
A Comparative Study on the Performance Isolation of Virtualization Technologies

by

Zige Huang

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved August 2019 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Ruoyu Wang

Mohamed Sarwat

ARIZONA STATE UNIVERSITY

December 2019

ABSTARCT

Virtualization technologies are widely used in modern computing systems to de-

liver shared resources to heterogeneous applications. Virtual Machines (VMs) are

the basic building blocks for Infrastructure as a Service (IaaS), and containers are

widely used to provide Platform as a Service (PaaS). Although it is generally be-

lieved that containers have less overhead than VMs, an important tradeo↵ which

has not been thoroughly studied is the e↵ectiveness of performance isolation, i.e.,

to what extent the virtualization technology prevents the applications from a↵ecting

each others performance when they share the resources using separate VMs or con-

tainers. Such isolation is critical to provide performance guarantees for applications

consolidated using VMs or containers. This paper provides a comprehensive study

on the performance isolation for three widely used virtualization technologies, full

virtualization, para-virtualization, and operating system level virtualization, using

Kernel-based Virtual Machine (KVM), Xen, and Docker containers as the repre-

sentative implementations of these technologies. The results show that containers

generally have less performance loss (up to 69% and 41% compared to KVM and Xen

in network latency experiments, respectively) and better scalability (up to 83.3% and

64.6% faster compared to KVM and Xen when increasing number of VMs/containers

to 64, respectively), but they also su↵er from much worse isolation (up to 111.8%

and 104.92% slowdown compared to KVM and Xen when adding disk stress test in

TeraSort experiments under full usage (FU) scenario, respectively). The resource

reservation tools help virtualization technologies achieve better performance (up to

85.9% better disk performance in TeraSort under FU scenario), but cannot help them

avoid all impacts.

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor Dr. Ming Zhao, Associate Pro-

fessor of ASU School of Computing, Informatics, and Decision Systems Engineering,

who provided careful guidance in the past two and half years. Every time I talked

with Prof. Zhao, I got interesting ideas about my research and life. He consistently

inspired me to think and guided me in the right direction. Moreover, I was impressed

by Zhao’s questioning spirit and often surprised by his unique and sharp views during

the group meeting.

I also thank my two committees for their patient guidance. Prof. Mohamed Sarwat

provided useful professional advice in related work, and Prof. Ruoyu Wang provided

indispensable guidance in preparing my thesis presentation and CPU research part.

I would also like to thank two talents in the VISA lab who provided help for my

research and thesis validation: Qirui Yang and Wenji Li. Without their patient help

and enthusiastic input, my research could not go smoothly.

I spent a really happy time in the VISA lab. I hope this thesis is not the end, but

the beginning.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 4

2.1 Full Virtualization . 4

2.2 Para-Virtualization . 6

2.3 OS-level Virtualization . 7

3 EXPERIMENT SETTING . 9

4 PERFORMANCE STUDY . 11

4.1 Methodology . 12

4.2 CPU-LINPACK . 12

4.3 Memory-STREAM. 13

4.4 Network-Netperf . 14

4.5 Disk-FIO. 15

4.6 Summary . 15

5 ISOLATION STUDY . 17

5.1 Methodology . 17

5.1.1 SPECweb . 21

5.1.2 TPC-DS . 24

5.1.3 Hadoop TeraSort . 25

5.2 Summary of Results . 26

5.2.1 CPU Isolation . 28

5.2.2 Disk I/O Isolation . 29

iv

Chapter Page

5.2.3 Network Isolation . 30

5.2.4 Memory Isolation . 31

5.2.5 Fork Isolation. 31

6 SCALABILITY STUDY . 33

6.1 Methodology . 33

6.1.1 Increasing the Number of Threads . 34

6.1.2 Increasing the Number of VMs/Containers 35

7 RELATED WORK . 37

7.1 Performance Study . 37

7.2 Scalability Study . 38

7.3 Isolation Study . 38

8 CONCLUSIONS. 41

REFERENCES . 43

APPENDIX

A COMMAND LINES FOR PERFORMANCE STUDY 45

B COMMAND LINES FOR ISOLATION STUDY . 47

C COMMAND LINES FOR SCALABILITY STUDY . 51

v

LIST OF TABLES

Table Page

4.1 Performance Degradation of KVM, Xen, and Docker (%) 11

4.2 Performance Di↵erence Compared with Che et al. (2010) (%) (Di↵er-

ence = Our Results - Che et al. (2010)’s Results) . 12

4.3 Performance Di↵erence Compared with Felter et al. (2015) (%) (Dif-

ference = Our Results - Felter et al. (2015)’s Results) 13

5.1 SUT (VMs/Containers) Configuration . 17

5.2 Resource Reservation Setting for Stress VMs/Containers 19

5.3 Average Resource Profile for Isolation Benchmarks 20

5.4 Stress Test Suit Description. 21

5.5 Stress Test Suit Setting . 22

5.6 CPU Isolation Degradation (%) . 26

5.7 Disk Isolation Degradation (%) . 27

5.8 Network Transmit Isolation Degradation (%). 27

5.9 Network Receive Isolation Degradation (%) . 27

5.10 Memory Isolation Degradation (%) . 28

5.11 Fork Isolation Degradation (%) . 28

6.1 Containers and VMs Configuration for Scalability Study 33

A.1 Command Lines of Benchmarks (LINPACK, STREAM, Netperf) Used

in Performance Study . 46

A.2 Command Lines of Benchmarks (FIO) Used in Performance Study 46

B.1 Command Lines of SPECweb Used in Isolation Study 48

B.2 Command Lines of TPC-DS Used in Isolation Study 48

B.3 Command Lines of Hadoop Used in Isolation Study 48

B.4 Command Lines of Stress Tests Used in Isolation Study 49

vi

Table Page

B.5 Command Lines of CPU Reservation Used in Isolation Study 49

B.6 Command Lines of Disk Reservation Used in Isolation Study 50

B.7 Command Lines of Network Reservation Used in Isolation Study 50

C.1 Command Lines of Apache HTTP Server Compilation Used in Scala-

bility Study . 52

vi

LIST OF FIGURES

Figure Page

2.1 KVM Architecture . 4

2.2 Xen Architecture . 5

2.3 Docker Architecture . 5

5.1 Isolation Experiment Methodology . 18

5.2 Resource Reservation Methodology . 18

5.3 SPECweb Benchmark Setting. 20

5.4 TPC-DS Benchmark Setting. 22

5.5 TeraSort Benchmark Setting. 23

6.1 Setting of Increasing the Number of Threads . 34

6.2 Setting of Increasing the Number of VMs/Containers 34

6.3 Performance of Increasing the Number of Threads . 35

6.4 Performance of Increasing the Number of VMs/Containers 36

viii

Chapter 1

INTRODUCTION

Nowadays, scholars, politicians, and even kids take advantage of cloud services every

day without realizing it. When you watch videos via Netflix, you are using cloud

services because many entertainment services of Netflix are based on Amazon Web

Service (AWS) ama (2006c), which is the most widely used cloud platform. With

various cloud services, you can access information and resources where the network

connection is available. Moreover, the increasing demand from cloud users has led

the cloud providers to adopt the resource sharing mechanism by taking advantage

of virtualization. Virtualization technologies enable cloud computing’s elasticity and

become a driving factor behind the success of the emerging commercial cloud com-

puting paradigms (e.g., EC2 ama (2006a), ECS ama (2006b), GCE Krishnan and

Gonzalez (2015)).

Various virtualization technologies provide support to cloud computing in di↵er-

ent aspects due to their unique features. Full virtualization provides an interface that

is identical to the underlying hardware. Thus, full virtualization supports unmod-

ified operating systems (OSes) and applications (e.g., VMware vmw (1998), KVM

Kivity Qumranet et al. (2007)). Para-virtualization provides a software interface

which is similar to the underlying hardware-software interface. Compared with full

virtualization, para-virtualization makes modifications on guest OSes to reduce virtu-

alization overheads. OS-level virtualization provides an environment that is identical

to the underlying OS, and it can run applications that the corresponding OS supports

(e.g., Docker Fink (2014)).

