkages among social media users. It utilizes three pieces of

information; sentiment cues of textual interactions, positive interactions, and socially

balanced triads. I evaluate the contribution of each three aspects in negative link

detection performance on multiple tasks.

Third, I propose an experimental setup that quantifies the polarization impact

of automated accounts on Twitter retweet networks. I focus on a dataset of tragic

Parkland shooting event and its aftermath. I show that when automated accounts

are removed from the retweet network the network polarization decrease significantly,

while a same number of accounts to the automated accounts are removed randomly

the difference is not significant. I also find that prominent predictors of engagement of

automatically generated content is not very different than what previous studies point
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out in general engaging content on social media. Last but not least, I identify accounts

which self-disclose their automated nature in their profile by using expressions such

as bot, chat-bot, or robot. I find that human engagement to self-disclosing accounts

compared to non-disclosing automated accounts is much smaller. This observational

finding can motivate further efforts into automated account detection research to

prevent their unintended impact.
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Chapter 1

ONLINE POLITICAL NETWORKS & OVERVIEW OF MY CONTRIBUTION

1.1 Introduction

Politics, by its definition, is a relational phenomenon (Victor et al., 2016). With

the recent explosive growth of social media platforms, large amounts of relational

data have become available for researchers. The availability of large scale data for

digitized political involvement opens an array of dimensions to study (Barberá, 2015;

M Bond et al., 2012; Conover et al., 2011a). In this proposal I present my contribu-

tions on the three aspects of online political networks; namely community, negative

link detection, and measuring the impact of automated accounts on political polar-

ization. I develop novel algorithms for community detection(Ozer et al., 2016) and

negative link detection(Ozer et al., 2017, 2018) tasks separately, and design set of

experiments on observational data to detect the impact of automated accounts on

political polarization. Out of the two major social media platforms, I had to limit the

experimental validation of my efforts to Twitter datasets. Unfortunately, accessing

Facebook data is not straightforward (Tufekci, 2014).

1.1.1 Community Detection

Community detection is a fundamental task in social network analysis (Girvan

and Newman, 2002). A community (Girvan and Newman, 2002) can be defined as

a group of users that (1) interact with each other more frequently than with those

outside the group and (2) are more similar to each other than to those outside the

group. Utilizing community detection algorithms to detect online political camps has
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attracted many researchers (Tang et al., 2012; Sachan et al., 2012; Ruan et al., 2013).

In this work, I propose three non-negative matrix factorization frameworks to exploit

both user connectivity and content information in Twitter to find ideologically pure

communities in terms of their members’ political orientations.

Twitter presents three types of connectivity information between users: follow,

retweet and user mention. In this dissertation, I do not use follow information since

follow relationships correspond to longer-term structural bonds (Myers et al., 2014)

and it remains challenging to determine if a follow relationship between a pair of

users indicate political support or opposition. Furthermore, it has been observed

that neither user retweets nor user mentions always indicate endorsement in Twitter

(Tufekci, 2014). However in the political sub-domain of Twitter, it has been shown

that retweets tend to happen between like-minded users rather than between members

of opposing camps (Conover et al., 2011a).

Using both connectivity and content information for community detection in so-

cial networks has been a popular approach among many researchers’ prior works (Pei

et al., 2015; Ruan et al., 2013; Sachan et al., 2012; Tang et al., 2012). In (Tang et al.,

2012), Tang et al. propose a general framework for integrating multiple heteroge-

neous data sources for community detection. Tang’s work does not pay attention to

identifying the endorsement subgraph of the connectivity graph. In (Sachan et al.,

2012) Sachan et al. propose an LDA-like social interaction model by representing user

connectivity as a document alongside message content. This approach also does not

discriminate between positive or negative user engagement. In (Ruan et al., 2013),

Ruan et al. propose to use a filtered graph to eliminate ambiguous interactions by

checking content similarity in the user’s neighborhood. In this formulation, only local

content patterns are taken into consideration whereas in my formulations I incorpo-

rate the global content patterns into my optimization framework.
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Pei et al. in (Pei et al., 2015) also model the problem as nonnegative matrix tri-

factorization problem which factorizes user-word, tweet-word and user-user matrices

into lower rank representations of users and tweets while regularizing it with user

interaction and message similarity matrices. They build user-user connectivity matrix

by utilizing the structural follow relationships which do not capture dynamic political

context-sensitive engagement. They treat all user mentions and retweets identically

and without any discrimination for endorsement. Their framework also lacks word

similarity regularization.

I develop and experiment with three nonnegative matrix factorization frameworks:

MultiNMF, TriNMF, DualNMF, which incorporate connectivity alongside different

types of content information as regularizers. After experimenting with different di-

mensions of user content and different types of induced connectivity networks I discov-

ered that incorporating more information does not necessarily yield higher clustering

performance. Highest quality clustering is achieved through endorsement filtered con-

nectivity based on methods I develop in Section 2.1 alongside user-word matrix based

content regularization. My DualNMF framework gives purity scores around 88%,

adjusted rand index around 75% and NMI around 67%. It improves all of the other

baseline methods significantly as presented in Section 2.3 and it also improves over

the NMTF framework developed recently by Pei et al. (Pei et al., 2015) by 8% in

purity, 47% in ARI and by up to 60% in NMI metrics. Proposed endorsement filtered

sub-graph of user mentions and retweets also improves all baseline methods in almost

all of the experimental setups by up to 109% in NMI, 71% in ARI and 17% in purity.

The contributions of this proposal in community detection task can be summarized

as follows:

• I start with retweets without edits as indicators of positive endorsements be-

tween users and utilize Heider’s P-O-X triad balance theory (Heider, 1958) to

3



incorporate selected ”structurally balanced” edited retweets and user mentions

into a weighted undirected connectivity graph as additional indicators of posi-

tive endorsements.

• I develop algorithms which incorporate users’ content information in my commu-

nity detection frameworks to overcome the sparse nature of Twitter connectivity

networks. I break down Twitter message content into three categories; words,

hashtags and URLs, and design experiments to measure the performance contri-

butions of each category. Proposed Non-negative Matrix Factorization (NMF)

algorithms use user-word, user-hashtag and user-domain matrices to be fac-

torized into lower rank user vector representations while regularizing over user

connectivity and content similarity to map users into their respective commu-

nities.

1.1.2 Implicit Negative Link Detection

Beyond any doubt, social media has become a prominent platform for people to

express their political stances and opinions for more than a decade (Ausserhofer and

Maireder, 2013). It developed into a medium for politicians and political organizations

to interact with the public (NACOS, 2013). To name a few, 44th President of the

United States, Barack Obama makes an appearance on a Reddit Ask Me Anything,

45th President Donald Trump constantly utilises Twitter for his political messaging,

many grassroot organizations mobilise their movements on Twitter and Facebook.

Consequently, online social networks more and more are becoming an active field of

study for political analysis tasks.

Many researchers have extensively studied the nature of online political networks

(Conover et al., 2011a,c; Johnson and Goldwasser, 2016; Ozer et al., 2016). Most of
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the existing works utilise platform-specific positive interactions between users such

as share and like in Facebook or retweet and like in Twitter to infer insights from

and model political activities in such social media platforms. (Conover et al., 2011a)

present how platform-specific positive interactions in Twitter shows a polarised be-

haviour in which one side does not retweet or like the other side’s contents.

Major online social media platforms, however, do not provide its users options to

state negative opinions in the form of a simple click such as ”dislike” which might

convey opposition or disagreement towards each other. Nonetheless, many political

analysis tasks need the information of rivalries, resentments between political actors

to get a complete picture of the online political landscape. This very nature of

major social media platforms limit the capabilities of researchers studying online

political networks effectively. Many researchers usually choose to study the online

social networks where explicit negative links are available to them such as Epinions,

Slashdot or Wikipedia instead (DuBois et al., 2011; Leskovec et al., 2010a; Yang et al.,

2012). Certainly, these online platforms are not the hotspots where people participate

to express their political views through.

Therefore, I focus on inferring the implicit negative links between users of online

political networks. I aim to detect the link’s negative nature, when any form of

an overall disagreement, opposition or hostility is present between two social media

users. It is a challenging problem due to two main reasons. First, there is no readily

available online political network dataset in which negative links are explicitly present

between its users. Therefore, the developed model must be unsupervised. Second,

there is no simple predictor of negative links such as ”dislike” in major social media

platforms where the main body of the online political activity resides. However,

opportunities are unequivocally present as well. Recent works in the social media

mining research (Tang et al., 2015; Liu et al., 2016) show that negative sentiment in
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the textual interaction between users is a good predictor of the negative link of those

two users. Moreover, certain social psychology phenomenons such as social balance

or social status theory are proven to be helpful in predicting negative links in certain

network configurations(Leskovec et al., 2010b).

In this work, I first propose a nonnegative matrix factorization framework SocLS-

Fact that combines signals from sentiment lexicon of words, platform-specific positive

interactions and social balance theory to detect implicit negative and positive links

in online political networks. I do not focus on the accuracy of the positive links

since it is already a well studied problem and simple good predictors are already

available. Additionally, I extend my SocLS-Fact framework to online settings to

allow the integration and analysis of newly acquired data in a computationally efficient

manner. Through this extension, it becomes convenient to run SocLS-Fact on a much

smaller dataset without compromising effectiveness by utilizing previously detected

implicit links to calibrate the model.

I discuss two applications where detected implicit negative links can be employed

to give a better understanding of the underlying political configuration of the target

dataset. The first application is presented to show the added value of the detected

implicit negative links in community detection tasks. The second application is pro-

posed to show the informativeness of the detected implicit negative links related to

polarisation patterns between political groups.

The main contributions of the paper are,

• Proposing SocLS-Fact an unsupervised model for implicit negative link detec-

tion in social media platforms where platform-specific negative interactions or

negative links between users are not present.
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• Introducing an online extension for SocLS-Fact to dynamically incorporate

newly observed data while refraining from retraining the whole dataset.

• Showing the added value of the negative links in community detection tasks for

online political networks.

• Providing two human-annotated online political network datasets for further

research interest.

1.1.3 Measuring the Polarization Impact of Automated Accounts

Social media has been one of the most prominent mediums in political communi-

cation for the last decade. Its wide accessibility, ease of use, and reach out capacity

have attracted millions to participate in political discussions in these socio-technical

systems. People organized protest movements (Theocharis et al., 2015; Varol et al.,

2014), toppled down authoritarian regimes (Tufekci and Wilson, 2012) with social

media in their action toolkit. Social media has also become instrumental in cam-

paigning for underrepresented issues and communities with hashtag activism. It lead

to a stronger voice and awareness in mainstream media as in the cases of #metoo

(Manikonda et al., 2018), and #blacklivesmatter (Carney, 2016).

The act of retweeting undeniably plays a crucial role in these information dis-

semination and campaign building processes on Twitter (Boyd et al., 2010). When

Twitter users want to re-post or share some other users’ content in their own profile,

they simply use the retweet functionality of the platform. This simple mechanism has

given users capability to share posts of others they like with their own followers. Its

use, however, has reached beyond a simple intent to share when analyzed at broader

scale. Many scientific arguments have been hypothesized around this functionality.

Scholars present numerous anecdotal findings showing the connection between the use
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of this functionality and the political homophily (Colleoni et al., 2014; Conover et al.,

2011b) whereas Barbera et al. (Barber et al., 2015) present evidence for the cases

where cross-camp interactions are present such as in the Boston bombing, Winter

olympics, and Super Bowl events. However, the overall polarization in major politi-

cal issues on Twitter has risen between 10% and 20% (Garimella and Weber, 2017)

over the last decade.

Positive and controversial aspects aside, wide accessibility of social media also

attract malicious use of these platforms at multiple levels. Researchers and data

journalists investigate and report several cases of abuse including but not limited

to the issues of cyberbullying (Hosseinmardi et al., 2015), anti-vaccination (Mitra

et al., 2016), ISIS propaganda (Farwell, 2014), and white supremacist (O’Callaghan

et al., 2013) propaganda. In the majority of the misuse cases, automated accounts

(a.k.a. bots) are found to be playing a significant role as well (Broniatowski et al.,

2018; Ferrara, 2017; Stella et al., 2018). In this work, I focus on automated accounts’

role in political polarization on Twitter retweet networks. I quantify the polarization

impact that automated accounts induce and its textual, emotional, and behavioral

correlates. To the best of my knowledge, this is the first work that tackles the problem

of measuring the polarization impact of automated activity on social media.

My investigation is in two-folds; on synthetically generated networks and on a

real-world social media network. First, I set up synthetically generated network sce-

narios to evaluate the robustness of my experimentation logic. Second I focus on a

Twitter dataset that span the time period of tragic Parkland school shooting and its

aftermath. In synthetic scenario, I (1) produce polarized user networks, (2) quantify

the polarization, and (3) measure the impact of random node removals on polariza-

tion. I find no evidence that random removals significantly affect the polarization

measurements on synthetically generated networks. This finding motivates us to em-

8



ploy a similar removal experiment on Twitter dataset. Using the Twitter dataset, I

build retweet networks at hashtag and aggregate levels. I show that removing auto-

mated accounts from retweet networks significantly reduces the polarization of retweet

networks while random removals do not.

Polarization effect in retweet network is prevalent due to the automatically gen-

erated content’s appeal without any doubt. If automated activity was not getting

any traction from other users, I would not observe any significant change in the po-

larization of the retweet network. To carry out an investigation on textual and user

profile characteristic correlates of engagement that automated accounts attract, I de-

velop a zero inflated negative binomial regression task on retweet count. I compare

the predictors with earlier studies of engaging content on social media and find that

the engagement correlates of automated account tweets are closely overlapping with

previous findings. I also find that the use of the word ”they” play a positive role in

gaining higher retweet counts which, to the best of my knowledge, was not explored

before.

Lastly, I conduct a similar removal experiment with only self-identifying auto-

mated accounts. I find that the polarization impact vanishes on the automated ac-

counts that self-identify their automated nature in their profiles. These self-identifications

are apparent to human users either at profile name or screen name level. Pairwise

engagement ratio of human controlled accounts with self-identifying automated ac-

counts (0.1154) is overtly lower than the engagement with undisclosed automated

accounts (1.3001). I believe that this observational finding can further motivate the

efforts put into automated activity detection on social media research in alleviating

their unintended impact.
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1.2 Previous Literature

1.2.1 Community Detection

Since the introduction of the modularity metric by Newman in (Newman, 2006),

plenty of modularity based community detection methods have been proposed in the

literature (Fortunato, 2010; Blondel et al., 2008; Clauset et al., 2004; Waltman and

van Eck, 2013). I employ Blondel et al. (Blondel et al., 2008) and Clauset et al.

(Clauset et al., 2004) works as baseline algorithms to compare with mine due to

their wide popularity among practitioners. A general drawback of these algorithms,

when they are applied to Twitter networks, is that due to the sparse nature of the

connectivity they end up with an artificially large number of communities.

