Hash Families and Applications to t-Restrictions

by
Ryan Dougherty

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy

Approved August 2019 by the Graduate Supervisory Committee:

Charles Colbourn, Chair
Andrzej Czygrinow
Stephanie Forrest
Andrea Richa

Abstract

The construction of many families of combinatorial objects remains a challenging problem. A t-restriction is an array where a predicate is satisfied for every t columns; an example is a perfect hash family (PHF). The composition of a PHF and any t restriction satisfying predicate P yields another t-restriction also satisfying P with more columns than the original t-restriction had. This thesis concerns three approaches in determining the smallest size of PHFs.

Firstly, hash families in which the associated property is satisfied at least some number λ times are considered, called higher-index, which guarantees redundancy when constructing t-restrictions. Some direct and optimal constructions of hash families of higher index are given. A new recursive construction is established that generalizes previous results and generates higher-index PHFs with more columns. Probabilistic methods are employed to obtain an upper bound on the optimal size of higher-index PHFs when the number of columns is large. A new deterministic algorithm is developed that generates such PHFs meeting this bound, and computational results are reported.

Secondly, a restriction on the structure of PHFs is introduced, called fractal, a method from Blackburn. His method is extended in several ways; from homogeneous hash families (every row has the same number of symbols) to heterogeneous ones; and to distributing hash families, a relaxation of the predicate for PHFs. Recursive constructions with fractal hash families as ingredients are given, and improve upon on the best-known sizes of many PHFs.

Thirdly, a method of Colbourn and Lanus is extended in which they horizontally copied a given hash family and greedily applied transformations to each copy. Transformations of existential t-restrictions are introduced, which allow for the method to be applicable to any t-restriction having structure like those of hash families. A

genetic algorithm is employed for finding the "best" such transformations. Computational results of the GA are reported using PHFs, as the number of transformations permitted is large compared to the number of symbols. Finally, an analysis is given of what trade-offs exist between computation time and the number of t-sets left not satisfying the predicate.

To Nancy and Jeannine, with love. I miss you both.

ACKNOWLEDGMENTS

First, I would like to thank my doctoral advisor Dr. Charles Colbourn. His dedication to the subject and to push me beyond what I thought I was capable of at every step of the way was inspiring. He was able to help me whenever I was stuck on something, and to divert me back on track when I went astray. I am very happy he was my advisor, because I couldn't ask for a better one.

Second, I would like to thank my committee members: Dr. Andrzej Czygrinow, Dr. Stephanie Forrest, and Dr. Andrea Richa. I have taken a course from all three of these members, and all of them either directly or indirectly influenced the work in this dissertation. They were always wanting to accommodate to their busy schedules for scheduling defenses and meetings, and further inspire me to become as prolific an academic as they are.

Third, I would like to thank my friends and family (in alphabetical order): Bonnie, Cole, Ed, Erin, Ethan, Jackie, Jeannine, John, Julie, Mark, Nancy, and Quinn. Their love and support kept me going during the highest of highs, and the lowest of lows. I also want to thank the students in my classes for their encouragement and support; I especially thank Rachel for letting me serve on her undergraduate honors thesis committee.

Fourth, I would like to thank CIDSE for partially supporting the work in this dissertation, and allowing me to be the instructor of record for 8 courses throughout my Ph.D. (especially since one of my publications resulted from TA work). I would like to also thank ACM and the Cumberland Organizers for partially funding travel to the GECCO 2019 and 30th+31st Cumberland Conferences to present some of this research.

TABLE OF CONTENTS

Page
LIST OF TABLES viii
LIST OF FIGURES x
GLOSSARY xiii
NOTATIONS xvi
CHAPTER
1 INTRODUCTION 1
1.1 Representative Problems 1
1.1.1 Interaction Testing 1
1.2 Hash Families 3
$1.3 t$-Restrictions 4
1.4 Summary of Contributions 5
1.5 Organization of the Thesis 7
2 BACKGROUND 8
2.1 Terminology 8
2.2 The Basics 16
3 HASH FAMILIES OF HIGHER INDEX 19
3.1 Direct Constructions 19
3.1.1 The Connection with Codes 23
3.2 A New Recursive Construction for PHFs of Higher Index 27
3.2.1 s Arbitrary 29
3.2.2 $s=1, d$ Arbitrary 33
3.2.3 A Satisfiability Formula for PHFs 35
3.2.4 Improving PHFN $_{\lambda}$ with Heterogeneous Ingredients 39
3.3 Probabilistic and Asymptotic Methods 46
3.4 A Conditional Expectation Approach 52
3.4.1 Details of the Density Algorithm for Higher-Index 54
3.4.2 Computational Results of the Conditional Expectation Al- gorithm 59
3.5 Conclusion 67
4 FRACTAL HASH FAMILIES 71
4.1 Linear Bounds on Numbers of Columns 72
4.2 Fractal Hash Families 75
4.2.1 Fractal DHHFs 77
4.2.2 Construction of fractal PHHFs 78
4.3 Blackburn's Method, revised 80
4.4 Applications 83
4.5 Existence Tables 89
4.6 Conclusion 93
5 GENETIC ALGORITHMS FOR TRANSFORMATIONS OF EXISTEN- TIAL RESTRICTIONS 94
5.1 Prior Work 95
5.1.1 A Genetic Algorithm for PHFs Based on Prior Work 97
5.2 A Genetic Algorithm for transformations for Existential t-Restrictions 98
5.3 Genetic Algorithm Computational Results 102
5.3.1 Discussion of GA Results 107
5.4 Conclusion 110
6 CONCLUSIONS 111
6.1 Main Results and Ideas 111
CHAPTER Page
6.2 Future Research Directions 112
6.2.1 Higher Index Research Directions 112
6.2.2 Fractal Research Directions 114
6.2.3 Genetic Algorithm Research Directions 116
REFERENCES 117
APPENDIX
A EXTENDED TABLES FOR FRACTAL 123

LIST OF TABLES

Table Page
3.1 Existence of PHHFs with 4 Rows, at Most 11 Columns, at Most 5 Symbols for Each Row, Strength 3, and Index 2 41
3.2 Existence of PHHFs with 4 Rows, at Most 6 Columns, at Most 5 Sym- bols for Each Row, Strength 3, and Index 3. 42
3.3 Comparison of Algorithm 1 and Algorithm 2 With at Most 27 Columns, 3 Symbols, Strength 3, and Index 4. 68
3.4 Comparison of Algorithm 1 and Algorithm 2 With Between 28 and 50 Columns, 3 Symbols, Strength 3, and Index 4. 69
4.1 $\operatorname{APHF}(4 ; 5,4,4)$ and a $\operatorname{DHF}(4 ; 10,4,4,2)$ 77
4.2 PHFs with Few Rows from Lemmas 4.10-4.17. For Each Case, the Number of the Relevant Lemma, and the Asymptotic Ratio of the Number of Columns to the Number of Symbols Achieved, Is Given. 89
4.3 Improvements for Strength 6, Four Rows 90
4.4 Improvements for Strength 6, Five Rows 90
4.5 Improvements for Strength 7, Five Rows 91
4.6 Improvements for Strength 8, Six Rows 91
4.7 Improvements for Strength 9, Six Rows 92
4.8 Improvements for Strength 10, Seven Rows 92
4.9 Improvements for Strength 11, Seven Rows 92
A. 1 Further Improvements for Strength 6, Four Rows 124
A. 2 Further Improvements for Strength 6, Four Rows, Part 2 125
A. 3 Further Improvements for Strength 6, Five Rows 126
A. 4 Further Improvements for Strength 7, Five Rows 126
A. 5 Further Improvements for Strength 7, Five Rows, Part 2 127

Table
A. 6 Further Improvements for Strength 7, Five Rows, Part 3 128
A. 7 Further Improvements for Strength 7, Five Rows, Part 4 129
A. 8 Further Improvements for Strength 7, Five Rows, Part 5 130
A. 9 Further Improvements for Strength 7, Five Rows, Part 6 131
A. 10 Further Improvements for Strength 8, Five Rows 132
A. 11 Further Improvements for Strength 8, Five Rows, Part 2 133
A. 12 Further Improvements for Strength 8, Six Rows 133
A. 13 Further Improvements for Strength 9, Six Rows 134
A. 14 Further Improvements for Strength 9, Six Rows, Part 2 135
A. 15 Further Improvements for Strength 9, Seven Rows 135
A. 16 Further Improvements for Strength 10, Six Rows 136
A. 17 Further Improvements for Strength 10, Six Rows, Part 2 137
A. 18 Further Improvements for Strength 10, Seven Rows 137
A. 19 Further Improvements for Strength 11, Seven Rows 137
A. 20 Further Improvements for Strength 11, Seven Rows, Part 2 138
A. 21 Further Improvements for Strength 11, Eight Rows 138
A. 22 Further Improvements for Strength 11, Nine Rows 138
A. 23 Further Improvements for Strength 11, Ten Rows 138

LIST OF FIGURES

Figure Page
1.1 A Covering Array with 9 Rows, 4 Components, Each Having 3 Levels, and Strength 2. 3
2.1 $\mathrm{A} \mathrm{PHF}_{1}(6 ; 12,3,3)$. 11
2.2 $\operatorname{ASHF}(3 ; 16,4,\{1,2\})$. 11
2.3 A DHHF $(10 ; 13, \mathbf{v}, 5,2)$ with $\mathbf{v}=\left(9^{3} 3^{4} 4^{1} 5^{1} 2^{1}\right)$. 12
2.4 A CA $(13 ; 3,10,2)$. 14
3.1 Example Asymptotics Rrom Theorem 3.14 (Blue), Theorem 3.13 (Red), and Algorithm 1 (Black), Provided the Index Is Sufficiently Small Rel- ative to the Number of Columns. 59
3.2 Conditional Expectation Results for at Most 300 Columns, 3 Symbols, Strength 3, and Index at Most 5. 60
3.3 Conditional Expectation Results for at Most 300 Columns, 4 Symbols, Strength 3, and Index at Most 5. 61
3.4 Conditional Expectation Results for at Most 300 Columns, 5 Symbols, Strength 3, and Index at Most 5. 61
3.5 Conditional Expectation Results for at Most 300 Columns, 6 Symbols, Strength 3, and Index at Most 5. 62
3.6 Conditional Expectation Results for at Most 100 Columns, 4 Symbols, Strength 4, and Index at Most 5. 62
3.7 Conditional Expectation Results for at Most 100 Columns, 6 Symbols, Strength 4, and Index at Most 5. 63
3.8 Conditional Expectation Results for at Most 100 Columns, 8 Symbols, Strength 4, and Index at Most 5. 63

Figure

3.9 Conditional Expectation Results for at Most 55 Columns, 5 Symbols, Strength 5, and Index at Most 5.64
3.10 Conditional Expectation Results for at Most 55 Columns, 10 Symbols, Strength 5, and Index at Most 5. 64
3.11 Conditional Expectation Results for at Most 40 Columns, 6 Symbols, Strength 6, and Index at Most 5. 65
3.12 Conditional Expectation Results for at Most 40 Columns, 12 Symbols, Strength 6, and Index at Most 5. 65
4.1 $\mathrm{A} \operatorname{PHF}(3 ; 12,8,4)$ 84
4.2 $\mathrm{A} \operatorname{PHHF}(3 ; 12,(8,8,7), 4)$ 84
5.1 $\mathrm{A} \mathrm{PHF}_{3}(11 ; 9,4,3)$. 103
5.2 $\mathrm{APHF}_{3}(11 ; 14,4,3)$. 104
5.3 $\mathrm{APHF}_{2}(12 ; 30,4,3)$. 104
5.4 Scatter Plot for Generating a $\mathrm{PHF}_{2}(12 ; 50,4,3)$. Values Shown Are the Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm. 106
5.5 Scatter Plot for Generating a $\mathrm{PHF}_{2}(12 ; 50,4,3)$. Values Shown Are the Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm. 106
5.6 $\mathrm{APHF}_{1}(4 ; 7,6,6)$. 107
5.7 Scatter Plot for Generating a $\mathrm{PHF}_{1}(4 ; 14,6,6)$. Values Shown Are the Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm. 107

Figure
5.8 Scatter Plot for Generating a $\mathrm{PHF}_{1}(4 ; 14,6,6)$. Values Shown Are the Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm. 108

GLOSSARY

Abstract Simplicial Complex : an abstract simplicial complex, \mathcal{A}, is a family of non-empty finite subsets of a set Γ that is closed under non-empty subsets (page 8).

Covering Array : when for every t-set $\left\{c_{1}, \ldots, c_{t}\right\}$ of columns, the demand ($\Delta_{c_{1}} \times$ $\left.\cdots \times \Delta_{c_{t}}, \forall\right)$ is to be met, the array is a mixed-level covering array. A covering array is when all of the $\Delta_{c_{i}}$ have the same cardinality (page 13).

Covering Perfect Hash Family : an $N \times k$ array where each entry is from $\mathrm{V}_{t, q}$ (set of representatives of permutation vectors), and for every t distinct columns c_{1}, \cdots, c_{t}, there is a row ρ for which the $t \times t$ matrix of the t corresponding entries is nonsingular over \mathbb{F}_{q} (page 11).

Distributing : choose an integer t, and form the set \mathcal{M}_{t} of multisets whose elements contain nonnegative integers, for which the sums of each element in a multiset sum to t. When \mathcal{W} consists of all partitions in \mathcal{M}_{t} containing s parts, a \mathcal{W}-separating hash family is (t, s)-distributing (page 10).

Existential Restriction : an existential t-restriction is one that has all of the T_{i} being \exists (page 98).

Fractal : a hash family is fractal if the removal of any row yields another hash family with strength at least 1 less than the original strength (or the number of parts is reduced by 1) (page 76).

Genetic Algorithm : an algorithm that maintains a population P and tries to find individuals in P that maximize a given fitness function f via operators (namely mutation and crossover) that are repeatedly applied to the individuals. At each iteration, some of the members in P are removed before the next "generation" of individuals occurs (page 95).

Heterogeneous : an array is heterogeneous if the number of symbols for some rows $i, j(i \neq j)$ is different (i.e., not homogeneous) (page 9).

Homogeneous : an array is homogeneous if the number of allowed symbols for each row is the same (page 9).

Index : for any array λ-satisfying a t-restriction, λ is the index of the array (page 9).
Linear : a transversal design is linear if it is constructed by taking each polynomial $a_{0}+a_{1} y+\cdots+a_{s-1} y^{s-1}$ of degree $s-1$ with coefficients from \mathbb{F}_{q}, form a block that contains element (b, z) whenever $z \in X$ and (1) $b=a_{0}$ when $z=\infty$, or (2) $b=a_{0}+a_{1} z+\cdots+a_{s-1} z^{s-1}$ otherwise (all arithmetic performed in \mathbb{F}_{q}) (page 25).

Mixed : an array is mixed if the number of allowed symbols for some columns i, $j(i \neq j)$ is different (i.e., not uniform) (page 9).

Monotone Restriction : a monotone t-restriction has all of the T_{i} being equal (so either $T_{1}=\cdots=T_{\chi}=\exists$ or $T_{1}=\cdots=T_{\chi}=\forall$) (page 9).

Partition Covering Array : an $N \times s$ array such that for every nonempty ordered partition of size i of $[t]$ for every valid i, every choice of i columns fully covers that partition at least λ times (page 29).

Partitioned Ordered Design : written $\operatorname{POD}_{\lambda}\left(N ; s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$, it is an $N \times s$ array in which (1) $w_{i}<w_{j}$ for all $i<j$, and (2) every p-tuple formed from $\left(w_{1}, \cdots, w_{m}\right)$ by repeating each w_{i} exactly r_{i} times, in any order, is fully covered at least λ times in the design (page 29).

Perfect Hash Family : an (s, s)-distributing hash family. In other words, it is an $N \times k$ array such that for every t columns, they are separated by λ rows (i.e., λ rows have all distinct symbols in those t columns) (page 10).

Perfect Hash Family Column Number : the largest number of columns for which a perfect hash family exists (page 15).

Perfect Hash Family Number : the smallest number of rows for which a perfect hash family exists (page 15).

Perfect Heterogeneous Hash Family : a perfect hash family where each row i is over an alphabet of v_{i} symbols (page 10).

Resolvable Balanced Incomplete Block Design : a set of v points X, b subsets of X each with k points, every point occurs in r blocks, and every pair of points occurs in λ blocks (page 27).

Restriction: a t-restriction is a χ-tuple $\mathcal{T}=\left(\left(\mathcal{P}_{1}, T_{1}\right), \cdots,\left(\mathcal{P}_{\chi}, T_{\chi}\right)\right)$, where $\mathcal{P}_{i} \subseteq \Delta^{t}$ and $T_{i} \in\{\exists, \forall\}$. Each set \mathcal{P}_{i} is a demand. For each \mathcal{P}_{i}, if $T_{i}=\exists$, then at least λ rows of A contains some element of \mathcal{P}_{i}; if $T_{i}=\forall$, then for each element of \mathcal{P}_{i}, at least λ rows contain that element. Let $\partial^{i}(\mathcal{S})$ be the set of $\binom{t}{i}$ sets of $(t-i)$-tuples, obtained by deleting the i chosen columns from each $s \in \mathcal{S}$ (page 9).

Satisfies : a set of t columns in a t-restriction λ-satisfies a demand (\mathcal{P}_{i}, T_{i}) if (1) there exist λ rows for which some element(s) of \mathcal{P}_{i} appears when $T_{i}=\exists$, or (2) all elements in \mathcal{P}_{i} appear in these columns at least λ times when $T_{i}=\forall$ (page 9).

Separating Hash Family : a \mathcal{W}-separating hash family meets the following condition: when $C=\left\{c_{1}, \cdots, c_{t}\right\} \subseteq\binom{[k]}{t}$ and W_{1}, \cdots, W_{s} is a partition of C with $\left\{\left|W_{1}\right|\right.$, $\left.\cdots,\left|W_{s}\right|\right\} \in \mathcal{W}$, define $\mathcal{D}=\left\{\left(y_{1}, \ldots, y_{t}\right) \in \Delta_{c_{1}} \times \cdots \times \Delta_{c_{t}}: y_{c}=y_{c^{\prime}}\right.$ only if c, c^{\prime} belong to the same class of $W\}$. Then the demand (\mathcal{D}, \exists) is met (page 10).

Strength : aor any array satisfying a t-restriction, t is the strength of the array (page 9).

Transformation : a function ϕ such that A satisfies a given t-restriction \mathcal{T} if and only if $\phi(A)$ also does, and both $A, \phi(A)$ have the same number of rows and columns (page 98).

Uniform : an array is uniform if the number of allowed symbols for each column is the same (page 9).

Universal Restriction : a universal t-restriction is one that has all of the T_{i} being \forall (page 98).

NOTATIONS

ASC : an abstract simplicial complex (page 8).
$\mathrm{CA}_{\lambda}(N ; t, k, v)$: a covering array with N rows, k columns, v symbols, and strength t (page 13).
$\operatorname{CPHF}_{\lambda}(N ; k, q, t)$: a covering perfect hash family with N rows, k columns, q symbols (a prime power), and strength t (page 12).
$\mathrm{DHF}_{\lambda}(N ; k, v, t, s)$: a distributing (homogeneous) hash family with N rows, k columns, v symbols, strength t, and (at most) s parts (page 11).
$\operatorname{DHHF}_{\lambda}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right), \mathcal{W}\right)$: a distributing (heterogeneous) hash family with N rows, k columns, v_{i} symbols for each row i, strength t, and (at most) s parts (page 11).
$\operatorname{MCA}_{\lambda}\left(N ; t, k,\left(v_{1}, \cdots, v_{k}\right)\right):$ a (mixed-level) covering array with N rows, k columns, v_{i} symbols for each column i, and strength t (page 13).
$\operatorname{PaHF}_{\lambda}(N ; k, v, t, s)$: a partitioning (homogeneous) hash family with N rows, k columns, v symbols, strength t, and (at most) s parts (page 14).
$\operatorname{PCA}_{\lambda}(N ; t, s)$: a partition covering array with N rows, s columns (page 29).
$\mathrm{PHF}_{\lambda}(N ; k, v, t)$: a perfect (homogeneous) hash family with N rows, k columns, v symbols, and strength t (page 10).
$\operatorname{PHFK}_{\lambda}(N, v, t)$: the perfect (homogeneous) hash family (column) number (page 15).
$\operatorname{PHFN}_{\lambda}(k, v, t)$: the perfect (homogeneous) hash family (row) number (page 15).
$\operatorname{PHHF}_{\lambda}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right), t\right)$: a perfect (heterogeneous) hash family with N rows, k columns, v_{i} symbols for each row i, and strength t (page 10).
$\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \cdots, v_{N}\right), t\right)$: the perfect (heterogeneous) hash family (column) number (page 15).
$\mathrm{POD}_{\lambda}\left(N ; s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$: a partitioning ordered design of type (w_{1}, \cdots, w_{m}) and replication $\left(r_{1}, \cdots, r_{m}\right)$ with N rows and s columns (page 30).
$\operatorname{PODN}_{\lambda}\left(s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$: the partitioning ordered design (row) number (page 31).
$\operatorname{SCPHF}_{\lambda}(N ; k, q, t)$: a Sherwood covering perfect hash family with N rows, k columns, q symbols (a prime power), and strength t (page 12).
$\operatorname{SHHF}_{\lambda}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right), \mathcal{W}\right)$: a \mathcal{W}-separating (heterogeneous) hash family with N rows, k columns, v_{i} symbols for each row i, and for each $W \in \mathcal{W}$, every partition of $\sum_{w_{i} \in W} w_{i}$ columns is separated in at least λ rows (page 10).
$\operatorname{TRA}_{\lambda}\left(N, k, \mathcal{H},\left(v_{1}, \cdots, v_{N}\right),\left(x_{1}, \cdots, x_{k}\right), \mathcal{T}\right):$ a t-restriction array with N rows, k column, t-uniform hypergraph \mathcal{H}, v_{i} symbols for each column i, x_{i} symbols for each row i, and restriction \mathcal{T} (page 9).

Chapter 1

INTRODUCTION

This thesis is about a set of combinatorial objects called hash families, and their applications to a larger umbrella of objects, called t-restrictions. In this chapter, we motivate the study of such families by discussing applications of t-restrictions. The goal of the thesis is to achieve a better understanding of the structure of hash families. To obtain a better appreciation of the mathematics behind them, we begin with an informal discussion, and then discuss all necessary formal background in Chapter 2. At the end of this chapter, we discuss three research problems undertaken, as well as the organization of the rest of the thesis.

1.1 Representative Problems

1.1.1 Interaction Testing

Imagine we have a large-scale software system that needs to be verified for correctness; usually a software developer determines this by designing a test suite that has desirable properties; examples include code coverage (every line executed by at least one test case), and testing every possible set of inputs. The latter is often impossible due to having infinitely many possible inputs, such as a prime number verifier: given a positive integer n, determine if n is prime or not. There are infinitely many such integers, so exhaustive testing is completely intractable. Therefore, most test suites do not strive for all inputs to be tested, but rather a representative sample; this choice of testing can potentially lead to faults within the system.

Suppose further in our system each component is individually tested ("unit testing"), in that in isolation, each of the components functions properly. Problems may
then arise when multiple components operate simultaneously; an example is a smartphone that is downloading an application and loading a webpage at the same time. Here, the network is being used by two different components. We then want to model any interactions that may arise between different components. Empirically, most faults involve only a small number of components [54].

Covering arrays were developed to help model this type of interaction testing problem, in that all possible interactions of components of size at most a specified strength t appear in the array at least once. Each of the components C_{i} constitutes a number of possible inputs v_{i} (these inputs are the levels of component C_{i}); we assume here that each component's input space is discretized and has finitely many values. Then if we want to model an interaction of size t among components $C_{i_{1}}, \cdots, C_{i_{t}}$, then all of the $v_{i_{1}} \times v_{i_{2}} \times \cdots \times v_{i_{t}}$ possible valuations of these t components needs to be tested. The array itself is an $N \times k$ array (i.e., N rows and k columns), where each of the columns corresponds to a component, and each of the rows corresponds to a test of the system.

Here, covering arrays are to detect the existence of a fault (if there is one). Suppose when running components $C_{i_{1}}, \cdots, C_{i_{t}}$ with values v_{1}, \cdots, v_{t}, a fault arises within the system. Because the array covers all interactions, this one appears in some row of the array, say row ρ. Then if one were to execute each of the tests in the covering array on the system, then executing test ρ will notify the tester that a fault exists. Note that covering arrays only detect if a fault exists, rather than determine which components and values cause the fault to occur; the latter is the subject of detecting and locating arrays [37].

We give a concrete example of a covering array in Figure 1.1. It is a covering array with 9 rows, 4 components, each having 3 levels, and strength 2 . Note that 9 rows are required, so this covering array has the smallest number of rows possible. From

Browser	OS	Connection	Printer
Safari	Windows	LAN	Local
Safari	Linux	ISDN	Networked
Safari	macOS	PPP	Screen
IE	Windows	ISDN	Screen
IE	macOS	LAN	Networked
IE	Linux	PPP	Local
Chrome	Windows	PPP	Networked
Chrome	Linux	LAN	Screen
Chrome	macOS	ISDN	Local

Figure 1.1: A Covering Array with 9 Rows, 4 Components, Each Having 3 Levels, and Strength 2.
a testing point-of-view, it is useful to execute fewer tests while still maintaining the coverage guarantee. Much research regarding covering arrays has been to minimize the number of rows, while fixing the number of columns, levels, and strength [23, 66, 67]. Covering arrays also have applications in testing advanced materials [22], regulating gene expression [70], learning boolean functions [40], and more recently in malware analysis [55].

1.2 Hash Families

Suppose that there are k items, and each is assigned one of v values. Our objective is to ensure that each set of t items receives t different values; when this occurs, the t items are separated. Evidently if $v \geq k$, each item can be assigned a value that is different from all others assigned, so that every set of t items is separated. However, when $v<k$, some two items necessarily receive the same value; then any t-set containing these two cannot be separated. When this occurs, suppose that
N assignments of values to items are chosen, rather than one. Then one can ask: how small can N be so that every t-set of items is separated in at least 1 of the assignments? This easily stated combinatorial question is challenging, and many open problems remain despite substantial research effort. It is an important question as well, with applications described next.

Mehlhorn [58] originally examined this question to provide an efficient way to store and retrieve frequently used information; in that context, the assignment of values to the items is treated as a hash function [39], and hence the question is phrased as one about families of hash functions. Applications to derandomization [6], circuit complexity [61] , and cryptography [17, 49, 74] arose. Subsequently, Stinson, Trung, and Wei [75] established applications of such families (with $\lambda=1$) to construct numerous other combinatorial objects, such as separating systems, key distribution patterns, cover-free families, and secure frameproof codes. A general strategy, column replacement, has extended their range of applications into testing and measurement [27] and compressive sensing [31], among others.

$1.3 t$-Restrictions

We note that the previous two problems are variations upon a common theme; there is an array of symbols, such that for any t columns, there is an associated set of t-tuples X, and either (1) some row of these t columns contains some element from X, in the case of hash families; or (2) all elements of X appear in some row, in the case of covering arrays. Any array that falls under this definition we call a t-restriction; note that instead of having one predicate being satisfied, we can have several, and each can be either (1) or (2) above. We call these predicates demands of the restriction. For example, suppose 3 columns of a covering array all have levels $\{0,1,2\}$; of course, all 27 tuples need to appear in the array. Suppose further that
only one 3 -tuple that has a 0 as its first element needs to be tested, instead of all of them. We now have two demands: X_{1}, which consists of all 3-tuples where 0 is the first element, and X_{2}, which consists of all other 3-tuples. Also, the first demand only requires that some row contain some element of X_{1}, whereas all elements of X_{2} need to appear. Here, $\left|X_{1}\right|=3^{2}=9$, so only 19 instead of 27 tuples need to appear in each 3 -set of columns. The relevance of such an object is that a software tester can eliminate, based on knowledge of the system, inputs that are guaranteed never to appear during normal execution of the system.

One notable aspect about perfect hash families is that a simple construction, using an array satisfying a t-restriction with k columns, and a perfect hash family with $m>k$ columns, yields an array with m columns satisfying the same t-restriction (see Theorem 2.1). Furthermore, the corresponding number of times the predicate is satisfied of the resulting t-restriction is the product of those for the original t-restriction and the perfect hash family. For example, if we have a covering array in which each interaction appears at least 3 times, and a perfect hash family (with matching parameters) that separates every t-set of columns at least 4 times, then the resulting covering array will cover each interaction at least 12 times. Interaction testing benefits from having more coverage, most notably in domains where the environment surrounding the system is not fixed, or the system is not completely deterministic.

1.4 Summary of Contributions

The contribution of the thesis is a greater understanding of the structure and generation of certain t-restrictions, when we generalize them beyond commonly used parameters. As far as we are aware, no publications exist in the investigation of hash families with the separation condition requiring every t-set of items being separated in strictly more than 1 of the assignments.

We investigate upper bounds on the sizes of hash families with a given separation requirement $\lambda>1$, through direct constructions, a new recursive construction exploiting higher separation requirements, probabilistic and asymptotic analyses on upper bounds, and a new polynomial-time constructive algorithm to find such hash families meeting these upper bounds. The recursive construction improves on the sizes of perfect hash families when the strength t is "small" for some parameters. The analyses improve significantly on the "simple" method of vertically adjoining copies of the original array. And finally, the constructive algorithm uses estimates on the number of rows needed, which provides a guarantee on an upper bound for the number of rows that will be produced (and often, this estimate is improved significantly).

Motivated by the composition construction mentioned earlier, we develop the notion of fractal hash families, which yield a new recursive construction that produces hash families with "few" rows that improve on the best-known sizes of existing hash families. This method extends one of Blackburn [15], wherein only asymptotics are investigated, in that our methods explicitly produce the hash families and generalize the hash family considered. More than 2,500 individual parameter sets in the perfect hash family tables [45].

Finally, we develop a genetic algorithm that attempts to construct t-restrictions that generalizes a method of Colbourn and Lanus [33]. The algorithm horizontally adjoins copies of an existing array, such that fewer t-sets of columns need to be checked. Furthermore, the representation of each individual in the genetic algorithm's population is much smaller than if we are to apply existing methods to hash families. We show that the method always finds individual arrays faster than existing methods, and these arrays have higher "fitness" than the ones produced by other methods (i.e., more t-sets of columns are separated).

1.5 Organization of the Thesis

In Chapter 2, we introduce formal notation for all objects discussed previously that will be used in subsequent chapters. In Chapter 3, we develop construction techniques for hash families with arbitrary redundancy, in which the separation requirement is achieved at least a certain number of times. In Chapter 4, we consider hash families with "few" rows, as well as guaranteeing a structure within the array that yields hash families with rows smaller than the associated strength to be constructed, which often have the best-known number of columns. In Chapter 5, we develop a genetic algorithm to generate t-restrictions with many columns, given a "starter" ingredient with few columns, by exploiting the structure of a given t-restriction; this algorithm is general in that any restriction with a form similar to that of a hash family, and any initial array meeting the restriction can be selected. And finally, in Chapter 6 we give our conclusions, and provide many future research directions and open problems.

Chapter 2

BACKGROUND

In this chapter we establish the notation needed regarding hash families and t restrictions. Theorem 2.1 illustrates an important connection between perfect hash families, specifically, and arbitrary t-restrictions, in that the latter can be constructed from the former and a "smaller" restriction. This motivates the study of perfect hash families and a combinatorial analysis of their structure. Then, we briefly mention some existing work on the sizes and structure of perfect hash families that is relevant later in the thesis. Any background material not mentioned in this chapter that is also relevant in other chapters will be in them instead.

2.1 Terminology

In order to develop and extend these ideas formally, we extend the presentation in [27], employing the very general language of t-restrictions [5]. Let $N, k, v_{1}, \cdots, v_{N}$, x_{1}, \cdots, x_{k}, t, and λ be positive integers. An abstract simplicial complex, \mathcal{A}, is a family of non-empty finite subsets of a set Γ that is closed under non-empty subsets; the dimension of an $\operatorname{ASC}, \operatorname{dim}(\mathcal{A})$, is the maximum of $|X|-1$, for all $X \in \mathcal{A}$. Let \mathcal{H} be an abstract simplical complex on k vertices such that the maximum cardinality of any set in \mathcal{H} is t; label the vertices of \mathcal{H} as c_{1}, \cdots, c_{k}. Let Σ_{i} be a v_{i}-ary alphabet not containing \star for all $1 \leq i \leq N$, and let Δ_{j} be an x_{j}-ary alphabet also not containing \star for all $1 \leq j \leq k$. Define an $N \times k$ array A in which the i th row of A contains symbols from $\Sigma_{i} \cup\{\star\}$, and the j th column of A contains symbols from $\Delta_{j} \cup\{\star\}$. If there exist i, j for which $\Sigma_{i} \cap \Delta_{j}=\emptyset$, the entry in this cell must be \star. Let $\Delta=\bigcup_{j=1}^{k} \Delta_{j}$. A t-restriction is a χ-tuple $\mathcal{T}=\left(\left(\mathcal{P}_{1}, T_{1}\right), \cdots,\left(\mathcal{P}_{\chi}, T_{\chi}\right)\right)$, where $\mathcal{P}_{i} \subseteq \Delta^{t}$ and $T_{i} \in\{\exists, \forall\}$.

Each set \mathcal{P}_{i} is a demand. Here, we denote t to be the strength of the array. For each \mathcal{P}_{i}, if $T_{i}=\exists$, then at least λ rows of A contains some element of \mathcal{P}_{i}; if $T_{i}=\forall$, then for each element of \mathcal{P}_{i}, at least λ rows contain that element. Let $\partial^{i}(\mathcal{S})$ be the set of $\binom{t}{i}$ sets of $(t-i)$-tuples, obtained by deleting the i chosen columns from each $s \in \mathcal{S}$. An array $\mathrm{A}=\left(a_{i j}\right) \lambda$-satisfies a given \mathcal{P}_{i} and T_{i} if and only if for all $0 \leq j \leq t$ and any set $S \in \mathcal{H}$,

1. if $T_{i}=\exists$, then for each $\mathcal{P} \in \partial^{j}\left(\mathcal{P}_{i}\right)$, there exist λ rows $1 \leq r_{1}<\cdots<r_{\lambda} \leq N$ such that $\left(a_{r_{\ell}, c_{i_{1}}}, \cdots, a_{r_{\ell}, c_{i S \mid}}\right) \in \mathcal{P}$ for all $1 \leq \ell \leq \lambda$ and $S \in \mathcal{H}$ when $|S|=t-j$; or
2. if $T_{i}=\forall$, then for each $\mathcal{P} \in \partial^{j}\left(\mathcal{P}_{i}\right)$, and for all $\left(\sigma_{1}, \cdots, \sigma_{t-j}\right) \in \mathcal{P} \cap \prod_{m=1}^{t-j} \Delta_{c_{m}}$, there exist λ rows $1 \leq r_{1}<\cdots<r_{\lambda} \leq N$ such that $\left(a_{r_{\ell}, c_{i_{1}}}, \cdots, a_{r_{\ell}, c_{|S|}}\right)=\left(\sigma_{1}\right.$, $\left.\cdots, \sigma_{|S|}\right)$ for all $1 \leq \ell \leq \lambda$ and $S \in \mathcal{H}$ when $|S|=t-j$.

If the array λ-satisfies each of the given \mathcal{P}_{i} and T_{i}, then the array λ-satisfies \mathcal{T}. If an array A on N rows and k columns (and corresponding symbol set cardinalities for rows and columns) λ-satisfies a t-restriction \mathcal{T}, denote it by $\operatorname{TRA}_{\lambda}\left(N, k, \mathcal{H},\left(v_{1}\right.\right.$, $\left.\left.\cdots, v_{N}\right),\left(x_{1}, \cdots, x_{k}\right), \mathcal{T}\right)$. For any such $\operatorname{TRA}_{\lambda}$, we denote λ to be the index of the array. If $v_{1}=\cdots=v_{N}, \mathrm{~A}$ is uniform; otherwise, it is mixed. If $x_{1}=\cdots=x_{k}, \mathrm{~A}$ is homogeneous; otherwise, it is heterogeneous. When $\lambda=1$, we omit it from the notation. When $T_{1}=\cdots=T_{\chi}, \mathcal{T}$ is a monotone t-restriction. Most literature has concentrated on monotone t-restrictions with \mathcal{H} being the hypergraph containing all possible hyperedges of size at most t on k vertices, and $\lambda=1$.

This framework is very general, and it encompasses a number of well-studied combinatorial arrays. We establish more restrictive notation for some of them next. Choose an integer t, and form the set \mathcal{M}_{t} of multisets whose elements contain nonnegative integers, for which the sums of each element in a multiset sum to t. Let
$\mathcal{W} \subseteq \mathcal{M}_{t}$. A \mathcal{W}-separating hash family meets the following condition: when $C=\left\{c_{1}\right.$, $\left.\cdots, c_{t}\right\} \subseteq\binom{[k]}{t}$ and W_{1}, \cdots, W_{s} is a partition of C with $\left\{\left|W_{1}\right|, \cdots,\left|W_{s}\right|\right\} \in \mathcal{W}$, define $\mathcal{D}=\left\{\left(y_{1}, \ldots, y_{t}\right) \in \Delta_{c_{1}} \times \cdots \times \Delta_{c_{t}}: y_{c}=y_{c^{\prime}}\right.$ only if c, c^{\prime} belong to the same class of $W\}$. Then the demand (\mathcal{D}, \exists) is met. When each demand is the stricter requirement that $\mathcal{D}=\left\{\left(y_{1}, \ldots, y_{t}\right) \in \Delta_{c_{1}} \times \cdots \times \Delta_{c_{t}}: y_{c}=y_{c^{\prime}}\right.$ if and only if c, c^{\prime} belong to the same class of $W\}$, the hash family is \mathcal{W}-partitioning. When \mathcal{W} consists of all partitions in \mathcal{M}_{t} containing s parts, a \mathcal{W}-separating hash family is (t, s)-distributing. In both cases, when \mathcal{W} contains a single set $W=\left\{w_{1}, \ldots, w_{s}\right\}$, the family is separating (or partitioning) of type $\left\{w_{1}, \ldots, w_{s}\right\}$.

Of primary concern here are the (t, s)-distributing hash families with $s=t$. Such a family is a perfect hash family. In order to refer to objects of this type, we employ standard notation. A perfect heterogeneous hash family is denoted as a $\operatorname{PHHF}_{\lambda}(N ; k$, $\left.\left(v_{1}, \cdots, v_{N}\right), t\right)$, and a homogeneous one is written as a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$. If a $\operatorname{PHHF}_{\lambda}$ A λ-satisfies a given \mathcal{P}_{i}, then it λ-separates these columns.

An example of a (homogeneous) $\operatorname{PHF}_{1}(6 ; 12,3,3)$ is given in Figure 2.1. It is a 6×12 array (6 rows, 12 columns) on the three symbols $\{0,1,2\}$, in which every 3 -set of columns is 1 -separated. For the 6×3 subarray involving columns 8,9 , and 10 , only the last row consists of distinct symbols. Also, 148 of the 3 -sets are exactly 1 -separated; 44 are exactly 2 -separated; 19 are exactly 3 -separated; 4 are exactly 4 -separated; and none are 5 or 6 -separated. There is no $\operatorname{PHF}(5 ; 12,3,3)$ [9], so this array has the fewest possible rows.

The notation $\operatorname{SHHF}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right),\left\{w_{1}, \cdots, w_{s}\right\}\right)$ is used for a separating hash family. More simply $\operatorname{SHF}\left(N ; k, v,\left\{w_{1}, \cdots, w_{s}\right\}\right)$ is used when it is homogeneous. Figure 2.2 gives an example of a (homogeneous) $\operatorname{SHF}(3 ; 16,4,\{1,2\})$. It is a 3×16 array on the four symbols $\{1,2,3,4\}$ that is not a perfect hash family, because columns 11 , 15 , and 16 are separated by none of the three rows. However, in the 3×3 subarray

Figure 2.2: $\operatorname{ASHF}(3 ; 16,4,\{1,2\})$.
consisting of these three columns, each of the three $\{1,2\}$-separations is accomplished by a row.

A distributing hash family is denoted by $\operatorname{DHHF}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right), t, s\right)$; a homogeneous DHHF is a $\operatorname{DHF}(N ; k, v, t, s)$. Figure 2.3 gives a (heterogeneous) $\operatorname{DHHF}(10 ; 13$, $\mathbf{v}, 5,2)$ with $\mathbf{v}=(9,9,9,3,3,3,3,4,5,2)$. Often one uses an exponential notation that indicates the repetition in the exponent: $\mathbf{v}=\left(9^{3} 3^{4} 4^{1} 5^{1} 2^{1}\right)$.

Let q be a prime or prime power, and \mathbb{F}_{q} the finite field of order q. Let $\mathrm{R}_{t, q}=\left\{r_{0}\right.$, $\left.\cdots, r_{q^{t}-1}\right\}$ be the set of all row vectors of length t with entries in \mathbb{F}_{q}. Let $\mathrm{T}_{t, q}$ be the set of all column vectors of length t with entries in \mathbb{F}_{q}, excluding the 0 -vector. We call $x \in \mathrm{~T}_{t, q}$ a permutation vector. Consider a set of t vectors $X=\left\{x_{1}, \cdots, x_{t}\right\} \subseteq \mathrm{T}_{t, q}$. Form an array A by setting $A_{i, j}$ to be the product of r_{i}, x_{j}; A is a $q^{t} \times t$ matrix where every row is distinct if and only if the $t \times t$ matrix B formed by horizontally

					\downarrow	\downarrow				\downarrow		\downarrow	\downarrow
\rightarrow	6	7	8	3	4	0	2	2	3	0	5	1	1
	3	1	1	7	2	6	8	4	3	0	2	0	5
	8	5	1	4	2	3	2	6	7	0	1	3	0
	0	2	0	2	2	0	0	1	1	1	1	2	0
	0	0	2	1	1	1	2	0	0	2	2	0	1
	1	1	2	2	2	${ }^{-1}$	1	0	0	2	1	-0]	$\stackrel{-1}{0}$
	1	0	1	2	0	0	2	0	0	1	2	2	1
	1	1	0	1	0	3	2	0	2	0	1	0	2
	0	0	3	0	1	0	0	2	4	0	0	1	0
	0	\star	*	\star	\star	1	*	\star	1	\star	\star	0	1

Figure 2.3: $\operatorname{A~} \operatorname{DHHF}(10 ; 13, \mathbf{v}, 5,2)$ with $\mathbf{v}=\left(9^{3} 3^{4} 4^{1} 5^{1} 2^{1}\right)$.
juxtaposing x_{1}, \cdots, x_{t} is non-singular over the field. Note that the matrix B formed here cannot contain the 0 -vector.

Let $\langle x\rangle=\left\{\mu x: \mu \in \mathbb{F}_{q} \backslash 0\right\}$. If x is not the 0 -vector, the representative of $\langle x\rangle, r_{x}$, is the unique vector where the first nonzero coordinate is the multiplicative identity of \mathbb{F}_{q}. Let $\mathrm{V}_{t, q}$ be the set of representatives of all $x \in \mathrm{~T}_{t, q}$. Let $\mathrm{U}_{t, q}$ be the set of vectors in $\mathrm{V}_{t, q}$ with first coordinate being nonzero (namely, the multiplicative identity). A covering perfect hash family is a 4 -tuple $\operatorname{CPHF}_{\lambda}(N ; k, q, t)$ which is an $N \times k$ array where each entry is from $\mathrm{V}_{t, q}$, and for every t distinct columns c_{1}, \cdots, c_{t}, there is a row ρ for which the corresponding matrix formed above is nonsingular (we say that c_{1}, \cdots, c_{t} are covered when this occurs). We say that the array is a Sherwood covering perfect hash family, written $\operatorname{SCPHF}_{\lambda}(N ; k, q, t)$ if every entry in the array is from $\mathrm{U}_{t, q}$. In this setting, \mathcal{P}_{i} is the set of nonsingular matrices over \mathbb{F}_{q}, and $T_{i}=\exists$. Sherwood et al. [71] show that if a $\operatorname{SCPHF}(N ; k, v, t)$ exists, then a $\operatorname{CA}\left(N\left(v^{t}-v\right)+v ; t, k, v\right)$ exists.

Colbourn et al. [34] derive asymptotics for CPHFs along with many computational results and variants that provide many of the best-known results for covering arrays for strengths $3 \leq t \leq 6$ and $3 \leq v \leq 25$.

Hash families in general, and perfect hash families in particular, play a central role in the construction of arrays that satisfy various t-restrictions. Indeed, they form the essential ingredients in a general technique known as composition or column replacement, which we describe next.

Theorem 2.1. Suppose there exist:

1. $\mathrm{A}, a \mathrm{PHF}_{\chi}(M ; \ell, k, t) ;$ and
2. B, $a \operatorname{TRA}_{\lambda}\left(N ; k, \mathcal{H},\left(v_{1}^{s_{1}} \cdots, v_{\rho}^{s_{\rho}}\right), x^{k}, \mathcal{T}\right)$ with $N=\sum_{i=1}^{\rho} s_{i} v_{i}$ and $\mathcal{H}=\binom{[k]}{t}$.

Construct an $N M \times \ell$ array, C, by replacing each symbol γ in A by the column indexed by γ in B . Then C is a

$$
\operatorname{TRA}_{\chi \lambda}\left(N M ; \ell, \mathcal{H}^{\prime},\left(\left(M \cdot v_{1}\right)^{s_{1}} \cdots,\left(M \cdot v_{\rho}\right)^{s_{\rho}}\right), x^{\ell}, \mathcal{T}\right)
$$

with $\mathcal{H}^{\prime}=\binom{[\ell]}{t}$.

