
Hash Families and Applications to t-Restrictions

by

Ryan Dougherty

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2019 by the
Graduate Supervisory Committee:

Charles Colbourn, Chair
Andrzej Czygrinow
Stephanie Forrest

Andrea Richa

ARIZONA STATE UNIVERSITY

December 2019

ABSTRACT

The construction of many families of combinatorial objects remains a challenging

problem. A t-restriction is an array where a predicate is satisfied for every t columns;

an example is a perfect hash family (PHF). The composition of a PHF and any t-

restriction satisfying predicate P yields another t-restriction also satisfying P with

more columns than the original t-restriction had. This thesis concerns three ap-

proaches in determining the smallest size of PHFs.

Firstly, hash families in which the associated property is satisfied at least some

number λ times are considered, called higher-index , which guarantees redundancy

when constructing t-restrictions. Some direct and optimal constructions of hash fam-

ilies of higher index are given. A new recursive construction is established that

generalizes previous results and generates higher-index PHFs with more columns.

Probabilistic methods are employed to obtain an upper bound on the optimal size of

higher-index PHFs when the number of columns is large. A new deterministic algo-

rithm is developed that generates such PHFs meeting this bound, and computational

results are reported.

Secondly, a restriction on the structure of PHFs is introduced, called fractal , a

method from Blackburn. His method is extended in several ways; from homogeneous

hash families (every row has the same number of symbols) to heterogeneous ones;

and to distributing hash families, a relaxation of the predicate for PHFs. Recursive

constructions with fractal hash families as ingredients are given, and improve upon

on the best-known sizes of many PHFs.

Thirdly, a method of Colbourn and Lanus is extended in which they horizontally

copied a given hash family and greedily applied transformations to each copy. Trans-

formations of existential t-restrictions are introduced, which allow for the method

to be applicable to any t-restriction having structure like those of hash families. A

i

genetic algorithm is employed for finding the “best” such transformations. Compu-

tational results of the GA are reported using PHFs, as the number of transformations

permitted is large compared to the number of symbols. Finally, an analysis is given

of what trade-offs exist between computation time and the number of t-sets left not

satisfying the predicate.

ii

To Nancy and Jeannine, with love. I miss you both.

iii

ACKNOWLEDGMENTS

First, I would like to thank my doctoral advisor Dr. Charles Colbourn. His

dedication to the subject and to push me beyond what I thought I was capable of at

every step of the way was inspiring. He was able to help me whenever I was stuck on

something, and to divert me back on track when I went astray. I am very happy he

was my advisor, because I couldn’t ask for a better one.

Second, I would like to thank my committee members: Dr. Andrzej Czygrinow,

Dr. Stephanie Forrest, and Dr. Andrea Richa. I have taken a course from all three

of these members, and all of them either directly or indirectly influenced the work in

this dissertation. They were always wanting to accommodate to their busy schedules

for scheduling defenses and meetings, and further inspire me to become as prolific an

academic as they are.

Third, I would like to thank my friends and family (in alphabetical order): Bonnie,

Cole, Ed, Erin, Ethan, Jackie, Jeannine, John, Julie, Mark, Nancy, and Quinn. Their

love and support kept me going during the highest of highs, and the lowest of lows. I

also want to thank the students in my classes for their encouragement and support;

I especially thank Rachel for letting me serve on her undergraduate honors thesis

committee.

Fourth, I would like to thank CIDSE for partially supporting the work in this

dissertation, and allowing me to be the instructor of record for 8 courses throughout

my Ph.D. (especially since one of my publications resulted from TA work). I would

like to also thank ACM and the Cumberland Organizers for partially funding travel

to the GECCO 2019 and 30th+31st Cumberland Conferences to present some of this

research.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

GLOSSARY . xiii

NOTATIONS . xvi

CHAPTER

1 INTRODUCTION . 1

1.1 Representative Problems . 1

1.1.1 Interaction Testing . 1

1.2 Hash Families . 3

1.3 t-Restrictions . 4

1.4 Summary of Contributions . 5

1.5 Organization of the Thesis . 7

2 BACKGROUND . 8

2.1 Terminology . 8

2.2 The Basics . 16

3 HASH FAMILIES OF HIGHER INDEX . 19

3.1 Direct Constructions . 19

3.1.1 The Connection with Codes . 23

3.2 A New Recursive Construction for PHFs of Higher Index 27

3.2.1 s Arbitrary . 29

3.2.2 s = 1, d Arbitrary . 33

3.2.3 A Satisfiability Formula for PHFs . 35

3.2.4 Improving PHFNλ with Heterogeneous Ingredients 39

3.3 Probabilistic and Asymptotic Methods . 46

v

CHAPTER Page

3.4 A Conditional Expectation Approach . 52

3.4.1 Details of the Density Algorithm for Higher-Index 54

3.4.2 Computational Results of the Conditional Expectation Al-

gorithm . 59

3.5 Conclusion . 67

4 FRACTAL HASH FAMILIES . 71

4.1 Linear Bounds on Numbers of Columns . 72

4.2 Fractal Hash Families . 75

4.2.1 Fractal DHHFs . 77

4.2.2 Construction of fractal PHHFs . 78

4.3 Blackburn’s Method, revised . 80

4.4 Applications . 83

4.5 Existence Tables . 89

4.6 Conclusion . 93

5 GENETIC ALGORITHMS FOR TRANSFORMATIONS OF EXISTEN-

TIAL RESTRICTIONS . 94

5.1 Prior Work . 95

5.1.1 A Genetic Algorithm for PHFs Based on Prior Work 97

5.2 A Genetic Algorithm for transformations for Existential t-Restrictions 98

5.3 Genetic Algorithm Computational Results . 102

5.3.1 Discussion of GA Results . 107

5.4 Conclusion . 110

6 CONCLUSIONS. 111

6.1 Main Results and Ideas . 111

vi

CHAPTER Page

6.2 Future Research Directions . 112

6.2.1 Higher Index Research Directions . 112

6.2.2 Fractal Research Directions . 114

6.2.3 Genetic Algorithm Research Directions . 116

REFERENCES . 117

APPENDIX

A EXTENDED TABLES FOR FRACTAL . 123

vii

LIST OF TABLES

Table Page

3.1 Existence of PHHFs with 4 Rows, at Most 11 Columns, at Most 5

Symbols for Each Row, Strength 3, and Index 2. 41

3.2 Existence of PHHFs with 4 Rows, at Most 6 Columns, at Most 5 Sym-

bols for Each Row, Strength 3, and Index 3. 42

3.3 Comparison of Algorithm 1 and Algorithm 2 With at Most 27 Columns,

3 Symbols, Strength 3, and Index 4. 68

3.4 Comparison of Algorithm 1 and Algorithm 2 With Between 28 and 50

Columns, 3 Symbols, Strength 3, and Index 4. 69

4.1 A PHF(4;5,4,4) and a DHF(4;10,4,4,2). 77

4.2 PHFs with Few Rows from Lemmas 4.10–4.17. For Each Case, the

Number of the Relevant Lemma, and the Asymptotic Ratio of the

Number of Columns to the Number of Symbols Achieved, Is Given. 89

4.3 Improvements for Strength 6, Four Rows . 90

4.4 Improvements for Strength 6, Five Rows . 90

4.5 Improvements for Strength 7, Five Rows . 91

4.6 Improvements for Strength 8, Six Rows . 91

4.7 Improvements for Strength 9, Six Rows . 92

4.8 Improvements for Strength 10, Seven Rows . 92

4.9 Improvements for Strength 11, Seven Rows . 92

A.1 Further Improvements for Strength 6, Four Rows . 124

A.2 Further Improvements for Strength 6, Four Rows, Part 2. 125

A.3 Further Improvements for Strength 6, Five Rows . 126

A.4 Further Improvements for Strength 7, Five Rows . 126

A.5 Further Improvements for Strength 7, Five Rows, Part 2 127

viii

Table Page

A.6 Further Improvements for Strength 7, Five Rows, Part 3 128

A.7 Further Improvements for Strength 7, Five Rows, Part 4 129

A.8 Further Improvements for Strength 7, Five Rows, Part 5 130

A.9 Further Improvements for Strength 7, Five Rows, Part 6 131

A.10 Further Improvements for Strength 8, Five Rows . 132

A.11 Further Improvements for Strength 8, Five Rows, Part 2 133

A.12 Further Improvements for Strength 8, Six Rows . 133

A.13 Further Improvements for Strength 9, Six Rows . 134

A.14 Further Improvements for Strength 9, Six Rows, Part 2 135

A.15 Further Improvements for Strength 9, Seven Rows . 135

A.16 Further Improvements for Strength 10, Six Rows . 136

A.17 Further Improvements for Strength 10, Six Rows, Part 2 137

A.18 Further Improvements for Strength 10, Seven Rows 137

A.19 Further Improvements for Strength 11, Seven Rows 137

A.20 Further Improvements for Strength 11, Seven Rows, Part 2 138

A.21 Further Improvements for Strength 11, Eight Rows 138

A.22 Further Improvements for Strength 11, Nine Rows . 138

A.23 Further Improvements for Strength 11, Ten Rows . 138

ix

LIST OF FIGURES

Figure Page

1.1 A Covering Array with 9 Rows, 4 Components, Each Having 3 Levels,

and Strength 2. 3

2.1 A PHF1(6; 12, 3, 3). 11

2.2 A SHF(3; 16, 4, {1, 2}). 11

2.3 A DHHF(10; 13,v, 5, 2) with v = (9334415121). 12

2.4 A CA(13; 3, 10, 2). 14

3.1 Example Asymptotics Rrom Theorem 3.14 (Blue), Theorem 3.13 (Red),

and Algorithm 1 (Black), Provided the Index Is Sufficiently Small Rel-

ative to the Number of Columns. 59

3.2 Conditional Expectation Results for at Most 300 Columns, 3 Symbols,

Strength 3, and Index at Most 5. 60

3.3 Conditional Expectation Results for at Most 300 Columns, 4 Symbols,

Strength 3, and Index at Most 5. 61

3.4 Conditional Expectation Results for at Most 300 Columns, 5 Symbols,

Strength 3, and Index at Most 5. 61

3.5 Conditional Expectation Results for at Most 300 Columns, 6 Symbols,

Strength 3, and Index at Most 5. 62

3.6 Conditional Expectation Results for at Most 100 Columns, 4 Symbols,

Strength 4, and Index at Most 5. 62

3.7 Conditional Expectation Results for at Most 100 Columns, 6 Symbols,

Strength 4, and Index at Most 5. 63

3.8 Conditional Expectation Results for at Most 100 Columns, 8 Symbols,

Strength 4, and Index at Most 5. 63

x

Figure Page

3.9 Conditional Expectation Results for at Most 55 Columns, 5 Symbols,

Strength 5, and Index at Most 5. 64

3.10 Conditional Expectation Results for at Most 55 Columns, 10 Symbols,

Strength 5, and Index at Most 5. 64

3.11 Conditional Expectation Results for at Most 40 Columns, 6 Symbols,

Strength 6, and Index at Most 5. 65

3.12 Conditional Expectation Results for at Most 40 Columns, 12 Symbols,

Strength 6, and Index at Most 5. 65

4.1 A PHF(3; 12, 8, 4) . 84

4.2 A PHHF(3; 12, (8, 8, 7), 4) . 84

5.1 A PHF3(11; 9, 4, 3). 103

5.2 A PHF3(11; 14, 4, 3). 104

5.3 A PHF2(12; 30, 4, 3). 104

5.4 Scatter Plot for Generating a PHF2(12; 50, 4, 3). Values Shown Are the

Maximum Fitnesses over All Individuals, Taken over 1000 Iterations,

Averaged over 10 Runs of the Algorithm. 106

5.5 Scatter Plot for Generating a PHF2(12; 50, 4, 3). Values Shown Are

the Average Fitnesses over All Individuals, Taken over 1000 Iterations,

Averaged over 10 Runs of the Algorithm. 106

5.6 A PHF1(4; 7, 6, 6). 107

5.7 Scatter Plot for Generating a PHF1(4; 14, 6, 6). Values Shown Are the

Maximum Fitnesses over All Individuals, Taken over 1000 Iterations,

Averaged over 10 Runs of the Algorithm. 107

xi

Figure Page

5.8 Scatter Plot for Generating a PHF1(4; 14, 6, 6). Values Shown Are the

Average Fitnesses over All Individuals, Taken over 1000 Iterations,

Averaged over 10 Runs of the Algorithm. 108

xii

GLOSSARY

Abstract Simplicial Complex : an abstract simplicial complex , A, is a family of
non-empty finite subsets of a set Γ that is closed under non-empty subsets (page 8).

Covering Array : when for every t-set {c1, . . . , ct} of columns, the demand (∆c1 ×
· · · ×∆ct , ∀) is to be met, the array is a mixed-level covering array. A covering array
is when all of the ∆ci have the same cardinality (page 13).

Covering Perfect Hash Family : an N×k array where each entry is from Vt,q (set
of representatives of permutation vectors), and for every t distinct columns c1, · · · , ct,
there is a row ρ for which the t× t matrix of the t corresponding entries is nonsingular
over Fq (page 11).

Distributing : choose an integer t, and form the set Mt of multisets whose ele-
ments contain nonnegative integers, for which the sums of each element in a multiset
sum to t. WhenW consists of all partitions inMt containing s parts, aW-separating
hash family is (t, s)-distributing (page 10).

Existential Restriction : an existential t-restriction is one that has all of the Ti
being ∃ (page 98).

Fractal : a hash family is fractal if the removal of any row yields another hash
family with strength at least 1 less than the original strength (or the number of parts
is reduced by 1) (page 76).

Genetic Algorithm : an algorithm that maintains a population P and tries to
find individuals in P that maximize a given fitness function f via operators (namely
mutation and crossover) that are repeatedly applied to the individuals. At each
iteration, some of the members in P are removed before the next “generation” of
individuals occurs (page 95).

Heterogeneous : an array is heterogeneous if the number of symbols for some
rows i, j (i 6= j) is different (i.e., not homogeneous) (page 9).

Homogeneous : an array is homogeneous if the number of allowed symbols for
each row is the same (page 9).

Index : for any array λ-satisfying a t-restriction, λ is the index of the array (page 9).

Linear : a transversal design is linear if it is constructed by taking each polyno-
mial a0 + a1y + · · ·+ as−1y

s−1 of degree s− 1 with coefficients from Fq, form a block
that contains element (b, z) whenever z ∈ X and (1) b = a0 when z = ∞, or (2)
b = a0 + a1z + · · ·+ as−1z

s−1 otherwise (all arithmetic performed in Fq) (page 25).

Mixed : an array is mixed if the number of allowed symbols for some columns i,
j (i 6= j) is different (i.e., not uniform) (page 9).

xiii

Monotone Restriction : a monotone t-restriction has all of the Ti being equal
(so either T1 = · · · = Tχ = ∃ or T1 = · · · = Tχ = ∀) (page 9).

Partition Covering Array : an N × s array such that for every nonempty or-
dered partition of size i of [t] for every valid i, every choice of i columns fully covers
that partition at least λ times (page 29).

Partitioned Ordered Design : written PODλ(N ; s, (w1, · · · , wm), (r1, · · · , rm)), it
is an N × s array in which (1) wi < wj for all i < j, and (2) every p-tuple formed
from (w1, · · · , wm) by repeating each wi exactly ri times, in any order, is fully covered
at least λ times in the design (page 29).

Perfect Hash Family : an (s, s)-distributing hash family. In other words, it is
an N × k array such that for every t columns, they are separated by λ rows (i.e., λ
rows have all distinct symbols in those t columns) (page 10).

Perfect Hash Family Column Number : the largest number of columns for
which a perfect hash family exists (page 15).

Perfect Hash Family Number : the smallest number of rows for which a per-
fect hash family exists (page 15).

Perfect Heterogeneous Hash Family : a perfect hash family where each row
i is over an alphabet of vi symbols (page 10).

Resolvable Balanced Incomplete Block Design : a set of v points X, b subsets
of X each with k points, every point occurs in r blocks, and every pair of points
occurs in λ blocks (page 27).

Restriction : a t-restriction is a χ-tuple T = ((P1, T1), · · · , (Pχ, Tχ)), where Pi ⊆ ∆t

and Ti ∈ {∃,∀}. Each set Pi is a demand. For each Pi, if Ti = ∃, then at least λ rows
of A contains some element of Pi; if Ti = ∀, then for each element of Pi, at least λ
rows contain that element. Let ∂i(S) be the set of

(
t
i

)
sets of (t− i)-tuples, obtained

by deleting the i chosen columns from each s ∈ S (page 9).

Satisfies : a set of t columns in a t-restriction λ-satisfies a demand (Pi, Ti) if (1)
there exist λ rows for which some element(s) of Pi appears when Ti = ∃, or (2) all
elements in Pi appear in these columns at least λ times when Ti = ∀ (page 9).

Separating Hash Family : a W-separating hash family meets the following condi-
tion: when C = {c1, · · · , ct} ⊆

(
[k]
t

)
and W1, · · · ,Ws is a partition of C with {|W1|,

· · · , |Ws|} ∈ W , define D = {(y1, . . . , yt) ∈ ∆c1×· · ·×∆ct : yc = yc′ only if c, c′ belong
to the same class of W}. Then the demand (D,∃) is met (page 10).

Strength : aor any array satisfying a t-restriction, t is the strength of the array
(page 9).

xiv

Transformation : a function φ such that A satisfies a given t-restriction T if and
only if φ(A) also does, and both A, φ(A) have the same number of rows and columns
(page 98).

Uniform : an array is uniform if the number of allowed symbols for each column is
the same (page 9).

Universal Restriction : a universal t-restriction is one that has all of the Ti being
∀ (page 98).

xv

NOTATIONS

ASC : an abstract simplicial complex (page 8).

CAλ(N ; t, k, v) : a covering array with N rows, k columns, v symbols, and strength t
(page 13).

CPHFλ(N ; k, q, t) : a covering perfect hash family with N rows, k columns, q symbols
(a prime power), and strength t (page 12).

DHFλ(N ; k, v, t, s) : a distributing (homogeneous) hash family withN rows, k columns,
v symbols, strength t, and (at most) s parts (page 11).

DHHFλ(N ; k, (v1, · · · , vN),W) : a distributing (heterogeneous) hash family with N
rows, k columns, vi symbols for each row i, strength t, and (at most) s parts (page 11).

MCAλ(N ; t, k, (v1, · · · , vk)) : a (mixed-level) covering array with N rows, k columns,
vi symbols for each column i, and strength t (page 13).

PaHFλ(N ; k, v, t, s) : a partitioning (homogeneous) hash family with N rows, k
columns, v symbols, strength t, and (at most) s parts (page 14).

PCAλ(N ; t, s) : a partition covering array with N rows, s columns (page 29).

PHFλ(N ; k, v, t) : a perfect (homogeneous) hash family with N rows, k columns,
v symbols, and strength t (page 10).

PHFKλ(N, v, t) : the perfect (homogeneous) hash family (column) number (page 15).

PHFNλ(k, v, t) : the perfect (homogeneous) hash family (row) number (page 15).

PHHFλ(N ; k, (v1, · · · , vN), t) : a perfect (heterogeneous) hash family with N rows,
k columns, vi symbols for each row i, and strength t (page 10).

PHHFKλ(N, (v1, · · · , vN), t) : the perfect (heterogeneous) hash family (column) num-
ber (page 15).

PODλ(N ; s, (w1, · · · , wm), (r1, · · · , rm)) : a partitioning ordered design of type (w1,
· · · , wm) and replication (r1, · · · , rm) with N rows and s columns (page 30).

PODNλ(s, (w1, · · · , wm), (r1, · · · , rm)) : the partitioning ordered design (row) num-
ber (page 31).

SCPHFλ(N ; k, q, t) : a Sherwood covering perfect hash family with N rows, k columns,
q symbols (a prime power), and strength t (page 12).

xvi

SHHFλ(N ; k, (v1, · · · , vN),W) : a W-separating (heterogeneous) hash family with N
rows, k columns, vi symbols for each row i, and for each W ∈ W , every partition of∑

wi∈W wi columns is separated in at least λ rows (page 10).

TRAλ(N, k,H, (v1, · · · , vN), (x1, · · · , xk), T) : a t-restriction array with N rows, k col-
umn, t-uniform hypergraph H, vi symbols for each column i, xi symbols for each row
i, and restriction T (page 9).

xvii

Chapter 1

INTRODUCTION

This thesis is about a set of combinatorial objects called hash families , and their

applications to a larger umbrella of objects, called t-restrictions. In this chapter, we

motivate the study of such families by discussing applications of t-restrictions. The

goal of the thesis is to achieve a better understanding of the structure of hash families.

To obtain a better appreciation of the mathematics behind them, we begin with an

informal discussion, and then discuss all necessary formal background in Chapter 2.

At the end of this chapter, we discuss three research problems undertaken, as well as

the organization of the rest of the thesis.

1.1 Representative Problems

1.1.1 Interaction Testing

Imagine we have a large-scale software system that needs to be verified for correct-

ness; usually a software developer determines this by designing a test suite that has

desirable properties; examples include code coverage (every line executed by at least

one test case), and testing every possible set of inputs. The latter is often impossible

due to having infinitely many possible inputs, such as a prime number verifier: given

a positive integer n, determine if n is prime or not. There are infinitely many such

integers, so exhaustive testing is completely intractable. Therefore, most test suites

do not strive for all inputs to be tested, but rather a representative sample; this choice

of testing can potentially lead to faults within the system.

Suppose further in our system each component is individually tested (“unit test-

ing”), in that in isolation, each of the components functions properly. Problems may

1

then arise when multiple components operate simultaneously; an example is a smart-

phone that is downloading an application and loading a webpage at the same time.

Here, the network is being used by two different components. We then want to model

any interactions that may arise between different components. Empirically, most

faults involve only a small number of components [54].

Covering arrays were developed to help model this type of interaction testing

problem, in that all possible interactions of components of size at most a specified

strength t appear in the array at least once. Each of the components Ci constitutes a

number of possible inputs vi (these inputs are the levels of component Ci); we assume

here that each component’s input space is discretized and has finitely many values.

Then if we want to model an interaction of size t among components Ci1 , · · · , Cit ,

then all of the vi1 × vi2 × · · · × vit possible valuations of these t components needs

to be tested. The array itself is an N × k array (i.e., N rows and k columns), where

each of the columns corresponds to a component, and each of the rows corresponds

to a test of the system.

Here, covering arrays are to detect the existence of a fault (if there is one). Suppose

when running components Ci1 , · · · , Cit with values v1, · · · , vt, a fault arises within the

system. Because the array covers all interactions, this one appears in some row of

the array, say row ρ. Then if one were to execute each of the tests in the covering

array on the system, then executing test ρ will notify the tester that a fault exists.

Note that covering arrays only detect if a fault exists, rather than determine which

components and values cause the fault to occur; the latter is the subject of detecting

and locating arrays [37].

We give a concrete example of a covering array in Figure 1.1. It is a covering array

with 9 rows, 4 components, each having 3 levels, and strength 2. Note that 9 rows

are required, so this covering array has the smallest number of rows possible. From

2

Browser OS Connection Printer

Safari Windows LAN Local

Safari Linux ISDN Networked

Safari macOS PPP Screen

IE Windows ISDN Screen

IE macOS LAN Networked

IE Linux PPP Local

Chrome Windows PPP Networked

Chrome Linux LAN Screen

Chrome macOS ISDN Local

Figure 1.1: A Covering Array with 9 Rows, 4 Components, Each Having 3 Levels,
and Strength 2.

a testing point-of-view, it is useful to execute fewer tests while still maintaining the

coverage guarantee. Much research regarding covering arrays has been to minimize the

number of rows, while fixing the number of columns, levels, and strength [23, 66, 67].

Covering arrays also have applications in testing advanced materials [22], regulating

gene expression [70], learning boolean functions [40], and more recently in malware

analysis [55].

1.2 Hash Families

Suppose that there are k items, and each is assigned one of v values. Our objective

is to ensure that each set of t items receives t different values; when this occurs,

the t items are separated. Evidently if v ≥ k, each item can be assigned a value

that is different from all others assigned, so that every set of t items is separated.

However, when v < k, some two items necessarily receive the same value; then any

t-set containing these two cannot be separated. When this occurs, suppose that

3

N assignments of values to items are chosen, rather than one. Then one can ask:

how small can N be so that every t-set of items is separated in at least 1 of the

assignments? This easily stated combinatorial question is challenging, and many

open problems remain despite substantial research effort. It is an important question

as well, with applications described next.

Mehlhorn [58] originally examined this question to provide an efficient way to store

and retrieve frequently used information; in that context, the assignment of values

to the items is treated as a hash function [39], and hence the question is phrased

as one about families of hash functions. Applications to derandomization [6], circuit

complexity [61] , and cryptography [17, 49, 74] arose. Subsequently, Stinson, Trung,

and Wei [75] established applications of such families (with λ = 1) to construct

numerous other combinatorial objects, such as separating systems, key distribution

patterns, cover-free families, and secure frameproof codes. A general strategy, column

replacement, has extended their range of applications into testing and measurement

[27] and compressive sensing [31], among others.

1.3 t-Restrictions

We note that the previous two problems are variations upon a common theme;

there is an array of symbols, such that for any t columns, there is an associated set

of t-tuples X, and either (1) some row of these t columns contains some element

from X, in the case of hash families; or (2) all elements of X appear in some row,

in the case of covering arrays. Any array that falls under this definition we call a

t-restriction; note that instead of having one predicate being satisfied, we can have

several, and each can be either (1) or (2) above. We call these predicates demands

of the restriction. For example, suppose 3 columns of a covering array all have levels

{0, 1, 2}; of course, all 27 tuples need to appear in the array. Suppose further that

4

only one 3-tuple that has a 0 as its first element needs to be tested, instead of all

of them. We now have two demands: X1, which consists of all 3-tuples where 0 is

the first element, and X2, which consists of all other 3-tuples. Also, the first demand

only requires that some row contain some element of X1, whereas all elements of X2

need to appear. Here, |X1| = 32 = 9, so only 19 instead of 27 tuples need to appear

in each 3-set of columns. The relevance of such an object is that a software tester

can eliminate, based on knowledge of the system, inputs that are guaranteed never

to appear during normal execution of the system.

One notable aspect about perfect hash families is that a simple construction, us-

ing an array satisfying a t-restriction with k columns, and a perfect hash family with

m > k columns, yields an array with m columns satisfying the same t-restriction (see

Theorem 2.1). Furthermore, the corresponding number of times the predicate is sat-

isfied of the resulting t-restriction is the product of those for the original t-restriction

and the perfect hash family. For example, if we have a covering array in which each

interaction appears at least 3 times, and a perfect hash family (with matching pa-

rameters) that separates every t-set of columns at least 4 times, then the resulting

covering array will cover each interaction at least 12 times. Interaction testing ben-

efits from having more coverage, most notably in domains where the environment

surrounding the system is not fixed, or the system is not completely deterministic.

1.4 Summary of Contributions

The contribution of the thesis is a greater understanding of the structure and

generation of certain t-restrictions, when we generalize them beyond commonly used

parameters. As far as we are aware, no publications exist in the investigation of hash

families with the separation condition requiring every t-set of items being separated

in strictly more than 1 of the assignments.

5

We investigate upper bounds on the sizes of hash families with a given separation

requirement λ > 1, through direct constructions, a new recursive construction exploit-

ing higher separation requirements, probabilistic and asymptotic analyses on upper

bounds, and a new polynomial-time constructive algorithm to find such hash families

meeting these upper bounds. The recursive construction improves on the sizes of

perfect hash families when the strength t is “small” for some parameters. The analy-

ses improve significantly on the “simple” method of vertically adjoining copies of the

original array. And finally, the constructive algorithm uses estimates on the number

of rows needed, which provides a guarantee on an upper bound for the number of

rows that will be produced (and often, this estimate is improved significantly).

Motivated by the composition construction mentioned earlier, we develop the

notion of fractal hash families, which yield a new recursive construction that produces

hash families with “few” rows that improve on the best-known sizes of existing hash

families. This method extends one of Blackburn [15], wherein only asymptotics are

investigated, in that our methods explicitly produce the hash families and generalize

the hash family considered. More than 2,500 individual parameter sets in the perfect

hash family tables [45].

Finally, we develop a genetic algorithm that attempts to construct t-restrictions

that generalizes a method of Colbourn and Lanus [33]. The algorithm horizontally

adjoins copies of an existing array, such that fewer t-sets of columns need to be

checked. Furthermore, the representation of each individual in the genetic algorithm’s

population is much smaller than if we are to apply existing methods to hash families.

We show that the method always finds individual arrays faster than existing methods,

and these arrays have higher “fitness” than the ones produced by other methods (i.e.,

more t-sets of columns are separated).

6

1.5 Organization of the Thesis

In Chapter 2, we introduce formal notation for all objects discussed previously that

will be used in subsequent chapters. In Chapter 3, we develop construction techniques

for hash families with arbitrary redundancy, in which the separation requirement is

achieved at least a certain number of times. In Chapter 4, we consider hash families

with “few” rows, as well as guaranteeing a structure within the array that yields hash

families with rows smaller than the associated strength to be constructed, which

often have the best-known number of columns. In Chapter 5, we develop a genetic

algorithm to generate t-restrictions with many columns, given a “starter” ingredient

with few columns, by exploiting the structure of a given t-restriction; this algorithm

is general in that any restriction with a form similar to that of a hash family, and any

initial array meeting the restriction can be selected. And finally, in Chapter 6 we give

our conclusions, and provide many future research directions and open problems.

7

Chapter 2

BACKGROUND

In this chapter we establish the notation needed regarding hash families and t-

restrictions. Theorem 2.1 illustrates an important connection between perfect hash

families, specifically, and arbitrary t-restrictions, in that the latter can be constructed

from the former and a “smaller” restriction. This motivates the study of perfect hash

families and a combinatorial analysis of their structure. Then, we briefly mention

some existing work on the sizes and structure of perfect hash families that is relevant

later in the thesis. Any background material not mentioned in this chapter that is

also relevant in other chapters will be in them instead.

2.1 Terminology

In order to develop and extend these ideas formally, we extend the presentation

in [27], employing the very general language of t-restrictions [5]. Let N , k, v1, · · · , vN ,

x1, · · · , xk, t, and λ be positive integers. An abstract simplicial complex, A, is a family

of non-empty finite subsets of a set Γ that is closed under non-empty subsets; the

dimension of an ASC, dim(A), is the maximum of |X| − 1, for all X ∈ A. Let H

be an abstract simplical complex on k vertices such that the maximum cardinality of

any set in H is t; label the vertices of H as c1, · · · , ck. Let Σi be a vi-ary alphabet not

containing ? for all 1 ≤ i ≤ N , and let ∆j be an xj-ary alphabet also not containing ?

for all 1 ≤ j ≤ k. Define an N×k array A in which the ith row of A contains symbols

from Σi ∪ {?}, and the jth column of A contains symbols from ∆j ∪ {?}. If there

exist i, j for which Σi ∩∆j = ∅, the entry in this cell must be ?. Let ∆ =
⋃k
j=1 ∆j. A

t-restriction is a χ-tuple T = ((P1, T1), · · · , (Pχ, Tχ)), where Pi ⊆ ∆t and Ti ∈ {∃,∀}.

8

Each set Pi is a demand. Here, we denote t to be the strength of the array. For each

Pi, if Ti = ∃, then at least λ rows of A contains some element of Pi; if Ti = ∀, then

for each element of Pi, at least λ rows contain that element. Let ∂i(S) be the set of(
t
i

)
sets of (t− i)-tuples, obtained by deleting the i chosen columns from each s ∈ S.

An array A = (aij) λ-satisfies a given Pi and Ti if and only if for all 0 ≤ j ≤ t and

any set S ∈ H,

1. if Ti = ∃, then for each P ∈ ∂j(Pi), there exist λ rows 1 ≤ r1 < · · · < rλ ≤ N

such that (ar`,ci1 , · · · , ar`,ci|S|) ∈ P for all 1 ≤ ` ≤ λ and S ∈ H when |S| = t−j;

or

2. if Ti = ∀, then for each P ∈ ∂j(Pi), and for all (σ1, · · · , σt−j) ∈ P ∩
∏t−j

m=1 ∆cm ,

there exist λ rows 1 ≤ r1 < · · · < rλ ≤ N such that (ar`,ci1 , · · · , ar`,ci|S|) = (σ1,

· · · , σ|S|) for all 1 ≤ ` ≤ λ and S ∈ H when |S| = t− j.

If the array λ-satisfies each of the given Pi and Ti, then the array λ-satisfies T .

If an array A on N rows and k columns (and corresponding symbol set cardinalities

for rows and columns) λ-satisfies a t-restriction T , denote it by TRAλ(N, k,H, (v1,

· · · , vN), (x1, · · · , xk), T). For any such TRAλ, we denote λ to be the index of the

array. If v1 = · · · = vN , A is uniform; otherwise, it is mixed. If x1 = · · · = xk, A

is homogeneous ; otherwise, it is heterogeneous. When λ = 1, we omit it from the

notation. When T1 = · · · = Tχ, T is a monotone t-restriction. Most literature has

concentrated on monotone t-restrictions with H being the hypergraph containing all

possible hyperedges of size at most t on k vertices, and λ = 1.

This framework is very general, and it encompasses a number of well-studied

combinatorial arrays. We establish more restrictive notation for some of them next.

Choose an integer t, and form the set Mt of multisets whose elements contain non-

negative integers, for which the sums of each element in a multiset sum to t. Let

9

W ⊆Mt. AW-separating hash family meets the following condition: when C = {c1,

· · · , ct} ⊆
(

[k]
t

)
and W1, · · · ,Ws is a partition of C with {|W1|, · · · , |Ws|} ∈ W , define

D = {(y1, . . . , yt) ∈ ∆c1 × · · · ×∆ct : yc = yc′ only if c, c′ belong to the same class of

W}. Then the demand (D,∃) is met. When each demand is the stricter requirement

that D = {(y1, . . . , yt) ∈ ∆c1 × · · · × ∆ct : yc = yc′ if and only if c, c′ belong to the

same class of W}, the hash family is W-partitioning. When W consists of all parti-

tions in Mt containing s parts, a W-separating hash family is (t, s)-distributing. In

both cases, when W contains a single set W = {w1, . . . , ws}, the family is separating

(or partitioning) of type {w1, . . . , ws}.