Non-negative Matrix Factorization

Non-negative Matrix Factorization(NMF) algorithms by Lee et al. (Lee and Seung,

2000) and Lin et al. (Lin, 2007) have been extensively used and extended for different

variations of community detection problems. Cai et al. (Cai et al., 2011) introduced

GNMF algorithm to incorporate Laplacian graph regularization to the standard NMF

algorithm which assumes data points are sampled from a Euclidean space which is not

the case usually for real-world applications. Gu et al. (Gu and Zhou, 2009) further

incorporate local learning regularization to NMF which assumes that geometrically

neighboring data points are similar to each other, and should be in the same cluster.

For co-clustering purposes Ding et al. (Ding et al., 2006) propose non-negative matrix

tri-factorization with orthogonality constraints. Shang et al. introduce graph dual

regularized NMF algorithm in (Shang et al., 2012) by claiming that not only observed

data but also features lie on a manifold.
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1.2.2 Implicit Negative Link Detection

I survey link prediction, sentiment classification and dynamic network modeling

methods proposed for similar line of research to mine in social media mining literature.

Link prediction in social media is an extensively studied problem. Its precedings

can be traced back to the structuralist social psychology studies (Heider, 1958) that

became popular in early 20th century. Link prediction studies standing out as most

related to my problem definition are (Kunegis et al., 2013; Leskovec et al., 2010a;

Tang et al., 2015; Yang et al., 2012). (Leskovec et al., 2010a) propose a framework

that predicts the sign of user links in online networks. They train classifiers using

certain triad configuration and graph features to learn from existing data in which

both explicit positive and negative links are present. (Yang et al., 2012) make use of

explicit negative links through items that users comment to rather than using direct

negative links between users. Signed bipartite graph of users and items is used to infer

connectivity patterns among users. In their prediction model, they accommodate the

principles of balance and status from social psychology theory.

However, these methods are not capable of being trained for major social media

platforms (i.e. Twitter, Facebook) due to the nonexistence of explicit negative links

or platform-specific negative interaction capabilities of users in those platforms. To

address this limitation, (Kunegis et al., 2013) present an approach to predict negative

links when only positive links are available explicitly. They further investigate the

added value of negative links when they are predictable to a certain extent by using

only properties of the positive links and not using any additional information such as

textual content. However, they experiment only with Slashdot and Epinions datasets

in which negative links or interactions between users are explicitly available. How

generalizable their approach for other major social media platforms such as Face-
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book or Twitter, in which no platform-specific negative interaction is available, is

not discussed. In (Tang et al., 2015), Tang et al. introduce a supervised classifica-

tion scheme to predict the negative links among missing links assuming that in many

social media platforms, negative links are indirect and implicit. They use negative

sentiment polarity of textual interactions between user pairs to synthetically generate

the negative labelled links. This method also relies on experiments conducted only on

Slashdot and Epinions datasets. On the other hand, my framework stands out as it

is proposed for the social media platforms that do not provide any platform-specific

negative interaction capabilities to their users.

Second line of research related to my work is sentiment classification in social

media. (Hu et al., 2013b) propose a supervised sentiment classification model which

takes advantage of connected text messages having similar sentiment labels. (Hu

et al., 2013a) further investigate whether emotional signals such as emoticons can

be incorporated in order to infer the sentiment classes of the tweets in Twitter. To

credit the informative value of the overall sentiment of the textual interactions be-

tween users for predicting the polarity of the user link, (Hassan et al., 2012) propose

a supervised classification framework. It considers all textual interactions of the user

pairs’ and learn relevant sentiment features from human annotated prior user link

polarities. However, it does not use any platform-specific interaction types which

are vastly available on many social media platforms. (West et al., 2014) develop a

model that combinatorially optimises the agreement between the sentiment class of

user pairs’ textual interaction and the polarity label of the explicit user link. They

make use of Wikipedia, and U.S. Congress dataset, in which explicit negative links

or platform specific negative interactions are available. My work differentiates it-

self from aforementioned others in the literature by using platform-specific positive

interactions, a sentiment lexicon of words and socially balanced triads for detection.
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The last line of research related to my work is dynamic network modeling meth-

ods. (Aktunc et al., 2015) propose an extension of well-known modularity based

smart local moving algorithm for dynamic networks. The main goal of the modeling

is community detection. The work concerns with only explicitly defined links on net-

works. (Mankad and Michailidis, 2013) propose a non-negative matrix factorization

approach for modeling dynamic networks. They also utilise the concept of temporal

smoothing as my online framework does. However they do not take any other form

of interaction in networks other than explicit links. On a similar line of research, (Yu

et al., 2017) propose modeling dynamics of networks by using temporal matrix fac-

torization. They investigate the modeling options of temporal unfolding of networks

by factorizing different snapshots of networks into one constant and one time-varying

matrix. Similar to my modeling, they also use a decay function to weight importance

of previous snapshots in temporal order. For predicting links in dynamic networks,

(Zhu et al., 2016) propose using a temporal latent space. They assume two users

who are located closer in a temporal latent space is likely to form link in the next

snapshot. The concept of temporal smoothing also plays an important role in their

dynamic network modeling. My work stands out from aforementioned four works by

focusing on implicit links rather than explicit ones as majority of social media plat-

forms do not allow explicit negative links. Moreover, these previous efforts do not

involve incorporating textual interactions, sentiment signals or social balance theory.

1.2.3 Measuring the Polarization Impact of Automated Accounts

My work is inspired by the previous research on online networks, political polar-

ization, and prevalence and impact of automated activity on social media platforms.

In this section, I briefly discuss my connection points to previous literature on these

three subjects.
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In the Logic of Connective Action (Bennett and Segerberg, 2012), Segerberg et

al. suggest explaining action networks in three broad categories; self-organizing con-

nective action networks, organizationally enabled connective action networks, and

organizationally brokered collective action networks. They characterize these three

network types on a spectrum of organizational coordination, one extreme being little

to no organizational coordination and the other extreme being strong to full orga-

nizational coordination. Recent history has seen an upsurge of the first two types

partially thanks to the advancement of communication technologies. As discussed

by numerous scholars previously(Cleaver, 1998; Castells, 1996; Halavais and Garrido,

2003), Zapatista movement of early 90s epitomize the connective action phenomenon.

In (Halavais and Garrido, 2003), Garrido et al. characterize EZLN’s online network

presence (http://www.ezln.org/) and how it shapes the international support net-

work of the group.

Since then, researchers conduct multitudes of observational studies around con-

nective action networks. Agarwal et al. (Agarwal et al., 2014) analyze the role of

Twitter in occupy protests by suggesting a theoretical framework and analyzing Twit-

ter streams during the protests. Several other studies present evidence for the positive

role and pitfalls of social media use in community building(Waitoa, 2013; Clark, 2014;

Vigil-Hayes et al., 2017). Tufekci points out the fragile and ephemeral nature of these

social media fueled connective action networks in multiple anecdotes (Tufekci, 2017).

She marks the impetus role of social media in large crowds getting together without

as much effort as it would take with more traditional grassroots campaigning. Re-

gardless of its role in connective action, new information technologies are proven to

have a measurable impact through natural experiments on voter turn-out (M Bond

et al., 2012), political choice of undecided voters (Epstein and Robertson, 2015), or

money donation (Bimber, 2001).
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With the advent of social media and its relevancy in political communication, a

phenomenon called automated account (a.k.a. bot account) came under a spotlight.

Recently, numerous studies disclose their existence and impact on social media. Varol

et al. (Varol et al., 2017) characterize the detection of these types of accounts and

their interactions with human controlled accounts on Twitter. Stella et al. (Stella

et al., 2018) study the automated accounts’ behavior in the 2017 Catalan indepen-

dence referendum. They show that automated accounts deliberately target central

hubs with inflammatory content for traction from the general public. Ferrara et al.

(Ferrara, 2017) disclose a flock of social bots in a misinformation campaign during

the 2017 presidential election season in France. Shao et al. (Shao et al., 2018) present

evidence of higher activity by automated accounts in spreading low credibility news

sources on Twitter. Very recently, Lou et al. (Lou et al., 2019) develop a model of

information spreading with agents having limited attention and how automated ac-

tivity can easily overshadow deliberate democratic exchange of information on these

social media platforms.

Retweeting is a widely adopted action form of Twitter users in the platform for

encouraging political participation such as donation or protest (Boyd et al., 2010).

Political polarization in this behavior has been found to be an imminent component.

Early studies by Adamic et al. (Adamic and Glance, 2005) explore the divided nature

of republican and democrat blogs in the blogosphere. Along the same vein, Conover

et al. (Conover et al., 2011b) identify the polarized nature of retweet networks of

Twitter among democrats and republicans in the U.S.. Weber et al. (Weber et al.,

2013) also identify a similar polarized behavior among secularist and islamist Twitter

users in Egypt. To quantify the level of polarization, Garimella et al. (Garimella

et al., 2018) suggest a random walk based polarization metric for political hashtags

in retweet networks of Twitter.
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I study these three prevalent phenomenon; namely, online networks (connective

action), political polarization, and automated activity jointly on Twitter in the un-

folding of Parkland school shooting event. I aim to measure the impact of automated

activity on polarization of the endorsement (retweet without edit) networks.
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Chapter 2

COMMUNITY DETECTION

2.1 Structural Balance of Retweet and Mention Graph

Since P-O-X triad balance theory proposed by Heider in (Heider, 1958), structural

balance of signed networks has been studied extensively. Heider proposed that in a

signed triad, only two combinations of eight possible sign configurations are possible

for a triad to be structurally balanced. Those are the following cases;

1. three positive edges,

2. one positive and a pair of negative edges.

In other words, there cannot be any structurally balanced triad having only one neg-

ative edge. I adopt this social theory for the Twitter user connectivity networks,

by assuming that ”retweets without edits” imply political endorsement or an unam-

biguous positive edge (Wong et al., 2016). However, when a retweet is edited, it has

already been shown that (Boyd et al., 2010), it does not necessarily mean endorse-

ment anymore. Moreover, user mentions do not imply endorsements either. For these

reasons, I only consider retweets without edits as positive edges. For the rest of the

user actions, corresponding to retweets with edits and users mentions, it is hard to

detect positivity or negativity of the edges.

In certain triad configurations, retweets with edits and user mentions can be iden-

tified as positive edges with the help of Heider’s triad structural balance (TSB) rules.

Since I do not have unambiguous negative edges, the second case is not applicable.

However, since I have some positive edges to begin with, I can employ Heider’s first
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case (i.e. three positive edges), to infer that in the presence of a triad with a pair of

positive edges, the third edge can also be labeled as positive. An example configu-

ration with a pair of positive edges is shown in Figure 2.1. In this case, TSB rule is

applicable and would allow us to infer that any user mention or retweet with an edit

edge connecting the lower pair of users in the triad is indeed a positive edge. By em-

ploying this inference mechanism I identify the endorsement filtered user connectivity

network.

Figure 2.1: An Example Application of TSB Rule. Inferring a Positive Link Between

Two Users If They are Both Connected to a Third User with a Positive Link.

2.2 Proposed Methods

I propose three methods for clustering politically motivated users in Twitter

namely; MultiNMF, TriNMF and DualNMF. For MultiNMF method I use docu-

ment term representation of user-word, user-hashtag and user-domain matrices to be

factorized and regularize the factorization problem with the user connectivity graph,

cosine similarity matrices of words, domains and hashtag co-occurrence matrix. For

TriNMF method I use only user-word and one of user-hashtag or user-domain ma-
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trices and regularize over user connectivity and cosine domain similarity or hashtag

co-occurence matrix. For DualNMF method I factorize user-word matrix into two

non-negative lower rank matrices while regularizing it with user connectivity and co-

sine word similarity. Before going into the details of the three algorithms I present

notation in Table 2.1. In this work, instead of using only full user retweet and mention

Table 2.1: Notation

Xuw user x word counts of words used by users

Xuh user x hashtag counts of hashtags used by users

Xud user x domain counts of distinct domains used by users

R user x user adj. matrix of retweet without edit graph

M user x user adj. matrix of mention and retweet with edit graph

∆Mw user x user

adj. matrix of mentions and retweet with edits

completing retweet without edit triads weighted by

retweet without edit edges

C user x user any combination of user connectivity graphs

Hsim hashtag x hashtag hashtag co-occurence matrix

Dsim domain x domain domain similarity matrix

Wsim word x word word similarity matrix

U user x cluster cluster assignment matrix of users

H hashtag x cluster cluster assignment matrix of hashtags

D domain x cluster cluster assignment matrix of domains

W word x cluster cluster assignment matrix of words

network I offer three types of user connectivity regularizers as follows;
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• R + M: It is the adjacency matrix of the full retweet and mention graph. If

there exists both retweet and mention edges between two users, weights are

summed up.

• R + ∆Mw: It is the adjacency matrix of the union of retweet and mention

graphs in which mention edges and retweet with edits either complete a missing

link in a triad of retweet without edit or already correspond to a retweet without

edit edge. The ones that complete a missing link in a triad of retweet without

edit are weighted by the multiplication of the weights of two retweet without

edit edges in the triad. ∆Mw can be defined formally as;

∆Mw = {(i, j,Mij(Rij +
∑N

k=1RikRkj))}

For word similarity and domain similarity regularizers I make use of cosine simi-

larity. For hashtag similarity I build similarity matrix by making use of co-occurences

of hashtags in tweets. If two hashtags occur in the same tweet, I assume that those

two hashtags are similar.

2.2.1 MultiNMF with Multiple Regularizers

To incorporate usage of both hashtags and domains of shared url links by users,

I propose an NMF framework which has the following objective function;

JU,H,D,W =‖ Xuw −UWT ‖2F + ‖ Xuh −UHT ‖2F

+ ‖ Xud −UDT ‖2F +αTr(UTLCU)

+ γTr(HTLHsim
H) + θTr(DTLDsim

D)

+ βTr(WTLWsim
W)

s.t. U ≥ 0,H ≥ 0,D ≥ 0,W ≥ 0

(2.1)
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where LC is the Laplacian matrix of adjacency matrix of user connectivity graph

defined as DC − C and DC is the matrix which contains the degree of each user

node in its diagonals. LHsim
, LDsim

and LWsim
follow the same definition for hashtags

and words. Due to the very fuzzy multi-class nature of words, hashtags and domain

names, I do not include orthogonality constraints for matrices U,H,D,W, which

usually result in more precise clusters for co-clustering tasks. It is easy to see that

the proposed objective function is not convex for U,H,D and W, hence I develop

an iterative algorithm which tries to find a local minima by updating each matrix

iteratively as follows;

U← U�

√
XuwW + XuhH + XudD + αL−CU

UWTW + UHTH + UDTD + αL+
CU

(2.2)

H← H�

√
XT

uhH + γL−Hsim
H

HUTU + γL+
Hsim

H
(2.3)

D← D�

√
XT

udD + θL−Dsim
D

DUTU + θL+
Dsim

D
(2.4)

W←W �

√
XT

uwU + βL−Wsim
W

WUTU + βL+
Wsim

W
(2.5)

where L+
ij = (|Lij| + Lij)/2 and L−ij = (|Lij| − Lij)/2. � represents element-wise

multiplication and
[·]
[·]

represents element-wise division. Derivation of update rules

can be seen in the Appendix of (Ozer et al., 2017). Complexity of the method can

be inferred as O(i(uwk + uhk + udk + u2k + h2k + d2k + w2k)) when complexity

of multiplying any X matrix with any of U,H,D,W is considered to be O(uwk),

O(uhk), O(udk) and multiplying any of Laplacian matrices L with any of U,H,D,W

is taken as O(u2k), O(h2k), O(d2k) or O(w2k) where i is the number of iterations, u

is number of users, h is the number of hashtags, d is the number of domains, w is the

number of words and k is the number of clusters. The general algorithmic framework

is given at the end of methodology in Algorithm 1.
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2.2.2 TriNMF with Three Regularizers

To incorporate usage of hashtags or domains of shared url links solely, I propose

a new NMF framework which has the following objective function.