1

Understanding how di↵erent virtualization technologies perform in various scenar-

ios helps cloud users better leverage them to provide diversified features. Emerging

lightweight virtualizations are known for their less performance loss and good scal-

ability, but they may have some hidden issues in isolation. We discussed isolation

performance in-depth in our work by setting di↵erent system utilization and utilizing

resource reservation tools. Apart from that, we also verified that our virtualization

performance study is consistent with related works’ performance study. Further-

more, we studied the scalability by increasing the number of benchmark threads and

VMs/containers. Our results provide important performance references for future

research.

Since performance, isolation, and scalability are crucial to cloud computing per-

formance, many papers have contributed to this study. Although Pu et al. (2010),

Mardan and Kono (2016), Xavier et al. (2015) discussed isolation problem of dif-

ferent virtualization technologies, they have some limitations in the experimental

methods. First, system utilization was not addressed. We found that the system

resource occupancy of some previous works is lower than 60% after reproducing their

experiments. Since low system utilization cannot create serious resource competition

environments, the isolation results from previous works fail to reflect the real isolation

of related virtualization technologies. We adjusted the stress test’s parameter (e.g.,

threads number) to create 90% system utilization and full system utilization scenar-

ios. Second, there are many resource reservation tools which can limit virtualization

interference, but none of them were evaluated before. We discussed the e�ciency of

resource reservation tools by using them in 90% system utilization and full system

utilization scenarios.

Although Soriga and Barbulescu (2013), Li and Xia (2016) studied scalability

of di↵erent virtualization technologies, the experiments about increasing number of

2

benchmark threads were not addressed. We evaluated virtualization scalability by

increasing the number of benchmark threads and VMs/containers because this exper-

iment can reflect the performance of virtualization technology to meet users’ growing

needs of threads.

The contributions of our work are reflected in the following points:

• We conducted an extensive performance study considering performance, isola-

tion, and scalability for KVM, Xen, and Docker.

• We designed experiments under di↵erent system utilization (90% usage and

full usage scenarios). KVM’s performance is relatively stable as the resource

contention increases, whereas Docker’s performance loss increases dramatically.

• We evaluated the e↵ectiveness of resource reservation tools under di↵erent sys-

tem utilizations. Cgroups, and Tra�c Controller help Docker gain 11.25% better

performance on average and up to 87.88% better performance when the disk

bandwidth is under contention. But resource reservation tools are not good

enough to free Docker from any influence.

• We found interesting isolation problems which were ignored before. We noticed

that Docker shows 25.13%, 113.8%, and 21.14% performance loss in CPU, disk,

and memory under full system utilization, respectively.

The rest of this paper is organized as follow: Section II introduces the background

of di↵erent virtualization technologies, and Section III describes the environment

setting. Section IV, V, VI present performance, isolation and scalability evaluation,

respectively. Section VII reviews the related studies and Section VIII concludes our

findings.

3

Chapter 2

BACKGROUND

2.1 Full Virtualization

Full virtualization means that di↵erent guest machines co-exist in a host machine

through a virtual imitation of the hardware layer. The hardware imitation layer

provides an interface that is identical to the underlying hardware, and thus it can run

unmodified operating systems (OSes). Full virtualization allows the system to create

guests with various OSes which have no knowledge of the host. Take the hardware

support for example, full virtualization can build it in the CPU which helps trap and

virtualize hardware-specific operations or commands without guest awareness.

Figure 2.1: KVM Architecture

4

Figure 2.2: Xen Architecture

Figure 2.3: Docker Architecture

5

Machines of full virtualization are widely-used in cloud computing as the infras-

tructure as a service (IaaS). Google applies KVM on its IaaS cloud management.

Amazon Web Service uses the KVM as the main infrastructural tool when imple-

menting their new product Amazon EC2 C5. Moreover, the latest Alibaba Cloud

application adopts KVM to its backend management. Full virtualization challenges

resource saving due to its fully virtualized layer; however, this layer also delivers a

promising isolated performance for each guest.

In our experiments, we evaluate the full virtualization via investigating the KVM.

Figure 2.1 shows the details of KVM architecture. For the hypervisor communication,

KVM calls the memory management and the process management subsystem by

converting the linux kernel as a hypervisor. KVM currently uses virtio, a device-driven

framework for Linux to provide an I/O framework for host and guest interaction.

Virtio installs front-end drivers in the guest OS kernel and back-end drivers in QEMU

Bellard (2005).

2.2 Para-Virtualization

Para-virtualization provides a software interface to guests which is not identical

to the underlying hardware-software interface. Thus, the di↵erence between para-

virtualization and full virtualization is the para-virtualization VMM has to run mod-

ified guest OS’s code and takes the advantages of cooperation between host and

guests. Moreover, the guests have the knowledge of their virtualization environments

because para-virtualization management needs the cooperation from guests. Further-

more, para-virtualization is also based on the host and guest mode with a VMM that

supports multiple operating systems.

Generally, para-virtualization shows a good performance on the cloud environment

by taking advantage of the collaboration between guest processes and host processes.

6

The largest infrastructure cloud, Amazon EC2, originally took Xen as its hypervisor.

Para-virtualization guarantees high e�ciency by allowing the modified guests OS to

collaborate with the hypervisor. But this design also greatly limits the popularity of

para-virtualization because only limited operating systems are modifiable.

This paper evaluates the para-virtualization via examing Xen. Figure 2.2 shows

the details of Xen architecture. Xen contains three major parts. Xen hypervisor

is the lowest layer with the highest privilege on top of which running many guest

operating systems. The Xen hypervisor manages the guests’ activities across the

physical resources. Domain 0 is a unique guest operating system running on the Xen

Hypervisor with direct access to the hardware and privileges to manage other guest

operating systems (Domain U). Domain U is a guest operating system that has no

direct access to the hardware resources, but can exist independently and in parallel.

Xen’s resource allocation and isolation all rely on Domain 0.

2.3 OS-level Virtualization

OS-level virtualization is a lighter weight choice virtualization comparing with the

hypervisors. It partitions the host’s physical resources and builds multiple isolated

guest resource instances on the same OS. Each guest occupies the entire resources

exclusively. This design reduces many overheads comparing with the hypervisor-based

virtualization on the fact that there is no need to translate and pass the instructions

across layers.

OS-level virtualization has the advantage that it occupies less server resources

whereas can create thousands of containers in seconds, which makes OS-level vir-

tualization increasingly important in Platform as a Service (PaaS). IBM’s private

cloud is based on Docker and Kubernates. Oracle’s cloud and tutum are also based

on Docker. Although OS-level virtualization has many di↵erent advantages, it still

7

causes the security and isolation concerns which are the open problems in academic

and industry.

Docker is one of the most popular container frameworks. Figure 2.3 shows the de-

tails of Docker architecture. It is increasingly incorporated on platforms that require

high scalability and low performance overhead. Docker can build an entire container

with Dockerfile easily, whereas the traditional virtualization technologies are more

complex in creating the whole system. Moreover, Docker shows promising flexibility

of instantaneous replication. (e.g., a Dockerfile can create a new container based on

the built container image in seconds.) Docker creates new instances of six namespaces

(i.e., Mount, UTS, IPC, PID, Network, and User namespaces). When it creates a

container, it helps Docker build its isolation. Although Docker does brings numerous

benefits as an OS-level virtualization, it also brings typical isolation issues due to its

ine↵ective resource management.

8

Chapter 3

EXPERIMENT SETTING

We conducted a thorough comparison of three virtualization techniques and adjusted

the system settings to provide complete fairness in all the aspects that may a↵ect the

SUT performance. All of our experiments run on the ASU cloud, and the following

experimental settings are consistent with the information below.