Of primary concern here are the (t, s)-distributing hash families with s = t. Such

a family is a perfect hash family. In order to refer to objects of this type, we employ

standard notation. A perfect heterogeneous hash family is denoted as a PHHFλ(N ; k,

(v1, · · · , vN), t), and a homogeneous one is written as a PHFλ(N ; k, v, t). If a PHHFλ

A λ-satisfies a given Pi, then it λ-separates these columns.

An example of a (homogeneous) PHF1(6; 12, 3, 3) is given in Figure 2.1. It is a

6× 12 array (6 rows, 12 columns) on the three symbols {0, 1, 2}, in which every 3-set

of columns is 1-separated. For the 6 × 3 subarray involving columns 8, 9, and 10,

only the last row consists of distinct symbols. Also, 148 of the 3-sets are exactly

1-separated; 44 are exactly 2-separated; 19 are exactly 3-separated; 4 are exactly

4-separated; and none are 5 or 6-separated. There is no PHF(5; 12, 3, 3) [9], so this

array has the fewest possible rows.

The notation SHHF(N ; k, (v1, · · · , vN), {w1, · · · , ws}) is used for a separating hash

family. More simply SHF(N ; k, v, {w1, · · · , ws}) is used when it is homogeneous. Fig-

ure 2.2 gives an example of a (homogeneous) SHF(3; 16, 4, {1, 2}). It is a 3× 16 array

on the four symbols {1, 2, 3, 4} that is not a perfect hash family, because columns 11,

15, and 16 are separated by none of the three rows. However, in the 3 × 3 subarray

10

↓ ↓ ↓

0 1 2 2 1 2 2 0 1 1 0 0

0 2 1 0 2 2 2 1 0 1 2 1

1 0 0 2 2 2 1 1 2 1 0 2

2 0 1 1 2 0 2 0 1 1 2 1

2 0 2 1 2 1 0 2 2 1 1 0

→ 2 0 1 2 1 1 2 2 0 1 2 1

Figure 2.1: A PHF1(6; 12, 3, 3).

↓ ↓ ↓

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

→ 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

Figure 2.2: A SHF(3; 16, 4, {1, 2}).

consisting of these three columns, each of the three {1, 2}-separations is accomplished

by a row.

A distributing hash family is denoted by DHHF(N ; k, (v1, · · · , vN), t, s); a homoge-

neous DHHF is a DHF(N ; k, v, t, s). Figure 2.3 gives a (heterogeneous) DHHF(10; 13,

v, 5, 2) with v = (9, 9, 9, 3, 3, 3, 3, 4, 5, 2). Often one uses an exponential notation that

indicates the repetition in the exponent: v = (9334415121).

Let q be a prime or prime power, and Fq the finite field of order q. Let Rt,q = {r0,

· · · , rqt−1} be the set of all row vectors of length t with entries in Fq. Let Tt,q be the

set of all column vectors of length t with entries in Fq, excluding the 0-vector. We call

x ∈ Tt,q a permutation vector. Consider a set of t vectors X = {x1, · · · , xt} ⊆ Tt,q.

Form an array A by setting Ai,j to be the product of ri, xj; A is a qt × t matrix

where every row is distinct if and only if the t × t matrix B formed by horizontally

11

↓ ↓ ↓ ↓ ↓

6 7 8 3 4 0 2 2 3 0 5 1 1

3 1 1 7 2 6 8 4 3 0 2 0 5

8 5 1 4 2 3 2 6 7 0 1 3 0

0 2 0 2 2 0 0 1 1 1 1 2 0

0 0 2 1 1 1 2 0 0 2 2 0 1

→ 1 1 2 2 2 0 1 0 0 2 1 0 0

1 0 1 2 0 0 2 0 0 1 2 2 1

1 1 0 1 0 3 2 0 2 0 1 0 2

0 0 3 0 1 0 0 2 4 0 0 1 0

0 ? ? ? ? 1 ? ? 1 ? ? 0 1

Figure 2.3: A DHHF(10; 13,v, 5, 2) with v = (9334415121).

juxtaposing x1, · · · , xt is non-singular over the field. Note that the matrix B formed

here cannot contain the 0-vector.

Let 〈x〉 = {µx : µ ∈ Fq \ 0}. If x is not the 0-vector, the representative of 〈x〉, rx,

is the unique vector where the first nonzero coordinate is the multiplicative identity of

Fq. Let Vt,q be the set of representatives of all x ∈ Tt,q. Let Ut,q be the set of vectors

in Vt,q with first coordinate being nonzero (namely, the multiplicative identity). A

covering perfect hash family is a 4-tuple CPHFλ(N ; k, q, t) which is an N × k array

where each entry is from Vt,q, and for every t distinct columns c1, · · · , ct, there is a

row ρ for which the corresponding matrix formed above is nonsingular (we say that

c1, · · · , ct are covered when this occurs). We say that the array is a Sherwood covering

perfect hash family , written SCPHFλ(N ; k, q, t) if every entry in the array is from Ut,q.

In this setting, Pi is the set of nonsingular matrices over Fq, and Ti = ∃. Sherwood et

al. [71] show that if a SCPHF(N ; k, v, t) exists, then a CA(N(vt−v)+v; t, k, v) exists.

12

Colbourn et al. [34] derive asymptotics for CPHFs along with many computational

results and variants that provide many of the best-known results for covering arrays

for strengths 3 ≤ t ≤ 6 and 3 ≤ v ≤ 25.

Hash families in general, and perfect hash families in particular, play a central

role in the construction of arrays that satisfy various t-restrictions. Indeed, they

form the essential ingredients in a general technique known as composition or column

replacement, which we describe next.

Theorem 2.1. Suppose there exist:

1. A, a PHFχ(M ; `, k, t); and

2. B, a TRAλ(N ; k,H, (vs11 · · · , vsρρ), xk, T) with N =
∑ρ

i=1 sivi and H =
(

[k]
t

)
.

Construct an NM×` array, C, by replacing each symbol γ in A by the column indexed

by γ in B. Then C is a

TRAχλ(NM ; `,H′, ((M · v1)s1 · · · , (M · vρ)sρ), x`, T)

with H′ =
(

[`]
t

)
.

It is possible to extend this construction for when H 6=
(

[k]
t

)
and the PHFχ does

not separate every t-set, but we content ourselves with the generality developed here.

Construction 2.1 provides strong motivation for the study of perfect hash families,

as it underlies the easy generation of ‘large’ arrays meeting t-restrictions. We outline

one example of this, introducing a well-studied t-restriction that employs universal

quantification (i.e., a universal t-restriction). When for every t-set {c1, . . . , ct} of

columns, the demand (∆c1 × · · · × ∆ct , ∀) is to be met, the array is a mixed-level

covering array, denoted by MCA(N ; t, (v1, · · · , vk)); when the array is homogeneous,

it is a covering array, denoted by CA(N ; t, k, v). In any CA(N ; k, v, t), symbols can

13

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 0 0 1

1 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 0 0 0

0 1 1 0 0 1 0 0 1 0

0 0 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 1

0 0 1 1 0 0 1 0 0 1

0 1 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 1 1

0 1 0 0 0 1 1 1 0 1

Figure 2.4: A CA(13; 3, 10, 2).

be permuted in each column independently so that the first row consists entirely of a

single symbol. This yields a constant row , and when the CA has been modified in this

way, it is standardized. Figure 2.4 gives an example of a standardized CA(13; 3, 10, 2).

In [26], a restriction on DHHFs is applied to gain an additional improvement

on Theorem 2.1 when the TRA is a covering array. Partitioning hash families are

distributing hash families except not only for any partition of t-columns into s parts

(possibly empty) the entries in any two different parts are pairwise disjoint, but the

symbols in each part are all equal; denote it by a PaHF(N ; k, v, t, s). It is shown there

that a DHF(N ; k, 2, t, 2) is a PaHF(N ; k, 2, t, 2). Notably, partitioning hash families

are appealing because if a CA(N+ρ; v, k, v) with ρ constant rows and a PaHF(M ; `, k,

t, v) exist, then a CA(NM +ρ; t, `, v) exists; this shows that the ingredient CA can be

14

of a different strength than the PaHF. However, PaHFs appear difficult to construct.

For recent work on probabilistic methods for PaHFs, see Cassels and Godbole [21].

For some specific t-restrictions, such as covering arrays, one may achieve a smaller

number of rows while still satisfying the restriction (e.g., standardizing the CA).

Introducing heterogeneity can in some cases provide even more improvements; we

content ourselves for now with the homogeneous case. By observing the generality

of the framework, much of this survey can be appropriately applied to other types of

t-restrictions.

Because a PHF with M rows leads to a TRA with NM rows, one wants the PHF

ingredient to have as few rows as possible. The perfect hash family (row) number,

PHFNλ(k, v, t), is the minimum N for which a PHFλ(N ; k, v, t) exists. This notation

does not extend naturally to heterogeneous hash families, because the number of rows

is to be determined. To circumvent this notational issue, we often instead consider

maximizing the number of columns rather than minimizing the number of rows. More

formally, the perfect hash family (column) number PHHFKλ(N,v, t) is defined to be

the maximum k for which a PHHFλ(N ; k,v, t) exists. For homogeneous hash families,

the notation PHFKλ(N, v, t) is used. For homogeneous families, one can easily change

between row and column numbers:

PHFNλ(k, v, t) = min(N : PHFKλ(N, v, t) ≥ k)

PHFKλ(N, v, t) = max(k : PHFNλ(k, v, t) ≤ N)

A PHFλ(N ; k, v, t) is optimal if N = PHFNλ(k, v, t). Much study has been devoted to

determining perfect hash family numbers for as many parameters as possible, as well

as what structure underlies optimal PHFs. Moreover, one would hope to provide an

explicit representation of the PHF with those parameters, particularly for constructing

other combinatorial objects and t-restrictions. If this is not possible, then knowing

15

asymptotics on this quantity is important in helping determine asymptotics for other

objects.

2.2 The Basics

First we state elementary relationships among perfect hash family numbers. In

order to treat heterogeneous situations as well, we employ perfect hash family column

numbers.

Additional rows cannot reduce the number of columns that can be achieved:

Fact 1. PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N + 1, (v1, . . . , vN+1), t) whenever

vN+1 ≥ 0.

Reducing the size of column sets to be separated also cannot reduce the number

of columns.

Fact 2. PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N, (v1, . . . , vN), t− 1) if t ≥ 2.

Reducing λ enables one to remove rows without reducing the number of columns.

Fact 3. PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ−1(N − 1, (v1, . . . , vi−1, vi+1, . . . vN), t)

if λ ≥ 2 and 1 ≤ i ≤ N .

Increasing the number of symbols in a row cannot reduce the number of columns.

Fact 4. PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKλ(N, (v1, . . . , vi−1, vi+1, vi+1, . . . vN), t)

if 1 ≤ i ≤ N .

Changing the number of columns is also of interest. Removing a column is straight-

forward, but adding a column can leave
(
k
t−1

)
t-sets of columns unseparated. Naively

one could add λ rows for each to obtain

Fact 5. PHFNλ(k, v, t) ≤ PHFNλ(k + 1, v, t) ≤ PHFNλ(k, v, t) + λ
(
k
t−1

)
.

16

Walker and Colbourn [79] show a better bound, later generalized by Martirosyan

and van Trung [57]. We improve on their result in Section 3.2.

In order to avoid situations in which a row does not have enough symbols to

separate any t-set of columns, we have:

Fact 6. PHHFKλ(N, (v1, . . . , vN), t) = PHHFKλ(N − 1, (v1, . . . , vi−1, vi+1, . . . vN), t) if

vi < t.

One can also consider reducing the number of symbols in a row,:

Fact 7. PHHFKλ(N, (v1, . . . , vN), t) ≤
⌈
vi−1
vi

PHHFKλ(N, (v1, . . . , vi−1, vi − 1, vi+1, . . . vN), t)
⌉

if 1 ≤ i ≤ N .

Iterating Fact 7 until Fact 6 applies, one obtains

Theorem 2.2. (Martirosyan and van Trung [57, Theorem 7.2])

PHFN(dk(t−1)
v
e, v, t) ≤ PHFN(k, v, t)−1. Equivalently, PHFK(N−1, v, t) ≥ d t−1

v
PHFK(N,

v, t)e.

Finally we describe a row amalgamation method for reducing the number of rows,

which essentially comes from [16, 72]. In a PHHFλ(N ; k, (v1, . . . , vN), t), select two

rows i and j with 1 ≤ i < j ≤ N . From these two, form a single row whose entries

are ordered pairs, with the first coordinate being the entry from row i and the second

from row j. Delete rows i and j (with vi and vj symbols), and add the new row

with vivj symbols. This method can reduce the number of times a t-set of columns

is separated, but this number cannot be reduced to 0.

Fact 8. PHHFKλ(N, (v1, . . . , vN), t) ≤ PHHFKmax(1,λ−1)(N−1, (w1, . . . , wN−1), t) when-

ever 1 ≤ i < j ≤ N , {v1, . . . , vN} \ {vi, vj} = {w1, . . . , wN−2}, and wN−1 = vivj.

Now let us dispense with some easier parameter sets. If N < λ, there are insuffi-

cient rows to λ-separate any t-set; so we assume that N ≥ λ. Now PHFNλ(k, v, 1) = λ

17

for all k, v ≥ 1, and λ ≥ 1, because any row separates all 1-sets of columns. Hence-

forth we only consider cases with t ≥ 2. Fact 3 underlies the following:

Fact 9. PHHFKλ(λ, (v1, . . . , vλ), t) = min(vi : 1 ≤ i ≤ λ).

Because of this, we concentrate on cases in which no λ rows are each permitted

to contain k or more distinct symbols. It is natural to ask whether one can obtain

larger values of k when the number of rows is allowed to exceed λ.

In general, recursive constructions combine ingredient PHFs to make ‘larger’ ones.

Many of the facts given provide easy examples of recursive constructions. Of course,

because being a perfect hash family of index λ is a t-restriction, so column replacement

or composition (Theorem 2.1) is a recursive construction.

18

Chapter 3

HASH FAMILIES OF HIGHER INDEX

In this chapter, we focus on generating hash families with arbitrary index λ. In

Section 3.1, we provide some direct constructions for PHFs of arbitrary index that

have a “small” number of rows. In Section 3.2, we take advantage of higher-index

ingredients in deriving a new recursive construction, along with a boolean satisfiability

formula that aids in the construction; computational results are also provided. In

Section 3.3, we analyze PHFNλ from probabilistic and asymptotic lenses. And finally,

in Section 3.4, we use the previous section’s results to give a conditional expectation

algorithm to construct PHFs of index λ in polynomial time that meet these bounds,

along with computational results. Much of this chapter has been submitted in [46].

3.1 Direct Constructions

In many applications, error correction through redundancy in the separation is

needed; a few examples are given in [1, 53, 68]. Despite this, there has been little

examination of such hash families with λ > 1, with the notable exception of [3, 4]. 1

We survey a number of the main construction methods for such hash families, with

an eye to extending them to treat cases with λ > 1 when possible. Our emphasis is

on fixed values of λ ≥ 1; we only treat cases when λ increases as a function of N in

the concluding remarks. We focus on combinatorial aspects, discussing in particular

constructive approaches to produce explicit examples for use in applications.

No PHHFλ with fewer than λ rows exists; when there are λ rows, Fact 9 applies.

Suppose that v1 ≥ · · · ≥ vN ≥ t and that a PHHFλ(N ; vλ + 1, (v1, . . . , vN), t) exists.

1Also, the only work (as far as we are aware) on covering arrays with regard to higher index was
for λ = 2 in [8].

19

Using Fact 3 we remove the first λ − 1 rows to obtain a PHHF1(N − λ + 1; vλ + 1,

(vλ, . . . , vN), t). Each row contains at least one pair of columns in which a symbol is

repeated. Let {γi, γ′i} be such a pair of column indices with a repeated symbol in row

i for λ ≤ i ≤ N . Then
⋃N
i=λ{γi, γ′i} is a set of at most 2(N − λ + 1) columns that

is separated by no row of the PHHF1. When N ≤ t
2

+ λ − 1, this is a contradiction.

Hence we conclude

Fact 10. When v1 ≥ · · · ≥ vN ≥ t, PHHFKλ(N, (v1, . . . , vN), t) > vλ only if N ≥

d t+1
2
e+ λ− 1.

Although this condition is not sufficient whenever v1 ≥ · · · ≥ vN ≥ t, it does

establish, for example, that PHFK1(N, v, t) = v whenever 1 ≤ N ≤ t
2
. In order to

increase the number of columns, one therefore requires further rows.

We describe a PHFλ(s + λ;m(s + λ),m(s + λ − 1) + 1, 2s + 1) whenever m ≥ 2

and s ≥ 1, generalizing a result of Walker and Colbourn [79] when λ = 1.

Construction 3.1. Let s ≥ 1, m ≥ 2, and λ ≥ 1. A PHFλ(s + λ;m(s + λ),

m(s+λ−1)+1, 2s+1) is constructed as follows. Form a set of m(s+λ−1) elements

X, and let ∞ be an element not in X. Then the desired PHFλ contains exactly one

occurrence of∞ in each column, and contains each element of X exactly once in each

row.

Now Construction 3.1 yields more columns than symbols, and by Fact 10 it has

the fewest rows for which this is possible with strength t = 2s + 1. As a function

of v, k grows linearly. This linear relationship is not restricted to the minimum

number of rows, Blackburn [15] explored this phenomenon when λ = 1, and explicit

computations, again for λ = 1, are pursued in [30]. We apply Blackburn’s techniques

to treat all λ.

20

To begin, we suppose that k > v1 ≥ · · · ≥ vN , for otherwise we can either reduce

λ by Fact 3 or conclude that one row suffices when λ = 1. Then every row contains

at least one element that is repeated. The key idea is to classify the entries in each

row; an entry is a singleton for this row when it appears exactly once in the row, and

a replicate otherwise. Now suppose that a PHHFλ(N ; k, (v1, . . . , vN), N − (λ− 2) + s)

with 0 ≤ s ≤ t−1
2

has a column γ with at most s + λ − 1 singletons, and hence at

least N − s − λ + 1 = t − 2s − 1 replicates. Form a set C of t − 2s column indices

by including γ, and a column index from each of the t − 2s − 1 rows that contains

the same symbol as in column γ. Now choose any s further rows, and for each add a

pair of column indices for columns containing the same symbol in this row to C. In

total, C now contains at most t− 2s+ 2s = t column indices, and C is not separated

in any of t − 2s − 1 + s = N − λ + 1 rows. But then C is not λ-separated, because

at most λ− 1 rows remain.

So λ+ s = t−N + 2(λ− 1) is the minimum number of singletons in each column.

In a row having vi symbols, at most vi − 1 can be singletons. However, there must

be at least k(t−N + 2(λ− 1)) singletons in total. It follows that

k(t−N + 2(λ− 1)) ≤
N∑
i=1

(vi − 1).

Hence we obtain

Lemma 3.1. A PHHFλ(N ; k, (v1, . . . , vN), t) with N−(λ−2) ≤ t ≤ 2(N−(λ−2))−1

satisfies

k ≤ max

(
t, v1, . . . , vN ,

∑N
i=1(vi − 1)

t−N + 2(λ− 1)

)
.

Lemma 3.1 ensures that for a PHFλ(N ; k, v, t) with N − (λ− 2) ≤ t ≤ 2(N − (λ−

2))− 1, (or, equivalently, t+1
2

+λ− 2 ≤ N ≤ t+λ− 2), k grows linearly as a function

of v.

21

For λ = 1, Blackburn [15] establishes that when N = t+ λ− 1, k grows superlin-

early in v. We extend his construction to treat all values of λ next.

Example 3.1. Let t ≥ 2, λ ≥ 1, and a ≥ 2. Then there exists a PHFλ(t+λ−1; at+λ−1,

at−λ−2, t). The set of all vectors from {1, . . . , a}t+λ−1 index the columns. In each

column, in the ith row place the vector from {1, . . . , a}t+λ−2 obtained by deleting the

entry in the ith coordinate of the column index.

The verification that this is a PHFλ(t + λ − 1; at+λ−1, at−λ−2, t) comes essentially

from [15]. Suppose to the contrary that there are t rows ρ1, . . . , ρt in which t columns

γ1, . . . , γt are not separated. Form a graph G on vertex set {γ1, . . . , γt}; for each

ρ ∈ {ρ1, . . . , ρt}, place an edge in G between some two vertices whose columns share

a symbol in row ρ, and colour the edge with ρ. Now G has t vertices and t edges

(of t different colours), and hence contains a cycle, say on vertices {v0, . . . , v`}. Let

ei = {vi, vi+1} for 0 ≤ i < ` have colour ci, and let e` = {v`, v0} have colour c`. For

0 ≤ i ≤ `, the two columns indexed by ei agree in coordinate ci and in no other.

Because all edge colours in the cycle are distinct, the columns indexed by each of

{e0, . . . , e`−1} agree in coordinate c`, but e` requires that they disagree, which yields

the contradiction.

Fact 1 now guarantees that k grows superlinearly in v whenever N ≥ t+λ− 1, in

contrast with the requirement that PHFKλ(t+λ−2, v, t) ≤ max(v, 1
λ
(t+λ−2)(v−1))

from Lemma 3.1.

Of course, practical interest is in obtaining a large number of columns, but un-

derstanding the situation with few rows has an important consequence.

Theorem 3.1. Let N = α(t− 1) + β with 1 ≤ β ≤ t− 1. Then PHFKλ(N + λ− 1,

v, t) ≤ PHFK1(N, v, t) ≤ vα(t− 1 + β(v − 1)) ≤ (t− 1)vd
N
t−1
e.

Proof. Consider a PHF1(N ; k, v, t). Repeatedly amalgamate rows (Fact 8) to form

22

a PHHF1(t − 1; k, ((vα+1)β(vα)t−1−β), t). Apply Lemma 3.1 to conclude that k ≤

vα(t− 1 + β(v − 1)).

Row amalgamation can reduce λ when it exceeds 1, and hence Theorem 3.1 em-

ploys amalgamation only when λ = 1. Consequently, it yields a useful upper bound

when λ = 1, but we anticipate that the bound is weak when λ > 1.

In the ‘linear’ range when t+1
2

+λ−2 ≤ N ≤ t+λ−2, Lemma 3.1 establishes that

for some constant cN−(λ−1),t−N−(λ−1),λ, the existence of a PHFλ(N ; k, v, t) requires that

k ≤ cN−(λ−1),t−N−(λ−1),λv. Blackburn [15] devises a linear programming formulation to

explicitly determine the constant dN,t−N so that k = dN,t−Nv(1 + o(1)) when λ = 1.

In order to establish the lower bound asymptotically, he develops a construction

technique using coverings. In Chapter 4, the method is extended to produce explicit

constructions for small values of v, and to treat the generalization to distributing

hash families (with λ = 1).

3.1.1 The Connection with Codes

One direct method for constructing a variety of hash families relies on the existence

of error-correcting codes. A code with parameters (n, k, d)q is a set of k distinct vectors

(codewords) of length n over an alphabet of size q, so that every two distinct codewords

are at Hamming distance at least d. Then Aq(n, d) denotes the largest k for which

there is a (n, k, d)q code, and A(n, d, w) denotes the largest k for which there is a

(n, k, d)2 code in which each cod word has weight w (i.e., w 1’s). See [20] for some

bounds on A(n, d, w). Determining exact values for Aq(n, d) and A(n, d, w) in general

remains a major challenge.

Alon [2] shows a connection between codes and PHF1s; see also Atici et al. [10].

We give the easy generalization for higher index:

23

Theorem 3.2. If there is an (n, k, d)q code, then for any t, λ such that
(
t
2

)
< n−λ+1

n−d ,

there is a PHFλ(n; k, q, t).

Proof. Let C be an (n, k, d)q code. Construct an array A that has the codewords of C

as its columns. Let L = {c1, · · · , ct} be a set of t columns of A. Two distinct columns

of L can agree in at most n− d rows, so the number of rows in which not all columns

of L disagree is at most (n − d)
(
t
2

)
. Provided that (n − d)

(
t
2

)
< n − λ + 1, A has at

least λ rows that separate L.

In general, Theorem 3.2 yields a PHF from a code, but not every PHF need arise

in this way. However, when t = 2 the correspondence is exact (see Mehlhorn [58] and

Atici, Magliveras, Stinson, and Wei [10] when λ = 1):

Theorem 3.3. An (n, k, λ)q code is equivalent to a PHFλ(n; k, q, 2).

It follows that PHFK1(N, v, 2) = vN and hence PHFN1(k, v, 2) = d log k
log v
e. By

considering all codewords in {0, . . . , v − 1}N whose entries sum to 0 (mod v), one

has PHFK2(N, v, 2) = vN−1. When λ ≥ 3, one wants (n, k, d)q codes with d ≥ 3.

Numerous constructions and bounds are known [56], but in general exact values are

not.

There is a PHHF1(N ;
∏N

i=1 vi, (v1, · · · , vN), 2) for any N ≥ 1 and v1, · · · , vN ≥ 2,

obtained by taking all possible column vectors. In the heterogeneous case, one has a

correspondence with codewords in which each coordinate has its own alphabet, but

such codes have not been much studied.

Turning to cases with t ≥ 3, Theorem 3.2 has been extensively employed, par-

ticularly to Reed-Solomon codes to make PHFs with λ = 1 [10]. We formulate a

generalization using design-theoretic terminology. A transversal design, TD(s, k, n)

is a triple (V,G,B) where V is a set of kn points, partitioned into k groups G = {G1,

· · · , Gk}, and |Gi| = n for all i. Furthermore, B contains ns blocks of size k with

24

|Bi ∩ Gj| = 1 for all i, j, and |Bi ∩ Bj| ≤ s for all i 6= j. A standard construction of

transversal designs over the finite field Fq follows.

Construction 3.2. A TD(s, k, q) with k ≤ q+1 exists. Let X = {x1, . . . , xk} ⊆ Fq ∪

{∞}. The elements of the TD are Fq×X. For each polynomial a0+a1y+· · ·+as−1y
s−1

of degree s − 1 with coefficients from Fq, form a block that contains element (b, z)

whenever z ∈ X and (1) b = a0 when z = ∞, or (2) b = a0 + a1z + · · · + as−1z
s−1

otherwise (all arithmetic performed in Fq).

A transversal design constructed in this manner is linear. Treating the blocks of

the TD(s, k, q) from Construction 3.2 as columns and the elements of X as rows, we

obtain a k × qs array C on q symbols. In fact, because the difference between two

polynomials of degree at most s− 1 is also a polynomial of degree at most s− 1, and

such a polynomial has at most s − 1 roots, the columns of C form a (k, qs, k − s)q
code, so Theorem 3.2 applies. When constructed in this way, the PHFλ is linear as

well. However, because the code has a natural algebraic interpretation, much more

can be said. Suppose that there is a set X for which every set t polynomials of

degree s − 1 disagree on some value of X. This can arise when |X| ≤ (s − 1)
(
t
2

)
.

For example, Blackburn [14] shows that a PHF(3; r3, r2, 3) exists for all r ≥ 2, and

that a PHF(6; p2, p, 4) exists for all primes p ≥ 17 or p = 11. This phenomenon has

been extensively examined when λ = 1. A PHF is optimal linear if it is linear and no

linear PHF exists having fewer rows. Blackburn [14] provides explicit constructions

of PHFs, some of which are optimal.

Blackburn and Wild [18] showed that if q is a sufficiently large prime power,

there is an optimal linear PHF(s(t − 1); qs, q, t) for s, t ≥ 2. For specific choices of s

and t, characterizations of the number of rows that suffice for small prime powers q

have been carried out by Barwick and Jackson [11, 12], and Colbourn and Ling [35].

25

These provide numerous explicit examples of PHF1s that are easily constructed. The

extension of larger values of λ is straightforward.

It remains an open question whether an optimal PHF exists whenever an optimal

linear PHF exists [18, 14]. The linear perfect hash families always consist of rows

in which the numbers of occurrences of each symbol are as equal as possible. Of

course, this equireplication cannot be required for all parameter sets; consider, for

example, Construction 3.1. When s = 1,m = 2, and λ = 1, it is possible to prove

that the corresponding PHF2s have a single equivalence class (see Theorem 3.7), and

so every row of any PHF1(2; k, v, 3) arising from this construction must have this

property. Nevertheless, it appears plausible that once the number of rows is large

enough, every row can be required to be nearly equireplicated. If true, this constraint

could simplify the development of further constructions.

However, we do not expect that linear PHFs lead to the largest number of columns.

Consider, for example, PHFK(3, v, 3). By [14], PHFK(3, v, 3) = Ω(v1.5); however,

Walker and Colbourn [79] found solutions for small v that suggest a larger growth rate,

and posed the question of whether PHFK(3, v, 3) = o(v2). Fuji-Hara [51] constructs

PHF(3; v5, v3, 3) and PHF(3; v2(v + 1), v2, 3) for a prime power v ≥ 3, to establish

that PHFK(3, v, 3) = Ω(v5/3). Shangguan and Ge [69] solved the question of Walker

and Colbourn: For sufficiently large v and arbitrary ε > 0, that q2−ε < PHFK(3, v,

3) = o(v2). A similar result for PHFK(4, v, 4) is also proved.

One does not need transversal designs constructed over the field Fq in order to

produce a code. It is well known that a TD(2, k, v) is equivalent to k − 2 mutually

orthogonal latin squares of side v (see [28], for example). Via this connection, one

can generalize a result of Stinson, Wei, and Zhu [76] to λ ≥ 1, by also employing

Theorem 3.2:

26

Theorem 3.4. [76] If there are at least s =
(
t
2

)
+λ−2 MOLS of order n, there exists

a PHFλ(s+ 2 + λ;n2, n, t).

The same authors generalize this statement to mutually orthogonal n ×m latin

rectangles on max(m,n) symbols, obtaining a PHF1 with mn columns. Dinitz, Ling,

and Stinson [44] establish in some cases that the number of rows employed by Theo-

rem 3.4 can be reduced by ensuring that the corresponding TD avoids certain forbid-

den configurations.

Another generalization of transversal designs is to block designs. Let X be a set of

v points , and B be a set of b subsets of X, called blocks of X each with k points. Then

(X,B) is a balanced incomplete block design (BIBD) if every point occurs in r blocks,

and every pair of points occurs in λ blocks. We denote this by BIBD(v, b, r, k, λ). By

a simple counting argument, vr = bk and λ(v− 1) = r(k− 1). A BIBD is a resolvable

balanced incomplete block design if B can be partitioned into r parallel classes , and

each class contains v
k

disjoint blocks. We denote this by RBIBD(v, b, r, k, λ). Brickell

[19] and Atici, Magliveras, Stinson, and Wei [10] proved that if there is an RBIBD(v,

b, r, k, λ) and r > λ
(
w
2

)
, there is a PHF1(r; v, v

k
, w). For results on the existence and

asymptotics of RBIBDs, see [28].

3.2 A New Recursive Construction for PHFs of Higher Index

In this section, we address the problem of bounding the difference

PHFNλ(ks+ d, v, t)− PHFNλ(k, v, t)

for different choices of s, d. Most techniques studied previously either restrict the

choices of s, d, limit which values of v, t in which a bound is possible, or the bound

itself is not strong.

We provide a framework that does not have any limitations that obtains a bound

27

for every choice of s, d, v, t. However, if one sets s = 1 and still lets d be arbitrary,

further improvements can be obtained. Even further still, if s = 1 and d is a constant,

then the best improvements of all can be proved.

An easy (weak) upper bound is that PHFNλ(ks + d, v, t) − PHFNλ(k, v, t) ≤

λ(
(
ks+d
t

)
− s
(
k
t

)
), obtained as follows. Horizontally juxtapose the PHFλ(N ; k, v, t)

s times, and append any d further columns. Label the columns as ([k] × {1, · · · ,

s}) ∪ {∞1, · · · ,∞d}. Then the t-sets which are not separated are those which have

two columns having identical first coordinate, or have at least one column among

{∞1, · · · ,∞d}. There are
(
ks+d
t

)
sets overall, and

(
k
t

)
of them are already separated

by assumption for each of the s blocks. It is possible to improve this bound by a

factor of 2, because every row can separate any two t-sets. With even more careful

analysis based on integer partitions, this same construction can yield a better bound.

However, this is not anywhere near the best general bounds that can be obtained.

We review various parameters v, t, s, d that have been investigated previously for

bounding PHFNλ(ks+ d, v, t)−PHFNλ(k, v, t) for general k. In most situations, such

bounds are found by appending various columns of the existing PHF, either without

modification or with cyclic shifts of the symbols. Walker and Colbourn [79], with

improvements by Martirosyan and van Trung [57], considered the cases of (1) s ≥ 2

constant and d = 0, (2) s = 1 and d fixed, and (3) s = 1 and d arbitrary. We consider

(2) and (3) briefly, and return to (1) in the concluding remarks as future work. Their

results are inherently limited because it is required that 1 ≤ d ≤ v− t+ 2, and when

v ≈ t, the number of columns to be added is comparatively small. However, such

results are “optimal” in the sense that no other method that appends columns of an

existing PHF to itself can improve upon the bounds they achieve. So any method

that we produce must improve upon when d ≥ v − t+ 1.

Colbourn and Ling [36] generalize other results by Martirosyan and van Trung to

28

give a very general bound. Their method uses a difference distributing hash family ,

DDHF, as well as the notion of matroshka type and laminar type. The former is a

generalization of a PHF with separation across a partition of the set of t columns

based on a given abelian group, and the latter two are tuples indicating a structural

property of a hash family (namely how many rows are needed to achieve a PHF or

DDHF of strength ` for 2 ≤ ` ≤ t). However, their method suffers from (1) very

few constructions existing for DDHFs when the number of symbols is small, and (2)

the matroshka and laminar types need to be known in advance. In fact, the only

constructions for DDHFs require v to be a prime power and v ≥
(
t
2

)
, which is less

useful if t is large.