JU,H,W =‖ Xuw −UWT ‖2F + ‖ Xuh −UHT ‖2F

+ αTr(UTLCU) + γTr(HTLHsim
H)

+ βTr(WTLWsim
W)

s.t. U ≥ 0,H ≥ 0,W ≥ 0

(2.6)

where LC is the Laplacian matrix of user connectivity defined as DC −C and DC is

a diagonal matrix which contains the degree of each user in its diagonals. LHsim
and

LWsim
follows the same definition for hashtags and words. After applying the same

procedure followed in Section 2.2.1, I get updating rules as follows.

U← U�

√
XuwW + XuhH + αL−CU

UWTW + UHTH + αL+
CU

(2.7)

H← H�

√
XT

uhU + γL−Hsim
H

HUTU + γL+
Hsim

H
(2.8)

W←W �

√
XT

uwU + βL−Wsim
W

WUTU + βL+
Wsim

W
(2.9)

Note that this update rules can be obtained by setting D, Dsim and θ equal to 0

in Equations 2.2, 2.3, 2.5. Complexity of the method can be calculated by omitting

the costs of operations done over matrices Xud, D and LDsim
. The complexity of the

method is O(i(uwk + uhk + u2k + h2k + w2k)).

2.2.3 DualNMF with Two Regularizers

To use only user word matrix as user content and regularize factorization with

user connectivity and keyword similarity, inspired by (Yao et al., 2014), I present

22



DualNMF objective function as;

JU,W =‖ Xuw −UWT ‖2F +αTr(UTLCU)

+ βTr(WTLWsim
W)

s.t. U ≥ 0,W ≥ 0

(2.10)

After following the same procedure introduced in Section 2.2.1, I can get the update

rules for U and W as;

U← U�

√
XuwW + αL−CU

UWTW + αL+
CU

(2.11)

W←W �

√
XT

uwU + βL−Wsim
W

WUTU + βL+
Wsim

W
(2.12)

Complexity of the method can be inferred as O(i(uwk + u2k + w2k)) after omitting

the extra operations done over matrices Xuh, H and DHsim
in the previous method.

The general algorithm can be summarized as the application of the related update

Algorithm 1 NMF Algorithms

Input:{Xuw,Xuh,Xud,C,Hsim,Dsim,Wsim, α, β, θ, γ}

Output: U

1: Initialize U,H,D,W > 0

2: while ∆residual > threshold do

3: Update U by using one of Equations 2.2, 2.7, 2.11

4: Update H by using one of Equations 2.3, 2.8

5: Update D by using Equation 2.4

6: Update W by using one of Equations 2.5, 2.9, 2.12

7: end while

8: Assign user i to community j where j = argmaxjUij.

rules to the matrices U,H,D,W. For MultiNMF with multi regularizers method,
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equations 2.2, 2.3, 2.4, 2.5 are applied. For TriNMF with three regularizers method,

equations 2.7, 2.8, 2.9 are applied and D matrix is not included in calculations. For

DualNMF method, equations 2.11 and 2.12 are applied and H and D matrices are

not included in calculations. I make implementations of all three algorithms publicly

available 1 .

2.3 Experiments and Results

2.3.1 Data Description

I make use of a pair of publicly available 2 political Twitter datasets to evaluate

my methods. These datasets are user lists of 419 British political figures from four

major political parties in the UK, namely; Conservative and Unionist Party, Labour

Party, Scottish National Party, Liberal Democrats and others, and 349 major Irish

political figures from seven political parties; Fianna Fail, Fine Gael, Green Party,

Sinn Fein, United Left Alliance, Independents. Several statistics for the datasets are

shown in Table 2.2.

For the UK and Ireland data, I crawl all of the tweets sent from the accounts of

given user id lists. In order not to be heavily influenced by the extremely polarized

election season, I only used tweets dated after May, 7 2015, which was the election

day in the UK. To balance the share of number of tweets from each user I limit the

number of tweets to 200 per user.

For each dataset, same preprocessing method is followed. First, words occurring

less than 20 times and stop words are eliminated. After eliminating word features,

users and tweets that lack content are also eliminated. Hashtags and domains that

appear only once are not taken into consideration either. Statistics shown in Table

1http://www.public.asu.edu/~mozer/ASONAM2016Code.tar.gz

2Users’ Twitter id lists can be obtained from http://mlg.ucd.ie/aggregation/index.html
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Table 2.2: Characteristics of the UK and Ireland Datasets

UK Ireland

# of Tweets 19,947 14,656

# of Retweets 1,566 7,088

# of Mentions 4,956 22,072

# of Words 10,766 7,973

# of Hashtags 945 986

# of URL Domains 946 634

# of Users 233 258

# of Baseline Communities 5 7

2.2 show the numbers after preprocessing.

2.3.2 Evaluation Metrics

To evaluate the methods, I make use of three well known clustering quality metrics,

namely; purity, adjusted rand index(Hubert and Arabie, 1985) and normalized mutual

information(Strehl and Ghosh, 2002).

Purity can be formally defined as;

Purity =
1

n

k∑
i=1

maxj|Ci ∩ lj|

where k is the number of communities found, n is the number of instances, lj is the

set of instances which belong to the class j, and Ci is the set of instances that are

members of community i.

Adjusted Rand Index (Hubert and Arabie, 1985) can be formally defined as;

ARI =
RI − E[RI]

max(RI)− E[RI]
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RI =
s+ s′(

n
2

)
s is the number of pairs which belong to both same ground-truth class and identified

community. s′ is the number of pairs which belong to both different ground-truth

classes and identified communities. It evaluates the similarity of ground-truth class

labels and clustering result.

Normalized Mutual Information can be formally defined as;

NMI =

∑|l|
j=1

∑|C|
i=1 P (j, i)log

( P (j, i)

P (i)P (j)

)
√
H(l)H(C)

where, H(l) and H(C) are the entropy of class and community assignments of l and

C. P (j, i) is the probability that randomly picked user has class label j and belongs

to the community i while P (j) gives the probability of randomly picked user to be in

class j and similarly P (i) to be in community i.

2.3.3 Baseline Algorithms

As a baseline to evaluate the performance of using both connectivity and content

information, I design experiments with connectivity-only and content-only clustering

methods.

For connectivity-only method, I use Louvain (Blondel et al., 2008) and CNM

(Clauset et al., 2004) algorithms utilizing modularity optimization over user adjacency

matrix. Modularity is defined as:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(ci, cj) (2.13)

where δ(ci, cj) is the Kronecker delta symbol, ci is the label of the community to

which node i is assigned, and ki is the degree of node i.

For content-only approach, I experiment with k-means(Lloyd, 2006) and conven-

tional non-negative matrix factorization algorithm (Lee and Seung, 2000).
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For approaches employing both connectivity and content information of users,

I test GNMF (Cai et al., 2011) and NMTF (Pei et al., 2015) algorithms besides

proposed methods. GNMF algorithm is introduced by Cai et al. to incorporate

intrinsic geometric similarity of users. I feed previously defined two types of user

connectivity graphs’ adjacency matrices as graph regularization terms to the GNMF

algorithm.

Pei et al. work in (Pei et al., 2015) applies non-negative matrix tri-factorization

with regularization to Twitter data. It makes use of user similarity, [tweet x word]

and [user x word] matrices and regularize the objective function with tweet similarity

and user connectivity matrices. Complexity of the algorithm is O(rk(mn + mw +

nw +m3 + n2)) where r is the iteration times. m, n, k, and w denote the number of

users, messages, features and communities.

2.3.4 Experimental Design

First set of experiments test the performance of using connectivity-only informa-

tion for community detection, labeled as the Experiment Set 1. I test Louvain and

CNM algorithms on three different types of connectivity graphs. Second set of exper-

iments test the performance of content-only methods, labeled as Experiment Set 2.

I test k-means and NMF methods. Third set of experiments test the performance of

methods utilizing both connectivity and content information, labeled as Experiment

Set 3. I test GNMF and NMTF frameworks proposed by (Pei et al., 2015) as baseline

algorithms, alongside my proposed MultiNMF, TriNMF and DualNMF methods. In

user content dimension, I use DualNMF method to test the experiment design that

only uses user-word content. I use TriNMF method to test the experiment design

that uses user-hashtag or user-domain information in combination with the user-

word information. I use MultiNMF method to test the experiment design that uses
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all of user-word, user-hashtag and user-domain contents. I label these experiments as

Experiment Set 1, 2 and 3 respectively.

2.3.5 Experimental Results

First, I present statistics of retweets without edits and user mentions on the full

and endorsement filtered user connectivity graphs. Table 2.3 shows that retweeting

without edits indeed occurs mostly inside like-minded political camps, rather than

cross-camps. Roughly 97% of retweets in the UK data, and 88% of retweets in

the Ireland data occur inside like-minded groups, while these percentages are much

lower for users mentions. My endorsement filtered connectivity network boosts the

percentage of inner group user mentions from 83% to 97% in the UK data and from

59% to 87% in the Ireland data evidencing that TSB rule in fact identifies positive

user mentions and retweets with edits with high accuracy.

Table 2.3: Effect of Endorsement Filtered Mention Links

UK Ireland

Inner Group Retweet Links 962 1,652

Inter Group Retweet Links 28 216

Inner Group Retweet + Mention Links 1,986 3,056

Inter Group Retweet + Mention Links 398 2,092

Inner Group Retweet + ∆Mention Links 1,456 2,820

Inter Group Retweet + ∆Mention Links 40 432

I run each experiment 20 times for every method and pick the maximum score

achieved for reporting. Each regularizer parameter (α, γ, θ, β) are experimented with
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values 1, 10, 100 and 1000. Best accuracies are usually reached with experiments in

which α and β equal to 10 or 100 while γ and θ equal to 1. This shows the contri-

bution of user connectivity and word similarity regularizers, and considerably lower

contributions of hashtag and domain name regularizers towards overall performance

of the algorithms.

Table 2.4: UK & Ireland Experiment Set 1 Results

UK Dataset Ireland Dataset

Algorithm User Graph k Purity ARI NMI k Purity ARI NMI

Louvain
R +M 20 .9313 .4661 .5854 13 .8720 .7277 .6849

R + ∆Mw 42 .9484 .4291 .5916 31 .9224 .7536 .7518

CNM
R +M 17 .8498 .5656 .5257 10 .7016 .4509 .4720

R + ∆Mw 41 .9700 .6150 .6496 29 .8333 .6426 .6381

Major findings for Experiment Set 1 can be summarized as follows:

• Relatively larger clustering scores occur due to artificially large number of clus-

ters that are found. Considering the number of users in both datasets, the

number of clusters identified in Experiment Set 1 are not practical for use (e.g.

29 clusters in Ireland data for 7 political parties).

• Using endorsement filtered user connectivity graph usually gives better clus-

tering performance compared to using full user connectivity graph. There is a

pattern of weighted graph approach outperforming the others.

Experiment Set 2 indicates that word usage-only based clustering yields consid-

erably lower accuracies compared to user connectivity-only based clustering.
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Table 2.5: UK & Ireland Experiment Set 2 Results

UK Dataset Ireland Dataset

Algorithm User Content Purity ARI NMI Purity ARI NMI

k-Means user x word .6738 .2378 .2018 .4651 .0488 .1672

NMF user x word .6395 .1541 .1709 .4186 .0434 .1139

Major findings from Experiment Set 3 can be summarized as follows;

• Regardless of the experiment set and algorithms used, endorsement filtered user

connectivity graph yields higher accuracy clustering performance compared to

using the full connectivity graph. Usually weighted graph approach outperforms

the others.

• DualNMF method which factorizes user-word matrix alongside user connec-

tivity and word similarity regularizers yields the highest accuracy clustering

performance.

• I get much higher scores of clustering accuracy in Experiment Set 3 compared to

Experiment Set 2. Regularizing content-only methods with user connectivity

graphs(GNMF (Cai et al., 2011)), dramatically increases the quality of the

clustering. DualNMF which incorporates keyword similarity regularization to

GNMF further boosts the quality of clustering.

• Compared to DualNMF method, including tweet messages for NMTF method

proposed in (Pei et al., 2015) does not help to further improve the clustering

quality, while it increases complexity dramatically. DualNMF provides 9% addi-

tional purity, 46% additional ARI score while doubling the NMI score compared
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Table 2.6: UK & Ireland Experiment Set 3 Results.

Algorithm User Graph User Content Purity ARI NMI

GNMF*
R +M

word
.7854 .4955 .4120

R + ∆Mw .8326 .6469 .5461

NMTF*
R +M

word, tweet
.8197 .6448 .2593

R + ∆Mw .8412 .5331 .3751

TriNMF
R +M

word, domain
.7597 .3707 .3158

R + ∆Mw .8283 .6375 .5006

TriNMF
R +M

word, #tag
.7897 .5232 .4320

R + ∆Mw .7768 .5001 .3837

MultiNMF
R +M

word, domain, #tag
.7554 .4025 .3343

R + ∆Mw .8112 .6108 .4978

DualNMF
R +M

word
.8326 .5674 .5146

R + ∆Mw .8970 .7616 .6380

to the baseline NMTF method of Pei et al. in (Pei et al., 2015).

• Compared to DualNMF method, utilizing hashtag and/or domain usage infor-

mation (i.e. TriNMF and MultiNMF) do not contribute to the overall clustering

quality.
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Table 2.7: Ireland Experiment Set 3 Results

Algorithm User Graph Content Purity ARI NMI

GNMF*
R +M

word
.5543 .2447 .2881

R + ∆Mw .8178 .6978 .6399

NMTF*
R +M

word, tweet
.5969 .3119 .2144

R + ∆Mw .7597 .5198 .4469

TriNMF
R +M

word, domain
.7209 .5051 .5237

R + ∆Mw .8101 .6807 .6372

TriNMF
R +M

word, #tag
.6938 .4202 .4431

R + ∆Mw .8062 .6784 .6885

MultiNMF
R +M

word, domain, #tag
.7481 .4777 .4938

R + ∆Mw .8178 .6953 .6411

DualNMF
R +M

word
.7364 .5561 .5397

R + ∆Mw .8721 .7536 .7096

Table 2.8: Comparison of NMF Methods for Experiment Set 3

Connectivity

R +M 3R + ∆Mw

Content

3word DualNMF 33DualNMF

word, {#tag or domain} TriNMF 3TriNMF

word, #tag, domain MultiNMF 3MultiNMF
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Chapter 3

IMPLICIT NEGATIVE LINK DETECTION

3.1 Proposed Frameworks

3.1.1 Offline Framework

(a) Data Input (b) Algorithm Input (c) Alg. Output (d) Output

Figure 3.1: Input Representation of Social Media Data and Interpretation of Algo-

rithm Output.