It is possible to extend this construction for when $\mathcal{H} \neq\binom{[k]}{t}$ and the PHF_{χ} does not separate every t-set, but we content ourselves with the generality developed here. Construction 2.1 provides strong motivation for the study of perfect hash families, as it underlies the easy generation of 'large' arrays meeting t-restrictions. We outline one example of this, introducing a well-studied t-restriction that employs universal quantification (i.e., a universal t-restriction). When for every t-set $\left\{c_{1}, \ldots, c_{t}\right\}$ of columns, the demand $\left(\Delta_{c_{1}} \times \cdots \times \Delta_{c_{t}}, \forall\right)$ is to be met, the array is a mixed-level covering array, denoted by $\operatorname{MCA}\left(N ; t,\left(v_{1}, \cdots, v_{k}\right)\right)$; when the array is homogeneous, it is a covering array, denoted by $\mathrm{CA}(N ; t, k, v)$. In any $\mathrm{CA}(N ; k, v, t)$, symbols can

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Figure 2.4: $\mathrm{A} \mathrm{CA}(13 ; 3,10,2)$.
be permuted in each column independently so that the first row consists entirely of a single symbol. This yields a constant row, and when the CA has been modified in this way, it is standardized. Figure 2.4 gives an example of a standardized CA(13; 3, 10, 2).

In [26], a restriction on DHHFs is applied to gain an additional improvement on Theorem 2.1 when the TRA is a covering array. Partitioning hash families are distributing hash families except not only for any partition of t-columns into s parts (possibly empty) the entries in any two different parts are pairwise disjoint, but the symbols in each part are all equal; denote it by a $\operatorname{PaHF}(N ; k, v, t, s)$. It is shown there that a $\operatorname{DHF}(N ; k, 2, t, 2)$ is a $\operatorname{PaHF}(N ; k, 2, t, 2)$. Notably, partitioning hash families are appealing because if a $\mathrm{CA}(N+\rho ; v, k, v)$ with ρ constant rows and a $\operatorname{PaHF}(M ; \ell, k$, $t, v)$ exist, then a $\mathrm{CA}(N M+\rho ; t, \ell, v)$ exists; this shows that the ingredient CA can be
of a different strength than the PaHF. However, PaHFs appear difficult to construct. For recent work on probabilistic methods for PaHFs, see Cassels and Godbole [21].

For some specific t-restrictions, such as covering arrays, one may achieve a smaller number of rows while still satisfying the restriction (e.g., standardizing the CA). Introducing heterogeneity can in some cases provide even more improvements; we content ourselves for now with the homogeneous case. By observing the generality of the framework, much of this survey can be appropriately applied to other types of t-restrictions.

Because a PHF with M rows leads to a TRA with $N M$ rows, one wants the PHF ingredient to have as few rows as possible. The perfect hash family (row) number, $\operatorname{PHFN}_{\lambda}(k, v, t)$, is the minimum N for which a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$ exists. This notation does not extend naturally to heterogeneous hash families, because the number of rows is to be determined. To circumvent this notational issue, we often instead consider maximizing the number of columns rather than minimizing the number of rows. More formally, the perfect hash family (column) number $\operatorname{PHHFK}_{\lambda}(N, \mathbf{v}, t)$ is defined to be the maximum k for which a $\mathrm{PHHF}_{\lambda}(N ; k, \mathbf{v}, t)$ exists. For homogeneous hash families, the notation $\operatorname{PHFK}_{\lambda}(N, v, t)$ is used. For homogeneous families, one can easily change between row and column numbers:

$$
\begin{aligned}
& \operatorname{PHFN}_{\lambda}(k, v, t)=\min \left(N: \operatorname{PHFK}_{\lambda}(N, v, t) \geq k\right) \\
& \operatorname{PHFK}_{\lambda}(N, v, t)=\max \left(k: \operatorname{PHFN}_{\lambda}(k, v, t) \leq N\right)
\end{aligned}
$$

$\operatorname{A~PHF}_{\lambda}(N ; k, v, t)$ is optimal if $N=\operatorname{PHFN}_{\lambda}(k, v, t)$. Much study has been devoted to determining perfect hash family numbers for as many parameters as possible, as well as what structure underlies optimal PHFs. Moreover, one would hope to provide an explicit representation of the PHF with those parameters, particularly for constructing other combinatorial objects and t-restrictions. If this is not possible, then knowing
asymptotics on this quantity is important in helping determine asymptotics for other objects.

2.2 The Basics

First we state elementary relationships among perfect hash family numbers. In order to treat heterogeneous situations as well, we employ perfect hash family column numbers.

Additional rows cannot reduce the number of columns that can be achieved:

Fact 1. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq \operatorname{PHHFK}_{\lambda}\left(N+1,\left(v_{1}, \ldots, v_{N+1}\right), t\right)$ whenever $v_{N+1} \geq 0$.

Reducing the size of column sets to be separated also cannot reduce the number of columns.

Fact 2. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq \operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t-1\right)$ if $t \geq 2$.

Reducing λ enables one to remove rows without reducing the number of columns.

Fact 3. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq \operatorname{PHHFK}_{\lambda-1}\left(N-1,\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots v_{N}\right), t\right)$ if $\lambda \geq 2$ and $1 \leq i \leq N$.

Increasing the number of symbols in a row cannot reduce the number of columns.

Fact 4. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq \operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{i-1}, v_{i}+1, v_{i+1}, \ldots v_{N}\right), t\right)$ if $1 \leq i \leq N$.

Changing the number of columns is also of interest. Removing a column is straightforward, but adding a column can leave $\binom{k}{t-1} t$-sets of columns unseparated. Naively one could add λ rows for each to obtain

Fact 5. $\operatorname{PHFN}_{\lambda}(k, v, t) \leq \operatorname{PHFN}_{\lambda}(k+1, v, t) \leq \operatorname{PHFN}_{\lambda}(k, v, t)+\lambda\binom{k}{t-1}$.

Walker and Colbourn [79] show a better bound, later generalized by Martirosyan and van Trung [57]. We improve on their result in Section 3.2.

In order to avoid situations in which a row does not have enough symbols to separate any t-set of columns, we have:

Fact 6. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right)=\operatorname{PHHFK}_{\lambda}\left(N-1,\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots v_{N}\right), t\right)$ if $v_{i}<t$.

One can also consider reducing the number of symbols in a row,:
Fact 7. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq\left\lceil\frac{v_{i}-1}{v_{i}} \operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{i-1}, v_{i}-1, v_{i+1}, \ldots v_{N}\right), t\right)\right\rceil$ if $1 \leq i \leq N$.

Iterating Fact 7 until Fact 6 applies, one obtains

Theorem 2.2. (Martirosyan and van Trung [57, Theorem 7.2])
$\operatorname{PHFN}\left(\left\lceil\frac{k(t-1)}{v}\right\rceil, v, t\right) \leq \operatorname{PHFN}(k, v, t)-1$. Equivalently, $\operatorname{PHFK}(N-1, v, t) \geq\left\lceil\frac{t-1}{v} \operatorname{PHFK}(N\right.$, $v, t)\rceil$.

Finally we describe a row amalgamation method for reducing the number of rows, which essentially comes from $[16,72]$. In a $\operatorname{PHHF}_{\lambda}\left(N ; k,\left(v_{1}, \ldots, v_{N}\right), t\right)$, select two rows i and j with $1 \leq i<j \leq N$. From these two, form a single row whose entries are ordered pairs, with the first coordinate being the entry from row i and the second from row j. Delete rows i and j (with v_{i} and v_{j} symbols), and add the new row with $v_{i} v_{j}$ symbols. This method can reduce the number of times a t-set of columns is separated, but this number cannot be reduced to 0 .

Fact 8. $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right) \leq \operatorname{PHHFK}_{\max (1, \lambda-1)}\left(N-1,\left(w_{1}, \ldots, w_{N-1}\right), t\right)$ whenever $1 \leq i<j \leq N,\left\{v_{1}, \ldots, v_{N}\right\} \backslash\left\{v_{i}, v_{j}\right\}=\left\{w_{1}, \ldots, w_{N-2}\right\}$, and $w_{N-1}=v_{i} v_{j}$.

Now let us dispense with some easier parameter sets. If $N<\lambda$, there are insufficient rows to λ-separate any t-set; so we assume that $N \geq \lambda$. Now $\operatorname{PHFN}_{\lambda}(k, v, 1)=\lambda$
for all $k, v \geq 1$, and $\lambda \geq 1$, because any row separates all 1 -sets of columns. Henceforth we only consider cases with $t \geq 2$. Fact 3 underlies the following:

Fact 9. $\operatorname{PHHFK}_{\lambda}\left(\lambda,\left(v_{1}, \ldots, v_{\lambda}\right), t\right)=\min \left(v_{i}: 1 \leq i \leq \lambda\right)$.

Because of this, we concentrate on cases in which no λ rows are each permitted to contain k or more distinct symbols. It is natural to ask whether one can obtain larger values of k when the number of rows is allowed to exceed λ.

In general, recursive constructions combine ingredient PHFs to make 'larger' ones. Many of the facts given provide easy examples of recursive constructions. Of course, because being a perfect hash family of index λ is a t-restriction, so column replacement or composition (Theorem 2.1) is a recursive construction.

Chapter 3

HASH FAMILIES OF HIGHER INDEX

In this chapter, we focus on generating hash families with arbitrary index λ. In Section 3.1, we provide some direct constructions for PHFs of arbitrary index that have a "small" number of rows. In Section 3.2, we take advantage of higher-index ingredients in deriving a new recursive construction, along with a boolean satisfiability formula that aids in the construction; computational results are also provided. In Section 3.3, we analyze PHFN $_{\lambda}$ from probabilistic and asymptotic lenses. And finally, in Section 3.4, we use the previous section's results to give a conditional expectation algorithm to construct PHFs of index λ in polynomial time that meet these bounds, along with computational results. Much of this chapter has been submitted in [46].

3.1 Direct Constructions

In many applications, error correction through redundancy in the separation is needed; a few examples are given in $[1,53,68]$. Despite this, there has been little examination of such hash families with $\lambda>1$, with the notable exception of $[3,4]$. ${ }^{1}$ We survey a number of the main construction methods for such hash families, with an eye to extending them to treat cases with $\lambda>1$ when possible. Our emphasis is on fixed values of $\lambda \geq 1$; we only treat cases when λ increases as a function of N in the concluding remarks. We focus on combinatorial aspects, discussing in particular constructive approaches to produce explicit examples for use in applications.

No PHHF_{λ} with fewer than λ rows exists; when there are λ rows, Fact 9 applies. Suppose that $v_{1} \geq \cdots \geq v_{N} \geq t$ and that a $\operatorname{PHHF}_{\lambda}\left(N ; v_{\lambda}+1,\left(v_{1}, \ldots, v_{N}\right), t\right)$ exists.

[^0]Using Fact 3 we remove the first $\lambda-1$ rows to obtain a $\operatorname{PHHF}_{1}\left(N-\lambda+1 ; v_{\lambda}+1\right.$, $\left.\left(v_{\lambda}, \ldots, v_{N}\right), t\right)$. Each row contains at least one pair of columns in which a symbol is repeated. Let $\left\{\gamma_{i}, \gamma_{i}^{\prime}\right\}$ be such a pair of column indices with a repeated symbol in row i for $\lambda \leq i \leq N$. Then $\bigcup_{i=\lambda}^{N}\left\{\gamma_{i}, \gamma_{i}^{\prime}\right\}$ is a set of at most $2(N-\lambda+1)$ columns that is separated by no row of the PHHF_{1}. When $N \leq \frac{t}{2}+\lambda-1$, this is a contradiction. Hence we conclude

Fact 10. When $v_{1} \geq \cdots \geq v_{N} \geq t$, $\operatorname{PHHFK}_{\lambda}\left(N,\left(v_{1}, \ldots, v_{N}\right), t\right)>v_{\lambda}$ only if $N \geq$ $\left\lceil\frac{t+1}{2}\right\rceil+\lambda-1$.

Although this condition is not sufficient whenever $v_{1} \geq \cdots \geq v_{N} \geq t$, it does establish, for example, that $\operatorname{PHFK}_{1}(N, v, t)=v$ whenever $1 \leq N \leq \frac{t}{2}$. In order to increase the number of columns, one therefore requires further rows.

We describe a $\operatorname{PHF}_{\lambda}(s+\lambda ; m(s+\lambda), m(s+\lambda-1)+1,2 s+1)$ whenever $m \geq 2$ and $s \geq 1$, generalizing a result of Walker and Colbourn [79] when $\lambda=1$.

Construction 3.1. Let $s \geq 1, m \geq 2$, and $\lambda \geq 1$. $A \operatorname{PHF}_{\lambda}(s+\lambda ; m(s+\lambda)$, $m(s+\lambda-1)+1,2 s+1)$ is constructed as follows. Form a set of $m(s+\lambda-1)$ elements X, and let ∞ be an element not in X. Then the desired PHF_{λ} contains exactly one occurrence of ∞ in each column, and contains each element of X exactly once in each row.

Now Construction 3.1 yields more columns than symbols, and by Fact 10 it has the fewest rows for which this is possible with strength $t=2 s+1$. As a function of v, k grows linearly. This linear relationship is not restricted to the minimum number of rows, Blackburn [15] explored this phenomenon when $\lambda=1$, and explicit computations, again for $\lambda=1$, are pursued in [30]. We apply Blackburn's techniques to treat all λ.

To begin, we suppose that $k>v_{1} \geq \cdots \geq v_{N}$, for otherwise we can either reduce λ by Fact 3 or conclude that one row suffices when $\lambda=1$. Then every row contains at least one element that is repeated. The key idea is to classify the entries in each row; an entry is a singleton for this row when it appears exactly once in the row, and a replicate otherwise. Now suppose that a $\operatorname{PHHF}_{\lambda}\left(N ; k,\left(v_{1}, \ldots, v_{N}\right), N-(\lambda-2)+s\right)$ with $0 \leq s \leq \frac{t-1}{2}$ has a column γ with at most $s+\lambda-1$ singletons, and hence at least $N-s-\lambda+1=t-2 s-1$ replicates. Form a set C of $t-2 s$ column indices by including γ, and a column index from each of the $t-2 s-1$ rows that contains the same symbol as in column γ. Now choose any s further rows, and for each add a pair of column indices for columns containing the same symbol in this row to C. In total, C now contains at most $t-2 s+2 s=t$ column indices, and C is not separated in any of $t-2 s-1+s=N-\lambda+1$ rows. But then C is not λ-separated, because at most $\lambda-1$ rows remain.

So $\lambda+s=t-N+2(\lambda-1)$ is the minimum number of singletons in each column. In a row having v_{i} symbols, at most $v_{i}-1$ can be singletons. However, there must be at least $k(t-N+2(\lambda-1))$ singletons in total. It follows that

$$
k(t-N+2(\lambda-1)) \leq \sum_{i=1}^{N}\left(v_{i}-1\right) .
$$

Hence we obtain

Lemma 3.1. $A \operatorname{PHHF}_{\lambda}\left(N ; k,\left(v_{1}, \ldots, v_{N}\right), t\right)$ with $N-(\lambda-2) \leq t \leq 2(N-(\lambda-2))-1$ satisfies

$$
k \leq \max \left(t, v_{1}, \ldots, v_{N}, \frac{\sum_{i=1}^{N}\left(v_{i}-1\right)}{t-N+2(\lambda-1)}\right)
$$

Lemma 3.1 ensures that for a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$ with $N-(\lambda-2) \leq t \leq 2(N-(\lambda-$ 2)) -1 , (or, equivalently, $\frac{t+1}{2}+\lambda-2 \leq N \leq t+\lambda-2$), k grows linearly as a function of v.

For $\lambda=1$, Blackburn [15] establishes that when $N=t+\lambda-1, k$ grows superlinearly in v. We extend his construction to treat all values of λ next.

Example 3.1. Let $t \geq 2, \lambda \geq 1$, and $a \geq 2$. Then there exists a $\operatorname{PHF}_{\lambda}\left(t+\lambda-1 ; a^{t+\lambda-1}\right.$, $\left.a^{t-\lambda-2}, t\right)$. The set of all vectors from $\{1, \ldots, a\}^{t+\lambda-1}$ index the columns. In each column, in the i th row place the vector from $\{1, \ldots, a\}^{t+\lambda-2}$ obtained by deleting the entry in the ith coordinate of the column index.

The verification that this is a $\operatorname{PHF}_{\lambda}\left(t+\lambda-1 ; a^{t+\lambda-1}, a^{t-\lambda-2}, t\right)$ comes essentially from [15]. Suppose to the contrary that there are t rows $\rho_{1}, \ldots, \rho_{t}$ in which t columns $\gamma_{1}, \ldots, \gamma_{t}$ are not separated. Form a graph G on vertex set $\left\{\gamma_{1}, \ldots, \gamma_{t}\right\}$; for each $\rho \in\left\{\rho_{1}, \ldots, \rho_{t}\right\}$, place an edge in G between some two vertices whose columns share a symbol in row ρ, and colour the edge with ρ. Now G has t vertices and t edges (of t different colours), and hence contains a cycle, say on vertices $\left\{v_{0}, \ldots, v_{\ell}\right\}$. Let $e_{i}=\left\{v_{i}, v_{i+1}\right\}$ for $0 \leq i<\ell$ have colour c_{i}, and let $e_{\ell}=\left\{v_{\ell}, v_{0}\right\}$ have colour c_{ℓ}. For $0 \leq i \leq \ell$, the two columns indexed by e_{i} agree in coordinate c_{i} and in no other. Because all edge colours in the cycle are distinct, the columns indexed by each of $\left\{e_{0}, \ldots, e_{\ell-1}\right\}$ agree in coordinate c_{ℓ}, but e_{ℓ} requires that they disagree, which yields the contradiction.

Fact 1 now guarantees that k grows superlinearly in v whenever $N \geq t+\lambda-1$, in contrast with the requirement that $\operatorname{PHFK}_{\lambda}(t+\lambda-2, v, t) \leq \max \left(v, \frac{1}{\lambda}(t+\lambda-2)(v-1)\right)$ from Lemma 3.1.

Of course, practical interest is in obtaining a large number of columns, but understanding the situation with few rows has an important consequence.

Theorem 3.1. Let $N=\alpha(t-1)+\beta$ with $1 \leq \beta \leq t-1$. Then $\operatorname{PHFK}_{\lambda}(N+\lambda-1$, $v, t) \leq \operatorname{PHFK}_{1}(N, v, t) \leq v^{\alpha}(t-1+\beta(v-1)) \leq(t-1) v^{\left\lceil\frac{N}{t-1}\right\rceil}$.

Proof. Consider a $\operatorname{PHF}_{1}(N ; k, v, t)$. Repeatedly amalgamate rows (Fact 8) to form
a $\operatorname{PHHF}_{1}\left(t-1 ; k,\left(\left(v^{\alpha+1}\right)^{\beta}\left(v^{\alpha}\right)^{t-1-\beta}\right), t\right)$. Apply Lemma 3.1 to conclude that $k \leq$ $v^{\alpha}(t-1+\beta(v-1))$.

Row amalgamation can reduce λ when it exceeds 1, and hence Theorem 3.1 employs amalgamation only when $\lambda=1$. Consequently, it yields a useful upper bound when $\lambda=1$, but we anticipate that the bound is weak when $\lambda>1$.

In the 'linear' range when $\frac{t+1}{2}+\lambda-2 \leq N \leq t+\lambda-2$, Lemma 3.1 establishes that for some constant $c_{N-(\lambda-1), t-N-(\lambda-1), \lambda}$, the existence of a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$ requires that $k \leq c_{N-(\lambda-1), t-N-(\lambda-1), \lambda} v$. Blackburn [15] devises a linear programming formulation to explicitly determine the constant $d_{N, t-N}$ so that $k=d_{N, t-N} v(1+\mathrm{o}(1))$ when $\lambda=1$. In order to establish the lower bound asymptotically, he develops a construction technique using coverings. In Chapter 4, the method is extended to produce explicit constructions for small values of v, and to treat the generalization to distributing hash families (with $\lambda=1$).

3.1.1 The Connection with Codes

One direct method for constructing a variety of hash families relies on the existence of error-correcting codes. A code with parameters $(n, k, d)_{q}$ is a set of k distinct vectors (codewords) of length n over an alphabet of size q, so that every two distinct codewords are at Hamming distance at least d. Then $A_{q}(n, d)$ denotes the largest k for which there is a $(n, k, d)_{q}$ code, and $A(n, d, w)$ denotes the largest k for which there is a $(n, k, d)_{2}$ code in which each cod word has weight w (i.e., w 1's). See [20] for some bounds on $A(n, d, w)$. Determining exact values for $A_{q}(n, d)$ and $A(n, d, w)$ in general remains a major challenge.

Alon [2] shows a connection between codes and PHF_{1} s; see also Atici et al. [10]. We give the easy generalization for higher index:

Theorem 3.2. If there is an $(n, k, d)_{q}$ code, then for any t, λ such that $\binom{t}{2}<\frac{n-\lambda+1}{n-d}$, there is $a \operatorname{PHF}_{\lambda}(n ; k, q, t)$.

Proof. Let C be an $(n, k, d)_{q}$ code. Construct an array A that has the codewords of C as its columns. Let $L=\left\{c_{1}, \cdots, c_{t}\right\}$ be a set of t columns of A. Two distinct columns of L can agree in at most $n-d$ rows, so the number of rows in which not all columns of L disagree is at most $(n-d)\binom{t}{2}$. Provided that $(n-d)\binom{t}{2}<n-\lambda+1$, A has at least λ rows that separate L.

In general, Theorem 3.2 yields a PHF from a code, but not every PHF need arise in this way. However, when $t=2$ the correspondence is exact (see Mehlhorn [58] and Atici, Magliveras, Stinson, and Wei [10] when $\lambda=1$):

Theorem 3.3. $\operatorname{An}(n, k, \lambda)_{q}$ code is equivalent to $a \operatorname{PHF}_{\lambda}(n ; k, q, 2)$.
It follows that $\operatorname{PHFK}_{1}(N, v, 2)=v^{N}$ and hence $\operatorname{PHFN}_{1}(k, v, 2)=\left\lceil\frac{\log k}{\log v}\right\rceil$. By considering all codewords in $\{0, \ldots, v-1\}^{N}$ whose entries sum to $0(\bmod v)$, one has $\operatorname{PHFK}_{2}(N, v, 2)=v^{N-1}$. When $\lambda \geq 3$, one wants $(n, k, d)_{q}$ codes with $d \geq 3$. Numerous constructions and bounds are known [56], but in general exact values are not.

There is a $\operatorname{PHHF}_{1}\left(N ; \prod_{i=1}^{N} v_{i},\left(v_{1}, \cdots, v_{N}\right), 2\right)$ for any $N \geq 1$ and $v_{1}, \cdots, v_{N} \geq 2$, obtained by taking all possible column vectors. In the heterogeneous case, one has a correspondence with codewords in which each coordinate has its own alphabet, but such codes have not been much studied.

Turning to cases with $t \geq 3$, Theorem 3.2 has been extensively employed, particularly to Reed-Solomon codes to make PHFs with $\lambda=1$ [10]. We formulate a generalization using design-theoretic terminology. A transversal design, $\operatorname{TD}(s, k, n)$ is a triple $(V, \mathcal{G}, \mathcal{B})$ where V is a set of $k n$ points, partitioned into k groups $\mathcal{G}=\left\{G_{1}\right.$, $\left.\cdots, G_{k}\right\}$, and $\left|G_{i}\right|=n$ for all i. Furthermore, \mathcal{B} contains n^{s} blocks of size k with
$\left|B_{i} \cap G_{j}\right|=1$ for all i, j, and $\left|B_{i} \cap B_{j}\right| \leq s$ for all $i \neq j$. A standard construction of transversal designs over the finite field \mathbb{F}_{q} follows.

Construction 3.2. $A \operatorname{TD}(s, k, q)$ with $k \leq q+1$ exists. Let $X=\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{F}_{q} \cup$ $\{\infty\}$. The elements of the TD are $\mathbb{F}_{q} \times X$. For each polynomial $a_{0}+a_{1} y+\cdots+a_{s-1} y^{s-1}$ of degree $s-1$ with coefficients from \mathbb{F}_{q}, form a block that contains element (b, z) whenever $z \in X$ and (1) $b=a_{0}$ when $z=\infty$, or (2) $b=a_{0}+a_{1} z+\cdots+a_{s-1} z^{s-1}$ otherwise (all arithmetic performed in \mathbb{F}_{q}).

A transversal design constructed in this manner is linear. Treating the blocks of the $\operatorname{TD}(s, k, q)$ from Construction 3.2 as columns and the elements of X as rows, we obtain a $k \times q^{s}$ array C on q symbols. In fact, because the difference between two polynomials of degree at most $s-1$ is also a polynomial of degree at most $s-1$, and such a polynomial has at most $s-1$ roots, the columns of C form a $\left(k, q^{s}, k-s\right)_{q}$ code, so Theorem 3.2 applies. When constructed in this way, the PHF_{λ} is linear as well. However, because the code has a natural algebraic interpretation, much more can be said. Suppose that there is a set X for which every set t polynomials of degree $s-1$ disagree on some value of X. This can arise when $|X| \leq(s-1)\binom{t}{2}$. For example, Blackburn [14] shows that a $\operatorname{PHF}\left(3 ; r^{3}, r^{2}, 3\right)$ exists for all $r \geq 2$, and that a $\operatorname{PHF}\left(6 ; p^{2}, p, 4\right)$ exists for all primes $p \geq 17$ or $p=11$. This phenomenon has been extensively examined when $\lambda=1$. A PHF is optimal linear if it is linear and no linear PHF exists having fewer rows. Blackburn [14] provides explicit constructions of PHFs, some of which are optimal.

Blackburn and Wild [18] showed that if q is a sufficiently large prime power, there is an optimal linear $\operatorname{PHF}\left(s(t-1) ; q^{s}, q, t\right)$ for $s, t \geq 2$. For specific choices of s and t, characterizations of the number of rows that suffice for small prime powers q have been carried out by Barwick and Jackson [11, 12], and Colbourn and Ling [35].

These provide numerous explicit examples of $\mathrm{PHF}_{1} \mathrm{~S}$ that are easily constructed. The extension of larger values of λ is straightforward.

It remains an open question whether an optimal PHF exists whenever an optimal linear PHF exists $[18,14]$. The linear perfect hash families always consist of rows in which the numbers of occurrences of each symbol are as equal as possible. Of course, this equireplication cannot be required for all parameter sets; consider, for example, Construction 3.1. When $s=1, m=2$, and $\lambda=1$, it is possible to prove that the corresponding PHF_{2} s have a single equivalence class (see Theorem 3.7), and so every row of any $\mathrm{PHF}_{1}(2 ; k, v, 3)$ arising from this construction must have this property. Nevertheless, it appears plausible that once the number of rows is large enough, every row can be required to be nearly equireplicated. If true, this constraint could simplify the development of further constructions.

However, we do not expect that linear PHFs lead to the largest number of columns. Consider, for example, $\operatorname{PHFK}(3, v, 3)$. By [14], $\operatorname{PHFK}(3, v, 3)=\Omega\left(v^{1.5}\right) ;$ however, Walker and Colbourn [79] found solutions for small v that suggest a larger growth rate, and posed the question of whether $\operatorname{PHFK}(3, v, 3)=o\left(v^{2}\right)$. Fuji-Hara [51] constructs $\operatorname{PHF}\left(3 ; v^{5}, v^{3}, 3\right)$ and $\operatorname{PHF}\left(3 ; v^{2}(v+1), v^{2}, 3\right)$ for a prime power $v \geq 3$, to establish that $\operatorname{PHFK}(3, v, 3)=\Omega\left(v^{5 / 3}\right)$. Shangguan and Ge [69] solved the question of Walker and Colbourn: For sufficiently large v and arbitrary $\varepsilon>0$, that $q^{2-\varepsilon}<\operatorname{PHFK}(3, v$, $3)=o\left(v^{2}\right)$. A similar result for $\operatorname{PHFK}(4, v, 4)$ is also proved.

One does not need transversal designs constructed over the field \mathbb{F}_{q} in order to produce a code. It is well known that a $\operatorname{TD}(2, k, v)$ is equivalent to $k-2$ mutually orthogonal latin squares of side v (see [28], for example). Via this connection, one can generalize a result of Stinson, Wei, and Zhu [76] to $\lambda \geq 1$, by also employing Theorem 3.2:

Theorem 3.4. [76] If there are at least $s=\binom{t}{2}+\lambda-2$ MOLS of order n, there exists $a \operatorname{PHF}_{\lambda}\left(s+2+\lambda ; n^{2}, n, t\right)$.

The same authors generalize this statement to mutually orthogonal $n \times m$ latin rectangles on $\max (m, n)$ symbols, obtaining a PHF_{1} with $m n$ columns. Dinitz, Ling, and Stinson [44] establish in some cases that the number of rows employed by Theorem 3.4 can be reduced by ensuring that the corresponding TD avoids certain forbidden configurations.

Another generalization of transversal designs is to block designs. Let X be a set of v points, and \mathcal{B} be a set of b subsets of X, called blocks of X each with k points. Then (X, \mathcal{B}) is a balanced incomplete block design (BIBD) if every point occurs in r blocks, and every pair of points occurs in λ blocks. We denote this by $\operatorname{BIBD}(v, b, r, k, \lambda)$. By a simple counting argument, $v r=b k$ and $\lambda(v-1)=r(k-1)$. A BIBD is a resolvable balanced incomplete block design if \mathcal{B} can be partitioned into r parallel classes, and each class contains $\frac{v}{k}$ disjoint blocks. We denote this by $\operatorname{RBIBD}(v, b, r, k, \lambda)$. Brickell [19] and Atici, Magliveras, Stinson, and Wei [10] proved that if there is an $\operatorname{RBIBD}(v$, $b, r, k, \lambda)$ and $r>\lambda\binom{w}{2}$, there is a $\mathrm{PHF}_{1}\left(r ; v, \frac{v}{k}, w\right)$. For results on the existence and asymptotics of RBIBDs, see [28].

3.2 A New Recursive Construction for PHFs of Higher Index

In this section, we address the problem of bounding the difference

$$
\operatorname{PHFN}_{\lambda}(k s+d, v, t)-\operatorname{PHFN}_{\lambda}(k, v, t)
$$

for different choices of s, d. Most techniques studied previously either restrict the choices of s, d, limit which values of v, t in which a bound is possible, or the bound itself is not strong.

We provide a framework that does not have any limitations that obtains a bound
for every choice of s, d, v, t. However, if one sets $s=1$ and still lets d be arbitrary, further improvements can be obtained. Even further still, if $s=1$ and d is a constant, then the best improvements of all can be proved.

An easy (weak) upper bound is that $\operatorname{PHFN}_{\lambda}(k s+d, v, t)-\operatorname{PHFN}_{\lambda}(k, v, t) \leq$ $\lambda\left(\binom{k s+d}{t}-s\binom{k}{t}\right)$, obtained as follows. Horizontally juxtapose the $\operatorname{PHF}_{\lambda}(N ; k, v, t)$ s times, and append any d further columns. Label the columns as $([k] \times\{1, \cdots$, $s\}) \cup\left\{\infty_{1}, \cdots, \infty_{d}\right\}$. Then the t-sets which are not separated are those which have two columns having identical first coordinate, or have at least one column among $\left\{\infty_{1}, \cdots, \infty_{d}\right\}$. There are $\binom{k s+d}{t}$ sets overall, and $\binom{k}{t}$ of them are already separated by assumption for each of the s blocks. It is possible to improve this bound by a factor of 2 , because every row can separate any two t-sets. With even more careful analysis based on integer partitions, this same construction can yield a better bound. However, this is not anywhere near the best general bounds that can be obtained.

We review various parameters v, t, s, d that have been investigated previously for bounding $\operatorname{PHFN}_{\lambda}(k s+d, v, t)-\operatorname{PHFN}_{\lambda}(k, v, t)$ for general k. In most situations, such bounds are found by appending various columns of the existing PHF, either without modification or with cyclic shifts of the symbols. Walker and Colbourn [79], with improvements by Martirosyan and van Trung [57], considered the cases of (1) $s \geq 2$ constant and $d=0$, (2) $s=1$ and d fixed, and (3) $s=1$ and d arbitrary. We consider (2) and (3) briefly, and return to (1) in the concluding remarks as future work. Their results are inherently limited because it is required that $1 \leq d \leq v-t+2$, and when $v \approx t$, the number of columns to be added is comparatively small. However, such results are "optimal" in the sense that no other method that appends columns of an existing PHF to itself can improve upon the bounds they achieve. So any method that we produce must improve upon when $d \geq v-t+1$.

Colbourn and Ling [36] generalize other results by Martirosyan and van Trung to
give a very general bound. Their method uses a difference distributing hash family, DDHF, as well as the notion of matroshka type and laminar type. The former is a generalization of a PHF with separation across a partition of the set of t columns based on a given abelian group, and the latter two are tuples indicating a structural property of a hash family (namely how many rows are needed to achieve a PHF or DDHF of strength ℓ for $2 \leq \ell \leq t$). However, their method suffers from (1) very few constructions existing for DDHFs when the number of symbols is small, and (2) the matroshka and laminar types need to be known in advance. In fact, the only constructions for DDHFs require v to be a prime power and $v \geq\binom{ t}{2}$, which is less useful if t is large.

We provide a framework for improving upper bounds for $\operatorname{PHFN}_{\lambda}(k s+d, v, t)-$ $\operatorname{PHFN}_{\lambda}(k, v, t)$ for the following scenarios: (1) s, d both arbitrary; (2) $s=1$ and d arbitrary; and (3) $s=1$ and d a fixed constant. In all cases, there are no requirements on k, s, v, t, or d. When s and k are large, the parameter d is much smaller than $k \times s$. If one has a PHF on $k s+d$ columns, one can find a PHF on $k s$ columns by removing any d of them. Therefore, if a certain number of columns is desired, k^{\prime}, that is not a multiple of k, then one should find the least s such that $k s \geq k^{\prime}$, and delete columns as necessary.

3.2.1 s Arbitrary

For s and d both arbitrary, we require an additional ingredient. Let t be a positive integer, and $\mathbf{w}=\left(w_{1}, \cdots, w_{m}\right)$ a nonempty ordered partition of t with $w_{1} \leq \cdots \leq w_{m}$. We say that an $N \times m$ array fully covers \mathbf{w} if for every permutation $\rho(\mathbf{w})$ of \mathbf{w}, some row of the array is equal to $\rho(\mathbf{w})$. A partition covering array, written $\operatorname{PCA}_{\lambda}(N ; t, s)$, is an $N \times s$ array in which for every nonempty ordered partition of size i of $[t]$ for every valid i, every choice of i columns fully covers that partition at least λ times.

We begin with a construction of PCA_{λ} s. For positive integers r_{1}, \cdots, r_{m}, let $p=$ $\sum_{i=1}^{m} r_{i}$. A partitioning ordered design of type $\left(w_{1}, \cdots, w_{m}\right)$ and replication $\left(r_{1}, \cdots\right.$, r_{m}), written $\operatorname{POD}_{\lambda}\left(N ; s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$, is an $N \times s$ array in which (1) $w_{i}<w_{j}$ for all $i<j$, and (2) every p-tuple formed from $\left(w_{1}, \cdots, w_{m}\right)$ by repeating each w_{i} exactly r_{i} times, in any order, is fully covered at least λ times in the POD_{λ}. A $\operatorname{PCA}_{\lambda}(N ; t, s)$ can then be formed by considering all nonempty partitions of $[t]$, forming the corresponding POD_{λ}, and vertically juxtaposing all such $\mathrm{POD}_{\lambda} \mathrm{s}$.

We are now ready to state our main construction here. Let $N, k \geq v_{1}, \cdots, v_{N} \geq$ $t \geq 2$, and $s \geq 1$ be positive integers, and $1 \leq k_{1}, \cdots, k_{s-1} \leq k$. Denote $m=$ $k+\sum_{i=1}^{s-1} k_{i}$. Suppose there exist:

1. a $\operatorname{PCA}_{\lambda}\left(N_{P} ; t, s\right) \mathrm{C}$;
2. a $\operatorname{PHHF}_{\chi}\left(N ; k,\left(v_{1}, \cdots, v_{N}\right), t\right) \mathrm{A}$; and
3. for all $1 \leq i \leq s-1$ and $1 \leq p \leq t-1$, a $\operatorname{PHF}_{\alpha}\left(N_{p, i} ; k_{i}, p, p\right) \mathrm{B}_{p, i}$.

For each $1 \leq i \leq s$, horizontally append any k_{i} distinct columns of the original PHHF_{χ} to A . In C , denote $\mathrm{C}_{r, c}$ to be the symbol in row r, column c. Let C_{r} to be the set of symbol/block pairs in row r of C without multiplicity such that the corresponding number of columns corresponding to r is maximum. By this, we mean that if $\mathrm{C}_{r, c}=\mathrm{C}_{r, c^{\prime}}=\sigma$ with $c \neq c^{\prime}$ but $k_{c}>k_{c}^{\prime}$, then C_{r} contains (σ, c), not $\left(\sigma, c^{\prime}\right)$. For each row r of C , form the Cartesian product of all $B_{p, i}$ for $p \in \mathrm{C}_{r}$, taking the minimum resulting number of rows by adding any extra symbols (in the case $v>t$) to any of the corresponding PHFs, in all possible ways; here, PHHF_{χ} s may be formed as a result. (For any symbol/block pair (σ, c) not in C_{r}, duplicate the corresponding set of columns for σ from some other block, deleting columns as necessary to achieve k_{c} columns). When the product is formed, vertically juxtapose it to A .

Theorem 3.5. The array formed from the above construction is a PHHF with m columns, strength t, and index (at least) $\lambda \cdot \chi \cdot \alpha$.

Proof. Partition the m columns into "blocks" $K, K_{1}, \cdots, K_{s-1}$, where $\left|K_{i}\right|=k_{i}$, according to how the columns were appended in the construction. Let T be an arbitrary t-set of columns, and let $\chi=|[k+1, \cdots, m] \cap T|$. If $\chi \leq 1$, then T is already separated since only columns of A were duplicated. If $\chi \geq 2$, then T may not be separated in the first N rows. However, there is some partition of $[t]$ that corresponds to how T is distributed among the blocks. Form the Cartesian product of the corresponding $\mathrm{B}_{p, i}$. Since each ingredient was a PHHF, at least one row in each of the $\mathrm{B}_{p, i}$ separates the required columns; by forming the Cartesian product of these ingredients, some row in the resulting PHHF must separate T. The reasoning for the index being at least $\lambda \cdot \chi \cdot \alpha$ is now immediate.

Note that there is no correspondence between the blocks of columns chosen in the proof of Theorem 3.5. Let $\operatorname{PODN}_{\lambda}\left(s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$ be the smallest N for which a $\operatorname{POD}_{\lambda}\left(N ; s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right)$ exists. We consider the homogenous case of Theorem 3.5:

Corollary 3.5.1. Let $k \geq v \geq t \geq 2$, and $s \geq 2$. Then,

$$
\begin{aligned}
& \operatorname{PHFN}_{\lambda}(k s, v, t) \leq \operatorname{PHFN}_{\lambda}(k, v, t)+\sum_{\substack{1 \leq w_{1}<\cdots<w_{m}<t \\
r_{1}, \ldots, r_{m} \geq 1 \\
r_{1}+,+r_{m}=t \\
m \leq \min (s, t) \\
p \\
p, r \geq 1 \\
p, r \geq \lambda}} \operatorname{PODN}_{p}\left(s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right) \times f_{r}, \\
& \quad \text { where } f_{r}=\min _{0 \leq i_{1}+\cdots+i_{m} \leq v-t} \prod_{j=1}^{m} \operatorname{PHFN}_{r}\left(k, w_{j}+i_{j}, w_{j}\right) .
\end{aligned}
$$

Proof. Apply Theorem 3.5, by:

1. Setting $k_{i}=k$ for all $2 \leq i \leq s$;
2. The PCA is formed from the vertical juxtaposition of the corresponding POD ingredients, as outlined previously.

The minimum corresponds to "transferring" symbols between the various PHF ingredients so that at most v symbols are used in every row.

As a corollary, we recover a theorem of Walker and Colbourn [79]:

Corollary 3.5.2. $\operatorname{PHFN}(2 k, 3,3) \leq \operatorname{PHFN}(k, 3,3)+2 \operatorname{PHFN}(k, 2,2)$.

Proof. Apply Corollary 3.5.1; the summation only involves $w_{1}=1, w_{2}=2$, and so only one POD_{1} ingredient is needed. $\mathrm{A} \mathrm{POD}_{1}(2 ; 2,(1,2),(1,1))$ can be easily constructed. Since $v=t$, the product is twice that of a PHF of strength 2 with a PHF of strength 1 ; hence, $2 \operatorname{PHFN}(k, 2,2)$ rows are needed.

We can generalize Corollary 3.5.2 further:
 $i) \cdot \operatorname{PHFN}_{r}(k, v-d, t-i)$.

Proof. A POD $(2 ; 2,(i, t-i),(1,1))$ can be easily constructed for every i. When $v>t$, extra symbols can be transferred between the two PHFs of strength i and $t-i$. Apply Corollary 3.5.1.

When $\sum_{i=1}^{m} r_{i}=t, \operatorname{PODN}_{\lambda}\left(s,\left(w_{1}, \cdots, w_{m}\right),\left(r_{1}, \cdots, r_{m}\right)\right) \leq \lambda\binom{s}{t} \frac{t!}{r_{1}!\times \cdots \times r_{m}!}$, because one can simply cover each possible partition in its own individual row; the proof of Corollary 3.5.2 involves a POD_{λ} that meets this bound. However, one can do much better than this "worst-case" bound using probabilistic methods.

Let w_{1}, \cdots, w_{m} be symbols, $r_{1}, \cdots, r_{m} \geq 1$ be integers, and consider an $N \times s$ array, with N determined later, and entries are chosen uniformly and independently at random from $\left\{w_{1}, \cdots, w_{m}\right\}$. We consider the expected number of column sets
of size $t=\sum_{i=1}^{m} r_{i}$ of partitions such that they are not fully covered in the array. Denote an interaction to be the set $\left\{\left(c_{i}, p_{i}\right): 1 \leq i \leq t\right\}$, where c_{1}, \cdots, c_{t} are distinct columns, and $\left(p_{1}, \cdots, p_{t}\right)$ is an arbitrary ordered partition, with repetition of symbols as dictated by the r_{i} values. $\mathrm{A}_{\mathrm{POD}}^{\lambda} \boldsymbol{\text { then }}$ fully covers all interactions where the symbols come from ordered partitions.

Let $p=\frac{r_{1}!\cdots r_{m}!}{t!}$ be the probability that a fixed interaction is covered, where "covered" indicates that the interaction appears at least λ times. The probability that a fixed interaction does not appear at least λ times in an array with N rows is precisely $\sum_{i=0}^{\lambda}\binom{N}{i} p^{i}(1-p)^{N-i}$. Therefore, the expected number of uncovered interactions in these N rows is precisely $\binom{s}{t}$ times this probability, since the number of column sets is $\binom{s}{t}$. When this expectation is strictly less than 1 , then there exists a POD_{λ} on these parameters. We give more details about analyzing this bound with respect to PHFs in Section 3.3 and a conditional expectation algorithm to construct the PHFs in Section 3.4, so all of the techniques in these sections can be adapted to PODs as well.

$$
\text { 3.2.2 } s=1, d \text { Arbitrary }
$$

We now focus on when $s=1$; i.e., there are only two blocks, and one block has fewer than k columns. Much of the reasoning in the following result comes from Corollary 3.5.1.

Theorem 3.6. Let $x \geq 1$, and let ψ be the minimum i such that for some d with $0 \leq d \leq v-t, \operatorname{PHFN}_{\lambda}(x+1, i+d, i)=1$. Then, $\operatorname{PHFN}_{\lambda}(k+x, v, t) \leq \operatorname{PHFN}_{\lambda}(k, v$, $t)+\delta+\gamma$, where:

- $\delta=\operatorname{PHFN}_{\lambda}(x+1, v, t)$ if $x \geq \min (\psi, t-1)$, and 0 otherwise; and
- $\gamma=\sum_{i=2}^{\min (x+1, t-1, \psi)} \min _{\substack{0 \leq d \leq v-t \\ p, r>1 \\ p . r \geq \lambda}} \operatorname{PHFN}_{p}(k-1, v-i-d, t-i) \cdot \operatorname{PHFN}_{r}(x+1, i+d, i)$.

Proof. Append one column x times, and we create the final PHF_{λ} using the Cartesian product technique as before. If $x \geq t-1$, then add a $\operatorname{PHF}_{\lambda}(N ; x+1, v, t)$ to separate the t-sets that are contained in the added columns (with the entries in these rows in the first $k-1$ columns selected arbitrarily). Once $i=\psi$, then no higher values of i need to be considered, since the corresponding ingredient on the rightmost $x+1$ columns has one row; this implies that the PHF_{p} ingredient with $x+1$ columns consists of all distinct symbols. Since any $\operatorname{PHF}_{p}(N ; k, v, t)$ is also a $\operatorname{PHF}_{p}(N ; k, v, t-1)$, the theorem statement is proved.