We provide a framework for improving upper bounds for PHFNλ(ks + d, v, t) −

PHFNλ(k, v, t) for the following scenarios: (1) s, d both arbitrary; (2) s = 1 and d

arbitrary; and (3) s = 1 and d a fixed constant. In all cases, there are no requirements

on k, s, v, t, or d. When s and k are large, the parameter d is much smaller than k×s.

If one has a PHF on ks+ d columns, one can find a PHF on ks columns by removing

any d of them. Therefore, if a certain number of columns is desired, k′, that is not a

multiple of k, then one should find the least s such that ks ≥ k′, and delete columns

as necessary.

3.2.1 s Arbitrary

For s and d both arbitrary, we require an additional ingredient. Let t be a positive

integer, and w = (w1, · · · , wm) a nonempty ordered partition of t with w1 ≤ · · · ≤ wm.

We say that an N ×m array fully covers w if for every permutation ρ(w) of w, some

row of the array is equal to ρ(w). A partition covering array , written PCAλ(N ; t, s),

is an N × s array in which for every nonempty ordered partition of size i of [t] for

every valid i, every choice of i columns fully covers that partition at least λ times.

29

We begin with a construction of PCAλs. For positive integers r1, · · · , rm, let p =∑m
i=1 ri. A partitioning ordered design of type (w1, · · · , wm) and replication (r1, · · · ,

rm), written PODλ(N ; s, (w1, · · · , wm), (r1, · · · , rm)), is an N × s array in which (1)

wi < wj for all i < j, and (2) every p-tuple formed from (w1, · · · , wm) by repeating

each wi exactly ri times, in any order, is fully covered at least λ times in the PODλ.

A PCAλ(N ; t, s) can then be formed by considering all nonempty partitions of [t],

forming the corresponding PODλ, and vertically juxtaposing all such PODλs.

We are now ready to state our main construction here. Let N, k ≥ v1, · · · , vN ≥

t ≥ 2, and s ≥ 1 be positive integers, and 1 ≤ k1, · · · , ks−1 ≤ k. Denote m =

k +
∑s−1

i=1 ki. Suppose there exist:

1. a PCAλ(NP ; t, s) C;

2. a PHHFχ(N ; k, (v1, · · · , vN), t) A; and

3. for all 1 ≤ i ≤ s− 1 and 1 ≤ p ≤ t− 1, a PHFα(Np,i; ki, p, p) Bp,i.

For each 1 ≤ i ≤ s, horizontally append any ki distinct columns of the original

PHHFχ to A. In C, denote Cr,c to be the symbol in row r, column c. Let Cr to

be the set of symbol/block pairs in row r of C without multiplicity such that the

corresponding number of columns corresponding to r is maximum. By this, we mean

that if Cr,c = Cr,c′ = σ with c 6= c′ but kc > k′c, then Cr contains (σ, c), not (σ, c′).

For each row r of C, form the Cartesian product of all Bp,i for p ∈ Cr, taking the

minimum resulting number of rows by adding any extra symbols (in the case v > t)

to any of the corresponding PHFs, in all possible ways; here, PHHFχs may be formed

as a result. (For any symbol/block pair (σ, c) not in Cr, duplicate the corresponding

set of columns for σ from some other block, deleting columns as necessary to achieve

kc columns). When the product is formed, vertically juxtapose it to A.

30

Theorem 3.5. The array formed from the above construction is a PHHF with m

columns, strength t, and index (at least) λ · χ · α.

Proof. Partition the m columns into “blocks” K,K1, · · · , Ks−1, where |Ki| = ki, ac-

cording to how the columns were appended in the construction. Let T be an arbitrary

t-set of columns, and let χ = |[k+1, · · · ,m]∩T |. If χ ≤ 1, then T is already separated

since only columns of A were duplicated. If χ ≥ 2, then T may not be separated in

the first N rows. However, there is some partition of [t] that corresponds to how T is

distributed among the blocks. Form the Cartesian product of the corresponding Bp,i.

Since each ingredient was a PHHF, at least one row in each of the Bp,i separates the

required columns; by forming the Cartesian product of these ingredients, some row

in the resulting PHHF must separate T . The reasoning for the index being at least

λ · χ · α is now immediate.

Note that there is no correspondence between the blocks of columns chosen in the

proof of Theorem 3.5. Let PODNλ(s, (w1, · · · , wm), (r1, · · · , rm)) be the smallest N for

which a PODλ(N ; s, (w1, · · · , wm), (r1, · · · , rm)) exists. We consider the homogenous

case of Theorem 3.5:

Corollary 3.5.1. Let k ≥ v ≥ t ≥ 2, and s ≥ 2. Then,

PHFNλ(ks, v, t) ≤ PHFNλ(k, v, t)+
∑

1≤w1<···<wm<t
r1,···,rm≥1
r1+···+rm=t
m≤min(s,t)

p,r≥1
p·r≥λ

PODNp(s, (w1, · · · , wm), (r1, · · · , rm))×fr,

where fr = min0≤i1+···+im≤v−t
∏m

j=1 PHFNr(k, wj + ij, wj).

Proof. Apply Theorem 3.5, by:

1. Setting ki = k for all 2 ≤ i ≤ s;

31

2. The PCA is formed from the vertical juxtaposition of the corresponding POD

ingredients, as outlined previously.

The minimum corresponds to “transferring” symbols between the various PHF ingre-

dients so that at most v symbols are used in every row.

As a corollary, we recover a theorem of Walker and Colbourn [79]:

Corollary 3.5.2. PHFN(2k, 3, 3) ≤ PHFN(k, 3, 3) + 2PHFN(k, 2, 2).

Proof. Apply Corollary 3.5.1; the summation only involves w1 = 1, w2 = 2, and so

only one POD1 ingredient is needed. A POD1(2; 2, (1, 2), (1, 1)) can be easily con-

structed. Since v = t, the product is twice that of a PHF of strength 2 with a PHF of

strength 1; hence, 2PHFN(k, 2, 2) rows are needed.

We can generalize Corollary 3.5.2 further:

Corollary 3.5.3. PHFNλ(2k, v, t) ≤ PHFNλ(k, v, t)+
∑t−1

i=1 min0≤d≤v−t
p,r≥1
p·r≥λ

PHFNp(k, i+d,

i) · PHFNr(k, v − d, t− i).

Proof. A POD(2; 2, (i, t− i), (1, 1)) can be easily constructed for every i. When v > t,

extra symbols can be transferred between the two PHFs of strength i and t− i. Apply

Corollary 3.5.1.

When
∑m

i=1 ri = t, PODNλ(s, (w1, · · · , wm), (r1, · · · , rm)) ≤ λ
(
s
t

)
t!

r1!×···×rm!
, because

one can simply cover each possible partition in its own individual row; the proof of

Corollary 3.5.2 involves a PODλ that meets this bound. However, one can do much

better than this “worst-case” bound using probabilistic methods.

Let w1, · · · , wm be symbols, r1, · · · , rm ≥ 1 be integers, and consider an N × s

array, with N determined later, and entries are chosen uniformly and independently

at random from {w1, · · · , wm}. We consider the expected number of column sets

32

of size t =
∑m

i=1 ri of partitions such that they are not fully covered in the array.

Denote an interaction to be the set {(ci, pi) : 1 ≤ i ≤ t}, where c1, · · · , ct are distinct

columns, and (p1, · · · , pt) is an arbitrary ordered partition, with repetition of symbols

as dictated by the ri values. A PODλ then fully covers all interactions where the

symbols come from ordered partitions.

Let p = r1!···rm!
t!

be the probability that a fixed interaction is covered, where “cov-

ered” indicates that the interaction appears at least λ times. The probability that a

fixed interaction does not appear at least λ times in an array with N rows is precisely∑λ
i=0

(
N
i

)
pi(1 − p)N−i. Therefore, the expected number of uncovered interactions in

these N rows is precisely
(
s
t

)
times this probability, since the number of column sets

is
(
s
t

)
. When this expectation is strictly less than 1, then there exists a PODλ on

these parameters. We give more details about analyzing this bound with respect to

PHFs in Section 3.3 and a conditional expectation algorithm to construct the PHFs

in Section 3.4, so all of the techniques in these sections can be adapted to PODs as

well.

3.2.2 s = 1, d Arbitrary

We now focus on when s = 1; i.e., there are only two blocks, and one block has

fewer than k columns. Much of the reasoning in the following result comes from

Corollary 3.5.1.

Theorem 3.6. Let x ≥ 1, and let ψ be the minimum i such that for some d with

0 ≤ d ≤ v − t, PHFNλ(x + 1, i + d, i) = 1. Then, PHFNλ(k + x, v, t) ≤ PHFNλ(k, v,

t) + δ + γ, where:

• δ = PHFNλ(x+ 1, v, t) if x ≥ min(ψ, t− 1), and 0 otherwise; and

• γ =
∑min(x+1,t−1,ψ)

i=2 min0≤d≤v−t
p,r≥1
p·r≥λ

PHFNp(k−1, v−i−d, t−i)·PHFNr(x+1, i+d, i).

33

Proof. Append one column x times, and we create the final PHFλ using the Cartesian

product technique as before. If x ≥ t− 1, then add a PHFλ(N ;x+ 1, v, t) to separate

the t-sets that are contained in the added columns (with the entries in these rows in

the first k − 1 columns selected arbitrarily). Once i = ψ, then no higher values of

i need to be considered, since the corresponding ingredient on the rightmost x + 1

columns has one row; this implies that the PHFp ingredient with x+1 columns consists

of all distinct symbols. Since any PHFp(N ; k, v, t) is also a PHFp(N ; k, v, t − 1), the

theorem statement is proved.

We recover a theorem of Martirosyan and van Trung [57] from Theorem 3.6,

because they use ψ = 2 in their result. Even though Theorem 3.5 is very general,

Theorem 3.6 indicates that it is not optimized for specific ingredients. Denote a

don’t care position in a PHHF to be one that can be set to any legal value, and the

array is still a PHHF. Any part in a partition with size 0 has all of its corresponding

positions being don’t cares. Without sacrificing many rows, pushing the number of

columns past 2k seems difficult to count the t-sets in each of the blocks. However,

Theorem 3.6 can be improved by using heterogeneous hash families for the ingredients,

and a symbol can be moved from one ingredient to the other on a per-row basis instead

on a per-ingredient basis.

When x is larger than v − t + 2, we improve upon iterative applications of the

theorem of Martirosyan and van Trung. Instead of adding a single column x times, we

add x columns once. This way, we still separate all of the same t-sets as their method

does, but our advantage is that other t-sets are also separated, and were not before.

Suppose the x original columns were c1, · · · , cx, and the duplicates are c′1, · · · , c′x. Then

any t-set of columns C1, · · · , Ct such that for all i 6= j we have that Ci 6≡ Cj (mod x),

then {C1, · · · , Ct} are separated. Therefore, we only need to separate the t-sets where

34

Ci ≡ Cj (mod x) for some i, j and 1 ≤ |{C1, · · · , Ct} ∩ {c1, · · · , cx}| ≤ t − 1, and

similarly for c′1, · · · , c′x. There are precisely
∑t−1

i=1

(
x
i

)(
x
t−i

)
such sets to consider here;

however, we desire to find the smallest hash families that only require separation of

these t-sets. To do so, we consider a satisfiability formula for PHFs.

3.2.3 A Satisfiability Formula for PHFs

Because we only desire to find hash families involving a “small” number of columns

and relatively small strength, we turn to satisfiability methods to find small-enough

ingredients to assist the results. For a boolean variable x, the two literals for x are

the positive form x, and the negative form x. A boolean formula is in conjunctive

normal form (CNF) if it is the conjunction (AND, written ∧) of clauses , which

is a disjunction, written ∨, of literals. An assignment is a function which maps

the literals in the formula to {0, 1}. We say that the formula is satisfiable if there

is some assignment such that the formula evaluates to 1. We start by building a

boolean formula that is satisfiable if and only if a PHFλ(N ; k, v, t) exists, and then

show how to improve the representation for the modified problem. Since the hash

families considered that will be used in the new recursive construction only require a

small number of columns (and hence a small number of rows), we consider a “naive”

approach.

We index rows, columns, and symbols starting at 1 for convenience. Let xi,j,s be

a boolean variable that indicates that row i for 1 ≤ i ≤ N , column j (for 1 ≤ j ≤ k)

contains value s (1 ≤ s ≤ v). Then we construct the following formula, which is

satisfiable if and only if there exists a PHFλ(N ; k, v, t):

35

 ∧
1≤i≤N
1≤j≤k

(∨
1≤s≤v

xi,j,s

)
∧
(∧
s 6=t

(xi,j,s ∨ xi,j,t)
)∧

 ∧
1≤c1<···<ct≤k

∨
S⊆[N]
|S|=λ

∧
R∈S

∨
1≤v1<···<vt≤v
v′i∈P (v1,···,vt)

(xR,c1,v′1 ∧ · · · ∧ xR,ct,v′t)


where P (v1, · · · , vt) is the set of all permutations of the symbols v1, · · · , vt. Intuitively,

the first part of the conjunction checks that there is exactly 1 entry in row i and

column j, and the second checks that the PHF separates every t-set at least λ times.

The separation condition is met by a “witness” set of λ rows for which separation

occurs (but of course, the separation in each of the λ rows can be accomplished with

any t distinct symbols). We have to use all permutations of the symbols v1, · · · , vt
because the entries of the PHF can be in any order.

Note that this formula is not in CNF, because the second part of the conjunc-

tion involves a disjunction of conjunctions. Investigations of boolean formula rep-

resentations of covering arrays have been explored previously [52]; one such idea is

the incidence matrix representation, which (translated to hash families) is a set of

N ×
(
k
t

)
variables xi,C where xi,C = 1 if and only if the set of columns C is separated

in row i. This problem of expressing when a variable can be set to 1 reduces to that

of determining when a set of t-sets C1, · · · , Cm can be simultaneously separated in

a single row. However, this problem is known to be NP-complete [32], even in the

v = t = 3 case, via a reduction from the 3-coloring graph problem. Even if it was not

NP-complete, the fact that there are so many variables in this representation would

make this approach intractable. It remains an open question as to whether or not

an efficient (polynomial in size) CNF encoding of whether or not a PHF exists, even

when λ = 1 and k, v, t grow.

36

We can apply symmetry breaking to this formula, which refers to fixing certain

variables to be true or false. We do so in the following ways, without loss of generality;

each involves appending to the formula above with unit clauses for each of the involved

variables, forcing them to be true.

• For all 1 ≤ ` ≤ v − 1, the `-th column only can consider symbols from {0, · · · ,

`−1}, because we can rename symbols in each row arbitrarily and still maintain

the separation property.

• For each row, insist that each value appears at least once in that row. We can

enforce this because substituting a value for another that has not appeared yet

either keeps the separated t-sets the same, or it separates the same as well as

other t-sets (for example, if a symbol that appears at least twice has one of its

occurrences replaced by a new value).

• For the first λ rows, separate the first t columns λ times, and require that the

other N−λ rows do not, because if we desire to find a PHF that is optimal, then

at least one t-set is separated exactly once (again without loss of generality, we

can assume this t-set has this property).

We can also apply the following symmetry breaking strategy, but for only for

when the number of rows is “large enough”: enforce that in the first row, column

i has value i (mod v). In other words, the first row cycles through the symbol set.

This separates the largest possible number of t-sets for a single row in isolation, but

it is not possible to generate an optimal PHF with a row having this form for all

parameter situations, which we prove next.

Construction 3.1 provides a PHFλ(s+ λ;m(s+ λ),m(s+ λ− 1) + 1, 2s+ 1). One

may ask as to whether there is a PHFλ(s+ λ− c;m(s+ λ),m(s+ λ− 1) + 1, 2s+ 1)

for some c ≥ 0 and λ ≥ 1; it is certainly true when c = 0, and it is false for c ≥ 1 and

37

λ = 1 by Walker and Colbourn [79]. However, it cannot be true in all other cases;

as an example, set λ = 2 and consider the case of a PHF1(2; 8, 5, 3), which exists by

their result. Clearly, PHFN2(8, 5, 3) ≤ 4; we show that it cannot equal 3.

Theorem 3.7. PHFN2(8, 5, 3) = 4.

Proof. In the proof of Construction 3.1 for when λ = 1, every 3-set is 1-separated,

and none are at least 2-separated. Also note that the first row of the PHF1(2; 8, 5, 3)

is 12345555, and the second row is the reversal of the first. We prove the statement

by subdividing it into three cases for when the number of 5s in this first row, #5,

is in {2, 3, 4}. We do not need to consider the case of #5 = 0 because disallowing

values from a row cannot help in separating t-sets, nor the cases of #5 = 1 or #5 ≥ 5

because they are each equivalent to another case (by permuting symbols as needed).

Suppose #5 = 2; without loss of generality, the row is 54321543 (by permuting

columns). The unseparated sets are, after removing set notation for clarity: 015, 016,

025, 027, 035, 045, 056, 057, 126, 127, 136, 146, 156, 167, 237, 247, 257, and 267

(indexed columns starting at 0). We now attempt to separate all of these 3-sets in

one row; if we cannot, then three rows are required for every 3-set to be separated

once. But to achieve λ = 2, we must need an additional row after such a third

row; therefore, it suffices to prove that all of these 3-sets cannot be simultaneously

separated.

We build the second row, initially all indeterminates: [x;x;x;x;x;x;x;x]. At

each point, either we will fix a coordinate in this row to a value, or maintain a list

of candidate values that can be assigned to that index (with square brackets). We

can separate 015 arbitrarily, so suppose it is separated by values 1, 2, 3; the row is

[1; 2;x;x;x; 3;x;x]. Then 016 allows index 6 to be values 3, 4, or 5; but 056 forces the

value 3 to be removed from index 6: [1; 2; x;x;x; 3; [4, 5];x]. 025 allows for the 2nd

38

index to be 2, 4, or 5; but 126 removes the 2: [1; 2; [4, 5];x;x; 3; [4, 5];x]. 027 allows for

the 7th index to be 2,3,4, or 5; but 127 removes the 2: [1; 2; [4, 5];x;x; 3; [4, 5]; [3, 4, 5]].

035 allows for the 3rd index to be 2,4,5, but 136 removes the 2: [1; 2; [4, 5]; [4, 5];x; 3; [4,

5]; [3, 4, 5]]. 045 is the same as the 3rd index: [1; 2; [4, 5]; [4, 5]; [4, 5]; 3; [4, 5]; [3, 4, 5]].

Because of 267, this forces the 7th index to be a 3 (since any other choice must conflict

with either index 2 or 6): [1; 2; [4, 5]; [4, 5]; [4, 5]; 3; [4, 5]; 3]. But then 257 cannot be

separated, since only two values (i.e., 4 and 5) are possible in those three coordinates.

The proofs for #5 ∈ {3, 4} are very similar.

Suppose that a PHF1 is being built one row at a time; start the first row containing

every symbol as equally often as possible. Then this row separates the maximum

possible number of t-sets. Because of the PHF1(2; 8, 5, 3) example above, one cannot

assume in general that if PHFN1(k, v, t) = N , then there exists a PHF1(N ; k, v, t) with

one of its rows having this property. Through extensive search, it appears that when

N ≥ d t+1
2
e, this assumption can be made; and when the conditions of Construction 3.1

are met, it cannot be. However, proving what are necessary and sufficient conditions

for separability is an open problem. Furthermore, one cannot conclude that if a PHF

has every t-set separated exactly once that the only solution to achieve a given index

λ is to vertically juxtapose it λ times; understanding when this is the case is also an

open problem.

3.2.4 Improving PHFNλ with Heterogeneous Ingredients

We state improvements to PHFNλ by adding x columns once instead of one column

x times. Note that when x = 1, we recover the Martirosyan and van Trung result

above, so consider when x ≥ 2. Let a PHFλ(N ; (k1, k2), v, t) be an N × (k1 +k2) array

on v symbols (index columns by {1, · · · , k1 + k2}) where only the t-sets of columns C

with the properties (1) |C ∩ {1, · · · , k1}| ≥ 1 and (2) |C ∩ {k1 + 1, · · · , k1 + k2}| ≥ 1

39

are required to be λ-separated. When a t-set C has this property, we say that it

crosses the partition. The most common case we will consider is when k1 = k2. Also

define a PHHFλ(N ; (k1, k2), (v1, · · · , vN), t) similarly. Let PHFNλ((k1, k2), v, t) be the

smallest N for which a PHFλ(N ; (k1, k2), v, t) exists. We highlight an example of how

this object can yield improvements over Theorem 3.6.

Theorem 3.8. Let ψ be as in Theorem 3.6. Then for all x ≤ t− 1, PHFN(k + x, v,

t) ≤ PHFN(k, v, t) +
∑min(x,ψ)

i=2 min0≤d≤v−t PHFN(k − x, v − i− d, t− i) · PHFN((x, x),

i+ d, i).

Note that PHFN((k1, k2), v, 2) = 1 for any k1, k2 and v ≥ 2, because the first k1

columns can be set to one symbol, and the other k2 columns set to a different symbol;

every 2-set crossing the partition is separated. However, it is simple to derive an

example where PHFN((k1, k2), v, 3) ≥ 2. In fact, these objects exhibit logarithmic

growth, just like PHFs, if we apply standard probabilistic techniques.

Here, we can apply even more symmetry breaking to our SAT formula in the case

of heterogeneous hash families that contain a partition:

• If the PHHF desired has symbols (v1, · · · , vN) for its rows, then insist that row

i only have symbols from {1, · · · , vi} for all i.

• Further insist that for each row i, columns 1, · · · , k1 can contain symbols only

from {1, · · · , t− 1}, and that columns k1 + 1, · · · , k1 + k2 contain symbols only

from {vi−t+1, · · · , vi}. This last condition restricts the dimension of the search

space since no t-set needs to be separated entirely on one side of the partition.

Results for the existence of PHHFs with 4 rows, a small number of columns, at

most 5 symbols for each row, t = 3, and λ = 3 appear in Tables 3.1 and 3.2; a

X indicates that the PHHF was found, and an 7 indicates that no PHHF of those

40

Symbols ↓, k → 4 5 6 7 8 9 10 11

(3,3,3,3) X 7

(4,3,3,3) X 7

(4,4,3,3) X 7

(4,4,4,3) X 7

(4,4,4,4) X 7

(5,3,3,3) X 7

(5,4,3,3) X 7

(5,4,4,3) X 7

(5,4,4,4) X 7

(5,5,3,3) X 7

(5,5,4,3) X 7

(5,5,4,4) X 7

(5,5,5,3) X 7

(5,5,5,4) X ?

(5,5,5,5) X ?

Table 3.1: Existence of PHHFs with 4 Rows, at Most 11 Columns, at Most 5 Symbols
for Each Row, Strength 3, and Index 2.

parameters exists; a question mark indicates that a timeout of 1 day of solving time

was reached without proving (un)satisfiability. Most of the entries were solved within

a few seconds, whereas some of the 7 entries took several hours. Entries to the left

of a X entry and to the right of an 7 entry are left blank because deleting columns

does not make the formula unsatisfiable when it was satisfiable previously, and adding

columns does not allow the formula to become satisfiable when it was unsatisfiable

previously. We predict that the two ? entries in Table 3.1 will be 7, given the length

of solving time needed.

41

Symbols ↓, k → 3 4 5 6

(3,3,3,3) X 7

(4,3,3,3) X 7

(4,4,3,3) X 7

(4,4,4,3) X 7

(4,4,4,4) X 7

(5,3,3,3) X 7

(5,4,3,3) X 7

(5,4,4,3) X 7

(5,4,4,4) X 7

(5,5,3,3) X 7

(5,5,4,3) X 7

(5,5,4,4) X 7

(5,5,5,3) X 7

(5,5,5,4) X 7

(5,5,5,5) X 7

Table 3.2: Existence of PHHFs with 4 Rows, at Most 6 Columns, at Most 5 Symbols
for Each Row, Strength 3, and Index 3.

We construct optimal PHHFs with “small” parameters because they improve on

the recursive construction even further; we illustrate this with an example. If the

heterogeneous hash family’s symbols are, for example, of the form (i+d)j(i+d−1)N−j

(i.e., j of the rows contain at most i + d symbols, and the others contain at most

i + d − 1 symbols), then two PHFs can be used as the other ingredient; one with

v− i−d symbols, and the other with v− i−d+1 symbols. If only homogeneous hash

families were used for both ingredients, then only one pairing of symbols is possible,

whereas more can occur here.

42

Let C be a t-set of columns, and let χ be the cardinality of the intersection of C

with the original x columns and their duplicates. Throughout, if x columns are added,

then when χ is maximum, if possible, we use an ingredient consisting of all different

symbols (if not, we use our SAT solver to find the smallest ingredient possible).

Throughout, when we “use” an ingredient, we assume that the PHF ingredient that

will be crossed with the secondary one does not contain the symbols given. By

convention, the quantity PHFN(k, v, t) for when t ≤ 1 is 1; in fact, if some secondary

ingredient of strength t consists of all different symbols, then higher values of t do

not need to be considered. For each, if we increase the number of columns by x, we

assume that the original PHF ingredient had at least x columns. There are possible

improvements to these results when v > t, because a symbol can be moved from the

first ingredient to the second. All of the ingredients presented here are optimal with

respect to the number of rows. Of course, the bound on t is not absolutely necessary;

for example, if t = 3 for Lemma 3.2, then the χ = 4 ingredient is not needed. Only

when t is at least than the stated bound are all of the ingredients necessary. As

was done in Theorem 3.6, depending on the number of columns that are added, the

number of symbols desired, and the strength, some of the constructions may improve

on the results stated below by removing unnecessary ingredients.

Lemma 3.2. PHFN(k+2, v, t) ≤ PHFN(k, v, t)+PHFN(k−2, v−2, t−2)+2PHFN(k−

2, v − 3, t− 3) + PHFN(k − 2, v − 4, t− 4).

Proof. For χ = 2, a PHF(1; (2, 2), 2, 2) can be constructed by hand. For χ = 3, use the

PHF(2; (2, 2), 3, 3) described by the two rows 1132 and 1233. (By this, 1132 is the first

row, and 1233 is the second.) It is routine to check that this is a PHF(2; (2, 2), 3, 3)

and that there is no PHF(1; (2, 2), 3, 3). For χ = 4, use PHF(1; (2, 2), 4, 4) described

by the single row 1234. Apply Theorem 3.8.

43

As a corollary, we obtain that PHFN(k + 2, 4, 4) ≤ PHFN(k, 4, 4) + d log(k−2)
log(2)

e+ 2.

There is a PHF(7; 25, 5, 4) [36] and a PHF(3; 5, 4, 4) [79]; their composition produces a

PHF(21; 25, 4, 4), which currently is the best-known size of a PHF with 25 columns, 4

symbols, and strength 4. The previous best-known upper bound for k = 27, v = t = 4

is PHFN(27, 4, 4) ≤ 31; this result improves the upper bound to 28. We continue

with additional results; we only outline when more symbols can be useful for the

homogeneous case in the following lemma, even though more symbols can be useful

in other results.

Lemma 3.3. Suppose v = t. Then, PHFN(k+ 3, v, t) ≤ PHFN(k, v, t) +PHFN(k− 3,

v− 2, t− 2) + 2PHFN(k− 3, v− 3, t− 3) + 5PHFN(k− 3, v− 4, t− 4) + 3PHFN(k− 3,

v − 5, t− 5) + PHFN(k − 3, v − 6, t− 6).

Suppose v = t+ 1. Then, PHFN(k + 3, v, t) ≤ PHFN(k, v, t) + PHFN(k − 3, v − 2,

t− 2) + 2PHFN(k − 3, v − 3, t− 3) + min{f, g}+ PHFN(k − 3, v − 5, t− 5), where:

• f = 5PHFN(k − 3, v − 4, t− 4), and

• g = 2PHFN(k − 3, v − 5, t− 4) + PHFN(k − 3, v − 4, t− 4).

Proof. The ingredients are as follows:

• v = t: For χ = 3, use 121332 and 112323. For χ = 4, use 123244, 113442,

123423, 111234, and 121343. For χ = 5, use 123445, 123453, and 112435. For

χ = 6, use 123456.

• v = t + 1: For χ = 3, use the corresponding v = t ingredient. For χ = 4, use

the following PHHF(3; (3, 3), (5, 4, 4), 4): 112345, 123443, and 123434; or use

the corresponding ingredient from the v = t case if it produces fewer rows. For

χ = 5, use 123456.

In any of the cases, apply Theorem 3.8.

44

We do not enumerate more cases of when v ≥ t+2, mainly for simplicity of presen-

tation; but one can use the results in, for example, Tables 3.1 and 3.2 to enumerate

the several minimums taken over various PHFN results to improve them when the

number of symbols increases. We describe two of the many possible improvements

from the existing PHFN tables [45] for when the number of columns is moderately

large compared to the strength.

Corollary 3.8.1. PHFN(364, 6, 6) ≤ 1871 (Previous best-known: ≤ 2011).

Proof. There exist a PHF(1648; 361, 6, 6), a PHF(120; 358, 4, 4), a PHF(27; 358, 3, 3),

a PHF(9; 358, 2, 2), and a PHF(1; 358, 1, 1). Apply Lemma 3.3

We analyze the proof of Lemma 3.3: it turns out that 2PHFN(k−3, v−5, t−4) +

PHFN(k − 3, v − 4, t − 4) is smaller than 5PHFN(k − 3, v − 4, t − 4) for the case of

v = 7, t = 6, mainly because it will yield an improvement if and only if PHFN(k − 3,

v − 5, t − 4) < 2PHFN(k − 3, v − 4, t − 4). Because t = 6, this is equivalent to

log(v − 4) < log(v − 5), which is always true when v ≥ 7. Therefore, we can improve

the statement of the result for this case as follows:

Lemma 3.4. PHFN(k + 3, 7, 6) ≤ PHFN(k, 7, 6) + PHFN(k− 3, 5, 4) + 2PHFN(k− 3,

4, 3) + 2dlog2(k − 3)e+ dlog3(k − 3)e+ 1.

Corollary 3.8.2. PHFN(364, 7, 6) ≤ 774. (Previous best-known: ≤ 795)

Proof. There exists a PHF(672; 361, 7, 6), a PHF(41; 358, 5, 4), a PHF(18; 358, 4, 3), a

PHF(6; 358, 3, 2), a PHF(9; 358, 2, 2), and a PHF(1; 358, 1, 1). Apply Lemma 3.4.

For all of our results, we employed limboole 2 to convert our PHHF encoding into

a formula in conjunctive normal form, which was then fed as input into the glucose

satisfiability solver, based on minisat [48].

2Available at http://fmv.jku.at/limboole/.

45

3.3 Probabilistic and Asymptotic Methods

We first employ the probabilistic method to obtain upper bounds on PHFNλ. Let

A be a random N × k array over v symbols; by this, each entry is uniformly selected

at random from a v-set, independent of all other entries. Choose a t-set of columns

C = {c1, · · · , ct}; the probability that C is not separated in A is the probability that

no rows among c1, · · · , ct have all distinct entries. The probability that a given row

of size t is all distinct, with v values for each entry, is p =
(vt)t!
vt

. Therefore, the

probability that a given row does not separate C is 1 − p, and the probability that

all rows does not separate C is (1 − p)N . By linearity of expectation, the expected

number of t-sets of columns that are not separated in A is
(
k
t

)
(1− p)N . Solving for N

when this expectation is strictly less than 1 guarantees that there must be some PHF1

with those parameters. Taking logarithms, and upper bounds, we have the following,

first proved by Mehlhorn [58]. Throughout, let f(v, t) = log(vt)− log(vt − t!
(
v
t

)
).

Theorem 3.9. PHFN1(k, v, t) ≤
⌈

log (kt)
f(v,t)

⌉
.

We can improve these bounds using the Lovász local lemma, a tool extensively

used in combinatorics [7]. We mainly employ the symmetric version here:

Theorem 3.10. [7] Let E1, · · · , En be events in a probability space, Ei is mutually

dependent of at most d other events for all i, and Pr[Ei] ≤ p for all i. If ep(d+1) ≤ 1,

then with nonzero probability all of E1, · · · , En simultaneously do not occur.

In the setting of PHFs, the events Ei are that the ith t-set of columns is not

separated. We have that Pr[Ei] = (1 − p)N from above. Two different events Ei,

Ej are mutually dependent if and only if the corresponding t-sets have nonempty

intersection, implying that d =
(
k
t

)
−
(
k−t
t

)
− 1. So if e (1− p)N

((
k
t

)
−
(
k−t
t

))
≤ 1,

then there is a PHF with those parameters, proved by Deng, Stinson, and Wei [43].

46

Theorem 3.11. [43] PHFN1(k, v, t) ≤
⌈

log((kt)−(k−tt))+1

f(v,t)

⌉
.

Stinson, van Trung, and Wei [75] improved this bound further, with the so-called

“expurgation” method (which we generalize here using an idea from [34]); this is some-

times called “oversampling,” or even “post-processing” [78]. This method was the

best known probabilistic bound for PHFN1 in the general case until an improvement

in many parameter sets was found by Procacci and Sanchis [63] using the algorithmic

cluster expansion local lemma. Their techniques involved more carefully analyzing

the Moser-Tardös algorithm [59], which involves resampling “bad” events (i.e., sets

of t columns not being separated). Their approach can be generalized for higher-

index PHFs, since all that changes is the probability of each bad event occurring. For

simplicity of presentation, we state the post-processing result:

Theorem 3.12. PHFN1(k, v, t) ≤ minx≥0

⌈
log (k+xt)−log(x+1)

f(v,t)

⌉
.

Proof. Start with an array with k + x columns, and let E be the expected number

of unseparated t-sets of columns in this array if each entry is chosen uniformly and

independently at random. If E < x + 1, then by deleting one column from each of

the (at most) x unseparated t-sets, we must have a PHF1(N ; k, v, t). The theorem

statement then is equivalent to solving the following equation for N :
(
k+x
t

)
(1− p)N <

x+ 1, and finding the minimum over all x ≥ 0.

In [34] in the context of CPHFs, the value x = k
t−1

was chosen and shown to

improve on basic probabilistic arguments; the same value works for PHFs as well.