• Native/ASU cloud node: ASU cloud node is based on Ubuntu Server 14.04.01

(Linux kernel 3.13) with 2.4 GHz Intel (R) Xeon (R) CPU processors for a

total of 16 hyperthreaded cores, 60 GB memory, and EXT4 file system on 2

TB HDD. ASU cloud nodes are connected with each other through Mellanox

10 Gbps Ethernet. When we ran experiments directly on the ASU cloud node,

we strictly restricted the processes’ resources as the same as the SUT by setting

Cgroups’ limits (Cgroups version 1).

• KVM: We used KVM to create VMs each with 4 virtual CPUs (vCPUs), 10

GB virtual memory, 100 GB virtual disk, bridged network mode, and EXT4 file

system. KVM’s images are stored as qcow2 format files on host file systems.

• Xen: We used Xen 4.8.1 to create Xen domains with 4 vCPUs, 10 GB virtual

memory, 100 GB virtual disk, bridged network mode, and EXT4 file system.

The Xen’s images are stored as files located on host file systems.

• Docker: We used Docker 17.06.1-ce with 4 vCPUs, 10 GB virtual memory, 100

GB virtual disk, bridged network mode, and EXT4 file system. We chose Device

9

Mapper as the storage device which mappped di↵erent layers of Docker to the

physical disk.

10

Chapter 4

PERFORMANCE STUDY

Table 4.1: Performance Degradation of KVM, Xen, and Docker (%)

Benchmark Measured Operation KVM Xen Docker

LINPACK Numerical linear algebra 29 19 1

STREAM

Copy 2 2 0

Add 3 3 2

Scale 3 2 1

Traid 3 2 2

Netperf

TCP RR latency 72 49 8

UDP RR latency 78 42 9

TCP send throughput 0 0 0

TCP receive throughput 0 0 0

UDP send throughput 22 19 0

UDP receive throughput 21 19 2

FIO

Random read 40 22 0

Random write 45 28 0

Random mix 47 27 2

Seq read 4 2 0

Seq write 4 3 0

11

Table 4.2: Performance Di↵erence Compared with Che et al. (2010) (%) (Di↵erence
= Our Results - Che et al. (2010)’s Results)

Benchmark Measured Operation KVM Xen

LINPACK Numerical linear algebra +16 +19

STREAM

Copy -5 -6

Add -1 -1

Scale -3 -5

Traid -1 -3

Netperf

TCP send throughput -14 -13

TCP receive throughput 0 0

UDP send throughput +1 +6

UDP receive throughput +18 +18

FIO
Seq read +2 +2

Seq write -16 +28

4.1 Methodology

This section investigates the performance loss introduced by full virtualization

(KVM), para-virtualization (Xen), and OS-level virtualization (Docker). All the re-

sults are normalized by the results from the native machine (degradation = (Native-

System Under Test (SUT))/Native)). Each result is averaged over 5 runs.

4.2 CPU-LINPACK

LINPACK benchmark measures how fast the computers solve dense linear equa-

tions with floating-point operations. We used Intel Optimized LINPACK Benchmark

with Intel Math Kernel Library 2018.0.006 in our experiments.

12

Table 4.3: Performance Di↵erence Compared with Felter et al. (2015) (%) (Di↵er-
ence = Our Results - Felter et al. (2015)’s Results)

Benchmark Measured Operation KVM Docker

LINPACK Numerical linear algebra -26 +1

STREAM

Copy +1 0

Add +2 +2

Scale +2 +1

Traid +2 +2

Netperf
TCP send throughput -1 0

TCP receive throughput +21 0

FIO

Random read -5 0

Random write -2 0

Random mix -15 +2

Seq read +4 0

Seq write +3 0

Table 4.1 shows the LINPACK performance on KVM, Xen, and Docker. Xen

outperforms KVM by 10% and is slower than Docker by 18%. KVM’s performance

is the worst with 29% performance loss, whereas Docker can achieve almost identical

performance as the native with 1% performance loss.

4.3 Memory-STREAM

As the available CPU cores increase in a processor, memory resource becomes

more and more important for the whole system. If a CPU core cannot fetch data

from memory on time, it reduces the system e�ciency. STREAM uses four basic

operations to measure sustainable memory bandwidth and corresponding computing

speed. The four operations are as follows:

13

• COPY: a[i] = b[i]. This operation reads the value from a memory cell and then

writes the value to another memory cell;

• ADD: a[i] = b[i] + c[i]. This operation reads two values from the memory cells,

adds them, and writes the result to another memory cell;

• SCALE: a[i] = factor ⇤ b[i]. This operation reads two values from the memory

cells, multiplies them, and writes the results to another memory cell;

• TRIAD: a[i] = b[i] + factor ⇤ c[i]. This operation reads two values from two

memory cells. After multiplication and addition, it writes the result to another

memory cell.

Table 4.1 shows memory performance loss of KVM, Xen, and Docker comparing

with the native system. For all operations, the virtual machines introduce up to 3%

overhead, and Docker introduces at most 2% overhead. The STREAM performance

among three virtualization technologies are similar with no more than 2% di↵erence.

4.4 Network-Netperf

Netperf measures the network throughput and latency of SUT for TCP and UDP

communications. Netperf works in a client/server mode and our SUT runs as the

Netperf client/server. In the network throughput experiments, the client sends a 100-

byte request and the server sends a 200-byte response. We set the sending socket size

to 16 KB and the running time as 60 seconds. In network latency experiments, Netperf

calculates latency statistics on runtime from client sending a package to receiving a

reply.

Table 4.1 shows the normalized network performance loss of KVM, Xen, and

Docker. For network latency experiments, Xen shows 41% higher latency in TCP

14

transmission and 33% higher latency in UDP transmission comparing with Docker.

The worst case is the KVM which shows 23% and 36% overhead for TCP and UDP

transmissions, respectively comparing with Xen. For the throughput experiments,

all the virtualization technologies show identical performance to the native system in

TCP mode. In UDP mode, Docker also shows almost identical network throughput

(up to 2% degradation) to the native system, whereas Xen’s perfermance is up to

19% lower than Docker. The worst two cases come from KVM. KVM shows 22%

disadvantage in UDP send mode and 19% disadvantage in UDP receive mode than

Docker.

4.5 Disk-FIO

We used FIO benchmark to measure the IOPS performance. During the exper-

iments, we set the ioengine to psync and the block size to 32 KB. We started 20

threads together and each thread had a 2 GB workload. All FIO experiments were

under DIRECT mode to avoid the influence from the page cache.

Table 4.1 shows the normalized degradation of disk performance of KVM, Xen,

and Docker. In the sequential access mode, all the virtualization technologies bring

little overhead which is lower than 4%. In the random access mode, Docker has almost

identical disk I/O performance as the native system. In ramdom FIO experiments,

KVM shows 17% to 22% worse performance than Xen, and Xen brings 22% to 28%

overhead than the Docker.

4.6 Summary

Our performance experiment results are generally consistent with the conclusions

made by the studies from Che et al. (2010) and Felter et al. (2015). Table 4.2 and

Table 4.3 show the di↵erence between our results and related works about same mea-

15

sured operations. By adjusting specific parameters (e.g., threads number and block

size) for FIO experiments, we noticed a 28% higher di↵erence in XEN’s random write

mode comparing withChe et al. (2010). Also, by using 10 Gbps network through ASU

cloud, we noticed up to 14% lower and 21% higher performance comparing with Che

et al. (2010) and Felter et al. (2015), respectively. Compared with Che et al. (2010),

our performance study shows 16% and 19% better CPU performance for KVM and

Xen, respectively. This may because we strictly restrict the CPU resources for the

experimental processes (run directly on Native for baseline runtime).

16

Chapter 5

ISOLATION STUDY

5.1 Methodology

Performance isolation is a important factor for Quality of Service (QoS) in cloud

computing where information and system resources are shared. It is critical to provide

performance guarantees for applications consolidated using VMs or containers. If the

runtime behavior of an application is a↵ected by other running applications, it is

di�cult to predict its completion time. To quantify the performance isolation of

the virtualization systems, we used CPU, memory, fork, and network bomb from

the Isolation Benchmark Suit (IBS) Matthews et al. (2007) as stress tests to compete

system resources with our SUTs. For disk bomb, we used FIO with the psync backend

in O DIRECT mode to bypass the operating system cache. Table 5.5 introduces

di↵erent stress tests. In summary, the stress suit e↵ectively models intensive resource

competing scenarios in production conditions.