In this section, I first present the notation used throughout the chapter, formally

define the problem and then propose the SocLS-Fact optimization solution. Finally, I

provide the details of how to build the prior knowledge that the SocLS-Fact requires.

Before going into the details of the framework, the notation that is used through-

out the chapter can be seen in Table 3.1. Let m be the number of interacting user

pairs, and n be the number of unique sentiment words. An example with 3 interacting

user pairs and 8 unique sentiment words can be seen in Figure 3.1a and 3.1b. All

textual interaction happening between two users are represented as rows of X. X

encodes how many times each sentiment word occurs in textual interactions of two
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Table 3.1: Notation

Symbol Size Explanation

m Number of interacting user pairs

n Number of sentiment words

Ik k × k Identity matrix of size k

X [m× n]

Matrix of occurrences of sentiment

words in textual interactions of

user pairs

Su [m× 2] User link polarity

Su0 [m× 2] Initial user link polarity

Du [m×m]
Binary diagonal matrix of user pairs

with positive interaction

Sw [n× 2] Sentiment word polarity

Sw0 [n× 2] Initial sentiment lexicon

M [m×m] Social balance matrix

users. In Figure 3.1b, when user a and b interacts they use 2nd, 3rd, 5th and 6th

words while user b and c interacts they use 1st, 3rd and 8th and so on. Initial user

link polarities are embedded in matrix Su0. Initial sentiment lexicon is embedded

in Sw0. Positive and negative polarities are represented as two latent dimensions in

matrix Su0, and Sw0. Which user links should have the same polarity following the

social balance theory is governed by matrix M. Further details of how matrices Su0,

Sw0, M are derived is given later in this section.

As I discuss earlier, sentiment of words used in user interactions are proven to be

good predictors of the polarity of user links. Moreover, built-in positive interactions
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(i.e. retweet, like, share) are good predictors of positive user links by their nature.

As referred in Section 1.1.2, how user links form triangles with each other is also a

decisive factor of their polarities since they tend to follow social balance theory. To

factorize all textual interactions between users into two latent dimensions as positive

and negative and enjoy aforementioned three predictors of polarity of user links at

the same time, I propose the following optimization problem;

min
Su,H,Sw

||X− SuHST
w||2F (0)

+ α||Sw − Sw0||2F (1)

+ βTr
(

(Su − Su0)
TDu(Su − Su0)

)
(2)

+ γ||M− SuS
T
u ||2F (3)

subject to Su > 0,Sw > 0,H > 0

Optimization formulation consists of 4 terms. (0)th term factorizes user pair tex-

tual interactions into three matrices. Su ∈ Rm×2
+ is the lower-rank projection of matrix

X. The first column of Su is the latent negative and second column is the latent pos-

itive dimension. Sw is the lower-rank projection of columns of matrix X. Note that

each column of X represents a sentiment word. Projection matrix Sw corresponds to

distributed polarity representation of each sentiment word. As in Su, first column of

Sw is the latent negative and the second column is the latent positive dimension.

(1)st term in the optimization formulation penalizes the meaning change of the

sentiment words compared their initial lexicon meaning. Parameter α governs the

relaxation on the penalty.

(2)nd term governs how much the polarity prediction of links diverges from their

initial inferred labels. Initial labels are inferred as positive if there is any platform-

specific positive interaction between users that the link connecting to. Diagonal
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matrix Du helps to penalize divergences of links which have platform-specific positive

interactions only.

(3)rd term in the optimization formulation penalizes the triangles in the user

network that do not follow social balance theory. M encodes the information of pair

of links that should have the same polarity if they are forming a triangle with another

positive link.

Constructing Sw0

A well-known off-the-shelf sentiment word lexicon is utilized 1 to populate the ini-

tial sentiment polarities of words. A word is represented as [1, 0] if it has negative

sentiment meaning. It is represented as [0, 1] if it has positive sentiment meaning. In

Figure 3.1b, initial sentiment lexicon is embedded in Sw0 such that 1st, 3rd, 4th and

8th words as positive sentiment words and 2nd, 5th, 6th and 7th words as negative

sentiment words.

Constructing Su0 and Du

Each row of the initial user link polarity matrix Su0 encodes the information of the

prior inference of the polarity of user link. First column of the polarity matrix Su0 is

the latent negative dimension, while the second column is the latent positive dimen-

sion. For the links that connect user pairs having previous platform-specific positive

interaction, I infer the initial polarity of them as positive and embed it as [0, 1] in

the corresponding row of Su0 and as 1 in the corresponding diagonal entry of Du.

For the links that connect user pairs having no previous platform-specific positive

interaction, I do not infer any initial polarity and represent them as [0.5, 0, 5] in Su0

and as 0 in the corresponding diagonal entry of Du. To illustrate in Figure 3.1b, the

1http://www.cs.uic.edu/∼liub/FBS/opinion-lexicon-English.rar
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positive interaction between user A and C is represented as [0, 1] in the second row

of Su0 and as 1 in the second diagonal entry of Du.

Incorporating Social Balance Theory

Figure 3.2: Possible Configurations of Undirected Signed Links in a Triad. Balanced

Ones in Dashed Rectangles.

The theory of social balance of signed links in triads is extensively studied since

its introduction by Heider et al. in (Heider, 1958) as structural balance of signed

links. It suggests that for a signed triad to be balanced, it has to have an odd number

of positive links (i.e. one or three positive links), otherwise it is not balanced. The

balanced configurations among all possible configurations are presented with dashed

frames in Figure 3.2. The definition of structural balance is analogous to common

daily phrase of “enemy of my enemy is my friend” and “friend of my friend is my

friend” in social settings.

To encode the social balance theory, I utilize the prior knowledge of positive links

inferred from platform-specific positive interactions. My intuition is that if two users

have any prior platform-specific positive interaction, the polarity of their interaction

with any other third user should be similar. They can connect to third user either

with both negative or positive links (i.e. Triad-1 and Triad-2 in Figure 3.2). The cases

which they connect to a third user with different polarities are not socially balanced

configurations (i.e. Triad-3 in Figure 3.2).
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The matrix M ∈ {0, 1}m×m encodes the link pairs that are needed to have the same

polarity to follow social balance theory by having 1 in the related row and column of

M and 0 for the rest. In Figure 3.1a, link between user A and B should have the same

polarity with link between user B and C. It is because they are forming a triad with

link between user A and C which has prior platform-specific positive interaction. In

Figure 3.1b, it is encoded as 1 in the M(1, 3) and M(3, 1). Eventually, minimizing

the squared frobenious norm of the difference between M and SuS
T
u forces triads to

have odd number of positive links in the whole network.

Algorithm

The objective function proposed in Section 3.1.1 is not convex for all variables of

Su,Sw,H. I introduce an alternating optimization solution for my problem similar to

(Li et al., 2009). I update each variable Su,Sw,H iteratively while fixing others to find

a local minimum in the solution space. The update rules for each variable is given as;

Su ← Su �

√
XSwHT + γ(M + MT )Su + βDuSu0

SuHST
wSwHT + γSuST

uSu + βDuSu

(3.1)

H← H�

√
ST
uXSw

ST
uSuHST

wSw

(3.2)

Sw ← Sw �

√
XTSuH + αSw0

SwHTST
uSuH + αSw

(3.3)

Derivation of the update rules are presented in the Appendix B. The proposed algo-

rithm employs an iterative scheme of the above rules until convergence. Each step of

the algorithm is shown in Algorithm 2.

Finally, the polarity of the latent dimension with higher numerical value in the ith

row of Su is assigned as the polarity output of the link i. To illustrate in Figure 3.1c

and 3.1d, it can be seen that the value in the first column is greater than the second
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Algorithm 2 Proposed Algorithm for the Optimization Problem

Input:{X,Su0,Sw0, M}

Output: Su,Sw

1: Initialize Su ← Su0,H← I2, Sw ← Sw0.

2: while not convergent do

3: Update Su using Equation 3.1.

4: Update H using Equation 3.2.

5: Update Sw using Equation 3.3.

6: end while

column for the first and the third rows of Su. Therefore, the polarity of the link

between user A and B and the link between user B and C are inferred as negative.

Since the value in the second column is greater than the first column for the second

row of Su the polarity of the link between user A and C is inferred as positive.

The most computationally costly operations of the update rules are matrix mul-

tiplications since matrix summation, matrix hadamard product and element-wise di-

vision can be handled in linear time. Complexity of the update rule in Equation 3.1

is O(mn+m2 +m+ n2m). Complexity of the update rule in 3.2 is O(mn+m+ n).

Complexity of update rule in 3.3 is O(mn+m2n). Therefore, overall time complexity

of the Algorithm 2 complexity is O(i(m2n+n2m+m2 +mn+m+n)) where i is the

iteration count that algorithm takes until update rules converges to a local minima.

Experiments empirically show that convergence takes usually less than 20 iterations.

The proof of the convergence of the algorithm is omitted here due to space con-

straints which can be followed in similar works using the auxiliary function approach,

such as presented in (Ding et al., 2006). The source code for the whole running

pipeline presented in this section can be reached at www.public.asu.edu/~mozer/

HT2017Code.tar.gz.
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3.1.2 Online Framework

Given the dynamic nature of online political networks, it is necessary to handle

streaming data in an online fashion. It usually is computationally expensive to re-run

offline methods from scratch each time a new piece of arrives. One naive solution is

running the offline method only on the new data. It is a faster solution, yet, it ignores

the rich historical information.

To alleviate the aforementioned problems, we introduce an online framework. It

follows similar principles as the offline framework besides the modelling of temporal

dimension. It uses sentiment words, prior positive interactions, and socially balanced

triads to infer implicit negative links. To take previous snapshots’ detected implicit

links into account, we propose using a temporal smoothing term. This smoothing

term penalises abrupt changes of the signs of the links in consecutive snapshots.

Thus, we propose solving the following optimisation problem for online settings;

min
Su

(t),H(t),S
(t)
w

||X(t) − S(t)
u H(t)S(t)

w

T ||2F (0)

+ α||S(t)
w − Sw0||2F (1)

+ βTr
(

(S(t)
u − S

(t)
u0)TD(t)

u (S(t)
u − S

(t)
u0)
)

(2)

+ γ||M(t) − S(t)
u S(t)

u

T ||2F (3)

+ τ
t∑

i=1

e−(t−i)||S(t)
u − S(i)

u ||2F (4)

subject to S(t)
u > 0,S(t)

w > 0,H(t) > 0

In above formulation, t stands for the current time snapshot and any matrix

superscripted by parameter t (e.g. X(t)) spans the data of tth snapshot from time

(t−1) to t. First four terms (0, 1, 2, 3) in the objective function are inherited from the

offline framework. (4)th term controls the divergence of current snapshot’s signs of
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links from previous time snapshots’. An inverse exponential decay function (e−(t−i))

is employed to weight previous snapshots’ importance in temporal order. One can

simply plug another decay function based on their application’s constraints when

necessary. Parameter τ controls the importance of temporal smoothing.

Algorithm

To optimise the online framework objective function, we follow similar iterative mul-

tiplicative update rules as in the offline framework. While updating S
(t)
u , we treat

emerging links and continuing links exclusively, since they are subject to different

temporal smoothing constraints. For emerging links as there is no precedent of them

in previous snapshot, we employ the update rule of the offline framework. We denote

rows of Su corresponding to emerging links as Sue,

S(t)
ue ← S(t)

ue �

√√√√ X
(t)
e S

(t)
w H(t)T + γ(M

(t)
e + M

(t)
e

T
)S

(t)
ue + βD

(t)
ueS

(t)
ue0

S
(t)
ueH(t)S

(t)
w

T
S
(t)
w H(t)T + γS

(t)
ueS

(t)
ue

T
S
(t)
ue + βD

(t)
ueS

(t)
ue

(3.4)

For continuing links, we incorporate the temporal smoothing term, so, the update

rule for continuing links become,

S(t)
uc ← S(t)

uc �

√√√√X
(t)
c S

(t)
w H(t)T + γ(M

(t)
c + M

(t)
c

T
)S

(t)
uc + βD

(t)
ucS

(t)
uc0 + τ

∑t
i=1 e

−(t−i)S
(i)
uc

S
(t)
ucH(t)S

(t)
w

T
S
(t)
w H(t)T + γS

(t)
ucS

(t)
uc

T
S
(t)
uc + βD

(t)
ucS

(t)
uc + τtS

(t)
uc

(3.5)

From the perspective of matrices H(t) and S
(t)
w , there is no temporal smoothing

involved. So, same update rules can be employed as in the offline framework in a

snapshot-based fashion;

H(t) ← H(t) �

√√√√ S
(t)
u

T
X(t)S

(t)
w

S
(t)
u

T
S
(t)
u H(t)S

(t)
w

T
S
(t)
w

(3.6)
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S(t)
w ← S(t)

w �

√√√√ X(t)TS
(t)
u H(t) + αS

(t)
w0

S
(t)
w H(t)TS

(t)
u

T
S
(t)
u H(t) + αS

(t)
w

(3.7)

Derivation of the update rule of S
(t)
uc is given in Appendix B.4. Derivation of the

update rules of S
(t)
ec , H(t), and S

(t)
w follow the exact offline framework calculations in

(Ozer et al., 2017). Given the update rules, algorithm for finding the optimal S
(t)
ue

and S
(t)
uc becomes straightforward, and presented in Algorithm 3

Algorithm 3 Proposed Algorithm for the Online Framework’s Optimisation Problem

Input:{X(t),S
(t)
u0 ,Sw0, M(t), S

(i)
u , i = 1, 2..., t− 1}

Output: {S(t)
u ,S

(t)
w }

1: Initialise S
(t)
u ← S

(t)
u0 ,H(t) ← I2, S

(t)
w ← Sw0.

2: while not convergent do

3: Update emerging links S
(t)
ue using Equation 3.4.

4: Update continuing links S
(t)
uc using Equation 3.5.

5: Update H(t) using Equation 3.6.

6: Update S
(t)
w using Equation 3.7.

7: end while

As in the offline framework, the polarity of a link is assigned based on the values

in the corresponding row of the link in S
(t)
u . If the first value is larger, the link is

inferred as negative, and otherwise, as positive.

Complexity of the algorithm can be formulated as follows. Update rule for S
(t)
ue(Eq.