Understanding the optimal choice of x remains an open problem. However, all of the

above results are for when λ = 1; we now provide an upper bound for arbitrary λ.

Theorem 3.13. PHFNλ(k, v, t) is at most c1 log k + c2

√
λ log k for constants c1, c2

that only depend on v, t.

47

Proof. We combine oversampling with the basic probabilistic method to obtain the

theorem statement. Let A be a random N×k matrix, p be as before, C = {c1, · · · , ct}

be t columns of A, and XC be the random variable that is the number of rows in

which C is separated in A. The probability that C is separated for a given row is

p. We can determine that Pr[XC = i] =
(
N
i

)
(1 − p)N−ipi. So Pr[Xc ≤ λ − 1] =∑λ−1

i=0 Pr[XC = i] =
∑λ−1

i=0

(
N
i

)
(1− p)N−ipi. Therefore, when(

k + x

t

) λ−1∑
i=0

(
N

i

)
(1− p)N−ipi < x+ 1 (3.1)

for some x ≥ 0, there is a PHFλ(N ; k, v, t).

We can see that E[XC] = Np = µ. Therefore, we can write the previous proba-

bility as Pr[XC ≤ (1 − δ)µ] where δ = 1 − `/µ and ` = λ − 1. Note that 0 ≤ δ ≤ 1.

So, we can apply Chernoff bounds [7] to obtain that this probability is at most

exp(−δ2µ/2) = exp(−µ/2×(1−`/µ)2). This is equal to exp(−µ/2(1−2`/µ+`2/µ2)) =

exp(−µ/2 + `− `2/(2µ)).

Substituting back, we obtain exp(−Np/2 + λ − 1 − (λ − 1)2/(2Np)). So if(
k+x
t

)
exp(−Np/2+(λ−1)−(λ−1)2/(2Np)) < x+1, then there is a PHFλ(N ; k, v, t).

Note that if k, v, t, x, λ are fixed, and N increases, then the left-side of this expression

is monotonically decreasing. Therefore, we instead solve the above expression for

equality, then add 1 to N afterwards.

This is equivalent to exp(Np/2−(λ−1)+(λ−1)2/(2Np)) =
(
k+x
t

)
/(x+1). Taking

logarithms gives: Np/2− (λ− 1) + (λ− 1)2/(2Np) = log
(
k+x
t

)
− log(x+ 1). Forming

the statement in terms of a quadratic formula to solve in terms of N , we find that

N = 1
p

(
B + (λ− 1) +

√
B(2(λ− 1) +B)

)
+ 1, where B = log

(
k+x
t

)
− log(x+ 1). So

we can see that PHFNλ(k, v, t) is c1 log k+ c2

√
λ log k for appropriate constants c1, c2,

and by setting x = 0, for example.

One can interpret Equation (3.1) in that at most x sets of columns are not λ-

48

separated (or more), and removing one column from each set guarantees the existence

of a PHFλ. If one instead considers an analogous inequality:(
k

t

) λ−1∑
i=0

(
N

i

)
(1− p)N−ipi < x+ 1, (3.2)

then this means that again at most x sets of columns are not λ-separated. It may be

possible that all x of these sets are not separated at all. However, we can “complete”

this array by adding λ rows for each of these sets. Therefore, if N satisfies Equa-

tion (3.2), then N + xλ rows suffice to create a PHFλ. This is not as powerful as the

result in Theorem 3.13. However, consider any set C that is exactly i-separated; then

only λ− i rows are needed. So, it suffices to compute the N for which the following

inequality is satisfied, and take the minimum over all x:(
k

t

) λ−1∑
i=0

(λ− i)
(
N

i

)
(1− p)N−ipi < x+ 1. (3.3)

Sarkar and Colbourn [67] use a discrete probabilistic approach in generating cov-

ering arrays, in that they construct the array one row-at-a-time, such that each row

is at least as good as the average at that point (by this, each row covers a number of

interactions at least the average among all possible rows). In their construction, at

each iteration, phrased in the language of hash families, the number of unseparated

t-sets is always an integer; therefore, the number of rows can be significantly less than

what is determined by, say, Theorem 3.9.

Their approach appears difficult to analyze with hash families of higher index

because one now needs to keep track of λ variables; suppose the variables are A0, · · · ,

Aλ−1, where Ai represents the current expected number of t-sets that are separated

exactly i times. Initially, A0 =
(
k
t

)
, and Ai = 0 for all other i. Consider variables

A0 and A1. We can guarantee that A0 will never increase, but A1 may possibly

when an added row separates many of the t-sets corresponding to A0, and not many

corresponding to A1. We return to this point in Chapter 6.

49

We consider when N becomes large and analyze the bound asymptotically, instead

of what a bound on N there is for every choice of k. We suppose that v, t, λ are fixed;

then the probability p of separation in a row is also fixed. Consider the failure prob-

ability for a given t-set of columns:
∑λ−1

i=0

(
N
i

)
pi(1− p)N−i. Since p (and consequently

1−p) is fixed, then this is asymptotically at most Nλ(1−p)N . So if
(
k
t

)
Nλ(1−p)N < 1

for a choice of N , then the true value of PHFNλ(k, v, t) is asymptotically at most N

as k becomes large.

Without loss of generality, we solve the equation
(
k
t

)
Nλ(1−p)N = 1 for N , because

any larger value of N would make this a strict inequality; we can do this because we

are only observing the bound asymptotically. The Lambert W -function is the inverse

of the function f(W) = W exp(W).

Lemma 3.5. When x is large, W (x) ≈ log x − log log x + o(1), where o(1) → 0 as

x→∞.

Proof. An equivalent definition of W (x) is that it satisfies W (x) = log(x/W (x)). So

W (x) = log(x/ log(x/ log(x/ · · ·))). Expansion of the right-hand side yields that this

is at most log x− log log x+ o(1) when x is large.

However, since λ is fixed, the bound that results is a constant times log k, which

is expected. Nevertheless, the W -function is still useful when λ grows, which is what

we prove next.

Theorem 3.14. Suppose k and λ are large, but λ grows asymptotically slower than

log k. 3 Furthermore, suppose v, t are fixed. Then PHFNλ(k, v, t) grows at most

log k + λ log log k + o(λ).

3All we need is that λ < N/2 for a given fixed N , where N is the number of rows, so λ being
asymptotically slower than log k guarantees this since N will always be at least log k.

50

Proof. Observe the failure probability for PHFs as outlined before, which is
∑λ−1

i=0

(
N
i

)
pi(1−

p)N−i. Since λ is not fixed, we provide an upper bound for this sum as follows. Instead

of giving asymptotics for the whole sum, we upper bound each of the three terms in-

side the sum, and multiply this product by λ (the number of terms in the sum). Since

λ grows slower than log k, we obtain an upper bound of λ
(
N
λ

)
(1−p)N−λ. By Stirling’s

approximation, this is asymptotically equal to f(p,N, λ) = λN
λ

λ!
(1− p)N−λ.

We desire to know what value of N satisfies
(
k
t

)
f(p,N, λ) < 1. But since one can

solve for N when
(
k
t

)
f(p,N, λ) = 1, and only concern ourselves with asymptotics,

we can now use the W (x) function as defined before. The value that N satisfies the

above equation asymptotically yields (after removing constant terms inside the W

function):

N =
λW

(
(λ!/

(
k
t

)
)1/λ
)

log(1− p) .

By Lemma 3.5, the numerator is asymptotically equal to:

λ log λ− log k − λ log log k − o(λ),

since log λ! ≈ λ log λ. The fact that 0 < p < 1 implies that log(1−p) < 0; multiplying

by -1 because of this gives the original theorem statement (since λ grows slower than

log k).

If λ is o
(

log k
(log log k)2

)
, then Theorem 3.14 improves upon Theorem 3.13; this can be

proved by solving for λ in the equation log k + λ log log k < log k +
√
λ log k. This is

a reasonable choice for the growth of λ, as Theorem 3.14 has λ being o(log k).

The bounds we derived here are log k+λ log log k+o(λ) for the upper bound, and

the simple bound of log k + λ for the lower one, which comes directly from Fact 10.

Even though log log k is quite small compared to k, it is still not a constant, and it

would be of great interest in removing it if possible. One technique would be finding

a better asymptotic analysis on the failure probability, as the rest of the proof did not

51

use any result that is not asymptotically equal to what was derived; in other words, if

any improvement is to be made, its proof must improve on an asymptotic formulation

for the failure probability.

3.4 A Conditional Expectation Approach

Even though the probabilistic bounds obtained in the previous section have a large

gap between the lower and upper bound, we describe a new conditional expectation-

type approach to produce perfect hash families of higher index. Furthermore, the

method runs in polynomial time, provided that v, t, λ are fixed.

We briefly mention other computational approaches of PHFs. In astounding work,

Moser and Tardös [59] develop a constructive method for objects that matches the

bound provided by the LLL. Their method is randomized and runs in polynomial time,

if the conditions of the LLL are satisfied. The high-level idea of the algorithm (in the

context of hash families) is to select each entry uniformly at random, and if a t-set of

columns is not separated, then resample all entries in those t columns; finally, repeat

the procedure until all t-sets of columns are separated. However, this method suffers

from being (1) randomized, and therefore running in expected polynomial time; and

(2) the random selections made may cause other t-sets that were previously separated

to not be any more.

A more commonly used approach involves constructing the hash family one row

at-a-time, while removing t-sets that become separated from a maintained list once

a row separates them. This is advantageous in that there is definite progress in

constructing the hash family, but disadvantageous in that the
(
k
t

)
sets of columns

need to be stored in memory, and may produce more rows than what is guaranteed

by Moser and Tardös.

However, we can generate one row at a time in a straightforward way: randomly

52

generate a row until one separates at least the expected number of t-sets to be sepa-

rated for the first time in this row. Once this happens, append the row to the current

array.

This one row at-a-time approach still is randomized, so we outline how to deran-

domize it, which is given by Colbourn [25]. Define the density of a row r to be the

expected number of newly separated t-sets in r. A partial row is one that contains a

symbol ? in addition to the other symbols used in the PHF; such a symbol is to indi-

cate that it is “not yet determined.” We start with a partial row consisting entirely

of ? entries. If A,B are partial rows, then we indicate A → B when changing one

of the ? entries in A to a non-? entry in B (with all other entries identical). A fill

sequence is a sequence of the form Rk → Rk−1 → · · · → R0, where Ri is a partial row

for all 0 ≤ i ≤ k. Since Rk has k ? entries, we must have that R0 has no ? entries.

If we can guarantee that the density of Ri−1 is at least that of Ri for all i, then we

have successfully produced a desired row.

Suppose we are at the ith stage, and have Ri. Pick any ? entry in Ri; there are v

ways of assigning a non-? symbol to this entry. For each of the
(
k−1
t−1

)
ways of selecting

t − 1 other indices, and for each of the v symbols that may be assigned, calculate

the expected number of t-sets separated. Now assign the symbol that maximizes this

expectation; the resulting row, after fixing all k entries, is Ri−1. Since there must

be some symbol for which assigning it gives a partial row with density at least the

expectation, the density of Ri−1 is at least that of Ri.

The technique of column extension (CE) is, given a hash family, to append as many

columns as possible while retaining the separation property. It is effective because

assuming that the starting PHF separates all of its t-sets, only the ones involving the

new column(s) need to be considered. If one column is added at a time, then this

number is
(
k
t−1

)
, much smaller than

(
k
t

)
. One can then generate a simple randomized

53

procedure for column extension: for a PHF(N ; k, v, t) A, append a new column c to

A consisting of entries uniformly sampled from {1, · · · , v}. For all
(
k
t

)
t-sets S that

involve c, check if some row separates S; if not, then sample c again (or at least until a

limit is reached). But if all such sets are separated, then one can repeat the procedure

on the resulting PHF(N ; k + 1, v, t). If the limit is reached, then a randomly chosen

row is added, and repeat until a PHF(N ′; k + 1, v, t) with N ′ > N is formed. Such

a process has been used for CPHFs [34] and improvements for small-strength PHFs

have been found [45]. What makes CE powerful is not only because the number of

columns possible within a reasonable amount of computation time is larger than that

of density, but in the many improvements that can be made via recursive techniques,

most notably composition (because increasing columns for the first ingredient allows

the other ingredient to use more symbols).

The issue with higher-index PHFs is providing a natural generalization of the

density metric that meets the probabilistic bounds. A key idea is that the probabilistic

bounds guarantee a PHFλ exists. Suppose R rows have been generated, and the

probabilistic method guarantees a PHFλ on at most N > R rows. Therefore, we

generate the PHFλ, one row at a time as before, but instead generate the “best”

symbol at each position so that the PHFλ can be completed in N − R rows provided

this symbol is chosen. The next subsection describes the algorithm more precisely.

3.4.1 Details of the Density Algorithm for Higher-Index

Let A be an array with fewer than N rows (where N is given by the probabilistic

method), exactly k columns, over v symbols, and let T be a t-set of columns. Define

φ(T,A) to be the number of times that T is separated in array A, and p =
(
v
t

)
t!/vt.

Suppose that |A| rows have been built, and we are to construct another row ρ;

without loss of generality, suppose that ρ is partially built, and we want to assign a

54

value for column c in ρ. We iterate over all t-sets that have not been separated at

least λ times; suppose this collection of sets is T , and the observed t-set is T . If T

currently has a duplicate in ρ, then it is impossible for T to be separated one more

time in ρ, regardless of whether there exist any unfixed entries corresponding to T .

Otherwise, there is a probability p that T will be separated in ρ, depending on the

number of unfixed entries corresponding to T .

At this point, the method is very similar to the density algorithm of Colbourn.

However, we make the following addition; instead of separating at least the average

number of t-sets in ρ, we separate as much as possible so that when (at most) N rows

are constructed, strictly less than 1 t-set will remain unseparated (in expectation if

all remaining entries are chosen at random). If T is separated φ(T,A) times before

the addition of ρ, then T ’s expected number of times remaining to be separated is

max(0, λ− (p× (φ(T,A) + 1) + (1− p)×φ(T,A))) So, we then calculate the expected

number of t-sets not λ-separated within the remaining rows to be constructed. This

method is illustrated in Algorithm 1.

For computational efficiency, we set the first row to have value i (mod v) for each

column i; in other words, the first row cycles through the symbols so that each symbol

appears as equally often as possible. Also, we iterate through the t-sets of columns

in colexicographic order , which is placing a t-set T1 before T2 if and only if the largest

element in T2 \ T1 is larger than that of T1 \ T2. This way, for each column index

i ≥ t− 1, each t-set having all of its columns at most i will be examined before any

t-set with some index ≥ i+ 1. This method has been used successfully in the context

of CPHFs [34].

Lemma 3.6. In each iteration of the while loop of Algorithm 1, at least one t-set

that is not λ-separated will be separated in the row that is generated.

55

Algorithm 1 One Row-At-A-Time Method to Produce PHFs of higher index.

1: procedure ConditionalExpectation(k, v, t, λ)

2: A← empty array.

3: p←
(
v
t

)
t!/vt.

4: Set N to be the smallest value so that
(
k
t

)∑λ−1
i=0

(
N
i

)
pi(1− p)N−i < 1.

5: Set g(x, T,N,A) =
∑λ−φ(T)−x

i=0

(
N−|A|−1

i

)
pi(1− p)N−|A|−i−1.

6: while some t-set T is separated fewer than λ times in A do

7: T ← the set of t-sets not λ-separated in A.

8: ρ← a row of k indeterminates.

9: for each column 1 ≤ c ≤ k in any order do

10: for each value 1 ≤ s ≤ v in any order do

11: for each T ∈ T in any order do

12: f ← the number of columns of T fixed in ρ, not including c.

13: if ρ has a duplicate in the fixed values corresponding to T in-

cluding setting s in column c of ρ then

14: χ(T, s)← 0.

15: else

16: χ(T, s)← (v − f) · · · (v − f + 1)/vt−f .

17: end if

18: end for

19: calcs ←
∑

T∈T χ(T, s) · g(2, T,N,A) + (1− χ(T, s)) · g(1, T,N,A).

20: end for

21: ρ[c]← any symbol s with smallest calcs value.

22: end for

23: Append ρ to A, and update T accordingly.

24: N ← smallest value such that
∑

T∈T g(1, T,N,A) < 1.

25: end while

26: end procedure 56

Proof. Suppose a row ρ is generated that does not separate any t-set once. Let A

be the array before the addition of ρ, and let A′ be derived from appending ρ to A.

Since g(1, T,N,A) < g(1, T,N,A′), this is a contradiction because the values picked

in ρ are such that they do not increase the expected number of unseparated t-sets for

the remaining rows, and having 1 fewer row and the same t-sets left would always

increase the expectation.

Theorem 3.15. Algorithm 1 generates a PHFλ(N ; k, v, t) where N obeys the bound

of Theorem 3.13, and is asymptotically less than that of Theorem 3.14.

Proof. First note that Algorithm 1 does in fact generate a PHFλ (because at least

one t-set is separated once in each iteration by Lemma 3.6, and there are finitely

many of them not λ-separated), so it suffices to prove that the bound for N is met.

Furthermore, since N is explicitly set to be the smallest value for which the bound

is met after each row is constructed (as well as the smallest value of N that satisfies

the bound at the start of the algorithm), it suffices to show that the updated value

of N at the end of the while loop never increases.

This is true because at least one value s will have its associated calcs value be at

most the expected number of unseparated t-sets if the rest of the to-be-built entries are

randomly determined (depending on whether or not the considered t-set is separated

one more time in the row being built), so the expected number of unseparated t-sets

always is strictly less than 1. Since a PHFλ is produced, then it must have exactly 0

unseparated t-sets, because the number of such sets always is an integer for an explicit

array. Therefore, the number of rows produced is at most the stated bound.

Theorem 3.16. Let v, t, λ be fixed. Then Algorithm 1 generates a PHFλ(N ; k, v, t)

in time polynomial in k.

Proof. We first claim that g(x, T,N,A) can be computed in polynomial time, when x

57

is fixed, as it is equal to either 1 or 2 in the algorithm. There are a constant number

of choices of i, since λ is fixed, and the values pi, (1− p)N−|A|−i−1 can be computed in

polynomial time due to repeated squaring. The value of p can be computed in constant

time because v, t are fixed, and p does not change value throughout the algorithm.

Furthermore,
(
N−|A|−i

i

)
can be computed in polynomial time because there are only

a constant number of multiplications being performed, and because N is polynomial

in the size of k by either Theorem 3.13 or Theorem 3.14: both bounds are at most

λ log k, and since λ is fixed, then N is at most O(log k).

Since t is fixed, there are only a polynomial number of t-sets (in k). Therefore,

the polynomial-time guarantee almost follows from the analogous proof by Colbourn

[25], with the exception of the last step in Algorithm 1. That calculation can be

performed in polynomial time because the sum involves polynomially many terms,

and the smallest value of N that satisfies the equation can be found in polynomial time

(in the size of k) by binary search, since N will obey the bound of Theorem 3.13.

An illustration of the bounds of Theorem 3.14 (blue), Theorem 3.13 (red), and

that arising from Algorithm 1 (black) are presented in Figure 3.1, provided that λ

is sufficiently small relative to k. When k is small, the red line will be smaller than

the blue line. However, when k is sufficiently large, the blue line will be smaller

than the red line. At all choices of k, the black line will always be smaller than the

minimum of the two other lines. In addition, although we do not know the exact

asymptotics of PHFNλ, they must obey a bound that is similar to that of the blue

line, since log k + λ ≤ PHFNλ ≤ log k + λ log log k + o(λ), and log log k is relatively

small compared to k.

58

k

N

Figure 3.1: Example Asymptotics Rrom Theorem 3.14 (Blue), Theorem 3.13 (Red),
and Algorithm 1 (Black), Provided the Index Is Sufficiently Small Relative to the
Number of Columns.

3.4.2 Computational Results of the Conditional Expectation Algorithm

Here we showcase results from generating PHFλs using Algorithm 1. We chose

3 ≤ t ≤ 6 because these small strengths are useful in practical domains (see [23]). For

each choice of t, we specified a maximum number of columns kt and different symbol

choices for each t. For t = 3, we chose v ∈ {3, 4, 5, 6}; for t = 4, we chose v ∈ {4, 6, 8};

for t = 5, we chose v ∈ {5, 10}; and for t = 6, we chose v ∈ {6, 12}. The choices of v

for strengths 4, 5, and 6 are to showcase a significant difference in the number of rows

produced (compared to when v = t), but to highlight the “logarithmic curve” in the

scatter plots. All different choices of v were not selected here for t ∈ {4, 5, 6} because

a small number of additional symbols would not highlight much of a difference in the

value PHFNλ as much as when t = 3; however, we expect the curve to have the same

shape for non-selected v, along with higher λ choices be somewhat better than scaling

the λ = 1 plot up by the associated index.

59

0 50 100 150 200 250 300

0

20

40

60

80

100

k

N
λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.2: Conditional Expectation Results for at Most 300 Columns, 3 Symbols,
Strength 3, and Index at Most 5.

We generated PHFλs for all k and corresponding number of symbols v such that

v ≤ k ≤ kt, 1 ≤ λ ≤ 5. Our choices of maximum columns were k3 = 300, k4 = 100,

k5 = 55, and k6 = 40. These choices of kt were chosen as an approximation for(
kt
t

)
=
(
kt+1

t+1

)
. The results are shown in Figures 3.2 to 3.12.

Recall that Algorithm 1 initially chooses the estimate such that strictly less than 1

t-set will remain not λ-separated. However, the results in Figures 3.2 to 3.12 indicate

that this estimate is not often close to the actual number of rows produced. What we

can do instead is find a “good” estimate N , regardless of the initial expected number

of unseparated t-sets initially , such that at the end, no t-sets remain unseparated.

Essentially, we are “bypassing” the need to update the estimate at each iteration of

the while loop so that “better” symbols can be chosen in earlier rows.

Furthermore, one would expect that the number of rows would be smaller because

for the first few rows, the value of g(x, T,N,A) would make a better judgment of

what symbol to place in each entry. Note that Algorithm 1 is a one row at a time

method, and hence when a row is produced, it is never modified. So if N initially is

60

0 50 100 150 200 250 300

0

20

40

60

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.3: Conditional Expectation Results for at Most 300 Columns, 4 Symbols,
Strength 3, and Index at Most 5.

0 50 100 150 200 250 300

0

10

20

30

40

50

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.4: Conditional Expectation Results for at Most 300 Columns, 5 Symbols,
Strength 3, and Index at Most 5.

61

0 50 100 150 200 250 300

0

10

20

30

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.5: Conditional Expectation Results for at Most 300 Columns, 6 Symbols,
Strength 3, and Index at Most 5.

0 20 40 60 80 100

0

50

100

150

200

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.6: Conditional Expectation Results for at Most 100 Columns, 4 Symbols,
Strength 4, and Index at Most 5.

62

0 20 40 60 80 100

0

20

40

60

80

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.7: Conditional Expectation Results for at Most 100 Columns, 6 Symbols,
Strength 4, and Index at Most 5.

0 20 40 60 80 100

0

10

20

30

40

50

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.8: Conditional Expectation Results for at Most 100 Columns, 8 Symbols,
Strength 4, and Index at Most 5.

63

0 10 20 30 40 50 60

0

100

200

300

400

500

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.9: Conditional Expectation Results for at Most 55 Columns, 5 Symbols,
Strength 5, and Index at Most 5.

10 20 30 40 50

0

20

40

60

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.10: Conditional Expectation Results for at Most 55 Columns, 10 Symbols,
Strength 5, and Index at Most 5.

64

10 20 30 40

0

200

400

600

800

1,000

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.11: Conditional Expectation Results for at Most 40 Columns, 6 Symbols,
Strength 6, and Index at Most 5.

10 15 20 25 30 35 40

0

20

40

60

k

N

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 3.12: Conditional Expectation Results for at Most 40 Columns, 12 Symbols,
Strength 6, and Index at Most 5.

65

an estimate that is very far from the truth, symbol choices in earlier rows may cause

more rows at the end to be formed. This modification of Algorithm 1 is given in

Algorithm 2.

Algorithm 2 Updated One Row-At-A-Time Method to Produce PHFs of higher

index.
1: procedure UpdatedConditionalExpectation(k, v, t, λ)

2: N ← 1.

3: Run Algorithm 1 with parameters k, v, t, λ, and N to be the initial estimate

(where N is not modified throughout that algorithm).

4: Repeatedly run the previous step until it successfully generates a PHFλ with

these parameters (by finding the “correct” choice of N via binary search).

5: end procedure

However, in all examples of PHFs generated via Algorithm 2, the number of rows

produced is nearly identical to that of Algorithm 1. We illustrate this with Tables 3.3

and 3.4, wherein PHF4s were generated with k ≤ 50, v = t = 3. Both Algorithms 1

and 2 were tested, and the number of rows is produced in these tables. The last

column contains the initial expected number of unseparated t-sets for Algorithm 2.

We can see that neither algorithm is the true winner here for all k ≤ 50, but

rather both algorithms are better some of the time. We give a possible explanation

for why this occurs. Recall the failure probability for PHFλs again:
∑λ−1

i=0

(
N
i

)
pi(1 −

p)N−i. Even if the number of rows is relatively small compared to the number of

rows produced in these tables, then this failure probability is still quite small. This

is indicative of how PHFs, at least in the first few rows, have many choices of what

symbols to place. After sufficiently many rows are added, and only a few t-sets remain

to be separated, then what symbol to place makes much more of a difference. This

reasoning is essentially why these two algorithms perform very similarly: after many

66

rows are added, Algorithm 1 has the given estimate much closer to what Algorithm 2’s

estimate would be after the same number of rows. Why there is a difference in the

number of rows entirely is dependent on the estimate of N , and how there the two

estimates are not initially similar to each other.

3.5 Conclusion

In this chapter, we investigated perfect hash families of higher index, specifically

how to construct them (both algorithmically and with a new recursive construction),

bounds on their sizes.

In addition to ensuring that every t-set of columns be separated at least λ times,

one might address the more stringent requirement that every t-set be separated at

least λ and at most λ times. When λ = λ, such a PHF is perfectly balanced [3].

Alon and Gutner [3] establish that a perfectly balanced PHFλ(N ; k, v, t) can exist

only when N = Ω(kbt/2c) for t fixed. Contrast this with the Θ(log k) growth rate for

PHF1s to understand why perfectly balanced PHFs are not frequently used. On the

other hand, a PHF(N ; k, v, t) is δ-balanced for some δ ≥ 1 if there is a value T > 0 so

that every t-set of columns is separated at least T
δ

and at most δT times [4]. Alon and

Gutner [4] show that for any fixed δ > 1, there is a δ-balanced PHF(N ; k, v, t) with

N close to 2O(t log log t) log k; so, for fixed t, the growth rate is the same as for PHF1s.

Their approach relies (in small part) on the binomial distribution of the number of

times a t-set is separated and the application of Chernoff bounds. Moreover, their

techniques yield an explicit construction method in principle; its practical effectiveness

for intermediate values of k has not been explored.

When δ-balanced PHFs are used in Theorem 2.1 with different t-restrictions, the

array constructed inherits from the balanced PHF a lower bound on the number of

rows in which the t-restriction is met. However, the t-restriction may be met in a

67

k N (Algorithm 1) N (Algorithm 2) Initial Unseparated t-Sets (Algorithm 2)

4 12 12 2.93

5 12 16 6.20

6 16 15 9.16

7 21 20 11.21

8 24 21 15.77

9 23 23 13.54

10 27 26 10.47

11 26 27 16.86

12 28 28 16.35

13 30 29 18.06

14 32 32 11.69

15 33 33 10.30

16 36 35 17.99

17 35 36 15.39

18 36 38 15.46

19 38 36 21.93

20 39 38 18.04

21 38 40 14.63

22 40 38 11.70

23 38 39 28.03

24 40 42 12.75

25 38 41 25.30

26 42 44 16.38

27 44 43 18.43

Table 3.3: Comparison of Algorithm 1 and Algorithm 2 With at Most 27 Columns,
3 Symbols, Strength 3, and Index 4.

68

k Algorithm 1 Algorithm 2 Estimated Number of Unseparated t-Sets

28 44 43 20.64

29 43 45 15.77

30 44 45 21.19

31 46 47 16.03

32 45 46 21.41

33 47 47 16.06

34 47 46 14.52

35 46 47 19.26

36 50 48 17.32

37 49 50 12.77

38 50 48 24.83

39 50 50 12.34

40 50 49 16.23

41 49 50 21.29

42 51 52 15.50

43 49 52 13.68

44 50 52 12.04

45 53 51 23.31

46 52 52 11.31

47 53 52 17.97

48 54 52 19.17

49 53 52 24.87

50 53 53 21.72

Table 3.4: Comparison of Algorithm 1 and Algorithm 2 With Between 28 and 50
Columns, 3 Symbols, Strength 3, and Index 4.

69

row arising from a row of the PHF despite failure of the PHF to separate in this row;

hence balanced PHFs need not result in balanced t-restrictions through Theorem 2.1.

For these reasons, it is reasonable to focus on extending known methods, and finding

new methods, for constructing perfect hash families of index λ > 1. We hope that

this chapter would inspire future research in PHFs of higher index.

70

Chapter 4

FRACTAL HASH FAMILIES

In this chapter, we consider the relationship between the maximum number of

columns and the number of symbols for when the number of rows for a hash family

is relatively small; precisely, when N < t. A theorem of Walker and Colbourn [79]

shows that when k > v, then N ≥ d t+1
2
e. When N < t, as the number of symbols

approaches infinity, the ratio k
v

approaches a constant, provided that k is as large as

possible relative to v. Therefore, in this situation, the maximum number of columns

possible is linear in the number of symbols. There are three cases:

• k is superlinear in v when N ≥ t;

• k is linear in v when t > N ≥ d t+1
2
e; and

• k = v otherwise.

A theorem of Blackburn investigates the asymptotics of the second case, when k

is linear in v. The contributions of this chapter are as follows. First, the method

is generalized from homogeneous hash families (in which every row has the same

number of symbols) to heterogeneous ones. Second, the extension treats distributing

hash families, in which only separation into a prescribed number of parts is required,

rather than perfect hash families, in which columns must be completely separated.

Third, the requirements on one of the main ingredients are relaxed to permit the

use of a large class of distributing hash families, which we call fractal. Constructions

for fractal perfect and distributing hash families are given, and applications to the

construction of perfect hash families of large strength are developed.

71

This chapter has been published in [29], and is currently accepted in [30], for when

λ = 1. We provide a generalization to higher index hash families in Theorem 4.6.

4.1 Linear Bounds on Numbers of Columns

One of the most common uses of perfect hash families is in the construction of

covering arrays, as suggested by Theorem 2.1, and some improvements in the number

of rows in the formed covering array can be made. Colbourn [26] generalized this

theorem further to employ distributing hash families.

Theorem 4.1. Let k ≥ min(t, v). Suppose that there exist a DHF(M ; `, k, t,min(t, v))

and a CA(N ; t, k, v) having ρ constant rows. Then a CA(ρ+ (N − ρ)M ; t, `, v) exists.

Colbourn and Torres-Jiménez [38] improved upon Theorem 4.1 in two ways: judi-

ciously choosing symbols on which to place the constant rows (i.e., a row that contains

exactly one symbol), and using heterogeneous hash families.

Theorem 4.2. Suppose that there exist

1. a CA(Ni; t, ki, v) having ρi constant rows and ki ≥ t for 1 ≤ i ≤ c, and

2. a DHHF(M ; `, ku11 · · · kucc , t,min(t, v)).

Let χ = max(0, v −∑c
i=1 ui(v − ρi)). Then a CA(χ+

∑c
i=1 ui(Ni − ρi); t, `, v) exists.

Effective applications of Theorems 2.1, 4.1 and 4.2 require that both the covering

arrays and the hash families employed have a “small” number of rows. We investigate

families of this form further. A method of Blackburn [15] establishes:

Lemma 4.1. For positive integers a1, . . . at, set τ =
∏t

i=1 ai, and bi = τ
ai

for 1 ≤

i ≤ t. A PHHF(t; τ, (b1, . . . , bt), t) exists in which every set of 1 ≤ ` ≤ t columns is

separated in at least t+ 1− ` rows.

72

Proof. Form a t× τ array A, indexing columns by {1, . . . a1}× · · · × {1, . . . at}. Form

row j by ensuring that two columns contain the same symbol if and only if their indices

agree in all coordinates other than the jth coordinate. Suppose to the contrary that

for some 1 ≤ ` ≤ t, at most t − ` rows separate the ` columns c1, . . . , c`. Form

an edge-coloured graph G on vertex set {c1, . . . , c`}; for each row r that does not

separate the ` columns, place an edge of colour r between two column indices whose

columns contain the same symbol in row r. Then G has ` vertices and at least ` edges

each having a different colour. So G contains a cycle (x0, . . . , xs−1) for some s ≤ `.

Suppose that edge {x0, xs−1} has colour r. Then the columns indexed by x0 and xs−1

are the same in all rows other than r but differ in row r. On the other hand, for

0 ≤ i < s − 1, edge {xi, xi+1} does not have colour r, and hence the columns agree

in row r. This is a contradiction because the columns indexed by x0 and xs−1 must

both agree and disagree in row r.

Lemma 4.1 produces a PHF(t; at, at−1, t) and hence a DHF(t; at, at−1, t, p) for every

a ≥ 2 and t ≥ p. Hence the maximum number of columns grows superlinearly in the

number of symbols for DHHFs with t ≥ p ≥ 2 whenever the number of rows is at

least t. We are primarily interested in cases where the number of rows is less than

the strength t. In these cases, the number of columns cannot exceed a linear function

of the number of symbols:

Lemma 4.2. Let t ≥ p ≥ 2 and t > n. If a DHHF(n; k, (w1, . . . , wn), t, p) exists,

k ≤∑n
i=1wi.

Proof. We adapt an argument from [13]. Let w = (w1, . . . , wn). When p ≥ 3, a

DHHF(n; k,w, t, p) is also a DHHF(n; k,w, t, p− 1), so consider a DHHF(n; k,w, t, 2),

say A. If n = 1, any repetition in the single row prevents the array from being a DHHF;

hence k ≤ w1. Otherwise choose a row having the fewest symbols, say without loss

73

of generality the first row having w1 symbols. Choose m ≤ w1 columns so that in the

first row, every symbol that occurs among the columns not chosen also appears among

the columns chosen. By deleting the first row, and the m chosen columns, we obtain

an (n−1)×(k−m) array B that we claim is a DHHF(n−1; k−m, (w2, . . . , wn), t−1, 2).