Figure 5.1 shows the basic methodology for isolation experiments. The SUT

and the stress test machine are on the one cloud node. We designed four scenarios

to test the performance isolation about CPU, disk, and network of virtualization

technologies.

Table 5.1: SUT (VMs/Containers) Configuration

Containers and VMs VCPUs Virtual Memory Virtual Disk

SPECweb Web Server 4 10 GB 100 GB

TPC-DS Server 4 10 GB 100 GB

Hadoop Master/Slave 1 1 GB 15 GB

17

Figure 5.1: Isolation Experiment Methodology

Figure 5.2: Resource Reservation Methodology

18

Table 5.2: Resource Reservation Setting for Stress VMs/Containers

Benchmark CPU Disk Read Disk Write Network Send Network Receive

SPECweb
bound with

4 CPU cores
272.10 MB/S 275.80 MB/S 5.14 Gbps 5.32 Gbps

TPC-DS
bound with

4 CPU cores
126.23 MB/S 109.10 MB/S 9.71 Gbps/S 9.62 Gbps

Hadoop
bound with

4 CPU cores
57.16 MB/S 58.00 MB/S 9.41 Gbps/S 9.55 Gbps

We designed the first two scenarios based on the total system utilization (bench-

mark resource usage + stress test VM/container usage) and applied resource reserva-

tion into them to build the latter two scenarios. The first two scenarios provide details

about how di↵erent system utilizations (90% usage and full usage) a↵ect SUTs’ perfor-

mance isolation, and the last two scenarios are designed for testing how good resource

protection the resource reservation tools provide under di↵erent system utilizations.

Table 5.5 shows the details about how we created di↵erent system utilization.

Figure 5.2 illustrates how we implemented the resource reservation method. As

seen in Table 5.2, we set resource limitation on the stress test VMs/containers to

leave enough resource (peak resource usage when corresponding benchmarks running

alone) for SUTs. For CPU part, we revised the Cgroups file to bind physical CPU

cores for KVM and Docker, whereas used xl command to do the same thing for Xen.

For disk part, we modified blkio file in Cgroups to set disk read and write limits for

KVM and Docker, and used dm-ioband to control disk I/O in Xen. For network

part, we adopted Tra�c Controller tct (2003) to classify the network packages from

di↵erent processes, and set the network limit on the specific class which the stress

tests belong to. For the memory and fork parts, we designed separate experiments

by increasing the number of memory bomb threads and fork bomb VMs/containers

because the resources that these two stress tests consume are di�cult to limit directly.

19

Table 5.3: Average Resource Profile for Isolation Benchmarks

Benchmark CPU Disk Read Disk Write Network Send Network Receive

SPECweb 5.86% 9.87 MB/S 8.79 MB/S 1.62 Gbps 1.5699Gbps

TPC-DS 18.99% 51.31 MB/S 60.06 MB/S 57.24 MB/S 88.01 MB/S

Hadoop 26.01% 75.44 MB/S 67.81 MB/S 103.72 MB/S 98.9 MB/S

Figure 5.3: SPECweb Benchmark Setting.

In this section, we evaluated di↵erent virtualization technologies’ isolation by cal-

culating performance degradation. Every result was averaged over 3 stable runs.

• Baseline Result (BR): We recorded the benchmark runtime in SUT when there

was no stress test running.

• Results under Stress Tests (RST): We introduced stress tests into containers or

VMs individually and recorded the benchmark runtime.

• The SUT degradation results: we calculated the the normalized degradation

(degradation = (BR � RST)/BR)) to evaluate performance isolation. The

lower degradation is, the better performance isolation is.

20

Table 5.4: Stress Test Suit Description

Stress Test Description

CPU Bomb
Uninterrupted run interger and floating-point

calculations

FIO Bomb

Uninterrupted run 20 threads and each thread

runs in random mixed mode (50% read and

50% write) with 32 KB block

Network Bomb

Uninterrupted run 4 threads and each thread

sends or reads 60 KB packets to or from

external receivers or senders

Memory Bomb
Uninterrupted allocate and touch memory

without releasing it

Fork Bomb
Uninterrupted creation of new child

processes

We used three virtualization technologies, including Docker, KVM, and Xen.

Table 5.1 shows our containers and VMs configurations in di↵erent scenarios. We

used three real-world benchmarks which intensively use di↵erent resources, including

SPECweb, TPC-DS, and Hadoop TeraSort. Table 5.3 shows the characteristics of

their use of di↵erent resources. SPECweb is more network-intensive than TPC-DS

and Hadoop TeraSort, whereas Hadoop TeraSort uses more CPU and disk resources.

5.1.1 SPECweb

SPECweb 2005 V1.30 is a web server benchmark developed by the Standard Per-

formance Evaluation Organization (SPEC). It evaluates a web server performance

by measuring the maximum amount of concurrent connections that meet specific

21

Table 5.5: Stress Test Suit Setting

Stress Test 90% Usage Scenario Full Usage Scenario

CPU Bomb

SPECweb 25 CPU Bombs SPECweb 28 CPU Bombs

TPC-DS 21 CPU Bombs TPC-DS 24 CPU Bombs

TeraSort 19 CPU Bombs TeraSort 22 CPU Bombs

FIO Bomb

SPECweb 95 FIO Bombs SPECweb 120 FIO Bombs

TPC-DS 80 FIO Bombs TPC-DS 106 FIO Bombs

TeraSort 74 FIO Bombs TeraSort 99 FIO Bombs

Network Bomb

SPECweb 11 Network Bombs SPECweb 20 Network Bombs

TPC-DS 13 Network Bombs TPC-DS 22 Network Bombs

TeraSort 13 Network Bombs TeraSort 22 Network Bombs

Memory Bomb Increase the number of Memory Bomb from 1 to 64

Fork Bomb Increase the number of Fork Bomb VM/container from 1 to 32

Figure 5.4: TPC-DS Benchmark Setting.

22

Figure 5.5: TeraSort Benchmark Setting.

throughput, customer request rates, and customer response rates.

Figure 5.3 shows our setting for SPECweb benchmark. SPECweb consists of

three parts: the client, the web server, and the back-end simulator (Besim). The

client keeps sending HTTP Get requests to the Web server. Those requested web

page files range from several kilobytes to several megabytes. The web server stores

all the necessary data in the Besim part and accesses the stored information through

NFS Arthursson (2012). SPECweb experiments ran with JDK 1.8.0 162 and started

every single test from cold cache.

Figure 5.3 shows our SPECweb benchmark setting. SPECweb consists of three

parts: client, web server, and Besim.

• Client: The clients work as load drivers for the whole system. In the client sys-

tem, there is one or more special client that acts as the prime client which man-

ages other clients’ activities. Every time before the experiment starts, the prime

client starts the user-designed management scripts and establishes a TCP/IP

connection with a listening thread on every client. Then the prime client passes

23

the workflow to the other clients. The clients set up a group of processes which

generate workload and send HTTP requests to the web server. After all the pro-

cesses have finished sending requests and receiving responses, the prime client

collects the response information. In our experiments, we set the number of the

prime client as one and put the prime client and the other eight clients in one

dedicated cluster node.

• Web Server: Before the experiment starts, Web server generates web files in

a remote folder that is physically located in the Besim. Then it handles the

clients’ requests and retrieves information from Besim during the experiment.

The web server runs together with the stress test in separate containers/VMs

and it has the same resource allocations of SUT that are mentioned in Table

5.1.

• Besim: The Besim simulates the back-end application server which provides

the database service to the web server to complete related HTTP requests. The

Besim node’s memory needs to be su�ciently large to provide at least 34 GB

remote folder for the web server. Otherwise, it may a↵ect the performance of

the web server. Besim run on a dedicated node.