3.4), H(t)(Eq. 3.6), and S
(t)
w (Eq. 3.7) are same as in the offline framework; Equation

3.1, 3.2 and 3.3. They are O(mn+m2+m+n2m), O(mn+m+n) and O(mn+m2n),

respectively. Complexity of updating S
(t)
uc is O(mn+m2 +m+n2m+ tm). Therefore,

whole complexity of the online framework becomesO(i(m2n+n2m+m2+mn+tm+n))

where i is the number of iterations of applying multiplicative update rules. The added
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time complexity the online framework introduces is due to the term tm. The source

code for the whole running pipeline for both offline and online frameworks can be

reached at www.public.asu.edu/~mozer/NRHMcode.tar.gz.

In this section, we present experiments to evaluate the performance of my offline

and online frameworks. In the first experiment, we investigate the effectiveness of

the offline framework and in the second experiment, we compare online framework’s

performance with variants of offline framework in implicit negative link detection

task.

Dataset

We crawl tweets by members of the 56th and 57th Parliament of United Kingdom

using GET user timeline function of Twitter API. Each parliament member usually

self-describes when the account is associated with their parliament identity in their

user profile. All of the accounts in the dataset are verified Twitter accounts.

• 56th Parliament Dataset covers 1,074 user pairs sampled from 400 members

of the 56th Parliament of United Kingdom on Twitter. Polarity of each user

link is annotated using three human annotators.

• 57th Parliament Dataset covers 1,349 user pairs sampled from 561 members

of the 57th Parliament of United Kingdom on Twitter. Polarity of each user pair

is annotated by yearly snapshots. It spans three snapshots, namely, “2016 →

2017”, “2017 → 2018”, and “2018 →”. “2018 →” snapshot spans the first

two months of 2018. The task of annotation involves three human annotators.

Details of the annotation are explained in Section 3.1.2.

Users who do not participate in any textual user interaction are removed from

the dataset. For implicit negative link detection task, it is essential to obtain labels
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Table 3.2: Dataset Statistics

56th Parliament
57th Parliament

2016→ 2017 2017→ 2018 2018→

Textual interactions 4,217 1,297 3,947 1,459

Interacting user pairs 1,074 460 1,099 602

+/− links 948/126 433/27 977/122 526/76

(+,+,+) triads 732 150 1257 294

(+,+,−) triads 61 0 72 15

(+,−,−) triads 68 12 126 30

(−,−,−) triads 11 0 3 0

Sentiment Tokens 1,225 543 1,064 615

for the links between users to (1) test the effectiveness of my algorithm, (2) have a

grasp on the effect of the parameters. Thus, we hired three graduate students for my

annotation task. An overview of the annotated datasets can be seen in Table 3.2.

Tweet ids, user ids and annotated user links of both datasets used in my experiments

can be retrieved from www.public.asu.edu/~mozer/NRHMdata.tar.gz.

To evaluate the performance of the offline algorithm, we experiment with the 56th

Parliament dataset and an aggregated single-view of the 57th Parliament dataset

over three snapshots. To aggregate human annotated labels of the 57th Parliament

dataset, we use the latest available label in three snapshots for each link. For online

algorithm’s experiments, we use the 57th Parliament dataset as it is.
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Annotation Task

For 56th Parliament dataset, we aggregated all the textual interactions (i.e. tweets

identified as mentions and reply to’s) of user pairs. For 57th Parliament we aggregated

interactions into three snapshots(“2016 → 2017”, “2017 → 2018”, “2018 →”). We

filtered the data to include textual interactions which contains a single user mention

to avoid the confusion as it is ambiguous which user is addressed in the multiple

mentions case.

We requested 3 graduate students who had knowledge of UK politics to rate the

polarity of the interactions between two politician accounts. For a pair of users, we

have provided all textual interactions, political party affiliations, and retweet counts

between the users to help annotators assess the polarity of the link better. After

retrieving all the answers from three annotators, we assigned the polarity labels using

majority voting.

We analyzed the labelers inter-rater agreement using Cohen’s Kappa (Landis and

Koch, 1977) and Fleiss’ Kappa (Fleiss, 1971) to ensure annotation quality. Two-way

inter-rater agreement is nearly perfect according to (Landis and Koch, 1977) with

Cohen’s Kappa scores calculated as 0.810, 0.898 and 0.911. Fleiss’ kappa is reported

as 0.731.

Finally, we remove the neutral user links as they are not covered by my problem

formulation.

Offline Framework Performance

My first experiment aims to demonstrate the implicit negative link detection perfor-

mance of SocLS-Fact in offline settings. To assess the performance of my method,

we explain and compare with two existing state-of-the-art matrix factorization ap-
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proaches along with three other baseline predictors we define as follows:

• Random: Motivated by (Liben-Nowell and Kleinberg, 2003), this method pre-

dicts signs of user links randomly.

• Only Sentiment: This predictor infers the polarity of user pairs’ links using

only textual interaction. Sum of the inverse distance weighted sentiment values

(+1, -1) of words in textual interactions is given as the polarity of the link

between user pairs.

• Only Link: This predictor infers user pairs’ links as positive if there is any

historical platform-specific positive interaction between them and negative oth-

erwise.

• NMTF[(Ding et al., 2006)]: This predictor is a simple non-negative matrix

tri-factorization method without any regularizers of sentiment lexicon, link prior

or social balance.

• SSMFLK[(Li et al., 2009)]: Proposed as sentiment classification method,

it is a semi-supervised matrix factorization framework utilizing prior sentiment

lexicon knowledge. This method is similar to SocLS-Fact method, however, it

does not encode platform-specific positive interaction between users or social

balance theory.

• LS-Fact: This predictor is a variant of the proposed method but it does not

embed social balance theory. It is introduced as a baseline to show the effect of

social balance regularizer.

Methods using regularizer coefficients (i.e. SSMFLK, LS-Fact, SocLS-Fact) are

experimented with all powers of 10 from -6 to 2 and the best performance is reported.
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Table 3.3: Offline Implicit Negative Link Detection Performance on the 56th and 57th

Parliament Datasets

56th Parliament Dataset 57th Parliament Dataset

Prec. F-meas. Acc. Prec. F-meas. Acc.

Random 0.1450 0.2344 0.5317 0.1707 0.2709 0.5664

SSMFLK 0.3143 0.4490 0.7737 0.3708 0.4599 0.8426

Only Sentiment 0.4010 0.4892 0.8464 0.3364 0.4207 0.8333

Only Link 0.6032 0.6726 0.9062 0.5312 0.6733 0.9021

NMTF 0.6741 0.6973 0.9264 0.8243 0.5622 0.9271

LS-Fact 0.6976 0.7059 0.9302 0.7091 0.7548 0.9434

SocLS-Fact 0.7236 0.7149 0.9339 0.7742 0.8 0.9553

Evaluation Metrics

We use three gold-standard metrics, namely; accuracy, precision, and F-measure to

evaluate my method. Scores are reported in terms of my method’s detection per-

formance on the negative links. We do not report recall explicitly as we emphasise

quality over quantity; retrieving meaningful negative links is the most important task

in this work as suggested for many tasks in (Wang et al., 2011). The change in recall

can be indirectly observed through F-measure. Although we present the accuracy

for reader convenience solely focusing on accuracy may be misleading considering the

imbalanced nature of my dataset. Hence, we focus mainly on precision and F-measure

throughout the discussion of my results.
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Results

An overview of the implicit negative link detection performance of the proposed and

baseline methods can be found in Table 3.3. As can be clearly observed through

the table, performance increase is consistent among all three metrics: precision, F-

measure and accuracy. Important findings are reported below:

• Encoding the sentiment information using SSMFLK improves the performance

over the random classifier.

• An interesting finding can be observed when “only sentiment” predictor is used.

It yields better results than SSMFLK due to its deterministic nature; whereas

SSMFLK may be highly affected by the random starting conditions.

• Only link predictor gives much better results than using just the sentiment

information. A steep increase in all three metrics is evident that prior platform

specific positive interaction is a very strong signal that the link between users

is not negative.

• Co-optimising the link information with sentiment information in LS-Fact frame-

work results in superior performance compared to both only link and only sen-

timent predictors.

• Finally, my framework, SocLS-Fact obtains the best results by incorporating the

social balance theory into the framework. SocLS-Fact performs slightly better

than LS-Fact thanks to the user link triads following social balance theory in

formation. F-measure performance contribution of socially balanced triangles is

higher for 57th Parliament dataset than 56th, as higher ratio of socially balanced

triangles can be observed in Table 3.2.
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Parameter Analysis

It is essential that my framework performs effectively under different parameter set-

tings. So, we experiment with various values of α, β, and γ then report the per-

formance in terms of F-measure scores. Best performance was obtained using the

parameters α = 10−2, β = 100, and γ = 10−1 for 56th Parliament Dataset, α = 10,

β = 10−5, and γ = 10−5.

Figure 3.3 demonstrates the effect of sentiment lexicon parameter α and prior

platform-specific positive interaction parameter β when the social balance regularizer

γ is fixed at 0. α and β are tweaked as powers of 10 between -6 to 2. Parameters out

of this range gives very low F-measure scores thus excluded.

• SocLS-Fact is robust to changes of α and β when α is in the range of 10−5 and

1 as F-measure does not differ more than 0.07 for both datasets.

• Lower values of α yield the lowest F-measure scores. Performance sharply in-

creases when α is incremented from 10−6 towards 10−2.

• Change of β creates rather stable results for any given α in 56th Parliament

dataset and αs between 10−5 and 1 in 57th Parliament dataset.

Figure 3.4 shows how social balance regularizer γ affects the performance when the

other parameters are fixed at optimal values, 10−2 and 100 for 56th Parliament and

10 and 10−5 for 57th Parliament dataset, respectively. γ is supplied incrementally as

powers of 10 between -5 to 1. As the chart shows, SocLS-Fact is robust also to changes

of γ performing in a F-measure margin of 0.025 for 56th Parliament dataset. The

margin for 57th Parliament dataset is 0.1. Both chart shows that with the optimal

setting of γ, social balance theory can contribute to achieve a superior performance
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(a) 56th Parliament Dataset (b) 57th Parliament Dataset

Figure 3.3: Effect of Regularizer Coefficients

in implicit negative link detection task. The optimal γ parameters are 10−1 for the

56th Parliament dataset and 10−5 for the 57th Parliament dataset.

Online Framework Performance

In this section, we discuss the performance of the online framework by presenting

comparisons with variants of the offline framework. As mentioned in the previous sec-

tions, conventional ways of dealing with streaming data using an offline methodology

usually involves either computing everything from scratch, or ignoring the historical

data. Both extremes have their disadvantages. To show the trade-offs between these

two approaches, we propose experimenting with the following two baselines and my

online method;

• SocLSFact detects signs of the links only based on the current snapshot data.

• SocLSFact [A] detects signs of the links based on aggregation of current and

all previous snapshots.
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(a) 56th Parliament Dataset (b) 57th Parliament Dataset

Figure 3.4: Effect of Social Balance Regularizer Under Optimal Positive Prior and

Sentiment Lexicon Regularizers

• SocLSFact (Online) detects signs of the links based on signs of the detected

implicit links in the previous snapshots and factorise only the current snapshot

data.

In this experimental setup, we utilise 57th Parliament dataset which is labelled

in three snapshots. Results are reported based on the last snapshot (2018 →) data.

SocLSFact works only on the last (2018→) snapshot data to detect implicit links in

it. SocLSFact [A] aggregates all three snapshots into single view and detect implicit

links, accordingly. SocLSFact (Online) model uses SocLSFact outputs of two previous

snapshots (2016 → 2017 and 2017 → 2018) for temporal smoothing and factorises

only the last snapshot (2018→) data to detect implicit links. Parameters (α, β, γ, τ)

are explored with all powers of 10 from -6 to 2.
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Table 3.4: Online Implicit Negative Link Detection Maximum Performances on the

Last Snapshot of the 57th Parliament Dataset

2018→

Prec. F-Meas. Acc.

SocLSFact 0.6588 0.7134 0.9233

SocLSFact [A] 0.7742 0.8 0.9553

SocLSFact (Online) 0.8406 0.8227 0.9574

Results

An overview of the implicit negative link detection in online settings can be seen in

Table 3.4 and in Figure 3.5a. In terms of maximum performance, SocLSFact (Online)

model performs better than both SocLSFact and SocLSFact [A] baseline models.

In other words, while modelling SocLSFact for online settings, temporal smoothing

among other two options increases the performance in all three metrics. SocLSFact

[A], which aggregates previous snapshots’ data as they are, is still the better choice

than running factorization only on the last snapshot. SocLSFact (Online) achieves

15% higher F-measure, 28% higher precision, and 4% higher accuracy than SocLSFact

and achieves 3% higher F-measure, 9% higher precision, and 0.2% higher accuracy

than SocLSFact [A] in implicit negative link detection.

To better evaluate the trade-off between run-time and effectiveness of these three

methods, we run each method 100 times with parameters α,β,γ, and τ set to 0.01,

arbitrarily. We report their run-times in Figure 3.5b. The online framework runs

approximately %3 faster on average than SocLSFact [A]. Furthermore, it shows 1%

higher F-measure performance on average than SocLSFact [A] method and 11% higher

than SocLSFact on average. Much shorter run-time of SocLSFact method should be
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(a) Performance Comparison (b) Run-Time Comparison

Figure 3.5: Offline & Online Algorithms’ Performance Comparison for 57th Parlia-

ment Dataset. Online SocLSFact Achieves Competetitive Performances While Having

Shorter Run-times.

noted. However, it is not significant as it factorises a much smaller size of data, and

shorter run-time is expected.

Temporal Smoothing Parameter Analysis

In this section, we discuss the effect of the temporal smoothing parameter τ in the

online framework. We introduce the parameter τ to weight the importance of previous

snapshots’ detected implicit links. We expect it to behave as a temporal regularizer

in the case of data sparsity and any other type of abrupt changes. To evaluate

the behaviour of online framework under different τ ’s, we present the F-measure

performances of different parameter settings in Figure 3.6. When the value of τ

gets larger, variation in the performance due to the positive prior and sentiment

lexicon regularizer parameters decrease. Tweaking τ does not improve the F-measure

performance under optimal α and β choices, significantly.
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(a) τ = 0.0001 (b) τ = 0.001 (c) τ = 0.01

(d) τ = 0.1 (e) τ = 1 (f) τ = 10

Figure 3.6: Effect of Temporal Smoothing Parameter τ . Deviation in F-measure

Decreases with Increasing τs.

3.2 Applications

In this section, we present two applications for online political networks which

would not be possible or as effective without detecting implicit negative links, first.

As the first application, we demonstrate the added value of implicit negative links in

community detection task. Second, we qualitatively analyze the key role of implicit

negative links in disclosing group polarization dynamics.

3.2.1 Dataset

Before going into the details of the applications, first, we introduce the datasets we

utilise in the application settings. We crawl three datasets from politician accounts of
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Twitter from United Kingdom, United States, and Canada using GET user timeline

function of Twitter API. They consist of either parliament member accounts of their

country or prominent political figure accounts. Each politician account in the dataset

either self declares their political party membership in their user profile or has the

abbreviation of the political party in their user name as suffix or prefix. Baseline

communities are constructed according to each account’s self-identification of political

party memberships.