Provided this claim holds, the lemma follows by induction.

Suppose otherwise that there is a partition into 2 parts {C1, C2} of some (t− 1)-

set of columns of B that is not separated by any row of B. Let σ be a symbol that

appears in one of the columns in C1 in the first row of A, and let c be one of the

chosen columns that contains σ in the first row of A. Then no row of A separates the

partition {C1, C2 ∪ {c}}, a contradiction.

Lemma 4.2 can be often improved upon, by adapting a method of Blackburn [15]

for perfect hash families to treat DHHFs when the number of parts is large enough.

Let A be a DHHF(n; k, (w1, . . . , wn), n+ d, p) with d ≥ 1. Call a cell a singleton if the

symbol it contains does not occur anywhere else in its row. Form an n× k matrix B,

the singleton array of A, setting the entry in row r and column c equal to 1 if the cell

(r, c) of A is a singleton, and equal to 0 otherwise.

Lemma 4.3. Let B be the singleton array of a DHHF(n; k, (w1, . . . , wn), n+ d, p), A,

with p ≥ d + 1 ≥ 2. Then for every d-set of columns, {c1, . . . , cd}, of B, there is

at least one row r of B in which the entry in row r and column ci equals 1 for all

1 ≤ i ≤ d.

Proof. Suppose to the contrary that A is a DHHF(n; k, (w1, . . . , wn), n + d, p) with

p ≥ d + 1, B is its singleton array, and for columns C = {c1, . . . , cd}, no row of B

has the d entries in these columns all equal to 1. For each row r = 1, . . . , n, there is

a column cr ∈ C so that the entry of A in row r and column cr is not a singleton.

Then let dr 6= cr be a column index so that in row r, the entries of A in columns cr

74

and dr are the same. Now we form a partition of at most n+ d columns of A into at

most d+ 1 classes that is not separated by any row of A. First, for every c ∈ C such

that c = cr for some r, form a class containing just the column index c. Next, form

a class {dr : 1 ≤ r ≤ n} \ {cr : 1 ≤ r ≤ n}. It follows that cr and dr are in different

classes for each 1 ≤ r ≤ n, so no row accomplishes this separation. Because |C| = d,

we have chosen a partition of at most n+ d columns of A into at most d+ 1 classes,

and hence we have the required contradiction.

If one singleton from each column of a DHHF(n; k, (w1, . . . , wn), n + d, p) can be

identified, then k singletons are identified and the number of identified singletons in

row r is at most wr for 1 ≤ r ≤ n. Using this argument it can be seen that Lemma

4.3 improves on Lemma 4.2 when p ≥ d+ 1 ≥ 2.

For certain parameters, a stronger conclusion can be obtained via the following

argument. Form a multigraph G on vertex set {cr, dr : 1 ≤ r ≤ n} with edges {{cr,

dr} : 1 ≤ r ≤ n}. When G can be properly coloured with γ colours, the array A

cannot be a DHHF(n; k, v, n + d, γ). When on the columns {c1, . . . , cd} some rows

contain multiple entries that are not singletons, we may be able to choose {cr, dr}

for certain values of r in more than one way, and hence choose G so as to reduce the

chromatic number of G.

4.2 Fractal Hash Families

Later we describe a construction for DHHFs with a number of rows smaller than the

strength, which uses ingredient hash families that are required to satisfy an additional

constraint. The hash families to be introduced always have a number of rows equal

to the strength t. Lemma 4.1 produces a PHF(t; at, at−1, t) whenever a, t ≥ 2, so

the number of columns grows faster than linearly in the number of symbols for a

DHF(t; k, w, t, p) with t ≥ p ≥ 2.

75

However, we can see that the growth of the number of columns is limited:

Theorem 4.3. [62] If a DHF(t; k, w, t, p) exists then k ≤ w2. Moreover, if t ≥ 4,

k ≤ w2 − w.

Indeed the growth rate is less than quadratic asymptotically:

Theorem 4.4. [69] Let t ≥ 4 and let k(w) be the largest integer for which a DHHF(t; k(w),

w, t, p) exists. Then k(w) is o(w2).

A DHHF(t; k, (v1, . . . , vt), t, p) is fractal if t ≤ 2, or if, for each row j, deleting

row j yields a fractal DHHF(t − 1; k, (v1, . . . , vj−1, vj+1, . . . , vt), t − 1,min(p, t − 1)).

Fractal PHHFs are simply fractal DHHFs with p = t. A DHHF(t; k, (v1, . . . , vn), t, p) is

α-fractal if it is fractal and at least α rows of the DHHF contain all distinct symbols.

The following equivalence is straightforward:

Lemma 4.4. An array is an α-fractal DHHF(t; k, (v1, . . . , vt), t, p) with α ≥ 1 if and

only if it has a row r containing all distinct symbols and the remaining rows form an

(α− 1)-fractal DHHF(t− 1; k, (v1, . . . , vr−1, vr+1, . . . , vt), t− 1,min(p, t− 1)).

One characterization of fractal DHHFs follows:

Lemma 4.5. A DHHF(t; k, (v1, . . . , vt), t, p) is fractal if and only if every partition of

` of its columns into min(p, `) classes is separated by at least t+ 1− ` rows.

Proof. Suppose that there is some set S of ` columns with 1 ≤ ` ≤ t and some

partition {C1, . . . , Cmin(p,`)} of S into min(p, `) classes, so that exactly ρ ≤ t− ` rows

separate the classes. The t− ρ ≥ ` remaining rows, say without loss of generality the

first t − ρ rows, do not form a DHHF(t − ρ; k, (v1, . . . , vt−ρ), t − ρ,min(`, p)) because

none of the rows separates classes C1, . . . , Cmin(p,`). So the DHHF(t; k, (v1, . . . , vt), t, p)

cannot be fractal.

76

In the other direction, if A is not a fractal DHHF(t; k, (v1, . . . , vt), t, p), then some

set of ` rows with 2 ≤ ` ≤ t, say without loss of generality the first ` rows, must yield

an array B that is not a DHHF(`; k, (v1, . . . , v`), `,min(p, `)). Let {C1, . . . , Cmin(p,`)}

be a partition that is separated by no row of B. Then {C1, . . . , Cmin(p,`)} is separated

in A by at most t− ` rows.

4.2.1 Fractal DHHFs

Lemma 4.6. Whenever t <
(
p+1

2

)
, every DHHF(t; k, (w1, . . . , wt), t, p) is a PHHF(t; k,

(w1, . . . , wt), t).

Proof. Let A be an HHF(t; k, (w1, . . . , wt)) that is not a PHHF(t; k, (w1, . . . , wt), t).

Choose columns {c1, . . . , ct} not separated by any row of A. Form a multigraph G

with t vertices, {c1, . . . , ct}; for each row, choose a pair of columns ci and cj having

the same symbol in this row and add {ci.cj} as an edge. Because G has t edges and

t <
(
p+1

2

)
by assumption, G has a proper colouring in p colours. (A simple greedy

colouring establishes that if p+ 1 colours were needed, the number of edges must be

at least
∑p

i=1 i =
(
p+1

2

)
.) Let {C1, . . . , Cp} be the colour classes of a proper colouring

in p colours. Then the partition {C1, . . . , Cp} of t columns of A is not separated by

any row of A, so A is not a DHHF(t; k, (w1, . . . , wt), t, p).

PHF(4;5,4,4)

1 1 2 3 4

1 2 2 3 4

1 2 3 3 4

1 2 3 4 4

DHF(4;10,4,4,2)

1 1 1 2 2 2 3 3 3 4

1 2 3 1 2 3 1 2 3 4

1 2 3 2 3 1 3 1 2 4

1 2 3 3 1 2 2 3 1 4

Table 4.1: A PHF(4;5,4,4) and a DHF(4;10,4,4,2).

77

By restricting the number of parts, fractal DHHFs can exist with more columns

than the corresponding fractal PHHFs. An example is given in Table 4.1. According to

Niu and Cao [62], every HF(4; k, 4) that accomplishes every separation of four columns

into two classes of size two must have k ≤ 10, and the array shown accomplishes

every such separation with k = 10. One can verify that the array also separates

all partitions of four columns into one class of size three and one of size one, and

hence is a DHF(4;10,4,4,2). Lemma 4.6 ensures that every DHF(4;k,4,4,3) must be a

PHF(4;k,4,4). A simple counting argument ensures that a PHF(4;k,4,4) has k ≤ 5.

Hence while any PHF(4;k,4,4) or DHF(4;k,4,4,3) has k ≤ 5, restricting the number of

classes in the partition to two doubles the number of columns possible. We return to

this in the concluding remarks.

We mention one construction of DHHFs here:

Lemma 4.7. A fractal DHHF(3; a1a2, (a1, a1, a2), 3, 2) exists whenever a1 ≥ a2 are

positive integers.

Proof. Index columns by {0, . . . , a1 − 1} × {0, . . . , a2 − 1}, In column (a, b), place a

in row 1, b in row 3, and a+ b (mod a1) in row 2.

4.2.2 Construction of fractal PHHFs

A sufficient condition for a PHHF to be fractal follows.

Lemma 4.8. If a PHHF(t; k, (v1, . . . , vt), t) has at most one singleton in each row

then it is fractal.

Proof. We prove the result by induction on t. The result is trivial when t ≤ 2. Let A

be a PHHF(t; k, (v1, . . . , vt), t) with t ≥ 3 that has at most one singleton in each row.

Let B be the array obtained from A by deleting an arbitrary row of A, say the last

78

without loss of generality. It suffices to show that B is a PHHF(t− 1; k, (v1, . . . , vt−1),

t− 1), because then it will follow that B is fractal by our inductive hypothesis.

Suppose otherwise that there is a (t−1)-set T of columns of B that is not separated

by any row of B. Since t − 1 ≥ 2 and there is at most one singleton in the last row

of A, there is a symbol σ that, in the last row of A, appears in some column in T and

also in some other column c that may or may not be in T . Then |T ∪{c}| ∈ {t− 1, t}

and no row of A separates the columns in T ∪ {c}, a contradiction.

Using Lemma 4.8, many PHHFs can be seen to be fractal. For example, Walker

and Colbourn [79] use a greedy construction of “triangle-free, 3-regular, resolvable

linear spaces (tfrrls)” to produce many PHF(3; k, v, 3)s having no singletons. Fuji-

Hara [51] gives an explicit construction of tfrrls using mutually disjoint spreads in

a generalized quadrangle, thereby proving that a PHF(3; q2(q + 1), q2, 3) exists when

q ≥ 3 is a prime power. Using generalized quadrangles in Hermitian varieties, he

also proved that a PHF(3; q5, q3, 3) exists for q a prime power. Lemma 4.1 produces a

fractal PHF(t; at, at−1, t); for t = 3, Fuji-Hara’s construction has many more columns,

suggesting that the easy method of Lemma 4.1 is far from optimal. See also [69] for

further improvements when t = 3 and when t = 4.

Fractal PHHFs can also be constructed recursively. The next result is based on

[79, Theorem 4.8].

Theorem 4.5. Suppose that a PHHF(t; k, (v1, . . . , vt), t) exists with k > t ≥ 2, and

that ` is a positive integer. Then a PHHF(t + 1; `k, (`v1, . . . , `vt, k), t + 1) exists. If

the PHHF of strength t is fractal, so is the PHHF of strength t+ 1.

Proof. Let A0, . . . ,A`−1 be copies of the (fractal) PHHF(t; k, (v1, . . . , vt), t) with sym-

bols renamed such that in each row the sets of symbols in Ai and Aj are disjoint when

i 6= j. Let B be the (t+ 1)× `k array, with columns indexed by {0, . . . , k − 1} × {0,

79

. . . , ` − 1}, obtained from [A0 · · ·A`−1] by appending a (t + 1)st row that contains

symbol c in column (c, s) for 0 ≤ c < k and 0 ≤ s ≤ `− 1.

Let T = {(ci, si) : 1 ≤ i ≤ t + 1} be a set of t + 1 column indices of B. If the

coordinates {ci : 1 ≤ i ≤ t + 1} are all distinct, then T is separated in row t + 1.

Otherwise |{ci : 1 ≤ i ≤ t + 1}| ≤ t and there is a row r of A that separates the set

{ci : 1 ≤ i ≤ t + 1}. Because no columns (c, si) and (d, sj) contain the same symbol

unless i = j, T is separated in row r of B.

Now we show that B is fractal when A is. Suppose that C is obtained by deleting

a row of B. If row t+ 1 is deleted, C is a fractal PHHF(t; `k, (`v1, . . . , `vt), t) because

A is fractal. If row i with 1 ≤ i ≤ t is deleted, then C is obtained by applying

the construction of this lemma to the fractal PHHF(t−1; k, (v1, . . . , vi−1, vi+1, . . . , vt),

t− 1) obtained from A by deleting row i. It therefore suffices to prove the statement

when t = 2 and this is routine to verify.

4.3 Blackburn’s Method, revised

To form a DHHF with n rows and strength n + d with 1 ≤ d < n, we generalize

a method due to Blackburn [15]. In order to construct PHFs, he used the ‘easy’

examples of fractal PHFs from Lemma 4.1 without defining and using the fractal

property explicitly. In addition to fractal DHHFs, we require a second ingredient, as

suggested by Lemma 4.3.

An (n,m, d, λ)-covering of type (ρ0, . . . , ρm−1) is a collection of n + λ− 1 subsets

{P0, . . . , Pn+λ−2} of {0, . . . ,m− 1} satisfying:

1. |{Pr : 0 ≤ r < n, Pr 3 c}| = ρc for 0 ≤ c < m; and

2. For every S ⊆ {0, . . . ,m − 1} with |S| = d, S is a subset of at least λ sets in

{P0, ..., Pn+λ−2}.

80

When λ = 1, we denote it as an (n,m, d)-covering.

Theorem 4.6. Suppose that there exist

• an (n,m, d, λ)-covering P = {P0, . . . , Pn+λ−2} of type (ρ0, . . . , ρm−1), and

• for each 0 ≤ c < m, a ρc-fractal DHHFλ(n + λ − 1; kc, (v0,c, . . . , vn−1,c), n, p) in

which, for 0 ≤ r < n, row r contains all distinct symbols when c ∈ Pr.

Then there exists a DHHFλ(n+ λ− 1;
∑m−1

c=0 kc, (w0, . . . , wn−1), n+ d, p′) where

wr =
∑m−1

c=0 vr,c for 0 ≤ r < n, and

p′ =

 p if p < n− d

n+ d if p ≥ n− d

 .

Proof. Let Ac be the ρc-fractal DHHFλ(n+λ−1; kc, (v0,c, . . . , vn−1,c), n, p) for 0 ≤ c <

m. Rename the symbols of each of {Ac : 0 ≤ c < m} so that in each row the sets of

symbols in Ai and Aj are disjoint when i 6= j. Set B = [A0 · · ·Am−1]. Then B has n

rows and
∑m−1

c=0 kc columns, and for each 0 ≤ r < n, there are wr different symbols

in row r. To show that B is a DHHFλ(n+ λ− 1;
∑m−1

c=0 kc, (w0, . . . , wn−1), n+ d, p), it

suffices to show that every partition of (n+ d) columns into p classes is separated at

least λ times.

Consider a (n+ d)-set T of column indices and a partition T of T into p′ classes.

For 0 ≤ c < m, let `c be the number of columns of Ac in T , and let Tc be the

restriction of T to the columns of Ac. Because every two of the {Ac : 0 ≤ c < m}

share no symbols, it suffices to show that there are λ rows of B that separates each

partition Tc for 0 ≤ c < m. Let L = {c : `c ≥ 2}, and let ν = |L|. Note that Ac

trivially separates Tc at least λ times for each c ∈ {0, . . . ,m} \ L.

If ν ≤ d, the (n,m, d, λ)-covering contains λ sets Pr1 , · · · , Prλ with L ⊆ Pri for

1 ≤ i ≤ λ. Then in rows r1, · · · , rλ, for each c ∈ L, Ac contains all distinct symbols

and therefore separates the partition Tc.

81

So suppose that ν > d. Then, for each 0 ≤ c < m, `c ≤ n− d and hence Tc has at

most min(p′, n− d) ≤ p nonempty classes. By Lemma 4.5, for each c ∈ L, Tc can fail

to be separated in at most `c−λ rows of Ac because Ac is a fractal DHHF for p parts.

Because ν > d,
∑m−1

h=0 max(0, `h−λ) ≤ (n+λ− 1) + d− (λ− 1)− ν = n+ d− ν < n,

and so at least λ rows of B separate each partition Tc for 0 ≤ c < m.

We employ an easy variant of Theorem 4.6 repeatedly when λ = 1:

Lemma 4.9. Suppose that d ≥ 1 and a PHHF(n;κ, (w1, . . . , wn), n+ d) exists.

(i) Whenever α, k ≥ 1, a PHHF(n+ α;κ+ αk, (w1 + αk)1 · · · (wn + αk)1(κ+ (α−

1)k + 1)α, n+ d+ 2α) exists.

(ii) In particular, whenever a PHF(n;κ,w, n+d) exists, a PHF(n+α;κ+α(κ−w+1),

κ+ (α− 1)(κ− w + 1) + 1, n+ d+ 2α) exists.

Proof. Statement (ii) follows from (i) by setting w1 = · · · = wn = w and k = κ+1−w,

so it suffices to prove (i). Furthermore, we only need to deal with the case where α = 1

because the remainder of the result follows by induction.

Append a row with κ distinct symbols to the PHHF(n;κ, (w1, . . . , wn), n + d) to

form A0. Form an (n+ 1)× k array A1 in which row n+ 1 contains k occurrences of

a single symbol, all other rows contain distinct symbols, and the sets of symbols in

A0 and A1 are disjoint. We claim that B = [A0A1] is the required PHHF.

Consider a (n+ d+ 2)-set T of column indices. If T contains at most one column

of A1, then T is separated by the last row of B. Otherwise, the restriction of T to the

columns of A0 contains at most n + d columns and so is separated by some row r of

A0 other than the last. Then row r of B separates T .

82

4.4 Applications

Between them, Theorem 4.6 and Lemma 4.9 provide a flexible framework for

constructing DHHFs. In Lemmas 4.10–4.17 we give more concrete applications of

these two results to producing PHFs and PHHFs with strength larger than their

number of rows. We conclude the section by considering the asymptotic ratio of

columns to symbols in large PHFs constructed by these lemmas.

We begin by choosing the covering in Theorem 4.6 to consist of all d-subsets of

an m-set, an (
(
m
d

)
,m, d)-covering.

Lemma 4.10. Let m > d ≥ 1 be integers. Suppose that a fractal

PHHF(
(
m−1
d

)
;κ, (w0, . . . , w(m−1

d)−1),
(
m−1
d

)
)

exists. Let σ be the sum of the m − d largest elements in {wi : 0 ≤ i ≤
(
m−1
d

)
− 1}.

Then a PHF(
(
m
d

)
;mκ, dκ+ σ,

(
m
d

)
+ d) exists.

Proof. Let A be the PHHF(
(
m−1
d

)
;κ, (w0, . . . , w(m−1

d)−1),
(
m−1
d

)
). Take the (

(
m
d

)
,m, d)-

covering {P0, . . . , P(md)−1} in which the sets are all of the d-sets of {0, . . . ,m − 1}.

This covering has ρc =
(
m−1
d−1

)
for all 0 ≤ c < m. Form a bipartite graph G with

vertex set {x0, . . . , x(md)−1}∪{y0, . . . , ym−1}, placing an edge between xr and yc when

the rth d-set does not contain the element c. Note degG(xi) = m− d for 0 ≤ i <
(
m
d

)
and degG(yi) =

(
m−1
d

)
for 0 ≤ i < m. So we can properly edge colour G with

(
m−1
d

)
colours {0, . . . ,

(
m−1
d

)
− 1}. Now apply Theorem 4.6. For each 0 ≤ c < m, use as

an ingredient the
(
m−1
d−1

)
-fractal PHHF Ac obtained from A by adding

(
m−1
d−1

)
rows of

distinct symbols and rearranging the rows in such a way that, when edge {xr, yc} of

G has colour `, row ` of A (with w` symbols) is row r of Ac. For 0 ≤ r <
(
m
d

)
, row

r of the resulting PHF has at most dκ + σ symbols because m − d distinct colours

occur at the vertex xr of G.

83

0 0 1 1 2 2 3 3 i j k `

0 1 0 1 e f g h 4 5 4 5

a b c d 2 3 2 3 4 4 5 5

Figure 4.1: A PHF(3; 12, 8, 4)

0 1 2 1 0 5 6 3 1 7 0 4

0 1 2 3 4 5 2 2 6 2 7 5

0 1 2 0 1 4 4 5 3 6 3 2

Figure 4.2: A PHHF(3; 12, (8, 8, 7), 4) .

To illustrate Lemma 4.10, we provide an example. Here is a PHF(2; 4, 2, 2):

0 0 1 1

0 1 0 1

Note that since there are 2 rows, we have m = 3, d = 1. Since the PHF here is

homogeneous, then σ = 4. So we will be forming a PHF(3; 12, 8, 4). The corresponding

3, 3, 1-covering is {{0}, {1}, {2}}, with ρc = 1 for all c. The bipartite graph formed

has 6 vertices, with 3 vertices in each part, and precisely 6 edges: {x0, y1}, {x0, y2},

{x1, y0}, {x1, y2}, {x2, y0}, {x2, y1}. This graph is isomorphic to C6, which can be

edge-colored with 2 colors, as expected, by alternating between two colors. We now

create the three Ac ingredients, obtained by adding 1 row of distinct symbols and

observing the edge color formed on the graph, shown in Figure 4.1 (a completely

different set of symbols is used for when the rows of distinct symbols are employed in

each ingredient). Vertical bars show partition the 12 columns into 3 sets of 4 columns

each.

Note that Lemma 4.10 is not optimal even in this case, because there exists a

PHHF(3; 12, (8, 8, 7), 4), shown in Figure 4.2, found by the satisfiability formula de-

scribed in Section 3.2.3. Two applications of Lemma 4.10, with d = 1 and d = n− 1,

84

are of particular interest.

Lemma 4.11. When a fractal PHHF(n−1;κ, (w1, . . . , wn−1), n−1) exists, a PHF(n;nκ,

κ+
∑n−1

i=1 wi, n+ 1) exists.

Proof. Apply Lemma 4.10 with (m, d) = (n, 1).

Lemma 4.12. For all n ≥ 2 and κ ≥ 1, a PHF(n;nκ, (n− 1)κ+ 1, 2n− 1) exists.

Proof. Apply Lemma 4.10 with (m, d) = (n, n − 1). (The PHHF ingredient has one

row and strength 1.)

Next we give other applications of Theorem 4.6 and Lemma 4.9 to handle cases

with d ∈ {n− 2, n− 3, n− 4, n− 5}.

Lemma 4.13. Suppose that a PHHF(2;κ, (w1, w2), 2) exists and n ≥ 3. Then

(i) When k ≥ 1, a PHHF(n; 3κ + (n − 3)k, (κ + (n − 3)k + w1 + w2)3(3κ + (n −

4)k + 1)n−3, 2n− 2) exists.

(ii) When w1 + w2 ≤ 2κ, a PHF(n; (2n − 3)κ − (n − 3)(w1 + w2 − 1), (2n − 5)κ −

(n− 4)(w1 + w2 − 1) + 1, 2n− 2) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting k = 2κ+1−w1−

w2. Lemma 4.11 establishes (i) when n = 3. Apply Lemma 4.9(i) with α = n−3.

Lemma 4.14. Suppose that a PHHF(2;κ, (w1, w2), 2) exists and n ≥ 6. Then

(i) When k ≥ 1, a PHHF(n; 6κ + (n − 6)k, (4κ + (n − 6)k + w1 + w2)6(6κ + (n −

7)k + 1)n−6, 2n− 3) exists.

(ii) When w1 + w2 ≤ 2κ, a PHF(n; (2n − 6)κ − (n − 6)(w1 + w2 − 1), (2n − 8)κ −

(n− 7)(w1 + w2 − 1) + 1, 2n− 3) exists.

85

Proof. It suffices to prove (i) because (ii) follows from (i) by setting k = 2κ + 1 −

w1 − w2. By Lemma 4.9(i) with α = n − 6, it suffices to treat the case when n = 6.

Form the 4-fractal PHHFs using the numbers of symbols in the columns given:

w1 w2 κ κ κ κ

κ w1 w2 κ κ κ

w2 κ w1 κ κ κ

κ κ κ w1 w2 κ

κ κ κ κ w1 w2

κ κ κ w2 κ w1

Let P0, . . . , P5 be the indices of the κ entries in the six rows. This yields the (6, 6, 3)-

covering. Apply Theorem 4.6.

Lemma 4.15. Suppose that a fractal PHHF(3;κ, (w1, w2, w3), 3) exists and n ≥ 6.

Then

(i) When k ≥ 1, a PHHF(n; 6κ + (n − 6)k, (3κ + (n − 6)k + w1 + w2 + w3)6(6κ +

(n− 7)k + 1)n−6, 2n− 4) exists.

(ii) When w1 + w2 + w3 ≤ κ, a PHF(n; (3n − 12)κ − (n − 6)(w1 + w2 + w3 − 1),

(3n− 15)κ− (n− 7)(w1 + w2 + w3 − 1) + 1, 2n− 4) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting k = 3κ+1−w1−

w2 − w3. By Lemma 4.9(i) with α = n − 6 it suffices to treat the case when n = 6.

We use a (6, 6, 2)-covering. For 0 ≤ j < 6, let Pj = {j, j + 1 mod 6, j + 3 mod 6}. To

form the 3-fractal PHHFs {A0, . . . , A5}, set

vrc =



w1 if 0 ≤ r < 6, 0 ≤ c < 6, c ≡ r + 2 (mod 6)

w2 if 0 ≤ r < 6, 0 ≤ c < 6, c ≡ r + 4 (mod 6)

w3 if 0 ≤ r < 6, 0 ≤ c < 6, c ≡ r + 5 (mod 6)

κ if 0 ≤ c < 6, and c ≡ r, r + 1, r + 3 (mod 6)

86

Apply Theorem 4.6.

Lemma 4.16. Suppose that a fractal PHHF(4;κ, (w1, w2, w3, w4), 4) exists and n ≥ 7.

Then

(i) When k ≥ 1, a PHHF(n; 7κ+(n−7)k, (3κ+(n−7)k+w1 +w2 +w3 +w4)7(7κ+

(n− 8)k + 1)n−7, 2n− 5) exists.

(ii) When w1+w2+w3+w4 ≤ 4κ, a PHF(n; (4n−21)κ−(n−7)(w1+w2+w3+w4−1),

(4n− 25)κ− (n− 8)(w1 + w2 + w3 + w4 − 1) + 1, 2n− 5) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting k = 4κ + 1 −

w1 − w2 − w3 − w4. By Lemma 4.9(i) with α = n − 7 it suffices to treat the case

when n = 7. We use a (7, 7, 2)-covering. When n = 7, for 0 ≤ j < 7, let Pj = {j,

j + 1 mod 7, j + 3 mod 7}. To form the 3-fractal PHHFs {A0, . . . , A6}, set

vrc =



w1 if 0 ≤ r < 7, 0 ≤ c < 7, c ≡ r + 2 (mod 7)

w2 if 0 ≤ r < 7, 0 ≤ c < 7, c ≡ r + 4 (mod 7)

w3 if 0 ≤ r < 7, 0 ≤ c < 7, c ≡ r + 5 (mod 7)

w4 if 0 ≤ r < 7, 0 ≤ c < 7, c ≡ r + 6 (mod 7)

κ if 0 ≤ c < 7, and c ≡ r, r + 1, r + 3 (mod 7)

Apply Theorem 4.6.

Finally we treat a special case with d = 2.

Lemma 4.17. If there exist

• a PHHF(2;κ2, (v1,2, v2,2), 2),

• a PHHF(2;κ3, (v1,3, v2,3), 2), and

• a fractal PHHF(3;κ1, (v1,1, v2,1, v3,1), 3),

87

then a PHHF(5; 2κ1 + 2κ2 + κ3, (w0, . . . , w4), 7) exists with w0 = κ1 + 2κ2 + v1,1 + v1,3,

w1 = κ1 + 2κ2 + v1,1 + v2,3, w2 = 2κ1 +κ3 + v1,2 + v2,2, w3 = κ2 +κ3 + v2,1 + v3,1 + v2,2,

w4 = κ2 + κ3 + v1,2 + v2,1 + v3,1.

Proof. Using a fractal PHHF(3;κ1, (v1,1, v2,1, v3,1), 3), a PHHF(2;κ2, (v1,2, v2,2), 2), and

a PHHF(2;κ3, (v1,3, v2,3), 2), form five PHHFs on 5 rows by placing the rows as indi-

cated in each column shown; when κi is specified, the row is all distinct symbols.

v1,1 κ1 κ2 κ2 v1,3

κ1 v1,1 κ2 κ2 v2,3

κ1 κ1 v1,2 v2,2 κ3

v2,1 v3,1 v2,2 κ2 κ3

v3,1 v2,1 κ2 v1,2 κ3

Let P0, . . . , P4 be the indices of the κ entries in the five rows. This yields the

(5, 5, 2)-covering. Apply Theorem 4.6.

Numerous cases have been handled by Lemma 4.10. We could take m = 5 and

d = 2 to yield PHFs with 10 rows and strength 12, or m = 5 and d = 3 to yield

PHFs with 10 rows and strength 13. However, Lemma 4.10 need not yield the best

result asymptotically, as shown by the (10, 10, 2)-covering with blocks 0169, 2379,

4589, 0178, 2368, 4567, 024, 035, 125, 134. Using ingredients with κ columns on

elements {0, . . . , 5}, and κ/2 on elements {6, . . . , 9}, the number of columns grows

like 8κ while the number of symbols grows like 3κ. Table 4.2 summarizes the best

asymptotic ratio of columns to symbols in large PHFs constructed using the lemmas

in this section; this extends somewhat a table from [15].

88

n ↓ d→ 1 2 3 4 5 6 7 8

2 4.11: 2

3 4.11: 3 4.12: 3
2

4 4.11: 4 4.13: 5
3

4.12: 4
3

5 4.11: 5 4.17: 9
5

4.13: 7
5

4.12: 5
4

6 4.11: 6 4.15: 2 4.14: 3
2

4.13: 9
7

4.12: 6
5

7 4.11: 7 4.16: 7
3

4.15: 3
2

4.14: 4
3

4.13: 11
9

4.12: 7
6

8 4.11: 8 4.16: 11
7

4.15: 4
3

4.14: 5
4

4.13: 13
11

4.12: 8
7

9 4.11: 9 4.16: 15
11

4.15: 5
4

4.14: 6
5

4.13: 15
13

4.12: 9
8

10 4.11: 10 4.16: 19
15

4.15: 6
5

4.14: 7
6

4.13: 17
15

Table 4.2: PHFs with Few Rows from Lemmas 4.10–4.17. For Each Case, the
Number of the Relevant Lemma, and the Asymptotic Ratio of the Number of Columns
to the Number of Symbols Achieved, Is Given.

4.5 Existence Tables

In order to assess the impact of using Blackburn’s construction for perfect hash

families using fractal ingredients, we have created tables on the best-known upper

bounds on PHFN(k, v, t) for k ≤ 109, v ≤ 2500, and 3 ≤ t ≤ 11 [45]. These tables

report on over 385,000 parameter situations. Of those, 2,658 are improvements that

result from the generalization of Blackburn’s theorem. Improvements were found

only for larger strengths, in particular when t ≥ 6. We provide here a representative

collection of improvements, restricting our attention to cases with N < t and v < 250.

Each table considers a selection of N and t; then kold is the largest number of columns

found without using the fractal version of the Blackburn construction, while kfractal

gives the largest number of columns obtained using in addition fractal PHHFs in the

Blackburn construction. In order to highlight the more significant improvements, we

89

only report cases when kfractal ≥ kold + 5. However, we do list all other improvements

(i.e., 250 ≤ v ≤ 2500, or kfractal − kold ≤ 4 for all v) in Appendix A. Naturally, other

recursive constructions can and do make further improvements, but we do not address

them here.

Table 4.3: Improvements for Strength 6, Four Rows

v 121 127 163 166 169 211 217

kfractal 188 198 256 260 266 334 344

kold 183 192 247 253 259 326 337

Table 4.4: Improvements for Strength 6, Five Rows

v 50 63 68 75 83 93 101 108 115 121 130 135 140 148

kfractal 90 135 140 155 175 205 225 240 255 265 290 295 300 320

kold 82 104 113 125 139 172 197 216 223 229 254 259 264 272

v 157 165 172 181 189 196 207 215 223 228 238 246

kfractal 345 365 380 405 425 440 475 495 515 520 550 570

kold 281 292 303 313 405 412 423 431 439 444 454 481

The use of fractal DHHFs and PHHFs in the Blackburn method leads to many

constructions for DHHFs with a number of rows less than the strength. Our motivation

for seeking these improvements has been to improve bounds for covering arrays. Many

improvements are reported in the online covering array tables [24]. We make no effort

to enumerate them here, contenting ourselves to mention a few illustrative examples.