5.1.2 TPC-DS

The TPC-DS benchmark builds di↵erent aspects of a decision support system

through various multidimensional data patterns and tests user response time and

system maintenance performance through query and data maintenance. TPC-DS has

seven fact tables and 15 latitude tables. Each table contains 18 columns on average.

The workload used in our experiment contains 99 SQL queries which covers the core

parts of SQL 99, SQL 2003, and Online Analytical Processing (OLAP). Moreover,

24

the TPC-DS benchmark includes complex applications which are consistent with real

data such as statistics, report generation, online query, and data mining.

Figure 5.4 shows our experiment setting in which the TPC-DS benchmark consists

of two parts: client and server.

• Client: The client contains the driver and the query execution parts. It sends

the SQL queries to the server and receives the responses from the server.

• Server: The Server executes the queries from the client and replies to the client.

In TPC-DS experiments, the server VM/container inherits the resource alloca-

tion scheme of SUT in Table 5.1.

We used Microsoft SQL Server 2017 as our database software for the SUT. We

generated TPC-DS table data files with scale factor equals 50GB then loaded them

into server SQL database. We ran 99 queries as our workloads and used the elapsed

time as our results.

5.1.3 Hadoop TeraSort

Hadoop TeraSort is a divide and conquer model which runs many sub-tasks of a

large scale task in parallel on multiple slave nodes under the management of one mas-

ter. Hadoop TeraSort paradigm consists of two phases: mapping and reducing. The

mapping part divides a task into multiple sub-tasks, and the reducing part combines

the multiple partial results together to obtain a final solution.

Figure 5.5 shows our Hadoop TeraSort benchmark setting. There are two com-

ponents in Hadoop TeraSort paradigm. One is the JobTracker for dispatching tasks.

The whole Hadoop cluster has only one JobTracker which is on the master machine.

The other is the TaskTracker for executing tasks, located on each slave machine.

We used 21 VMs/containers for this benchmark where one was used as the master

25

Table 5.6: CPU Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

90% U 0 0.12 10.1 0.01 1.15 11.27 0.09 1.23 14.53

FU 0.91 3.11 18.1 0.04 3.12 22.9 0.97 3.95 25.13

90%URR 0 0.03 1.2 0 1.21 0.62 0.01 2.09 3.97

FURR 0 1.25 2.1 0 1.71 2.01 0.02 2.97 7.8

machine on one node, and 20 were used as slave machines evenly distributed on the

other two nodes. We set a separate node on each slave node for stress tests. For

every machine in this experiment, we allocated 1 virtual CPU and 15G virtual Disk.

Other specifications follow the resource allocation of SUT in Table 5.1. We used

Hadoop 3.0.0 and java 1.8.0 162 to build the experimental environment. We ran 30G

workloads and measured the elapsed time to evaluate performance isolation.

5.2 Summary of Results

Our isolation experiments used the stress tests in Table 5.4 to compete resources

with the SUT. We tested performance isolation about CPU, disk, and network in

four scenarios. According to the di↵erent characteristics of the four scenarios, we

abbreviate them as 90% usage scenario (90%U), full usage scenario (FU), 90% usage

with resource reservation scenario (90%URR), full usage with resource reservation

scenario (FURR) in the result table. In the latter two scenarios, we explored how

well the di↵erent resource reservation methods (e.g., Cgroups, dmioband iob (2009))

helped to improve performance isolation. Based on the resource profile we got for

each benchmark, we reserved the average resource each benchmark needed for the

SUT. Furthermore, we ran memory and fork experiments through multiple threads

scenarios and multiple machines scenarios, respectively.

26

Table 5.7: Disk Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

90% U 0.07 2.91 17.29 1.01 4.27 46.17 1.02 2.03 73.4

FU 0.27 6.62 48.13 2 8.7 88.12 1.3 8.88 113.8

90%URR 0.01 2.62 1.98 0.15 3.61 8.11 0.17 3.83 21.29

FURR 0.01 4.17 2.06 0.21 6.94 14.58 0.55 7.01 27.9

Table 5.8: Network Transmit Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

90% U 0.13 2.8 34.57 0.05 2.01 21.9 0 0.51 31.19

FU 1.09 6.01 48.91 0.87 5.12 25.29 0.05 5.4 47.12

90%URR 0 0.75 6.12 0 0.81 6.54 0 1.92 6.27

FURR 0 4.24 17.62 0 3.79 8.2 0 5.08 9.43

Table 5.9: Network Receive Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

90% U 0.01 1.54 90.81 0.01 1.92 18.01 0.01 1.01 21.23

FU 0.72 1.99 91.88 0.51 3.92 24.32 0.07 2.08 29.11

90%URR 0.01 0.06 28.19 0 0.75 2.42 0 0.63 5.17

FURR 0.07 1.13 39.21 0 2.39 4.91 0 2.31 8.22

27

Table 5.10: Memory Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

1 Thread 0 0.01 0.92 0 0.01 0.18 0 0.01 0.55

4 Threads 0.47 1.21 3.77 0.21 0.01 2.31 0.27 0.82 3.42

16 Threads 0.87 4.08 9.92 0.25 3.76 7.28 0.88 3.66 11.21

32 Threads 0.21 4.12 14.43 0.99 4.35 14 1.01 4.64 15.81

64 Threads 1.43 6.57 19.18 1.14 4.98 20.98 1.56 5.43 21.14

Table 5.11: Fork Isolation Degradation (%)

Scenarios
SPECweb TPC-DS TeraSort

KVM Xen Docker KVM Xen Docker KVM Xen Docker

1 Machine 0 0 0.15 0 0.01 0.02 0 0 0.21

4 Machines 0 0 0.18 0.01 0.01 0.12 0 0 0.43

16 Machines 0 0 1 0.01 0.42 0.99 0.01 0.02 2.51

32 Machines 0 0.04 2.03 0.01 1.89 6.98 0.02 3.03 8.15

64 Machines 0.51 7.53 DNR 0.01 5.46 DNR 0.02 8.03 DNR

5.2.1 CPU Isolation

The IBS Matthews et al. (2007) adds burden to CPU by running a tight loop

of integer arithmetic operations. We verified that the CPU stress test enables the

corresponding container or VM to occupy 100% of assigned vCPU. In the resource

reservation scenarios, we physically bound CPU cores with corresponding SUT con-

tainer/VM by using Cgroups and XL (for Xen).

Table 5.6 shows performance isolation of KVM, Xen, and Docker. In 90%U sce-

nario, KVM’s CPU isolation keeps the leading places with up to 0.09% degradation

in all benchmarks. Xen shows 1.14% performance loss compared with KVM with

TPC-DS, and Docker shows 13.3% more overhead than Xen under TeraSort. In FU

scenarios, Xen shows 3.08% worse performance than KVM at FU scenario with TPC-

28

DS. Docker has the worst CPU isolation (up to 25.13%) among the three virtualization

technologies in all benchmarks.

Resource reservation tools help the three virtualization technologies achieve better

CPU isolation, especially for Docker. Docker benefits 8.9%, 10.65%, and 10.56%

better performance from Cgroups at 90% resource usage under SPECweb, TPC-DS,

and TeraSort, respectively. Moreover, Docker also reduces 16%, 20.89%, and 17.33%

performance overhead at FURR scenario compared with FU scenario. Cgroups helps

Docker achieve better CPU isolation by setting processor a�nity. After binding

processes to specific CPU cores, the CPU scheduler ran the specified process on

the “bound” CPU based on the CPU a�nity setting which means that processes

are usually not migrated frequently between processors and they have much fewer

chances to a↵ect the other processes.

5.2.2 Disk I/O Isolation

We used the multiple FIO bombs to consume disk bandwidth resource contin-

uously for performance isolation analysis. For one FIO bombs, we ran 20 threads

together and each thread ran mixed random accessing (50% read and 50% write)

with 32 KB sized block. In the resource reservation scenarios, we used dmioband iob

(2009) to set resource limitation for Xen, whereas revised the Cgroups files to limit

the disk bandwidth for KVM and Docker.