• United Kingdom Dataset covers Twitter accounts of 421 prominent members

of 56th United Kingdom Parliament from 5 major political parties, namely, Con-

servative Party (Cons), Labour Party (Lab), Scottish National Party(SNP), Lib-

eral Democrats (LibDem), and United Kingdom Independence Party (UKIP).

• United States Dataset covers 596 prominent political figures’ Twitter ac-

counts from Republican and Democrat Party.

• Canada Dataset covers Twitter accounts of 136 members of 41st Parliament

of Canada from 5 major political parties, namely, Liberal Party of Canada,

Green Party of Canada, Conservative Party of Canada, New Democratic Party,

and Bloc Quebecois (BLOC).

Further statistics about the datasets can be found in Table 3.5, and tweet ids and

user ids can be downloaded from www.public.asu.edu/~mozer/NRHMdata.tar.gz.

3.2.2 Community Detection

To evaluate the added value of negative links we test the contribution of negative

links in detecting the underlying political communities in the dataset. To that end,

we employ a simple spectral clustering algorithm for signed networks. We feed both
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Table 3.5: Dataset Statistics

United Kingdom United States Canada

Textual interactions 18,903 31,276 5,001

Users 400 596 136

Interacting user pairs 3,367 6,114 1,291

Sentiment tokens 1,685 1,987 1,078

# of communities 5 2 5

unsigned links of the given dataset and predicted signed links by my framework SocLS-

Fact separately. We employ United Kingdom, Canada and United States datasets to

evaluate the performance of my method. Parameters for SocLS-Fact are set to be the

ones which minimises the residual error of the objective function.

Spectral Clustering on Signed Networks

As proposed by (Kunegis et al., 2010), we define the laplacian matrix L of an adja-

cency matrix A of signed network as;

L = D − A (3.8)

where

Dii =
∑
j∼i

|Aij| (3.9)

The rest of the clustering framework follows the standard spectral clustering as

given in Algorithm 4.
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Algorithm 4 Spectral Clustering Algorithm for Signed and Unsigned Networks

Input:{L (signed) or L (unsigned)}

Output:{Clusters C1, C2, ..., Ck}

1: Find the smallest k eigenvalues of L (or L).

2: Form matrix U as [v1, v2, ..., vk] with corresponding k eigenvectors as columns.

3: Cluster the rows of U into C1, C2, ..., Ck by applying k-means.

Evaluation Metrics

To evaluate the contribution of predicted negative links in community detection tasks,

we make use of two well known clustering quality metrics, namely; purity and nor-

malised mutual information(NMI).

Community Detection Results

Table 3.6 shows the community detection results for United Kingdom, United States

and Canada datasets. Inclusion of the predicted negative links of my framework

consistently contributes to the performance of community detection tasks.

For experiments having matching k’s with number of ground-truth communities

of datasets, following observations are made. Significant improvement in all three

metrics can be observed in the results of United Kingdom and Canada datasets.

United States dataset reveals even more intriguing results: purity increases by %25,

and NMI by %241. This finding suggests that addition of negative links does not

only boost the performance but can be of very critical importance for community

detection.

Another observation we make is the higher contribution of the predicted negative

links in community detection tasks when the number of clusters k given to spectral

clustering algorithm is equal to the ground-truth community count of the datasets.
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Table 3.6: Contribution of the Detected Implicit Negative Links in Community De-

tection Tasks with Varying k’s.

k
United Kingdom Canada United States

Purity NMI Purity NMI Purity NMI

2
Unsigned Links 0.4818 0.3829 0.8013 0.5485 0.7445 0.1863

SocLS-Fact Links 0.4844 0.4052 0.7947 0.5057 0.9294 0.6364

3
Unsigned Links 0.8333 0.6770 0.9338 0.7481 0.8622 0.3962

SocLS-Fact Links 0.8411 0.6854 0.9338 0.7473 0.8807 0.4709

4
Unsigned Links 0.9167 0.7838 0.9338 0.7026 0.8605 0.3770

SocLS-Fact Links 0.9167 0.7859 0.9470 0.7424 0.8773 0.4268

5
Unsigned Links 0.9167 0.7794 0.9272 0.6803 0.8706 0.3935

SocLS-Fact Links 0.9427 0.8041 0.9536 0.7456 0.8790 0.4304

The ground-truth community counts for United Kingdom is 5, Canada is 5 and United

States is 2 as described in 3.1.2. Most increase by percentage in all three metrics is

achieved when k = 5 in United Kingdom and Canada, and k = 2 in United States

dataset. This further suggests the informativeness of the predicted negative links in

implying the exact number of underlying communities.

3.2.3 Group Polarization

To show another powerful use-case of my framework SocLS-Fact, we set up an ex-

periment that quantifies the group polarization patterns over time among UK politi-

cians who interact with each other in Twitter. We demonstrate how my method and
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predicted negative links can be used to represent political dynamics such as emerging

and diminishing rivalries or coalitions among political party members. We visualise

and qualitatively analyze the detected polarities of links among groups and their

change over time.

We sample United Kingdom dataset and create three datasets spanning different

time intervals to represent political climate change on social media. First dataset

covers the whole timespan which we treat as the overall political climate among

members. This dataset constitutes my baseline for detecting divergences from con-

ventional behaviours of political party members in the sampled representative data.

Second dataset spans all tweets in 2015. General election held on May, 5 2015 is con-

sidered to be the major political event of the year. We refer to the second dataset as

general election dataset for future references. Third dataset spans the time interval

of first 6 months of the year 2016. Brexit unequivocally being the major political

event of that time interval, we refer to the third dataset as Brexit sample for future

references.

After sampling these three datasets, we run offline SocLS-Fact algorithm and

detect the polarity of each user link. Links that connect users are aggragated with

users’ affiliated political parties. Aggregation yields the polarization scores among and

within political parties. Positive scores are mapped to hues of greens while negative

scores are mapped to reds. Darker color means higher polarity. White color stands

for the non-existence or very few links between groups, thus omitted. The overview

of the resulting polarity among and within groups for each of the three datasets is

presented in Figure 3.7.
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Table 3.7: Popular Hashtags in Textual Interactions of Two Samples from the United

Kingdom Dataset

Sampled Datasets Popular Hashtags

General Election

#GE2015, #labourdoorstep,

#GE15, #VoteSNP, #Labour,

#VoteLabour, #bedroomtax,

#NHS, #PMQs, #voteSNP

Brexit

#StrongerIn, #Brexit, #EUref,

#VoteLeave, #labourdoorstep,

#Remain, #LabourInForBritain,

#BackZac2016, #BothVotesSNP,

#EU

General Election Dataset

Major event of the 2015 which this dataset covers is the United Kingdom general

election 2015 as implied by the popular hashtags presented in Table 3.7. It took place

on May, 5 2015. Conservative Party and Labour Party was the prominent candidates

of winning the election. Government before the election was a coalition between

Conservative Party and Liberal Democrat Party. Further background information

about United Kingdom political parties can be obtained from (Moran, 2015).

Brexit Dataset

The biggest political event of the first 6 months of the year 2016 that Brexit Dataset

covers, is clearly the European Union (EU) Referandum [(Hobolt, 2016)] that took
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(a) Overall Political Climate (b) General Election Dataset (c) Brexit Dataset

Figure 3.7: United Kingdom Link Prediction Results for Political Parties for Various

Time Frames. The Darker the Color is the Higher the Positive or Negative Polarity

is among Two Parties.

place on June, 23 2016. UKIP and some politicians from Conservative party sup-

ported leaving the EU. On the opposite side of leave campaign, SNP, Labour Party,

Liberal Democrats and part of the Consertavite Party were for staying in the EU.

UKIP was a prominent political actor in the campaign. As implied by the popu-

lar hashtags used in the textual interactions between users, the dataset also cov-

ers London mayoral election (i.e. #BackZac2016) and Scottish Parliament Election

(#BothVotesSNP). The election in Scotland resulted as a victory for SNP.

Tracking the Divergence of Political Parties From Overall Behaviour

In this section, we elaborate on how much polarization between groups deviate from

their overall representation in the full dataset. Findings can be summarised as;

• Comparing Figure 3.7a and Figure 3.7b shows the increasing positive link ratio

in inner-party links. (Nooy and Kleinnijenhuis, 2013) suggest that if two politi-

cians belong to the same political party, they are more likely to support each

other in an election season as the partisanship increases.
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Tracking the Temporal Dynamics of Polarization among Political Parties

To evaluate the performance of the tracking the temporal dynamics of polarization

between groups, we qualitatively analyze the polarity shifts from 2015 to 2016 between

groups.

• Inner group positive link ratio of Conservative Party members decrease from

2015 (Figure 3.7b) to 2016 (Figure 3.7c) which can be explained by the mem-

bers of the party diverging apart by having different point of views for EU

Referandum.

• The rivalry between Conservative Party and Labour Party members dissolves

slightly in 2016, because they were the two most prominent competiters in the

general election and considerable amount of two parties’ members campaigned

for the same voting stance on Brexit election.

• The coalition in 2015 between Conservative Party and Liberal Democrats shifts

to rivalry in 2016. It may be due to the coalition government that still existed

in 2015 but were not formed again after the election.

• Rivalry increases between UKIP and other parties in Brexit dataset compared

to General Election dataset. It can be explained by the EU Referandum in

which UKIP was a leading figure.
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Chapter 4

MEASURING THE POLARIZATION IMPACT OF AUTOMATED ACCOUNTS

4.1 Methodology

Synthetic Network Model

Complete Synthetic Network Nodes Removed Randomly

KS 2-Sample Test
Polarization Difference

Twitter Dataset

Bot 

Bot 

Bot 

Bot 

Bot 

Complete Retweet Network

KS 2-Sample Test
Polarization Difference

Bot 

Bot 

Bot 

Bot 

Nodes Removed Randomly

Bots Removed

Figure 4.1: Proposed Methodology for Measuring the Effect of Automated Accounts

My methodology consists of several essential pieces to ensure the robustness of

my measurements on the polarization impact of the automated accounts. Despite my

main experiments are conducted on Twitter data, (1) I extend a directed scale-free

graph model to generate polarized networks and test the stability of the polarization

metric I utilize on the generated synthetic graph. Once the stability of the polarization

metric is established, (2) I crawl a month of Twitter data associated with the Parkland

school shooting incident to construct my main dataset. (3) I assign political labels

to Twitter users with the help of a supervised classification task, then (4) identify
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the automated accounts using a third-party state-of-the-art bot detection tool. From

this labeled network, (5) I measure the polarization of the whole network, and the

polarization of the network with random accounts removed, and the polarization

of the network with bot accounts removed. A comparative analysis between the

polarization of these three networks quantifies the effect of the automated accounts

on the ecosystem.

To provide a more granular context and understanding, I conduct content analysis

and focus on observational impact differences of varying types of automated accounts

(e.g. self-identifying automated accounts).

4.1.1 Generating Synthetic Polarized Networks

I initialize a synthetic network with two separate Erdős-Rényi random network

models. These initial two sub-networks correspond to the initial stages of two political

sides. Then, I adopt a directed scale free graph model (Bollobás et al., 2003) and

modify it to be able to generate polarized networks. Details of the algorithm can

be seen in Algorithm 5. Notice that my contribution to (Bollobás et al., 2003) is

the polarization parameter ρ. When the model connects two nodes to each other

(new or old), it depreciates the effect of the indegrees and outdegrees of the nodes

that are at the opposite side of political spectrum by ρ. Thus, nodes show political

homophily in their connections besides their preferential attachment to higher degree

nodes. With the help of the polarization parameter ρ, I are able to generate scale

free directed networks in different levels of polarization. Later, I use this model to

test my hypothesis on synthetically generated polarized networks.

64



Algorithm 5 Synthetic Polarized Network Generation

1: Input: α, β, γ, δin, δout, N, ρ, where α + β + γ = 1 and 0 ≤ ρ ≤ 1

2: GL, GR ← Erdős–Rényi()

3: G← GL ∪GR

4: while |G| < N do

5: with probability α:

6: Draw a side from {L,R} for a new node v.

7: Add the node v and an edge to an existing node w from v, where w is chosen

according to din + δin for w’s in the same side with v, according to ρ ∗ (din + δin) ,

otherwise.

8: with probability β:

9: Add an edge from an existing node v to an existing node w, where v and w are

chosen independently, v according to dout + δout and w according to din + δin if v and

w are in the same side, according to ρ ∗ (din + δin) , otherwise.

10: with probability γ:

11: Draw a side from {L,R} for a new node v.

12: Add a node v and an edge from an existing node w to v, where w is chosen according

to dout + δout for w’s in the same side with v, according to ρ ∗ (dout + δout) , otherwise.

13: end while

4.1.2 Quantifying Polarization

Measuring the impact of bot accounts on network polarization requires us to

quantify the polarization of a given network precisely. To this end, I refer to a recent

study(Garimella et al., 2018) and adopt their random walk controversy score.

RWC = PLL(+)PRR(+) − PLR(+)PRL(+) (4.1)
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where PLL(+) is probability of a random walk starting from any left node (L) ending

up at a central left node (L(+)). Similarly PRR(+) is probability of starting on any right

node and ending on a central right node. PLR(+) , PRL(+) follow the same definition and

quantifies the probability of a walk crossing sides. To compute the aforementioned

probabilities, Garimella et al. (Garimella et al., 2018) suggest a simple Monte Carlo

sampling of random walks over network. After having samples of walks they quantify

the probabilities PLL(+) ,PRR(+) ,PLR(+) ,PRL(+) as follows;

PLL(+) =
CLL(+)

CLL(+)CLR(+)

PRR(+) =
CRR(+)

CRR(+)CRL(+)

PLR(+) =
CLR(+)

CLR(+)CLL(+)

PRL(+) =
CRL(+)

CRL(+)CRR(+)

where C stands for the count of walks falling into certain previously defined types.

The RWC polarization metric returns values between +1(perfect polarization) and

-1(no polarization).

4.1.3 User Classification

To decide the left and right side of the RWC algorithm, I develop a political

classification task. To be able to set up a classification task, I first acquire third

party intelligence from a crowd-sourcing platform that indicates the political leanings

of news domains. I crawl news domains’ political scale (left, center-left, center-right,

right) from mediabiasfactcheck.org. This procedure equips us with 1,241 news domains

and their political labels. 1

Various studies have shown that social media users’ political news diet is highly

clustered according to their political leaning (pew, 2014). I also adopt a similar

heuristic and label social media users based on domains of news articles they share. I

execute a simple majority voting for each user based on what they share in their social

1www.public.asu.edu/~mozer/bot_polarization/media_scales.zip
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Table 4.1: Bag-of-words Based and Network Based Classification Performances

F1-Macro Accuracy

Text

Random Forest 0.4438 0.7964

GBM 0.6433 0.8403

Logistic Regression 0.9101 0.9441

Network Label Propagation 0.9552 0.9715

media posts. I use -2, for the left domains, -1 for the center-left domains, +1 for the

center-right domains, and +2 for the right domains. I keep users having cumulative

values greater than +2 and less than -2 as my training dataset. It provides us around

80K social media accounts and their 7M tweets labeled as left or right.