Renaming symbols in each column of a covering array, we can always produce at

least one constant row. Then by Theorem 4.2, the existence of a PHF(4; 260, 166, 6)

and a CA(N ; 6, 166, v) ensures that a CA(4N − 4; 6, 260, v) exists. This yields the

smallest covering array for these parameters when v ∈ {7, 8, 9, 11, 12, 13}. Because

a PHHF(2; ab, (a, b), 2) exists whenever a, b ≥ 1, a PHHF(2; 55, (7, 8), 2) exists. Then

using Lemma 4.13(i) with k = 95, there is a PHHF(4; 260, 16531661, 6). Hence by

90

Table 4.5: Improvements for Strength 7, Five Rows

v 78 80 81 82 114 115 123 124 127 128 129 130 131 133

kfractal 116 120 121 122 174 175 189 190 194 196 198 201 202 204

kold 111 114 115 117 169 170 183 185 189 190 191 192 193 195

v 134 135 136 137 138 139 141 142 143 144 146 148 149 150

kfractal 205 207 208 209 210 214 217 218 219 224 226 228 233 234

kold 196 197 198 199 200 202 204 207 211 216 211 213 217 222

v 154 155 156 157 158 159 161 162 164 167 168 169 170 171

kfractal 238 239 240 242 244 246 248 252 257 260 264 265 266 268

kold 226 227 228 229 230 231 237 242 248 251 252 253 254 255

v 172 175 177 179 182 183 184 185 186 187 188 189 190 191

kfractal 269 273 276 281 284 287 288 289 290 292 294 297 298 299

kold 256 259 261 266 269 270 272 274 275 277 279 281 283 285

v 192 193 194 195 196 197 201 203 204 206 208 209 210 211

kfractal 304 305 306 307 308 312 316 318 320 326 328 329 333 334

kold 287 289 290 281 292 293 308 313 314 316 318 318 320 321

v 212 213 214 216 217 219 221 222 223 224 226 227 229 230

kfractal 335 336 340 343 344 346 348 349 350 354 360 362 365 366

kold 322 323 324 326 327 329 331 333 335 337 341 343 347 349

v 231 232 233 234 235 236 242 243 244 245 246 247 248 249

kfractal 367 368 369 273 377 380 386 387 388 389 389 391 393 398

kold 351 353 355 357 359 369 372 375 376 378 380 382 384 386

Table 4.6: Improvements for Strength 8, Six Rows

v 108 120 135 158 174 184 195 207 218 227 240

kfractal 162 192 216 240 270 288 300 324 336 360 384

kold 156 175 195 233 258 271 291 308 330 339 360

91

Table 4.7: Improvements for Strength 9, Six Rows

v 173 181 191 194 231 236 239

kfractal 240 252 264 270 324 330 336

kold 234 244 256 259 315 320 323

Table 4.8: Improvements for Strength 10, Seven Rows

v 191 215 239

kfractal 215 298 323

kold 253 280 318

Table 4.9: Improvements for Strength 11, Seven Rows

v 143 179 191 209 239

kfractal 183 230 245 269 308

kold 178 224 239 264 300

Theorem 4.2. if a CA(N ; 6, 165, v) and a CA(N ′; 6, 166, v) both exist, a CA(3N +N ′−

4; 6, 260, v) exists. This illustrates how the use of heterogeneous hash families can

reduce the number of rows in the covering array produced.

Using Lemma 4.11 with a fractal PHF(4; 81, 25, 4) (found by the method of [25])

yields a PHF(5; 405, 181, 6). Then by Theorem 4.2, the existence of a CA(N ; 6, 181, v)

ensures that a CA(5N −5; 6, 405, v) exists. This yields the smallest covering array for

these parameters when v ∈ {5, 7, 8, 9, 11, 13, 18, 19}.

Extending the Blackburn method to fractal and heterogeneous hash families there-

fore improves on known constructions for covering arrays even within the ranges cur-

rently tabulated at [24]. To see that the extension to distributing hash families is also

effective, we consider larger strengths. We use the framework of Lemma 4.16, taking

κ = 10. According to [25], a PHF(4; 10, 6, 4) exists, and it can be easily verified that

one is fractal. Then a PHHF(7; 70, 54, 9), and hence a DHHF(7; 70, 54, 9, p), exists for

all 2 ≤ p ≤ 9. Using instead the DHF(4;10,4,4,2) from Table 4.1 in the construction

92

of Lemma 4.16, we produce a DHF(7;70,46,9,2), using many fewer symbols. When

used in a column replacement strategy for covering arrays, this enables us to use a

binary covering array with 46 columns rather than 54, which can be a substantial

improvement.

4.6 Conclusion

We have developed a new recursive technique to generate heterogeneous hash

families from the use of enforcing a structural constraint on the ingredient hash family;

namely, that it is fractal. From this, we investigated many types of coverings, and have

improved many parameters for perfect hash families. Improvements to distributing

hash families have also improved on the sizes of covering arrays.

93

Chapter 5

GENETIC ALGORITHMS FOR TRANSFORMATIONS OF EXISTENTIAL

RESTRICTIONS

In recent work by Colbourn and Lanus [33], efficient algorithms to construct cov-

ering perfect hash families were considered. Specifically, an array with k columns

was given, and suppose that mk columns for a CPHF are desired. One technique to

achieve this goal is to proceed with two stages: first, horizontally juxtapose the CPHF

m times to achieve an initial array on mk columns; and second, use some algorithm

to “complete” the array. The second step is necessary because unless the copies of

the initial CPHF are modified, any t-set of the mk columns that involve at least two

that correspond to the same initial column cannot be separated in any row. Note

that the number of t-sets of columns not separated is known precisely here, and com-

pletely determined; however, this number is a significant fraction of the total number

of t-sets.

In an attempt to mitigate this problem, the authors considered applying affine

transformations to each row and to each of the copies, which corresponds to modi-

fying each entry by multiplying it by an adder and a multiplier, and performing the

arithmetic in Fv. The key here is that for any t-set that is contained entirely within

a single copy, it is always separated because affine transformations are applied. For

CPHFs, the sample space is very large, so Colbourn and Lanus used a greedy algo-

rithm for finding appropriate transformations. For each row r of the CPHF, determine

some (or all) of the possible affine transformations that contain two identical columns

from two blocks, if it is to be applied to r. Then they choose any transformation that

yields the smallest number of t-sets of components not fully separated. If there is a

94

tie, choose the lexicographically first transformation. For CPHFs, it turns out that

affine transformations are exactly the operations that preserve the structure of each

CPHF copy.

We extend their work for a general class of t-restrictions, and to use genetic al-

gorithms to find the best “transformations”. We also generalize the notion of affine

transformations to t-transformations of the underlying hypergraph involving the t-

sets. The goal of these algorithms is to maximize the “fitness” of the corresponding

t-restriction, so that deterministic methods can “complete” the array. We then re-

port computational results for maximizing the fitness for PHFs, as they have many

transformations compared to the number of symbols allowed for it. Some preliminary

work of this chapter appears in [47].

5.1 Prior Work

We first illustrate the general framework of genetic algorithms. In such an algo-

rithm, there is a population P of individuals , wherein each individual has an associ-

ated fitness according to some fitness function f . Typically, one wants to maximize

the average fitness of all individuals in P . First, an initial population P0 of N indi-

viduals is created, usually “at random.” Then, as long as some fitness criterion is not

satisfied, changes to the population are applied, also usually at random; suppose the

current population is Pi. We desire to form population Pi+1 with average fitness at

least that of Pi.

Initially, Pi+1 = Pi. A genetic algorithm often uses tournament selection, which

seeks to pick “fit” individuals in the population. Specifically, it randomly chooses a

subset of the population of a given size, and any individual with highest fitness in

the subset is selected (if there are ties, break them arbitrarily). Here, we run tour-

nament selection until two distinct individuals A,B are selected, and removed from

95

Pi+1. The crossover operator forms two offspring o1, o2 based on A,B by combin-

ing different properties of them. Then, one performs mutation on the two children;

usually this corresponds to modifying each individual’s attributes. Next, the fitness

value is calculated for both children according to f . And finally, the two fittest indi-

viduals of the four individuals–the two parents and the two offspring–are selected to

be inserted into Pi+1. If there is a tie among the fitnesses, we prefer to select the two

(mutated) children, simply for an attempt to exit local optima (i.e., random single

changes to the population may possibly not improve the overall population’s fitness).

This “steady-state” algorithm is given in Algorithm 3; note that since the two fittest

individuals are always inserted into Pi+1, the average fitness never decreases.

Algorithm 3 General Steady-State Algorithm

1: Let P0 be a population generated at random, and i = 0.

2: while condition to stop has not been satisfied do

3: Set Pi+1 ← Pi.

4: Run tournament selection on Pi to find two individuals I1, I2.

5: Crossover I1, I2 to obtain two children C1, C2, with probability pcrossover. (If

not performed, skip Steps 6–8, and re-insert I1, I2 back into Pi+1.)

6: Mutate the two children to obtain M1,M2, independently with probability

pmutate.

7: Pick the two fittest individuals F1, F2 from {I1, I2,M1,M2}. (if there are ties,

prefer M1,M2 over I1, I2)

8: Insert F1, F2 into Pi+1.

9: i← i+ 1.

10: end while

Most prior work for applying metaheuristic techniques to t-restrictions were to

covering arrays, and only to a limited extent. Genetic algorithms were first used

96

for covering arrays by Stardom [73]. More recently, such techniques that exploited

the search space were performed by Rodriguez-Tello and Torres-Jimenez [64], and

even more recently by Sabharwal et al. [65]. Other metaheuristic techniques have

been extensively used on covering arrays, such as simulated annealing, tabu search,

ant colony optimization, and particle swarm optimization. See [77] for an extensive

survey on such techniques.

Even though the techniques used in all prior work were not all the same, they have

a common framework: the representation of each individual was the array itself, and

random mutations/operators to the array were formed until it was a covering array

(or an iteration limit was reached). In the case of genetic algorithms, there are two

operators: crossover, and mutation. Crossover involves switching either entire rows,

entire columns, or just single elements of the two parents; and mutation involves

randomly changing one or more values in the array. In all cases, the fitness of an

individual is the number of t-way interactions, in the case of covering arrays. As

far as we are aware, there is no previous work on metaheuristic algorithms for hash

families, nor most other commonly used t-restrictions. Later in this chapter, we

present a method that is more efficient at generating PHFs using a genetic algorithm.

5.1.1 A Genetic Algorithm for PHFs Based on Prior Work

Because there has been no work on PHFs with a GA previously, we outline our

representation that is inspired by previous work with covering arrays. An individual

is an N × k array on v symbols, and the fitness function is the number of t-sets that

are λ-separated, as expected. Here, we consider homogeneous PHFs, but the method

is easily extensible to homogeneous ones.

The mutation operator is slightly different than expected: a row and a column

are selected uniformly at random. However, many runs of the algorithm yielded little

97

increases in the average fitness if one selects a random value to be placed into this

entry, even after many generations. Instead, we deterministically choose a value such

that setting the row/column of the array to this value (and keeping the rest of the

array fixed) yields the highest fitness, breaking ties based on a fixed ordering of the

symbols. This way, not only does the fitness not decrease purely based on mutation

alone, but the population is more diverse because often two different symbols yield

the same largest fitness, and both are often chosen.

The crossover operator used here is one-point crossover , in that when two parents

are crossed, one selects a random point in their representation to yield two partitions.

In the first part, the child has the same representation as the first parent, and from

the second parent for the second part. Because PHFs are based on separation within

rows only, we naturally select a partition of the rows for what the child receives from

its parents.

5.2 A Genetic Algorithm for transformations for Existential t-Restrictions

We extend previous uses of genetic algorithms to work for arbitrary t-restrictions.

First, we need several definitions. Let AN,k,T be the set of all N × k arrays that

satisfy the t-restriction T . A t-transformation for N rows and k columns is a bijective

function φN,k,T : AN,k,T → AN,k,T (when N, k, T are implied, we drop them from the

notation). In other words, A is an array satisfying a t-restriction T if and only if

φN,k,T (A) also satisfies the same restriction.

However, we focus on a certain type of t-restriction, which allows for the t-

transformations chosen to have useful properties. A t-restriction where all of the

quantifiers are ∃ is called an existential t-restriction. All hash families that have been

discussed in this thesis are existential t-restrictions. We focus on t-transformations

for existential t-restrictions such that one can rewrite the transformation as a compo-

98

sition of N transformations T1, · · · , TN such that Ti only modifies the entries in row

i. Hash families fit under this type of transformation, since the separation condition

is only on a per-row basis.

We give several examples. Colbourn and Lanus [33] showed that if φ(x) is of the

form ax + b where a, b ∈ Fq, and the arithmetic is performed in Fq, then φ is an

transformation when the array A is a SCPHF. For perfect hash families (and many of

their generalizations other than SCPHFs), then one can take φ to be any permutation

of the symbols because if v1, · · · , vt ∈ V are all distinct, then since φ is a permutation

and hence is bijective, then φ(v1), · · · , φ(vt) are also all distinct.

This observation leads to a more useful genetic algorithm than previous ap-

proaches. We first describe the individual representation, and then a high-level ex-

planation of its effectiveness. Suppose that

• T is an existential t-restriction,

• k is the desired number of columns,

• we are given an array A with c < k columns and N rows satisfying T , and

• each row i of A can use (at most) vi symbols.

For any d such that t ≤ d ≤ c, we define a set of arrays B1, · · · ,Bm all with d

columns a d-subpopulation; also, we say that these arrays are within a d-subpopulation.

The representation of a single individual I with N rows, where I is within a d-

subpopulation, contains the following attributes:

• a list of c− d columns C1, · · · , Cc−d (that are to be deleted); and

• let m be the smallest integer such that dm ≥ k. Then I contains N(m − 1)

transformations φ1,1, · · · , φN,m−1. (These correspond to each of the rows of all

copies, not the original array)

99

The entire population P consists of a specified number xd of individuals in a

d-subpopulation for each d with t ≤ d ≤ c. The fitness of an individual I in a

d-subpopulation is determined as in Algorithm 4.

Algorithm 4 Calculating the Fitness of an Individual I within a d-subpopulation

1: Remove the given c − d columns C1, · · · , Cc−d from A (according to I) to obtain

an array A1.

2: Horizontally duplicate A1 m− 1 times to obtain an N × dm array A2.

3: Apply the corresponding t-transformations (according to I) to each of the m− 1

copies to obtain array A3.

4: Determine, among all t-sets of columns with at least one duplicate modulo c, how

many of them are λ-separated.

5: While there are strictly more than k columns (the target) in A3, remove any col-

umn participating in the largest number of column sets that are not λ-separated;

let the final array be F.

6: Return the number of t-sets of columns that are λ-separated in F.

We give a high-level intuition for why this GA setup is more useful for constructing

arrays than the standard method, and why d-subpopulations (along with removing

c − d columns to obtain an array within one) are helpful in finding the best arrays.

Not only is the fitness function more efficient to calculate (since any d-subpopulation

has the exact same t-sets to check, and there are fewer than all possible t-sets), but

each individual has a smaller representation than the entire array, given that the

number of columns is sufficiently large.

There are two further advantages. Suppose we want to apply affine transforma-

tions to PHFs, like the method of Colbourn and Lanus. If a row has v symbols,

there are only v(v − 1) possible choices of transformations to select (multiplier being

nonzero, and adder being any value), whereas there are v! possible t-transformations

100

for PHFs, which allows for much greater possibility in generating “good” copies of

the original PHF. The other large benefit here is the deletion of the c − d columns;

by choosing d to be larger, then the number of copies needed to reach a given target

of columns is larger, which allows for a more effective “spread” within the set of all

transformations.

The mutation operator is natural given the setup: if φ is the observed transfor-

mation and it is to be mutated, we update it to be a different t-transformation (we

assume that the corresponding set of t-transformations has at least two elements);

and if we are to mutate the c − d columns to delete, then the operator chooses a

different set of columns.

For crossover, since the c − d columns to delete are unordered (since it does not

matter what order they appear), we take the union of the c − d columns of both

parents, and the child then takes a random subset of size c − d where at least one

column comes from both parents. However, we use a different approach with regards

to the crossover operator for the t-transformations, developed by Davis [41], and is

reproduced here for convenience. Suppose that φ1, φ2 are two t-transformations that

are to be crossed and to form offspring. Further suppose that the considered row

allows for v possible symbols, φ1 = (x1, · · · , xv), and φ2 = (y1, · · · , yv) (this notation

indicates that φ1(i) = xi and φ2(i) = yi). To form an offspring O (initially with

undetermined values∞), we choose a randomly chosen subsequence (xi, · · · , xj) from

φ1, and copy these entries element-wise into O; at this point, O is of the form (∞, · · · ,

∞, xi, · · · , xj,∞, · · · ,∞). To form the other elements for O, consider all of the other

elements in φ2 after removing (xi, · · · , xj). Now insert them into O’s undetermined

entries in their proper order according to φ2. This procedure works because φ1, φ2

are permutations of each other. We give an example. Suppose that φ1 = (0, 2, 4, 3, 1)

and φ2 = (4, 3, 2, 1, 0). We pick the subsequence (2, 4, 3) from φ1, and the offspring O

101

is initially O = (∞, 2, 4, 3,∞). Removing these three chosen elements from φ2 yields

the subsequence (1, 0), so we insert these two elements in this order into O to form

(1, 2, 4, 3, 0).

By far the most computationally intensive part of the algorithm is the fitness

function, determining the number of t-sets left unseparated. One improvement that

can be made immediately is to only consider t-sets S = {c1, · · · , ct} such that C

involves at least two of the copies (because otherwise, C is separated by the definition

of the considered t-transformations). Further, any individual that is not mutated (i.e.,

the original parents) do not need to have their fitness function re-evaluated. We use

these improvements in our implementation of Algorithm 4.

Our genetic algorithm does not change which subpopulation an individual is in,

for the reason that the optimal choices for d columns to delete may not at all be

similar to those for d′ 6= d columns deleted. For this reason, we run our algorithm for

each choice of subpopulation, because each of them can be run independently. An

interesting research direction here is to find a useful crossover operator between two

individuals that live within different subpopulations.

5.3 Genetic Algorithm Computational Results

The goal of our GAs is not necessarily to generate t-restrictions, but to generate

arrays that are as close as possible to being t-restrictions. Nevertheless, our GA

can and does improve on the best-known values of PHFNλ. Atici [9] showed that

PHFN1(x, 4, 3) = 4 for all 9 ≤ x ≤ 16. Therefore, PHFN3(x, 4, 3) ≤ 12 for the same

range. Here, we show that PHFN3(14, 4, 3) ≤ 11, given in Figure 5.2. The starter array

was a PHF3(11; 9, 4, 3), found via the satisfiability method in Section 3.2.3, given in

Figure 5.1. The GA parameters involved deleting 2 columns (d− c = 2), with 2 parts

(m = 2), 100 individuals, and the resulting PHF3 was found within 88 iterations of the

102

2 3 3 1 2 1 3

0 0 3 3 1 0 1

0 3 1 3 1 1 1

2 1 3 2 3 1 1

0 3 2 3 1 0 3

0 3 3 2 1 3 2

1 3 3 0 1 2 1

2 1 2 1 1 3 2

0 0 0 3 2 2 1

0 0 3 1 2 1 1

1 0 1 3 1 1 3

Figure 5.1: A PHF3(11; 9, 4, 3).

while loop. The run-time of the algorithm was less than 20 seconds (combined with

initially generating the starter array PHF3(11; 9, 4, 3) with the satisfiability solver),

whereas applying the solver directly to generating a PHF3(11; 14, 4, 3) took over 2

minutes.

We showcase attempting to generate a PHF2(12; 50, 4, 3) using our GA to demon-

strate its effectiveness, and compare it to using previous techniques where the repre-

sentation of the individual is the entire array. The “starter” array is a PHF2(12; 30, 4,

3), displayed in Figure 5.3. It was generated using the SAT model developed earlier

in Section 3.2.3. We picked 30 columns because (1) it is strictly more than half of the

number of desired columns (which forces c− d > 0), and (2) the SAT representation

for this array is very large. Furthermore, we picked 4 symbols because the set of t-

transformations for the symbol set is larger than the number of affine transformations,

and so there is a potential advantage over the old approach. The choice of λ = 2

103

2 3 3 1 2 1 3 3 0 0 2 3 2 0

0 0 3 3 1 0 1 2 2 3 3 1 2 1

0 3 1 3 1 1 1 0 3 2 3 2 2 2

2 1 3 2 3 1 1 2 0 3 2 3 0 0

0 3 2 3 1 0 3 0 2 3 2 1 0 2

0 3 3 2 1 3 2 1 0 0 2 3 0 2

1 3 3 0 1 2 1 0 1 1 2 0 3 0

2 1 2 1 1 3 2 3 0 3 0 0 2 3

0 0 0 3 2 2 1 2 2 2 1 3 3 0

0 0 3 1 2 1 1 3 3 2 1 0 1 1

1 0 1 3 1 1 3 2 3 2 0 2 2 0

Figure 5.2: A PHF3(11; 14, 4, 3).

012001022113223300130313102223

000111122230011021223310031213

002311210302301310100121021313

011222203320113300020333102231

010123312030021210302223321303

001201222033331002032020123112

002122310322022131112110300303

002101231231032312213100112033

000113112003011101323223212131

012023320223321131223330223033

011303103003133122332233211010

011132100303010033102102003212

Figure 5.3: A PHF2(12; 30, 4, 3).

104

was to showcase the algorithm’s applicability to higher index restrictions. We added

columns until the solving time for the SAT solver took over an hour. It is unknown

whether a PHF2(12; 50, 4, 3) exists, but our goal here is to maximize the fitness of a

12× 50 array.

We now give two examples of attempting to generate PHFs with larger parameters.

Figures 5.4 and 5.5 display the results of applying our GA to generating a PHF2(12; 30,

4, 3). In all experiments, we used 1000 iterations, and 100 individuals. The maximum

theoretically possible fitness for any individual is
(

30
3

)
= 19600. The Standard plot

consists of the standard representation discussed earlier, and 2 Copies, 3 Copies,

and 7 Copies correspond to the number of copies formed. In each case, we determined

the minimum number of columns to remove so that the generated PHF has more

than the necessary columns; for 2 copies, this was 5 columns deleted; 3 copies had 13

columns; and 7 copies had 17 columns. Each of the plots shows the average of the

corresponding heuristic over 10 runs of the GA: Figure 5.4 is the average maximum

fitness, and Figure 5.5 is the average mean fitness.

Note that the fitness of the individuals, when initialized randomly, is very high,

above 90% for nearly all individuals in all runs. This will often be the case when

the number of rows is large enough, and when the index corresponding to the fitness

function matches that of the starter array.

When the strength is larger, this threshold for the number of rows is larger; for this

reason, we consider an example with few rows and high strength, namely strength

6. A PHF1(4; 7, 6, 6) is given in Figure 5.6, and is optimal in the number of rows

and columns. We desire to construct an array that is as close as possible to being

a PHF1(4; 14, 6, 6). Figures 5.7 and 5.8 display the results of applying our GA to

generating a PHF1(4; 14, 6, 6).

105

0 200 400 600 800 1,000

1.92

1.93

1.94

·104

Iterations

F
it
n
es
s

Standard
2 Copies
3 Copies
7 Copies

Figure 5.4: Scatter Plot for Generating a PHF2(12; 50, 4, 3). Values Shown Are the
Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over
10 Runs of the Algorithm.

0 200 400 600 800 1,000
1.9

1.91

1.92

1.93

1.94
·104

Iterations

F
it
n
es
s

Standard
2 Copies
3 Copies
7 Copies

Figure 5.5: Scatter Plot for Generating a PHF2(12; 50, 4, 3). Values Shown Are the
Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10
Runs of the Algorithm.

106

0 1 2 3 4 5 0

0 2 3 4 5 2 1

0 1 4 5 4 2 3

0 1 2 5 3 4 5

Figure 5.6: A PHF1(4; 7, 6, 6).

0 200 400 600 800 1,000

350

400

450

500

550

Iterations

F
it
n
es
s

Standard
2 Copies
3 Copies
7 Copies

Figure 5.7: Scatter Plot for Generating a PHF1(4; 14, 6, 6). Values Shown Are the
Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over
10 Runs of the Algorithm.

5.3.1 Discussion of GA Results

We discuss the results of the last two experiments; we begin with the first example,

generating a PHF2(12; 30, 4, 3). The figures showcase results that are in agreement

with our hypothesis, in that using copies to generate the object not only produces

highly fit individuals quickly, but also these individuals are more fit (at first) com-

pared to usual techniques (Standard in the plots). However, we can see that Standard

overtakes all three choices of copies in Figure 5.4, and all but 2 Copies in Figure 5.5.

107

0 200 400 600 800 1,000

200

300

400

500

Iterations

F
it
n
es
s

Standard
2 Copies
3 Copies
7 Copies

Figure 5.8: Scatter Plot for Generating a PHF1(4; 14, 6, 6). Values Shown Are the
Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10
Runs of the Algorithm.

Intuitively, the GA for Standard can only make a small number of changes to the

array, which can lead to local optima. However, because Standard chooses a random

number of entries to mutate between 1 and 10, it is able to escape local optima rela-

tively well. It overtakes the other plots because each of them always mutates exactly

the same number of resulting entries in the generated PHF every time. We decided

not to have their GAs mutate multiple t-transformations simultaneously because it

would then mutate a significantly larger portion of the array, whereas Standard only

mutates a small portion.

Now to the second example, generating a PHF1(4; 14, 6, 6). Such an array does

not exist, because PHFN1(14, 6, 6) ≥ 17 due to a known lower bound [50]. The results

are similar as that of the other example, but give slightly different conclusions. Here,

Figure 5.7 shows that all choices of copies has the fitness converge very quickly. Note

that in this example for n copies, there are (6!)n choices of t-transformations, and for

108

the first example, there are (4!)n, which is much larger, even for n = 2. Also take note

of Figure 5.8, which shows that 7 Copies has the lowest fitness among all four plots

other than Standard. Here, 7 copies corresponds to deleting 5 columns, resulting

in two columns for each copy. We predict this is one of the reasons why the plot is

“slow” to converge, because t = 6, which is larger than the number of columns for

each copy. In the first example, each number of copies has that each one has more

columns than the strength. This shows that even though it is not as fast to converge,

our method works for all choices of copies and strengths.

For both examples, the run time of the GA was much faster for 2 Copies, 3

Copies, and 7 Copies compared to Standard; specifically, all of them achieved a run

time which is substantially less than half than for Standard. This is one additional

benefit of our approach, as suspected, in that the number of t-sets needed to be

checked is much smaller.

Finally, we address the two measures that we considered: average and maximum

fitness. Note that in most real-world applications of PHFs, only the fact that it is

a PHF matters, and not necessarily the structure within it. Therefore, we are only

concerned with finding PHFs of maximum fitness. However, some applications may

require “diverse” individuals, but would want many of the individuals to still have

large fitness. This motivates the study of having many “different” PHFs of high

fitness. Our approach does not aim to find many individuals with high fitness; the

goal is purely to find any individual with as high of fitness as possible.

That said, it is possible to use an algorithm such as NSGA-II [42], which is useful

for multi-objective optimization. For PHFs, fitness would be an obvious objective to

maximize, but some other objectives that are worth considering are (1) the spectrum

of t-sets separated 1 , (2) the balance of symbols for each row, (3) average number of

1This is a mapping between t-sets and the index of the λth row that separates each one.

109

times each t-set is separated, among others. We anticipate the use of multi-objective

optimization for many types of t-restrictions.

5.4 Conclusion

In this chapter, we developed a genetic algorithm that aims to construct existential

t-restrictions of arbitrary index, given a “starter array” with fewer columns than what

the target is. A key component of this algorithm is that it uses t-transformations of

the given t-restriction, and multiple copies of the starter array. Further, different t-

transformations can be chosen for each row of each copy. The insight in this algorithm

is that although the number of t-sets separated in each row is the same (by the t-

transformation property), where the t-sets are separated changes. Before, if a t-set of

columns is not separated in some row, then it is not separated in any row; with our

approach, this does not happen nearly as often in practice.

110

Chapter 6

CONCLUSIONS

In this chapter we summarize all of the results and ideas presented in this thesis.

We then give open problems as well as research directions that are worth exploring.

6.1 Main Results and Ideas

The main contribution of this thesis is a greater insight into the structure and

generation of perfect hash families of higher index, through the use of probabilistics

and asymptotics, constructive algorithms, new recursive constructions, and genetic

algorithms. We enumerate individual contributions of each chapter next.

In Chapter 3, we investigated hash families of higher index. We gave simple

constructions of them, mainly inspired by methods from coding theory. We then

gave a new recursive construction that not only exploited ingredient hash families

with smaller index, but also improves on the sizes of many PHFs with index 1, even

with small strength. More importantly, this construction works with any number of

columns, symbols, and strength, and is general enough to allow for improvements

when the number of columns exceeds the strength. We analyzed PHFNλ both in a

probabilistic setting (for which the optimal size is met for all choices of columns,

symbols, and strength), and asymptotically. Finally, we developed a conditional ex-

pectation algorithm that constructs PHFλs that meet these bounds. The contribution

of this chapter is a greater understanding of the structure of higher-index perfect hash

families, both computationally and asymptotically.

In Chapter 4, we developed a new recursive construction algorithm for PHFs when

the number of rows is small, and the number of symbols is relatively high (namely,

111

when the optimal number of columns is linear in the number of symbols). Here, we

generalized the notion of PHFs to incorporate more requirements of separation, which

we called fractal. Fractal PHHFs were developed using simple constructions, but they

yielded many improvements in the sizes of PHFs. The contribution of this chapter is

a new constraint on hash families wherein a new recursive construction is developed,

and improving on the sizes of many perfect hash families.

In Chapter 5, we extended a method of Colbourn and Lanus to generate PHFs

using a genetic algorithm. Furthermore, the genetic algorithm is novel because it (1)

exploits the structure of PHFs, (2) guarantees substructure given an ingredient PHF,

(3) improves the run time for computing the fitness of the PHF, and (4) is able to be

generalized to any existential t-restriction. The contribution of this chapter is a new

(randomized) construction algorithm that finds arrays with very high fitness quickly,

whereas other methods are slower or do not produce arrays with high fitness.

6.2 Future Research Directions

In this section we give some of the many possible open problems and research

directions that emerge from the topics presented within this thesis.

6.2.1 Higher Index Research Directions

It is an open problem, even in the λ = 1 case, whether or not there exists a

satisfiability formula for perfect hash families that is polynomial in N, k, v, t, λ (the

one presented in Chapter 3 is of exponential size). If v, t, λ are fixed, then the size

of the array is polynomial in the values of N, k. There are alternate formulations

of satisfiability formulas for covering arrays other than the standard one [52], but

they do not appear to be applicable to perfect hash families, primarily because of the

discussion in Chapter 3.

112

What better purely probabilistic bounds, both lower and upper, can be found for

PHFNλ? The existing techniques do not appear to be able to improve beyond the ad-

ditive c2

√
λ log k term. We believe a better bound of the form c1 log k+c2f(λ) log log k

can be found via probabilistic techniques, where c2 is not dependent on λ or k, and

the function f is only dependent on λ. Here is our reasoning, and we explain why

it falls short; we illustrate this with λ = 2. Generate a PHF1 uniformly at random,

and suppose it has N rows. Then according to the binomial distribution one would

hope to be able to bound the number of t-sets separated once, but not twice. Using

a variable-strength analogue of perfect hash families [60], one can bound the number

of additional rows needed (which is essentially logarithmic in the number of t-sets left

only 1-separated). The issue with this reasoning is that just because the expected

number of sets separated 0 times is strictly less than 1 does not imply much about

the distribution for sets separated exactly once. If one can employ probabilistic tools

to infer what the distribution is, then we conjecture that a bound of the above form

can be obtained somewhat simply.

For probabilistic bounds, we state a research direction with regards to the Lovász

Local Lemma. It is possible to setup the dependency graph to apply the asymmetric

LLL for a bound on PHFNλ, stated next.

Theorem 6.1. [7] Let E1, · · · , En be events in a probability space, and let Γ(Ei) be

the set of neighbors of Ei in the dependency graph. In the dependency graph, event

Ei is not adjacent to events which are mutually independent to it. If there exist

0 ≤ x(E1), · · · , x(En) ≤ 1 such that Pr[Ei] ≤ x(Ei)
∏

Ej∈Γ(Ei)
(1 − x(Ej)), then with

nonzero probability all of E1, · · · , En simultaneously do not occur.

The issue in applying the symmetric LLL directly here is that when a set C is

i-separated, the event in which it is (i + 1)-separated depends on the former event,

113

and not the other direction. One can increase the dependence by adding a directed

edge in the other direction, but this would not achieve as strong a bound. We outline

how to construct the graph: there are
(
k
t

)
λ vertices AC,i, to denote the event that C

is exactly i-separated, for all C ∈
(

[k]
t

)
and 0 ≤ i < λ. Construct a directed edge from

AC,i to AC′,i′ if:

• C 6= C ′, and C ∩ C ′ 6= ∅;

• C = C ′, and i′ = i+ 1.

Effectively, t-sets that normally have dependence appear in the graph, and a directed

path exists among the same t-set in terms of increasing index. It is an open question

as to what bound can be obtained by considering this dependency graph, since the

result of Deng, Stinson, and Wei depends on the fact that all vertices have the same

degree, and the entire graph is symmetric.

What are better asymptotics on PHFNλ, where λ can grow? Additionally, what

if v, t also can grow? The key here appears to be finding an asymptotically equal

expression for the failure probability.

6.2.2 Fractal Research Directions

A research direction for fractal PHHFs, naturally, is finding better constructions

for higher-index hash families, and more generally to separating heterogeneous hash

families. We give a setup for separating hash families here. For a set W = {w1, · · · ,

ws}, the shadow of W is the union of {w1− i1, · · · , ws− is} over all choices of i1, · · · , is
such that exactly one of the ij is 1 and the others are 0 (if any of the ij become 0 as

a result, then we drop it from the notation). For example, if W = {2, 4}, the shadow

of W is {{1, 4}, {2, 3}}. The recursive shadow of W is the union of the shadow S of

W as well as the recursive shadow of every s ∈ S. If W = {2, 4}, then the recursive

114

shadow of W is {{1, 4}, {2, 3}, {1, 3}, {1, 2}, {1, 1}, {1}, {2, 2}}. Construct a tree TW

rooted at W , with vertices being the sets in the recursive shadow of W as well as

W , and an edge formed between s, s′ if s is in the shadow of s′, or vice versa. The

recursive shadow height of TW is the length of the longest root-to-leaf path in TW from

W . The shadow of W is the union of all shadows of every W ∈ W; define recursive

shadow, and recursive shadow height similarly for W. Denote the recursive shadow

height of W as r(W) = max
W∈W r(W).