We recover a theorem of Martirosyan and van Trung [57] from Theorem 3.6, because they use $\psi=2$ in their result. Even though Theorem 3.5 is very general, Theorem 3.6 indicates that it is not optimized for specific ingredients. Denote a don't care position in a PHHF to be one that can be set to any legal value, and the array is still a PHHF. Any part in a partition with size 0 has all of its corresponding positions being don't cares. Without sacrificing many rows, pushing the number of columns past $2 k$ seems difficult to count the t-sets in each of the blocks. However, Theorem 3.6 can be improved by using heterogeneous hash families for the ingredients, and a symbol can be moved from one ingredient to the other on a per-row basis instead on a per-ingredient basis.

When x is larger than $v-t+2$, we improve upon iterative applications of the theorem of Martirosyan and van Trung. Instead of adding a single column x times, we add x columns once. This way, we still separate all of the same t-sets as their method does, but our advantage is that other t-sets are also separated, and were not before. Suppose the x original columns were c_{1}, \cdots, c_{x}, and the duplicates are $c_{1}^{\prime}, \cdots, c_{x}^{\prime}$. Then any t-set of columns C_{1}, \cdots, C_{t} such that for all $i \neq j$ we have that $C_{i} \not \equiv C_{j}(\bmod x)$, then $\left\{C_{1}, \cdots, C_{t}\right\}$ are separated. Therefore, we only need to separate the t-sets where
$C_{i} \equiv C_{j}(\bmod x)$ for some i, j and $1 \leq\left|\left\{C_{1}, \cdots, C_{t}\right\} \cap\left\{c_{1}, \cdots, c_{x}\right\}\right| \leq t-1$, and similarly for $c_{1}^{\prime}, \cdots, c_{x}^{\prime}$. There are precisely $\sum_{i=1}^{t-1}\binom{x}{i}\binom{x}{t-i}$ such sets to consider here; however, we desire to find the smallest hash families that only require separation of these t-sets. To do so, we consider a satisfiability formula for PHFs.

3.2.3 A Satisfiability Formula for PHFs

Because we only desire to find hash families involving a "small" number of columns and relatively small strength, we turn to satisfiability methods to find small-enough ingredients to assist the results. For a boolean variable x, the two literals for x are the positive form x, and the negative form \bar{x}. A boolean formula is in conjunctive normal form $(C N F)$ if it is the conjunction (AND, written \wedge) of clauses, which is a disjunction, written \vee, of literals. An assignment is a function which maps the literals in the formula to $\{0,1\}$. We say that the formula is satisfiable if there is some assignment such that the formula evaluates to 1 . We start by building a boolean formula that is satisfiable if and only if a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$ exists, and then show how to improve the representation for the modified problem. Since the hash families considered that will be used in the new recursive construction only require a small number of columns (and hence a small number of rows), we consider a "naive" approach.

We index rows, columns, and symbols starting at 1 for convenience. Let $x_{i, j, s}$ be a boolean variable that indicates that row i for $1 \leq i \leq N$, column j (for $1 \leq j \leq k$) contains value $s(1 \leq s \leq v)$. Then we construct the following formula, which is satisfiable if and only if there exists a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$:

$$
\begin{aligned}
& \left(\bigwedge_{\substack{1 \leq i \leq N \\
1 \leq j \leq k}}\left(\bigvee_{1 \leq s \leq v} x_{i, j, s}\right) \wedge\left(\bigwedge_{s \neq t}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right)\right) \wedge \\
& \left(\bigwedge_{\substack{1 \leq c_{1}<\cdots<c_{t} \leq k}} \bigvee_{\substack{\subseteq \subseteq[N] \\
|S|=\lambda}} \bigwedge_{R \in S} \bigvee_{\substack{1 \leq v_{1}<\cdots<v_{t} \leq v \\
v_{i}^{\prime} \in P\left(v_{1}, \cdots, v_{t}\right)}}\left(x_{R, c_{1}, v_{1}^{\prime}} \wedge \cdots \wedge x_{R, c_{t}, v_{t}^{\prime}}\right)\right)
\end{aligned}
$$

where $P\left(v_{1}, \cdots, v_{t}\right)$ is the set of all permutations of the symbols v_{1}, \cdots, v_{t}. Intuitively, the first part of the conjunction checks that there is exactly 1 entry in row i and column j, and the second checks that the PHF separates every t-set at least λ times. The separation condition is met by a "witness" set of λ rows for which separation occurs (but of course, the separation in each of the λ rows can be accomplished with any t distinct symbols). We have to use all permutations of the symbols v_{1}, \cdots, v_{t} because the entries of the PHF can be in any order.

Note that this formula is not in CNF, because the second part of the conjunction involves a disjunction of conjunctions. Investigations of boolean formula representations of covering arrays have been explored previously [52]; one such idea is the incidence matrix representation, which (translated to hash families) is a set of $N \times\binom{ k}{t}$ variables $x_{i, C}$ where $x_{i, C}=1$ if and only if the set of columns C is separated in row i. This problem of expressing when a variable can be set to 1 reduces to that of determining when a set of t-sets C_{1}, \cdots, C_{m} can be simultaneously separated in a single row. However, this problem is known to be NP-complete [32], even in the $v=t=3$ case, via a reduction from the 3 -coloring graph problem. Even if it was not NP-complete, the fact that there are so many variables in this representation would make this approach intractable. It remains an open question as to whether or not an efficient (polynomial in size) CNF encoding of whether or not a PHF exists, even when $\lambda=1$ and k, v, t grow.

We can apply symmetry breaking to this formula, which refers to fixing certain variables to be true or false. We do so in the following ways, without loss of generality; each involves appending to the formula above with unit clauses for each of the involved variables, forcing them to be true.

- For all $1 \leq \ell \leq v-1$, the ℓ-th column only can consider symbols from $\{0, \cdots$, $\ell-1\}$, because we can rename symbols in each row arbitrarily and still maintain the separation property.
- For each row, insist that each value appears at least once in that row. We can enforce this because substituting a value for another that has not appeared yet either keeps the separated t-sets the same, or it separates the same as well as other t-sets (for example, if a symbol that appears at least twice has one of its occurrences replaced by a new value).
- For the first λ rows, separate the first t columns λ times, and require that the other $N-\lambda$ rows do not, because if we desire to find a PHF that is optimal, then at least one t-set is separated exactly once (again without loss of generality, we can assume this t-set has this property).

We can also apply the following symmetry breaking strategy, but for only for when the number of rows is "large enough": enforce that in the first row, column i has value $i(\bmod v)$. In other words, the first row cycles through the symbol set. This separates the largest possible number of t-sets for a single row in isolation, but it is not possible to generate an optimal PHF with a row having this form for all parameter situations, which we prove next.

Construction 3.1 provides a $\operatorname{PHF}_{\lambda}(s+\lambda ; m(s+\lambda), m(s+\lambda-1)+1,2 s+1)$. One may ask as to whether there is a $\operatorname{PHF}_{\lambda}(s+\lambda-c ; m(s+\lambda), m(s+\lambda-1)+1,2 s+1)$ for some $c \geq 0$ and $\lambda \geq 1$; it is certainly true when $c=0$, and it is false for $c \geq 1$ and
$\lambda=1$ by Walker and Colbourn [79]. However, it cannot be true in all other cases; as an example, set $\lambda=2$ and consider the case of a $\operatorname{PHF}_{1}(2 ; 8,5,3)$, which exists by their result. Clearly, $\operatorname{PHFN}_{2}(8,5,3) \leq 4$; we show that it cannot equal 3 .

Theorem 3.7. $\operatorname{PHFN}_{2}(8,5,3)=4$.

Proof. In the proof of Construction 3.1 for when $\lambda=1$, every 3 -set is 1 -separated, and none are at least 2-separated. Also note that the first row of the $\mathrm{PHF}_{1}(2 ; 8,5,3)$ is 12345555 , and the second row is the reversal of the first. We prove the statement by subdividing it into three cases for when the number of 5 s in this first row, $\#_{5}$, is in $\{2,3,4\}$. We do not need to consider the case of $\#_{5}=0$ because disallowing values from a row cannot help in separating t-sets, nor the cases of $\#_{5}=1$ or $\#_{5} \geq 5$ because they are each equivalent to another case (by permuting symbols as needed).

Suppose $\#_{5}=2$; without loss of generality, the row is 54321543 (by permuting columns). The unseparated sets are, after removing set notation for clarity: 015, 016, $025,027,035,045,056,057,126,127,136,146,156,167,237,247,257$, and 267 (indexed columns starting at 0). We now attempt to separate all of these 3 -sets in one row; if we cannot, then three rows are required for every 3 -set to be separated once. But to achieve $\lambda=2$, we must need an additional row after such a third row; therefore, it suffices to prove that all of these 3 -sets cannot be simultaneously separated.

We build the second row, initially all indeterminates: $[x ; x ; x ; x ; x ; x ; x ; x]$. At each point, either we will fix a coordinate in this row to a value, or maintain a list of candidate values that can be assigned to that index (with square brackets). We can separate 015 arbitrarily, so suppose it is separated by values $1,2,3$; the row is $[1 ; 2 ; x ; x ; x ; 3 ; x ; x]$. Then 016 allows index 6 to be values 3 , 4 , or 5 ; but 056 forces the value 3 to be removed from index 6 : $[1 ; 2 ; x ; x ; x ; 3 ;[4,5] ; x]$. 025 allows for the 2 nd
index to be 2 , 4 , or 5 ; but 126 removes the 2 : $[1 ; 2 ;[4,5] ; x ; x ; 3 ;[4,5] ; x] .027$ allows for the 7 th index to be $2,3,4$, or 5 ; but 127 removes the 2 : $[1 ; 2 ;[4,5] ; x ; x ; 3 ;[4,5] ;[3,4,5]]$. 035 allows for the 3 rd index to be $2,4,5$, but 136 removes the 2 : $[1 ; 2 ;[4,5] ;[4,5] ; x ; 3 ;[4$, $5] ;[3,4,5]] .045$ is the same as the 3rd index: $[1 ; 2 ;[4,5] ;[4,5] ;[4,5] ; 3 ;[4,5] ;[3,4,5]]$. Because of 267 , this forces the 7 th index to be a 3 (since any other choice must conflict with either index 2 or 6$):[1 ; 2 ;[4,5] ;[4,5] ;[4,5] ; 3 ;[4,5] ; 3]$. But then 257 cannot be separated, since only two values (i.e., 4 and 5) are possible in those three coordinates. The proofs for $\#_{5} \in\{3,4\}$ are very similar.

Suppose that a PHF_{1} is being built one row at a time; start the first row containing every symbol as equally often as possible. Then this row separates the maximum possible number of t-sets. Because of the $\operatorname{PHF}_{1}(2 ; 8,5,3)$ example above, one cannot assume in general that if $\operatorname{PHFN}_{1}(k, v, t)=N$, then there exists a $\operatorname{PHF}_{1}(N ; k, v, t)$ with one of its rows having this property. Through extensive search, it appears that when $N \geq\left\lceil\frac{t+1}{2}\right\rceil$, this assumption can be made; and when the conditions of Construction 3.1 are met, it cannot be. However, proving what are necessary and sufficient conditions for separability is an open problem. Furthermore, one cannot conclude that if a PHF has every t-set separated exactly once that the only solution to achieve a given index λ is to vertically juxtapose it λ times; understanding when this is the case is also an open problem.

3.2.4 Improving PHFN ${ }_{\lambda}$ with Heterogeneous Ingredients

We state improvements to PHFN $_{\lambda}$ by adding x columns once instead of one column x times. Note that when $x=1$, we recover the Martirosyan and van Trung result above, so consider when $x \geq 2$. Let a $\operatorname{PHF}_{\lambda}\left(N ;\left(k_{1}, k_{2}\right), v, t\right)$ be an $N \times\left(k_{1}+k_{2}\right)$ array on v symbols (index columns by $\left\{1, \cdots, k_{1}+k_{2}\right\}$) where only the t-sets of columns C with the properties (1) $\left|C \cap\left\{1, \cdots, k_{1}\right\}\right| \geq 1$ and (2) $\left|C \cap\left\{k_{1}+1, \cdots, k_{1}+k_{2}\right\}\right| \geq 1$
are required to be λ-separated. When a t-set C has this property, we say that it crosses the partition. The most common case we will consider is when $k_{1}=k_{2}$. Also
 smallest N for which a $\operatorname{PHF}_{\lambda}\left(N ;\left(k_{1}, k_{2}\right), v, t\right)$ exists. We highlight an example of how this object can yield improvements over Theorem 3.6.

Theorem 3.8. Let ψ be as in Theorem 3.6. Then for all $x \leq t-1, \operatorname{PHFN}(k+x, v$, $t) \leq \operatorname{PHFN}(k, v, t)+\sum_{i=2}^{\min (x, \psi)} \min _{0 \leq d \leq v-t} \operatorname{PHFN}(k-x, v-i-d, t-i) \cdot \operatorname{PHFN}((x, x)$, $i+d, i)$.

Note that $\operatorname{PHFN}\left(\left(k_{1}, k_{2}\right), v, 2\right)=1$ for any k_{1}, k_{2} and $v \geq 2$, because the first k_{1} columns can be set to one symbol, and the other k_{2} columns set to a different symbol; every 2 -set crossing the partition is separated. However, it is simple to derive an example where $\operatorname{PHFN}\left(\left(k_{1}, k_{2}\right), v, 3\right) \geq 2$. In fact, these objects exhibit logarithmic growth, just like PHFs, if we apply standard probabilistic techniques.

Here, we can apply even more symmetry breaking to our SAT formula in the case of heterogeneous hash families that contain a partition:

- If the PHHF desired has symbols $\left(v_{1}, \cdots, v_{N}\right)$ for its rows, then insist that row i only have symbols from $\left\{1, \cdots, v_{i}\right\}$ for all i.
- Further insist that for each row i, columns $1, \cdots, k_{1}$ can contain symbols only from $\{1, \cdots, t-1\}$, and that columns $k_{1}+1, \cdots, k_{1}+k_{2}$ contain symbols only from $\left\{v_{i}-t+1, \cdots, v_{i}\right\}$. This last condition restricts the dimension of the search space since no t-set needs to be separated entirely on one side of the partition.

Results for the existence of PHHFs with 4 rows, a small number of columns, at most 5 symbols for each row, $t=3$, and $\lambda=3$ appear in Tables 3.1 and 3.2; a \checkmark indicates that the PHHF was found, and an \boldsymbol{x} indicates that no PHHF of those

Symbols $\downarrow, k \rightarrow$	4	5	6	7	8	9	10	11
$(3,3,3,3)$	\checkmark	\boldsymbol{x}						
$(4,3,3,3)$	\checkmark	\boldsymbol{x}						
$(4,4,3,3)$		\checkmark	\boldsymbol{x}					
$(4,4,4,3)$			\checkmark	\boldsymbol{x}				
$(4,4,4,4)$					\checkmark	\boldsymbol{x}		
$(5,3,3,3)$		\checkmark	\boldsymbol{x}					
$(5,4,3,3)$			\checkmark	\boldsymbol{x}				
$(5,4,4,3)$			\checkmark	\boldsymbol{x}				
$(5,4,4,4)$					\checkmark	\boldsymbol{x}		
$(5,5,3,3)$			\checkmark	\boldsymbol{x}				
$(5,5,4,3)$			\checkmark	\boldsymbol{x}				
$(5,5,4,4)$					\checkmark	\boldsymbol{x}		
$(5,5,5,3)$				\checkmark	\boldsymbol{x}			
$(5,5,5,4)$						\checkmark	$?$	
$(5,5,5,5)$							\checkmark	$?$

Table 3.1: Existence of PHHFs with 4 Rows, at Most 11 Columns, at Most 5 Symbols for Each Row, Strength 3, and Index 2.
parameters exists; a question mark indicates that a timeout of 1 day of solving time was reached without proving (un)satisfiability. Most of the entries were solved within a few seconds, whereas some of the \boldsymbol{X} entries took several hours. Entries to the left of a \checkmark entry and to the right of an \boldsymbol{X} entry are left blank because deleting columns does not make the formula unsatisfiable when it was satisfiable previously, and adding columns does not allow the formula to become satisfiable when it was unsatisfiable previously. We predict that the two ? entries in Table 3.1 will be \boldsymbol{X}, given the length of solving time needed.

Symbols $\downarrow, k \rightarrow$	3	4	5	6
$(3,3,3,3)$	\checkmark	\boldsymbol{x}		
$(4,3,3,3)$	\checkmark	\boldsymbol{x}		
$(4,4,3,3)$		\checkmark	\boldsymbol{x}	
$(4,4,4,3)$		\checkmark	\boldsymbol{x}	
$(4,4,4,4)$		\checkmark	\boldsymbol{x}	
$(5,3,3,3)$	\checkmark	\boldsymbol{x}		
$(5,4,3,3)$		\checkmark	\boldsymbol{x}	
$(5,4,4,3)$		\checkmark	\boldsymbol{x}	
$(5,4,4,4)$		\checkmark	\boldsymbol{x}	
$(5,5,3,3)$		\checkmark	\boldsymbol{x}	
$(5,5,4,3)$			\checkmark	\boldsymbol{x}
$(5,5,4,4)$			\checkmark	\boldsymbol{x}
$(5,5,5,3)$			\checkmark	\boldsymbol{x}
$(5,5,5,4)$			\checkmark	\boldsymbol{x}
$(5,5,5,5)$			\checkmark	\boldsymbol{x}

Table 3.2: Existence of PHHFs with 4 Rows, at Most 6 Columns, at Most 5 Symbols for Each Row, Strength 3, and Index 3.

We construct optimal PHHFs with "small" parameters because they improve on the recursive construction even further; we illustrate this with an example. If the heterogeneous hash family's symbols are, for example, of the form $(i+d)^{j}(i+d-1)^{N-j}$ (i.e., j of the rows contain at most $i+d$ symbols, and the others contain at most $i+d-1$ symbols), then two PHFs can be used as the other ingredient; one with $v-i-d$ symbols, and the other with $v-i-d+1$ symbols. If only homogeneous hash families were used for both ingredients, then only one pairing of symbols is possible, whereas more can occur here.

Let C be a t-set of columns, and let χ be the cardinality of the intersection of C with the original x columns and their duplicates. Throughout, if x columns are added, then when χ is maximum, if possible, we use an ingredient consisting of all different symbols (if not, we use our SAT solver to find the smallest ingredient possible). Throughout, when we "use" an ingredient, we assume that the PHF ingredient that will be crossed with the secondary one does not contain the symbols given. By convention, the quantity $\operatorname{PHFN}(k, v, t)$ for when $t \leq 1$ is 1 ; in fact, if some secondary ingredient of strength t consists of all different symbols, then higher values of t do not need to be considered. For each, if we increase the number of columns by x, we assume that the original PHF ingredient had at least x columns. There are possible improvements to these results when $v>t$, because a symbol can be moved from the first ingredient to the second. All of the ingredients presented here are optimal with respect to the number of rows. Of course, the bound on t is not absolutely necessary; for example, if $t=3$ for Lemma 3.2, then the $\chi=4$ ingredient is not needed. Only when t is at least than the stated bound are all of the ingredients necessary. As was done in Theorem 3.6, depending on the number of columns that are added, the number of symbols desired, and the strength, some of the constructions may improve on the results stated below by removing unnecessary ingredients.

Lemma 3.2. $\operatorname{PHFN}(k+2, v, t) \leq \operatorname{PHFN}(k, v, t)+\operatorname{PHFN}(k-2, v-2, t-2)+2 \operatorname{PHFN}(k-$ $2, v-3, t-3)+\operatorname{PHFN}(k-2, v-4, t-4)$.

Proof. For $\chi=2$, a $\operatorname{PHF}(1 ;(2,2), 2,2)$ can be constructed by hand. For $\chi=3$, use the $\operatorname{PHF}(2 ;(2,2), 3,3)$ described by the two rows 1132 and 1233. (By this, 1132 is the first row, and 1233 is the second.) It is routine to check that this is a $\operatorname{PHF}(2 ;(2,2), 3,3)$ and that there is no $\operatorname{PHF}(1 ;(2,2), 3,3)$. For $\chi=4$, use $\operatorname{PHF}(1 ;(2,2), 4,4)$ described by the single row 1234. Apply Theorem 3.8.

As a corollary, we obtain that $\operatorname{PHFN}(k+2,4,4) \leq \operatorname{PHFN}(k, 4,4)+\left\lceil\frac{\log (k-2)}{\log (2)}\right\rceil+2$. There is a $\operatorname{PHF}(7 ; 25,5,4)[36]$ and a $\operatorname{PHF}(3 ; 5,4,4)[79]$; their composition produces a $\operatorname{PHF}(21 ; 25,4,4)$, which currently is the best-known size of a PHF with 25 columns, 4 symbols, and strength 4 . The previous best-known upper bound for $k=27, v=t=4$ is $\operatorname{PHFN}(27,4,4) \leq 31$; this result improves the upper bound to 28 . We continue with additional results; we only outline when more symbols can be useful for the homogeneous case in the following lemma, even though more symbols can be useful in other results.

Lemma 3.3. Suppose $v=t$. Then, $\operatorname{PHFN}(k+3, v, t) \leq \operatorname{PHFN}(k, v, t)+\operatorname{PHFN}(k-3$, $v-2, t-2)+2 \operatorname{PHFN}(k-3, v-3, t-3)+5 \operatorname{PHFN}(k-3, v-4, t-4)+3 \operatorname{PHFN}(k-3$, $v-5, t-5)+\operatorname{PHFN}(k-3, v-6, t-6)$.

Suppose $v=t+1$. Then, $\operatorname{PHFN}(k+3, v, t) \leq \operatorname{PHFN}(k, v, t)+\operatorname{PHFN}(k-3, v-2$, $t-2)+2 \operatorname{PHFN}(k-3, v-3, t-3)+\min \{f, g\}+\operatorname{PHFN}(k-3, v-5, t-5)$, where:

- $f=5 \operatorname{PHFN}(k-3, v-4, t-4)$, and
- $g=2 \operatorname{PHFN}(k-3, v-5, t-4)+\operatorname{PHFN}(k-3, v-4, t-4)$.

Proof. The ingredients are as follows:

- $v=t$: For $\chi=3$, use 121332 and 112323. For $\chi=4$, use 123244, 113442, 123423, 111234, and 121343. For $\chi=5$, use 123445 , 123453, and 112435. For $\chi=6$, use 123456 .
- $v=t+1$: For $\chi=3$, use the corresponding $v=t$ ingredient. For $\chi=4$, use the following $\operatorname{PHHF}(3 ;(3,3),(5,4,4), 4)$: 112345, 123443, and 123434; or use the corresponding ingredient from the $v=t$ case if it produces fewer rows. For $\chi=5$, use 123456.

In any of the cases, apply Theorem 3.8.

We do not enumerate more cases of when $v \geq t+2$, mainly for simplicity of presentation; but one can use the results in, for example, Tables 3.1 and 3.2 to enumerate the several minimums taken over various PHFN results to improve them when the number of symbols increases. We describe two of the many possible improvements from the existing PHFN tables [45] for when the number of columns is moderately large compared to the strength.

Corollary 3.8.1. PHFN $(364,6,6) \leq 1871$ (Previous best-known: ≤ 2011).

Proof. There exist a $\operatorname{PHF}(1648 ; 361,6,6)$, a $\operatorname{PHF}(120 ; 358,4,4)$, a $\operatorname{PHF}(27 ; 358,3,3)$, a $\operatorname{PHF}(9 ; 358,2,2)$, and a $\operatorname{PHF}(1 ; 358,1,1)$. Apply Lemma 3.3

We analyze the proof of Lemma 3.3: it turns out that $2 \operatorname{PHFN}(k-3, v-5, t-4)+$ $\operatorname{PHFN}(k-3, v-4, t-4)$ is smaller than $5 \operatorname{PHFN}(k-3, v-4, t-4)$ for the case of $v=7, t=6$, mainly because it will yield an improvement if and only if $\operatorname{PHFN}(k-3$, $v-5, t-4)<2 \operatorname{PHFN}(k-3, v-4, t-4)$. Because $t=6$, this is equivalent to $\log (v-4)<\log (v-5)$, which is always true when $v \geq 7$. Therefore, we can improve the statement of the result for this case as follows:

Lemma 3.4. $\operatorname{PHFN}(k+3,7,6) \leq \operatorname{PHFN}(k, 7,6)+\operatorname{PHFN}(k-3,5,4)+2 \operatorname{PHFN}(k-3$, $4,3)+2\left\lceil\log _{2}(k-3)\right\rceil+\left\lceil\log _{3}(k-3)\right\rceil+1$.

Corollary 3.8.2. PHFN $(364,7,6) \leq 774$. (Previous best-known: ≤ 795)

Proof. There exists a $\operatorname{PHF}(672 ; 361,7,6)$, a $\operatorname{PHF}(41 ; 358,5,4)$, a $\operatorname{PHF}(18 ; 358,4,3)$, a $\operatorname{PHF}(6 ; 358,3,2)$, a $\operatorname{PHF}(9 ; 358,2,2)$, and a $\operatorname{PHF}(1 ; 358,1,1)$. Apply Lemma 3.4.

For all of our results, we employed limboole ${ }^{2}$ to convert our PHHF encoding into a formula in conjunctive normal form, which was then fed as input into the glucose satisfiability solver, based on minisat [48].

[^1]
3.3 Probabilistic and Asymptotic Methods

We first employ the probabilistic method to obtain upper bounds on PHFN $_{\lambda}$. Let A be a random $N \times k$ array over v symbols; by this, each entry is uniformly selected at random from a v-set, independent of all other entries. Choose a t-set of columns $C=\left\{c_{1}, \cdots, c_{t}\right\}$; the probability that C is not separated in A is the probability that no rows among c_{1}, \cdots, c_{t} have all distinct entries. The probability that a given row of size t is all distinct, with v values for each entry, is $p=\frac{\binom{v}{t} t!}{v^{t}}$. Therefore, the probability that a given row does not separate C is $1-p$, and the probability that all rows does not separate C is $(1-p)^{N}$. By linearity of expectation, the expected number of t-sets of columns that are not separated in A is $\binom{k}{t}(1-p)^{N}$. Solving for N when this expectation is strictly less than 1 guarantees that there must be some PHF_{1} with those parameters. Taking logarithms, and upper bounds, we have the following, first proved by Mehlhorn [58]. Throughout, let $f(v, t)=\log \left(v^{t}\right)-\log \left(v^{t}-t!\binom{v}{t}\right)$.

Theorem 3.9. PHFN $_{1}(k, v, t) \leq\left\lceil\frac{\log \binom{k}{t}}{f(v, t)}\right\rceil$.
We can improve these bounds using the Lovász local lemma, a tool extensively used in combinatorics [7]. We mainly employ the symmetric version here:

Theorem 3.10. [7] Let E_{1}, \cdots, E_{n} be events in a probability space, E_{i} is mutually dependent of at most d other events for all i, and $\operatorname{Pr}\left[E_{i}\right] \leq p$ for all i. If ep $(d+1) \leq 1$, then with nonzero probability all of E_{1}, \cdots, E_{n} simultaneously do not occur.

In the setting of PHFs, the events E_{i} are that the i th t-set of columns is not separated. We have that $\operatorname{Pr}\left[E_{i}\right]=(1-p)^{N}$ from above. Two different events E_{i}, E_{j} are mutually dependent if and only if the corresponding t-sets have nonempty intersection, implying that $d=\binom{k}{t}-\binom{k-t}{t}-1$. So if $e(1-p)^{N}\left(\binom{k}{t}-\binom{k-t}{t}\right) \leq 1$, then there is a PHF with those parameters, proved by Deng, Stinson, and Wei [43].

Theorem 3.11. [43] $\operatorname{PHFN}_{1}(k, v, t) \leq\left\lceil\frac{\log \left(\binom{k}{t}-\binom{k-t}{t}\right)+1}{f(v, t)}\right\rceil$.
Stinson, van Trung, and Wei [75] improved this bound further, with the so-called "expurgation" method (which we generalize here using an idea from [34]); this is sometimes called "oversampling," or even "post-processing" [78]. This method was the best known probabilistic bound for PHFN_{1} in the general case until an improvement in many parameter sets was found by Procacci and Sanchis [63] using the algorithmic cluster expansion local lemma. Their techniques involved more carefully analyzing the Moser-Tardös algorithm [59], which involves resampling "bad" events (i.e., sets of t columns not being separated). Their approach can be generalized for higherindex PHFs, since all that changes is the probability of each bad event occurring. For simplicity of presentation, we state the post-processing result:

Theorem 3.12. $\operatorname{PHFN}_{1}(k, v, t) \leq \min _{x \geq 0}\left\lceil\frac{\log \binom{k+x}{t}-\log (x+1)}{f(v, t)}\right\rceil$.
Proof. Start with an array with $k+x$ columns, and let E be the expected number of unseparated t-sets of columns in this array if each entry is chosen uniformly and independently at random. If $E<x+1$, then by deleting one column from each of the (at most) x unseparated t-sets, we must have a $\operatorname{PHF}_{1}(N ; k, v, t)$. The theorem statement then is equivalent to solving the following equation for N : $\binom{k+x}{t}(1-p)^{N}<$ $x+1$, and finding the minimum over all $x \geq 0$.

In [34] in the context of CPHFs, the value $x=\frac{k}{t-1}$ was chosen and shown to improve on basic probabilistic arguments; the same value works for PHFs as well. Understanding the optimal choice of x remains an open problem. However, all of the above results are for when $\lambda=1$; we now provide an upper bound for arbitrary λ.

Theorem 3.13. $\operatorname{PHFN}_{\lambda}(k, v, t)$ is at most $c_{1} \log k+c_{2} \sqrt{\lambda \log k}$ for constants c_{1}, c_{2} that only depend on v, t.

Proof. We combine oversampling with the basic probabilistic method to obtain the theorem statement. Let A be a random $N \times k$ matrix, p be as before, $C=\left\{c_{1}, \cdots, c_{t}\right\}$ be t columns of A, and X_{C} be the random variable that is the number of rows in which C is separated in A. The probability that C is separated for a given row is p. We can determine that $\operatorname{Pr}\left[X_{C}=i\right]=\binom{N}{i}(1-p)^{N-i} p^{i}$. So $\operatorname{Pr}\left[X_{c} \leq \lambda-1\right]=$ $\sum_{i=0}^{\lambda-1} \operatorname{Pr}\left[X_{C}=i\right]=\sum_{i=0}^{\lambda-1}\binom{N}{i}(1-p)^{N-i} p^{i}$. Therefore, when

$$
\begin{equation*}
\binom{k+x}{t} \sum_{i=0}^{\lambda-1}\binom{N}{i}(1-p)^{N-i} p^{i}<x+1 \tag{3.1}
\end{equation*}
$$

for some $x \geq 0$, there is a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$.
We can see that $E\left[X_{C}\right]=N p=\mu$. Therefore, we can write the previous probability as $\operatorname{Pr}\left[X_{C} \leq(1-\delta) \mu\right]$ where $\delta=1-\ell / \mu$ and $\ell=\lambda-1$. Note that $0 \leq \delta \leq 1$. So, we can apply Chernoff bounds [7] to obtain that this probability is at most $\exp \left(-\delta^{2} \mu / 2\right)=\exp \left(-\mu / 2 \times(1-\ell / \mu)^{2}\right)$. This is equal to $\exp \left(-\mu / 2\left(1-2 \ell / \mu+\ell^{2} / \mu^{2}\right)\right)=$ $\exp \left(-\mu / 2+\ell-\ell^{2} /(2 \mu)\right)$.

Substituting back, we obtain $\exp \left(-N p / 2+\lambda-1-(\lambda-1)^{2} /(2 N p)\right)$. So if $\binom{k+x}{t} \exp \left(-N p / 2+(\lambda-1)-(\lambda-1)^{2} /(2 N p)\right)<x+1$, then there is a $\operatorname{PHF}_{\lambda}(N ; k, v, t)$. Note that if k, v, t, x, λ are fixed, and N increases, then the left-side of this expression is monotonically decreasing. Therefore, we instead solve the above expression for equality, then add 1 to N afterwards.

This is equivalent to $\exp \left(N p / 2-(\lambda-1)+(\lambda-1)^{2} /(2 N p)\right)=\binom{k+x}{t} /(x+1)$. Taking logarithms gives: $N p / 2-(\lambda-1)+(\lambda-1)^{2} /(2 N p)=\log \binom{k+x}{t}-\log (x+1)$. Forming the statement in terms of a quadratic formula to solve in terms of N, we find that $N=\frac{1}{p}(B+(\lambda-1)+\sqrt{B(2(\lambda-1)+B)})+1$, where $B=\log \binom{k+x}{t}-\log (x+1)$. So we can see that $\operatorname{PHFN}_{\lambda}(k, v, t)$ is $c_{1} \log k+c_{2} \sqrt{\lambda \log k}$ for appropriate constants c_{1}, c_{2}, and by setting $x=0$, for example.

One can interpret Equation (3.1) in that at most x sets of columns are not λ -
separated (or more), and removing one column from each set guarantees the existence of a PHF_{λ}. If one instead considers an analogous inequality:

$$
\begin{equation*}
\binom{k}{t} \sum_{i=0}^{\lambda-1}\binom{N}{i}(1-p)^{N-i} p^{i}<x+1 \tag{3.2}
\end{equation*}
$$

then this means that again at most x sets of columns are not λ-separated. It may be possible that all x of these sets are not separated at all. However, we can "complete" this array by adding λ rows for each of these sets. Therefore, if N satisfies Equation (3.2), then $N+x \lambda$ rows suffice to create a PHF_{λ}. This is not as powerful as the result in Theorem 3.13. However, consider any set C that is exactly i-separated; then only $\lambda-i$ rows are needed. So, it suffices to compute the N for which the following inequality is satisfied, and take the minimum over all x :

$$
\begin{equation*}
\binom{k}{t} \sum_{i=0}^{\lambda-1}(\lambda-i)\binom{N}{i}(1-p)^{N-i} p^{i}<x+1 . \tag{3.3}
\end{equation*}
$$

Sarkar and Colbourn [67] use a discrete probabilistic approach in generating covering arrays, in that they construct the array one row-at-a-time, such that each row is at least as good as the average at that point (by this, each row covers a number of interactions at least the average among all possible rows). In their construction, at each iteration, phrased in the language of hash families, the number of unseparated t-sets is always an integer; therefore, the number of rows can be significantly less than what is determined by, say, Theorem 3.9.

Their approach appears difficult to analyze with hash families of higher index because one now needs to keep track of λ variables; suppose the variables are A_{0}, \cdots, $A_{\lambda-1}$, where A_{i} represents the current expected number of t-sets that are separated exactly i times. Initially, $A_{0}=\binom{k}{t}$, and $A_{i}=0$ for all other i. Consider variables A_{0} and A_{1}. We can guarantee that A_{0} will never increase, but A_{1} may possibly when an added row separates many of the t-sets corresponding to A_{0}, and not many corresponding to A_{1}. We return to this point in Chapter 6 .

We consider when N becomes large and analyze the bound asymptotically, instead of what a bound on N there is for every choice of k. We suppose that v, t, λ are fixed; then the probability p of separation in a row is also fixed. Consider the failure probability for a given t-set of columns: $\sum_{i=0}^{\lambda-1}\binom{N}{i} p^{i}(1-p)^{N-i}$. Since p (and consequently $1-p)$ is fixed, then this is asymptotically at most $N^{\lambda}(1-p)^{N}$. So if $\binom{k}{t} N^{\lambda}(1-p)^{N}<1$ for a choice of N, then the true value of $\operatorname{PHFN}_{\lambda}(k, v, t)$ is asymptotically at most N as k becomes large.

Without loss of generality, we solve the equation $\binom{k}{t} N^{\lambda}(1-p)^{N}=1$ for N, because any larger value of N would make this a strict inequality; we can do this because we are only observing the bound asymptotically. The Lambert W-function is the inverse of the function $f(W)=W \exp (W)$.

Lemma 3.5. When x is large, $W(x) \approx \log x-\log \log x+o(1)$, where $o(1) \rightarrow 0$ as $x \rightarrow \infty$.

Proof. An equivalent definition of $W(x)$ is that it satisfies $W(x)=\log (x / W(x))$. So $W(x)=\log (x / \log (x / \log (x / \cdots)))$. Expansion of the right-hand side yields that this is at most $\log x-\log \log x+o(1)$ when x is large.

However, since λ is fixed, the bound that results is a constant times $\log k$, which is expected. Nevertheless, the W-function is still useful when λ grows, which is what we prove next.

Theorem 3.14. Suppose k and λ are large, but λ grows asymptotically slower than $\log k .{ }^{3}$ Furthermore, suppose v, t are fixed. Then $\operatorname{PHFN}_{\lambda}(k, v, t)$ grows at most $\log k+\lambda \log \log k+o(\lambda)$.

[^2]Proof. Observe the failure probability for PHFs as outlined before, which is $\sum_{i=0}^{\lambda-1}\binom{N}{i} p^{i}(1-$ $p)^{N-i}$. Since λ is not fixed, we provide an upper bound for this sum as follows. Instead of giving asymptotics for the whole sum, we upper bound each of the three terms inside the sum, and multiply this product by λ (the number of terms in the sum). Since λ grows slower than $\log k$, we obtain an upper bound of $\lambda\binom{N}{\lambda}(1-p)^{N-\lambda}$. By Stirling's approximation, this is asymptotically equal to $f(p, N, \lambda)=\lambda \frac{N^{\lambda}}{\lambda!}(1-p)^{N-\lambda}$.

We desire to know what value of N satisfies $\binom{k}{t} f(p, N, \lambda)<1$. But since one can solve for N when $\binom{k}{t} f(p, N, \lambda)=1$, and only concern ourselves with asymptotics, we can now use the $W(x)$ function as defined before. The value that N satisfies the above equation asymptotically yields (after removing constant terms inside the W function):

$$
N=\frac{\lambda W\left(\left(\lambda!/\binom{k}{t}\right)^{1 / \lambda}\right)}{\log (1-p)}
$$

By Lemma 3.5, the numerator is asymptotically equal to:

$$
\lambda \log \lambda-\log k-\lambda \log \log k-o(\lambda),
$$

since $\log \lambda!\approx \lambda \log \lambda$. The fact that $0<p<1$ implies that $\log (1-p)<0$; multiplying by -1 because of this gives the original theorem statement (since λ grows slower than $\log k)$.

If λ is $o\left(\frac{\log k}{(\log \log k)^{2}}\right)$, then Theorem 3.14 improves upon Theorem 3.13; this can be proved by solving for λ in the equation $\log k+\lambda \log \log k<\log k+\sqrt{\lambda \log k}$. This is a reasonable choice for the growth of λ, as Theorem 3.14 has λ being $o(\log k)$.

The bounds we derived here are $\log k+\lambda \log \log k+o(\lambda)$ for the upper bound, and the simple bound of $\log k+\lambda$ for the lower one, which comes directly from Fact 10 . Even though $\log \log k$ is quite small compared to k, it is still not a constant, and it would be of great interest in removing it if possible. One technique would be finding a better asymptotic analysis on the failure probability, as the rest of the proof did not
use any result that is not asymptotically equal to what was derived; in other words, if any improvement is to be made, its proof must improve on an asymptotic formulation for the failure probability.

3.4 A Conditional Expectation Approach

Even though the probabilistic bounds obtained in the previous section have a large gap between the lower and upper bound, we describe a new conditional expectationtype approach to produce perfect hash families of higher index. Furthermore, the method runs in polynomial time, provided that v, t, λ are fixed.

We briefly mention other computational approaches of PHFs. In astounding work, Moser and Tardös [59] develop a constructive method for objects that matches the bound provided by the LLL. Their method is randomized and runs in polynomial time, if the conditions of the LLL are satisfied. The high-level idea of the algorithm (in the context of hash families) is to select each entry uniformly at random, and if a t-set of columns is not separated, then resample all entries in those t columns; finally, repeat the procedure until all t-sets of columns are separated. However, this method suffers from being (1) randomized, and therefore running in expected polynomial time; and (2) the random selections made may cause other t-sets that were previously separated to not be any more.

A more commonly used approach involves constructing the hash family one row at-a-time, while removing t-sets that become separated from a maintained list once a row separates them. This is advantageous in that there is definite progress in constructing the hash family, but disadvantageous in that the $\binom{k}{t}$ sets of columns need to be stored in memory, and may produce more rows than what is guaranteed by Moser and Tardös.

However, we can generate one row at a time in a straightforward way: randomly
generate a row until one separates at least the expected number of t-sets to be separated for the first time in this row. Once this happens, append the row to the current array.

This one row at-a-time approach still is randomized, so we outline how to derandomize it, which is given by Colbourn [25]. Define the density of a row r to be the expected number of newly separated t-sets in r. A partial row is one that contains a symbol \star in addition to the other symbols used in the PHF; such a symbol is to indicate that it is "not yet determined." We start with a partial row consisting entirely of \star entries. If A, B are partial rows, then we indicate $A \rightarrow B$ when changing one of the \star entries in A to a non- \star entry in B (with all other entries identical). A fill sequence is a sequence of the form $R_{k} \rightarrow R_{k-1} \rightarrow \cdots \rightarrow R_{0}$, where R_{i} is a partial row for all $0 \leq i \leq k$. Since R_{k} has $k \star$ entries, we must have that R_{0} has no \star entries. If we can guarantee that the density of R_{i-1} is at least that of R_{i} for all i, then we have successfully produced a desired row.

Suppose we are at the i th stage, and have R_{i}. Pick any \star entry in R_{i}; there are v ways of assigning a non- \star symbol to this entry. For each of the $\binom{k-1}{t-1}$ ways of selecting $t-1$ other indices, and for each of the v symbols that may be assigned, calculate the expected number of t-sets separated. Now assign the symbol that maximizes this expectation; the resulting row, after fixing all k entries, is R_{i-1}. Since there must be some symbol for which assigning it gives a partial row with density at least the expectation, the density of R_{i-1} is at least that of R_{i}.

The technique of column extension (CE) is, given a hash family, to append as many columns as possible while retaining the separation property. It is effective because assuming that the starting PHF separates all of its t-sets, only the ones involving the new column(s) need to be considered. If one column is added at a time, then this number is $\binom{k}{t-1}$, much smaller than $\binom{k}{t}$. One can then generate a simple randomized
procedure for column extension: for a $\operatorname{PHF}(N ; k, v, t) A$, append a new column c to A consisting of entries uniformly sampled from $\{1, \cdots, v\}$. For all $\binom{k}{t} t$-sets S that involve c, check if some row separates S; if not, then sample c again (or at least until a limit is reached). But if all such sets are separated, then one can repeat the procedure on the resulting $\operatorname{PHF}(N ; k+1, v, t)$. If the limit is reached, then a randomly chosen row is added, and repeat until a $\operatorname{PHF}\left(N^{\prime} ; k+1, v, t\right)$ with $N^{\prime}>N$ is formed. Such a process has been used for CPHFs [34] and improvements for small-strength PHFs have been found [45]. What makes CE powerful is not only because the number of columns possible within a reasonable amount of computation time is larger than that of density, but in the many improvements that can be made via recursive techniques, most notably composition (because increasing columns for the first ingredient allows the other ingredient to use more symbols).

The issue with higher-index PHFs is providing a natural generalization of the density metric that meets the probabilistic bounds. A key idea is that the probabilistic bounds guarantee a PHF_{λ} exists. Suppose R rows have been generated, and the probabilistic method guarantees a PHF_{λ} on at most $N>R$ rows. Therefore, we generate the PHF_{λ}, one row at a time as before, but instead generate the "best" symbol at each position so that the PHF_{λ} can be completed in $N-R$ rows provided this symbol is chosen. The next subsection describes the algorithm more precisely.

3.4.1 Details of the Density Algorithm for Higher-Index

Let A be an array with fewer than N rows (where N is given by the probabilistic method), exactly k columns, over v symbols, and let T be a t-set of columns. Define $\phi(T, A)$ to be the number of times that T is separated in array A, and $p=\binom{v}{t} t!/ v^{t}$.

Suppose that $|A|$ rows have been built, and we are to construct another row ρ; without loss of generality, suppose that ρ is partially built, and we want to assign a
value for column c in ρ. We iterate over all t-sets that have not been separated at least λ times; suppose this collection of sets is \mathcal{T}, and the observed t-set is T. If T currently has a duplicate in ρ, then it is impossible for T to be separated one more time in ρ, regardless of whether there exist any unfixed entries corresponding to T. Otherwise, there is a probability p that T will be separated in ρ, depending on the number of unfixed entries corresponding to T.

At this point, the method is very similar to the density algorithm of Colbourn. However, we make the following addition; instead of separating at least the average number of t-sets in ρ, we separate as much as possible so that when (at most) N rows are constructed, strictly less than $1 t$-set will remain unseparated (in expectation if all remaining entries are chosen at random). If T is separated $\phi(T, A)$ times before the addition of ρ, then T's expected number of times remaining to be separated is $\max (0, \lambda-(p \times(\phi(T, A)+1)+(1-p) \times \phi(T, A)))$ So, we then calculate the expected number of t-sets not λ-separated within the remaining rows to be constructed. This method is illustrated in Algorithm 1.

For computational efficiency, we set the first row to have value $i(\bmod v)$ for each column i; in other words, the first row cycles through the symbols so that each symbol appears as equally often as possible. Also, we iterate through the t-sets of columns in colexicographic order, which is placing a t-set T_{1} before T_{2} if and only if the largest element in $T_{2} \backslash T_{1}$ is larger than that of $T_{1} \backslash T_{2}$. This way, for each column index $i \geq t-1$, each t-set having all of its columns at most i will be examined before any t-set with some index $\geq i+1$. This method has been used successfully in the context of CPHFs [34].