Table 5.7 shows the disk isolation degradation of KVM, Xen, and Docker in di↵er-

ent scenarios. In 90%U scenario, KVM shows up to 3.26% better performance than

Xen with TPC-DS, and 71.37% less performance loss than Docker with TeraSort. In

FU scenario, we noticed that Xen shows up to 7.58% worse performance isolation than

KVM, but up to 104.92% better performance isolation than Docker with TeraSort.

29

Resource reservation tools help KVM, Xen, and Docker in various degree. Xen

generally gets slight improvement (less than 2.45%) in performance with dm-ioband.

However, Cgroups helps Docker regain 15.31%, 38.06%, 52.11% performance in SPECweb,

TPC-DS, and TeraSort in 90%U scenario, and it also helps Docker reduce 46.07%,

73.54%, and 85.9% overhead when running those three benchmarks respectively in

the FU scenario. Through Cgroups helps Docker achieve much better performance,

it cannot protect Docker from all influence.

5.2.3 Network Isolation

We used the IBS Matthews et al. (2007) network stress test to evaluate net-

work isolation in terms of transmit mode and receive mode. The network stress test

introduces the intensive network I/O to the system through the communication be-

tween the server and the client. We used the server/client as our SUT and put the

client/server on another cluster node. The stress machine starts 4 threads together

and each thread constantly sends or receives packages of size 60 KB through UDP to

or from external receiver or sender. In resource reservation scenarios, We used Linux

Tra�c Control tct (2003) to limit the total network bandwidth for stress tests. The

Linux Tra�c Control establishes priority queues for processing packets and defines

how the packets in the specific queue are sent, thereby enabling control of tra�c and

reducing interference between processes.

Table 5.8 and Table 5.9 show the network isolation for KVM, Xen, and Docker. In

90%U scenario, KVM shows up to 2.67% better performance than Xen in SPECweb

transmit mode, and gains up to 90.8% less overhead than Docker in SPECweb receive

mode. In FU scenario, Xen shows up to 5.35% less performance than KVM in Tera-

Sort transmit mode, and has 89.89% better performance than Docker in SPECweb

receive mode. To briefly sum up, KVM shows the best network isolation among

30

the three in both transmit and receive mode which benefits from KVM’s network

interface.

Tra�c Controller helps Docker get better network isolation in both network trans-

mit and receive mode. For network transmit mode, Docker regains up to 28.45%

performance in SPECweb under 90%URR scenario, and 37.69% performance in Tera-

Sort under FURR scenario. Furthermore, for network receive mode, Docker achieves

62.62% better performance in SPECweb under 90%URR scenario, and 52% better

performance in SPECweb under FURR scenario.

5.2.4 Memory Isolation

For the memory part, the IBS Matthews et al. (2007) exhaustively consumes

memory by repeatedly allocating and accessing memory. We used multiple threads

scenarios (up to 64 threads) to simulate the environment of di↵erent system utiliza-

tions.

Table 5.10 shows the memory isolation performance for KVM, Xen, and Docker.

KVM o↵ers the best memory isolation performance among the three virtualization

technologies with up to 1.43% degradation. Xen has up to 5.14% worse performance

than KVM when the number of threads reaches 64. Docker shows the highest degra-

dation in Hadoop TeraSort experiment with 64 threads (21.14%). Therefore, Docker

is less suitable to be the host of memory-intensive applications than hypervisor-based

virtualizations.

5.2.5 Fork Isolation

We used the IBS’s Matthews et al. (2007) fork bomb to compete for system re-

sources with SUT by repeatedly invoking system call to create new child processes.

Moreover, we designed experiments of multiple stress containers/VMs to burden the

31

target SUT. The stress VM/container number is from 1 to 32 and each VM/container

owns only one CPU core which guarantees that the CPU resource is enough for the

SUT.

As we can see in Table 5.10, KVM is the most promising one in fork experi-

ments with up to 0.51% degradation. Xen is in the second place with up to 8.03%

performance degradation. Docker fails to response for the 64 threads experiments.

32

Chapter 6

SCALABILITY STUDY

6.1 Methodology

Scalability is the ability of a process, resource, or application to grow and manage

the increased demands of its users. Good scalability of virtualization technologies

guarantees high performance in the process of cloud services’ expansion and growth.

We adopted two ways to evaluate scalability performance for KVM, Xen, and

Docker. In the first case, we scaled the system by adding more benchmark threads

to one existing VM/container. In the second case, we scaled the system by adding

more VMs/containers into one ASU cloud node with one benchmark running in each

VM/container. We chose Apache compilation as the test benchmark, and related

software is Apache HTTP Server 2.4. Table 6.1 shows our VMs’ and containers’

configuration in the following experiments. In this experiment, we used the runtime

as our results. The shorter the runtime is, the better the scalability is. Every result

in this section is averaged over 3 stable results.

Table 6.1: Containers and VMs Configuration for Scalability Study

Scenarios VCPUs Virtual Memory Virtual Disk

Increasing the number of threads 4 10 GB 100 GB

Increasing the number of VMs/containers 1 1 GB 15 GB

33

Figure 6.1: Setting of Increasing the Number of Threads

Figure 6.2: Setting of Increasing the Number of VMs/Containers

6.1.1 Increasing the Number of Threads

This experiment is to run multiple threads instead of a single thread to increase the

utilization of system resource. Figure 6.1 shows our experiment setting. We increased

the number of threads up to 128, and each thread ran an instance of Apache HTTP

Server compilation. All the Apache HTTP Server Compilation started at the same

34

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64 128

R
u

n
ti

m
e
 (

m
in

u
te

s
)

Number of Threads

Docker
Xen

KVM

Figure 6.3: Performance of Increasing the Number of Threads

time.

Figure 6.3 shows the average runtime of all VMs/container when increasing the

number of threads in one container/VM. KVM shows the worst scalability perfor-

mance among the three di↵erent virtualization technologies when increasing the num-

ber of benchmark threads. Xen shows the best scalability performance with 6.1 min-

utes and 68.2 minutes shorter runtime than Docker and KVM when 128 threads are

running. Docker shows the most stable scalability with up to 2.18 minutes and 5.28

minutes smaller fluctuation than Xen and KVM.

6.1.2 Increasing the Number of VMs/Containers

This experiment replicates our single SUT and runs multiple SUTs in one ASU

cloud node to increase resource utilization. In the ideal environment with unlim-

ited resources, the runtime would not be a↵ected as the number of VMs/containers

increasing. Figure 6.2 shows our experiment setting. We increased the number of

VMs/containers up to 128, and each of them ran an Apache HTTP Server compila-

35

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64 128

R
u

n
ti

m
e
 (

m
in

u
te

s
)

Number of Machines

Docker
Xen

KVM

Figure 6.4: Performance of Increasing the Number of VMs/Containers

tion thread.

Figure 6.4 shows the average runtime of all VMs/containers when increasing the

number of test containers/VMs. KVM shows the worst scalability performance with

no response in 128 VMs case. Docker shows the best scalability with up to 42.37

minutes shorter runtime than Xen when the number of containers/VMs grows to 128.

36

Chapter 7

RELATED WORK

7.1 Performance Study

Emerging virtualization technologies have brought a lot of new energies and flexi-

bility to cloud computing. However, the performance overhead is still an issue which

is widely discussed by the literature. Soltesz et al. (2007) presented the performance

comparison between VServer and Xen, focusing on disk bandwidth, network com-

munication, CPU usage, and memory access. This paper also concluded that OS-

level virtualization (e.g., VServer) can achieve two times better performance than

hypervisor-based virtualizations (e.g., Xen).

Felter et al. (2015) explored the performance trade-o↵ of LXC, KVM, and Docker.

It identified the primary impact of these virtualizations for HPC and server workloads.

Specifically, this paper pointed out both KVM and Docker should be used carefully

in I/O intensive workloads.

Morabito et al. (2015) evaluated the performance di↵erence between hypervisors

with lightweight virtualization. It revealed the KVM performance bottleneck in disk

I/O for di↵erent types of applications.

Compared with related works, our paper studied performance loss for full virtual-

ization, para-virtualization, and OS-level virtualization together by using five perfor-

mance metrics (e.g., network throughput, network latency, disk, CPU, and memory).