After garnering labeled social media accounts, I develop two separate classification

tasks for classifying the rest of the users. Note that these users have not shared enough

news articles for us to assess their political ideology. First, I use a label propagation

algorithm on the retweet network informed by (Conover et al., 2011). Second, I

develop several text-based classification tasks and report each classifier’s accuracy

with five-fold cross validation in Table 4.1. Given the superior performance of label

propagation algorithm, for the rest of the chapter I build my analysis upon its results.

4.1.4 Automated Account Detection

To detect the automated accounts in my dataset I register to the Botometer

API provided by Indiana University(Davis et al., 2016). 2 I query a random

sample of 260K accounts from my dataset. I tag accounts who have a score over

0.5 as automated and the rest as not automated. The API returns 25K accounts

2https://botometer.iuni.iu.edu
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flagged as automated (%10) which agrees with the previous literature’s findings on

the prevalence of automated accounts on social media(Varol et al., 2017).

4.1.5 Measuring the Impact

To measure the impact of automated accounts on network polarization, I set

up an experiment as follows. First, I compute the polarization of complete retweet

network. I run the RWC algorithm 1,000 times and report the distribution of polar-

ization scores. Second, I compute the polarization of the sub-network without any

automated accounts. I also run the RWC algorithm 1,000 times and report the distri-

bution. Finally, I compute the polarization of the sub-network which is acquired by

removing number of nodes equal to the number of automated accounts randomly. I

run the RWC algorithm 1,000 times also and report the distribution. Then, I compare

these three distributions pairwise and report the significance results of Kolmogorov-

Smirnov 2-sample test. In my application, Kolmogorov-Smirnov d test(Massey Jr,

1951) assesses if two measured polarization score distributions come from different

means and variances of underlying polarization distributions.

4.2 Experimental Results

I branch my analysis into two distinct sets of experiments. First, I set up experi-

ments with artificially generated polarized networks. Second, I set up experiments on

my focus study; Twitter dataset regarding the unfolding and aftermath of Parkland

school shooting event.

4.2.1 Validating the Experimental Setup

In this set of experiments, I generate synthetic polarized networks emulating the

retweet network of Twitter. First, I report the interplay of random walk contro-

68



versy(RWC) score with the polarization parameter ρ of previously introduced variant

of directed scale free network model. I also check if RWC score is robust to the net-

work size changes. My search space spans polarization parameter ρ values between

0.01 and 0.1 with increments of 0.01. It also spans number of nodes between 10,000

and 200,000 with increments of 10,000. I generate the synthetic networks based on

the given ρ and number of nodes and with Erdős–Rényi random network having 100

nodes on each side with 0.33 edge probability.

I also experiment with parameters beyond what I report here, but for the sake of

brevity of my chapter, I only report results which spans the neighborhood of mean

polarization score of my Twitter dataset (µRWC = 0.9067).

RWC Score on Synthetic Polarized Networks

By tweaking the polarization parameter ρ and number of nodes parameters of the

synthetic polarized network generation model, I generate 200 networks in various

sizes and polarization levels. I compute the polarization score distribution for each by

running the RWC algorithm 1,000 times on them. I observe two main patterns in my

experiments. (1) Suggested polarization scoring algorithm (RWC) is in strong linear

correlation with the ρ (MSE= 3.7702e−5, R2= 0.9889, pval< 0.001). (2) Change

in number of nodes of networks do not provide strong evidence for the polarization

score of the underlying configuration (MSE= 0.0034 , R2= 8.0824e−6, pval= 0.2105).

Results can further be investigated visually in Figure 4.2.

RWC Score after Random Node Removals

Assessing the impact of node removal on network polarization is crucial in my study.

In this subsection, I evaluate the impact of node removals on the polarization of

various synthetically generated networks. To emulate the observational data, I ex-
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Figure 4.2: Polarization Score Measurements for Varying Synthetic Network Gener-

ation Parameters
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Figure 4.3: The Insignificance of Removals When Nodes are Randomly Removed from

Synthetic Networks at Various Polarization(ρ) Levels
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periment with removing 0.5% and 1% of nodes from networks. Note that the impact I

measure on my observational Twitter dataset is already incurred by less than 0.1% of

the accounts of the complete retweet network. My search space spans 400 experiment

configurations derived from 20 network sizes, 10 polarization levels, and 2 removal

rates.

Figure 4.3 shows the results of my experiments that networks with various levels of

polarization do not experience significant polarization change when nodes are removed

randomly from them. Out of 400 removal experiments, 388 of my experiments fail

to reject the null hypothesis that polarization(RWC score) changes when nodes are

removed randomly (Kolmogorov-Smirnov 2-sample test pval> 0.005). Only seven of

the experiments present decreased polarization while five of them exhibit increased

polarization. I report the average polarization change as 0.0006 and the standard

deviation of it as 0.0002 among 400 random node removal experiments.

4.2.2 Measuring the Impact of Automated Accounts

Dataset & Preprocessing

My dataset collection includes 3.7M users and their 25M tweets posted between

February 1, 2018, and March 6, 2018. I purchased the dataset from GNIP Twit-

ter by requesting tweets that contain any of the 140 words, subwords, and bigrams

listed at www.public.asu.edu/~mozer/bot_polarization/GNIP_query_list.txt.

I build retweet without edit network by compiling a network of 3.3M nodes and 16M

edges.

I detect 25K automated accounts through Botometer API(Davis et al., 2016). I

note that this is not the comprehensive list of automated accounts in my dataset as I

am constrained by the Twitter API. So, I query 260K accounts due to these resource
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Figure 4.4: Retweet Network During and Aftermath of Parkland School Shooting.

Light Blue Represents Automated Activity, Dark Blue Represents Left-leaning and

Red Represents Right-leaning.

limitations. The effects I measure represents only a portion of the automated activity

in my dataset.

I use a label propagation approach to classify users’ political leanings as discussed

in the classification section under methodology and assess 3M left-leaning and 300K

right-leaning Twitter users.

Overall Network Polarization Change

The major finding of this study is as follows; when automated accounts are removed

from the retweet network of Twitter activity relating to the unfolding and aftermath

of Parkland shooting event, polarization between left-leaning and right-leaning ac-

counts decrease. When the same number of accounts removed randomly from the

network the overall polarization score does not get affected significantly. More pre-

cisely, the difference between polarization measurements of complete retweet network

and the network from which automated accounts removed is 0.0025. The same anal-

ysis yields 0.0007 polarization difference when done with random removals; in other
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(a) Automated Accounts Removed

(b) Accounts Removed Randomly

(c) Retweet transitions

between types of ac-

counts.

Figure 4.5: Difference in Polarization between Complete Retweet Network (red) and

When Automated Accounts Removed (grey) from it 4.5a. Indifference in Polarization

When Same Amount of Nodes Removed Randomly 4.5b.

words, approximately 3.5 times less difference. The finding can be observed from

Figures 4.5a and 4.5b. For possible explanations of this phenomena, I investigate my

observational data further in the following sections.

Figure 4.5 presents the overall retweeting interaction between automated and not

automated accounts. 160K retweets are initiated by 23K not-automated accounts to-

wards 1.5K automated accounts, while 123K retweets initiated by only 7K automated

accounts towards 5K not-automated accounts. This signals a hyper-active automated

account activity to promote not-automated accounts’ tweets through retweeting. On
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the other hand, retweets acquired by automated accounts from not-automated ac-

counts is greater in volume than the other way around (160K>123K). Indeed, if the

automated activity was not getting any traction, it would not affect the RWC score,

and the impact would not be at measurable levels.

Hashtag-Level Network Polarization Change

Hashtags are popular semantic atomic units that serve as topical hubs on Twitter. In

this section, I extend my analysis to a lower granularity level and report hashtag level

polarization impact of automated activity. First, I build 100 retweet networks of most

participated hashtags from both political leanings. To quantify the participation from

left and right sides, I use harmonic mean of the counts of users from both political

sides 2|L||R|
|L|+|R| . These retweet networks of most participated 100 hashtags span 80% of

the total retweet activity containing at least a single hashtag in it, and 26% of the

complete dataset.

Second, I measure the RWC score distribution of each hashtag network. Similar

to the previous analysis, I remove automated accounts from the network and measure

the RWC score distribution again. I find that among most participated 100 hashtags

majority of them are less polarized retweet networks when automated accounts are

removed. In particular, 65 of the hashtags presents a decrease in polarization when

automated accounts are removed. Seven of them do not experience any statistically

significant change and 28 experience increase in polarization.

Even though the majority of the hashtags (65%) experience a decrease in polar-

ization when automated accounts removed, I observe a heterogeneity in the impact of

automated account activity under different hashtags. This opens up a future direction

for us and other researchers to study if there is any correlation between the impact

and the properties of the hashtag (e.g. semantic, political leaning, emotion). Fig-
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Figure 4.6: The Effect of Automated Accounts on the Hashtags that Attracted the

Highest Participation from Two Sides. Red Distribution Represents the Polariza-

tion of Complete Retweet Network, and Gray Distribution Represents the Network’s

Without Automated Accounts.

ure 4.6 presents a brief summary of my findings (the most participated 10 hashtags’

change) as a ridge plot.

Content Analysis

So far, I have presented the network polarization impact of automated accounts. This

impact is measurable mainly due to the retweets that automated accounts are able

to collect. In this section, I focus on the predictors of retweet count of automated

accounts’ tweets. In other words, I focus on the predictors of the impact. In particular,

I study the content generated by these accounts and certain features of their user

profiles. My interest is to investigate how predictors of retweet count in automated

account case differ from non-automated ones. A natural experiment design would be a
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direct comparison of two classes in my dataset, one being automated accounts’ tweets

and the other non-automated accounts’ tweets. I refrain from setting up experiments

which differentiate the automated accounts from non-automated accounts’ features

in my dataset since my classification of account type is collected through a supervised

classifier already (Botometer API).

Instead, I present the predictors of retweet count of automated accounts’ tweets

and report how they differ from or align with previous literature on properties of

general engaging content on social media(Bhattacharya et al., 2014; Brady et al.,

2017; Suh et al., 2010). In my dataset, I have 102,393 tweets posted by automated

accounts. I design a negative binomial regression task with zero inflation to address

the over-dispersion in my dataset. My regression’s target variable is retweet count,

and my predictor variables are as follows;

• media count quantifies how many images or videos are embedded in the tweet,

• mention count quantifies how many user handles are in the tweet,

• followers count quantifies how many followers the automated account has

• we quantifies how many times a tweet contains the word I or variants defined

by LIWC dictionary,

• they quantifies how many times a tweet contains the word they or variants

defined by LIWC dictionary,

• Moral-Emotional quantifies how many times a moral-emotional word appears

in the tweet. The word list is comprised of the intersection of moral words and

emotional words dictionaries (Brady et al., 2017).

• Emotional-Only quantifies how many times an emotional word appears in the
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Table 4.2: Incidence Rate Ratios (IRR) Derived from Zero Inflated Negative Binomial

Regression

IRR Lower 95% Upper 95%

media count*** 1.5963 1.5388 1.6558

they*** 1.1833 1.1431 1.2249

Moral-Emotional*** 1.1105 1.0741 1.1480

Emotional Only*** 1.0762 1.0589 1.0938

followers count*** 1.0001 1.0001 1.0001

we 1.0030 0.9726 1.0339

mention count*** 0.9831 0.9777 0.9885

Moral Only*** 0.9512 0.9313 0.9715

url count*** 0.5522 0.5350 0.5699

***p < 0.0001

tweet. The word list is comprised of the distinctive emotional words that are

not in the moral words dictionary at the same time.

• Moral-Only quantifies how many times a moral word appears in the tweet.

The word list is comprised of the distinctive moral words that are not in the

emotional words dictionary at the same time.

For my implementation, I use JMP Pro’s Generalized Regression tool with zero in-

flated negative binomial regression task. My regression analysis yields media count

to be the most prominent predictor. It has the highest estimate (0.4675 ± 0.0187)

among my predictors aligning with previous studies which also report the importance

of visual media in the virality of tweets (Suh et al., 2010). Second most prominent

predictor is they. Use of the word and its variants in LIWC dictionary increase the
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ratio of retweet count by 20%. Following previous literature on persuasive political

communication studies(Hameleers et al., 2017; Hameleers and Schmuck, 2017), suc-

cess of blaming the other is a prominent phenomenon in the age of political populism

coupled with social media. Furthermore, in alignment with previous works(Brady

et al., 2017; Valenzuela et al., 2017), I find that Moral-Emotional words contribute

(0.1048+-0.0170) more to retweet count than Emotional-Only words (0.0734±0.0083).

I report that moral-only words have a small negative predictor coefficient (−0.0501±

0.0108) alongside mention count (−0.0171 ± 0.0028). However, change of one unit

in url count decreases the chance of a tweet to be retweet almost by half. For more

detailed information about the incidence rate ratios of the independent variables,

readers can refer to Table 4.2. In the light of these observations, I argue that the

impact automated activity incurs are mostly in alignment with previous findings on

the characteristics of engaging social media content.

When Automation is Self-Identified

In the previous experiments, I demonstrate the significant effect of the automated

accounts on polarization, which necessitates the users to exercise more discretion

to comprehend the whole context surrounding a message. Treating an automated

message as a human-curated one may have a vast impact in the reception of the

message. Thus, it is essential for the users to be aware if the message was indeed

produced by an automated system.

I hypothesize that the utilization of a simple, explicit indicator for an account

being automated may be an effective way to prevent any confusion. To test my hy-

pothesis on observational data, I distinguish the automated accounts that explicitly

uses the words ”bot”, ”robot”, or ”chatbot” in their screen names or profile names

(publicly visible account attributes) from the rest using the following regular expres-

78



(a)

(b)

Figure 4.7: Retweeting Transitions between not Automated and Self-describing Au-

tomated Accounts. Insignificance of the Change in Polarization Change when Self-

identifying Automated Accounts are Removed from the Retweet Network pval > 0.05.

sions:

• ∗ chatbot

• ∗ chatbot

• chatbot ∗

• chatbot ∗

• [̂ ] +Chatbot

• ∗ robot

• ∗ robot

• robot ∗

• robot ∗

• [̂ ] +Robot

• ∗ bot

• ∗ bot

• bot ∗

• bot ∗

• [̂ ] +Bot

I determine 1,802 self-identifying automated accounts matching these regular ex-

pressions. Figure 4.7b shows the retweet interactions within and among human-

controlled accounts and self-identifying automated accounts. While human-controlled

accounts retweeted self-identifying automated generated content 1.5K times, the op-

posite transition happened 13K times indicating 12 percent relative engagement

from humans. This discrepancy is notable especially when compared to all human-

automated interactions in Figure 4.5, where the relative engagement from human-
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controlled accounts is 130 percent compared to all automated accounts. Thus, self

identification clearly changes the dynamics in terms of human-automated account

interactions.