Lemma 3.6. In each iteration of the while loop of Algorithm 1, at least one t-set that is not λ-separated will be separated in the row that is generated.

```
Algorithm 1 One Row-At-A-Time Method to Produce PHFs of higher index.
    procedure ConditionalExpectation \((k, v, t, \lambda)\)
    2: \(\quad A \leftarrow\) empty array.
    3: \(\quad p \leftarrow\binom{v}{t} t!/ v^{t}\).
    4: \(\quad\) Set \(N\) to be the smallest value so that \(\binom{k}{t} \sum_{i=0}^{\lambda-1}\binom{N}{i} p^{i}(1-p)^{N-i}<1\).
    5: \(\quad\) Set \(g(x, T, N, A)=\sum_{i=0}^{\lambda-\phi(T)-x}\binom{N-|A|-1}{i} p^{i}(1-p)^{N-|A|-i-1}\).
    6: \(\quad\) while some \(t\)-set \(T\) is separated fewer than \(\lambda\) times in \(A\) do
    7: \(\quad \mathcal{T} \leftarrow\) the set of \(t\)-sets not \(\lambda\)-separated in \(A\).
    8: \(\quad \rho \leftarrow\) a row of \(k\) indeterminates.
    9: \(\quad\) for each column \(1 \leq c \leq k\) in any order do
    10: \(\quad\) for each value \(1 \leq s \leq v\) in any order do
    11: \(\quad\) for each \(T \in \mathcal{T}\) in any order do
    2: \(\quad f \leftarrow\) the number of columns of \(T\) fixed in \(\rho\), not including \(c\).
    13: \(\quad\) if \(\rho\) has a duplicate in the fixed values corresponding to \(T\) in-
    cluding setting \(s\) in column \(c\) of \(\rho\) then
\[
\chi(T, s) \leftarrow 0
\]
                else
                    \(\chi(T, s) \leftarrow(v-f) \cdots(v-f+1) / v^{t-f}\).
                end if
                end for
            \(\operatorname{calc}_{s} \leftarrow \sum_{T \in \mathcal{T}} \chi(T, s) \cdot g(2, T, N, A)+(1-\chi(T, s)) \cdot g(1, T, N, A)\).
        end for
        \(\rho[c] \leftarrow\) any symbol \(s\) with smallest calc \(_{s}\) value.
        end for
        Append \(\rho\) to \(A\), and update \(\mathcal{T}\) accordingly.
        \(N \leftarrow\) smallest value such that \(\sum_{T \in \mathcal{T}} g(1, T, N, A)<1\).
        end while
        end procedure

Proof. Suppose a row \(\rho\) is generated that does not separate any \(t\)-set once. Let \(A\) be the array before the addition of \(\rho\), and let \(A^{\prime}\) be derived from appending \(\rho\) to \(A\). Since \(g(1, T, N, A)<g\left(1, T, N, A^{\prime}\right)\), this is a contradiction because the values picked in \(\rho\) are such that they do not increase the expected number of unseparated \(t\)-sets for the remaining rows, and having 1 fewer row and the same \(t\)-sets left would always increase the expectation.

Theorem 3.15. Algorithm 1 generates a \(\operatorname{PHF}_{\lambda}(N ; k, v, t)\) where \(N\) obeys the bound of Theorem 3.13, and is asymptotically less than that of Theorem 3.14.

Proof. First note that Algorithm 1 does in fact generate a \(\mathrm{PHF}_{\lambda}\) (because at least one \(t\)-set is separated once in each iteration by Lemma 3.6, and there are finitely many of them not \(\lambda\)-separated), so it suffices to prove that the bound for \(N\) is met. Furthermore, since \(N\) is explicitly set to be the smallest value for which the bound is met after each row is constructed (as well as the smallest value of \(N\) that satisfies the bound at the start of the algorithm), it suffices to show that the updated value of \(N\) at the end of the while loop never increases.

This is true because at least one value \(s\) will have its associated calcs value be at most the expected number of unseparated \(t\)-sets if the rest of the to-be-built entries are randomly determined (depending on whether or not the considered \(t\)-set is separated one more time in the row being built), so the expected number of unseparated \(t\)-sets always is strictly less than 1 . Since a \(\mathrm{PHF}_{\lambda}\) is produced, then it must have exactly 0 unseparated \(t\)-sets, because the number of such sets always is an integer for an explicit array. Therefore, the number of rows produced is at most the stated bound.

Theorem 3.16. Let \(v, t, \lambda\) be fixed. Then Algorithm 1 generates a \(\operatorname{PHF}_{\lambda}(N ; k, v, t)\) in time polynomial in \(k\).

Proof. We first claim that \(g(x, T, N, A)\) can be computed in polynomial time, when \(x\)
is fixed, as it is equal to either 1 or 2 in the algorithm. There are a constant number of choices of \(i\), since \(\lambda\) is fixed, and the values \(p^{i},(1-p)^{N-|A|-i-1}\) can be computed in polynomial time due to repeated squaring. The value of \(p\) can be computed in constant time because \(v, t\) are fixed, and \(p\) does not change value throughout the algorithm. Furthermore, \(\binom{N-|A|-i}{i}\) can be computed in polynomial time because there are only a constant number of multiplications being performed, and because \(N\) is polynomial in the size of \(k\) by either Theorem 3.13 or Theorem 3.14: both bounds are at most \(\lambda \log k\), and since \(\lambda\) is fixed, then \(N\) is at most \(O(\log k)\).

Since \(t\) is fixed, there are only a polynomial number of \(t\)-sets (in \(k\) ). Therefore, the polynomial-time guarantee almost follows from the analogous proof by Colbourn [25], with the exception of the last step in Algorithm 1. That calculation can be performed in polynomial time because the sum involves polynomially many terms, and the smallest value of \(N\) that satisfies the equation can be found in polynomial time (in the size of \(k\) ) by binary search, since \(N\) will obey the bound of Theorem 3.13.

An illustration of the bounds of Theorem 3.14 (blue), Theorem 3.13 (red), and that arising from Algorithm 1 (black) are presented in Figure 3.1, provided that \(\lambda\) is sufficiently small relative to \(k\). When \(k\) is small, the red line will be smaller than the blue line. However, when \(k\) is sufficiently large, the blue line will be smaller than the red line. At all choices of \(k\), the black line will always be smaller than the minimum of the two other lines. In addition, although we do not know the exact asymptotics of \(\mathrm{PHFN}_{\lambda}\), they must obey a bound that is similar to that of the blue line, since \(\log k+\lambda \leq\) PHFN \(_{\lambda} \leq \log k+\lambda \log \log k+o(\lambda)\), and \(\log \log k\) is relatively small compared to \(k\).


Figure 3.1: Example Asymptotics Rrom Theorem 3.14 (Blue), Theorem 3.13 (Red), and Algorithm 1 (Black), Provided the Index Is Sufficiently Small Relative to the Number of Columns.

\subsection*{3.4.2 Computational Results of the Conditional Expectation Algorithm}

Here we showcase results from generating \(\mathrm{PHF}_{\lambda} \mathrm{S}\) using Algorithm 1. We chose \(3 \leq t \leq 6\) because these small strengths are useful in practical domains (see [23]). For each choice of \(t\), we specified a maximum number of columns \(k_{t}\) and different symbol choices for each \(t\). For \(t=3\), we chose \(v \in\{3,4,5,6\}\); for \(t=4\), we chose \(v \in\{4,6,8\}\); for \(t=5\), we chose \(v \in\{5,10\}\); and for \(t=6\), we chose \(v \in\{6,12\}\). The choices of \(v\) for strengths 4,5 , and 6 are to showcase a significant difference in the number of rows produced (compared to when \(v=t\) ), but to highlight the "logarithmic curve" in the scatter plots. All different choices of \(v\) were not selected here for \(t \in\{4,5,6\}\) because a small number of additional symbols would not highlight much of a difference in the value \(\mathrm{PHFN}_{\lambda}\) as much as when \(t=3\); however, we expect the curve to have the same shape for non-selected \(v\), along with higher \(\lambda\) choices be somewhat better than scaling the \(\lambda=1\) plot up by the associated index.


Figure 3.2: Conditional Expectation Results for at Most 300 Columns, 3 Symbols, Strength 3, and Index at Most 5.

We generated \(\mathrm{PHF}_{\lambda} \mathrm{S}\) for all \(k\) and corresponding number of symbols \(v\) such that \(v \leq k \leq k_{t}, 1 \leq \lambda \leq 5\). Our choices of maximum columns were \(k_{3}=300, k_{4}=100\), \(k_{5}=55\), and \(k_{6}=40\). These choices of \(k_{t}\) were chosen as an approximation for \(\binom{k_{t}}{t}=\binom{k_{t+1}}{t+1}\). The results are shown in Figures 3.2 to 3.12.

Recall that Algorithm 1 initially chooses the estimate such that strictly less than 1 \(t\)-set will remain not \(\lambda\)-separated. However, the results in Figures 3.2 to 3.12 indicate that this estimate is not often close to the actual number of rows produced. What we can do instead is find a "good" estimate \(N\), regardless of the initial expected number of unseparated \(t\)-sets initially, such that at the end, no \(t\)-sets remain unseparated. Essentially, we are "bypassing" the need to update the estimate at each iteration of the while loop so that "better" symbols can be chosen in earlier rows.

Furthermore, one would expect that the number of rows would be smaller because for the first few rows, the value of \(g(x, T, N, A)\) would make a better judgment of what symbol to place in each entry. Note that Algorithm 1 is a one row at a time method, and hence when a row is produced, it is never modified. So if \(N\) initially is


Figure 3.3: Conditional Expectation Results for at Most 300 Columns, 4 Symbols, Strength 3, and Index at Most 5.


Figure 3.4: Conditional Expectation Results for at Most 300 Columns, 5 Symbols, Strength 3, and Index at Most 5.


Figure 3.5: Conditional Expectation Results for at Most 300 Columns, 6 Symbols, Strength 3, and Index at Most 5.


Figure 3.6: Conditional Expectation Results for at Most 100 Columns, 4 Symbols, Strength 4, and Index at Most 5.


Figure 3.7: Conditional Expectation Results for at Most 100 Columns, 6 Symbols, Strength 4, and Index at Most 5.


Figure 3.8: Conditional Expectation Results for at Most 100 Columns, 8 Symbols, Strength 4, and Index at Most 5.


Figure 3.9: Conditional Expectation Results for at Most 55 Columns, 5 Symbols, Strength 5, and Index at Most 5.


Figure 3.10: Conditional Expectation Results for at Most 55 Columns, 10 Symbols, Strength 5, and Index at Most 5.


Figure 3.11: Conditional Expectation Results for at Most 40 Columns, 6 Symbols, Strength 6, and Index at Most 5.


Figure 3.12: Conditional Expectation Results for at Most 40 Columns, 12 Symbols, Strength 6, and Index at Most 5.
an estimate that is very far from the truth, symbol choices in earlier rows may cause more rows at the end to be formed. This modification of Algorithm 1 is given in Algorithm 2.

Algorithm 2 Updated One Row-At-A-Time Method to Produce PHFs of higher index.
: procedure UpdatedConditionalExpectation \((k, v, t, \lambda)\)
2: \(\quad N \leftarrow 1\).
3: \(\quad\) Run Algorithm 1 with parameters \(k, v, t, \lambda\), and \(N\) to be the initial estimate (where \(N\) is not modified throughout that algorithm).

4: Repeatedly run the previous step until it successfully generates a \(\mathrm{PHF}_{\lambda}\) with these parameters (by finding the "correct" choice of \(N\) via binary search).
end procedure

However, in all examples of PHFs generated via Algorithm 2, the number of rows produced is nearly identical to that of Algorithm 1. We illustrate this with Tables 3.3 and 3.4, wherein \(\mathrm{PHF}_{4} \mathrm{~S}\) were generated with \(k \leq 50, v=t=3\). Both Algorithms 1 and 2 were tested, and the number of rows is produced in these tables. The last column contains the initial expected number of unseparated \(t\)-sets for Algorithm 2.

We can see that neither algorithm is the true winner here for all \(k \leq 50\), but rather both algorithms are better some of the time. We give a possible explanation for why this occurs. Recall the failure probability for \(\mathrm{PHF}_{\lambda} \mathrm{S}\) again: \(\sum_{i=0}^{\lambda-1}\binom{N}{i} p^{i}(1-\) \(p)^{N-i}\). Even if the number of rows is relatively small compared to the number of rows produced in these tables, then this failure probability is still quite small. This is indicative of how PHFs, at least in the first few rows, have many choices of what symbols to place. After sufficiently many rows are added, and only a few \(t\)-sets remain to be separated, then what symbol to place makes much more of a difference. This reasoning is essentially why these two algorithms perform very similarly: after many
rows are added, Algorithm 1 has the given estimate much closer to what Algorithm 2's estimate would be after the same number of rows. Why there is a difference in the number of rows entirely is dependent on the estimate of \(N\), and how there the two estimates are not initially similar to each other.

\subsection*{3.5 Conclusion}

In this chapter, we investigated perfect hash families of higher index, specifically how to construct them (both algorithmically and with a new recursive construction), bounds on their sizes.

In addition to ensuring that every \(t\)-set of columns be separated at least \(\lambda\) times, one might address the more stringent requirement that every \(t\)-set be separated at least \(\underline{\lambda}\) and at most \(\bar{\lambda}\) times. When \(\underline{\lambda}=\bar{\lambda}\), such a PHF is perfectly balanced [3]. Alon and Gutner [3] establish that a perfectly balanced \(\operatorname{PHF}_{\lambda}(N ; k, v, t)\) can exist only when \(N=\Omega\left(k^{\lfloor t / 2\rfloor}\right)\) for \(t\) fixed. Contrast this with the \(\Theta(\log k)\) growth rate for \(\mathrm{PHF}_{1} \mathrm{~s}\) to understand why perfectly balanced PHFs are not frequently used. On the other hand, a \(\operatorname{PHF}(N ; k, v, t)\) is \(\delta\)-balanced for some \(\delta \geq 1\) if there is a value \(T>0\) so that every \(t\)-set of columns is separated at least \(\frac{T}{\delta}\) and at most \(\delta T\) times [4]. Alon and Gutner [4] show that for any fixed \(\delta>1\), there is a \(\delta\)-balanced \(\operatorname{PHF}(N ; k, v, t)\) with \(N\) close to \(2^{O(t \log \log t)} \log k\); so, for fixed \(t\), the growth rate is the same as for \(\mathrm{PHF}_{1} \mathrm{~s}\). Their approach relies (in small part) on the binomial distribution of the number of times a \(t\)-set is separated and the application of Chernoff bounds. Moreover, their techniques yield an explicit construction method in principle; its practical effectiveness for intermediate values of \(k\) has not been explored.

When \(\delta\)-balanced PHFs are used in Theorem 2.1 with different \(t\)-restrictions, the array constructed inherits from the balanced PHF a lower bound on the number of rows in which the \(t\)-restriction is met. However, the \(t\)-restriction may be met in a
\begin{tabular}{|c|c|c|c|}
\hline \(k\) & \(N(\) Algorithm 1) & \(N\) (Algorithm 2) & Initial Unseparated \(t\)-Sets (Algorithm 2) \\
\hline 4 & 12 & 12 & 2.93 \\
\hline 5 & 12 & 16 & 6.20 \\
\hline 6 & 16 & 15 & 9.16 \\
\hline 7 & 21 & 20 & 11.21 \\
\hline 8 & 24 & 21 & 15.77 \\
\hline 9 & 23 & 23 & 13.54 \\
\hline 10 & 27 & 26 & 10.47 \\
\hline 11 & 26 & 27 & 16.86 \\
\hline 12 & 28 & 28 & 16.35 \\
\hline 13 & 30 & 29 & 18.06 \\
\hline 14 & 32 & 32 & 11.69 \\
\hline 15 & 33 & 33 & 10.30 \\
\hline 16 & 36 & 35 & 17.99 \\
\hline 17 & 35 & 36 & 15.39 \\
\hline 18 & 36 & 38 & 15.46 \\
\hline 19 & 38 & 36 & 21.93 \\
\hline 20 & 39 & 38 & 18.04 \\
\hline 21 & 38 & 40 & 14.63 \\
\hline 22 & 40 & 38 & 11.70 \\
\hline 23 & 38 & 39 & 28.03 \\
\hline 24 & 40 & 42 & 12.75 \\
\hline 25 & 38 & 41 & 25.30 \\
\hline 26 & 42 & 44 & 16.38 \\
\hline 27 & 44 & 43 & 18.43 \\
\hline
\end{tabular}

Table 3.3: Comparison of Algorithm 1 and Algorithm 2 With at Most 27 Columns, 3 Symbols, Strength 3, and Index 4.
\begin{tabular}{|c|c|c|c|}
\hline \(k\) & Algorithm 1 & Algorithm 2 & Estimated Number of Unseparated \(t\)-Sets \\
\hline 28 & 44 & 43 & 20.64 \\
\hline 29 & 43 & 45 & 15.77 \\
\hline 30 & 44 & 45 & 21.19 \\
\hline 31 & 46 & 47 & 16.03 \\
\hline 32 & 45 & 46 & 21.41 \\
\hline 33 & 47 & 47 & 16.06 \\
\hline 34 & 47 & 46 & 14.52 \\
\hline 35 & 46 & 47 & 19.26 \\
\hline 36 & 50 & 48 & 17.32 \\
\hline 37 & 49 & 50 & 12.77 \\
\hline 38 & 50 & 48 & 24.83 \\
\hline 39 & 50 & 50 & 12.34 \\
\hline 40 & 50 & 49 & 16.23 \\
\hline 41 & 49 & 50 & 21.29 \\
\hline 42 & 51 & 52 & 15.50 \\
\hline 43 & 49 & 52 & 13.68 \\
\hline 44 & 50 & 52 & 12.04 \\
\hline 45 & 53 & 51 & 23.31 \\
\hline 46 & 52 & 52 & 11.31 \\
\hline 47 & 53 & 52 & 17.97 \\
\hline 48 & 54 & 52 & 19.17 \\
\hline 49 & 53 & 52 & 24.87 \\
\hline 50 & 53 & 53 & 21.72 \\
\hline
\end{tabular}

Table 3.4: Comparison of Algorithm 1 and Algorithm 2 With Between 28 and 50 Columns, 3 Symbols, Strength 3, and Index 4.
row arising from a row of the PHF despite failure of the PHF to separate in this row; hence balanced PHFs need not result in balanced \(t\)-restrictions through Theorem 2.1. For these reasons, it is reasonable to focus on extending known methods, and finding new methods, for constructing perfect hash families of index \(\lambda>1\). We hope that this chapter would inspire future research in PHFs of higher index.

\section*{Chapter 4}

\section*{FRACTAL HASH FAMILIES}

In this chapter, we consider the relationship between the maximum number of columns and the number of symbols for when the number of rows for a hash family is relatively small; precisely, when \(N<t\). A theorem of Walker and Colbourn [79] shows that when \(k>v\), then \(N \geq\left\lceil\frac{t+1}{2}\right\rceil\). When \(N<t\), as the number of symbols approaches infinity, the ratio \(\frac{k}{v}\) approaches a constant, provided that \(k\) is as large as possible relative to \(v\). Therefore, in this situation, the maximum number of columns possible is linear in the number of symbols. There are three cases:
- \(k\) is superlinear in \(v\) when \(N \geq t\);
- \(k\) is linear in \(v\) when \(t>N \geq\left\lceil\frac{t+1}{2}\right\rceil\); and
- \(k=v\) otherwise.

A theorem of Blackburn investigates the asymptotics of the second case, when \(k\) is linear in \(v\). The contributions of this chapter are as follows. First, the method is generalized from homogeneous hash families (in which every row has the same number of symbols) to heterogeneous ones. Second, the extension treats distributing hash families, in which only separation into a prescribed number of parts is required, rather than perfect hash families, in which columns must be completely separated. Third, the requirements on one of the main ingredients are relaxed to permit the use of a large class of distributing hash families, which we call fractal. Constructions for fractal perfect and distributing hash families are given, and applications to the construction of perfect hash families of large strength are developed.

This chapter has been published in [29], and is currently accepted in [30], for when \(\lambda=1\). We provide a generalization to higher index hash families in Theorem 4.6.

\subsection*{4.1 Linear Bounds on Numbers of Columns}

One of the most common uses of perfect hash families is in the construction of covering arrays, as suggested by Theorem 2.1, and some improvements in the number of rows in the formed covering array can be made. Colbourn [26] generalized this theorem further to employ distributing hash families.

Theorem 4.1. Let \(k \geq \min (t, v)\). Suppose that there exist a \(\operatorname{DHF}(M ; \ell, k, t, \min (t, v))\) and \(a \mathrm{CA}(N ; t, k, v)\) having \(\rho\) constant rows. Then a \(\mathrm{CA}(\rho+(N-\rho) M ; t, \ell, v)\) exists.

Colbourn and Torres-Jiménez [38] improved upon Theorem 4.1 in two ways: judiciously choosing symbols on which to place the constant rows (i.e., a row that contains exactly one symbol), and using heterogeneous hash families.

Theorem 4.2. Suppose that there exist
1. a \(\mathrm{CA}\left(N_{i} ; t, k_{i}, v\right)\) having \(\rho_{i}\) constant rows and \(k_{i} \geq t\) for \(1 \leq i \leq c\), and
2. \(a \operatorname{DHHF}\left(M ; \ell, k_{1}^{u_{1}} \cdots k_{c}^{u_{c}}, t, \min (t, v)\right)\).

Let \(\chi=\max \left(0, v-\sum_{i=1}^{c} u_{i}\left(v-\rho_{i}\right)\right)\). Then \(a \operatorname{CA}\left(\chi+\sum_{i=1}^{c} u_{i}\left(N_{i}-\rho_{i}\right) ; t, \ell, v\right)\) exists.

Effective applications of Theorems 2.1, 4.1 and 4.2 require that both the covering arrays and the hash families employed have a "small" number of rows. We investigate families of this form further. A method of Blackburn [15] establishes:

Lemma 4.1. For positive integers \(a_{1}, \ldots a_{t}\), set \(\tau=\prod_{i=1}^{t} a_{i}\), and \(b_{i}=\frac{\tau}{a_{i}}\) for \(1 \leq\) \(i \leq t . A \operatorname{PHHF}\left(t ; \tau,\left(b_{1}, \ldots, b_{t}\right), t\right)\) exists in which every set of \(1 \leq \ell \leq t\) columns is separated in at least \(t+1-\ell\) rows.

Proof. Form a \(t \times \tau\) array \(A\), indexing columns by \(\left\{1, \ldots a_{1}\right\} \times \cdots \times\left\{1, \ldots a_{t}\right\}\). Form row \(j\) by ensuring that two columns contain the same symbol if and only if their indices agree in all coordinates other than the \(j\) th coordinate. Suppose to the contrary that for some \(1 \leq \ell \leq t\), at most \(t-\ell\) rows separate the \(\ell\) columns \(c_{1}, \ldots, c_{\ell}\). Form an edge-coloured graph \(G\) on vertex set \(\left\{c_{1}, \ldots, c_{\ell}\right\}\); for each row \(r\) that does not separate the \(\ell\) columns, place an edge of colour \(r\) between two column indices whose columns contain the same symbol in row \(r\). Then \(G\) has \(\ell\) vertices and at least \(\ell\) edges each having a different colour. So \(G\) contains a cycle \(\left(x_{0}, \ldots, x_{s-1}\right)\) for some \(s \leq \ell\). Suppose that edge \(\left\{x_{0}, x_{s-1}\right\}\) has colour \(r\). Then the columns indexed by \(x_{0}\) and \(x_{s-1}\) are the same in all rows other than \(r\) but differ in row \(r\). On the other hand, for \(0 \leq i<s-1\), edge \(\left\{x_{i}, x_{i+1}\right\}\) does not have colour \(r\), and hence the columns agree in row \(r\). This is a contradiction because the columns indexed by \(x_{0}\) and \(x_{s-1}\) must both agree and disagree in row \(r\).

Lemma 4.1 produces a \(\operatorname{PHF}\left(t ; a^{t}, a^{t-1}, t\right)\) and hence a \(\operatorname{DHF}\left(t ; a^{t}, a^{t-1}, t, p\right)\) for every \(a \geq 2\) and \(t \geq p\). Hence the maximum number of columns grows superlinearly in the number of symbols for DHHFs with \(t \geq p \geq 2\) whenever the number of rows is at least \(t\). We are primarily interested in cases where the number of rows is less than the strength \(t\). In these cases, the number of columns cannot exceed a linear function of the number of symbols:

Lemma 4.2. Let \(t \geq p \geq 2\) and \(t>n\). If \(a \operatorname{DHHF}\left(n ; k,\left(w_{1}, \ldots, w_{n}\right), t, p\right)\) exists, \(k \leq \sum_{i=1}^{n} w_{i}\).

Proof. We adapt an argument from [13]. Let \(\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)\). When \(p \geq 3\), a \(\operatorname{DHHF}(n ; k, \mathbf{w}, t, p)\) is also a \(\operatorname{DHHF}(n ; k, \mathbf{w}, t, p-1)\), so consider a \(\operatorname{DHHF}(n ; k, \mathbf{w}, t, 2)\), say A . If \(n=1\), any repetition in the single row prevents the array from being a DHHF; hence \(k \leq w_{1}\). Otherwise choose a row having the fewest symbols, say without loss
of generality the first row having \(w_{1}\) symbols. Choose \(m \leq w_{1}\) columns so that in the first row, every symbol that occurs among the columns not chosen also appears among the columns chosen. By deleting the first row, and the \(m\) chosen columns, we obtain an \((n-1) \times(k-m)\) array \(B\) that we claim is a \(\operatorname{DHHF}\left(n-1 ; k-m,\left(w_{2}, \ldots, w_{n}\right), t-1,2\right)\). Provided this claim holds, the lemma follows by induction.

Suppose otherwise that there is a partition into 2 parts \(\left\{C_{1}, C_{2}\right\}\) of some \((t-1)\) set of columns of \(\mathbf{B}\) that is not separated by any row of \(\mathbf{B}\). Let \(\sigma\) be a symbol that appears in one of the columns in \(C_{1}\) in the first row of A , and let \(c\) be one of the chosen columns that contains \(\sigma\) in the first row of A . Then no row of A separates the partition \(\left\{C_{1}, C_{2} \cup\{c\}\right\}\), a contradiction.

Lemma 4.2 can be often improved upon, by adapting a method of Blackburn [15] for perfect hash families to treat DHHFs when the number of parts is large enough. Let A be a \(\operatorname{DHHF}\left(n ; k,\left(w_{1}, \ldots, w_{n}\right), n+d, p\right)\) with \(d \geq 1\). Call a cell a singleton if the symbol it contains does not occur anywhere else in its row. Form an \(n \times k\) matrix \(\mathbf{B}\), the singleton array of A , setting the entry in row \(r\) and column \(c\) equal to 1 if the cell \((r, c)\) of A is a singleton, and equal to 0 otherwise.

Lemma 4.3. Let B be the singleton array of \(a \operatorname{DHHF}\left(n ; k,\left(w_{1}, \ldots, w_{n}\right), n+d, p\right), \mathrm{A}\), with \(p \geq d+1 \geq 2\). Then for every \(d\)-set of columns, \(\left\{c_{1}, \ldots, c_{d}\right\}\), of B , there is at least one row \(r\) of B in which the entry in row \(r\) and column \(c_{i}\) equals 1 for all \(1 \leq i \leq d\).

Proof. Suppose to the contrary that A is a \(\operatorname{DHHF}\left(n ; k,\left(w_{1}, \ldots, w_{n}\right), n+d, p\right)\) with \(p \geq d+1, \mathrm{~B}\) is its singleton array, and for columns \(C=\left\{c_{1}, \ldots, c_{d}\right\}\), no row of B has the \(d\) entries in these columns all equal to 1 . For each row \(r=1, \ldots, n\), there is a column \(c_{r} \in C\) so that the entry of A in row \(r\) and column \(c_{r}\) is not a singleton. Then let \(d_{r} \neq c_{r}\) be a column index so that in row \(r\), the entries of A in columns \(c_{r}\)
and \(d_{r}\) are the same. Now we form a partition of at most \(n+d\) columns of A into at most \(d+1\) classes that is not separated by any row of A . First, for every \(c \in C\) such that \(c=c_{r}\) for some \(r\), form a class containing just the column index \(c\). Next, form a class \(\left\{d_{r}: 1 \leq r \leq n\right\} \backslash\left\{c_{r}: 1 \leq r \leq n\right\}\). It follows that \(c_{r}\) and \(d_{r}\) are in different classes for each \(1 \leq r \leq n\), so no row accomplishes this separation. Because \(|C|=d\), we have chosen a partition of at most \(n+d\) columns of A into at most \(d+1\) classes, and hence we have the required contradiction.

If one singleton from each column of a \(\operatorname{DHHF}\left(n ; k,\left(w_{1}, \ldots, w_{n}\right), n+d, p\right)\) can be identified, then \(k\) singletons are identified and the number of identified singletons in row \(r\) is at most \(w_{r}\) for \(1 \leq r \leq n\). Using this argument it can be seen that Lemma 4.3 improves on Lemma 4.2 when \(p \geq d+1 \geq 2\).

For certain parameters, a stronger conclusion can be obtained via the following argument. Form a multigraph \(G\) on vertex set \(\left\{c_{r}, d_{r}: 1 \leq r \leq n\right\}\) with edges \(\left\{\left\{c_{r}\right.\right.\), \(\left.\left.d_{r}\right\}: 1 \leq r \leq n\right\}\). When \(G\) can be properly coloured with \(\gamma\) colours, the array A cannot be a \(\operatorname{DHHF}(n ; k, v, n+d, \gamma)\). When on the columns \(\left\{c_{1}, \ldots, c_{d}\right\}\) some rows contain multiple entries that are not singletons, we may be able to choose \(\left\{c_{r}, d_{r}\right\}\) for certain values of \(r\) in more than one way, and hence choose \(G\) so as to reduce the chromatic number of \(G\).

\subsection*{4.2 Fractal Hash Families}

Later we describe a construction for DHHFs with a number of rows smaller than the strength, which uses ingredient hash families that are required to satisfy an additional constraint. The hash families to be introduced always have a number of rows equal to the strength \(t\). Lemma 4.1 produces a \(\operatorname{PHF}\left(t ; a^{t}, a^{t-1}, t\right)\) whenever \(a, t \geq 2\), so the number of columns grows faster than linearly in the number of symbols for a \(\operatorname{DHF}(t ; k, w, t, p)\) with \(t \geq p \geq 2\).

However, we can see that the growth of the number of columns is limited:

Theorem 4.3. [62] If \(a \operatorname{DHF}(t ; k, w, t, p)\) exists then \(k \leq w^{2}\). Moreover, if \(t \geq 4\), \(k \leq w^{2}-w\).

Indeed the growth rate is less than quadratic asymptotically:

Theorem 4.4. [69] Let \(t \geq 4\) and let \(k(w)\) be the largest integer for which a \(\operatorname{DHHF}(t ; k(w)\), \(w, t, p)\) exists. Then \(k(w)\) is \(o\left(w^{2}\right)\).

A \(\operatorname{DHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t, p\right)\) is fractal if \(t \leq 2\), or if, for each row \(j\), deleting row \(j\) yields a fractal \(\operatorname{DHHF}\left(t-1 ; k,\left(v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{t}\right), t-1, \min (p, t-1)\right)\). Fractal PHHFs are simply fractal DHHFs with \(p=t\). \(\operatorname{ADHHF}\left(t ; k,\left(v_{1}, \ldots, v_{n}\right), t, p\right)\) is \(\alpha\)-fractal if it is fractal and at least \(\alpha\) rows of the DHHF contain all distinct symbols. The following equivalence is straightforward:

Lemma 4.4. An array is an \(\alpha\)-fractal \(\operatorname{DHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t, p\right)\) with \(\alpha \geq 1\) if and only if it has a row r containing all distinct symbols and the remaining rows form an \((\alpha-1)-\) fractal \(\operatorname{DHHF}\left(t-1 ; k,\left(v_{1}, \ldots, v_{r-1}, v_{r+1}, \ldots, v_{t}\right), t-1, \min (p, t-1)\right)\).

One characterization of fractal DHHFs follows:

Lemma 4.5. \(A \operatorname{DHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t, p\right)\) is fractal if and only if every partition of \(\ell\) of its columns into \(\min (p, \ell)\) classes is separated by at least \(t+1-\ell\) rows.

Proof. Suppose that there is some set \(S\) of \(\ell\) columns with \(1 \leq \ell \leq t\) and some partition \(\left\{C_{1}, \ldots, C_{\min (p, \ell)}\right\}\) of \(S\) into \(\min (p, \ell)\) classes, so that exactly \(\rho \leq t-\ell\) rows separate the classes. The \(t-\rho \geq \ell\) remaining rows, say without loss of generality the first \(t-\rho\) rows, do not form a \(\operatorname{DHHF}\left(t-\rho ; k,\left(v_{1}, \ldots, v_{t-\rho}\right), t-\rho, \min (\ell, p)\right)\) because none of the rows separates classes \(C_{1}, \ldots, C_{\min (p, \ell)}\). So the \(\operatorname{DHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t, p\right)\) cannot be fractal.

In the other direction, if A is not a fractal \(\operatorname{DHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t, p\right)\), then some set of \(\ell\) rows with \(2 \leq \ell \leq t\), say without loss of generality the first \(\ell\) rows, must yield an array B that is not a \(\operatorname{DHHF}\left(\ell ; k,\left(v_{1}, \ldots, v_{\ell}\right), \ell, \min (p, \ell)\right)\). Let \(\left\{C_{1}, \ldots, C_{\min (p, \ell)}\right\}\) be a partition that is separated by no row of B . Then \(\left\{C_{1}, \ldots, C_{\min (p, \ell)}\right\}\) is separated in A by at most \(t-\ell\) rows.

\subsection*{4.2.1 Fractal DHHFs}

Lemma 4.6. Whenever \(t<\binom{p+1}{2}\), every \(\operatorname{DHHF}\left(t ; k,\left(w_{1}, \ldots, w_{t}\right), t, p\right)\) is a \(\operatorname{PHHF}(t ; k\), \(\left.\left(w_{1}, \ldots, w_{t}\right), t\right)\).

Proof. Let A be an \(\operatorname{HHF}\left(t ; k,\left(w_{1}, \ldots, w_{t}\right)\right)\) that is not a \(\operatorname{PHHF}\left(t ; k,\left(w_{1}, \ldots, w_{t}\right), t\right)\). Choose columns \(\left\{c_{1}, \ldots, c_{t}\right\}\) not separated by any row of A . Form a multigraph \(G\) with \(t\) vertices, \(\left\{c_{1}, \ldots, c_{t}\right\}\); for each row, choose a pair of columns \(c_{i}\) and \(c_{j}\) having the same symbol in this row and add \(\left\{c_{i} \cdot c_{j}\right\}\) as an edge. Because \(G\) has \(t\) edges and \(t<\binom{p+1}{2}\) by assumption, \(G\) has a proper colouring in \(p\) colours. (A simple greedy colouring establishes that if \(p+1\) colours were needed, the number of edges must be at least \(\sum_{i=1}^{p} i=\binom{p+1}{2}\).) Let \(\left\{C_{1}, \ldots, C_{p}\right\}\) be the colour classes of a proper colouring in \(p\) colours. Then the partition \(\left\{C_{1}, \ldots, C_{p}\right\}\) of \(t\) columns of A is not separated by any row of A , so A is not a \(\operatorname{DHHF}\left(t ; k,\left(w_{1}, \ldots, w_{t}\right), t, p\right)\).
\begin{tabular}{|ccccc|}
\hline \multicolumn{9}{|c|}{\(\operatorname{PHF}(4 ; 5,4,4)\)} \\
1 & 1 & 2 & 3 & 4 \\
1 & 2 & 2 & 3 & 4 \\
1 & 2 & 3 & 3 & 4 \\
1 & 2 & 3 & 4 & 4
\end{tabular}\(|\)\begin{tabular}{cccccccccc}
\multicolumn{8}{c|}{} \\
1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 4 \\
1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 2 & 3 & 1 & 3 & 1 & 2 & 4 \\
1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 & 4 \\
\hline
\end{tabular}

Table 4.1: \(\operatorname{APHF}(4 ; 5,4,4)\) and a \(\operatorname{DHF}(4 ; 10,4,4,2)\).

By restricting the number of parts, fractal DHHFs can exist with more columns than the corresponding fractal PHHFs. An example is given in Table 4.1. According to Niu and Cao [62], every \(\operatorname{HF}(4 ; k, 4)\) that accomplishes every separation of four columns into two classes of size two must have \(k \leq 10\), and the array shown accomplishes every such separation with \(k=10\). One can verify that the array also separates all partitions of four columns into one class of size three and one of size one, and hence is a \(\operatorname{DHF}(4 ; 10,4,4,2)\). Lemma 4.6 ensures that every \(\operatorname{DHF}(4 ; k, 4,4,3)\) must be a \(\operatorname{PHF}(4 ; k, 4,4)\). A simple counting argument ensures that a \(\operatorname{PHF}(4 ; k, 4,4)\) has \(k \leq 5\). Hence while any \(\operatorname{PHF}(4 ; k, 4,4)\) or \(\operatorname{DHF}(4 ; k, 4,4,3)\) has \(k \leq 5\), restricting the number of classes in the partition to two doubles the number of columns possible. We return to this in the concluding remarks.

We mention one construction of DHHFs here:

Lemma 4.7. A fractal \(\operatorname{DHHF}\left(3 ; a_{1} a_{2},\left(a_{1}, a_{1}, a_{2}\right), 3,2\right)\) exists whenever \(a_{1} \geq a_{2}\) are positive integers.

Proof. Index columns by \(\left\{0, \ldots, a_{1}-1\right\} \times\left\{0, \ldots, a_{2}-1\right\}\), In column \((a, b)\), place \(a\) in row \(1, b\) in row 3 , and \(a+b\left(\bmod a_{1}\right)\) in row 2 .

\subsection*{4.2.2 Construction of fractal PHHFs}

A sufficient condition for a PHHF to be fractal follows.

Lemma 4.8. If a \(\operatorname{PHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t\right)\) has at most one singleton in each row then it is fractal.

Proof. We prove the result by induction on \(t\). The result is trivial when \(t \leq 2\). Let A be a \(\operatorname{PHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t\right)\) with \(t \geq 3\) that has at most one singleton in each row. Let \(B\) be the array obtained from \(A\) by deleting an arbitrary row of \(A\), say the last
without loss of generality. It suffices to show that B is a \(\operatorname{PHHF}\left(t-1 ; k,\left(v_{1}, \ldots, v_{t-1}\right)\right.\), \(t-1\) ), because then it will follow that B is fractal by our inductive hypothesis.

Suppose otherwise that there is a \((t-1)\)-set \(T\) of columns of B that is not separated by any row of \(B\). Since \(t-1 \geq 2\) and there is at most one singleton in the last row of A, there is a symbol \(\sigma\) that, in the last row of A, appears in some column in \(T\) and also in some other column \(c\) that may or may not be in \(T\). Then \(|T \cup\{c\}| \in\{t-1, t\}\) and no row of A separates the columns in \(T \cup\{c\}\), a contradiction.

Using Lemma 4.8, many PHHFs can be seen to be fractal. For example, Walker and Colbourn [79] use a greedy construction of "triangle-free, 3-regular, resolvable linear spaces (tfrrls)" to produce many \(\operatorname{PHF}(3 ; k, v, 3)\) s having no singletons. FujiHara [51] gives an explicit construction of tfrrls using mutually disjoint spreads in a generalized quadrangle, thereby proving that a \(\operatorname{PHF}\left(3 ; q^{2}(q+1), q^{2}, 3\right)\) exists when \(q \geq 3\) is a prime power. Using generalized quadrangles in Hermitian varieties, he also proved that a \(\operatorname{PHF}\left(3 ; q^{5}, q^{3}, 3\right)\) exists for \(q\) a prime power. Lemma 4.1 produces a fractal \(\operatorname{PHF}\left(t ; a^{t}, a^{t-1}, t\right)\); for \(t=3\), Fuji-Hara's construction has many more columns, suggesting that the easy method of Lemma 4.1 is far from optimal. See also [69] for further improvements when \(t=3\) and when \(t=4\).

Fractal PHHFs can also be constructed recursively. The next result is based on [79, Theorem 4.8].

Theorem 4.5. Suppose that a \(\operatorname{PHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t\right)\) exists with \(k>t \geq 2\), and that \(\ell\) is a positive integer. Then a \(\operatorname{PHHF}\left(t+1 ; \ell k,\left(\ell v_{1}, \ldots, \ell v_{t}, k\right), t+1\right)\) exists. If the PHHF of strength \(t\) is fractal, so is the PHHF of strength \(t+1\).

Proof. Let \(\mathrm{A}_{0}, \ldots, \mathrm{~A}_{\ell-1}\) be copies of the (fractal) \(\operatorname{PHHF}\left(t ; k,\left(v_{1}, \ldots, v_{t}\right), t\right)\) with symbols renamed such that in each row the sets of symbols in \(\mathrm{A}_{i}\) and \(\mathrm{A}_{j}\) are disjoint when \(i \neq j\). Let B be the \((t+1) \times \ell k\) array, with columns indexed by \(\{0, \ldots, k-1\} \times\{0\),
\(\ldots, \ell-1\}\), obtained from \(\left[\mathrm{A}_{0} \cdots \mathrm{~A}_{\ell-1}\right]\) by appending a \((t+1)\) st row that contains symbol \(c\) in column \((c, s)\) for \(0 \leq c<k\) and \(0 \leq s \leq \ell-1\).

Let \(T=\left\{\left(c_{i}, s_{i}\right): 1 \leq i \leq t+1\right\}\) be a set of \(t+1\) column indices of B . If the coordinates \(\left\{c_{i}: 1 \leq i \leq t+1\right\}\) are all distinct, then \(T\) is separated in row \(t+1\). Otherwise \(\left|\left\{c_{i}: 1 \leq i \leq t+1\right\}\right| \leq t\) and there is a row \(r\) of A that separates the set \(\left\{c_{i}: 1 \leq i \leq t+1\right\}\). Because no columns ( \(c, s_{i}\) ) and ( \(d, s_{j}\) ) contain the same symbol unless \(i=j, T\) is separated in row \(r\) of B .

Now we show that B is fractal when A is. Suppose that C is obtained by deleting a row of B . If row \(t+1\) is deleted, C is a fractal \(\operatorname{PHHF}\left(t ; \ell k,\left(\ell v_{1}, \ldots, \ell v_{t}\right), t\right)\) because A is fractal. If row \(i\) with \(1 \leq i \leq t\) is deleted, then C is obtained by applying the construction of this lemma to the fractal \(\operatorname{PHHF}\left(t-1 ; k,\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{t}\right)\right.\), \(t-1\) ) obtained from A by deleting row \(i\). It therefore suffices to prove the statement when \(t=2\) and this is routine to verify.

\subsection*{4.3 Blackburn's Method, revised}

To form a DHHF with \(n\) rows and strength \(n+d\) with \(1 \leq d<n\), we generalize a method due to Blackburn [15]. In order to construct PHFs, he used the 'easy' examples of fractal PHFs from Lemma 4.1 without defining and using the fractal property explicitly. In addition to fractal DHHFs, we require a second ingredient, as suggested by Lemma 4.3.

An \((n, m, d, \lambda)\)-covering of type \(\left(\rho_{0}, \ldots, \rho_{m-1}\right)\) is a collection of \(n+\lambda-1\) subsets \(\left\{P_{0}, \ldots, P_{n+\lambda-2}\right\}\) of \(\{0, \ldots, m-1\}\) satisfying:
1. \(\left|\left\{P_{r}: 0 \leq r<n, P_{r} \ni c\right\}\right|=\rho_{c}\) for \(0 \leq c<m\); and
2. For every \(S \subseteq\{0, \ldots, m-1\}\) with \(|S|=d, S\) is a subset of at least \(\lambda\) sets in \(\left\{P_{0}, \ldots, P_{n+\lambda-2}\right\}\).

When \(\lambda=1\), we denote it as an ( \(n, m, d\) )-covering.
Theorem 4.6. Suppose that there exist
- an \((n, m, d, \lambda)\)-covering \(\mathcal{P}=\left\{P_{0}, \ldots, P_{n+\lambda-2}\right\}\) of type \(\left(\rho_{0}, \ldots, \rho_{m-1}\right)\), and
- for each \(0 \leq c<m\), a \(\rho_{c}\)-fractal \(\operatorname{DHHF}_{\lambda}\left(n+\lambda-1 ; k_{c},\left(v_{0, c}, \ldots, v_{n-1, c}\right), n, p\right)\) in which, for \(0 \leq r<n\), row \(r\) contains all distinct symbols when \(c \in P_{r}\).

Then there exists a \(\operatorname{DHHF}_{\lambda}\left(n+\lambda-1 ; \sum_{c=0}^{m-1} k_{c},\left(w_{0}, \ldots, w_{n-1}\right), n+d, p^{\prime}\right)\) where
\[
\begin{aligned}
w_{r} & =\sum_{c=0}^{m-1} v_{r, c} \text { for } 0 \leq r<n, \text { and } \\
p^{\prime} & =\left\{\begin{array}{ll}
p & \text { if } p<n-d \\
n+d & \text { if } p \geq n-d
\end{array}\right\}
\end{aligned}
\]

Proof. Let \(\mathrm{A}_{c}\) be the \(\rho_{c}\)-fractal \(\mathrm{DHHF}_{\lambda}\left(n+\lambda-1 ; k_{c},\left(v_{0, c}, \ldots, v_{n-1, c}\right), n, p\right)\) for \(0 \leq c<\) \(m\). Rename the symbols of each of \(\left\{\mathrm{A}_{c}: 0 \leq c<m\right\}\) so that in each row the sets of symbols in \(\mathrm{A}_{i}\) and \(\mathrm{A}_{j}\) are disjoint when \(i \neq j\). Set \(\mathrm{B}=\left[\mathrm{A}_{0} \cdots \mathrm{~A}_{m-1}\right]\). Then B has \(n\) rows and \(\sum_{c=0}^{m-1} k_{c}\) columns, and for each \(0 \leq r<n\), there are \(w_{r}\) different symbols in row \(r\). To show that B is a \(\operatorname{DHHF}_{\lambda}\left(n+\lambda-1 ; \sum_{c=0}^{m-1} k_{c},\left(w_{0}, \ldots, w_{n-1}\right), n+d, p\right)\), it suffices to show that every partition of \((n+d)\) columns into \(p\) classes is separated at least \(\lambda\) times.

Consider a \((n+d)\)-set \(T\) of column indices and a partition \(\mathcal{T}\) of \(T\) into \(p^{\prime}\) classes. For \(0 \leq c<m\), let \(\ell_{c}\) be the number of columns of \(\mathrm{A}_{c}\) in \(T\), and let \(\mathcal{T}_{c}\) be the restriction of \(\mathcal{T}\) to the columns of \(\mathrm{A}_{c}\). Because every two of the \(\left\{\mathrm{A}_{c}: 0 \leq c<m\right\}\) share no symbols, it suffices to show that there are \(\lambda\) rows of \(B\) that separates each partition \(\mathcal{T}_{c}\) for \(0 \leq c<m\). Let \(L=\left\{c: \ell_{c} \geq 2\right\}\), and let \(\nu=|L|\). Note that \(\mathrm{A}_{c}\) trivially separates \(\mathcal{T}_{c}\) at least \(\lambda\) times for each \(c \in\{0, \ldots, m\} \backslash L\).

If \(\nu \leq d\), the ( \(n, m, d, \lambda\) )-covering contains \(\lambda\) sets \(P_{r_{1}}, \cdots, P_{r_{\lambda}}\) with \(L \subseteq P_{r_{i}}\) for \(1 \leq i \leq \lambda\). Then in rows \(r_{1}, \cdots, r_{\lambda}\), for each \(c \in L, \mathrm{~A}_{c}\) contains all distinct symbols and therefore separates the partition \(\mathcal{T}_{c}\).

So suppose that \(\nu>d\). Then, for each \(0 \leq c<m, \ell_{c} \leq n-d\) and hence \(\mathcal{T}_{c}\) has at \(\operatorname{most} \min \left(p^{\prime}, n-d\right) \leq p\) nonempty classes. By Lemma 4.5 , for each \(c \in L, \mathcal{T}_{c}\) can fail to be separated in at most \(\ell_{c}-\lambda\) rows of \(\mathrm{A}_{c}\) because \(\mathrm{A}_{c}\) is a fractal DHHF for \(p\) parts. Because \(\nu>d, \sum_{h=0}^{m-1} \max \left(0, \ell_{h}-\lambda\right) \leq(n+\lambda-1)+d-(\lambda-1)-\nu=n+d-\nu<n\), and so at least \(\lambda\) rows of B separate each partition \(\mathcal{T}_{c}\) for \(0 \leq c<m\).

We employ an easy variant of Theorem 4.6 repeatedly when \(\lambda=1\) :

Lemma 4.9. Suppose that \(d \geq 1\) and \(a \operatorname{PHHF}\left(n ; \kappa,\left(w_{1}, \ldots, w_{n}\right), n+d\right)\) exists.
(i) Whenever \(\alpha, k \geq 1, a \operatorname{PHHF}\left(n+\alpha ; \kappa+\alpha k,\left(w_{1}+\alpha k\right)^{1} \cdots\left(w_{n}+\alpha k\right)^{1}(\kappa+(\alpha-\right.\) 1) \(\left.k+1)^{\alpha}, n+d+2 \alpha\right)\) exists.
(ii) In particular, whenever \(a \operatorname{PHF}(n ; \kappa, w, n+d)\) exists, \(a \operatorname{PHF}(n+\alpha ; \kappa+\alpha(\kappa-w+1)\), \(\kappa+(\alpha-1)(\kappa-w+1)+1, n+d+2 \alpha)\) exists.

Proof. Statement (ii) follows from (i) by setting \(w_{1}=\cdots=w_{n}=w\) and \(k=\kappa+1-w\), so it suffices to prove (i). Furthermore, we only need to deal with the case where \(\alpha=1\) because the remainder of the result follows by induction.

Append a row with \(\kappa\) distinct symbols to the \(\operatorname{PHHF}\left(n ; \kappa,\left(w_{1}, \ldots, w_{n}\right), n+d\right)\) to form \(\mathrm{A}_{0}\). Form an \((n+1) \times k\) array \(\mathrm{A}_{1}\) in which row \(n+1\) contains \(k\) occurrences of a single symbol, all other rows contain distinct symbols, and the sets of symbols in \(A_{0}\) and \(A_{1}\) are disjoint. We claim that \(B=\left[A_{0} A_{1}\right]\) is the required PHHF.

Consider a \((n+d+2)\)-set \(T\) of column indices. If \(T\) contains at most one column of \(\mathrm{A}_{1}\), then \(T\) is separated by the last row of B . Otherwise, the restriction of \(T\) to the columns of \(\mathrm{A}_{0}\) contains at most \(n+d\) columns and so is separated by some row \(r\) of \(\mathrm{A}_{0}\) other than the last. Then row \(r\) of B separates \(T\).

\subsection*{4.4 Applications}

Between them, Theorem 4.6 and Lemma 4.9 provide a flexible framework for constructing DHHFs. In Lemmas 4.10-4.17 we give more concrete applications of these two results to producing PHFs and PHHFs with strength larger than their number of rows. We conclude the section by considering the asymptotic ratio of columns to symbols in large PHFs constructed by these lemmas.

We begin by choosing the covering in Theorem 4.6 to consist of all \(d\)-subsets of an \(m\)-set, an \(\left(\binom{m}{d}, m, d\right)\)-covering.

Lemma 4.10. Let \(m>d \geq 1\) be integers. Suppose that a fractal
\[
\operatorname{PHHF}\left(\binom{m-1}{d} ; \kappa,\left(w_{0}, \ldots, w_{\binom{m-1}{d}-1}\right),\binom{m-1}{d}\right)
\]
exists. Let \(\sigma\) be the sum of the \(m-d\) largest elements in \(\left\{w_{i}: 0 \leq i \leq\binom{ m-1}{d}-1\right\}\). Then a \(\operatorname{PHF}\left(\binom{m}{d} ; m \kappa, d \kappa+\sigma,\binom{m}{d}+d\right)\) exists.

Proof. Let A be the \(\operatorname{PHHF}\left(\binom{m-1}{d} ; \kappa,\left(w_{0}, \ldots, w_{\binom{m-1}{d}-1}\right),\binom{m-1}{d}\right)\). Take the \(\left(\binom{m}{d}, m, d\right)\) covering \(\left\{P_{0}, \ldots, P_{\binom{m}{d}-1}\right\}\) in which the sets are all of the \(d\)-sets of \(\{0, \ldots, m-1\}\). This covering has \(\rho_{c}=\binom{m-1}{d-1}\) for all \(0 \leq c<m\). Form a bipartite graph \(G\) with vertex set \(\left\{x_{0}, \ldots, x_{\binom{m}{d}-1}\right\} \cup\left\{y_{0}, \ldots, y_{m-1}\right\}\), placing an edge between \(x_{r}\) and \(y_{c}\) when the \(r\) th \(d\)-set does not contain the element \(c\). \(\operatorname{Note}^{\operatorname{deg}}{ }_{G}\left(x_{i}\right)=m-d\) for \(0 \leq i<\binom{m}{d}\) and \(\operatorname{deg}_{G}\left(y_{i}\right)=\binom{m-1}{d}\) for \(0 \leq i<m\). So we can properly edge colour \(G\) with \(\binom{m-1}{d}\) colours \(\left\{0, \ldots,\binom{m-1}{d}-1\right\}\). Now apply Theorem 4.6. For each \(0 \leq c<m\), use as an ingredient the \(\binom{m-1}{d-1}\)-fractal PHHF \(\mathrm{A}_{c}\) obtained from A by adding \(\binom{m-1}{d-1}\) rows of distinct symbols and rearranging the rows in such a way that, when edge \(\left\{x_{r}, y_{c}\right\}\) of \(G\) has colour \(\ell\), row \(\ell\) of A (with \(w_{\ell}\) symbols) is row \(r\) of \(\mathrm{A}_{c}\). For \(0 \leq r<\binom{m}{d}\), row \(r\) of the resulting PHF has at most \(d \kappa+\sigma\) symbols because \(m-d\) distinct colours occur at the vertex \(x_{r}\) of \(G\).
\[
\begin{array}{llll|llll|llll}
0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & i & j & k & \ell \\
0 & 1 & 0 & 1 & e & f & g & h & 4 & 5 & 4 & 5 \\
a & b & c & d & 2 & 3 & 2 & 3 & 4 & 4 & 5 & 5
\end{array}
\]

Figure 4.1: \(\operatorname{APHF}(3 ; 12,8,4)\)
\begin{tabular}{llllllllllll}
0 & 1 & 2 & 1 & 0 & 5 & 6 & 3 & 1 & 7 & 0 & 4 \\
0 & 1 & 2 & 3 & 4 & 5 & 2 & 2 & 6 & 2 & 7 & 5 \\
0 & 1 & 2 & 0 & 1 & 4 & 4 & 5 & 3 & 6 & 3 & 2
\end{tabular}

Figure 4.2: \(\mathrm{A} \operatorname{PHHF}(3 ; 12,(8,8,7), 4)\).
To illustrate Lemma 4.10, we provide an example. Here is a \(\operatorname{PHF}(2 ; 4,2,2)\) :
\[
\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}
\]

Note that since there are 2 rows, we have \(m=3, d=1\). Since the PHF here is homogeneous, then \(\sigma=4\). So we will be forming a \(\operatorname{PHF}(3 ; 12,8,4)\). The corresponding \(3,3,1\)-covering is \(\{\{0\},\{1\},\{2\}\}\), with \(\rho_{c}=1\) for all \(c\). The bipartite graph formed has 6 vertices, with 3 vertices in each part, and precisely 6 edges: \(\left\{x_{0}, y_{1}\right\},\left\{x_{0}, y_{2}\right\}\), \(\left\{x_{1}, y_{0}\right\},\left\{x_{1}, y_{2}\right\},\left\{x_{2}, y_{0}\right\},\left\{x_{2}, y_{1}\right\}\). This graph is isomorphic to \(C_{6}\), which can be edge-colored with 2 colors, as expected, by alternating between two colors. We now create the three \(\mathrm{A}_{c}\) ingredients, obtained by adding 1 row of distinct symbols and observing the edge color formed on the graph, shown in Figure 4.1 (a completely different set of symbols is used for when the rows of distinct symbols are employed in each ingredient). Vertical bars show partition the 12 columns into 3 sets of 4 columns each.

Note that Lemma 4.10 is not optimal even in this case, because there exists a \(\operatorname{PHHF}(3 ; 12,(8,8,7), 4)\), shown in Figure 4.2 , found by the satisfiability formula described in Section 3.2.3. Two applications of Lemma 4.10, with \(d=1\) and \(d=n-1\),
are of particular interest.

Lemma 4.11. When a fractal \(\operatorname{PHHF}\left(n-1 ; \kappa,\left(w_{1}, \ldots, w_{n-1}\right), n-1\right)\) exists, a \(\operatorname{PHF}(n ; n \kappa\), \(\left.\kappa+\sum_{i=1}^{n-1} w_{i}, n+1\right)\) exists.

Proof. Apply Lemma 4.10 with \((m, d)=(n, 1)\).

Lemma 4.12. For all \(n \geq 2\) and \(\kappa \geq 1\), \(a \operatorname{PHF}(n ; n \kappa,(n-1) \kappa+1,2 n-1)\) exists.

Proof. Apply Lemma 4.10 with \((m, d)=(n, n-1)\). (The PHHF ingredient has one row and strength 1.)

Next we give other applications of Theorem 4.6 and Lemma 4.9 to handle cases with \(d \in\{n-2, n-3, n-4, n-5\}\).

Lemma 4.13. Suppose that a \(\operatorname{PHHF}\left(2 ; \kappa,\left(w_{1}, w_{2}\right), 2\right)\) exists and \(n \geq 3\). Then
(i) When \(k \geq 1\), \(a \operatorname{PHHF}\left(n ; 3 \kappa+(n-3) k,\left(\kappa+(n-3) k+w_{1}+w_{2}\right)^{3}(3 \kappa+(n-\right.\) 4) \(\left.k+1)^{n-3}, 2 n-2\right)\) exists.
(ii) When \(w_{1}+w_{2} \leq 2 \kappa\), \(a \operatorname{PHF}\left(n ;(2 n-3) \kappa-(n-3)\left(w_{1}+w_{2}-1\right),(2 n-5) \kappa-\right.\) \(\left.(n-4)\left(w_{1}+w_{2}-1\right)+1,2 n-2\right)\) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting \(k=2 \kappa+1-w_{1}-\) \(w_{2}\). Lemma 4.11 establishes (i) when \(n=3\). Apply Lemma 4.9(i) with \(\alpha=n-3\).

Lemma 4.14. Suppose that \(a \operatorname{PHHF}\left(2 ; \kappa,\left(w_{1}, w_{2}\right), 2\right)\) exists and \(n \geq 6\). Then
(i) When \(k \geq 1\), \(a \operatorname{PHHF}\left(n ; 6 \kappa+(n-6) k,\left(4 \kappa+(n-6) k+w_{1}+w_{2}\right)^{6}(6 \kappa+(n-\right.\) 7) \(\left.k+1)^{n-6}, 2 n-3\right)\) exists.
(ii) When \(w_{1}+w_{2} \leq 2 \kappa\), \(a \operatorname{PHF}\left(n\right.\); \((2 n-6) \kappa-(n-6)\left(w_{1}+w_{2}-1\right),(2 n-8) \kappa-\) \(\left.(n-7)\left(w_{1}+w_{2}-1\right)+1,2 n-3\right)\) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting \(k=2 \kappa+1-\) \(w_{1}-w_{2}\). By Lemma 4.9(i) with \(\alpha=n-6\), it suffices to treat the case when \(n=6\). Form the 4 -fractal PHHFs using the numbers of symbols in the columns given:
\begin{tabular}{|c|c|c|c|c|c}
\(w_{1}\) & \(w_{2}\) & \(\kappa\) & \(\kappa\) & \(\kappa\) & \(\kappa\) \\
\(\kappa\) & \(w_{1}\) & \(w_{2}\) & \(\kappa\) & \(\kappa\) & \(\kappa\) \\
\(w_{2}\) & \(\kappa\) & \(w_{1}\) & \(\kappa\) & \(\kappa\) & \(\kappa\) \\
\(\kappa\) & \(\kappa\) & \(\kappa\) & \(w_{1}\) & \(w_{2}\) & \(\kappa\) \\
\(\kappa\) & \(\kappa\) & \(\kappa\) & \(\kappa\) & \(w_{1}\) & \(w_{2}\) \\
\(\kappa\) & \(\kappa\) & \(\kappa\) & \(w_{2}\) & \(\kappa\) & \(w_{1}\)
\end{tabular}

Let \(P_{0}, \ldots, P_{5}\) be the indices of the \(\kappa\) entries in the six rows. This yields the (6,6,3)covering. Apply Theorem 4.6.

Lemma 4.15. Suppose that a fractal \(\operatorname{PHHF}\left(3 ; \kappa,\left(w_{1}, w_{2}, w_{3}\right), 3\right)\) exists and \(n \geq 6\). Then
(i) When \(k \geq 1\), \(a \operatorname{PHHF}\left(n ; 6 \kappa+(n-6) k,\left(3 \kappa+(n-6) k+w_{1}+w_{2}+w_{3}\right)^{6}(6 \kappa+\right.\) \(\left.(n-7) k+1)^{n-6}, 2 n-4\right)\) exists.
(ii) When \(w_{1}+w_{2}+w_{3} \leq \kappa\), \(a \operatorname{PHF}\left(n ;(3 n-12) \kappa-(n-6)\left(w_{1}+w_{2}+w_{3}-1\right)\right.\), \(\left.(3 n-15) \kappa-(n-7)\left(w_{1}+w_{2}+w_{3}-1\right)+1,2 n-4\right)\) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting \(k=3 \kappa+1-w_{1}-\) \(w_{2}-w_{3}\). By Lemma 4.9(i) with \(\alpha=n-6\) it suffices to treat the case when \(n=6\). We use a \((6,6,2)\)-covering. For \(0 \leq j<6\), let \(P_{j}=\{j, j+1 \bmod 6, j+3 \bmod 6\}\). To form the 3 -fractal PHHFs \(\left\{A_{0}, \ldots, A_{5}\right\}\), set

\section*{Apply Theorem 4.6.}

Lemma 4.16. Suppose that a fractal \(\operatorname{PHHF}\left(4 ; \kappa,\left(w_{1}, w_{2}, w_{3}, w_{4}\right), 4\right)\) exists and \(n \geq 7\). Then
(i) When \(k \geq 1, a \operatorname{PHHF}\left(n ; 7 \kappa+(n-7) k,\left(3 \kappa+(n-7) k+w_{1}+w_{2}+w_{3}+w_{4}\right)^{7}(7 \kappa+\right.\) \(\left.(n-8) k+1)^{n-7}, 2 n-5\right)\) exists.
(ii) When \(w_{1}+w_{2}+w_{3}+w_{4} \leq 4 \kappa, a \operatorname{PHF}\left(n ;(4 n-21) \kappa-(n-7)\left(w_{1}+w_{2}+w_{3}+w_{4}-1\right)\right.\), \(\left.(4 n-25) \kappa-(n-8)\left(w_{1}+w_{2}+w_{3}+w_{4}-1\right)+1,2 n-5\right)\) exists.

Proof. It suffices to prove (i) because (ii) follows from (i) by setting \(k=4 \kappa+1-\) \(w_{1}-w_{2}-w_{3}-w_{4}\). By Lemma \(4.9(\mathrm{i})\) with \(\alpha=n-7\) it suffices to treat the case when \(n=7\). We use a ( \(7,7,2\) )-covering. When \(n=7\), for \(0 \leq j<7\), let \(P_{j}=\{j\), \(j+1 \bmod 7, j+3 \bmod 7\}\). To form the 3 -fractal PHHFs \(\left\{A_{0}, \ldots, A_{6}\right\}\), set
\[
v_{r c}=\left\{\begin{array}{llll}
w_{1} & \text { if } & 0 \leq r<7,0 \leq c<7, c \equiv r+2 & (\bmod 7) \\
w_{2} & \text { if } & 0 \leq r<7,0 \leq c<7, c \equiv r+4 & (\bmod 7) \\
w_{3} & \text { if } & 0 \leq r<7,0 \leq c<7, c \equiv r+5 & (\bmod 7) \\
w_{4} & \text { if } & 0 \leq r<7,0 \leq c<7, c \equiv r+6 & (\bmod 7) \\
\kappa & \text { if } & 0 \leq c<7, \text { and } c \equiv r, r+1, r+3 & (\bmod 7)
\end{array}\right.
\]

Apply Theorem 4.6.

Finally we treat a special case with \(d=2\).

Lemma 4.17. If there exist
- \(a \operatorname{PHHF}\left(2 ; \kappa_{2},\left(v_{1,2}, v_{2,2}\right), 2\right)\),
- \(a \operatorname{PHHF}\left(2 ; \kappa_{3},\left(v_{1,3}, v_{2,3}\right), 2\right)\), and
- a fractal \(\operatorname{PHHF}\left(3 ; \kappa_{1},\left(v_{1,1}, v_{2,1}, v_{3,1}\right), 3\right)\),
then \(a \operatorname{PHHF}\left(5 ; 2 \kappa_{1}+2 \kappa_{2}+\kappa_{3},\left(w_{0}, \ldots, w_{4}\right), 7\right)\) exists with \(w_{0}=\kappa_{1}+2 \kappa_{2}+v_{1,1}+v_{1,3}\), \(w_{1}=\kappa_{1}+2 \kappa_{2}+v_{1,1}+v_{2,3}, w_{2}=2 \kappa_{1}+\kappa_{3}+v_{1,2}+v_{2,2}, w_{3}=\kappa_{2}+\kappa_{3}+v_{2,1}+v_{3,1}+v_{2,2}\), \(w_{4}=\kappa_{2}+\kappa_{3}+v_{1,2}+v_{2,1}+v_{3,1}\).

Proof. Using a fractal \(\operatorname{PHHF}\left(3 ; \kappa_{1},\left(v_{1,1}, v_{2,1}, v_{3,1}\right), 3\right)\), a \(\operatorname{PHHF}\left(2 ; \kappa_{2},\left(v_{1,2}, v_{2,2}\right), 2\right)\), and a \(\operatorname{PHHF}\left(2 ; \kappa_{3},\left(v_{1,3}, v_{2,3}\right), 2\right)\), form five PHHFs on 5 rows by placing the rows as indicated in each column shown; when \(\kappa_{i}\) is specified, the row is all distinct symbols.
\[
\begin{array}{|c|c|c|c|c}
v_{1,1} & \kappa_{1} & \kappa_{2} & \kappa_{2} & v_{1,3} \\
\kappa_{1} & v_{1,1} & \kappa_{2} & \kappa_{2} & v_{2,3} \\
\kappa_{1} & \kappa_{1} & v_{1,2} & v_{2,2} & \kappa_{3} \\
v_{2,1} & v_{3,1} & v_{2,2} & \kappa_{2} & \kappa_{3} \\
v_{3,1} & v_{2,1} & \kappa_{2} & v_{1,2} & \kappa_{3}
\end{array}
\]

Let \(P_{0}, \ldots, P_{4}\) be the indices of the \(\kappa\) entries in the five rows. This yields the (5, 5, 2)-covering. Apply Theorem 4.6.

Numerous cases have been handled by Lemma 4.10. We could take \(m=5\) and \(d=2\) to yield PHFs with 10 rows and strength 12 , or \(m=5\) and \(d=3\) to yield PHFs with 10 rows and strength 13. However, Lemma 4.10 need not yield the best result asymptotically, as shown by the (10,10,2)-covering with blocks 0169, 2379, 4589, 0178, 2368, 4567, 024, 035, 125, 134. Using ingredients with \(\kappa\) columns on elements \(\{0, \ldots, 5\}\), and \(\kappa / 2\) on elements \(\{6, \ldots, 9\}\), the number of columns grows like \(8 \kappa\) while the number of symbols grows like \(3 \kappa\). Table 4.2 summarizes the best asymptotic ratio of columns to symbols in large PHFs constructed using the lemmas in this section; this extends somewhat a table from [15].
\begin{tabular}{c|cccccccc}
\(n \downarrow d \rightarrow\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 2 & \(4.11: 2\) & & & & & & & \\
3 & \(4.11: 3\) & \(4.12: \frac{3}{2}\) & & & & & & \\
4 & \(4.11: 4\) & \(4.13: \frac{5}{3}\) & \(4.12: \frac{4}{3}\) & & & & & \\
5 & \(4.11: 5\) & \(4.17: \frac{9}{5}\) & \(4.13: \frac{7}{5}\) & \(4.12: \frac{5}{4}\) & & & & \\
6 & \(4.11: 6\) & \(4.15: 2\) & \(4.14: \frac{3}{2}\) & \(4.13: \frac{9}{7}\) & \(4.12: \frac{6}{5}\) & & & \\
7 & \(4.11: 7\) & \(4.16: \frac{7}{3}\) & \(4.15: \frac{3}{2}\) & \(4.14: \frac{4}{3}\) & \(4.13: \frac{11}{9}\) & \(4.12: \frac{7}{6}\) & & \\
8 & \(4.11: 8\) & & \(4.16: \frac{11}{7}\) & \(4.15: \frac{4}{3}\) & \(4.14: \frac{5}{4}\) & \(4.13: \frac{13}{11}\) & \(4.12: \frac{8}{7}\) & \\
9 & \(4.11: 9\) & & & \(4.16: \frac{15}{11}\) & \(4.15: \frac{5}{4}\) & \(4.14: \frac{6}{5}\) & \(4.13: \frac{15}{13}\) & \(4.12: \frac{9}{8}\) \\
10 & \(4.11: 10\) & & & & & & & \\
\hline
\end{tabular}

Table 4.2: PHFs with Few Rows from Lemmas 4.10-4.17. For Each Case, the Number of the Relevant Lemma, and the Asymptotic Ratio of the Number of Columns to the Number of Symbols Achieved, Is Given.

\subsection*{4.5 Existence Tables}

In order to assess the impact of using Blackburn's construction for perfect hash families using fractal ingredients, we have created tables on the best-known upper bounds on \(\operatorname{PHFN}(k, v, t)\) for \(k \leq 10^{9}, v \leq 2500\), and \(3 \leq t \leq 11\) [45]. These tables report on over 385,000 parameter situations. Of those, 2,658 are improvements that result from the generalization of Blackburn's theorem. Improvements were found only for larger strengths, in particular when \(t \geq 6\). We provide here a representative collection of improvements, restricting our attention to cases with \(N<t\) and \(v<250\). Each table considers a selection of \(N\) and \(t\); then \(k_{\text {old }}\) is the largest number of columns found without using the fractal version of the Blackburn construction, while \(k_{\text {fractal }}\) gives the largest number of columns obtained using in addition fractal PHHFs in the Blackburn construction. In order to highlight the more significant improvements, we
only report cases when \(k_{\text {fractal }} \geq k_{\text {old }}+5\). However, we do list all other improvements (i.e., \(250 \leq v \leq 2500\), or \(k_{\text {fractal }}-k_{\text {old }} \leq 4\) for all \(v\) ) in Appendix A. Naturally, other recursive constructions can and do make further improvements, but we do not address them here.

Table 4.3: Improvements for Strength 6, Four Rows
\begin{tabular}{r|lllllll}
\(v\) & 121 & 127 & 163 & 166 & 169 & 211 & 217 \\
\(k_{\text {fractal }}\) & 188 & 198 & 256 & 260 & 266 & 334 & 344 \\
\(k_{\text {old }}\) & 183 & 192 & 247 & 253 & 259 & 326 & 337
\end{tabular}

Table 4.4: Improvements for Strength 6, Five Rows
\begin{tabular}{r|rrrrrrrrrrrrrr}
\hline\(v\) & 50 & 63 & 68 & 75 & 83 & 93 & 101 & 108 & 115 & 121 & 130 & 135 & 140 & 148 \\
\(k_{\text {fractal }}\) & 90 & 135 & 140 & 155 & 175 & 205 & 225 & 240 & 255 & 265 & 290 & 295 & 300 & 320 \\
\(k_{\text {old }}\) & 82 & 104 & 113 & 125 & 139 & 172 & 197 & 216 & 223 & 229 & 254 & 259 & 264 & 272 \\
\hline\(v\) & 157 & 165 & 172 & 181 & 189 & 196 & 207 & 215 & 223 & 228 & 238 & 246 & & \\
\(k_{\text {fractal }}\) & 345 & 365 & 380 & 405 & 425 & 440 & 475 & 495 & 515 & 520 & 550 & 570 & & \\
\(k_{\text {old }}\) & 281 & 292 & 303 & 313 & 405 & 412 & 423 & 431 & 439 & 444 & 454 & 481 & & \\
\hline
\end{tabular}

The use of fractal DHHFs and PHHFs in the Blackburn method leads to many constructions for DHHFs with a number of rows less than the strength. Our motivation for seeking these improvements has been to improve bounds for covering arrays. Many improvements are reported in the online covering array tables [24]. We make no effort to enumerate them here, contenting ourselves to mention a few illustrative examples.

Renaming symbols in each column of a covering array, we can always produce at least one constant row. Then by Theorem 4.2, the existence of a \(\operatorname{PHF}(4 ; 260,166,6)\) and a \(\mathrm{CA}(N ; 6,166, v)\) ensures that a \(\mathrm{CA}(4 N-4 ; 6,260, v)\) exists. This yields the smallest covering array for these parameters when \(v \in\{7,8,9,11,12,13\}\). Because a \(\operatorname{PHHF}(2 ; a b,(a, b), 2)\) exists whenever \(a, b \geq 1\), a \(\operatorname{PHHF}(2 ; 55,(7,8), 2)\) exists. Then using Lemma \(4.13(\mathrm{i})\) with \(k=95\), there is a \(\operatorname{PHHF}\left(4 ; 260,165^{3} 166^{1}, 6\right)\). Hence by

Table 4.5: Improvements for Strength 7, Five Rows
\begin{tabular}{r|rrrrrrrrrrrrrr}
\(v\) & 78 & 80 & 81 & 82 & 114 & 115 & 123 & 124 & 127 & 128 & 129 & 130 & 131 & 133 \\
\(k_{\text {fractal }}\) & 116 & 120 & 121 & 122 & 174 & 175 & 189 & 190 & 194 & 196 & 198 & 201 & 202 & 204 \\
\(k_{\text {old }}\) & 111 & 114 & 115 & 117 & 169 & 170 & 183 & 185 & 189 & 190 & 191 & 192 & 193 & 195 \\
\hline\(v\) & 134 & 135 & 136 & 137 & 138 & 139 & 141 & 142 & 143 & 144 & 146 & 148 & 149 & 150 \\
\(k_{\text {fractal }}\) & 205 & 207 & 208 & 209 & 210 & 214 & 217 & 218 & 219 & 224 & 226 & 228 & 233 & 234 \\
\(k_{\text {old }}\) & 196 & 197 & 198 & 199 & 200 & 202 & 204 & 207 & 211 & 216 & 211 & 213 & 217 & 222 \\
\hline\(v\) & 154 & 155 & 156 & 157 & 158 & 159 & 161 & 162 & 164 & 167 & 168 & 169 & 170 & 171 \\
\(k_{\text {fractal }}\) & 238 & 239 & 240 & 242 & 244 & 246 & 248 & 252 & 257 & 260 & 264 & 265 & 266 & 268 \\
\(k_{\text {old }}\) & 226 & 227 & 228 & 229 & 230 & 231 & 237 & 242 & 248 & 251 & 252 & 253 & 254 & 255 \\
\hline\(v\) & 172 & 175 & 177 & 179 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 & 191 \\
\(k_{\text {fractal }}\) & 269 & 273 & 276 & 281 & 284 & 287 & 288 & 289 & 290 & 292 & 294 & 297 & 298 & 299 \\
\(k_{\text {old }}\) & 256 & 259 & 261 & 266 & 269 & 270 & 272 & 274 & 275 & 277 & 279 & 281 & 283 & 285 \\
\hline\(v\) & 192 & 193 & 194 & 195 & 196 & 197 & 201 & 203 & 204 & 206 & 208 & 209 & 210 & 211 \\
\hline\(k_{\text {fractal }}\) & 304 & 305 & 306 & 307 & 308 & 312 & 316 & 318 & 320 & 326 & 328 & 329 & 333 & 334 \\
\(k_{\text {old }}\) & 287 & 289 & 290 & 281 & 292 & 293 & 308 & 313 & 314 & 316 & 318 & 318 & 320 & 321 \\
\hline\(v\) & 212 & 213 & 214 & 216 & 217 & 219 & 221 & 222 & 223 & 224 & 226 & 227 & 229 & 230 \\
\(k_{\text {fractal }}\) & 335 & 336 & 340 & 343 & 344 & 346 & 348 & 349 & 350 & 354 & 360 & 362 & 365 & 366 \\
\(k_{\text {old }}\) & 322 & 323 & 324 & 326 & 327 & 329 & 331 & 333 & 335 & 337 & 341 & 343 & 347 & 349 \\
\hline\(v\) & 231 & 232 & 233 & 234 & 235 & 236 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 \\
\(k_{\text {fractal }}\) & 367 & 368 & 369 & 273 & 377 & 380 & 386 & 387 & 388 & 389 & 389 & 391 & 393 & 398 \\
\(k_{\text {old }}\) & 351 & 353 & 355 & 357 & 359 & 369 & 372 & 375 & 376 & 378 & 380 & 382 & 384 & 386 \\
\hline
\end{tabular}

Table 4.6: Improvements for Strength 8, Six Rows
\begin{tabular}{r|lllllllllll}
\(v\) & 108 & 120 & 135 & 158 & 174 & 184 & 195 & 207 & 218 & 227 & 240 \\
\(k_{\text {fractal }}\) & 162 & 192 & 216 & 240 & 270 & 288 & 300 & 324 & 336 & 360 & 384 \\
\(k_{\text {old }}\) & 156 & 175 & 195 & 233 & 258 & 271 & 291 & 308 & 330 & 339 & 360
\end{tabular}

Table 4.7: Improvements for Strength 9, Six Rows
\begin{tabular}{r|lllllll}
\(v\) & 173 & 181 & 191 & 194 & 231 & 236 & 239 \\
\(k_{\text {fractal }}\) & 240 & 252 & 264 & 270 & 324 & 330 & 336 \\
\(k_{\text {old }}\) & 234 & 244 & 256 & 259 & 315 & 320 & 323
\end{tabular}

Table 4.8: Improvements for Strength 10, Seven Rows
\begin{tabular}{r|lll}
\(v\) & 191 & 215 & 239 \\
\(k_{\text {fractal }}\) & 215 & 298 & 323 \\
\(k_{\text {old }}\) & 253 & 280 & 318
\end{tabular}

Table 4.9: Improvements for Strength 11, Seven Rows
\begin{tabular}{r|lllll}
\(v\) & 143 & 179 & 191 & 209 & 239 \\
\(k_{\text {fractal }}\) & 183 & 230 & 245 & 269 & 308 \\
\(k_{\text {old }}\) & 178 & 224 & 239 & 264 & 300
\end{tabular}

Theorem 4.2. if a \(\mathrm{CA}(N ; 6,165, v)\) and a \(\mathrm{CA}\left(N^{\prime} ; 6,166, v\right)\) both exist, a \(\mathrm{CA}\left(3 N+N^{\prime}-\right.\) \(4 ; 6,260, v)\) exists. This illustrates how the use of heterogeneous hash families can reduce the number of rows in the covering array produced.

Using Lemma 4.11 with a fractal \(\operatorname{PHF}(4 ; 81,25,4)\) (found by the method of [25]) yields a \(\operatorname{PHF}(5 ; 405,181,6)\). Then by Theorem 4.2, the existence of a \(\operatorname{CA}(N ; 6,181, v)\) ensures that a \(\mathrm{CA}(5 N-5 ; 6,405, v)\) exists. This yields the smallest covering array for these parameters when \(v \in\{5,7,8,9,11,13,18,19\}\).

Extending the Blackburn method to fractal and heterogeneous hash families therefore improves on known constructions for covering arrays even within the ranges currently tabulated at [24]. To see that the extension to distributing hash families is also effective, we consider larger strengths. We use the framework of Lemma 4.16, taking \(\kappa=10\). According to \([25]\), a \(\operatorname{PHF}(4 ; 10,6,4)\) exists, and it can be easily verified that one is fractal. Then a \(\operatorname{PHHF}(7 ; 70,54,9)\), and hence a \(\operatorname{DHHF}(7 ; 70,54,9, p)\), exists for all \(2 \leq p \leq 9\). Using instead the \(\operatorname{DHF}(4 ; 10,4,4,2)\) from Table 4.1 in the construction
of Lemma 4.16, we produce a \(\operatorname{DHF}(7 ; 70,46,9,2)\), using many fewer symbols. When used in a column replacement strategy for covering arrays, this enables us to use a binary covering array with 46 columns rather than 54 , which can be a substantial improvement.

\subsection*{4.6 Conclusion}

We have developed a new recursive technique to generate heterogeneous hash families from the use of enforcing a structural constraint on the ingredient hash family; namely, that it is fractal. From this, we investigated many types of coverings, and have improved many parameters for perfect hash families. Improvements to distributing hash families have also improved on the sizes of covering arrays.

\section*{Chapter 5}

\section*{GENETIC ALGORITHMS FOR TRANSFORMATIONS OF EXISTENTIAL RESTRICTIONS}

In recent work by Colbourn and Lanus [33], efficient algorithms to construct covering perfect hash families were considered. Specifically, an array with \(k\) columns was given, and suppose that \(m k\) columns for a CPHF are desired. One technique to achieve this goal is to proceed with two stages: first, horizontally juxtapose the CPHF \(m\) times to achieve an initial array on \(m k\) columns; and second, use some algorithm to "complete" the array. The second step is necessary because unless the copies of the initial CPHF are modified, any \(t\)-set of the \(m k\) columns that involve at least two that correspond to the same initial column cannot be separated in any row. Note that the number of \(t\)-sets of columns not separated is known precisely here, and completely determined; however, this number is a significant fraction of the total number of \(t\)-sets.

In an attempt to mitigate this problem, the authors considered applying affine transformations to each row and to each of the copies, which corresponds to modifying each entry by multiplying it by an adder and a multiplier, and performing the arithmetic in \(\mathbb{F}_{v}\). The key here is that for any \(t\)-set that is contained entirely within a single copy, it is always separated because affine transformations are applied. For CPHFs, the sample space is very large, so Colbourn and Lanus used a greedy algorithm for finding appropriate transformations. For each row \(r\) of the CPHF, determine some (or all) of the possible affine transformations that contain two identical columns from two blocks, if it is to be applied to \(r\). Then they choose any transformation that yields the smallest number of \(t\)-sets of components not fully separated. If there is a
tie, choose the lexicographically first transformation. For CPHFs, it turns out that affine transformations are exactly the operations that preserve the structure of each CPHF copy.

We extend their work for a general class of \(t\)-restrictions, and to use genetic algorithms to find the best "transformations". We also generalize the notion of affine transformations to \(t\)-transformations of the underlying hypergraph involving the \(t\) sets. The goal of these algorithms is to maximize the "fitness" of the corresponding \(t\)-restriction, so that deterministic methods can "complete" the array. We then report computational results for maximizing the fitness for PHFs, as they have many transformations compared to the number of symbols allowed for it. Some preliminary work of this chapter appears in [47].

\subsection*{5.1 Prior Work}

We first illustrate the general framework of genetic algorithms. In such an algorithm, there is a population \(P\) of individuals, wherein each individual has an associated fitness according to some fitness function \(f\). Typically, one wants to maximize the average fitness of all individuals in \(P\). First, an initial population \(P_{0}\) of \(N\) individuals is created, usually "at random." Then, as long as some fitness criterion is not satisfied, changes to the population are applied, also usually at random; suppose the current population is \(P_{i}\). We desire to form population \(P_{i+1}\) with average fitness at least that of \(P_{i}\).

Initially, \(P_{i+1}=P_{i}\). A genetic algorithm often uses tournament selection, which seeks to pick "fit" individuals in the population. Specifically, it randomly chooses a subset of the population of a given size, and any individual with highest fitness in the subset is selected (if there are ties, break them arbitrarily). Here, we run tournament selection until two distinct individuals \(A, B\) are selected, and removed from
\(P_{i+1}\). The crossover operator forms two offspring \(o_{1}, o_{2}\) based on \(A, B\) by combining different properties of them. Then, one performs mutation on the two children; usually this corresponds to modifying each individual's attributes. Next, the fitness value is calculated for both children according to \(f\). And finally, the two fittest individuals of the four individuals-the two parents and the two offspring-are selected to be inserted into \(P_{i+1}\). If there is a tie among the fitnesses, we prefer to select the two (mutated) children, simply for an attempt to exit local optima (i.e., random single changes to the population may possibly not improve the overall population's fitness). This "steady-state" algorithm is given in Algorithm 3; note that since the two fittest individuals are always inserted into \(P_{i+1}\), the average fitness never decreases.
```