We built experimental environments on ASU cloud which provide 10 Gbps network

and 10 GB memory for every SUT than related works, which ensured the resource

availability cannot be the performance bottleneck. Our results are consistent with

37

the related works, which supports the universality of performance comparison results

of di↵erent virtualization technologies.

7.2 Scalability Study

New lightweight virtualizations are known for their scalability benefits which can

help them grow and manage the increased demands of their users. Many recent papers

evaluated the scalability performance of di↵erent virtualization technologies. Soriga

and Barbulescu (2013) studied the scalability of hypervisor-based virtualizations, and

found that Xen has a small advantage than KVM.

Li and Xia (2016) studied Docker’s scalability by adopting container technology to

deploy web applications on hybrid cloud. They demonstrated that Docker provides

great scalability guarantee for the web application when increasing the number of

containers.

Quétier et al. (2007) evaluated the scalability performance of Vserver, Xen, UML,

and VMware on di↵erent scalability metrics (e.g, overhead, linearity). This paper

found that VMware provides bad scalability with high overhead and poor linearity.

Though related literature generally believe lightweight virtulization shows good

scalability, experiments about increasing number of benchmark threads were not ad-

dressed. Those ignored experiments are the important basis to verify whether virtu-

alization technologies can manage the growing user demand or not. Our scalability

experiments evaluated hypervisor-based and OS-level virtualization by increasing the

number of VMs/containers and benchmark threads.

7.3 Isolation Study

Although there are great advantages of various virtualizations, we cannot ignore

their pitfalls in performance isolation. Cloud system takes advantage of resource

38

sharing by leveraging virtualization technologies. Though this approach saves cloud

management cost, it also brings inevitable interference issues. At present, many

scholars studied these problems.

Pu et al. (2010) explored virtual machines’ isolation problems of I/O intensive

applications. This article showed there are performance losses when running bench-

marks on isolated environments due to the competition of resources.

Matthews et al. (2007) compared the performance isolation between VMware,

Xen, Solaris containers, and OpenVZ through SPECweb. This paper found that

container-based virtualization shows good CPU isolation, whereas su↵ering from poor

I/O and memory isolation.

Xavier et al. (2015) evaluated performance isolation by using TPC-C on LXC

and KVM. This paper revealed LXC su↵ers much more interference than KVM when

running disk I/O intensive workloads.

Mardan and Kono (2016) evaluated performance isolation of the LXC and KVM

through proportional weight policy. It used Cgroups to maintain the resource us-

age rate between the SUT and stress VM/container. This paper found that KVM

outperforms LXC in I/O isolation in DBMS.

Although the related works Pu et al. (2010), Xavier et al. (2015), Matthews et al.

(2007) claimed that their SUTs were under stress during the experiments, the de-

tails of system utilization were not addressed. If the system utilization is low, the

system cannot provide competitive resource environment for its SUT. Our isolation

experiments provide 90% and 100% system utilization scenarios for di↵erent resources

(e.g., CPU, memory, disk, and network) by adjusting stress tests’ parameters (e.g.,

the number of threads). Apart from that, the isolation experiments from Pu et al.

(2010), Xavier et al. (2015), and Mardan and Kono (2016) got the result from single

SUT. We used Hadoop TeraSort to test mutiple SUTs at the same time under dis-

39

tributed systems. Moreover, we evaluated the resource reservation tool’s e�ciency in

isolation experiments which was not thoroughly discussed by related works.

40

Chapter 8

CONCLUSIONS

Although KVM, Xen, and Docker are excellent virtualizations for deploying cloud

services, they provide various benefits and a few drawbacks. Understanding their

performance losses in di↵erent scenarios can help us better manage them in cloud

computing. We evaluated full virtualization, para-virtualization, and OS-level virtu-

alization from three aspects, including performance, isolation, and scalability study.

For performance study, through measuring and analyzing KVM, Xen, and Docker

with LINPACK, STREAM, Netperf, and FIO, we found that Docker has the best per-

formance and Xen follows Docker with a slight overhead in most experiments, whereas

KVM shows much worse performance than Docker and Xen. The results indicate the

hypervisor-based virtualization brings more overheads than OS-level virtualization

due to its extra layers.

For scalability study, we evaluated the performance of KVM, Xen, and Docker

through Apache HTTP Server compilation. Docker excels in experiments of increasing

the number of containers, and Xen works well in experiments of increasing the number

of compilation threads in one VM. KVM shows the worst performance among the

three in both experiments.

For isolation study, we designed four scenarios to evaluate performance isolation

of di↵erent virtualization technologies under 90% and full system utilization. Unlike

KVM, Docker shows bad performance isolation in most experiments. We also found

important disk and network isolation problems under full system utilization. Further-

more, we evaluated the resource reservation tools’ e�ciency under di↵erent system

utilizations. By compare the performance degradation before and after using the re-

41

source reservation tools, we found that they can help virtualization technologies, but

cannot help them avoid all influences.

42

REFERENCES

“Vmware”, https://www.vmware.com/ (1998).

“The linux tra�c control”, http://tldp.org/howto/Tra�c-Control-howto/intro.html
(2003).

“Amazon elastic compute cloud”, https://aws.amazon.com/ec2/ (2006a).

“Amazon elastic container service”, https://aws.amazon.com/ecs/ (2006b).

“Amazon web services”, https://aws.amazon.com/ (2006c).

“The dm-ioband bandwidth controller”, https://sourceforge.net/apps/trac/ioband
(2009).

Arthursson, D., “Network file system”, US Patent 8,156,146 (2012).

Bellard, F., “Qemu, a fast and portable dynamic translator.”, in “USENIX Annual
Technical Conference, FREENIX Track”, vol. 41, p. 46 (2005).

Che, J., C. Shi, Y. Yu and W. Lin, “A synthetical performance evaluation of openvz,
xen and kvm”, in “Services Computing Conference (APSCC), 2010 IEEE Asia-
Pacific”, pp. 587–594 (IEEE, 2010).

Felter, W., A. Ferreira, R. Rajamony and J. Rubio, “An updated performance com-
parison of virtual machines and linux containers”, in “Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE International Symposium On”, pp.
171–172 (IEEE, 2015).

Fink, J., “Docker: a software as a service, operating system-level virtualization frame-
work”, Code4Lib Journal pp. 25, 29 (2014).

Kivity Qumranet, A., Y. Kamay Qumranet, D. Laor Qumranet, U. Lublin Qumranet
and A. Liguori, “Kvm: The linux virtual machine monitor”, Proceedings Linux
Symposium p. 15 (2007).

Krishnan, S. and J. L. U. Gonzalez, “Google compute engine”, in “Building your next
big thing with Google cloud platform”, pp. 53–81 (Springer, 2015).

Li, Y. and Y. Xia, “Auto-scaling web applications in hybrid cloud based on docker”, in
“2016 5th International Conference on Computer Science and Network Technology
(ICCSNT)”, pp. 75–79 (IEEE, 2016).

Mardan, A. A. A. and K. Kono, “Containers or hypervisors: Which is better for
database consolidation?”, in “Cloud Computing Technology and Science (Cloud-
Com), 2016 IEEE International Conference on”, pp. 564–571 (IEEE, 2016).

43

Matthews, J. N., W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton,
M. McCabe and J. Owens, “Quantifying the performance isolation properties of
virtualization systems”, in “Proceedings of the 2007 workshop on Experimental
computer science”, p. 6 (ACM, 2007).

Morabito, R., J. Kjällman and M. Komu, “Hypervisors vs. lightweight virtualization:
a performance comparison”, in “2015 IEEE International Conference on Cloud
Engineering”, pp. 386–393 (IEEE, 2015).

Pu, X., L. Liu, Y. Mei, S. Sivathanu, Y. Koh and C. Pu, “Understanding performance
interference of i/o workload in virtualized cloud environments”, in “2010 IEEE 3rd
International Conference on Cloud Computing”, pp. 51–58 (IEEE, 2010).