Following this observation, I repeat the node-removal experiment described in pre-

vious section this time with 1,802 self-identifying automated accounts instead of all

automated accounts. As can be observed in Figure 4.7a, removal of self-identifying au-

tomated accounts from the network do not result in a statistically significant change

in polarization. This finding is the essential proof that the usage of a simple self-

identification phrase can reverse the polarization effects created by the current ecosys-

tem. Thus, I strongly recommend the adoption of a “automation identifier” such as a

small robot symbol near the account name by the platforms as a simple and elegant

way to diminish the unintended polarization effects.

Results with Text-based Political Leaning Classification

In this short section, I present my findings on the impact of automated accounts

when political leaning classification is executed with text-only features. I use the

labels acquired through the best performing text-based classifier in Table 4.1; logistic

regression. In the complete retweet network, automated activity has 44 times more

impact in polarization than the random effect (Figure 4.8). Notice that this impact

of increase in polarization is much higher than what we report in the main text

(three times). Furthermore, I find that 84% of the most popular debate related

hashtags experience an increase in polarization with automated activity (Figure 4.9).

Overall, the measured polarization impact of automated accounts among left and

right leaning accounts is robustly evident approved by two fundamentally different

political leaning classification approaches. I also note that when I repeat my analysis

on self-disclosing automated accounts with text-based labels, I again find no evidence
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that they contribute to polarization.

(a) Automated accounts removed (b) Accounts removed randomly

Figure 4.8: Polarization Impact When Political Leaning of an Account is Classified

Using a Text Based Classifier.
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Figure 4.9: The Effect of Automated Accounts on the Hashtags that Attracted the

Highest Participation from both Political Leanings when Political Leaning of Accounts

are Classified through a Text-based Classifier.
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Chapter 5

CONCLUSION

5.1 Summary of Contributions

In this dissertation, I proposed three computational solutions to the problems

concerning three major aspects of online political networks. In the following three

subsections I summarize my efforts.

5.1.1 Community Detection

First, I investigated the problem of detecting politically aligned communities of

users on political Twitter networks. By jointly leveraging endorsement networks,

social balance theory, and several facets of textual content generated by users, I show

that sparsity problem of only-connectivity approaches can be overcome and I find

that best complimentary textual feature to the social network among others(words,

hashtags, url domains) is usage of words. By proposing a three non-negative matrix

factorization based framework, I present a superior performance in politically aligned

community detection task when augmented endorsement network and word usage are

utilized together.

5.1.2 Implicit Negative Link Detection

Second, I focused on implicit negative links on social media platforms. Given

that every political analytics task require identifying enmities, antagonisms, or any

other form of adversarial relationship, I introduce a non-negative matrix factorization

framework to detect the implicit negative linkages on political Twitter networks.
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Since major social media platforms do not provide their users to connect with peers

in a negative fashion, to detect implicit negative linkages, I turned to the social

balance theory, sentiment analysis, and prior positive connections between users. By

utilizing the aforementioned three pieces of information, I propose two frameworks for

detecting implicit negative links in offline and online settings. I show the contribution

of detecting implicit negative links on Twitter in two tasks; community detection, and

tracking the opposition of political parties to each other on the Brexit referendum.

5.1.3 Impact of Automated Accounts on Network Polarization

Third, I propose a set of experiments to measure the polarization impact of bot

accounts on Twitter. I find that on the issue of U.S. gun control debate, automated

accounts contribute to increase in polarization three times more than the random

effect. Furthermore, they have an impact of increased polarization in the 65% of

the most popular debate related 100 hashtags. When I analyze the predictors of

their tweets’ endorsement (retweet count) levels, I find that usage of memes/videos,

moral emotional words, they category words in LIWC dictionary, and the number

of followers are the four major predictors of higher endorsement. However, when I

conduct a similar analysis on the bot accounts where automated nature of them are

self-disclosed in their profile (e.g. having a keyword ”chatbot” in their profile name),

polarization impact vanishes. Moreover, I find that when automated nature of the bot

account is revealed in their profile, retweet counts of bot tweets by human controlled

accounts decrease in 10-fold.

5.2 Future Directions

As a future work, I plan to investigate whether measured polarization increase

impact of bot accounts on U.S. gun debate Twitter dataset holds for datasets collected

84



from other countries, other languages, and other time frames. Particularly, I am

interested in investigating the fact that polarization impact vanishes when automation

is self-identified. This finding can further motivate the ongoing research in automated

account detection on social media and suggest a way to alleviate their unintended

impact. I also plan to suggest a dynamic framework for detecting politically aligned

communities when the data is in streaming nature. Finally, I work on the interplay of

communities and word vector representations. I aim to investigate if word embeddings

that are formed by the concatenation of community-level word representations help

achieve better performance in NLP downstream tasks such as sentiment or political

orientation classification.
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APPENDIX A

DERIVATION OF EQUATIONS IN MULTINMF
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To follow the conventional theory of constrained optimization we rewrite objective
function 2.1 as;

JU,H,D,W = Tr((Xuw −UWT )(Xuw −UWT )T )

+ Tr((Xuh −UHT )(Xuh −UHT )T )

+ Tr((Xud −UDT )(Xud −UDT )T )

+ αTr(UTLCU) + γTr(HTLHsim
H)

+ θTr(DTLDsim
D) + βTr(WTLWsim

W)

JU,H,D,W = Tr(XuwXT
uw)− 2Tr(XuwWUT )

+ Tr(UWTWUT ) + Tr(XuhX
T
uh)

− 2Tr(XuhHUT ) + Tr(UHTHUT )

+ Tr(XudX
T
ud)− 2Tr(XudDUT ) + Tr(UDTDUT )

+ αTr(UTLCU) + γTr(HTLHsim
H)

+ θTr(DTLDsim
D) + βTr(WTLWsim

W)

Let Φ, η, Ω and Ψ be the Lagrangian multipliers for constraints U,H,D,W > 0
respectively. So the Lagrangian function L becomes;

L = Tr(XuwXT
uw)− 2Tr(XuwWUT ) + Tr(UWTWUT )

+ Tr(XuhX
T
uh)− 2Tr(XuhHUT ) + Tr(UHTHUT )

+ Tr(XudX
T
ud)− 2Tr(XudDUT ) + Tr(UDTDUT )

+ αTr(UTLCU) + γTr(HTLHsim
H) + θTr(DTLDsim

D)

+ βTr(WTLWsim
W) + Tr(ΦUT ) + Tr(ηHT )

+ Tr(ΩDT ) + Tr(ΨWT )

The partial derivatives of Lagrangian function L with respect to U,H,D,W are as
follows;

∂L
∂U

= −2XuwW + 2UWTW − 2XuhH + 2UHTH−

2XudD + 2UDTD + 2αLCU + Φ

∂L
∂H

= −2XT
uhH + 2UHTH + 2γLHsim

H + η

∂L
∂D

= −2XT
udH + 2UDTD + 2θLDsim

D + Ω

∂L
∂W

= −2XT
uwU + 2WUTU + 2βLWsim

W + Ψ

Setting derivatives equal to zero and using KKT complementarity conditions (Boyd
and Vandenberghe, 2004) of nonnegativity of matrices U,H,D,W, ΦU = 0, ηH = 0,
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ΩD = 0 and ΨW = 0, we get the update rules given in Equations 2.2, 2.3, 2.4, 2.5.

U← U�

√
XuwW + XuhH + XudD + αL−CU

UWTW + UHTH + UDTD + αL+
CU

H← H�

√
XT

uhH + γL−Hsim
H

HUTU + γL+
Hsim

H

D← D�

√
XT

udD + θL−Dsim
D

DUTU + θL+
Dsim

D

W←W �

√
XT

uwU + βL−Wsim
W

WUTU + βL+
Wsim

W
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APPENDIX B

DERIVATION OF EQUATIONS IN SOCLS-FACT
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B.1 DERIVATION OF Su’S UPDATE RULE

By rewriting the optimization formulation as;

min
Su,H,Sw

Tr((X− SuHST
w)(X− SuHST

w)T )

+ αTr((Sw − Sw0)(Sw − Sw0)
T )

+ βTr
(

(Su − Su0)
TDu(Su − Su0)

)
+ γTr((M− SuS

T
u )(M− SuS

T
u )T )

subject to Su ≥ 0,H ≥ 0,Sw ≥ 0

Objective function with respect to Su of the rewritten optimization formulation is;

min
Su

− 2Tr(XSwHTST
u ) + Tr(SuHSw

TSwHST
u )

+ βTr(ST
uDuSu)− 2βTr(ST

uDuSu0)− γTr(MSuS
T
u )

− γTr(MTSuS
T
u ) + γTr(SuS

T
uSuS

T
u )− Tr(ΓST

u )

where Γ is the Lagrange multiplier for the constraint of Su ≥ 0. The derivative of the
objective function with respect to Su is;

∂LSu

∂Su

=− 2XSwHT + 2SuHSw
TSwH + 2βDuSu − 2βDuSu0

+ γ(M + MT )Su − 2γSuS
T
uSu − Γ

By setting the derivative to 0, we get;

Γ =− 2XSwHT + 2SuHSw
TSwH + 2βDuSu − 2βDuSu0

+ γ(M + MT )Su − 2γSuS
T
uSu

Having Karush Kuhn Tucker (KKT) complementary condition of the nonnegativity
of Su as Γij(Su)ij = 0 gives;(

SuHSw
TSwH + βDuSu + γ(M + MT

)
ij

(Su)ij

−
(
XSwHT + βDuSu0 + γSuS

T
uSu

)
ij

(Su)ij = 0

which leads to the update rule of Su;

Su ← Su �

√
XSwHT + γ(M + MT )Su + βDuSu0

SuHST
wSwHT + γSuST

uSu + βDuSu
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B.2 DERIVATION OF Sw’S UPDATE RULE

Objective function with respect to Sw of the rewritten optimization formulation
in Appendix B.1 is;

min
Sw

− 2Tr(XSwHTST
u ) + Tr(SuHSw

TSwHST
u )

+ αTr(SwST
w)− 2αTr(SwST

w0)− Tr(ΘST
w)

where Θ is the Lagrange multiplier for the constraint of Sw ≥ 0. The derivative of
the objective function with respect to Sw is;

∂LSw

∂Sw

=− 2XTSuH + 2SwHTST
uSuH + 2αSw − 2αSw0 −Θ

By setting the derivative to 0, we get;

Θ = −2XTSuH + 2SwHTST
uSuH + 2αSw − 2αSw0

By employing the KKT complentary condition of the nonnegativity of Sw as Θij(Sw)ij =
0 it yields; (

(SwHTST
uSuH + αSw)− (XTSuH + αSw0)

)
ij

(Sw)ij = 0

which leads to the update rule of Sw;

Sw ← Sw �

√
XTSuH + αSw0

SwHTST
uSuH + αSw

B.3 DERIVATION OF H’S UPDATE RULE

Objective function with respect to H of the rewritten optimization formulation in
Appendix B.1 is;

min
H

− 2Tr(XSwHTST
u ) + Tr(SuHSw

TSwHST
u ) + Tr(ΦHT )

where Φ is the Lagrange multiplier for the constraint of H ≥ 0. The derivative of the
objective function with respect to H is;

∂LH

∂H
=− 2ST

uXSw + 2ST
uSuHST

wSw − Φ

By setting the derivative to 0, we get;

Φ = −2ST
uXSw + 2ST

uSuHST
wSw

Employing the KKT complentary condition of the nonnegativity of H as ΦijHij = 0
yields; (

ST
uSuHST

wSw − ST
uXSw

)
ij
Hij = 0

leading to the update rule of H;

H← H�

√
ST
uXSw

ST
uSuHST

wSw
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B.4 DERIVATION OF S
(t)
uc ’S UPDATE RULE

Objective function with respect to S
(t)
uc of the rewritten optimization formulation

of online framework is;

min
S
(t)
uc

− 2Tr(X(t)S(t)
w H(t)TS(t)

uc

T
) + Tr(S(t)

ucH
(t)Sw

(t)TS(t)
w H(t)S(t)

uc

T
)

+ βTr(S(t)
uc

T
D(t)

u S(t)
uc )− 2βTr(S(t)

uc

T
D(t)

u S
(t)
u0)− γTr(M(t)S(t)

ucS
(t)
uc

T
)

− γTr(M(t)TS(t)
ucS

(t)
uc

T
) + γTr(S(t)

ucS
(t)
uc

T
S(t)
ucS

(t)
uc

T
)

+ τ

t∑
i=1

(e−(t−i)
(
− 2Tr(S(t)

ucS
(i)
uc

T
) + Tr(S(t)

ucS
(t)
uc )
)
− Tr(ΓS(t)

uc

T
)

where Γ is the Lagrange multiplier for the constraint of Su ≥ 0. The derivative of the
objective function with respect to Su is;

∂L
S
(t)
uc

∂S
(t)
uc

=− 2X(t)
c S(t)

w HT + 2S(t)
ucH

(t)Sw
TS(t)

w H(t) + 2βD(t)
ucS

(t)
uc − 2βD(t)

ucS
(t)
uc0

+ γ(M(t)
c + M(t)

c

T
)S(t)

uc − 2γS(t)
ucS

(t)
uc

T
S(t)
uc − 2τ

t∑
i=1

e−(t−i)S(i)
uc

+ 2τ
t∑

i=1

e−(t−i)S(t)
uc − Γ

By setting the derivative to 0, we get;

Γ =− 2X(t)
c S(t)

w H(t)T + 2S(t)
ucH

(t)Sw
(t)TSwH(t) + 2βD(t)

ucS
(t)
uc − 2βD(t)

ucS
(t)
uc0

+ γ(M(t)
c + M(t)

c

T
)Suc − 2γS(t)

ucS
(t)
uc

T
Suc − 2τ

t∑
i=1

e−(t−i)S(i)
uc

+ 2τ
t∑

i=1

e−(t−i)S(t)
uc

Having Karush Kuhn Tucker (KKT) complementary condition of the nonnegativity

of S
(t)
uc as Γij(S

(t)
uc )ij = 0 gives;

(
S(t)
ucH

(t)Sw
TSwH(t) + βD(t)

ucS
(t)
uc + γ(M(t)

c + M(t)
c

T
) + τ

t∑
i=1

e−(t−i)S(t)
uc

)
ij

(S(t)
uc )ij

−
(
X(t)

c SwH(t)T + βD(t)
ucS

(t)
uc0 + γS(t)

ucS
(t)
uc

T
S(t)
uc + τ

t∑
i=1

e−(t−i)S(i)
uc

)
ij

(S(t)
uc )ij = 0
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which leads to the update rule of S(t)
uc ;

S(t)
uc ← S(t)

uc �

√√√√XcSwHT + γ(Mc + MT
c )Suc + βDucSuc0 + τ

∑t
i=1 e

−(t−i)S
(i)
uc

SucHST
wSwHT + γSucST

ucSuc + βDucSuc + τte−(t−i)S
(t)
uc
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