Algorithm 3 General Steady-State Algorithm
Let P_{0} be a population generated at random, and $i=0$.
while condition to stop has not been satisfied do
3: \quad Set $P_{i+1} \leftarrow P_{i}$.
4: \quad Run tournament selection on P_{i} to find two individuals I_{1}, I_{2}.
5: \quad Crossover I_{1}, I_{2} to obtain two children C_{1}, C_{2}, with probability $p_{\text {crossover }}$. (If
not performed, skip Steps 6-8, and re-insert I_{1}, I_{2} back into P_{i+1}.)
6: Mutate the two children to obtain M_{1}, M_{2}, independently with probability
$p_{\text {mutate }}$.

```
    7: \(\quad\) Pick the two fittest individuals \(F_{1}, F_{2}\) from \(\left\{I_{1}, I_{2}, M_{1}, M_{2}\right\}\). (if there are ties,
    prefer \(M_{1}, M_{2}\) over \(I_{1}, I_{2}\) )
    8: \(\quad\) Insert \(F_{1}, F_{2}\) into \(P_{i+1}\).
        \(i \leftarrow i+1\).
    end while

Most prior work for applying metaheuristic techniques to \(t\)-restrictions were to covering arrays, and only to a limited extent. Genetic algorithms were first used
for covering arrays by Stardom [73]. More recently, such techniques that exploited the search space were performed by Rodriguez-Tello and Torres-Jimenez [64], and even more recently by Sabharwal et al. [65]. Other metaheuristic techniques have been extensively used on covering arrays, such as simulated annealing, tabu search, ant colony optimization, and particle swarm optimization. See [77] for an extensive survey on such techniques.

Even though the techniques used in all prior work were not all the same, they have a common framework: the representation of each individual was the array itself, and random mutations/operators to the array were formed until it was a covering array (or an iteration limit was reached). In the case of genetic algorithms, there are two operators: crossover, and mutation. Crossover involves switching either entire rows, entire columns, or just single elements of the two parents; and mutation involves randomly changing one or more values in the array. In all cases, the fitness of an individual is the number of \(t\)-way interactions, in the case of covering arrays. As far as we are aware, there is no previous work on metaheuristic algorithms for hash families, nor most other commonly used \(t\)-restrictions. Later in this chapter, we present a method that is more efficient at generating PHFs using a genetic algorithm.

\subsection*{5.1.1 A Genetic Algorithm for PHFs Based on Prior Work}

Because there has been no work on PHFs with a GA previously, we outline our representation that is inspired by previous work with covering arrays. An individual is an \(N \times k\) array on \(v\) symbols, and the fitness function is the number of \(t\)-sets that are \(\lambda\)-separated, as expected. Here, we consider homogeneous PHFs, but the method is easily extensible to homogeneous ones.

The mutation operator is slightly different than expected: a row and a column are selected uniformly at random. However, many runs of the algorithm yielded little
increases in the average fitness if one selects a random value to be placed into this entry, even after many generations. Instead, we deterministically choose a value such that setting the row/column of the array to this value (and keeping the rest of the array fixed) yields the highest fitness, breaking ties based on a fixed ordering of the symbols. This way, not only does the fitness not decrease purely based on mutation alone, but the population is more diverse because often two different symbols yield the same largest fitness, and both are often chosen.

The crossover operator used here is one-point crossover, in that when two parents are crossed, one selects a random point in their representation to yield two partitions. In the first part, the child has the same representation as the first parent, and from the second parent for the second part. Because PHFs are based on separation within rows only, we naturally select a partition of the rows for what the child receives from its parents.

\subsection*{5.2 A Genetic Algorithm for transformations for Existential \(t\)-Restrictions}

We extend previous uses of genetic algorithms to work for arbitrary \(t\)-restrictions. First, we need several definitions. Let \(A_{N, k, \mathcal{T}}\) be the set of all \(N \times k\) arrays that satisfy the \(t\)-restriction \(\mathcal{T}\). A t-transformation for \(N\) rows and \(k\) columns is a bijective function \(\phi_{N, k, \mathcal{T}}: A_{N, k, \mathcal{T}} \rightarrow A_{N, k, \mathcal{T}}\) (when \(N, k, \mathcal{T}\) are implied, we drop them from the notation). In other words, \(A\) is an array satisfying a \(t\)-restriction \(\mathcal{T}\) if and only if \(\phi_{N, k, \mathcal{T}}(A)\) also satisfies the same restriction.

However, we focus on a certain type of \(t\)-restriction, which allows for the \(t\) transformations chosen to have useful properties. A \(t\)-restriction where all of the quantifiers are \(\exists\) is called an existential \(t\)-restriction. All hash families that have been discussed in this thesis are existential \(t\)-restrictions. We focus on \(t\)-transformations for existential \(t\)-restrictions such that one can rewrite the transformation as a compo-
sition of \(N\) transformations \(T_{1}, \cdots, T_{N}\) such that \(T_{i}\) only modifies the entries in row i. Hash families fit under this type of transformation, since the separation condition is only on a per-row basis.

We give several examples. Colbourn and Lanus [33] showed that if \(\phi(x)\) is of the form \(a x+b\) where \(a, b \in \mathbb{F}_{q}\), and the arithmetic is performed in \(\mathbb{F}_{q}\), then \(\phi\) is an transformation when the array \(A\) is a SCPHF. For perfect hash families (and many of their generalizations other than SCPHFs), then one can take \(\phi\) to be any permutation of the symbols because if \(v_{1}, \cdots, v_{t} \in V\) are all distinct, then since \(\phi\) is a permutation and hence is bijective, then \(\phi\left(v_{1}\right), \cdots, \phi\left(v_{t}\right)\) are also all distinct.

This observation leads to a more useful genetic algorithm than previous approaches. We first describe the individual representation, and then a high-level explanation of its effectiveness. Suppose that
- \(\mathcal{T}\) is an existential \(t\)-restriction,
- \(k\) is the desired number of columns,
- we are given an array A with \(c<k\) columns and \(N\) rows satisfying \(\mathcal{T}\), and
- each row \(i\) of A can use (at most) \(v_{i}\) symbols.

For any \(d\) such that \(t \leq d \leq c\), we define a set of arrays \(\mathrm{B}_{1}, \cdots, \mathrm{~B}_{m}\) all with \(d\) columns a d-subpopulation; also, we say that these arrays are within ad-subpopulation. The representation of a single individual \(I\) with \(N\) rows, where \(I\) is within a \(d\) subpopulation, contains the following attributes:
- a list of \(c-d\) columns \(C_{1}, \cdots, C_{c-d}\) (that are to be deleted); and
- let \(m\) be the smallest integer such that \(d m \geq k\). Then \(I\) contains \(N(m-1)\) transformations \(\phi_{1,1}, \cdots, \phi_{N, m-1}\). (These correspond to each of the rows of all copies, not the original array)

The entire population \(\mathcal{P}\) consists of a specified number \(x_{d}\) of individuals in a \(d\)-subpopulation for each \(d\) with \(t \leq d \leq c\). The fitness of an individual \(I\) in a \(d\)-subpopulation is determined as in Algorithm 4.
```