Quétier, B., V. Neri and F. Cappello, “Scalability comparison of four host virtualiza-
tion tools”, Journal of Grid Computing 5, 1, 83–98 (2007).

Soltesz, S., H. Pötzl, M. E. Fiuczynski, A. Bavier and L. Peterson, “Container-based
operating system virtualization: a scalable, high-performance alternative to hy-
pervisors”, in “ACM SIGOPS Operating Systems Review”, vol. 41, pp. 275–287
(ACM, 2007).

Soriga, S. G. and M. Barbulescu, “A comparison of the performance and scalability
of xen and kvm hypervisors”, in “2013 RoEduNet International Conference 12th
Edition: Networking in Education and Research”, pp. 1–6 (IEEE, 2013).

Xavier, M. G., I. C. De Oliveira, F. D. Rossi, R. D. Dos Passos, K. J. Matteussi
and C. A. De Rose, “A performance isolation analysis of disk-intensive workloads
on container-based clouds”, in “2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing”, pp. 253–260 (IEEE, 2015).

44

APPENDIX A

COMMAND LINES FOR PERFORMANCE STUDY

45

Table A.1: Command Lines of Benchmarks (LINPACK, STREAM, Netperf) Used
in Performance Study
Benchmark Measured Operation Command Lines
LINPACK Numerical linear algebra ./linpack/benchmarks/linpack/xlinpack xeon64

STREAM Copy, add, Scale, Traid
cd stream
gcc -O stream.c -o stream
./stream

Netperf

TCP RR latency
netperf -P 0 -t TCP RR -H 10.107.30.25
– -r 1,1 -o P90 LATENCY

UDP RR latency
netperf -P 0 -t UDP RR -H 10.107.30.25
– -r 1,1 -o P90 LATENCY

TCP send throughput netperf -H 10.107.30.25 -l 60
TCP receive throughput netserver -D -4 -L 10.107.30.25 -p 9991

UDP send throughput
netperf -t UDP STREAM -H 10.107.30.25
-l 60

UDP receive throughput netserver -D -4 -L 10.107.30.25 -p 9991

Table A.2: Command Lines of Benchmarks (FIO) Used in Performance Study
Benchmark Measured Operation Command Lines

FIO

Random read
fio -filename=/dev/sda4 -direct=1
-ioengine=psync -rw=randread -bs=32k
-numjobs=20 -size =2

Random write
fio -filename=/dev/sda4 -direct=1
-ioengine=psync -rw=randwrite -bs=32k
-numjobs=20 -size =2

Random mix
fio -filename=/dev/sda4 -direct=1
-ioengine=psync -rw=randrw -bs=32k
-numjobs=20 -size =2

Seq read
fio -filename=/dev/sda4 -direct=1
-ioengine=psync -rw=read -bs=32k
-numjobs=20 -size =2

Seq write
fio -filename=/dev/sda4 -direct=1
-ioengine=psync -rw=write -bs=32k
-numjobs=20 -size =2

46

APPENDIX B

COMMAND LINES FOR ISOLATION STUDY

47

Table B.1: Command Lines of SPECweb Used in Isolation Study
Benchmark Command Lines

SPECweb

Besim:
perl test besim bank.pl http://“BESIM HOST”/
fcgi-bin/besim fcgi.fcgi;
Web server:
service httpd restart;
Client:
java -Xms512m -Xmx512m -jar specwebclient.jar;
Prime Client:
java -Xms512m -Xmx512m -jar specweb.jar;

Table B.2: Command Lines of TPC-DS Used in Isolation Study
Benchmark Command Lines

TPC-DS

Server:
./dsdgen -DIR /part2/tpcds/v2.6.0/datas/ -SCALE 30;
copy “TABLE NAME” from ‘/part2/tpcds/v2.6.0/datas/handled
/“TABLE NAME”.dat’ with delimiter as ‘|’ NULL ”;
“TABLE NAME” contains call center, catalog page, cat-
alog returns, catalog sales, customer, customer address,
customer demographics, date dim, dbgen version, house-
hold demographics, income band, inventory, item, promotion,
reason, ship mode, store, store returns, store sales, time dim,
warehouse, web page, web returns, web sales, web site;
Client:
./99 query.sh (run query 1-99);

Table B.3: Command Lines of Hadoop Used in Isolation Study
Benchmark Command Lines

Hadoop Tera-
Sort

Master:
/hadoop/hadoop-3.2.0/hadoop-3.2.0/bin/hadoop jar
hadoop-3.2.0-examples.jar teragen 300000000 terasort/30G-input;
bin/hadoop jar hadoop-3.2.0-examples.jar terasort 30G-input 30G-
output;

48

Table B.4: Command Lines of Stress Tests Used in Isolation Study
Benchmark Command Lines

CPU Bomb
cd stress suit/cpu;
make;
./cpu bomb;

Memory Bomb
cd stress suit/memory;
make;
./memory bomb;

Fork Bomb
cd stress suit/fork;
./fork bomb;

FIO Bomb
cd stress suit/fio;
./fio bomb;(loop FIO random mix test)

Network Bomb

Network server:
cd stress suit/network
make
./stress.sh x.txt INFINITY perludp-multithread

Network receiver:
cd stress suit/network
make
./stress.sh no perludp-multithread

Table B.5: Command Lines of CPU Reservation Used in Isolation Study
Resource Reservation

Tools
Command line

CPU
XL

Xen:
xl vcpu-set dom103- 0vcpu 0pcpu;
xl vcpu-set dom103- 1vcpu 1pcpu;
xl vcpu-set dom103- 2vcpu 2pcpu;
xl vcpu-set dom103- 3vcpu 3pcpu;

Cgroups

Docker:
docker run -itd –name docker stress –cpuset-cpus 0-4
Ubuntu;
KVM:
virsh kvm stress 0vcpu 0pcpu;
virsh kvm stress 1vcpu 1pcpu;
virsh kvm stress 2vcpu 2pcpu;
virsh kvm stress 3vcpu 3pcpu;

49

Table B.6: Command Lines of Disk Reservation Used in Isolation Study
Resource Reservation

Tools
Command line

Disk

Dm ioband

Xen:
SPECweb:
dmsetup message dom103 0 io limit 286317530;
TPC-DS:
dmsetup message dom103 0 io limit 114399642;
TeraSort:
dmsetup message dom103 0 io limit 59936604;

Cgroups:

Docker and KVM:
SPECweb:
echo “8:0 286317530” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.read bps device;
echo “8:0 289197261 ” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.write bps device;
TPC-DS:
echo “8:0 132466606” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.read bps device;
echo “8:0 114399642 ” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.write bps device;
TeraSort:
echo “8:0 59936604” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.read bps device;
echo “8:0 60817408 ” > /sys/fs/cgroup/blkio/mygroup/bl-
kio.throttle.write bps device;

Table B.7: Command Lines of Network Reservation Used in Isolation Study
Resource Reservation

Tools
Command line

Network Tra�c Controller

tc qdisc add dev eth0 root handle 1: htb stressed package
1;
SPECweb:
tc class add dev eth0 parent 1: classid 1:1 htb rate 5140mbps
burst 0k;
tc class add dev eth0 parent 1:1 classid 1:10 htb rate
5140mbps ceil 5140mbps burst 0k;
TPC-DS:
tc class add dev eth0 parent 1: classid 1:1 htb rate 9620mbps
burst 0k;
tc class add dev eth0 parent 1:1 classid 1:10 htb rate
9620mbps ceil 9620mbps burst 0k;
TeraSort:
tc class add dev eth0 parent 1: classid 1:1 htb rate 9410mbps
burst 0k;
tc class add dev eth0 parent 1:1 classid 1:10 htb rate
9410mbps ceil 9410mbps burst 0k;

50

APPENDIX C

COMMAND LINES FOR SCALABILITY STUDY

51

Table C.1: Command Lines of Apache HTTP Server Compilation Used in Scalability
Study

Benchmark Command line

Apache HTTP Server compilation

cd httpd-NN;
./configure –prefix=PREFIX;
make;
make install;

52