A SHHFλ(r(W) + λ− 1; k, (v1, · · · , vN),W) is fractal if and only if the removal of

any row i results in a fractal SHHFλ(r(W) + λ− 1; k, (v1, · · · , vi−1, vi+1, · · · , vN),W′),

where W′ is the shadow of W′. One can now prove similar results as presented in

Chapter 4. However, it would be of great interest to determine when and if the

generalization to SHHFs generates arrays that are substantially better than existing

methods for constructing SHHFs.

Another research direction here is how to generate the (n,m, d, λ) ingredients, or

to find “good” constructions of them that are stronger than the binomial result of

Lemma 4.10. Further, how do computational results compare to the ones generated

here? The key with (n,m, d, λ) coverings for all choices of λ is that not all of the n

subsets chosen are not required to have the same cardinality.

Every fractal PHF with N = t = 3 that we have generated matched the best

known values of k for each number of symbols v. In other words, for every best-

known PHF that exists with 3 rows and strength 3, we found a fractal PHF with

the same parameters. This observation leads to the question of whether the optimal

parameters for fractal PHF always match those of “non-fractal” PHFs. A simple

probabilistic analysis of the N = t = 3 case gives heuristics as to why this is the case;

find the maximum number of columns for a 1-separated PHF on 3 rows and strength

3, and the same for a 2-separated PHF on 3 rows and strength 2, and observe the

115

minimum of the two. If one shows that the minimum asymptotically matches the

maximum of the two, then there is evidence that this is true. However, this does

not imply that a fractal PHF on the minimum of the two actually exists because the

distribution may be completely different when both requirements are considered.

6.2.3 Genetic Algorithm Research Directions

In the genetic algorithm we proposed in Chapter 5, we used a steady-state ap-

proach. When one considers PHFs generated at random, the fitness of them is often

very large; for the example presented there, the fitness of a random individual is

over 90%. Most genetic algorithms are suited for problems in which the fitness is

often much smaller. Which genetic algorithm-style approach is best suited for prob-

lems where the average fitness is already very large (and the variance in the fitness

distribution is very small), where the goal is only to maximize the fitness?

In unpublished work, we considered covering perfect hash families using a steady-

state algorithm. There, it turned out that a mutation-only approach gave CPHFs that

had much higher fitness, more quickly, than when mutation and crossover were both

used. An intuitive explanation is that mutation is less of a “destructive” operator

than crossover is. However, the crossover operator used in that work was not the one

developed here, which is less “destructive” because a contiguous set of rows from each

parent appears in the child. We implemented this crossover operator in our setting

(t-transformations of PHFs), and similar results appeared. Would a similar crossover

operator, or leaving crossover out entirely, improve the algorithm’s fitness? Evidence

seems to show that the latter is true, but since the fitness is already large on average,

the first research direction of finding a more suitable GA may be more worthwhile.

116

REFERENCES

[1] Akhtar, Y. and F. K. H. Phoa, “A construction of cost-efficient designs with
guaranteed repeated measurements on interaction effects”, preprint (2019).

[2] Alon, N., “Explicit construction of exponential sized families of k-independent
sets”, Discrete Mathematics 58, 2, 191–193 (1986).

[3] Alon, N. and S. Gutner, “Balanced hashing, color coding and approximate count-
ing”, in “Parameterized and Exact Computation”, edited by J. Chen and F. V.
Fomin, pp. 1–16 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009).

[4] Alon, N. and S. Gutner, “Balanced families of perfect hash functions and their
applications”, ACM Transactions on Algorithms 6, 3, 54:1–54:12 (2010).

[5] Alon, N., D. Moshkovitz and S. Safra, “Algorithmic construction of sets for k-
restrictions”, ACM Transactions on Algorithms 2, 153–177 (2006).

[6] Alon, N. and M. Naor, “Derandomization, witnesses for Boolean matrix multipli-
cation and construction of perfect hash functions”, Algorithmica 16, 4, 434–449
(1996).

[7] Alon, N. and J. H. Spencer, The probabilistic method (John Wiley & Sons, 2004).

[8] Ang, N., Generating Mixed-Level Covering Arrays with λ = 2 and Test Prioriti-
zation, Master’s thesis, Arizona State University (2015).

[9] Atici, M., Hash families: recursive constructions and applications to cryptogra-
phy , PhD dissertation, University of Nebraska (1996).

[10] Atici, M., S. S. Magliveras, D. R. Stinson and W.-D. Wei, “Some recursive
constructions for perfect hash families”, Journal of Combinatorial Designs 4, 5,
353–363 (1996).

[11] Barwick, S. G. and W.-A. Jackson, “A sequence approach to linear perfect hash
families”, Designs, Codes and Cryptography 45, 1, 95–121 (2007).

[12] Barwick, S. G. and W.-A. Jackson, “Geometric constructions of optimal linear
perfect hash families”, Finite Fields and Their Applications 14, 1, 1–13 (2008).

[13] Bazrafshan, M. and T. van Trung, “Bounds for separating hash families”, Journal
of Combinatorial Theory, Series A 118, 3, 1129–1135 (2011).

[14] Blackburn, S. R., “Perfect hash families: Probabilistic methods and explicit
constructions”, Journal of Combinatorial Theory, Series A 92, 1, 54–60 (2000).

[15] Blackburn, S. R., “Perfect hash families with few functions”, Unpublished
manuscript (2000).

[16] Blackburn, S. R., “Frameproof codes”, SIAM Journal on Discrete Mathematics
16, 3, 499–510 (2003).

117

[17] Blackburn, S. R., M. Burmester, Y. Desmedt and P. R. Wild, “Efficient multi-
plicative sharing schemes”, in “Advances in Cryptology - EUROCRYPT ’96”,
pp. 107–118 (1996).

[18] Blackburn, S. R. and P. R. Wild, “Optimal linear perfect hash families”, Journal
of Combinatorial Theory, Series A 83, 2, 233–250 (1998).

[19] Brickell, E. F., “A problem in broadcast encryption”, in “5th Vermont Summer
Workshop on Combinatorics and Graph Theory”, (1991).

[20] Brouwer, A. E., J. B. Shearer, N. J. A. Sloane and W. D. Smith, “A new table
of constant weight codes”, IEEE Transactions on Information Theory 36, 6,
1334–1380 (1990).

[21] Cassels, J. and A. Godbole, “Covering arrays for some equivalence classes of
words”, Journal of Combinatorial Designs 27, 8, 506–521 (2019).

[22] Cawse, J. N., Experimental design for combinatorial and high throughput mate-
rials development (GE Global Research Technical Report, 2002).

[23] Colbourn, C. J., “Combinatorial aspects of covering arrays”, Le Matematiche
(Catania) 58, 121–167 (2004).

[24] Colbourn, C. J., “Covering array tables for t=2, 3, 4, 5, 6”, URL http://www.
public.asu.edu/~ccolbou/src/tabby/catable.html (2005–2018).

[25] Colbourn, C. J., “Constructing perfect hash families using a greedy algorithm”,
Coding and Cryptology pp. 109–118 (2008).

[26] Colbourn, C. J., “Distributing hash families and covering arrays”, Journal of
Combinatorics, Information, and System Sciences 34, 113–126 (2009).

[27] Colbourn, C. J., “Covering arrays and hash families”, NATO Science for Peace
and Security Series, D: Information and Communication Security 29, Informa-
tion Security, Coding Theory and Related Combinatorics, 99–135 (2011).

[28] Colbourn, C. J. and J. H. Dinitz, Handbook of Combinatorial Designs (CRC
Press, 2007).

[29] Colbourn, C. J. and R. E. Dougherty, “Fractal perfect hash families (extended
abstract)”, Electronic Notes in Discrete Mathematics 65, 37–42, 7th Interna-
tional Conference on Algebraic Informatics (CAI 2017): Design Theory Track
(2018).

[30] Colbourn, C. J., R. E. Dougherty and D. Horsley, “Distributing hash families
with few rows”, Theoretical Computer Science (Accepted) (2018).

[31] Colbourn, C. J., D. Horsley and V. R. Syrotiuk, “Strengthening hash families
and compressive sensing”, Journal of Discrete Algorithms 16, 170–186 (2012).

118

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

[32] Colbourn, C. J., D. Jungnickel and A. Rosa, “The strong chromatic number of
partial triple systems”, Discrete Applied Mathematics 20, 1, 31–38 (1988).

[33] Colbourn, C. J. and E. Lanus, “Subspace restrictions for covering perfect hash
families”, Art of Discrete and Applied Mathematics 1, #P02.03 (2018).

[34] Colbourn, C. J., E. Lanus and K. Sarkar, “Asymptotic and constructive meth-
ods for covering perfect hash families and covering arrays”, Designs, Codes and
Cryptography 86, 4, 907–937 (2017).

[35] Colbourn, C. J. and A. C. H. Ling, “Linear hash families and forbidden config-
urations”, Designs, Codes and Cryptography 52, 1, 25–55 (2009).

[36] Colbourn, C. J. and A. C. H. Ling, “A recursive construction for perfect hash
families”, Journal of Mathematical Cryptology 3, 4, 291–306 (2009).

[37] Colbourn, C. J. and D. W. McClary, “Locating and detecting arrays for interac-
tion faults”, Journal of Combinatorial Optimization 15, 1, 17–48 (2008).

[38] Colbourn, C. J. and J. Torres-Jimenez, “Heterogeneous hash families and cover-
ing arrays”, Contemporary Mathematics 523, 3–15 (2010).

[39] Czech, Z. J., G. Havas and B. S. Majewski, “Perfect hashing”, Theoretical Com-
puter Science 182, 1–143 (1997).

[40] Damaschke, P., “Adaptive versus nonadaptive attribute-efficient learning”, Ma-
chine Learning 41, 2, 197–215 (2000).

[41] Davis, L., “Job shop scheduling with genetic algorithms”, in “Proceedings of
an international conference on genetic algorithms and their applications”, pp.
136–140 (1985).

[42] Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary
Computation 6, 2, 182–197 (2002).

[43] Deng, D., D. R. Stinson and R. Wei, “The lovász local lemma and its applications
to some combinatorial arrays”, Designs, Codes and Cryptography 32, 1, 121–134
(2004).

[44] Dinitz, J. H., A. C. H. Ling and D. R. Stinson, “Perfect hash families from
transversal designs”, The Australasian Journal of Combinatorics 37, 233–242
(2007).

[45] Dougherty, R. E., “Perfect hash family tables for t=3 to 11”, URL http://www.
public.asu.edu/~redoughe/phf_pages/phf_tables.html (2017).

[46] Dougherty, R. E. and C. J. Colbourn, “Perfect hash families: The generalization
to higher indices”, (Submitted) (2019).

119

http://www.public.asu.edu/~redoughe/phf_pages/phf_tables.html
http://www.public.asu.edu/~redoughe/phf_pages/phf_tables.html

[47] Dougherty, R. E., E. Lanus, C. J. Colbourn and S. Forrest, “Genetic algorithms
for affine transformations to existential t-restrictions”, in “Proceedings of the
Genetic and Evolutionary Computation Conference Companion”, GECCO ’19,
pp. 1707–1708 (ACM, New York, NY, USA, 2019).

[48] Eén, N. and A. Biere, “Effective preprocessing in sat through variable and clause
elimination”, in “International conference on theory and applications of satisfia-
bility testing”, pp. 61–75 (Springer, 2005).

[49] Fiat, A. and M. Naor, “Broadcast encryption”, in “Proceedings of the 13th
Annual International Cryptology Conference on Advances in Cryptology”,
CRYPTO ’93, pp. 480–491 (1994).

[50] Fredman, M. and J. Komlós, “On the Size of Separating Systems and Families
of Perfect Hash Functions”, SIAM Journal on Algebraic Discrete Methods 5, 1,
61–68 (1984).

[51] Fuji-Hara, R., “Perfect hash families of strength three with three rows from
varieties on finite projective geometries”, Designs, Codes and Cryptography 77,
2, 351–356 (2015).

[52] Hnich, B., S. D. Prestwich, E. Selensky and B. M. Smith, “Constraint models
for the covering test problem”, Constraints 11, 2, 199–219 (2006).

[53] Knill, E., W. J. Bruno and D. C. Torney, “Non-adaptive group testing in the
presence of errors”, Discrete Applied Mathematics 88, 1, 261–290 (1998).

[54] Kuhn, D. R. and M. J. Reilly, “An investigation of the applicability of design of
experiments to software testing”, in “27th Annual NASA Goddard/IEEE Soft-
ware Engineering Workshop”, pp. 91–95 (2002).

[55] Leach, K., R. Dougherty, C. Spensky, S. Forrest and W. Weimer, “Evolutionary
computation for improving malware analysis”, in “Proceedings of the 6th Inter-
national Workshop on Genetic Improvement”, GI ’19, pp. 18–19 (IEEE Press,
Piscataway, NJ, USA, 2019).

[56] MacWilliams, F. J. and N. J. A. Sloane, The theory of error-correcting codes
(North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977).

[57] Martirosyan, S. and T. van Trung, “Explicit constructions for perfect hash fam-
ilies”, Designs, Codes and Cryptography 46, 1, 97–112 (2008).

[58] Mehlhorn, K., “On the program size of perfect and universal hash functions”, in
“23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)”, pp.
170–175 (1982).

[59] Moser, R. A. and G. Tardos, “A constructive proof of the general lovász local
lemma”, Journal of the ACM 57, 2, 11:1–11:15 (2010).

120

[60] Moura, L., S. Raaphorst and B. Stevens, “The lovász local lemma and variable
strength covering arrays”, Electronic Notes in Discrete Mathematics 65, 43–
49, 7th International Conference on Algebraic Informatics (CAI 2017): Design
Theory Track (2018).

[61] Newman, I. and A. Wigderson, “Lower bounds on formula size of Boolean func-
tions using hypergraph entropy”, SIAM Journal on Discrete Mathematics 8, 4,
536–542 (1995).

[62] Niu, X. and H. Cao, “Constructions and bounds for separating hash families”,
Discrete Mathematics 341, 9, 2627–2638 (2018).

[63] Procacci, A. and R. Sanchis, “Perfect and separating hash families: new bounds
via the algorithmic cluster expansion local lemma”, Annales de l’Institut Henri
Poincaré D. Combinatorics, Physics and their Interactions 5, 2, 153–171 (2018).

[64] Rodriguez-Tello, E. and J. Torres-Jimenez, “Memetic algorithms for construct-
ing binary covering arrays of strength three”, in “International Conference on
Artificial Evolution (Evolution Artificielle)”, pp. 86–97 (Springer, 2009).

[65] Sabharwal, S., P. Bansal and N. Mittal, “Construction of t-way covering arrays
using genetic algorithm”, International Journal of System Assurance Engineering
and Management 8, 2, 264–274 (2017).

[66] Sarkar, K., Covering Arrays: Algorithms and Asymptotics , Ph.D. thesis, Arizona
State University (2016).

[67] Sarkar, K. and C. J. Colbourn, “Upper bounds on the size of covering arrays”,
SIAM Journal on Discrete Mathematics 31, 2, 1277–1293 (2017).

[68] Seidel, S. A., K. Sarkar, C. J. Colbourn and V. R. Syrotiuk, “Separating inter-
action effects using locating and detecting arrays”, in “International Workshop
on Combinatorial Algorithms”, pp. 349–360 (2018).

[69] Shangguan, C. and G. Ge, “Separating hash families: A johnson-type bound and
new constructions”, SIAM Journal on Discrete Mathematics 30, 4, 2243–2264
(2016).

[70] Shasha, D. E., A. Y. Kouranov, L. V. Lejay, M. F. Chou and G. M. Coruzzi,
“Using combinatorial design to study regulation by multiple input signals. a tool
for parsimony in the post-genomics era”, Plant Physiology 127, 4, 1590–1594
(2001).

[71] Sherwood, G. B., S. S. Martirosyan and C. J. Colbourn, “Covering arrays of
higher strength from permutation vectors”, Journal of Combinatorial Designs
14, 3, 202–213 (2006).

[72] Staddon, J. N., D. R. Stinson and R. Wei, “Combinatorial properties of frame-
proof and traceability codes”, IEEE Transactions on Information Theory 47,
1042–1049 (2001).

121

[73] Stardom, J., Metaheuristics and the search for covering and packing arrays , Mas-
ter’s thesis, Simon Frasier University (2001).

[74] Stinson, D. R., “On some methods for unconditionally secure key distribution
and broadcast encryption”, Designs, Codes and Cryptography 12, 3, 215–243
(1997).

[75] Stinson, D. R., T. van Trung and R. Wei, “Secure frameproof codes, key dis-
tribution patterns, group testing algorithms and related structures”, Journal of
Statistical Planning and Inference 86, 2, 595–617 (2000).

[76] Stinson, D. R., R. Wei and L. Zhu, “New constructions for perfect hash fam-
ilies and related structures using combinatorial designs and codes”, Journal of
Combinatorial Designs 8, 3, 189–200 (2000).

[77] Timaná-Peña, J. A., C. A. Cobos-Lozada and J. Torres-Jimenez, “Metaheuristic
algorithms for building covering arrays: A review”, Facultad de Ingenieŕıa 25,
43, 31–45 (2016).

[78] Van Den Berg, E., E. Candès, G. Chinn, C. Levin, P. D. Olcott and C. Sing-Long,
“Single-photon sampling architecture for solid-state imaging sensors”, Proceed-
ings of the National Academy of Sciences 110, 30, E2752–E2761 (2013).

[79] Walker II, R. A. and C. J. Colbourn, “Perfect hash families: Constructions and
existence”, Journal of Mathematical Cryptology 1, 2, 125–150 (2007).

122

APPENDIX A

EXTENDED TABLES FOR FRACTAL

123

Table A.1: Further Improvements for Strength 6, Four Rows
v 37 46 61 64 73 82 85 91 97 106 133 136

kfractal 54 68 92 96 111 124 130 140 149 164 206 212
kold 53 67 90 95 110 123 128 137 147 163 204 210
v 145 151 181 190 199 232 235 241 253 265 271 274

kfractal 227 236 285 300 314 368 372 383 402 422 432 436
kold 226 235 283 299 311 366 371 382 397 411 423 429
v 289 298 313 316 331 337 352 361

kfractal 461 476 500 504 530 539 564 579
kold 459 475 493 496 508 532 562 578
v 379 385 391 397 406 409 421 430 451 460 463

kfractal 608 617 628 638 652 656 677 692 726 740 746
kold 599 609 615 627 645 651 675 691 715 726 732
v 469 481 487 496 505 511 514 529 541 547 562

kfractal 756 775 784 800 815 824 828 854 874 884 908
kold 744 768 780 798 814 823 826 841 859 871 901
v 568 571 577 586 595 601 613 625 628 631 649

kfractal 916 922 933 948 962 971 992 1012 1016 1022 1051
kold 913 919 931 947 959 965 977 996 1002 1008 1044
v 661 664 673 685 691 694 703 715 721 727 742

kfractal 1070 1076 1091 1110 1118 1124 1140 1160 1170 1178 1204
kold 1068 1074 1090 1105 1111 1114 1123 1145 1156 1167 1197
v 757 766 781 793 799 811 817 820 826 829 841

kfractal 1229 1244 1268 1287 1298 1318 1328 1332 1340 1346 1367
kold 1227 1243 1261 1273 1279 1300 1312 1318 1330 1336 1360
v 856 859 865 883 898 901 913 919 925 937 946 961

kfractal 1392 1396 1407 1436 1460 1466 1486 1496 1505 1524 1540 1565
kold 1390 1395 1406 1427 1442 1445 1467 1479 1491 1515 1533 1563
v 970 991 1009 1021 1027 1036 1051 1057 1072 1081 1084 1093

kfractal 1580 1614 1644 1664 1674 1688 1712 1723 1748 1763 1768 1781
kold 1579 1603 1628 1645 1656 1674 1704 1716 1746 1762 1768 1777
v 1105 1123 1126 1135 1141 1153 1171 1174 1177 1189 1198 1216

kfractal 1802 1832 1836 1852 1862 1881 1910 1916 1919 1941 1956 1984
kold 1789 1807 1813 1831 1843 1867 1903 1909 1915 1939 1955 1976

124

Table A.2: Further Improvements for Strength 6, Four Rows, Part 2
v 1225 1243 1249 1255 1261 1276 1297 1312 1321 1327 1345 1351

kfractal 2000 2030 2039 2050 2060 2084 2119 2144 2159 2168 2197 2208
kold 1985 2004 2016 2028 2040 2070 2112 2142 2158 2167 2185 2191
v 1369 1378 1381 1387 1393 1396 1405 1426 1429 1441 1450 1459

kfractal 2238 2252 2258 2268 2276 2280 2297 2332 2336 2357 2372 2386
kold 2211 2229 2235 2247 2259 2265 2283 2325 2331 2355 2371 2383
v 1480 1483 1489 1501 1513 1519 1531 1540 1561 1567 1576 1585

kfractal 2420 2426 2434 2456 2476 2486 2504 2520 2555 2564 2580 2595
kold 2404 2407 2413 2428 2452 2464 2488 2506 2548 2560 2578 2594
v 1597 1621 1639 1651 1654 1657 1675 1681 1684 1702 1711 1717

kfractal 2614 2654 2684 2704 2708 2714 2742 2753 2756 2788 2802 2813
kold 2609 2633 2655 2679 2685 2691 2727 2739 2745 2781 2799 2811
v 1726 1741 1765 1768 1783 1795 1801 1825 1828 1837 1849 1861

kfractal 2828 2852 2892 2896 2922 2942 2952 2990 2996 3009 3031 3050
kold 2827 2845 2869 2872 2892 2916 2928 2976 2982 3000 3024 3048
v 1864 1873 1882 1891 1915 1921 1933 1945 1951 1954 1981 2002

kfractal 3056 3071 3084 3100 3140 3149 3170 3190 3200 3204 3249 3284
kold 3054 3070 3082 3091 3115 3124 3147 3169 3175 3181 3235 3277
v 2017 2026 2041 2047 2053 2071 2080 2089 2101 2107 2113 2140

kfractal 3309 3324 3347 3358 3366 3398 3412 3428 3448 3458 3467 3512
kold 3307 3323 3341 3347 3353 3371 3380 3396 3420 3432 3444 3498
v 2143 2161 2176 2179 2185 2206 2209 2221 2233 2245 2251 2263

kfractal 3516 3547 3572 3576 3587 3620 3626 3644 3666 3685 3696 3716
kold 3504 3540 3570 3575 3586 3610 3613 3625 3637 3651 3663 3687
v 2269 2278 2281 2305 2311 2326 2332 2341 2350 2377 2401 2416

kfractal 3726 3740 3743 3785 3794 3820 3828 3845 3860 3904 3944 3968
kold 3699 3717 3723 3771 3783 3813 3825 3843 3859 3889 3921 3936
v 2419 2431 2437 2443 2449 2458 2461 2476 2485 2497

kfractal 3974 3994 4004 4012 4023 4036 4040 4068 4082 4103
kold 3940 3964 3976 3988 4000 4018 4024 4054 4072 4096

125

Table A.3: Further Improvements for Strength 6, Five Rows
v 36 42 254 263 273 281 292 306 320 329 336 344

kfractal 60 70 590 615 645 665 700 750 800 825 840 860
kold 57 67 502 511 521 529 580 594 613 653 660 668
v 352 360 370 377 384 394 400 409 416 425 433 441

kfractal 880 900 930 945 960 990 1000 1025 1040 1065 1085 1105
kold 676 684 729 800 816 826 832 841 848 857 865 873
v 452 457 466 473 484 491 501 510 522 630 639 648

kfractal 1140 1145 1170 1185 1220 1235 1265 1290 1330 1750 1775 1800
kold 884 889 898 905 964 971 997 1260 1290 1398 1407 1416
v 675 685 693 703 711 720 729 738 747 756 765 774

kfractal 1875 1905 1925 1955 1975 2000 2025 2050 2075 2100 2125 2150
kold 1443 1453 1461 1471 1479 1488 1497 1506 1530 1620 1629 1638
v 784 792 802 811 819 830 838 848 860 865 878 887

kfractal 2180 2200 2230 2255 2275 2310 2330 2360 2400 2405 2450 2475
kold 1648 1656 1666 1675 1683 1694 1702 1712 1724 1729 1746 1755

Table A.4: Further Improvements for Strength 7, Five Rows
v 40 52 53 56 57 59 61 62 65 66 69 70

kfractal 56 74 76 80 81 85 88 89 94 97 100 101
kold 55 73 74 79 80 83 86 87 93 95 99 100
v 71 72 73 74 75 76 77 83 86 90 91 92

kfractal 103 104 105 106 109 112 113 123 128 134 135 137
kold 101 102 103 105 106 108 110 119 126 132 133 135
v 93 95 96 99 100 101 102 103 104 105 106 107

kfractal 138 143 144 148 149 150 154 155 156 157 158 160
kold 137 141 143 147 148 149 150 151 153 155 157 159
v 108 109 110 111 112 116 117 118 120 121 122 125

kfractal 162 167 168 169 170 176 177 178 180 182 184 191
kold 161 163 164 166 167 172 173 174 177 179 181 187
v 126 251 252 253 255 256 257 259 260 262 263 265

kfractal 192 400 401 402 404 408 409 414 417 420 421 426
kold 188 389 391 393 397 399 401 403 404 406 407 409
v 266 267 270 272 273 274 275 276 279 280 281 283

kfractal 428 429 432 434 435 436 439 444 447 448 452 455
kold 410 411 414 416 417 418 419 420 423 424 425 427
v 284 286 287 291 292 294 296 297 298 299 301 303

kfractal 458 462 464 469 472 474 476 477 478 480 484 490
kold 428 430 431 435 436 438 440 441 442 443 457 447
v 305 308 309 311 312 313 315 318 319 321 322 324

kfractal 492 495 500 503 504 508 510 513 518 520 522 524
kold 453 464 465 467 468 481 491 498 499 501 502 504

126

Table A.5: Further Improvements for Strength 7, Five Rows, Part 2
v 326 327 328 331 333 334 335 336 337 338 340 341

kfractal 528 529 530 534 537 538 539 542 547 550 552 553
kold 506 507 508 511 513 514 515 516 517 518 520 521
v 342 343 345 346 348 351 352 354 355 356 357 358

kfractal 554 559 561 562 568 571 572 574 575 576 577 578
kold 522 523 525 526 528 531 532 534 535 536 537 538
v 359 361 363 365 366 370 372 375 376 379 384 386

kfractal 579 589 592 594 598 602 609 614 616 620 626 628
kold 539 541 543 571 576 572 582 585 586 589 594 596
v 389 390 391 393 394 395 396 397 398 400 404 405

kfractal 634 636 637 639 640 641 642 644 648 656 660 662
kold 599 600 601 603 604 605 606 609 614 620 624 625
v 406 408 410 411 412 414 415 416 417 418 420 421

kfractal 664 670 672 675 676 678 679 680 681 682 684 688
kold 626 628 630 631 632 634 635 640 641 642 644 645
v 423 425 427 431 432 434 435 438 441 442 445 448

kfractal 690 696 702 706 708 710 714 721 728 729 732 736
kold 647 651 655 663 665 669 671 677 683 685 691 697
v 449 452 453 455 457 458 460 461 462 464 465 466

kfractal 737 740 741 746 751 752 756 758 759 761 765 770
kold 699 705 707 711 721 722 724 725 726 729 731 733
v 470 471 473 474 475 476 478 479 481 482 483 484

kfractal 774 777 779 780 783 786 788 790 793 795 796 798
kold 741 743 747 749 751 753 757 759 763 765 767 769
v 488 490 491 492 493 494 495 496 497 498 499 502

kfractal 802 804 805 807 808 810 812 816 817 820 823 826
kold 776 780 782 784 786 787 789 791 793 795 797 802
v 503 504 506 507 508 512 515 516 518 519 522 523

kfractal 828 831 839 840 844 848 851 852 854 856 859 860
kold 803 804 806 807 808 812 815 816 820 825 828 829
v 525 529 531 532 533 534 535 536 538 541 544 545

kfractal 870 874 876 878 879 880 881 884 890 897 900 902
kold 831 835 837 838 839 840 841 842 844 847 850 851
v 546 550 552 553 554 555 557 558 559 561 564 565

kfractal 904 910 914 917 918 921 924 925 926 929 932 937
kold 852 856 858 859 860 863 869 870 871 873 876 877
v 569 570 571 573 574 577 581 582 584 585 586 588

kfractal 942 944 949 952 953 961 965 966 968 972 974 979
kold 881 882 883 885 886 889 893 894 896 897 898 900
v 592 593 597 598 599 601 602 604 606 607 610 611

kfractal 983 984 988 989 991 995 996 1002 1008 1009 1012 1015
kold 904 905 909 910 933 943 944 946 948 949 952 953

127

Table A.6: Further Improvements for Strength 7, Five Rows, Part 3
v 612 613 615 616 618 620 622 623 624 626 628 630

kfractal 1016 1017 1019 1022 1026 1028 1034 1035 1036 1042 1044 1050
kold 954 955 957 958 960 962 978 983 988 990 992 994
v 633 635 639 640 644 645 647 648 651 653 655 656

kfractal 1053 1060 1064 1066 1070 1072 1079 1080 1084 1088 1091 1092
kold 997 999 1003 1004 1008 1009 1011 1012 1015 1017 1019 1020
v 658 659 661 663 665 667 668 671 672 675 678 680

kfractal 1096 1100 1102 1106 1110 1112 1116 1120 1121 1124 1128 1130
kold 1022 1023 1025 1027 1029 1031 1032 1035 1036 1039 1042 1044
v 682 683 686 687 690 691 692 693 694 695 696 697

kfractal 1135 1139 1142 1143 1151 1153 1154 1155 1156 1160 1161 1162
kold 1058 1063 1050 1059 1070 1071 1072 1101 1106 1111 1116 1117
v 698 699 702 704 707 709 710 712 713 716 717 719

kfractal 1165 1166 1172 1176 1184 1189 1190 1192 1193 1196 1197 1201
kold 1118 1119 1122 1124 1127 1129 1130 1132 1133 1136 1137 1139
v 721 722 723 726 727 728 729 730 732 733 734 735

kfractal 1204 1205 1208 1211 1214 1215 1216 1217 1222 1223 1226 1230
kold 1141 1142 1143 1146 1147 1148 1149 1150 1152 1153 1154 1155
v 737 740 744 749 753 754 755 759 760 761 762 765

kfractal 1232 1240 1244 1256 1260 1261 1265 1270 1272 1273 1274 1282
kold 1157 1160 1165 1175 1183 1185 1187 1195 1197 1199 1201 1207
v 767 769 770 772 776 778 783 784 785 786 788 790

kfractal 1284 1286 1287 1296 1300 1304 1309 1310 1313 1314 1324 1326
kold 1211 1215 1217 1221 1229 1240 1243 1246 1247 1249 1253 1257
v 793 795 796 802 804 809 811 814 816 817 818 819

kfractal 1332 1335 1338 1346 1348 1358 1362 1366 1368 1370 1371 1372
kold 1263 1267 1269 1281 1285 1295 1299 1305 1309 1311 1313 1315
v 821 826 827 828 829 830 831 832 833 834 835 838

kfractal 1380 1385 1387 1388 1389 1390 1395 1396 1398 1402 1403 1410
kold 1319 1329 1331 1333 1335 1337 1339 1341 1343 1345 1347 1353
v 839 841 845 847 851 852 854 855 856 857 858 862

kfractal 1412 1416 1422 1424 1428 1432 1434 1435 1436 1437 1440 1449
kold 1355 1359 1367 1371 1378 1380 1384 1386 1388 1390 1391 1399
v 863 864 867 871 873 876 877 880 882 884 886 890

kfractal 1450 1452 1455 1465 1467 1470 1471 1484 1486 1492 1494 1500
kold 1401 1403 1407 1411 1413 1416 1417 1420 1422 1424 1426 1430
v 892 893 895 896 897 898 900 903 904 907 908 909

kfractal 1504 1505 1507 1508 1509 1510 1512 1520 1522 1527 1528 1532
kold 1432 1433 1435 1436 1437 1438 1444 1447 1448 1451 1452 1453
v 912 913 915 918 920 921 927 931 934 935 941 943

kfractal 1535 1536 1538 1548 1555 1556 1564 1568 1574 1578 1584 1586
kold 1456 1457 1459 1462 1464 1465 1471 1475 1478 1479 1485 1488
v 944 947 949 950 951 952 953 954 956 958 961 963

kfractal 1591 1594 1596 1597 1598 1602 1605 1606 1608 1612 1616 1624
kold 1490 1496 1500 1502 1504 1506 1508 1510 1514 1518 1524 1528