Algorithm 4 Calculating the Fitness of an Individual I within a d-subpopulation
1: Remove the given $c-d$ columns C_{1}, \cdots, C_{c-d} from A (according to I) to obtain
an array A_{1}.
2: Horizontally duplicate $\mathrm{A}_{1} m-1$ times to obtain an $N \times d m$ array A_{2}.
3: Apply the corresponding t-transformations (according to I) to each of the $m-1$
copies to obtain array A_{3}.
4: Determine, among all t-sets of columns with at least one duplicate modulo c, how
many of them are λ-separated.
5: While there are strictly more than k columns (the target) in A_{3}, remove any col-
umn participating in the largest number of column sets that are not λ-separated;
let the final array be F.
6: Return the number of t-sets of columns that are λ-separated in F .

```

We give a high-level intuition for why this GA setup is more useful for constructing arrays than the standard method, and why \(d\)-subpopulations (along with removing \(c-d\) columns to obtain an array within one) are helpful in finding the best arrays. Not only is the fitness function more efficient to calculate (since any \(d\)-subpopulation has the exact same \(t\)-sets to check, and there are fewer than all possible \(t\)-sets), but each individual has a smaller representation than the entire array, given that the number of columns is sufficiently large.

There are two further advantages. Suppose we want to apply affine transformations to PHFs, like the method of Colbourn and Lanus. If a row has \(v\) symbols, there are only \(v(v-1)\) possible choices of transformations to select (multiplier being nonzero, and adder being any value), whereas there are \(v\) ! possible \(t\)-transformations
for PHFs, which allows for much greater possibility in generating "good" copies of the original PHF. The other large benefit here is the deletion of the \(c-d\) columns; by choosing \(d\) to be larger, then the number of copies needed to reach a given target of columns is larger, which allows for a more effective "spread" within the set of all transformations.

The mutation operator is natural given the setup: if \(\phi\) is the observed transformation and it is to be mutated, we update it to be a different \(t\)-transformation (we assume that the corresponding set of \(t\)-transformations has at least two elements); and if we are to mutate the \(c-d\) columns to delete, then the operator chooses a different set of columns.

For crossover, since the \(c-d\) columns to delete are unordered (since it does not matter what order they appear), we take the union of the \(c-d\) columns of both parents, and the child then takes a random subset of size \(c-d\) where at least one column comes from both parents. However, we use a different approach with regards to the crossover operator for the \(t\)-transformations, developed by Davis [41], and is reproduced here for convenience. Suppose that \(\phi_{1}, \phi_{2}\) are two \(t\)-transformations that are to be crossed and to form offspring. Further suppose that the considered row allows for \(v\) possible symbols, \(\phi_{1}=\left(x_{1}, \cdots, x_{v}\right)\), and \(\phi_{2}=\left(y_{1}, \cdots, y_{v}\right)\) (this notation indicates that \(\phi_{1}(i)=x_{i}\) and \(\left.\phi_{2}(i)=y_{i}\right)\). To form an offspring \(O\) (initially with undetermined values \(\infty\) ), we choose a randomly chosen subsequence \(\left(x_{i}, \cdots, x_{j}\right)\) from \(\phi_{1}\), and copy these entries element-wise into \(O\); at this point, \(O\) is of the form \((\infty, \cdots\), \(\left.\infty, x_{i}, \cdots, x_{j}, \infty, \cdots, \infty\right)\). To form the other elements for \(O\), consider all of the other elements in \(\phi_{2}\) after removing \(\left(x_{i}, \cdots, x_{j}\right)\). Now insert them into \(O\) 's undetermined entries in their proper order according to \(\phi_{2}\). This procedure works because \(\phi_{1}, \phi_{2}\) are permutations of each other. We give an example. Suppose that \(\phi_{1}=(0,2,4,3,1)\) and \(\phi_{2}=(4,3,2,1,0)\). We pick the subsequence \((2,4,3)\) from \(\phi_{1}\), and the offspring \(O\)
is initially \(O=(\infty, 2,4,3, \infty)\). Removing these three chosen elements from \(\phi_{2}\) yields the subsequence \((1,0)\), so we insert these two elements in this order into \(O\) to form \((1,2,4,3,0)\).

By far the most computationally intensive part of the algorithm is the fitness function, determining the number of \(t\)-sets left unseparated. One improvement that can be made immediately is to only consider \(t\)-sets \(S=\left\{c_{1}, \cdots, c_{t}\right\}\) such that \(C\) involves at least two of the copies (because otherwise, \(C\) is separated by the definition of the considered \(t\)-transformations). Further, any individual that is not mutated (i.e., the original parents) do not need to have their fitness function re-evaluated. We use these improvements in our implementation of Algorithm 4.

Our genetic algorithm does not change which subpopulation an individual is in, for the reason that the optimal choices for \(d\) columns to delete may not at all be similar to those for \(d^{\prime} \neq d\) columns deleted. For this reason, we run our algorithm for each choice of subpopulation, because each of them can be run independently. An interesting research direction here is to find a useful crossover operator between two individuals that live within different subpopulations.

\subsection*{5.3 Genetic Algorithm Computational Results}

The goal of our GAs is not necessarily to generate \(t\)-restrictions, but to generate arrays that are as close as possible to being \(t\)-restrictions. Nevertheless, our GA can and does improve on the best-known values of PHFN \(_{\lambda}\). Atici [9] showed that \(\operatorname{PHFN}_{1}(x, 4,3)=4\) for all \(9 \leq x \leq 16\). Therefore, \(\operatorname{PHFN}_{3}(x, 4,3) \leq 12\) for the same range. Here, we show that \(\operatorname{PHFN}_{3}(14,4,3) \leq 11\), given in Figure 5.2. The starter array was a \(\mathrm{PHF}_{3}(11 ; 9,4,3)\), found via the satisfiability method in Section 3.2.3, given in Figure 5.1. The GA parameters involved deleting 2 columns \((d-c=2)\), with 2 parts \((m=2), 100\) individuals, and the resulting \(\mathrm{PHF}_{3}\) was found within 88 iterations of the

2331213
0033101
0313111
2132311
0323103
0332132
1330121
2121132
0003221
0031211
1013113
Figure 5.1: \(\mathrm{A}_{\mathrm{PHF}}^{3}\) (11; \(\left.9,4,3\right)\).
while loop. The run-time of the algorithm was less than 20 seconds (combined with initially generating the starter array \(\mathrm{PHF}_{3}(11 ; 9,4,3)\) with the satisfiability solver), whereas applying the solver directly to generating a \(\mathrm{PHF}_{3}(11 ; 14,4,3)\) took over 2 minutes.

We showcase attempting to generate a \(\mathrm{PHF}_{2}(12 ; 50,4,3)\) using our GA to demonstrate its effectiveness, and compare it to using previous techniques where the representation of the individual is the entire array. The "starter" array is a \(\mathrm{PHF}_{2}(12 ; 30,4\), 3), displayed in Figure 5.3. It was generated using the SAT model developed earlier in Section 3.2.3. We picked 30 columns because (1) it is strictly more than half of the number of desired columns (which forces \(c-d>0\) ), and (2) the SAT representation for this array is very large. Furthermore, we picked 4 symbols because the set of \(t\) transformations for the symbol set is larger than the number of affine transformations, and so there is a potential advantage over the old approach. The choice of \(\lambda=2\)

23312133002320
00331012233121
03131110323222
21323112032300
03231030232102
03321321002302 13301210112030 21211323030023 00032212221330 00312113321011 10131132320220

Figure 5.2: \(\mathrm{A}_{\mathrm{PHF}}^{3}\) (11; \(\left.14,4,3\right)\).

012001022113223300130313102223
000111122230011021223310031213
002311210302301310100121021313
011222203320113300020333102231
010123312030021210302223321303
001201222033331002032020123112
002122310322022131112110300303
002101231231032312213100112033
000113112003011101323223212131
012023320223321131223330223033
011303103003133122332233211010
011132100303010033102102003212
Figure 5.3: \(\mathrm{A} \mathrm{PHF}_{2}(12 ; 30,4,3)\).
was to showcase the algorithm's applicability to higher index restrictions. We added columns until the solving time for the SAT solver took over an hour. It is unknown whether a \(\mathrm{PHF}_{2}(12 ; 50,4,3)\) exists, but our goal here is to maximize the fitness of a \(12 \times 50\) array.

We now give two examples of attempting to generate PHFs with larger parameters. Figures 5.4 and 5.5 display the results of applying our GA to generating a \(\mathrm{PHF}_{2}(12 ; 30\), \(4,3)\). In all experiments, we used 1000 iterations, and 100 individuals. The maximum theoretically possible fitness for any individual is \(\binom{30}{3}=19600\). The Standard plot consists of the standard representation discussed earlier, and 2 Copies, 3 Copies, and 7 Copies correspond to the number of copies formed. In each case, we determined the minimum number of columns to remove so that the generated PHF has more than the necessary columns; for 2 copies, this was 5 columns deleted; 3 copies had 13 columns; and 7 copies had 17 columns. Each of the plots shows the average of the corresponding heuristic over 10 runs of the GA: Figure 5.4 is the average maximum fitness, and Figure 5.5 is the average mean fitness.

Note that the fitness of the individuals, when initialized randomly, is very high, above \(90 \%\) for nearly all individuals in all runs. This will often be the case when the number of rows is large enough, and when the index corresponding to the fitness function matches that of the starter array.

When the strength is larger, this threshold for the number of rows is larger; for this reason, we consider an example with few rows and high strength, namely strength 6. \(\mathrm{A}_{\mathrm{PHF}_{1}(4 ; 7,6,6)}\) is given in Figure 5.6, and is optimal in the number of rows and columns. We desire to construct an array that is as close as possible to being a \(\mathrm{PHF}_{1}(4 ; 14,6,6)\). Figures 5.7 and 5.8 display the results of applying our GA to generating a \(\mathrm{PHF}_{1}(4 ; 14,6,6)\).


Figure 5.4: Scatter Plot for Generating a \(\mathrm{PHF}_{2}(12 ; 50,4,3)\). Values Shown Are the Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm.


Figure 5.5: Scatter Plot for Generating a \(\mathrm{PHF}_{2}(12 ; 50,4,3)\). Values Shown Are the Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm.

0123450
0234521
0145423
0125345
Figure 5.6: \(\mathrm{A} \mathrm{PHF}_{1}(4 ; 7,6,6)\).


Figure 5.7: Scatter Plot for Generating a \(\operatorname{PHF}_{1}(4 ; 14,6,6)\). Values Shown Are the Maximum Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm.

\subsection*{5.3.1 Discussion of GA Results}

We discuss the results of the last two experiments; we begin with the first example, generating a \(\mathrm{PHF}_{2}(12 ; 30,4,3)\). The figures showcase results that are in agreement with our hypothesis, in that using copies to generate the object not only produces highly fit individuals quickly, but also these individuals are more fit (at first) compared to usual techniques (Standard in the plots). However, we can see that Standard overtakes all three choices of copies in Figure 5.4, and all but 2 Copies in Figure 5.5.


Figure 5.8: Scatter Plot for Generating a \(\operatorname{PHF}_{1}(4 ; 14,6,6)\). Values Shown Are the Average Fitnesses over All Individuals, Taken over 1000 Iterations, Averaged over 10 Runs of the Algorithm.

Intuitively, the GA for Standard can only make a small number of changes to the array, which can lead to local optima. However, because Standard chooses a random number of entries to mutate between 1 and 10, it is able to escape local optima relatively well. It overtakes the other plots because each of them always mutates exactly the same number of resulting entries in the generated PHF every time. We decided not to have their GAs mutate multiple \(t\)-transformations simultaneously because it would then mutate a significantly larger portion of the array, whereas Standard only mutates a small portion.

Now to the second example, generating a \(\operatorname{PHF}_{1}(4 ; 14,6,6)\). Such an array does not exist, because \(\operatorname{PHFN}_{1}(14,6,6) \geq 17\) due to a known lower bound [50]. The results are similar as that of the other example, but give slightly different conclusions. Here, Figure 5.7 shows that all choices of copies has the fitness converge very quickly. Note that in this example for \(n\) copies, there are \((6!)^{n}\) choices of \(t\)-transformations, and for
the first example, there are \((4!)^{n}\), which is much larger, even for \(n=2\). Also take note of Figure 5.8, which shows that 7 Copies has the lowest fitness among all four plots other than Standard. Here, 7 copies corresponds to deleting 5 columns, resulting in two columns for each copy. We predict this is one of the reasons why the plot is "slow" to converge, because \(t=6\), which is larger than the number of columns for each copy. In the first example, each number of copies has that each one has more columns than the strength. This shows that even though it is not as fast to converge, our method works for all choices of copies and strengths.

For both examples, the run time of the GA was much faster for 2 Copies, 3 Copies, and 7 Copies compared to Standard; specifically, all of them achieved a run time which is substantially less than half than for Standard. This is one additional benefit of our approach, as suspected, in that the number of \(t\)-sets needed to be checked is much smaller.

Finally, we address the two measures that we considered: average and maximum fitness. Note that in most real-world applications of PHFs, only the fact that it is a PHF matters, and not necessarily the structure within it. Therefore, we are only concerned with finding PHFs of maximum fitness. However, some applications may require "diverse" individuals, but would want many of the individuals to still have large fitness. This motivates the study of having many "different" PHFs of high fitness. Our approach does not aim to find many individuals with high fitness; the goal is purely to find any individual with as high of fitness as possible.

That said, it is possible to use an algorithm such as NSGA-II [42], which is useful for multi-objective optimization. For PHFs, fitness would be an obvious objective to maximize, but some other objectives that are worth considering are (1) the spectrum of \(t\)-sets separated \({ }^{1}\), (2) the balance of symbols for each row, (3) average number of

\footnotetext{
\({ }^{1}\) This is a mapping between \(t\)-sets and the index of the \(\lambda\) th row that separates each one.
}
times each \(t\)-set is separated, among others. We anticipate the use of multi-objective optimization for many types of \(t\)-restrictions.

\subsection*{5.4 Conclusion}

In this chapter, we developed a genetic algorithm that aims to construct existential \(t\)-restrictions of arbitrary index, given a "starter array" with fewer columns than what the target is. A key component of this algorithm is that it uses \(t\)-transformations of the given \(t\)-restriction, and multiple copies of the starter array. Further, different \(t\) transformations can be chosen for each row of each copy. The insight in this algorithm is that although the number of \(t\)-sets separated in each row is the same (by the \(t\) transformation property), where the \(t\)-sets are separated changes. Before, if a \(t\)-set of columns is not separated in some row, then it is not separated in any row; with our approach, this does not happen nearly as often in practice.

\section*{Chapter 6}

\section*{CONCLUSIONS}

In this chapter we summarize all of the results and ideas presented in this thesis. We then give open problems as well as research directions that are worth exploring.

\subsection*{6.1 Main Results and Ideas}

The main contribution of this thesis is a greater insight into the structure and generation of perfect hash families of higher index, through the use of probabilistics and asymptotics, constructive algorithms, new recursive constructions, and genetic algorithms. We enumerate individual contributions of each chapter next.

In Chapter 3, we investigated hash families of higher index. We gave simple constructions of them, mainly inspired by methods from coding theory. We then gave a new recursive construction that not only exploited ingredient hash families with smaller index, but also improves on the sizes of many PHFs with index 1 , even with small strength. More importantly, this construction works with any number of columns, symbols, and strength, and is general enough to allow for improvements when the number of columns exceeds the strength. We analyzed PHFN \(_{\lambda}\) both in a probabilistic setting (for which the optimal size is met for all choices of columns, symbols, and strength), and asymptotically. Finally, we developed a conditional expectation algorithm that constructs \(\mathrm{PHF}_{\lambda} \mathrm{S}\) that meet these bounds. The contribution of this chapter is a greater understanding of the structure of higher-index perfect hash families, both computationally and asymptotically.

In Chapter 4, we developed a new recursive construction algorithm for PHFs when the number of rows is small, and the number of symbols is relatively high (namely,
when the optimal number of columns is linear in the number of symbols). Here, we generalized the notion of PHFs to incorporate more requirements of separation, which we called fractal. Fractal PHHFs were developed using simple constructions, but they yielded many improvements in the sizes of PHFs. The contribution of this chapter is a new constraint on hash families wherein a new recursive construction is developed, and improving on the sizes of many perfect hash families.

In Chapter 5, we extended a method of Colbourn and Lanus to generate PHFs using a genetic algorithm. Furthermore, the genetic algorithm is novel because it (1) exploits the structure of PHFs, (2) guarantees substructure given an ingredient PHF, (3) improves the run time for computing the fitness of the PHF, and (4) is able to be generalized to any existential \(t\)-restriction. The contribution of this chapter is a new (randomized) construction algorithm that finds arrays with very high fitness quickly, whereas other methods are slower or do not produce arrays with high fitness.

\subsection*{6.2 Future Research Directions}

In this section we give some of the many possible open problems and research directions that emerge from the topics presented within this thesis.

\subsection*{6.2.1 Higher Index Research Directions}

It is an open problem, even in the \(\lambda=1\) case, whether or not there exists a satisfiability formula for perfect hash families that is polynomial in \(N, k, v, t, \lambda\) (the one presented in Chapter 3 is of exponential size). If \(v, t, \lambda\) are fixed, then the size of the array is polynomial in the values of \(N, k\). There are alternate formulations of satisfiability formulas for covering arrays other than the standard one [52], but they do not appear to be applicable to perfect hash families, primarily because of the discussion in Chapter 3.

What better purely probabilistic bounds, both lower and upper, can be found for \(\operatorname{PHFN}_{\lambda}\) ? The existing techniques do not appear to be able to improve beyond the additive \(c_{2} \sqrt{\lambda \log k}\) term. We believe a better bound of the form \(c_{1} \log k+c_{2} f(\lambda) \log \log k\) can be found via probabilistic techniques, where \(c_{2}\) is not dependent on \(\lambda\) or \(k\), and the function \(f\) is only dependent on \(\lambda\). Here is our reasoning, and we explain why it falls short; we illustrate this with \(\lambda=2\). Generate a \(\mathrm{PHF}_{1}\) uniformly at random, and suppose it has \(N\) rows. Then according to the binomial distribution one would hope to be able to bound the number of \(t\)-sets separated once, but not twice. Using a variable-strength analogue of perfect hash families [60], one can bound the number of additional rows needed (which is essentially logarithmic in the number of \(t\)-sets left only 1 -separated). The issue with this reasoning is that just because the expected number of sets separated 0 times is strictly less than 1 does not imply much about the distribution for sets separated exactly once. If one can employ probabilistic tools to infer what the distribution is, then we conjecture that a bound of the above form can be obtained somewhat simply.

For probabilistic bounds, we state a research direction with regards to the Lovász Local Lemma. It is possible to setup the dependency graph to apply the asymmetric LLL for a bound on \(\mathrm{PHFN}_{\lambda}\), stated next.

Theorem 6.1. [7] Let \(E_{1}, \cdots, E_{n}\) be events in a probability space, and let \(\Gamma\left(E_{i}\right)\) be the set of neighbors of \(E_{i}\) in the dependency graph. In the dependency graph, event \(E_{i}\) is not adjacent to events which are mutually independent to it. If there exist \(0 \leq x\left(E_{1}\right), \cdots, x\left(E_{n}\right) \leq 1\) such that \(\operatorname{Pr}\left[E_{i}\right] \leq x\left(E_{i}\right) \prod_{E_{j} \in \Gamma\left(E_{i}\right)}\left(1-x\left(E_{j}\right)\right)\), then with nonzero probability all of \(E_{1}, \cdots, E_{n}\) simultaneously do not occur.

The issue in applying the symmetric LLL directly here is that when a set \(C\) is \(i\)-separated, the event in which it is \((i+1)\)-separated depends on the former event,
and not the other direction. One can increase the dependence by adding a directed edge in the other direction, but this would not achieve as strong a bound. We outline how to construct the graph: there are \(\binom{k}{t} \lambda\) vertices \(A_{C, i}\), to denote the event that \(C\) is exactly \(i\)-separated, for all \(C \in\binom{[k]}{t}\) and \(0 \leq i<\lambda\). Construct a directed edge from \(A_{C, i}\) to \(A_{C^{\prime}, i^{\prime}}\) if:
- \(C \neq C^{\prime}\), and \(C \cap C^{\prime} \neq \emptyset\);
- \(C=C^{\prime}\), and \(i^{\prime}=i+1\).

Effectively, \(t\)-sets that normally have dependence appear in the graph, and a directed path exists among the same \(t\)-set in terms of increasing index. It is an open question as to what bound can be obtained by considering this dependency graph, since the result of Deng, Stinson, and Wei depends on the fact that all vertices have the same degree, and the entire graph is symmetric.

What are better asymptotics on \(\mathrm{PHFN}_{\lambda}\), where \(\lambda\) can grow? Additionally, what if \(v, t\) also can grow? The key here appears to be finding an asymptotically equal expression for the failure probability.

\subsection*{6.2.2 Fractal Research Directions}

A research direction for fractal PHHFs, naturally, is finding better constructions for higher-index hash families, and more generally to separating heterogeneous hash families. We give a setup for separating hash families here. For a set \(W=\left\{w_{1}, \cdots\right.\), \(\left.w_{s}\right\}\), the shadow of \(W\) is the union of \(\left\{w_{1}-i_{1}, \cdots, w_{s}-i_{s}\right\}\) over all choices of \(i_{1}, \cdots, i_{s}\) such that exactly one of the \(i_{j}\) is 1 and the others are 0 (if any of the \(i_{j}\) become 0 as a result, then we drop it from the notation). For example, if \(W=\{2,4\}\), the shadow of \(W\) is \(\{\{1,4\},\{2,3\}\}\). The recursive shadow of \(W\) is the union of the shadow \(S\) of \(W\) as well as the recursive shadow of every \(s \in S\). If \(W=\{2,4\}\), then the recursive
shadow of \(W\) is \(\{\{1,4\},\{2,3\},\{1,3\},\{1,2\},\{1,1\},\{1\},\{2,2\}\}\). Construct a tree \(T_{W}\) rooted at \(W\), with vertices being the sets in the recursive shadow of \(W\) as well as \(W\), and an edge formed between \(s, s^{\prime}\) if \(s\) is in the shadow of \(s^{\prime}\), or vice versa. The recursive shadow height of \(T_{W}\) is the length of the longest root-to-leaf path in \(T_{W}\) from \(W\). The shadow of \(\mathbf{W}\) is the union of all shadows of every \(W \in \mathbb{W}\); define recursive shadow, and recursive shadow height similarly for W. Denote the recursive shadow height of W as \(r(\mathrm{~W})=\max _{W \in \mathrm{~W}} r(W)\).
\(\mathrm{A}_{\mathrm{SHHF}_{\lambda}}\left(r(\mathrm{~W})+\lambda-1 ; k,\left(v_{1}, \cdots, v_{N}\right), \mathrm{W}\right)\) is fractal if and only if the removal of any row \(i\) results in a fractal \(\mathrm{SHHF}_{\lambda}\left(r(\mathrm{~W})+\lambda-1 ; k,\left(v_{1}, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{N}\right), \mathrm{W}^{\prime}\right)\), where \(\mathrm{W}^{\prime}\) is the shadow of \(\mathrm{W}^{\prime}\). One can now prove similar results as presented in Chapter 4. However, it would be of great interest to determine when and if the generalization to SHHFs generates arrays that are substantially better than existing methods for constructing SHHFs.

Another research direction here is how to generate the ( \(n, m, d, \lambda\) ) ingredients, or to find "good" constructions of them that are stronger than the binomial result of Lemma 4.10. Further, how do computational results compare to the ones generated here? The key with \((n, m, d, \lambda)\) coverings for all choices of \(\lambda\) is that not all of the \(n\) subsets chosen are not required to have the same cardinality.

Every fractal PHF with \(N=t=3\) that we have generated matched the best known values of \(k\) for each number of symbols \(v\). In other words, for every bestknown PHF that exists with 3 rows and strength 3, we found a fractal PHF with the same parameters. This observation leads to the question of whether the optimal parameters for fractal PHF always match those of "non-fractal" PHFs. A simple probabilistic analysis of the \(N=t=3\) case gives heuristics as to why this is the case; find the maximum number of columns for a 1 -separated PHF on 3 rows and strength 3 , and the same for a 2 -separated PHF on 3 rows and strength 2 , and observe the
minimum of the two. If one shows that the minimum asymptotically matches the maximum of the two, then there is evidence that this is true. However, this does not imply that a fractal PHF on the minimum of the two actually exists because the distribution may be completely different when both requirements are considered.

\subsection*{6.2.3 Genetic Algorithm Research Directions}

In the genetic algorithm we proposed in Chapter 5, we used a steady-state approach. When one considers PHFs generated at random, the fitness of them is often very large; for the example presented there, the fitness of a random individual is over \(90 \%\). Most genetic algorithms are suited for problems in which the fitness is often much smaller. Which genetic algorithm-style approach is best suited for problems where the average fitness is already very large (and the variance in the fitness distribution is very small), where the goal is only to maximize the fitness?

In unpublished work, we considered covering perfect hash families using a steadystate algorithm. There, it turned out that a mutation-only approach gave CPHFs that had much higher fitness, more quickly, than when mutation and crossover were both used. An intuitive explanation is that mutation is less of a "destructive" operator than crossover is. However, the crossover operator used in that work was not the one developed here, which is less "destructive" because a contiguous set of rows from each parent appears in the child. We implemented this crossover operator in our setting ( \(t\)-transformations of PHFs), and similar results appeared. Would a similar crossover operator, or leaving crossover out entirely, improve the algorithm's fitness? Evidence seems to show that the latter is true, but since the fitness is already large on average, the first research direction of finding a more suitable GA may be more worthwhile.

\section*{REFERENCES}
[1] Akhtar, Y. and F. K. H. Phoa, "A construction of cost-efficient designs with guaranteed repeated measurements on interaction effects", preprint (2019).
[2] Alon, N., "Explicit construction of exponential sized families of \(k\)-independent sets", Discrete Mathematics 58, 2, 191-193 (1986).
[3] Alon, N. and S. Gutner, "Balanced hashing, color coding and approximate counting", in "Parameterized and Exact Computation", edited by J. Chen and F. V. Fomin, pp. 1-16 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009).
[4] Alon, N. and S. Gutner, "Balanced families of perfect hash functions and their applications", ACM Transactions on Algorithms 6, 3, 54:1-54:12 (2010).
[5] Alon, N., D. Moshkovitz and S. Safra, "Algorithmic construction of sets for \(k\) restrictions", ACM Transactions on Algorithms 2, 153-177 (2006).
[6] Alon, N. and M. Naor, "Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions", Algorithmica 16, 4, 434-449 (1996).
[7] Alon, N. and J. H. Spencer, The probabilistic method (John Wiley \& Sons, 2004).
[8] Ang, N., Generating Mixed-Level Covering Arrays with \(\lambda=2\) and Test Prioritization, Master's thesis, Arizona State University (2015).
[9] Atici, M., Hash families: recursive constructions and applications to cryptography, PhD dissertation, University of Nebraska (1996).
[10] Atici, M., S. S. Magliveras, D. R. Stinson and W.-D. Wei, "Some recursive constructions for perfect hash families", Journal of Combinatorial Designs 4, 5, 353-363 (1996).
[11] Barwick, S. G. and W.-A. Jackson, "A sequence approach to linear perfect hash families", Designs, Codes and Cryptography 45, 1, 95-121 (2007).
[12] Barwick, S. G. and W.-A. Jackson, "Geometric constructions of optimal linear perfect hash families", Finite Fields and Their Applications 14, 1, 1-13 (2008).
[13] Bazrafshan, M. and T. van Trung, "Bounds for separating hash families", Journal of Combinatorial Theory, Series A 118, 3, 1129-1135 (2011).
[14] Blackburn, S. R., "Perfect hash families: Probabilistic methods and explicit constructions", Journal of Combinatorial Theory, Series A 92, 1, 54-60 (2000).
[15] Blackburn, S. R., "Perfect hash families with few functions", Unpublished manuscript (2000).
[16] Blackburn, S. R., "Frameproof codes", SIAM Journal on Discrete Mathematics 16, 3, 499-510 (2003).
[17] Blackburn, S. R., M. Burmester, Y. Desmedt and P. R. Wild, "Efficient multiplicative sharing schemes", in "Advances in Cryptology - EUROCRYPT '96", pp. 107-118 (1996).
[18] Blackburn, S. R. and P. R. Wild, "Optimal linear perfect hash families", Journal of Combinatorial Theory, Series A 83, 2, 233-250 (1998).
[19] Brickell, E. F., "A problem in broadcast encryption", in "5th Vermont Summer Workshop on Combinatorics and Graph Theory", (1991).
[20] Brouwer, A. E., J. B. Shearer, N. J. A. Sloane and W. D. Smith, "A new table of constant weight codes", IEEE Transactions on Information Theory 36, 6, 1334-1380 (1990).
[21] Cassels, J. and A. Godbole, "Covering arrays for some equivalence classes of words", Journal of Combinatorial Designs 27, 8, 506-521 (2019).
[22] Cawse, J. N., Experimental design for combinatorial and high throughput materials development (GE Global Research Technical Report, 2002).
[23] Colbourn, C. J., "Combinatorial aspects of covering arrays", Le Matematiche (Catania) 58, 121-167 (2004).
[24] Colbourn, C. J., "Covering array tables for \(t=2,3,4,5,6\) ", URL http://www. public.asu.edu/~ccolbou/src/tabby/catable.html (2005-2018).
[25] Colbourn, C. J., "Constructing perfect hash families using a greedy algorithm", Coding and Cryptology pp. 109-118 (2008).
[26] Colbourn, C. J., "Distributing hash families and covering arrays", Journal of Combinatorics, Information, and System Sciences 34, 113-126 (2009).
[27] Colbourn, C. J., "Covering arrays and hash families", NATO Science for Peace and Security Series, D: Information and Communication Security 29, Information Security, Coding Theory and Related Combinatorics, 99-135 (2011).
[28] Colbourn, C. J. and J. H. Dinitz, Handbook of Combinatorial Designs (CRC Press, 2007).
[29] Colbourn, C. J. and R. E. Dougherty, "Fractal perfect hash families (extended abstract)", Electronic Notes in Discrete Mathematics 65, 37-42, 7th International Conference on Algebraic Informatics (CAI 2017): Design Theory Track (2018).
[30] Colbourn, C. J., R. E. Dougherty and D. Horsley, "Distributing hash families with few rows", Theoretical Computer Science (Accepted) (2018).
[31] Colbourn, C. J., D. Horsley and V. R. Syrotiuk, "Strengthening hash families and compressive sensing", Journal of Discrete Algorithms 16, 170-186 (2012).
[32] Colbourn, C. J., D. Jungnickel and A. Rosa, "The strong chromatic number of partial triple systems", Discrete Applied Mathematics 20, 1, 31-38 (1988).
[33] Colbourn, C. J. and E. Lanus, "Subspace restrictions for covering perfect hash families", Art of Discrete and Applied Mathematics 1, \#P02.03 (2018).
[34] Colbourn, C. J., E. Lanus and K. Sarkar, "Asymptotic and constructive methods for covering perfect hash families and covering arrays", Designs, Codes and Cryptography 86, 4, 907-937 (2017).
[35] Colbourn, C. J. and A. C. H. Ling, "Linear hash families and forbidden configurations", Designs, Codes and Cryptography 52, 1, 25-55 (2009).
[36] Colbourn, C. J. and A. C. H. Ling, "A recursive construction for perfect hash families", Journal of Mathematical Cryptology 3, 4, 291-306 (2009).
[37] Colbourn, C. J. and D. W. McClary, "Locating and detecting arrays for interaction faults", Journal of Combinatorial Optimization 15, 1, 17-48 (2008).
[38] Colbourn, C. J. and J. Torres-Jimenez, "Heterogeneous hash families and covering arrays", Contemporary Mathematics 523, 3-15 (2010).
[39] Czech, Z. J., G. Havas and B. S. Majewski, "Perfect hashing", Theoretical Computer Science 182, 1-143 (1997).
[40] Damaschke, P., "Adaptive versus nonadaptive attribute-efficient learning", Machine Learning 41, 2, 197-215 (2000).
[41] Davis, L., "Job shop scheduling with genetic algorithms", in "Proceedings of an international conference on genetic algorithms and their applications", pp. 136-140 (1985).
[42] Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Transactions on Evolutionary Computation 6, 2, 182-197 (2002).
[43] Deng, D., D. R. Stinson and R. Wei, "The lovász local lemma and its applications to some combinatorial arrays", Designs, Codes and Cryptography 32, 1, 121-134 (2004).
[44] Dinitz, J. H., A. C. H. Ling and D. R. Stinson, "Perfect hash families from transversal designs", The Australasian Journal of Combinatorics 37, 233-242 (2007).
[45] Dougherty, R. E., "Perfect hash family tables for \(t=3\) to 11", URL http://www. public.asu.edu/~redoughe/phf_pages/phf_tables.html (2017).
[46] Dougherty, R. E. and C. J. Colbourn, "Perfect hash families: The generalization to higher indices", (Submitted) (2019).
[47] Dougherty, R. E., E. Lanus, C. J. Colbourn and S. Forrest, "Genetic algorithms for affine transformations to existential \(t\)-restrictions", in "Proceedings of the Genetic and Evolutionary Computation Conference Companion", GECCO '19, pp. 1707-1708 (ACM, New York, NY, USA, 2019).
[48] Eén, N. and A. Biere, "Effective preprocessing in sat through variable and clause elimination", in "International conference on theory and applications of satisfiability testing", pp. 61-75 (Springer, 2005).
[49] Fiat, A. and M. Naor, "Broadcast encryption", in "Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology", CRYPTO '93, pp. 480-491 (1994).
[50] Fredman, M. and J. Komlós, "On the Size of Separating Systems and Families of Perfect Hash Functions", SIAM Journal on Algebraic Discrete Methods 5, 1, 61-68 (1984).
[51] Fuji-Hara, R., "Perfect hash families of strength three with three rows from varieties on finite projective geometries", Designs, Codes and Cryptography 77, 2, 351-356 (2015).
[52] Hnich, B., S. D. Prestwich, E. Selensky and B. M. Smith, "Constraint models for the covering test problem", Constraints 11, 2, 199-219 (2006).
[53] Knill, E., W. J. Bruno and D. C. Torney, "Non-adaptive group testing in the presence of errors", Discrete Applied Mathematics 88, 1, 261-290 (1998).
[54] Kuhn, D. R. and M. J. Reilly, "An investigation of the applicability of design of experiments to software testing", in "27th Annual NASA Goddard/IEEE Software Engineering Workshop", pp. 91-95 (2002).
[55] Leach, K., R. Dougherty, C. Spensky, S. Forrest and W. Weimer, "Evolutionary computation for improving malware analysis", in "Proceedings of the 6th International Workshop on Genetic Improvement", GI '19, pp. 18-19 (IEEE Press, Piscataway, NJ, USA, 2019).
[56] MacWilliams, F. J. and N. J. A. Sloane, The theory of error-correcting codes (North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977).
[57] Martirosyan, S. and T. van Trung, "Explicit constructions for perfect hash families", Designs, Codes and Cryptography 46, 1, 97-112 (2008).
[58] Mehlhorn, K., "On the program size of perfect and universal hash functions", in "23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)", pp. 170-175 (1982).
[59] Moser, R. A. and G. Tardos, "A constructive proof of the general lovász local lemma", Journal of the ACM 57, 2, 11:1-11:15 (2010).
[60] Moura, L., S. Raaphorst and B. Stevens, "The lovász local lemma and variable strength covering arrays", Electronic Notes in Discrete Mathematics 65, 4349, 7th International Conference on Algebraic Informatics (CAI 2017): Design Theory Track (2018).
[61] Newman, I. and A. Wigderson, "Lower bounds on formula size of Boolean functions using hypergraph entropy", SIAM Journal on Discrete Mathematics 8, 4, 536-542 (1995).
[62] Niu, X. and H. Cao, "Constructions and bounds for separating hash families", Discrete Mathematics 341, 9, 2627-2638 (2018).
[63] Procacci, A. and R. Sanchis, "Perfect and separating hash families: new bounds via the algorithmic cluster expansion local lemma", Annales de l'Institut Henri Poincaré D. Combinatorics, Physics and their Interactions 5, 2, 153-171 (2018).
[64] Rodriguez-Tello, E. and J. Torres-Jimenez, "Memetic algorithms for constructing binary covering arrays of strength three", in "International Conference on Artificial Evolution (Evolution Artificielle)", pp. 86-97 (Springer, 2009).
[65] Sabharwal, S., P. Bansal and N. Mittal, "Construction of \(t\)-way covering arrays using genetic algorithm", International Journal of System Assurance Engineering and Management 8, 2, 264-274 (2017).
[66] Sarkar, K., Covering Arrays: Algorithms and Asymptotics, Ph.D. thesis, Arizona State University (2016).
[67] Sarkar, K. and C. J. Colbourn, "Upper bounds on the size of covering arrays", SIAM Journal on Discrete Mathematics 31, 2, 1277-1293 (2017).
[68] Seidel, S. A., K. Sarkar, C. J. Colbourn and V. R. Syrotiuk, "Separating interaction effects using locating and detecting arrays", in "International Workshop on Combinatorial Algorithms", pp. 349-360 (2018).
[69] Shangguan, C. and G. Ge, "Separating hash families: A johnson-type bound and new constructions", SIAM Journal on Discrete Mathematics 30, 4, 2243-2264 (2016).
[70] Shasha, D. E., A. Y. Kouranov, L. V. Lejay, M. F. Chou and G. M. Coruzzi, "Using combinatorial design to study regulation by multiple input signals. a tool for parsimony in the post-genomics era", Plant Physiology 127, 4, 1590-1594 (2001).
[71] Sherwood, G. B., S. S. Martirosyan and C. J. Colbourn, "Covering arrays of higher strength from permutation vectors", Journal of Combinatorial Designs 14, 3, 202-213 (2006).
[72] Staddon, J. N., D. R. Stinson and R. Wei, "Combinatorial properties of frameproof and traceability codes", IEEE Transactions on Information Theory 47, 1042-1049 (2001).
[73] Stardom, J., Metaheuristics and the search for covering and packing arrays, Master's thesis, Simon Frasier University (2001).
[74] Stinson, D. R., "On some methods for unconditionally secure key distribution and broadcast encryption", Designs, Codes and Cryptography 12, 3, 215-243 (1997).
[75] Stinson, D. R., T. van Trung and R. Wei, "Secure frameproof codes, key distribution patterns, group testing algorithms and related structures", Journal of Statistical Planning and Inference 86, 2, 595-617 (2000).
[76] Stinson, D. R., R. Wei and L. Zhu, "New constructions for perfect hash families and related structures using combinatorial designs and codes", Journal of Combinatorial Designs 8, 3, 189-200 (2000).
[77] Timaná-Peña, J. A., C. A. Cobos-Lozada and J. Torres-Jimenez, "Metaheuristic algorithms for building covering arrays: A review", Facultad de Ingeniería 25, 43, 31-45 (2016).
[78] Van Den Berg, E., E. Candès, G. Chinn, C. Levin, P. D. Olcott and C. Sing-Long, "Single-photon sampling architecture for solid-state imaging sensors", Proceedings of the National Academy of Sciences 110, 30, E2752-E2761 (2013).
[79] Walker II, R. A. and C. J. Colbourn, "Perfect hash families: Constructions and existence", Journal of Mathematical Cryptology 1, 2, 125-150 (2007).

\section*{APPENDIX A}

EXTENDED TABLES FOR FRACTAL

Table A.1: Further Improvements for Strength 6, Four Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 37 & 46 & 61 & 64 & 73 & 82 & 85 & 91 & 97 & 106 & 133 & 136 \\
\(k_{\text {fractal }}\) & 54 & 68 & 92 & 96 & 111 & 124 & 130 & 140 & 149 & 164 & 206 & 212 \\
\(k_{\text {old }}\) & 53 & 67 & 90 & 95 & 110 & 123 & 128 & 137 & 147 & 163 & 204 & 210 \\
\hline\(v\) & 145 & 151 & 181 & 190 & 199 & 232 & 235 & 241 & 253 & 265 & 271 & 274 \\
\(k_{\text {fractal }}\) & 227 & 236 & 285 & 300 & 314 & 368 & 372 & 383 & 402 & 422 & 432 & 436 \\
\(k_{\text {old }}\) & 226 & 235 & 283 & 299 & 311 & 366 & 371 & 382 & 397 & 411 & 423 & 429 \\
\hline\(v\) & 289 & 298 & 313 & 316 & 331 & 337 & 352 & 361 & & & & \\
\(k_{\text {fractal }}\) & 461 & 476 & 500 & 504 & 530 & 539 & 564 & 579 & & & & \\
\(k_{\text {old }}\) & 459 & 475 & 493 & 496 & 508 & 532 & 562 & 578 & & & \\
\hline\(v\) & 379 & 385 & 391 & 397 & 406 & 409 & 421 & 430 & 451 & 460 & 463 & \\
\(k_{\text {fractal }}\) & 608 & 617 & 628 & 638 & 652 & 656 & 677 & 692 & 726 & 740 & 746 & \\
\(k_{\text {old }}\) & 599 & 609 & 615 & 627 & 645 & 651 & 675 & 691 & 715 & 726 & 732 & \\
\hline\(v\) & 469 & 481 & 487 & 496 & 505 & 511 & 514 & 529 & 541 & 547 & 562 & \\
\(k_{\text {fractal }}\) & 756 & 775 & 784 & 800 & 815 & 824 & 828 & 854 & 874 & 884 & 908 & \\
\(k_{\text {old }}\) & 744 & 768 & 780 & 798 & 814 & 823 & 826 & 841 & 859 & 871 & 901 & \\
\hline\(v\) & 568 & 571 & 577 & 586 & 595 & 601 & 613 & 625 & 628 & 631 & 649 & \\
\(k_{\text {fractal }}\) & 916 & 922 & 933 & 948 & 962 & 971 & 992 & 1012 & 1016 & 1022 & 1051 & \\
\(k_{\text {old }}\) & 913 & 919 & 931 & 947 & 959 & 965 & 977 & 996 & 1002 & 1008 & 1044 & \\
\hline\(v\) & 661 & 664 & 673 & 685 & 691 & 694 & 703 & 715 & 721 & 727 & 742 & \\
\(k_{\text {fractal }}\) & 1070 & 1076 & 1091 & 1110 & 1118 & 1124 & 1140 & 1160 & 1170 & 1178 & 1204 & \\
\(k_{\text {old }}\) & 1068 & 1074 & 1090 & 1105 & 1111 & 1114 & 1123 & 1145 & 1156 & 1167 & 1197 & \\
\hline\(v\) & 757 & 766 & 781 & 793 & 799 & 811 & 817 & 820 & 826 & 829 & 841 & \\
\(k_{\text {fractal }}\) & 1229 & 1244 & 1268 & 1287 & 1298 & 1318 & 1328 & 1332 & 1340 & 1346 & 1367 & \\
\(k_{\text {old }}\) & 1227 & 1243 & 1261 & 1273 & 1279 & 1300 & 1312 & 1318 & 1330 & 1336 & 1360 & \\
\hline\(v\) & 856 & 859 & 865 & 883 & 898 & 901 & 913 & 919 & 925 & 937 & 946 & 961 \\
\(k_{\text {fractal }}\) & 1392 & 1396 & 1407 & 1436 & 1460 & 1466 & 1486 & 1496 & 1505 & 1524 & 1540 & 1565 \\
\(k_{\text {old }}\) & 1390 & 1395 & 1406 & 1427 & 1442 & 1445 & 1467 & 1479 & 1491 & 1515 & 1533 & 1563 \\
\hline\(v\) & 970 & 991 & 1009 & 1021 & 1027 & 1036 & 1051 & 1057 & 1072 & 1081 & 1084 & 1093 \\
\(k_{\text {fractal }}\) & 1580 & 1614 & 1644 & 1664 & 1674 & 1688 & 1712 & 1723 & 1748 & 1763 & 1768 & 1781 \\
\(k_{\text {old }}\) & 1579 & 1603 & 1628 & 1645 & 1656 & 1674 & 1704 & 1716 & 1746 & 1762 & 1768 & 1777 \\
\hline\(v\) & 1105 & 1123 & 1126 & 1135 & 1141 & 1153 & 1171 & 1174 & 1177 & 1189 & 1198 & 1216 \\
\(k_{\text {fractal }}\) & 1802 & 1832 & 1836 & 1852 & 1862 & 1881 & 1910 & 1916 & 1919 & 1941 & 1956 & 1984 \\
\(k_{\text {old }}\) & 1789 & 1807 & 1813 & 1831 & 1843 & 1867 & 1903 & 1909 & 1915 & 1939 & 1955 & 1976 \\
\hline & & & & & & & & & & & &
\end{tabular}

Table A.2: Further Improvements for Strength 6, Four Rows, Part 2
\begin{tabular}{r|cccccccccccc}
\hline\(v\) & 1225 & 1243 & 1249 & 1255 & 1261 & 1276 & 1297 & 1312 & 1321 & 1327 & 1345 & 1351 \\
\(k_{\text {fractal }}\) & 2000 & 2030 & 2039 & 2050 & 2060 & 2084 & 2119 & 2144 & 2159 & 2168 & 2197 & 2208 \\
\(k_{\text {old }}\) & 1985 & 2004 & 2016 & 2028 & 2040 & 2070 & 2112 & 2142 & 2158 & 2167 & 2185 & 2191 \\
\hline\(v\) & 1369 & 1378 & 1381 & 1387 & 1393 & 1396 & 1405 & 1426 & 1429 & 1441 & 1450 & 1459 \\
\(k_{\text {fractal }}\) & 2238 & 2252 & 2258 & 2268 & 2276 & 2280 & 2297 & 2332 & 2336 & 2357 & 2372 & 2386 \\
\(k_{\text {old }}\) & 2211 & 2229 & 2235 & 2247 & 2259 & 2265 & 2283 & 2325 & 2331 & 2355 & 2371 & 2383 \\
\hline\(v\) & 1480 & 1483 & 1489 & 1501 & 1513 & 1519 & 1531 & 1540 & 1561 & 1567 & 1576 & 1585 \\
\(k_{\text {fractal }}\) & 2420 & 2426 & 2434 & 2456 & 2476 & 2486 & 2504 & 2520 & 2555 & 2564 & 2580 & 2595 \\
\(k_{\text {old }}\) & 2404 & 2407 & 2413 & 2428 & 2452 & 2464 & 2488 & 2506 & 2548 & 2560 & 2578 & 2594 \\
\hline\(v\) & 1597 & 1621 & 1639 & 1651 & 1654 & 1657 & 1675 & 1681 & 1684 & 1702 & 1711 & 1717 \\
\(k_{\text {fractal }}\) & 2614 & 2654 & 2684 & 2704 & 2708 & 2714 & 2742 & 2753 & 2756 & 2788 & 2802 & 2813 \\
\(k_{\text {old }}\) & 2609 & 2633 & 2655 & 2679 & 2685 & 2691 & 2727 & 2739 & 2745 & 2781 & 2799 & 2811 \\
\hline\(v\) & 1726 & 1741 & 1765 & 1768 & 1783 & 1795 & 1801 & 1825 & 1828 & 1837 & 1849 & 1861 \\
\(k_{\text {fractal }}\) & 2828 & 2852 & 2892 & 2896 & 2922 & 2942 & 2952 & 2990 & 2996 & 3009 & 3031 & 3050 \\
\(k_{\text {old }}\) & 2827 & 2845 & 2869 & 2872 & 2892 & 2916 & 2928 & 2976 & 2982 & 3000 & 3024 & 3048 \\
\hline\(v\) & 1864 & 1873 & 1882 & 1891 & 1915 & 1921 & 1933 & 1945 & 1951 & 1954 & 1981 & 2002 \\
\(k_{\text {fractal }}\) & 3056 & 3071 & 3084 & 3100 & 3140 & 3149 & 3170 & 3190 & 3200 & 3204 & 3249 & 3284 \\
\(k_{\text {old }}\) & 3054 & 3070 & 3082 & 3091 & 3115 & 3124 & 3147 & 3169 & 3175 & 3181 & 3235 & 3277 \\
\hline\(v\) & 2017 & 2026 & 2041 & 2047 & 2053 & 2071 & 2080 & 2089 & 2101 & 2107 & 2113 & 2140 \\
\(k_{\text {fractal }}\) & 3309 & 3324 & 3347 & 3358 & 3366 & 3398 & 3412 & 3428 & 3448 & 3458 & 3467 & 3512 \\
\(k_{\text {old }}\) & 3307 & 3323 & 3341 & 3347 & 3353 & 3371 & 3380 & 3396 & 3420 & 3432 & 3444 & 3498 \\
\hline\(v\) & 2143 & 2161 & 2176 & 2179 & 2185 & 2206 & 2209 & 2221 & 2233 & 2245 & 2251 & 2263 \\
\(k_{\text {fractal }}\) & 3516 & 3547 & 3572 & 3576 & 3587 & 3620 & 3626 & 3644 & 3666 & 3685 & 3696 & 3716 \\
\(k_{\text {old }}\) & 3504 & 3540 & 3570 & 3575 & 3586 & 3610 & 3613 & 3625 & 3637 & 3651 & 3663 & 3687 \\
\hline\(v\) & 2269 & 2278 & 2281 & 2305 & 2311 & 2326 & 2332 & 2341 & 2350 & 2377 & 2401 & 2416 \\
\(k_{\text {fractal }}\) & 3726 & 3740 & 3743 & 3785 & 3794 & 3820 & 3828 & 3845 & 3860 & 3904 & 3944 & 3968 \\
\(k_{\text {old }}\) & 3699 & 3717 & 3723 & 3771 & 3783 & 3813 & 3825 & 3843 & 3859 & 3889 & 3921 & 3936 \\
\hline\(v\) & 2419 & 2431 & 2437 & 2443 & 2449 & 2458 & 2461 & 2476 & 2485 & 2497 & & \\
\(k_{\text {fractal }}\) & 3974 & 3994 & 4004 & 4012 & 4023 & 4036 & 4040 & 4068 & 4082 & 4103 & & \\
\(k_{\text {old }}\) & 3940 & 3964 & 3976 & 3988 & 4000 & 4018 & 4024 & 4054 & 4072 & 4096 & & \\
\hline
\end{tabular}

Table A.3: Further Improvements for Strength 6, Five Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 36 & 42 & 254 & 263 & 273 & 281 & 292 & 306 & 320 & 329 & 336 & 344 \\
\(k_{\text {fractal }}\) & 60 & 70 & 590 & 615 & 645 & 665 & 700 & 750 & 800 & 825 & 840 & 860 \\
\(k_{\text {old }}\) & 57 & 67 & 502 & 511 & 521 & 529 & 580 & 594 & 613 & 653 & 660 & 668 \\
\hline\(v\) & 352 & 360 & 370 & 377 & 384 & 394 & 400 & 409 & 416 & 425 & 433 & 441 \\
\(k_{\text {fractal }}\) & 880 & 900 & 930 & 945 & 960 & 990 & 1000 & 1025 & 1040 & 1065 & 1085 & 1105 \\
\(k_{\text {old }}\) & 676 & 684 & 729 & 800 & 816 & 826 & 832 & 841 & 848 & 857 & 865 & 873 \\
\hline\(v\) & 452 & 457 & 466 & 473 & 484 & 491 & 501 & 510 & 522 & 630 & 639 & 648 \\
\(k_{\text {fractal }}\) & 1140 & 1145 & 1170 & 1185 & 1220 & 1235 & 1265 & 1290 & 1330 & 1750 & 1775 & 1800 \\
\(k_{\text {old }}\) & 884 & 889 & 898 & 905 & 964 & 971 & 997 & 1260 & 1290 & 1398 & 1407 & 1416 \\
\hline\(v\) & 675 & 685 & 693 & 703 & 711 & 720 & 729 & 738 & 747 & 756 & 765 & 774 \\
\(k_{\text {fractal }}\) & 1875 & 1905 & 1925 & 1955 & 1975 & 2000 & 2025 & 2050 & 2075 & 2100 & 2125 & 2150 \\
\(k_{\text {old }}\) & 1443 & 1453 & 1461 & 1471 & 1479 & 1488 & 1497 & 1506 & 1530 & 1620 & 1629 & 1638 \\
\hline\(v\) & 784 & 792 & 802 & 811 & 819 & 830 & 838 & 848 & 860 & 865 & 878 & 887 \\
\(k_{\text {fractal }}\) & 2180 & 2200 & 2230 & 2255 & 2275 & 2310 & 2330 & 2360 & 2400 & 2405 & 2450 & 2475 \\
\(k_{\text {old }}\) & 1648 & 1656 & 1666 & 1675 & 1683 & 1694 & 1702 & 1712 & 1724 & 1729 & 1746 & 1755 \\
\hline
\end{tabular}

Table A.4: Further Improvements for Strength 7, Five Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 40 & 52 & 53 & 56 & 57 & 59 & 61 & 62 & 65 & 66 & 69 & 70 \\
\(k_{\text {fractal }}\) & 56 & 74 & 76 & 80 & 81 & 85 & 88 & 89 & 94 & 97 & 100 & 101 \\
\(k_{\text {old }}\) & 55 & 73 & 74 & 79 & 80 & 83 & 86 & 87 & 93 & 95 & 99 & 100 \\
\hline\(v\) & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 83 & 86 & 90 & 91 & 92 \\
\(k_{\text {fractal }}\) & 103 & 104 & 105 & 106 & 109 & 112 & 113 & 123 & 128 & 134 & 135 & 137 \\
\(k_{\text {old }}\) & 101 & 102 & 103 & 105 & 106 & 108 & 110 & 119 & 126 & 132 & 133 & 135 \\
\hline\(v\) & 93 & 95 & 96 & 99 & 100 & 101 & 102 & 103 & 104 & 105 & 106 & 107 \\
\(k_{\text {fractal }}\) & 138 & 143 & 144 & 148 & 149 & 150 & 154 & 155 & 156 & 157 & 158 & 160 \\
\(k_{\text {old }}\) & 137 & 141 & 143 & 147 & 148 & 149 & 150 & 151 & 153 & 155 & 157 & 159 \\
\hline\(v\) & 108 & 109 & 110 & 111 & 112 & 116 & 117 & 118 & 120 & 121 & 122 & 125 \\
\(k_{\text {fractal }}\) & 162 & 167 & 168 & 169 & 170 & 176 & 177 & 178 & 180 & 182 & 184 & 191 \\
\(k_{\text {old }}\) & 161 & 163 & 164 & 166 & 167 & 172 & 173 & 174 & 177 & 179 & 181 & 187 \\
\hline\(v\) & 126 & 251 & 252 & 253 & 255 & 256 & 257 & 259 & 260 & 262 & 263 & 265 \\
\(k_{\text {fractal }}\) & 192 & 400 & 401 & 402 & 404 & 408 & 409 & 414 & 417 & 420 & 421 & 426 \\
\(k_{\text {old }}\) & 188 & 389 & 391 & 393 & 397 & 399 & 401 & 403 & 404 & 406 & 407 & 409 \\
\hline\(v\) & 266 & 267 & 270 & 272 & 273 & 274 & 275 & 276 & 279 & 280 & 281 & 283 \\
\(k_{\text {fractal }}\) & 428 & 429 & 432 & 434 & 435 & 436 & 439 & 444 & 447 & 448 & 452 & 455 \\
\(k_{\text {old }}\) & 410 & 411 & 414 & 416 & 417 & 418 & 419 & 420 & 423 & 424 & 425 & 427 \\
\hline\(v\) & 284 & 286 & 287 & 291 & 292 & 294 & 296 & 297 & 298 & 299 & 301 & 303 \\
\(k_{\text {fractal }}\) & 458 & 462 & 464 & 469 & 472 & 474 & 476 & 477 & 478 & 480 & 484 & 490 \\
\(k_{\text {old }}\) & 428 & 430 & 431 & 435 & 436 & 438 & 440 & 441 & 442 & 443 & 457 & 447 \\
\hline\(v\) & 305 & 308 & 309 & 311 & 312 & 313 & 315 & 318 & 319 & 321 & 322 & 324 \\
\(k_{\text {fractal }}\) & 492 & 495 & 500 & 503 & 504 & 508 & 510 & 513 & 518 & 520 & 522 & 524 \\
\(k_{\text {old }}\) & 453 & 464 & 465 & 467 & 468 & 481 & 491 & 498 & 499 & 501 & 502 & 504 \\
\hline
\end{tabular}

Table A.5: Further Improvements for Strength 7, Five Rows, Part 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 32 & 327 & 32 & 331 & 333 & 33 & 335 & 336 & 337 & 338 & 340 & 341 \\
\hline & 528 & 529 & 530 & 534 & 537 & 538 & 539 & 542 & 547 & 550 & 552 & 553 \\
\hline & 506 & 507 & 508 & 511 & 513 & 514 & 515 & 516 & 517 & 51 & 520 & 21 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\]} & 342 & 3 & 345 & 46 & 348 & 351 & 352 & 354 & 55 & 356 & 357 & 58 \\
\hline & 554 & 559 & 561 & 562 & 568 & 571 & 572 & 574 & 575 & 576 & 577 & 578 \\
\hline & 522 & 523 & 525 & 526 & 528 & 531 & 532 & 534 & 535 & 536 & 537 & 538 \\
\hline \multirow[b]{3}{*}{\(k_{\text {fractal }}\) \(k_{\text {old }}\)} & 359 & 361 & 363 & 365 & 366 & 370 & 372 & 375 & 376 & 379 & 384 & 386 \\
\hline & 579 & 589 & 592 & 594 & 598 & 602 & 609 & 614 & 616 & 620 & 626 & 628 \\
\hline & 539 & 541 & 543 & 571 & 576 & 572 & 582 & 585 & 586 & 589 & 594 & 596 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\]} & 389 & 390 & 391 & 93 & 394 & 95 & 396 & 97 & 988 & 400 & 04 & 405 \\
\hline & 634 & 636 & 637 & 639 & 640 & 641 & 642 & 644 & 648 & 656 & 660 & 662 \\
\hline & 599 & 600 & 601 & 603 & 604 & 05 & 606 & 609 & 614 & 620 & 624 & 25 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 406 & 408 & 410 & 411 & 412 & 414 & 415 & 416 & 417 & 418 & 20 & 21 \\
\hline & 664 & 670 & 672 & 675 & 676 & 78 & 679 & 680 & 681 & 682 & 684 & 688 \\
\hline & 626 & 628 & 630 & 631 & 632 & 634 & 635 & 640 & 641 & 642 & 644 & 645 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 423 & 425 & 427 & 431 & 432 & 434 & 435 & 38 & 441 & 442 & 445 & 448 \\
\hline & 690 & 696 & 702 & 706 & 708 & 710 & 714 & 721 & 728 & 729 & 732 & 736 \\
\hline & 647 & 651 & 655 & 663 & 665 & 669 & 671 & 677 & 683 & 685 & 691 & 697 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\]} & 449 & 452 & 453 & 455 & 457 & 458 & 460 & 461 & 462 & 464 & 465 & 466 \\
\hline & 737 & 740 & 741 & 746 & 751 & 752 & 756 & 758 & 759 & 761 & 765 & 770 \\
\hline & 699 & 705 & 707 & 711 & 721 & 722 & 724 & 725 & 726 & 729 & 731 & 33 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\]} & 470 & 471 & 473 & 474 & 475 & 476 & 478 & 479 & 481 & 482 & 483 & 484 \\
\hline & 774 & 777 & 779 & 780 & 783 & 786 & 788 & 790 & 793 & 95 & 796 & 98 \\
\hline & 741 & 743 & 747 & 749 & 751 & 753 & 757 & 759 & 763 & 765 & 767 & 769 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\]} & 488 & 490 & 491 & 492 & 493 & 494 & 495 & 496 & 97 & & 499 & 52 \\
\hline & 802 & 804 & 805 & 807 & 808 & 810 & 812 & 816 & 817 & 820 & 823 & 826 \\
\hline & 776 & 780 & 782 & 784 & 786 & 787 & 789 & 791 & 793 & 795 & 797 & 802 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 50 & 504 & 506 & 507 & 508 & 512 & 515 & 16 & 518 & 19 & 522 & 23 \\
\hline & 828 & 831 & 839 & 840 & 844 & 848 & 851 & 852 & 854 & 856 & 859 & 860 \\
\hline & 803 & 804 & 806 & 807 & 808 & 812 & 815 & 816 & 820 & 825 & 828 & 829 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 525 & 529 & 531 & 532 & 533 & 534 & 535 & 30 & 538 & 541 & 54 & 545 \\
\hline & 870 & 874 & 876 & 878 & 879 & 880 & 881 & 884 & 890 & 897 & 900 & 902 \\
\hline & 831 & 835 & 837 & 838 & 839 & 840 & 841 & 842 & 844 & 847 & 850 & 851 \\
\hline \multirow[b]{3}{*}{\[
\begin{array}{r}
k_{\text {fractal }} \\
k_{\text {old }}
\end{array}
\]} & 546 & 550 & 552 & 553 & 554 & 555 & 557 & 558 & 559 & 561 & 564 & 565 \\
\hline & 904 & 910 & 914 & 917 & 918 & 921 & 924 & 925 & 926 & 929 & 932 & 937 \\
\hline & 852 & 856 & 858 & 859 & 860 & 863 & 869 & 870 & 871 & 873 & 876 & 877 \\
\hline \multirow[b]{3}{*}{\(k_{\text {fractal }}\) \(k_{\text {old }}\)} & 569 & 570 & 571 & 573 & 574 & 577 & 581 & 582 & 584 & 585 & 586 & 588 \\
\hline & 942 & 944 & 949 & 952 & 953 & 961 & 965 & 966 & 968 & 972 & 974 & 979 \\
\hline & 881 & 882 & 883 & 885 & 886 & 889 & 893 & 894 & 896 & 897 & 898 & 900 \\
\hline \multirow[b]{3}{*}{\(k_{\text {fractal }}\) \(k_{\text {old }}\)} & 592 & 593 & 597 & 598 & 599 & 601 & 602 & 604 & 606 & 607 & 610 & 611 \\
\hline & 983 & 984 & 988 & 989 & 991 & 995 & 996 & 1002 & 1008 & 1009 & 1012 & 1015 \\
\hline & 904 & 905 & 909 & 910 & 933 & 943 & 944 & 946 & 948 & 949 & 952 & 953 \\
\hline
\end{tabular}

Table A.6: Further Improvements for Strength 7, Five Rows, Part 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 612 & 613 & 615 & 616 & 618 & 620 & 622 & 623 & 624 & 626 & 628 & 630 \\
\hline \(k_{\text {fractal }}\) & 1016 & 1017 & 1019 & 1022 & 1026 & 1028 & 1034 & 1035 & 1036 & 1042 & 1044 & 1050 \\
\hline \(k_{\text {old }}\) & 954 & 955 & 957 & 958 & 960 & 962 & 978 & 983 & 988 & 990 & 992 & 994 \\
\hline \(v\) & 633 & 635 & 639 & 640 & 644 & 645 & 647 & 648 & 651 & 653 & 655 & 656 \\
\hline \(k_{\text {fractal }}\) & 1053 & 1060 & 1064 & 1066 & 1070 & 1072 & 1079 & 1080 & 1084 & 1088 & 1091 & 1092 \\
\hline \(k_{\text {old }}\) & 997 & 999 & 1003 & 1004 & 1008 & 1009 & 1011 & 1012 & 1015 & 1017 & 1019 & 1020 \\
\hline \(v\) & 658 & 659 & 661 & 663 & 665 & 667 & 668 & 671 & 672 & 675 & 678 & 680 \\
\hline \(k_{\text {fractal }}\) & 1096 & 1100 & 1102 & 1106 & 1110 & 1112 & 1116 & 1120 & 1121 & 1124 & 1128 & 1130 \\
\hline \(k_{\text {old }}\) & 1022 & 1023 & 1025 & 1027 & 1029 & 1031 & 1032 & 1035 & 1036 & 1039 & 1042 & 1044 \\
\hline , & 682 & 683 & 686 & 687 & 690 & 691 & 692 & 693 & 694 & 695 & 696 & 697 \\
\hline \(k_{\text {fractal }}\) & 1135 & 1139 & 1142 & 1143 & 1151 & 1153 & 1154 & 1155 & 1156 & 1160 & 1161 & 1162 \\
\hline \(k_{\text {old }}\) & 1058 & 1063 & 1050 & 1059 & 1070 & 1071 & 1072 & 1101 & 1106 & 1111 & 1116 & 1117 \\
\hline \(v\) & 698 & 699 & 702 & 704 & 707 & 709 & 710 & 712 & 713 & 716 & 717 & 719 \\
\hline \(k_{\text {fractal }}\) & 1165 & 1166 & 1172 & 1176 & 1184 & 1189 & 1190 & 1192 & 1193 & 1196 & 1197 & 1201 \\
\hline \(k_{\text {old }}\) & 1118 & 1119 & 1122 & 1124 & 1127 & 1129 & 1130 & 1132 & 1133 & 1136 & 1137 & 1139 \\
\hline \(v\) & 721 & 722 & 723 & 726 & 727 & 728 & 729 & 730 & 732 & 733 & 734 & 735 \\
\hline \[
k_{\text {fractal }}
\] & 1204 & 1205 & 1208 & 1211 & 1214 & 1215 & 1216 & 1217 & 1222 & 1223 & 1226 & 1230 \\
\hline \[
k_{\text {old }}
\] & 1141 & 1142 & 1143 & 1146 & 1147 & 1148 & 1149 & 1150 & 1152 & 1153 & 1154 & 1155 \\
\hline , & 737 & 740 & 744 & 749 & 753 & 754 & 755 & 759 & 760 & 761 & 762 & 765 \\
\hline \(k_{\text {fractal }}\) & 1232 & 1240 & 1244 & 1256 & 1260 & 1261 & 1265 & 1270 & 1272 & 1273 & 1274 & 1282 \\
\hline \(k_{\text {old }}\) & 1157 & 1160 & 1165 & 1175 & 1183 & 1185 & 1187 & 1195 & 1197 & 1199 & 1201 & 1207 \\
\hline \(v\) & 767 & 769 & 770 & 772 & 776 & 778 & 783 & 784 & 785 & 786 & 788 & 790 \\
\hline & 1284 & 1286 & 1287 & 1296 & 1300 & 1304 & 1309 & 1310 & 1313 & 1314 & 1324 & 1326 \\
\hline \[
k_{\text {old }}
\] & 1211 & 1215 & 1217 & 1221 & 1229 & 1240 & 1243 & 1246 & 1247 & 1249 & 1253 & 1257 \\
\hline & 793 & 795 & 796 & 802 & 804 & 809 & 811 & 814 & 816 & 817 & 818 & 819 \\
\hline \(k_{\text {fractal }}\) & 1332 & 1335 & 1338 & 1346 & 1348 & 1358 & 1362 & 1366 & 1368 & 1370 & 1371 & 1372 \\
\hline \(k_{\text {old }}\) & 1263 & 1267 & 1269 & 1281 & 1285 & 1295 & 1299 & 1305 & 1309 & 1311 & 1313 & 1315 \\
\hline \(v\) & 821 & 826 & 827 & 828 & 829 & 830 & 831 & 832 & 833 & 834 & 835 & 838 \\
\hline \(k_{\text {fractal }}\) & 1380 & 1385 & 1387 & 1388 & 1389 & 1390 & 1395 & 1396 & 1398 & 1402 & 1403 & 1410 \\
\hline \(k_{\text {old }}\) & 1319 & 1329 & 1331 & 1333 & 1335 & 1337 & 1339 & 1341 & 1343 & 1345 & 1347 & 1353 \\
\hline U & 839 & 841 & 845 & 847 & 851 & 852 & 854 & 855 & 856 & 857 & 858 & 862 \\
\hline \(k_{\text {fractal }}\) & 1412 & 1416 & 1422 & 1424 & 1428 & 1432 & 1434 & 1435 & 1436 & 1437 & 1440 & 1449 \\
\hline \(k_{\text {old }}\) & 1355 & 1359 & 1367 & 1371 & 1378 & 1380 & 1384 & 1386 & 1388 & 1390 & 1391 & 1399 \\
\hline \(v\) & 863 & 864 & 867 & 871 & 873 & 876 & 877 & 880 & 882 & 884 & 886 & 890 \\
\hline \(k_{\text {fractal }}\) & 1450 & 1452 & 1455 & 1465 & 1467 & 1470 & 1471 & 1484 & 1486 & 1492 & 1494 & 1500 \\
\hline \(k_{\text {old }}\) & 1401 & 1403 & 1407 & 1411 & 1413 & 1416 & 1417 & 1420 & 1422 & 1424 & 1426 & 1430 \\
\hline v & 892 & 893 & 895 & 896 & 897 & 898 & 900 & 903 & 904 & 907 & 908 & 909 \\
\hline \[
k_{\text {fractal }}
\] & 1504 & 1505 & 1507 & 1508 & 1509 & 1510 & 1512 & 1520 & 1522 & 1527 & 1528 & 1532 \\
\hline \(k_{\text {old }}\) & 1432 & 1433 & 1435 & 1436 & 1437 & 1438 & 1444 & 1447 & 1448 & 1451 & 1452 & 1453 \\
\hline \(v\) & 912 & 913 & 915 & 918 & 920 & 921 & 927 & 931 & 934 & 935 & 941 & 943 \\
\hline \(k_{\text {fractal }}\) & 1535 & 1536 & 1538 & 1548 & 1555 & 1556 & 1564 & 1568 & 1574 & 1578 & 1584 & 1586 \\
\hline \(k_{\text {old }}\) & 1456 & 1457 & 1459 & 1462 & 1464 & 1465 & 1471 & 1475 & 1478 & 1479 & 1485 & 1488 \\
\hline \(v\) & 944 & 947 & 949 & 950 & 951 & 952 & 953 & 954 & 956 & 958 & 961 & 963 \\
\hline & 1591 & 1594 & 1596 & 1597 & 1598 & 1602 & 1605 & 1606 & 1608 & 1612 & 1616 & 1624 \\
\hline \[
k_{\text {old }}
\] & 1490 & 1496 & 1500 & 1502 & 1504 & 1506 & 1508 & 1510 & 1514 & 1518 & 1524 & 1528 \\
\hline
\end{tabular}

Table A.7: Further Improvements for Strength 7, Five Rows, Part 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & 96 & 966 & 967 & 968 & 96 & 970 & 971 & 972 & 974 & 977 & 979 & 82 \\
\hline \(k_{f}\) & 1626 & 1628 & 1630 & 1633 & 1635 & 1636 & 1637 & 1638 & 1640 & 1652 & 1654 & 1658 \\
\hline \(k_{\text {old }}\) & 1530 & 1534 & 1536 & 1538 & 1540 & 1542 & 1544 & 1546 & 1550 & 1556 & 1559 & 1565 \\
\hline \(v\) & 983 & 984 & 985 & 986 & 987 & 990 & 995 & 998 & 999 & 1002 & 1003 & 1005 \\
\hline \(k_{f}\) & 1659 & 1664 & 1668 & 1670 & 1671 & 1674 & 1679 & 1682 & 1685 & 1688 & 1689 & 1692 \\
\hline & 1567 & 1580 & 1585 & 1572 & 1574 & 1586 & 1595 & 1598 & 1599 & 1602 & 1603 & 1605 \\
\hline \(v\) & 1006 & 1009 & 1011 & 1012 & 1013 & 1014 & 1015 & 1016 & 1017 & 1018 & 1019 & 1021 \\
\hline \(k_{\text {fractal }}\) & 1694 & 1702 & 1704 & 1708 & 1709 & 1711 & 1712 & 1713 & 1714 & 1718 & 1719 & 1727 \\
\hline \(k_{\text {old }}\) & 1606 & 1609 & 1611 & 1612 & 1613 & 1614 & 1615 & 1616 & 1617 & 1618 & 1619 & 1621 \\
\hline \(v\) & 1023 & 1024 & 1026 & 1027 & 1029 & 1030 & 1032 & 1033 & 1034 & 1035 & 1036 & 1038 \\
\hline actal & 1729 & 1732 & 1734 & 1736 & 1738 & 1740 & 1742 & 1746 & 1750 & 1752 & 1756 & 1758 \\
\hline \(k_{\text {old }}\) & 1623 & 1624 & 1626 & 1627 & 1629 & 1630 & 1632 & 1633 & 1638 & 1643 & 1648 & 1650 \\
\hline \(v\) & 1039 & 1040 & 1041 & 1042 & 1044 & 1045 & 1046 & 1047 & 1048 & 1051 & 1056 & 1060 \\
\hline \(k_{\text {fractal }}\) & 1759 & 1760 & 1761 & 1762 & 1764 & 1765 & 1766 & 1768 & 1769 & 1777 & 1784 & 1788 \\
\hline \(k_{\text {old }}\) & 1651 & 1652 & 1653 & 1654 & 1656 & 1657 & 1658 & 1659 & 1660 & 1663 & 1668 & 1672 \\
\hline \(v\) & 1061 & 1062 & 1063 & 1064 & 1065 & 1068 & 1071 & 1072 & 1074 & 1077 & 1078 & 1082 \\
\hline \(k_{\text {fractal }}\) & 1789 & 1790 & 1791 & 1792 & 1797 & 1808 & 1812 & 1814 & 1816 & 1822 & 1824 & 1830 \\
\hline \(k_{\text {old }}\) & 1673 & 1674 & 1675 & 1680 & 1685 & 1692 & 1695 & 1696 & 1698 & 1701 & 1702 & 1706 \\
\hline - & 1084 & 1087 & 1088 & 1089 & 1091 & 1092 & 1095 & 1096 & 1098 & 1099 & 1100 & 1104 \\
\hline \(k_{\text {fractal }}\) & 1832 & 1839 & 1840 & 1845 & 1847 & 1852 & 1855 & 1856 & 1858 & 1859 & 1862 & 1866 \\
\hline \(k_{\text {old }}\) & 1708 & 1711 & 1712 & 1713 & 1715 & 1716 & 1719 & 1742 & 1722 & 1723 & 1724 & 1754 \\
\hline \(v\) & 1106 & 1107 & 1108 & 1110 & 1111 & 1115 & 1116 & 1117 & 1119 & 1121 & 1124 & 1125 \\
\hline \[
k_{\text {fractal }}
\] & 1868 & 1871 & 1872 & 1878 & 1880 & 1890 & 1891 & 1892 & 1894 & 1896 & 1906 & 1908 \\
\hline \[
\begin{array}{r}
k_{\text {old }} \\
\hline
\end{array}
\] & 1756 & 1757 & 1758 & 1760 & 1761 & 1765 & 1766 & 1767 & 1769 & 1771 & 1774 & 1797 \\
\hline \(v\) & 1131 & 1133 & 1134 & 1135 & 1136 & 1137 & 1138 & 1139 & 1141 & 1145 & 1146 & 1149 \\
\hline \(k_{\text {fractal }}\) & 1916 & 1918 & 1920 & 1922 & 1926 & 1927 & 1930 & 1934 & 1940 & 1944 & 1945 & 1948 \\
\hline \(k_{\text {old }}\) & 1815 & 1817 & 1818 & 1819 & 1820 & 1821 & 1822 & 1823 & 1825 & 1829 & 1830 & 1833 \\
\hline \(v\) & 1150 & 1155 & 1157 & 1158 & 1159 & 1162 & 1166 & 1167 & 1168 & 1169 & 1171 & 1172 \\
\hline & 1950 & 1955 & 1961 & 1964 & 1965 & 1970 & 1974 & 1975 & 1976 & 1979 & 1982 & 1984 \\
\hline \(k_{\text {old }}\) & 1834 & 1839 & 1841 & 1842 & 1843 & 1846 & 1850 & 1851 & 1852 & 1853 & 1855 & 1856 \\
\hline & 1175 & 1178 & 1179 & 1184 & 1185 & 1186 & 1187 & 1190 & 1191 & 1195 & 1196 & 1204 \\
\hline \(k_{\text {fractal }}\) & 1988 & 2000 & 2001 & 2006 & 2007 & 2009 & 2012 & 2022 & 2023 & 2032 & 2036 & 2044 \\
\hline \% \({ }_{\text {old }}\) & 1861 & 1867 & 1869 & 1879 & 1881 & 1883 & 1885 & 1891 & 1893 & 1901 & 1903 & 1919 \\
\hline \(v\) & 1206 & 1207 & 1208 & 1209 & 1210 & 1211 & 1212 & 1213 & 1214 & 1215 & 1217 & 1218 \\
\hline & 2046 & 2047 & 2048 & 2049 & 2050 & 2051 & 2052 & 2053 & 2055 & 2056 & 2058 & 2059 \\
\hline \(k_{\text {old }}\) & 1923 & 1925 & 1927 & 1929 & 1931 & 1933 & 1935 & 1937 & 1939 & 1941 & 1945 & 1947 \\
\hline \(v\) & 1219 & 1221 & 1225 & 1227 & 1228 & 1231 & 1233 & 1234 & 1237 & 1238 & 1240 & 1241 \\
\hline \(k_{\text {fractal }}\) & 2064 & 2071 & 2077 & 2084 & 2085 & 2088 & 2091 & 2092 & 2097 & 2102 & 2106 & 2110 \\
\hline \(\begin{array}{r}\text { fractal } \\ k_{\text {old }} \\ \hline\end{array}\) & 1949 & 1968 & 1980 & 1982 & 1984 & 1987 & 1989 & 1990 & 1993 & 1994 & 1996 & 1997 \\
\hline \(v\) & 1243 & 1244 & 1245 & 1246 & 1250 & 1253 & 1254 & 1255 & 1258 & 1259 & 1263 & 1265 \\
\hline \(k_{\text {fractal }}\) & 2112 & 2113 & 2116 & 2120 & 2127 & 2131 & 2134 & 2136 & 2139 & 2140 & 2144 & 2148 \\
\hline \(k_{\text {old }}\) & 1999 & 2000 & 2001 & 2003 & 2011 & 2017 & 2019 & 2021 & 2027 & 2029 & 2037 & 2041 \\
\hline
\end{tabular}

Table A.8: Further Improvements for Strength 7, Five Rows, Part 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 1268 & 1269 & 1270 & 1273 & 12 & 1279 & 1280 & 85 & 86 & 1291 & 92 & 1295 \\
\hline & 2151 & 2152 & 2154 & 2163 & 2168 & 2171 & 2172 & 2185 & 2186 & 2193 & 2198 & 2201 \\
\hline & 2047 & 2049 & 2051 & 2057 & 2063 & 2069 & 2071 & 2081 & 2083 & 2093 & 2095 & 2101 \\
\hline \(v\) & 1296 & 1297 & 1299 & 1300 & 1304 & 1306 & 1308 & 1310 & 1314 & 1316 & 1317 & 19 \\
\hline & 2202 & 2203 & 2211 & 2212 & 2220 & 2222 & 2228 & 2230 & 2234 & 2240 & 2241 & 2243 \\
\hline & 2103 & 2105 & 2109 & 2111 & 2119 & 2123 & 2127 & 2131 & 2139 & 2143 & 2145 & 2149 \\
\hline \(v\) & 1320 & 1321 & 1323 & 1325 & 1330 & 1332 & 1333 & 1335 & 1336 & 1337 & 1339 & 1340 \\
\hline \(k\) & 2244 & 2248 & 2250 & 2252 & 2257 & 2259 & 2264 & 2266 & 2268 & 2273 & 2276 & 2277 \\
\hline , & 2151 & 2153 & 2157 & 2161 & 2171 & 2175 & 2177 & 2181 & 2183 & 2185 & 2189 & 2191 \\
\hline \(v\) & 1342 & 1345 & 1346 & 1347 & 1348 & 1351 & 1357 & 1358 & 1363 & 1364 & 1368 & 1369 \\
\hline 有 & 2284 & 2288 & 2289 & 2292 & 2293 & 2305 & 2312 & 2313 & 2318 & 2321 & 2328 & 2332 \\
\hline & 2195 & 2201 & 2203 & 2205 & 2207 & 2213 & 2225 & 2226 & 2236 & 2238 & 2245 & 2247 \\
\hline \(v\) & 1370 & 1371 & 1373 & 1374 & 1377 & 1378 & 1379 & 1382 & 1383 & 1386 & 1388 & 1390 \\
\hline & 2333 & 2337 & 2340 & 2341 & 2344 & 2348 & 2349 & 2352 & 2355 & 2358 & 2362 & 2370 \\
\hline , & 2249 & 2251 & 2255 & 2256 & 2259 & 2260 & 2261 & 2264 & 2265 & 2268 & 2270 & 2272 \\
\hline v & 1391 & 1395 & 1398 & 1399 & 1401 & 1404 & 1405 & 1408 & 1410 & 1412 & 1414 & 1416 \\
\hline actal & 2371 & 2375 & 2378 & 2379 & 2384 & 2392 & 2393 & 2396 & 2400 & 2403 & 2408 & 2410 \\
\hline \[
k_{\text {old }}
\] & 2273 & 2277 & 2280 & 2281 & 2283 & 2286 & 2287 & 2290 & 2292 & 2294 & 2296 & 2298 \\
\hline \(v\) & 1417 & 1418 & 1419 & 1421 & 1423 & 1424 & 1425 & 1426 & 1427 & 1429 & 1430 & 1432 \\