128

Table A.7: Further Improvements for Strength 7, Five Rows, Part 4
v 964 966 967 968 969 970 971 972 974 977 979 982

kfractal 1626 1628 1630 1633 1635 1636 1637 1638 1640 1652 1654 1658
kold 1530 1534 1536 1538 1540 1542 1544 1546 1550 1556 1559 1565
v 983 984 985 986 987 990 995 998 999 1002 1003 1005

kfractal 1659 1664 1668 1670 1671 1674 1679 1682 1685 1688 1689 1692
kold 1567 1580 1585 1572 1574 1586 1595 1598 1599 1602 1603 1605
v 1006 1009 1011 1012 1013 1014 1015 1016 1017 1018 1019 1021

kfractal 1694 1702 1704 1708 1709 1711 1712 1713 1714 1718 1719 1727
kold 1606 1609 1611 1612 1613 1614 1615 1616 1617 1618 1619 1621
v 1023 1024 1026 1027 1029 1030 1032 1033 1034 1035 1036 1038

kfractal 1729 1732 1734 1736 1738 1740 1742 1746 1750 1752 1756 1758
kold 1623 1624 1626 1627 1629 1630 1632 1633 1638 1643 1648 1650
v 1039 1040 1041 1042 1044 1045 1046 1047 1048 1051 1056 1060

kfractal 1759 1760 1761 1762 1764 1765 1766 1768 1769 1777 1784 1788
kold 1651 1652 1653 1654 1656 1657 1658 1659 1660 1663 1668 1672
v 1061 1062 1063 1064 1065 1068 1071 1072 1074 1077 1078 1082

kfractal 1789 1790 1791 1792 1797 1808 1812 1814 1816 1822 1824 1830
kold 1673 1674 1675 1680 1685 1692 1695 1696 1698 1701 1702 1706
v 1084 1087 1088 1089 1091 1092 1095 1096 1098 1099 1100 1104

kfractal 1832 1839 1840 1845 1847 1852 1855 1856 1858 1859 1862 1866
kold 1708 1711 1712 1713 1715 1716 1719 1742 1722 1723 1724 1754
v 1106 1107 1108 1110 1111 1115 1116 1117 1119 1121 1124 1125

kfractal 1868 1871 1872 1878 1880 1890 1891 1892 1894 1896 1906 1908
kold 1756 1757 1758 1760 1761 1765 1766 1767 1769 1771 1774 1797
v 1131 1133 1134 1135 1136 1137 1138 1139 1141 1145 1146 1149

kfractal 1916 1918 1920 1922 1926 1927 1930 1934 1940 1944 1945 1948
kold 1815 1817 1818 1819 1820 1821 1822 1823 1825 1829 1830 1833
v 1150 1155 1157 1158 1159 1162 1166 1167 1168 1169 1171 1172

kfractal 1950 1955 1961 1964 1965 1970 1974 1975 1976 1979 1982 1984
kold 1834 1839 1841 1842 1843 1846 1850 1851 1852 1853 1855 1856
v 1175 1178 1179 1184 1185 1186 1187 1190 1191 1195 1196 1204

kfractal 1988 2000 2001 2006 2007 2009 2012 2022 2023 2032 2036 2044
kold 1861 1867 1869 1879 1881 1883 1885 1891 1893 1901 1903 1919
v 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1217 1218

kfractal 2046 2047 2048 2049 2050 2051 2052 2053 2055 2056 2058 2059
kold 1923 1925 1927 1929 1931 1933 1935 1937 1939 1941 1945 1947
v 1219 1221 1225 1227 1228 1231 1233 1234 1237 1238 1240 1241

kfractal 2064 2071 2077 2084 2085 2088 2091 2092 2097 2102 2106 2110
kold 1949 1968 1980 1982 1984 1987 1989 1990 1993 1994 1996 1997
v 1243 1244 1245 1246 1250 1253 1254 1255 1258 1259 1263 1265

kfractal 2112 2113 2116 2120 2127 2131 2134 2136 2139 2140 2144 2148
kold 1999 2000 2001 2003 2011 2017 2019 2021 2027 2029 2037 2041

129

Table A.8: Further Improvements for Strength 7, Five Rows, Part 5
v 1268 1269 1270 1273 1276 1279 1280 1285 1286 1291 1292 1295

kfractal 2151 2152 2154 2163 2168 2171 2172 2185 2186 2193 2198 2201
kold 2047 2049 2051 2057 2063 2069 2071 2081 2083 2093 2095 2101
v 1296 1297 1299 1300 1304 1306 1308 1310 1314 1316 1317 1319

kfractal 2202 2203 2211 2212 2220 2222 2228 2230 2234 2240 2241 2243
kold 2103 2105 2109 2111 2119 2123 2127 2131 2139 2143 2145 2149
v 1320 1321 1323 1325 1330 1332 1333 1335 1336 1337 1339 1340

kfractal 2244 2248 2250 2252 2257 2259 2264 2266 2268 2273 2276 2277
kold 2151 2153 2157 2161 2171 2175 2177 2181 2183 2185 2189 2191
v 1342 1345 1346 1347 1348 1351 1357 1358 1363 1364 1368 1369

kfractal 2284 2288 2289 2292 2293 2305 2312 2313 2318 2321 2328 2332
kold 2195 2201 2203 2205 2207 2213 2225 2226 2236 2238 2245 2247
v 1370 1371 1373 1374 1377 1378 1379 1382 1383 1386 1388 1390

kfractal 2333 2337 2340 2341 2344 2348 2349 2352 2355 2358 2362 2370
kold 2249 2251 2255 2256 2259 2260 2261 2264 2265 2268 2270 2272
v 1391 1395 1398 1399 1401 1404 1405 1408 1410 1412 1414 1416

kfractal 2371 2375 2378 2379 2384 2392 2393 2396 2400 2403 2408 2410
kold 2273 2277 2280 2281 2283 2286 2287 2290 2292 2294 2296 2298
v 1417 1418 1419 1421 1423 1424 1425 1426 1427 1429 1430 1432

kfractal 2413 2415 2416 2422 2424 2426 2427 2429 2430 2433 2434 2438
kold 2299 2300 2301 2303 2305 2306 2307 2308 2309 2311 2312 2314
v 1434 1436 1440 1442 1444 1446 1447 1451 1452 1453 1455 1458

kfractal 2442 2446 2452 2454 2460 2462 2464 2468 2469 2470 2472 2486
kold 2316 2318 2322 2324 2326 2328 2329 2333 2334 2335 2337 2340
v 1460 1461 1465 1467 1468 1470 1474 1475 1476 1477 1480 1481

kfractal 2493 2494 2498 2501 2502 2506 2512 2515 2516 2517 2524 2526
kold 2342 2343 2347 2349 2350 2352 2356 2357 2358 2359 2362 2363
v 1483 1486 1489 1490 1491 1492 1495 1496 1497 1499 1501 1502

kfractal 2530 2534 2542 2543 2545 2548 2551 2552 2554 2556 2558 2559
kold 2367 2398 2413 2414 2415 2416 2419 2420 2421 2423 2425 2426
v 1503 1505 1507 1509 1515 1519 1520 1525 1527 1531 1532 1533

kfractal 2560 2568 2574 2580 2586 2590 2592 2604 2606 2610 2612 2616
kold 2427 2429 2431 2433 2439 2443 2444 2449 2451 2455 2456 2457
v 1538 1540 1541 1542 1544 1545 1548 1549 1551 1552 1554 1556

kfractal 2624 2626 2627 2630 2634 2637 2640 2641 2644 2648 2650 2656
kold 2462 2464 2465 2468 2468 2469 2472 2473 2475 2476 2478 2480
v 1558 1560 1561 1564 1569 1575 1577 1579 1581 1586 1588 1589

kfractal 2662 2664 2665 2672 2678 2686 2688 2690 2692 2712 2714 2716
kold 2482 2484 2485 2488 2493 2504 2508 2512 2516 2526 2530 2532

130

Table A.9: Further Improvements for Strength 7, Five Rows, Part 6
v 1590 1591 1592 1594 1596 1604 1608 1609 1610 1611 1613 1617

kfractal 2717 2718 2720 2722 2730 2740 2745 2748 2749 2753 2760 2768
kold 2534 2536 2538 2542 2546 2562 2570 2572 2574 2595 2605 2609
v 1619 1629 1631 1633 1638 1639 1640 1649 1650 1651 1652 1655

kfractal 2770 2780 2786 2788 2802 2806 2808 2817 2818 2819 2822 2828
kold 2611 2621 2623 2625 2630 2632 2634 2652 2654 2656 2658 2664
v 1657 1664 1666 1668 1669 1670 1674 1676 1683 1685 1687 1688

kfractal 2830 2846 2848 2856 2861 2862 2868 2870 2878 2880 2884 2888
kold 2668 2682 2686 2690 2692 2694 2702 2706 2720 2724 2728 2730
v 1696 1698 1700 1702 1708 1709 1712 1716 1719 1722 1726 1727

kfractal 2896 2898 2908 2910 2916 2918 2926 2930 2938 2944 2948 2950
kold 2746 2750 2754 2758 2769 2771 2777 2784 2790 2795 2803 2805
v 1728 1730 1731 1732 1733 1735 1738 1739 1747 1748 1750 1751

kfractal 2952 2955 2959 2960 2961 2964 2972 2974 2992 2996 2998 3000
kold 2807 2810 2811 2812 2813 2815 2818 2819 2827 2828 2830 2831
v 1753 1759 1760 1762 1764 1766 1767 1771 1780 1782 1783 1788

kfractal 3002 3008 3010 3012 3014 3016 3018 3037 3048 3050 3051 3064
kold 2833 2839 2840 2842 2844 2846 2847 2851 2884 2886 2887 2892
v 1789 1795 1798 1800 1805 1806 1807 1812 1814 1816 1822 1823

kfractal 3065 3075 3080 3082 3092 3093 3097 3104 3110 3112 3120 3122
kold 2893 2899 2902 2904 2909 2910 2911 2921 2925 2929 2941 2943
v 1828 1832 1837 1844 1852 1856 1859 1861 1863 1865 1873 1877

kfractal 3128 3132 3148 3164 3172 3176 3181 3188 3190 3200 3208 3216
kold 2953 2961 2971 2985 3001 3009 3015 3019 3023 3027 3043 3051
v 1880 1883 1885 1886 1887 1890 1898 1906 1908 1916 1918 1927

kfractal 3224 3228 3232 3236 3238 3242 3250 3258 3268 3282 3290 3304
kold 3057 3063 3067 3069 3071 3077 3093 3109 3113 3129 3133 3151
v 1932 1938 1940 1942 1950 1956 1958 1962 1966 1968 1970 1971

kfractal 3314 3320 3322 3328 3338 3344 3346 3354 3362 3368 3370 3372
kold 3161 3173 3177 3181 3197 3209 3213 3221 3229 3233 3237 3239
v 1973 1974 1979 1991 1995 1997 2000

kfractal 3374 3378 3396 3408 3412 3414 3424
kold 3243 3245 3255 3279 3287 3291 3297

131

Table A.10: Further Improvements for Strength 8, Five Rows
v 55 69 93 97 112 125 131 141 150 165 188 189

kfractal 72 91 124 129 150 167 176 190 202 223 254 256
kold 71 90 123 128 149 166 174 188 200 222 251 252
v 199 207 213 228 237 245 257 261 267 285 286 301

kfractal 270 280 289 310 322 332 350 355 364 388 390 411
kold 267 279 287 309 321 329 345 351 360 387 388 410
v 306 309 315 335 344 345 357 369 373 384 389 402

kfractal 418 421 430 458 470 472 487 505 510 526 533 550
kold 418 421 427 453 466 468 486 503 509 525 533 546
v 403 423 433 437 462 471 477 482 489 501 505 521

kfractal 552 580 594 599 634 646 655 662 670 688 693 716
kold 547 574 589 595 632 646 654 662 669 681 686 710
v 531 539 540 547 565 573 579 580 585 609 618 629

kfractal 730 740 742 750 777 787 796 798 805 838 850 866
kold 725 737 738 749 775 787 796 797 805 832 843 859
v 639 653 657 678 693 697 698 709 727 735 741 747

kfractal 880 899 904 934 955 960 962 975 1002 1012 1021 1030
kold 874 895 901 932 954 960 962 973 993 1005 1014 1023
v 757 776 785 801 816 821 825 829 855 874 875 885

kfractal 1044 1070 1082 1105 1126 1133 1138 1143 1180 1206 1208 1222
kold 1038 1066 1080 1103 1125 1133 1137 1141 1170 1199 1200 1215
v 891 909 917 923 934 949 954 963 972 993 1013 1017

kfractal 1228 1255 1265 1274 1290 1311 1318 1330 1342 1372 1400 1405
kold 1224 1251 1263 1272 1288 1310 1318 1327 1336 1362 1392 1398
v 1023 1052 1070 1071 1077 1092 1097 1111 1119 1125 1141 1161

kfractal 1414 1454 1478 1480 1489 1510 1517 1536 1546 1555 1578 1606
kold 1407 1450 1477 1479 1487 1509 1517 1531 1539 1545 1568 1597
v 1170 1171 1179 1205 1229 1230 1233 1245 1250 1269 1287 1288

kfractal 1618 1620 1630 1667 1700 1702 1705 1723 1730 1756 1780 1782
kold 1611 1612 1624 1663 1699 1700 1705 1722 1730 1749 1769 1770
v 1299 1319 1329 1333 1341 1347 1368 1393 1397 1408 1413 1437

kfractal 1798 1826 1840 1845 1855 1864 1894 1929 1934 1950 1957 1990
kold 1787 1817 1832 1838 1850 1859 1890 1927 1933 1949 1957 1981
v 1449 1461 1467 1487 1497 1506 1524 1525 1541 1566 1575 1581

kfractal 2005 2023 2032 2060 2074 2086 2110 2112 2135 2170 2182 2191
kold 1993 2011 2020 2050 2065 2079 2106 2107 2131 2168 2182 2190
v 1586 1589 1615 1644 1645 1653 1665 1675 1689 1701 1713 1717

kfractal 2198 2201 2238 2278 2280 2290 2308 2322 2341 2356 2374 2379
kold 2198 2201 2227 2268 2269 2280 2298 2313 2334 2352 2370 2376

132

Table A.11: Further Improvements for Strength 8, Five Rows, Part 2
v 1724 1749 1763 1764 1769 1781 1782 1803 1833 1837 1853 1863

kfractal 2390 2425 2444 2446 2453 2468 2470 2500 2542 2547 2570 2584
kold 2386 2423 2444 2445 2453 2465 2466 2487 2529 2535 2559 2574
v 1882 1911 1917 1920 1942 1957 1961 1962 1973 1985 1989 2001

kfractal 2610 2650 2659 2662 2694 2715 2720 2722 2735 2753 2758 2776
kold 2603 2646 2655 2660 2692 2714 2720 2722 2733 2745 2749 2761
v 2031 2040 2051 2061 2085 2119 2120 2127 2133 2145 2160 2165

kfractal 2818 2830 2846 2860 2893 2940 2942 2950 2959 2977 2998 3005
kold 2805 2818 2835 2850 2886 2937 2938 2949 2958 2975 2997 3005
v 2169 2198 2209 2239 2253 2259 2269 2277 2281 2298 2333 2337

kfractal 3010 3050 3066 3108 3127 3136 3150 3160 3165 3190 3239 3244
kold 3009 3038 3049 3094 3115 3124 3139 3151 3157 3183 3235 3241
v 2358 2373 2378 2387 2421 2427 2435 2457 2476 2477 2487

kfractal 3274 3295 3302 3314 3361 3370 3380 3412 3438 3440 3454
kold 3272 3294 3302 3311 3345 3353 3365 3398 3426 3428 3443

Table A.12: Further Improvements for Strength 8, Six Rows
v 167 270 280 288 333 352 365 386 396 408 434 450

kfractal 252 432 450 480 540 576 600 630 648 672 720 750
kold 248 413 424 432 503 532 545 601 615 628 658 675
v 464 485 492 503 516 525 572 598 620 636 680 693

kfractal 768 792 810 840 864 900 960 1008 1050 1080 1152 1176
kold 716 749 756 767 788 825 884 910 969 994 1044 1057
v 705 737 756 779 788 790 810 926 939 960 971 996

kfractal 1200 1260 1296 1320 1344 1350 1458 1584 1620 1650 1680 1728
kold 1069 1157 1176 1219 1228 1230 1254 1466 1479 1504 1515 1540
v 1015 1040 1073 1088 1104 1116 1141 1154 1176 1205 1236 1293

kfractal 1764 1800 1848 1890 1920 1944 1980 2016 2058 2100 2160 2268
kold 1602 1640 1692 1712 1728 1740 1795 1838 1860 1899 1961 2061
v 1312 1323 1370 1386 1432 1470 1498 1520 1556 1571 1596 1703

kfractal 2304 2352 2400 2430 2520 2592 2646 2688 2730 2772 2808 3024
kold 2080 2091 2138 2154 2302 2352 2380 2433 2480 2495 2536 2715
v 1728 1769 1786 1820 1824 1849 1865 1886 1908 1920 1981 2001

kfractal 3072 3120 3168 3234 3240 3276 3300 3360 3402 3456 3528 3564
kold 2740 2825 2842 2924 2928 2953 2969 2990 3012 3024 3181 3201
v 2020 2046 2069 2102 2113 2144 2169 2216 2252 2303 2318 2340

kfractal 3600 3630 3696 3744 3780 3840 3888 3960 4032 4116 4158 4200
kold 3235 3270 3293 3434 3445 3476 3513 3560 3596 3707 3722 3744
v 2352 2402 2430 2464

kfractal 4224 4320 4374 4410
kold 3756 3806 3881 3976

133

Table A.13: Further Improvements for Strength 9, Six Rows
v 55 68 89 94 106 120 123 131 140 152 172 206

kfractal 72 90 120 126 144 162 168 180 192 210 234 288
kold 71 89 118 125 141 161 166 176 188 207 232 285
v 215 256 268 272 278 281 297 305 326 331 338 342

kfractal 300 360 378 384 390 396 420 432 462 468 480 486
kold 299 343 375 384 390 393 409 420 446 465 477 486
v 355 371 379 384 404 413 416 420 437 442 453 461

kfractal 504 528 540 546 576 588 594 600 624 630 648 660
kold 499 515 523 528 552 588 591 600 617 622 633 641
v 470 481 490 502 506 527 536 543 551 564 569 584

kfractal 672 684 702 720 726 756 768 780 792 810 816 840
kold 650 661 670 717 726 747 756 763 775 788 793 808
v 596 600 616 625 638 641 649 666 675 686 698 702

kfractal 858 864 882 900 918 924 936 960 972 990 1008 1014
kold 855 864 880 889 902 905 913 934 953 974 1005 1014
v 707 712 731 747 755 767 776 786 789 796 808 812

kfractal 1020 1026 1056 1080 1092 1104 1122 1134 1140 1152 1170 1176
kold 1019 1024 1043 1059 1067 1079 1088 1098 1101 1117 1167 1176
v 821 830 845 860 861 866 869 894 911 914 926 930

kfractal 1188 1200 1224 1242 1248 1254 1260 1296 1320 1326 1344 1350
kold 1185 1194 1209 1224 1225 1230 1233 1258 1275 1278 1341 1350
v 943 953 956 967 983 991 1001 1020 1040 1052 1056 1073

kfractal 1368 1380 1386 1404 1428 1440 1452 1482 1512 1530 1536 1560
kold 1363 1373 1376 1387 1403 1416 1431 1460 1480 1527 1536 1553
v 1090 1097 1113 1121 1126 1136 1139 1154 1174 1179 1186 1190

kfractal 1584 1596 1620 1632 1638 1650 1656 1680 1710 1716 1728 1734
kold 1570 1577 1593 1601 1606 1616 1619 1634 1682 1713 1725 1734
v 1211 1226 1232 1235 1251 1259 1268 1285 1296 1316 1325 1328

kfractal 1764 1782 1794 1800 1824 1836 1848 1872 1890 1920 1932 1938
kold 1755 1770 1776 1779 1795 1803 1812 1829 1840 1860 1932 1935
v 1332 1338 1357 1381 1397 1405 1418 1439 1444 1446 1466 1478

kfractal 1944 1950 1980 2016 2040 2052 2070 2100 2106 2112 2142 2160
kold 1944 1950 1969 1993 2016 2029 2042 2063 2068 2070 2090 2157
v 1482 1496 1511 1535 1540 1550 1551 1559 1576 1601 1604 1610

kfractal 2166 2184 2208 2244 2250 2262 2268 2280 2304 2340 2346 2352
kold 2166 2180 2195 2219 2224 2234 2235 2243 2260 2309 2312 2328
v 1624 1636 1640 1662 1673 1697 1706 1713 1721 1742 1762 1770

kfractal 2376 2394 2400 2430 2448 2484 2496 2508 2520 2550 2574 2592
kold 2352 2391 2400 2422 2433 2457 2466 2473 2481 2502 2524 2532

134

Table A.14: Further Improvements for Strength 9, Six Rows, Part 2
v 1781 1790 1802 1806 1811 1836 1843 1867 1880 1883 1891 1901

kfractal 2604 2622 2640 2646 2652 2688 2700 2736 2754 2760 2772 2784
kold 2558 2567 2637 2646 2651 2676 2683 2707 2720 2723 2731 2741
v 1906 1916 1944 1949 1964 1976 1980 1989 2018 2021 2031 2045

kfractal 2790 2808 2850 2856 2880 2898 2904 2916 2958 2964 2976 3000
kold 2746 2756 2784 2789 2804 2895 2904 2913 2942 2945 2955 2969
v 2061 2069 2087 2096 2098 2126 2135 2146 2158 2162 2175 2207

kfractal 3024 3036 3060 3072 3078 3120 3132 3150 3168 3174 3192 3240
kold 2985 2993 3027 3036 3048 3086 3095 3106 3165 3174 3187 3219
v 2231 2247 2252 2255 2272 2281 2288 2294 2316 2329 2336 2348

kfractal 3276 3300 3306 3312 3330 3348 3360 3366 3402 3420 3432 3450
kold 3243 3259 3264 3267 3284 3293 3300 3306 3328 3341 3348 3447
v 2352 2369 2401 2406 2425 2441 2449 2483 2486 2500

kfractal 3456 3480 3528 3534 3564 3588 3600 3648 3654 3672
kold 3456 3473 3505 3510 3529 3545 3553 3587 3590 3604

Table A.15: Further Improvements for Strength 9, Seven Rows
v 479 494 503 515 527 539 557 566 575 593 599 614

kfractal 1120 1155 1176 1204 1232 1260 1302 1323 1344 1386 1400 1435
kold 711 742 760 779 810 833 857 866 875 893 899 923
v 623 638 650 662 683 686 701 710 731 740 758 767

kfractal 1456 1491 1519 1547 1596 1603 1638 1659 1708 1729 1771 1792
kold 935 950 962 974 1004 1014 1060 1074 1095 1104 1131 1149
v 773 797 863 899 971 1049 1064 1124 1142 1154 1172 1184

kfractal 1806 1862 2016 2100 2268 2450 2485 2625 2667 2695 2737 2765
kold 1157 1181 1299 1379 1511 1641 1656 1724 1742 1754 1781 1796
v 1214 1244 1259 1274 1289 1295 1307 1319 1322 1337 1343 1349

kfractal 2835 2905 2940 2975 3010 3024 3052 3080 3087 3122 3136 3150
kold 1838 1868 1883 1922 1967 1985 2063 2075 2078 2093 2099 2105
v 1352 1364 1385 1397 1415 1442 1457 1469 1499 1574 1649 1679

kfractal 3157 3185 3234 3262 3304 3367 3402 3430 3500 3675 3850 3920
kold 2114 2132 2153 2165 2183 2311 2326 2351 2381 2462 2549 2579
v 1754 1763 1835 1847 1874 1889 1949 2024 2057 2078 2183 2186

kfractal 4095 4116 4284 4312 4375 4410 4550 4725 4802 4851 5096 5103
kold 2654 2726 2915 2927 2954 2969 3029 3104 3153 3228 3527 3530
v 2204 2294 2339 2351 2447 2483

kfractal 5145 5355 5460 5488 5712 5796
kold 3548 3638 3683 3695 3791 3827

135

Table A.16: Further Improvements for Strength 10, Six Rows
v 73 92 125 130 151 168 177 187 191 203 224 244

kfractal 90 114 156 162 189 210 222 234 240 255 282 306
kold 89 113 155 161 188 209 220 233 239 254 281 305
v 255 257 271 281 290 307 311 318 323 333 351 356

kfractal 321 324 342 354 366 387 393 402 408 420 444 450
kold 318 321 340 353 365 387 392 402 407 417 441 447
v 365 389 391 412 419 422 431 455 459 471 473 488

kfractal 462 492 495 522 531 534 546 576 582 597 600 618
kold 459 491 494 521 531 534 543 573 579 594 597 617
v 506 511 527 534 551 553 581 591 595 600 631 635

kfractal 642 648 669 678 699 702 738 750 756 762 801 807
kold 641 647 668 678 695 697 734 747 753 759 801 806
v 647 656 663 671 689 694 717 731 741 743 751 778

kfractal 822 834 843 852 876 882 912 930 942 945 954 990
kold 822 833 843 851 870 877 908 926 940 942 953 989
v 788 797 799 806 835 839 851 867 881 900 905 935

kfractal 1002 1014 1017 1026 1062 1068 1083 1104 1122 1146 1152 1191
kold 1002 1014 1016 1026 1059 1063 1078 1099 1118 1143 1150 1190
v 956 959 961 963 976 1003 1013 1022 1031 1045 1067 1071

kfractal 1218 1221 1224 1227 1242 1278 1290 1302 1314 1332 1359 1365
kold 1217 1221 1224 1227 1240 1272 1285 1297 1309 1328 1357 1362
v 1083 1106 1127 1134 1139 1144 1181 1205 1207 1209 1223 1229

kfractal 1380 1410 1437 1446 1452 1458 1506 1536 1539 1542 1560 1566
kold 1378 1409 1436 1446 1451 1456 1499 1531 1534 1537 1555 1563
v 1256 1266 1275 1291 1312 1319 1327 1331 1343 1373 1388 1401

kfractal 1602 1614 1626 1647 1674 1683 1692 1698 1713 1752 1770 1788
kold 1599 1613 1625 1646 1673 1683 1691 1695 1707 1745 1765 1782
v 1406 1411 1415 1455 1479 1481 1490 1511 1518 1537 1547 1556

kfractal 1794 1800 1806 1857 1887 1890 1902 1929 1938 1962 1974 1986
kold 1789 1796 1801 1854 1886 1889 1901 1928 1938 1957 1967 1979
v 1579 1607 1619 1621 1631 1668 1683 1701 1703 1706 1724 1731

kfractal 2016 2052 2067 2070 2082 2130 2148 2172 2175 2178 2202 2211
kold 2009 2046 2062 2065 2078 2127 2147 2171 2174 2178 2201 2211
v 1757 1781 1783 1799 1827 1841 1846 1856 1865 1895 1930 1935

kfractal 2244 2274 2277 2298 2334 2352 2358 2370 2382 2421 2466 2472
kold 2237 2266 2269 2290 2328 2346 2353 2366 2378 2418 2465 2471
v 1947 1951 1958 1991 2006 2024 2029 2033 2061 2075 2087 2111

kfractal 2487 2493 2502 2544 2562 2586 2592 2598 2634 2652 2667 2697
kold 2487 2492 2502 2535 2554 2578 2585 2590 2627 2646 2662 2694

136

Table A.17: Further Improvements for Strength 10, Six Rows, Part 2
v 2113 2136 2171 2183 2192 2199 2202 2239 2279 2281 2291 2309

kfractal 2700 2730 2775 2790 2802 2811 2814 2862 2913 2916 2928 2952
kold 2697 2727 2774 2790 2801 2811 2814 2854 2905 2908 2921 2945
v 2323 2342 2357 2375 2380 2391 2426 2445 2447 2454 2469 2471

kfractal 2970 2994 3012 3036 3042 3057 3102 3126 3129 3138 3156 3159
kold 2964 2989 3009 3033 3040 3054 3101 3126 3128 3138 3153 3155

Table A.18: Further Improvements for Strength 10, Seven Rows
v 161 251 269 287 419 449 479 539 749 767 791 809

kfractal 217 338 367 393 572 621 673 748 1051 1073 1100 1129
kold 215 335 355 388 563 605 644 725 1049 1067 1091 1109
v 839 863 899 1457

kfractal 1178 1213 1276 2107
kold 1149 1173 1220 2057

Table A.19: Further Improvements for Strength 11, Seven Rows
v 23 35 47 53 59 71 83 89 95 107 119 125

kfractal 29 44 59 67 74 90 104 113 121 136 152 159
kold 27 41 56 63 71 87 101 110 117 132 148 156
v 149 161 167 197 215 233 251 263 269 287 293 299

kfractal 191 205 214 251 277 297 324 338 347 371 379 386
kold 187 202 210 247 273 293 314 329 341 366 375 383
v 311 323 329 335 359 377 383 389 395 407 419 431

kfractal 400 418 425 434 465 489 497 503 512 524 544 560
kold 395 407 413 422 459 484 493 501 507 519 532 549
v 449 461 467 479 485 503 527 539 545 569 575 587

kfractal 581 599 606 623 631 654 686 702 709 737 749 764
kold 569 593 601 618 627 647 671 683 693 731 743 760
v 593 599 611 623 629 647 659 671 683 701 713 719

kfractal 773 781 794 812 819 844 860 875 888 915 929 939
kold 768 777 791 803 809 827 839 851 873 909 926 934
v 725 755 767 779 791 809 815 827 839 857 863 881

kfractal 947 986 1001 1018 1034 1057 1064 1076 1097 1121 1129 1149
kold 943 975 989 1003 1015 1033 1043 1067 1091 1116 1125 1145
v 899 911 917 923 935 959 971 989 1007 1013 1019 1025

kfractal 1176 1190 1199 1208 1224 1255 1270 1295 1319 1327 1334 1341
kold 1163 1175 1181 1187 1203 1237 1257 1289 1314 1323 1331 1337
v 1049 1055 1079 1091 1103 1121 1133 1139 1151 1169 1175 1187

kfractal 1369 1382 1414 1430 1442 1469 1483 1492 1509 1533 1541 1556
kold 1361 1367 1391 1403 1415 1443 1467 1479 1503 1528 1537 1551

137

Table A.20: Further Improvements for Strength 11, Seven Rows, Part 2
v 1199 1223 1241 1247 1253 1259 1295 1319 1325 1343 1349 1367

kfractal 1571 1604 1625 1636 1643 1652 1699 1730 1739 1763 1771 1794
kold 1563 1587 1605 1611 1617 1623 1673 1721 1733 1758 1767 1787
v 1379 1385 1403 1427 1439 1451 1481 1499 1511 1517 1529 1535

kfractal 1808 1817 1842 1874 1890 1904 1945 1966 1985 1991 2009 2017
kold 1799 1805 1823 1855 1872 1889 1921 1955 1979 1987 2004 2013
v 1559 1583 1595 1619 1631 1637 1649 1655 1679 1709 1715 1727

kfractal 2048 2079 2096 2128 2144 2151 2165 2174 2207 2247 2254 2271
kold 2039 2063 2075 2099 2111 2117 2129 2135 2183 2241 2249 2266
v 1733 1763 1781 1793 1799 1823 1835 1847 1871 1889 1913 1919

kfractal 2279 2318 2339 2357 2366 2398 2414 2429 2460 2485 2513 2525
kold 2275 2307 2325 2337 2343 2367 2379 2391 2423 2459 2507 2519
v 1931 1937 1943 1949 1979 2015 2027 2039 2051 2069 2087 2099

kfractal 2540 2549 2557 2563 2604 2652 2666 2684 2700 2723 2744 2762
kold 2536 2544 2553 2561 2591 2632 2649 2663 2675 2693 2711 2729
v 2105 2111 2141 2159 2165 2183 2207 2231 2243 2249 2261 2267

kfractal 2769 2779 2819 2843 2851 2873 2906 2934 2954 2961 2975 2986
kold 2741 2753 2813 2838 2847 2867 2891 2915 2927 2933 2945 2951
v 2279 2303 2339 2345 2351 2375 2393 2399 2417 2429 2435 2447

kfractal 3002 3033 3080 3089 3095 3129 3153 3161 3181 3199 3206 3224
kold 2963 3007 3057 3066 3077 3123 3148 3157 3177 3189 3195 3207
v 2483 2495

kfractal 3272 3287
kold 3243 3255

Table A.21: Further Improvements for Strength 11, Eight Rows
v 26 41 958 989 1006 1030 1054 1078 1116 1133 1150 1188

kfractal 34 52 1600 1651 1680 1720 1760 1800 1862 1891 1920 1982
kold 31 50 1314 1353 1370 1394 1469 1498 1548 1565 1582 1728
v 1198 1229 1246 1277 1301 1325 1370 1373 1404 1421 1466 1483

kfractal 2000 2051 2080 2131 2171 2211 2284 2291 2342 2371 2444 2473
kold 1738 1769 1786 1817 1841 1865 1942 1952 2004 2021 2066 2083
v 1521 1534 1552 1604 1726 1803 1942 2437

kfractal 2535 2561 2586 2670 2881 3006 3241 4060
kold 2121 2134 2152 2204 2486 2563 2824 3517

Table A.22: Further Improvements for Strength 11, Nine Rows
v 29

kfractal 39
kold 36

Table A.23: Further Improvements for Strength 11, Ten Rows
v 32

kfractal 44
kold 41

138

	LIST OF TABLES
	LIST OF FIGURES
	GLOSSARY
	NOTATIONS
	1 INTRODUCTION
	1.1 Representative Problems
	1.1.1 Interaction Testing

	1.2 Hash Families
	1.3 t-Restrictions
	1.4 Summary of Contributions
	1.5 Organization of the Thesis

	2 BACKGROUND
	2.1 Terminology
	2.2 The Basics

	3 HASH FAMILIES OF HIGHER INDEX
	3.1 Direct Constructions
	3.1.1 The Connection with Codes

	3.2 A New Recursive Construction for PHFs of Higher Index
	3.2.1 s Arbitrary
	3.2.2 s=1, d Arbitrary
	3.2.3 A Satisfiability Formula for PHFs
	3.2.4 Improving PHFN with Heterogeneous Ingredients

	3.3 Probabilistic and Asymptotic Methods
	3.4 A Conditional Expectation Approach
	3.4.1 Details of the Density Algorithm for Higher-Index
	3.4.2 Computational Results of the Conditional Expectation Algorithm

	3.5 Conclusion

	4 FRACTAL HASH FAMILIES
	4.1 Linear Bounds on Numbers of Columns
	4.2 Fractal Hash Families
	4.2.1 Fractal DHHFs
	4.2.2 Construction of fractal PHHFs

	4.3 Blackburn's Method, revised
	4.4 Applications
	4.5 Existence Tables
	4.6 Conclusion

	5 GENETIC ALGORITHMS FOR TRANSFORMATIONS OF EXISTENTIAL RESTRICTIONS
	5.1 Prior Work
	5.1.1 A Genetic Algorithm for PHFs Based on Prior Work

	5.2 A Genetic Algorithm for transformations for Existential t-Restrictions
	5.3 Genetic Algorithm Computational Results
	5.3.1 Discussion of GA Results

	5.4 Conclusion

	6 CONCLUSIONS
	6.1 Main Results and Ideas
	6.2 Future Research Directions
	6.2.1 Higher Index Research Directions
	6.2.2 Fractal Research Directions
	6.2.3 Genetic Algorithm Research Directions
	REFERENCES
	A EXTENDED TABLES FOR FRACTAL