\hline & 2413 & 2415 & 2416 & 2422 & 2424 & 2426 & 2427 & 2429 & 2430 & 2433 & 2434 & 2438 \\
\hline \(k_{\text {old }}\) & 2299 & 2300 & 2301 & 2303 & 2305 & 2306 & 2307 & 2308 & 2309 & 2311 & 2312 & 2314 \\
\hline \(v\) & 1434 & 1436 & 1440 & 1442 & 1444 & 1446 & 1447 & 1451 & 1452 & 1453 & 1455 & 1458 \\
\hline & 2442 & 2446 & 2452 & 2454 & 2460 & 2462 & 2464 & 2468 & 2469 & 2470 & 2472 & 2486 \\
\hline \[
\begin{array}{r}
n_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\] & 2316 & 2318 & 2322 & 2324 & 2326 & 2328 & 2329 & 2333 & 2334 & 2335 & 2337 & 2340 \\
\hline \(v\) & 1460 & 1461 & 1465 & 1467 & 1468 & 1470 & 1474 & 1475 & 1476 & 1477 & 1480 & 481 \\
\hline \(k_{\text {fractal }}\) & 2493 & 2494 & 2498 & 2501 & 2502 & 2506 & 2512 & 2515 & 2516 & 2517 & 2524 & 2526 \\
\hline \(k_{\text {old }}\) & 2342 & 2343 & 2347 & 2349 & 2350 & 2352 & 2356 & 2357 & 2358 & 2359 & 2362 & 2363 \\
\hline \(v\) & 1483 & 1486 & 1489 & 1490 & 1491 & 1492 & 1495 & 1496 & 1497 & 1499 & 1501 & 1502 \\
\hline & 2530 & 2534 & 2542 & 2543 & 2545 & 2548 & 2551 & 2552 & 2554 & 2556 & 2558 & 2559 \\
\hline \[
\begin{array}{r}
n_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\] & 2367 & 2398 & 2413 & 2414 & 2415 & 2416 & 2419 & 2420 & 2421 & 2423 & 2425 & 2426 \\
\hline - & 1503 & 1505 & 1507 & 1509 & 1515 & 1519 & 1520 & 1525 & 1527 & 1531 & 1532 & 1533 \\
\hline \(k_{\text {fractal }}\) & 2560 & 2568 & 2574 & 2580 & 2586 & 2590 & 2592 & 2604 & 2606 & 2610 & 2612 & 2616 \\
\hline \(k_{\text {old }}\) & 2427 & 2429 & 2431 & 2433 & 2439 & 2443 & 2444 & 2449 & 2451 & 2455 & 2456 & 2457 \\
\hline , & 1538 & 1540 & 1541 & 1542 & 1544 & 1545 & 1548 & 1549 & 1551 & 1552 & 1554 & 1556 \\
\hline \(k_{\text {fractal }}\) & 2624 & 2626 & 2627 & 2630 & 2634 & 2637 & 2640 & 2641 & 2644 & 2648 & 2650 & 2656 \\
\hline \(k_{\text {old }}\) & 2462 & 2464 & 2465 & 2468 & 2468 & 2469 & 2472 & 2473 & 2475 & 2476 & 2478 & 2480 \\
\hline , & 1558 & 1560 & 1561 & 1564 & 1569 & 1575 & 1577 & 1579 & 1581 & 1586 & 1588 & 1589 \\
\hline & 2662 & 2664 & 2665 & 2672 & 2678 & 2686 & 2688 & 2690 & 2692 & 2712 & 2714 & 2716 \\
\hline \(k_{\text {old }}\) & 2482 & 2484 & 2485 & 2488 & 2493 & 2504 & 2508 & 2512 & 2516 & 2526 & 2530 & 2532 \\
\hline
\end{tabular}

Table A.9: Further Improvements for Strength 7, Five Rows, Part 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 1590 & 1591 & 1592 & 1594 & 1596 & 1604 & 1608 & 1609 & 1610 & 1611 & 1613 & 17 \\
\hline \(k_{\text {fractal }}\) & 2717 & 2718 & 2720 & 2722 & 2730 & 2740 & 2745 & 2748 & 2749 & 2753 & 2760 & 2768 \\
\hline & 2534 & 2536 & 2538 & 2542 & 2546 & 2562 & 2570 & 2572 & 2574 & 2595 & 2605 & 2609 \\
\hline - & 1619 & 1629 & 1631 & 1633 & 1638 & 1639 & 1640 & 1649 & 1650 & 1651 & 1652 & 1655 \\
\hline \(k_{\text {fractal }}\) & 2770 & 2780 & 2786 & 2788 & 2802 & 2806 & 2808 & 2817 & 2818 & 2819 & 2822 & 2828 \\
\hline \(k_{\text {old }}\) & 2611 & 2621 & 2623 & 2625 & 2630 & 2632 & 2634 & 2652 & 2654 & 2656 & 2658 & 2664 \\
\hline \(v\) & 1657 & 1664 & 1666 & 1668 & 1669 & 1670 & 1674 & 1676 & 1683 & 1685 & 1687 & 1688 \\
\hline \(k_{\text {fractal }}\) & 2830 & 2846 & 2848 & 2856 & 2861 & 2862 & 2868 & 2870 & 2878 & 2880 & 2884 & 2888 \\
\hline \(k_{\text {old }}\) & 2668 & 2682 & 2686 & 2690 & 2692 & 2694 & 2702 & 2706 & 2720 & 2724 & 2728 & 2730 \\
\hline , & 1696 & 1698 & 1700 & 1702 & 1708 & 1709 & 1712 & 1716 & 1719 & 1722 & 1726 & 1727 \\
\hline \(k_{\text {fractal }}\) & 2896 & 2898 & 2908 & 2910 & 2916 & 2918 & 2926 & 2930 & 2938 & 2944 & 2948 & 2950 \\
\hline \(k_{\text {old }}\) & 2746 & 2750 & 2754 & 2758 & 2769 & 2771 & 2777 & 2784 & 2790 & 2795 & 2803 & 2805 \\
\hline , & 1728 & 1730 & 1731 & 1732 & 1733 & 1735 & 1738 & 1739 & 1747 & 1748 & 1750 & 1751 \\
\hline \(k_{\text {fractal }}\) & 2952 & 2955 & 2959 & 2960 & 2961 & 2964 & 2972 & 2974 & 2992 & 2996 & 2998 & 3000 \\
\hline \(k_{\text {old }}\) & 2807 & 2810 & 2811 & 2812 & 2813 & 2815 & 2818 & 2819 & 2827 & 2828 & 2830 & 2831 \\
\hline v & 1753 & 1759 & 1760 & 1762 & 1764 & 1766 & 1767 & 1771 & 1780 & 1782 & 1783 & 1788 \\
\hline \(k_{\text {fractal }}\) & 3002 & 3008 & 3010 & 3012 & 3014 & 3016 & 3018 & 3037 & 3048 & 3050 & 3051 & 3064 \\
\hline \(k_{\text {old }}\) & 2833 & 2839 & 2840 & 2842 & 2844 & 2846 & 2847 & 2851 & 2884 & 2886 & 2887 & 2892 \\
\hline O & 1789 & 1795 & 1798 & 1800 & 1805 & 1806 & 1807 & 1812 & 1814 & 1816 & 1822 & 1823 \\
\hline \[
k_{\text {fractal }}
\] & 3065 & 3075 & 3080 & 3082 & 3092 & 3093 & 3097 & 3104 & 3110 & 3112 & 3120 & 3122 \\
\hline \[
k_{\text {old }}
\] & 2893 & 2899 & 2902 & 2904 & 2909 & 2910 & 2911 & 2921 & 2925 & 2929 & 2941 & 2943 \\
\hline \(v\) & 1828 & 1832 & 1837 & 1844 & 1852 & 1856 & 1859 & 1861 & 1863 & 1865 & 1873 & 1877 \\
\hline \(k_{\text {fractal }}\) & 3128 & 3132 & 3148 & 3164 & 3172 & 3176 & 3181 & 3188 & 3190 & 3200 & 3208 & 3216 \\
\hline \(k_{\text {old }}\) & 2953 & 2961 & 2971 & 2985 & 3001 & 3009 & 3015 & 3019 & 3023 & 3027 & 3043 & 3051 \\
\hline \(v\) & 1880 & 1883 & 1885 & 1886 & 1887 & 1890 & 1898 & 1906 & 1908 & 1916 & 1918 & 1927 \\
\hline & 3224 & 3228 & 3232 & 3236 & 3238 & 3242 & 3250 & 3258 & 3268 & 3282 & 3290 & 3304 \\
\hline \[
\begin{array}{r}
r_{\text {fractal }} \\
k_{\text {old }} \\
\hline
\end{array}
\] & 3057 & 3063 & 3067 & 3069 & 3071 & 3077 & 3093 & 3109 & 3113 & 3129 & 3133 & 3151 \\
\hline \(v\) & 1932 & 1938 & 1940 & 1942 & 1950 & 1956 & 1958 & 1962 & 1966 & 1968 & 1970 & 1971 \\
\hline \(k_{\text {fractal }}\) & 3314 & 3320 & 3322 & 3328 & 3338 & 3344 & 3346 & 3354 & 3362 & 3368 & 3370 & 3372 \\
\hline , \(k_{\text {old }}\) & 3161 & 3173 & 3177 & 3181 & 3197 & 3209 & 3213 & 3221 & 3229 & 3233 & 3237 & 3239 \\
\hline \(v\) & 1973 & 1974 & 1979 & 1991 & 1995 & 1997 & 2000 & & & & & \\
\hline & 3374 & 3378 & 3396 & 3408 & 3412 & 3414 & 3424 & & & & & \\
\hline \[
k_{\text {old }}
\] & 3243 & 3245 & 3255 & 3279 & 3287 & 3291 & 3297 & & & & & \\
\hline
\end{tabular}

Table A.10: Further Improvements for Strength 8, Five Rows
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 55 & 69 & 93 & 97 & 112 & 125 & 131 & 141 & 150 & 165 & 88 & 189 \\
\hline \(k_{\text {fractal }}\) & 72 & 91 & 124 & 129 & 150 & 167 & 176 & 190 & 202 & 223 & 254 & 256 \\
\hline \(k_{\text {old }}\) & 71 & 90 & 123 & 128 & 149 & 166 & 174 & 188 & 200 & 222 & 251 & 252 \\
\hline \(v\) & 199 & 207 & 213 & 228 & 237 & 245 & 257 & 261 & 267 & 285 & 286 & 301 \\
\hline \(k_{\text {fractal }}\) & 270 & 280 & 289 & 310 & 322 & 332 & 350 & 355 & 364 & 388 & 390 & 411 \\
\hline \(k_{\text {old }}\) & 267 & 279 & 287 & 309 & 321 & 329 & 345 & 351 & 360 & 387 & 388 & 410 \\
\hline \(v\) & 306 & 309 & 315 & 335 & 344 & 345 & 357 & 369 & 373 & 384 & 389 & 402 \\
\hline \({ }_{\text {fractal }}\) & 418 & 421 & 430 & 458 & 470 & 472 & 487 & 505 & 510 & 526 & 533 & 550 \\
\hline \(k_{\text {old }}\) & 418 & 421 & 427 & 453 & 466 & 468 & 486 & 503 & 509 & 525 & 533 & 546 \\
\hline \(v\) & 403 & 423 & 433 & 437 & 462 & 471 & 477 & 482 & 489 & 501 & 505 & 521 \\
\hline \(k_{\text {fractal }}\) & 552 & 580 & 594 & 599 & 634 & 646 & 655 & 662 & 670 & 688 & 693 & 716 \\
\hline \(k_{\text {old }}\) & 547 & 574 & 589 & 595 & 632 & 646 & 654 & 662 & 669 & 681 & 686 & 710 \\
\hline \(v\) & 531 & 539 & 540 & 547 & 565 & 573 & 579 & 580 & 585 & 609 & 618 & 629 \\
\hline \(k_{\text {fractal }}\) & 730 & 740 & 742 & 750 & 777 & 787 & 796 & 798 & 805 & 838 & 850 & 866 \\
\hline \(k_{\text {old }}\) & 725 & 737 & 738 & 749 & 775 & 787 & 796 & 797 & 805 & 832 & 843 & 859 \\
\hline \(v\) & 639 & 653 & 657 & 678 & 693 & 697 & 698 & 709 & 727 & 735 & 741 & 747 \\
\hline \(k_{\text {fractal }}\) & 880 & 899 & 904 & 934 & 955 & 960 & 962 & 975 & 1002 & 1012 & 1021 & 1030 \\
\hline \({ }^{\text {old }}\) & 874 & 895 & 901 & 932 & 954 & 960 & 962 & 973 & 993 & 1005 & 1014 & 1023 \\
\hline \(v\) & 757 & 776 & 785 & 801 & 816 & 821 & 825 & 829 & 855 & 874 & 875 & 885 \\
\hline \(k_{\text {fractal }}\) & 1044 & 1070 & 1082 & 1105 & 1126 & 1133 & 1138 & 1143 & 1180 & 1206 & 1208 & 1222 \\
\hline \(k_{\text {old }}\) & 1038 & 1066 & 1080 & 1103 & 1125 & 1133 & 1137 & 1141 & 1170 & 1199 & 1200 & 1215 \\
\hline \(v\) & 891 & 909 & 917 & 923 & 934 & 949 & 954 & 963 & 972 & 993 & 1013 & 1017 \\
\hline \(k_{\text {fractal }}\) & 1228 & 1255 & 1265 & 1274 & 1290 & 1311 & 1318 & 1330 & 1342 & 1372 & 1400 & 1405 \\
\hline \(k_{\text {old }}\) & 1224 & 1251 & 1263 & 1272 & 1288 & 1310 & 1318 & 1327 & 1336 & 1362 & 1392 & 1398 \\
\hline \(v\) & 1023 & 1052 & 1070 & 1071 & 1077 & 1092 & 1097 & 1111 & 1119 & 1125 & 1141 & 1161 \\
\hline & 1414 & 1454 & 1478 & 1480 & 1489 & 1510 & 1517 & 1536 & 1546 & 1555 & 1578 & 1606 \\
\hline \(k_{\text {old }}\) & 1407 & 1450 & 1477 & 1479 & 1487 & 1509 & 1517 & 1531 & 1539 & 1545 & 1568 & 1597 \\
\hline \(v\) & 1170 & 1171 & 1179 & 1205 & 1229 & 1230 & 1233 & 1245 & 1250 & 1269 & 1287 & 1288 \\
\hline \(k_{\text {fractal }}\) & 1618 & 1620 & 1630 & 1667 & 1700 & 1702 & 1705 & 1723 & 1730 & 1756 & 1780 & 1782 \\
\hline \({ }^{\text {cold }}\) & 1611 & 1612 & 1624 & 1663 & 1699 & 1700 & 1705 & 1722 & 1730 & 1749 & 1769 & 1770 \\
\hline \(v\) & 1299 & 1319 & 1329 & 1333 & 1341 & 1347 & 1368 & 1393 & 1397 & 1408 & 1413 & 1437 \\
\hline & 1798 & 1826 & 1840 & 1845 & 1855 & 1864 & 1894 & 1929 & 1934 & 1950 & 1957 & 1990 \\
\hline \(k_{\text {old }}\) & 1787 & 1817 & 1832 & 1838 & 1850 & 1859 & 1890 & 1927 & 1933 & 1949 & 1957 & 1981 \\
\hline \(v\) & 1449 & 1461 & 1467 & 1487 & 1497 & 1506 & 1524 & 1525 & 1541 & 1566 & 1575 & 1581 \\
\hline \(k_{\text {fractal }}\) & 2005 & 2023 & 2032 & 2060 & 2074 & 2086 & 2110 & 2112 & 2135 & 2170 & 2182 & 2191 \\
\hline \(k_{\text {old }}\) & 1993 & 2011 & 2020 & 2050 & 2065 & 2079 & 2106 & 2107 & 2131 & 2168 & 2182 & 2190 \\
\hline \(v\) & 1586 & 1589 & 1615 & 1644 & 1645 & 1653 & 1665 & 1675 & 1689 & 1701 & 1713 & 1717 \\
\hline \(k_{\text {fractal }}\) & 2198 & 2201 & 2238 & 2278 & 2280 & 2290 & 2308 & 2322 & 2341 & 2356 & 2374 & 2379 \\
\hline \(k_{\text {old }}\) & 2198 & 2201 & 2227 & 2268 & 2269 & 2280 & 2298 & 2313 & 2334 & 2352 & 2370 & 2376 \\
\hline
\end{tabular}

Table A.11: Further Improvements for Strength 8, Five Rows, Part 2
\begin{tabular}{r|cccccccccccc}
\hline\(v\) & 1724 & 1749 & 1763 & 1764 & 1769 & 1781 & 1782 & 1803 & 1833 & 1837 & 1853 & 1863 \\
\(k_{\text {fractal }}\) & 2390 & 2425 & 2444 & 2446 & 2453 & 2468 & 2470 & 2500 & 2542 & 2547 & 2570 & 2584 \\
\(k_{\text {old }}\) & 2386 & 2423 & 2444 & 2445 & 2453 & 2465 & 2466 & 2487 & 2529 & 2535 & 2559 & 2574 \\
\hline\(v\) & 1882 & 1911 & 1917 & 1920 & 1942 & 1957 & 1961 & 1962 & 1973 & 1985 & 1989 & 2001 \\
\(k_{\text {fractal }}\) & 2610 & 2650 & 2659 & 2662 & 2694 & 2715 & 2720 & 2722 & 2735 & 2753 & 2758 & 2776 \\
\(k_{\text {old }}\) & 2603 & 2646 & 2655 & 2660 & 2692 & 2714 & 2720 & 2722 & 2733 & 2745 & 2749 & 2761 \\
\hline\(v\) & 2031 & 2040 & 2051 & 2061 & 2085 & 2119 & 2120 & 2127 & 2133 & 2145 & 2160 & 2165 \\
\(k_{\text {fractal }}\) & 2818 & 2830 & 2846 & 2860 & 2893 & 2940 & 2942 & 2950 & 2959 & 2977 & 2998 & 3005 \\
\(k_{\text {old }}\) & 2805 & 2818 & 2835 & 2850 & 2886 & 2937 & 2938 & 2949 & 2958 & 2975 & 2997 & 3005 \\
\hline\(v\) & 2169 & 2198 & 2209 & 2239 & 2253 & 2259 & 2269 & 2277 & 2281 & 2298 & 2333 & 2337 \\
\(k_{\text {fractal }}\) & 3010 & 3050 & 3066 & 3108 & 3127 & 3136 & 3150 & 3160 & 3165 & 3190 & 3239 & 3244 \\
\(k_{\text {old }}\) & 3009 & 3038 & 3049 & 3094 & 3115 & 3124 & 3139 & 3151 & 3157 & 3183 & 3235 & 3241 \\
\hline\(v\) & 2358 & 2373 & 2378 & 2387 & 2421 & 2427 & 2435 & 2457 & 2476 & 2477 & 2487 & \\
\(k_{\text {fractal }}\) & 3274 & 3295 & 3302 & 3314 & 3361 & 3370 & 3380 & 3412 & 3438 & 3440 & 3454 & \\
\(k_{\text {old }}\) & 3272 & 3294 & 3302 & 3311 & 3345 & 3353 & 3365 & 3398 & 3426 & 3428 & 3443 & \\
\hline
\end{tabular}

Table A.12: Further Improvements for Strength 8, Six Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 167 & 270 & 280 & 288 & 333 & 352 & 365 & 386 & 396 & 408 & 434 & 450 \\
\(k_{\text {fractal }}\) & 252 & 432 & 450 & 480 & 540 & 576 & 600 & 630 & 648 & 672 & 720 & 750 \\
\(k_{\text {old }}\) & 248 & 413 & 424 & 432 & 503 & 532 & 545 & 601 & 615 & 628 & 658 & 675 \\
\hline\(v\) & 464 & 485 & 492 & 503 & 516 & 525 & 572 & 598 & 620 & 636 & 680 & 693 \\
\(k_{\text {fractal }}\) & 768 & 792 & 810 & 840 & 864 & 900 & 960 & 1008 & 1050 & 1080 & 1152 & 1176 \\
\(k_{\text {old }}\) & 716 & 749 & 756 & 767 & 788 & 825 & 884 & 910 & 969 & 994 & 1044 & 1057 \\
\hline\(v\) & 705 & 737 & 756 & 779 & 788 & 790 & 810 & 926 & 939 & 960 & 971 & 996 \\
\(k_{\text {fractal }}\) & 1200 & 1260 & 1296 & 1320 & 1344 & 1350 & 1458 & 1584 & 1620 & 1650 & 1680 & 1728 \\
\(k_{\text {old }}\) & 1069 & 1157 & 1176 & 1219 & 1228 & 1230 & 1254 & 1466 & 1479 & 1504 & 1515 & 1540 \\
\hline\(v\) & 1015 & 1040 & 1073 & 1088 & 1104 & 1116 & 1141 & 1154 & 1176 & 1205 & 1236 & 1293 \\
\(k_{\text {fractal }}\) & 1764 & 1800 & 1848 & 1890 & 1920 & 1944 & 1980 & 2016 & 2058 & 2100 & 2160 & 2268 \\
\(k_{\text {old }}\) & 1602 & 1640 & 1692 & 1712 & 1728 & 1740 & 1795 & 1838 & 1860 & 1899 & 1961 & 2061 \\
\hline\(v\) & 1312 & 1323 & 1370 & 1386 & 1432 & 1470 & 1498 & 1520 & 1556 & 1571 & 1596 & 1703 \\
\(k_{\text {fractal }}\) & 2304 & 2352 & 2400 & 2430 & 2520 & 2592 & 2646 & 2688 & 2730 & 2772 & 2808 & 3024 \\
\(k_{\text {old }}\) & 2080 & 2091 & 2138 & 2154 & 2302 & 2352 & 2380 & 2433 & 2480 & 2495 & 2536 & 2715 \\
\hline\(v\) & 1728 & 1769 & 1786 & 1820 & 1824 & 1849 & 1865 & 1886 & 1908 & 1920 & 1981 & 2001 \\
\(k_{\text {fractal }}\) & 3072 & 3120 & 3168 & 3234 & 3240 & 3276 & 3300 & 3360 & 3402 & 3456 & 3528 & 3564 \\
\(k_{\text {old }}\) & 2740 & 2825 & 2842 & 2924 & 2928 & 2953 & 2969 & 2990 & 3012 & 3024 & 3181 & 3201 \\
\hline\(v\) & 2020 & 2046 & 2069 & 2102 & 2113 & 2144 & 2169 & 2216 & 2252 & 2303 & 2318 & 2340 \\
\(k_{\text {fractal }}\) & 3600 & 3630 & 3696 & 3744 & 3780 & 3840 & 3888 & 3960 & 4032 & 4116 & 4158 & 4200 \\
\(k_{\text {old }}\) & 3235 & 3270 & 3293 & 3434 & 3445 & 3476 & 3513 & 3560 & 3596 & 3707 & 3722 & 3744 \\
\hline\(v\) & 2352 & 2402 & 2430 & 2464 & & & & & & & & \\
\(k_{\text {fractal }}\) & 4224 & 4320 & 4374 & 4410 & & & & & & & & \\
\(k_{\text {old }}\) & 3756 & 3806 & 3881 & 3976 & & & & & & & & \\
\hline
\end{tabular}

Table A.13: Further Improvements for Strength 9, Six Rows
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 55 & 68 & 89 & 94 & 106 & 120 & 123 & 131 & 140 & 152 & 172 & 06 \\
\hline \(k_{\text {fractal }}\) & 72 & 90 & 120 & 126 & 144 & 162 & 168 & 180 & 192 & 210 & 234 & 288 \\
\hline \(k_{\text {old }}\) & 71 & 89 & 118 & 125 & 141 & 161 & 166 & 176 & 188 & 207 & 232 & 285 \\
\hline \(v\) & 215 & 256 & 268 & 272 & 278 & 281 & 297 & 305 & 326 & 331 & 338 & 342 \\
\hline \(k_{\text {fractal }}\) & 300 & 360 & 378 & 384 & 390 & 396 & 420 & 432 & 462 & 468 & 480 & 486 \\
\hline \(k_{\text {old }}\) & 299 & 343 & 375 & 384 & 390 & 393 & 409 & 420 & 446 & 465 & 477 & 486 \\
\hline \(v\) & 355 & 371 & 379 & 384 & 404 & 413 & 416 & 420 & 437 & 442 & 453 & 61 \\
\hline \(k_{f}\) & 504 & 528 & 540 & 546 & 576 & 588 & 594 & 600 & 624 & 630 & 648 & 660 \\
\hline & 499 & 515 & 523 & 528 & 552 & 588 & 591 & 600 & 617 & 622 & 633 & 641 \\
\hline \(v\) & 470 & 481 & 490 & 502 & 506 & 527 & 536 & 543 & 551 & 564 & 569 & 584 \\
\hline \(k_{\text {fractal }}\) & 672 & 684 & 702 & 720 & 726 & 756 & 768 & 780 & 792 & 810 & 816 & 840 \\
\hline \(k_{\text {old }}\) & 650 & 661 & 670 & 717 & 726 & 747 & 756 & 763 & 775 & 788 & 793 & 808 \\
\hline \(v\) & 596 & 600 & 616 & 625 & 638 & 641 & 649 & 666 & 675 & 686 & 698 & 702 \\
\hline \(k_{\text {fractal }}\) & 858 & 864 & 882 & 900 & 918 & 924 & 936 & 960 & 972 & 990 & 1008 & 1014 \\
\hline \({ }_{\text {fractal }}\) & 855 & 864 & 880 & 889 & 902 & 905 & 913 & 934 & 953 & 974 & 1005 & 1014 \\
\hline \(v\) & 707 & 712 & 731 & 747 & 755 & 767 & 776 & 786 & 789 & 796 & 808 & 812 \\
\hline \[
k_{\text {fractal }}
\] & 1020 & 1026 & 1056 & 1080 & 1092 & 1104 & 1122 & 1134 & 1140 & 1152 & 1170 & 1176 \\
\hline \(k_{\text {old }}\) & 1019 & 1024 & 1043 & 1059 & 1067 & 1079 & 1088 & 1098 & 1101 & 1117 & 1167 & 1176 \\
\hline \(v\) & 821 & 830 & 845 & 860 & 861 & 866 & 869 & 894 & 911 & 914 & 926 & 930 \\
\hline \(k_{\text {fractal }}\) & 1188 & 1200 & 1224 & 1242 & 1248 & 1254 & 1260 & 1296 & 1320 & 1326 & 1344 & 1350 \\
\hline \(k_{\text {old }}\) & 1185 & 1194 & 1209 & 1224 & 1225 & 1230 & 1233 & 1258 & 1275 & 1278 & 1341 & 1350 \\
\hline \(v\) & 943 & 953 & 956 & 967 & 983 & 991 & 1001 & 1020 & 1040 & 1052 & 1056 & 1073 \\
\hline \(k_{\text {fractal }}\) & 1368 & 1380 & 1386 & 1404 & 1428 & 1440 & 1452 & 1482 & 1512 & 1530 & 1536 & 1560 \\
\hline \(\begin{array}{r}\text { fractal } \\ k_{\text {old }} \\ \hline\end{array}\) & 1363 & 1373 & 1376 & 1387 & 1403 & 1416 & 1431 & 1460 & 1480 & 1527 & 1536 & 1553 \\
\hline & 1090 & 1097 & 1113 & 1121 & 1126 & 1136 & 1139 & 1154 & 1174 & 1179 & 1186 & 1190 \\
\hline \(k_{\text {fractal }}\) & 1584 & 1596 & 1620 & 1632 & 1638 & 1650 & 1656 & 1680 & 1710 & 1716 & 1728 & 1734 \\
\hline \(k_{\text {old }}\) & 1570 & 1577 & 1593 & 1601 & 1606 & 1616 & 1619 & 1634 & 1682 & 1713 & 1725 & 1734 \\
\hline v & 1211 & 1226 & 1232 & 1235 & 1251 & 1259 & 1268 & 1285 & 1296 & 1316 & 1325 & 1328 \\
\hline \(k_{\text {fractal }}\) & 1764 & 1782 & 1794 & 1800 & 1824 & 1836 & 1848 & 1872 & 1890 & 1920 & 1932 & 1938 \\
\hline fractal
\(k_{\text {old }}\) & 1755 & 1770 & 1776 & 1779 & 1795 & 1803 & 1812 & 1829 & 1840 & 1860 & 1932 & 1935 \\
\hline \(v\) & 1332 & 1338 & 1357 & 1381 & 1397 & 1405 & 1418 & 1439 & 1444 & 1446 & 1466 & 1478 \\
\hline \[
k_{\text {fractal }}
\] & 1944 & 1950 & 1980 & 2016 & 2040 & 2052 & 2070 & 2100 & 2106 & 2112 & 2142 & 2160 \\
\hline \(k_{\text {old }}\) & 1944 & 1950 & 1969 & 1993 & 2016 & 2029 & 2042 & 2063 & 2068 & 2070 & 2090 & 2157 \\
\hline \(v\) & 1482 & 1496 & 1511 & 1535 & 1540 & 1550 & 1551 & 1559 & 1576 & 1601 & 1604 & 1610 \\
\hline \(k_{\text {fractal }}\) & 2166 & 2184 & 2208 & 2244 & 2250 & 2262 & 2268 & 2280 & 2304 & 2340 & 2346 & 2352 \\
\hline \(k_{\text {old }}\) & 2166 & 2180 & 2195 & 2219 & 2224 & 2234 & 2235 & 2243 & 2260 & 2309 & 2312 & 2328 \\
\hline \(v\) & 1624 & 1636 & 1640 & 1662 & 1673 & 1697 & 1706 & 1713 & 1721 & 1742 & 1762 & 1770 \\
\hline \[
k_{\text {fractal }}
\] & 2376 & 2394 & 2400 & 2430 & 2448 & 2484 & 2496 & 2508 & 2520 & 2550 & 2574 & 2592 \\
\hline \(k_{\text {old }}\) & 2352 & 2391 & 2400 & 2422 & 2433 & 2457 & 2466 & 2473 & 2481 & 2502 & 2524 & 2532 \\
\hline
\end{tabular}

Table A.14: Further Improvements for Strength 9, Six Rows, Part 2
\begin{tabular}{r|llllllllllll}
\hline\(v\) & 1781 & 1790 & 1802 & 1806 & 1811 & 1836 & 1843 & 1867 & 1880 & 1883 & 1891 & 1901 \\
\(k_{\text {fractal }}\) & 2604 & 2622 & 2640 & 2646 & 2652 & 2688 & 2700 & 2736 & 2754 & 2760 & 2772 & 2784 \\
\(k_{\text {old }}\) & 2558 & 2567 & 2637 & 2646 & 2651 & 2676 & 2683 & 2707 & 2720 & 2723 & 2731 & 2741 \\
\hline\(v\) & 1906 & 1916 & 1944 & 1949 & 1964 & 1976 & 1980 & 1989 & 2018 & 2021 & 2031 & 2045 \\
\(k_{\text {fractal }}\) & 2790 & 2808 & 2850 & 2856 & 2880 & 2898 & 2904 & 2916 & 2958 & 2964 & 2976 & 3000 \\
\(k_{\text {old }}\) & 2746 & 2756 & 2784 & 2789 & 2804 & 2895 & 2904 & 2913 & 2942 & 2945 & 2955 & 2969 \\
\hline\(v\) & 2061 & 2069 & 2087 & 2096 & 2098 & 2126 & 2135 & 2146 & 2158 & 2162 & 2175 & 2204 \\
\(k_{\text {fractal }}\) & 3024 & 3036 & 3060 & 3072 & 3078 & 3120 & 3132 & 3150 & 3168 & 3174 & 3192 & 3240 \\
\(k_{\text {old }}\) & 2985 & 2993 & 3027 & 3036 & 3048 & 3086 & 3095 & 3106 & 3165 & 3174 & 3187 & 3219 \\
\hline\(v\) & 2231 & 2247 & 2252 & 2255 & 2272 & 2281 & 2288 & 2294 & 2316 & 2329 & 2336 & 2348 \\
\(k_{\text {fractal }}\) & 3276 & 3300 & 3306 & 3312 & 3330 & 3348 & 3360 & 3366 & 3402 & 3420 & 3432 & 3450 \\
\(k_{\text {old }}\) & 3243 & 3259 & 3264 & 3267 & 3284 & 3293 & 3300 & 3306 & 3328 & 3341 & 3348 & 3447 \\
\hline\(v\) & 2352 & 2369 & 2401 & 2406 & 2425 & 2441 & 2449 & 2483 & 2486 & 2500 & & \\
\(k_{\text {fractal }}\) & 3456 & 3480 & 3528 & 3534 & 3564 & 3588 & 3600 & 3648 & 3654 & 3672 & & \\
\(k_{\text {old }}\) & 3456 & 3473 & 3505 & 3510 & 3529 & 3545 & 3553 & 3587 & 3590 & 3604 & & \\
\hline
\end{tabular}

Table A.15: Further Improvements for Strength 9, Seven Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 479 & 494 & 503 & 515 & 527 & 539 & 557 & 566 & 575 & 593 & 599 & 614 \\
\(k_{\text {fractal }}\) & 1120 & 1155 & 1176 & 1204 & 1232 & 1260 & 1302 & 1323 & 1344 & 1386 & 1400 & 1435 \\
\(k_{\text {old }}\) & 711 & 742 & 760 & 779 & 810 & 833 & 857 & 866 & 875 & 893 & 899 & 923 \\
\hline\(v\) & 623 & 638 & 650 & 662 & 683 & 686 & 701 & 710 & 731 & 740 & 758 & 767 \\
\(k_{\text {fractal }}\) & 1456 & 1491 & 1519 & 1547 & 1596 & 1603 & 1638 & 1659 & 1708 & 1729 & 1771 & 1792 \\
\(k_{\text {old }}\) & 935 & 950 & 962 & 974 & 1004 & 1014 & 1060 & 1074 & 1095 & 1104 & 1131 & 1149 \\
\hline\(v\) & 773 & 797 & 863 & 899 & 971 & 1049 & 1064 & 1124 & 1142 & 1154 & 1172 & 1184 \\
\(k_{\text {fractal }}\) & 1806 & 1862 & 2016 & 2100 & 2268 & 2450 & 2485 & 2625 & 2667 & 2695 & 2737 & 2765 \\
\(k_{\text {old }}\) & 1157 & 1181 & 1299 & 1379 & 1511 & 1641 & 1656 & 1724 & 1742 & 1754 & 1781 & 1796 \\
\hline\(v\) & 1214 & 1244 & 1259 & 1274 & 1289 & 1295 & 1307 & 1319 & 1322 & 1337 & 1343 & 1349 \\
\(k_{\text {fractal }}\) & 2835 & 2905 & 2940 & 2975 & 3010 & 3024 & 3052 & 3080 & 3087 & 3122 & 3136 & 3150 \\
\(k_{\text {old }}\) & 1838 & 1868 & 1883 & 1922 & 1967 & 1985 & 2063 & 2075 & 2078 & 2093 & 2099 & 2105 \\
\hline\(v\) & 1352 & 1364 & 1385 & 1397 & 1415 & 1442 & 1457 & 1469 & 1499 & 1574 & 1649 & 1679 \\
\(k_{\text {fractal }}\) & 3157 & 3185 & 3234 & 3262 & 3304 & 3367 & 3402 & 3430 & 3500 & 3675 & 3850 & 3920 \\
\(k_{\text {old }}\) & 2114 & 2132 & 2153 & 2165 & 2183 & 2311 & 2326 & 2351 & 2381 & 2462 & 2549 & 2579 \\
\hline\(v\) & 1754 & 1763 & 1835 & 1847 & 1874 & 1889 & 1949 & 2024 & 2057 & 2078 & 2183 & 2186 \\
\(k_{\text {fractal }}\) & 4095 & 4116 & 4284 & 4312 & 4375 & 4410 & 4550 & 4725 & 4802 & 4851 & 5096 & 5103 \\
\(k_{\text {old }}\) & 2654 & 2726 & 2915 & 2927 & 2954 & 2969 & 3029 & 3104 & 3153 & 3228 & 3527 & 3530 \\
\hline\(v\) & 2204 & 2294 & 2339 & 2351 & 2447 & 2483 & & & & & & \\
\(k_{\text {fractal }}\) & 5145 & 5355 & 5460 & 5488 & 5712 & 5796 & & & & & & \\
\(k_{\text {old }}\) & 3548 & 3638 & 3683 & 3695 & 3791 & 3827 & & & & & & \\
\hline
\end{tabular}

Table A.16: Further Improvements for Strength 10, Six Rows
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(v\) & 73 & 92 & 125 & 130 & 151 & 168 & 177 & 187 & 191 & 203 & 224 & 244 \\
\hline \(k_{\text {fractal }}\) & 90 & 114 & 156 & 162 & 189 & 210 & 222 & 234 & 240 & 255 & 282 & 306 \\
\hline \(k_{\text {old }}\) & 89 & 113 & 155 & 161 & 188 & 209 & 220 & 233 & 239 & 254 & 281 & 305 \\
\hline \(v\) & 255 & 257 & 271 & 281 & 290 & 307 & 311 & 318 & 323 & 333 & 351 & 356 \\
\hline \(k_{\text {fractal }}\) & 321 & 324 & 342 & 354 & 366 & 387 & 393 & 402 & 408 & 420 & 444 & 450 \\
\hline & 318 & 321 & 340 & 353 & 365 & 387 & 392 & 402 & 407 & 417 & 441 & 447 \\
\hline \(v\) & 365 & 389 & 391 & 412 & 419 & 422 & 431 & 455 & 459 & 471 & 473 & 488 \\
\hline \(k_{\text {fractal }}\) & 462 & 492 & 495 & 522 & 531 & 534 & 546 & 576 & 582 & 597 & 600 & 618 \\
\hline \(k_{\text {old }}\) & 459 & 491 & 494 & 521 & 531 & 534 & 543 & 573 & 579 & 594 & 597 & 617 \\
\hline \(v\) & 506 & 511 & 527 & 534 & 551 & 553 & 581 & 591 & 595 & 600 & 631 & 635 \\
\hline \(k_{\text {fractal }}\) & 642 & 648 & 669 & 678 & 699 & 702 & 738 & 750 & 756 & 762 & 801 & 807 \\
\hline \(k_{\text {old }}\) & 641 & 647 & 668 & 678 & 695 & 697 & 734 & 747 & 753 & 759 & 801 & 806 \\
\hline U & 647 & 656 & 663 & 671 & 689 & 694 & 717 & 731 & 741 & 743 & 751 & 778 \\
\hline \(k_{\text {fractal }}\) & 822 & 834 & 843 & 852 & 876 & 882 & 912 & 930 & 942 & 945 & 954 & 990 \\
\hline \(k_{\text {old }}\) & 822 & 833 & 843 & 851 & 870 & 877 & 908 & 926 & 940 & 942 & 953 & 989 \\
\hline \(v\) & 788 & 797 & 799 & 806 & 835 & 839 & 851 & 867 & 881 & 900 & 905 & 935 \\
\hline \(k_{\text {fractal }}\) & 1002 & 1014 & 1017 & 1026 & 1062 & 1068 & 1083 & 1104 & 1122 & 1146 & 1152 & 1191 \\
\hline \(k_{\text {old }}\) & 1002 & 1014 & 1016 & 1026 & 1059 & 1063 & 1078 & 1099 & 1118 & 1143 & 1150 & 1190 \\
\hline , & 956 & 959 & 961 & 963 & 976 & 1003 & 1013 & 1022 & 1031 & 1045 & 1067 & 1071 \\
\hline \(k_{\text {fractal }}\) & 1218 & 1221 & 1224 & 1227 & 1242 & 1278 & 1290 & 1302 & 1314 & 1332 & 1359 & 1365 \\
\hline \(k_{\text {old }}\) & 1217 & 1221 & 1224 & 1227 & 1240 & 1272 & 1285 & 1297 & 1309 & 1328 & 1357 & 1362 \\
\hline \(v\) & 1083 & 1106 & 1127 & 1134 & 1139 & 1144 & 1181 & 1205 & 1207 & 1209 & 1223 & 1229 \\
\hline \(k_{\text {fractal }}\) & 1380 & 1410 & 1437 & 1446 & 1452 & 1458 & 1506 & 1536 & 1539 & 1542 & 1560 & 1566 \\
\hline \(k_{\text {old }}\) & 1378 & 1409 & 1436 & 1446 & 1451 & 1456 & 1499 & 1531 & 1534 & 1537 & 1555 & 1563 \\
\hline \(v\) & 1256 & 1266 & 1275 & 1291 & 1312 & 1319 & 1327 & 1331 & 1343 & 1373 & 1388 & 1401 \\
\hline \(k_{\text {fractal }}\) & 1602 & 1614 & 1626 & 1647 & 1674 & 1683 & 1692 & 1698 & 1713 & 1752 & 1770 & 1788 \\
\hline \({ }^{\text {fold }}\) & 1599 & 1613 & 1625 & 1646 & 1673 & 1683 & 1691 & 1695 & 1707 & 1745 & 1765 & 1782 \\
\hline \(v\) & 1406 & 1411 & 1415 & 1455 & 1479 & 1481 & 1490 & 1511 & 1518 & 1537 & 1547 & 1556 \\
\hline \(k_{\text {fractal }}\) & 1794 & 1800 & 1806 & 1857 & 1887 & 1890 & 1902 & 1929 & 1938 & 1962 & 1974 & 1986 \\
\hline \(k_{\text {old }}\) & 1789 & 1796 & 1801 & 1854 & 1886 & 1889 & 1901 & 1928 & 1938 & 1957 & 1967 & 1979 \\
\hline \(v\) & 1579 & 1607 & 1619 & 1621 & 1631 & 1668 & 1683 & 1701 & 1703 & 1706 & 1724 & 1731 \\
\hline \(k_{\text {fractal }}\) & 2016 & 2052 & 2067 & 2070 & 2082 & 2130 & 2148 & 2172 & 2175 & 2178 & 2202 & 2211 \\
\hline \(k_{\text {old }}\) & 2009 & 2046 & 2062 & 2065 & 2078 & 2127 & 2147 & 2171 & 2174 & 2178 & 2201 & 2211 \\
\hline & 1757 & 1781 & 1783 & 1799 & 1827 & 1841 & 1846 & 1856 & 1865 & 1895 & 1930 & 1935 \\
\hline \(k_{\text {fractal }}\) & 2244 & 2274 & 2277 & 2298 & 2334 & 2352 & 2358 & 2370 & 2382 & 2421 & 2466 & 2472 \\
\hline \(k_{\text {old }}\) & 2237 & 2266 & 2269 & 2290 & 2328 & 2346 & 2353 & 2366 & 2378 & 2418 & 2465 & 2471 \\
\hline U & 1947 & 1951 & 1958 & 1991 & 2006 & 2024 & 2029 & 2033 & 2061 & 2075 & 2087 & 2111 \\
\hline \(k_{\text {fractal }}\) & 2487 & 2493 & 2502 & 2544 & 2562 & 2586 & 2592 & 2598 & 2634 & 2652 & 2667 & 2697 \\
\hline \(k_{\text {old }}\) & 2487 & 2492 & 2502 & 2535 & 2554 & 2578 & 2585 & 2590 & 2627 & 2646 & 2662 & 2694 \\
\hline
\end{tabular}

Table A.17: Further Improvements for Strength 10, Six Rows, Part 2
\begin{tabular}{r|llllllllllll}
\hline\(v\) & 2113 & 2136 & 2171 & 2183 & 2192 & 2199 & 2202 & 2239 & 2279 & 2281 & 2291 & 2309 \\
\(k_{\text {fractal }}\) & 2700 & 2730 & 2775 & 2790 & 2802 & 2811 & 2814 & 2862 & 2913 & 2916 & 2928 & 2952 \\
\(k_{\text {old }}\) & 2697 & 2727 & 2774 & 2790 & 2801 & 2811 & 2814 & 2854 & 2905 & 2908 & 2921 & 2945 \\
\hline\(v\) & 2323 & 2342 & 2357 & 2375 & 2380 & 2391 & 2426 & 2445 & 2447 & 2454 & 2469 & 2471 \\
\(k_{\text {fractal }}\) & 2970 & 2994 & 3012 & 3036 & 3042 & 3057 & 3102 & 3126 & 3129 & 3138 & 3156 & 3159 \\
\(k_{\text {old }}\) & 2964 & 2989 & 3009 & 3033 & 3040 & 3054 & 3101 & 3126 & 3128 & 3138 & 3153 & 3155 \\
\hline
\end{tabular}

Table A.18: Further Improvements for Strength 10, Seven Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 161 & 251 & 269 & 287 & 419 & 449 & 479 & 539 & 749 & 767 & 791 & 809 \\
\(k_{\text {fractal }}\) & 217 & 338 & 367 & 393 & 572 & 621 & 673 & 748 & 1051 & 1073 & 1100 & 1129 \\
\(k_{\text {old }}\) & 215 & 335 & 355 & 388 & 563 & 605 & 644 & 725 & 1049 & 1067 & 1091 & 1109 \\
\hline\(v\) & 839 & 863 & 899 & 1457 & & & & & & & & \\
\(k_{\text {fractal }}\) & 1178 & 1213 & 1276 & 2107 & & & & & & & & \\
\(k_{\text {old }}\) & 1149 & 1173 & 1220 & 2057 & & & & & & & & \\
\hline
\end{tabular}

Table A.19: Further Improvements for Strength 11, Seven Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 23 & 35 & 47 & 53 & 59 & 71 & 83 & 89 & 95 & 107 & 119 & 125 \\
\(k_{\text {fractal }}\) & 29 & 44 & 59 & 67 & 74 & 90 & 104 & 113 & 121 & 136 & 152 & 159 \\
\(k_{\text {old }}\) & 27 & 41 & 56 & 63 & 71 & 87 & 101 & 110 & 117 & 132 & 148 & 156 \\
\hline\(v\) & 149 & 161 & 167 & 197 & 215 & 233 & 251 & 263 & 269 & 287 & 293 & 299 \\
\(k_{\text {fractal }}\) & 191 & 205 & 214 & 251 & 277 & 297 & 324 & 338 & 347 & 371 & 379 & 386 \\
\(k_{\text {old }}\) & 187 & 202 & 210 & 247 & 273 & 293 & 314 & 329 & 341 & 366 & 375 & 383 \\
\hline\(v\) & 311 & 323 & 329 & 335 & 359 & 377 & 383 & 389 & 395 & 407 & 419 & 431 \\
\(k_{\text {fractal }}\) & 400 & 418 & 425 & 434 & 465 & 489 & 497 & 503 & 512 & 524 & 544 & 560 \\
\(k_{\text {old }}\) & 395 & 407 & 413 & 422 & 459 & 484 & 493 & 501 & 507 & 519 & 532 & 549 \\
\hline\(v\) & 449 & 461 & 467 & 479 & 485 & 503 & 527 & 539 & 545 & 569 & 575 & 587 \\
\(k_{\text {fractal }}\) & 581 & 599 & 606 & 623 & 631 & 654 & 686 & 702 & 709 & 737 & 749 & 764 \\
\(k_{\text {old }}\) & 569 & 593 & 601 & 618 & 627 & 647 & 671 & 683 & 693 & 731 & 743 & 760 \\
\hline\(v\) & 593 & 599 & 611 & 623 & 629 & 647 & 659 & 671 & 683 & 701 & 713 & 719 \\
\(k_{\text {fractal }}\) & 773 & 781 & 794 & 812 & 819 & 844 & 860 & 875 & 888 & 915 & 929 & 939 \\
\(k_{\text {old }}\) & 768 & 777 & 791 & 803 & 809 & 827 & 839 & 851 & 873 & 909 & 926 & 934 \\
\hline\(v\) & 725 & 755 & 767 & 779 & 791 & 809 & 815 & 827 & 839 & 857 & 863 & 881 \\
\(k_{\text {fractal }}\) & 947 & 986 & 1001 & 1018 & 1034 & 1057 & 1064 & 1076 & 1097 & 1121 & 1129 & 1149 \\
\(k_{\text {old }}\) & 943 & 975 & 989 & 1003 & 1015 & 1033 & 1043 & 1067 & 1091 & 1116 & 1125 & 1145 \\
\hline\(v\) & 899 & 911 & 917 & 923 & 935 & 959 & 971 & 989 & 1007 & 1013 & 1019 & 1025 \\
\(k_{\text {fractal }}\) & 1176 & 1190 & 1199 & 1208 & 1224 & 1255 & 1270 & 1295 & 1319 & 1327 & 1334 & 1341 \\
\(k_{\text {old }}\) & 1163 & 1175 & 1181 & 1187 & 1203 & 1237 & 1257 & 1289 & 1314 & 1323 & 1331 & 1337 \\
\hline\(v\) & 1049 & 1055 & 1079 & 1091 & 1103 & 1121 & 1133 & 1139 & 1151 & 1169 & 1175 & 1187 \\
\(k_{\text {fractal }}\) & 1369 & 1382 & 1414 & 1430 & 1442 & 1469 & 1483 & 1492 & 1509 & 1533 & 1541 & 1556 \\
\(k_{\text {old }}\) & 1361 & 1367 & 1391 & 1403 & 1415 & 1443 & 1467 & 1479 & 1503 & 1528 & 1537 & 1551 \\
\hline
\end{tabular}

Table A.20: Further Improvements for Strength 11, Seven Rows, Part 2
\begin{tabular}{r|llllllllllll}
\hline\(v\) & 1199 & 1223 & 1241 & 1247 & 1253 & 1259 & 1295 & 1319 & 1325 & 1343 & 1349 & 1367 \\
\(k_{\text {fractal }}\) & 1571 & 1604 & 1625 & 1636 & 1643 & 1652 & 1699 & 1730 & 1739 & 1763 & 1771 & 1794 \\
\(k_{\text {old }}\) & 1563 & 1587 & 1605 & 1611 & 1617 & 1623 & 1673 & 1721 & 1733 & 1758 & 1767 & 1787 \\
\hline\(v\) & 1379 & 1385 & 1403 & 1427 & 1439 & 1451 & 1481 & 1499 & 1511 & 1517 & 1529 & 1535 \\
\(k_{\text {fractal }}\) & 1808 & 1817 & 1842 & 1874 & 1890 & 1904 & 1945 & 1966 & 1985 & 1991 & 2009 & 2017 \\
\(k_{\text {old }}\) & 1799 & 1805 & 1823 & 1855 & 1872 & 1889 & 1921 & 1955 & 1979 & 1987 & 2004 & 2013 \\
\hline\(v\) & 1559 & 1583 & 1595 & 1619 & 1631 & 1637 & 1649 & 1655 & 1679 & 1709 & 1715 & 1727 \\
\(k_{\text {fractal }}\) & 2048 & 2079 & 2096 & 2128 & 2144 & 2151 & 2165 & 2174 & 2207 & 2247 & 2254 & 2271 \\
\(k_{\text {old }}\) & 2039 & 2063 & 2075 & 2099 & 2111 & 2117 & 2129 & 2135 & 2183 & 2241 & 2249 & 2266 \\
\hline\(v\) & 1733 & 1763 & 1781 & 1793 & 1799 & 1823 & 1835 & 1847 & 1871 & 1889 & 1913 & 1919 \\
\(k_{\text {fractal }}\) & 2279 & 2318 & 2339 & 2357 & 2366 & 2398 & 2414 & 2429 & 2460 & 2485 & 2513 & 2525 \\
\(k_{\text {old }}\) & 2275 & 2307 & 2325 & 2337 & 2343 & 2367 & 2379 & 2391 & 2423 & 2459 & 2507 & 2519 \\
\hline\(v\) & 1931 & 1937 & 1943 & 1949 & 1979 & 2015 & 2027 & 2039 & 2051 & 2069 & 2087 & 2099 \\
\(k_{\text {fractal }}\) & 2540 & 2549 & 2557 & 2563 & 2604 & 2652 & 2666 & 2684 & 2700 & 2723 & 2744 & 2762 \\
\(k_{\text {old }}\) & 2536 & 2544 & 2553 & 2561 & 2591 & 2632 & 2649 & 2663 & 2675 & 2693 & 2711 & 2729 \\
\hline\(v\) & 2105 & 2111 & 2141 & 2159 & 2165 & 2183 & 2207 & 2231 & 2243 & 2249 & 2261 & 2267 \\
\(k_{\text {fractal }}\) & 2769 & 2779 & 2819 & 2843 & 2851 & 2873 & 2906 & 2934 & 2954 & 2961 & 2975 & 2986 \\
\(k_{\text {old }}\) & 2741 & 2753 & 2813 & 2838 & 2847 & 2867 & 2891 & 2915 & 2927 & 2933 & 2945 & 2951 \\
\hline\(v\) & 2279 & 2303 & 2339 & 2345 & 2351 & 2375 & 2393 & 2399 & 2417 & 2429 & 2435 & 2447 \\
\(k_{\text {fractal }}\) & 3002 & 3033 & 3080 & 3089 & 3095 & 3129 & 3153 & 3161 & 3181 & 3199 & 3206 & 3224 \\
\(k_{\text {old }}\) & 2963 & 3007 & 3057 & 3066 & 3077 & 3123 & 3148 & 3157 & 3177 & 3189 & 3195 & 3207 \\
\hline\(v\) & 2483 & 2495 & & & & & & & & & & \\
\(k_{\text {fractal }}\) & 3272 & 3287 & & & & & & & & & & \\
\(k_{\text {old }}\) & 3243 & 3255 & & & & & & & & & & \\
\hline
\end{tabular}

Table A.21: Further Improvements for Strength 11, Eight Rows
\begin{tabular}{r|rrrrrrrrrrrr}
\hline\(v\) & 26 & 41 & 958 & 989 & 1006 & 1030 & 1054 & 1078 & 1116 & 1133 & 1150 & 1188 \\
\(k_{\text {fractal }}\) & 34 & 52 & 1600 & 1651 & 1680 & 1720 & 1760 & 1800 & 1862 & 1891 & 1920 & 1982 \\
\(k_{\text {old }}\) & 31 & 50 & 1314 & 1353 & 1370 & 1394 & 1469 & 1498 & 1548 & 1565 & 1582 & 1728 \\
\hline\(v\) & 1198 & 1229 & 1246 & 1277 & 1301 & 1325 & 1370 & 1373 & 1404 & 1421 & 1466 & 1483 \\
\(k_{\text {fractal }}\) & 2000 & 2051 & 2080 & 2131 & 2171 & 2211 & 2284 & 2291 & 2342 & 2371 & 2444 & 2473 \\
\(k_{\text {old }}\) & 1738 & 1769 & 1786 & 1817 & 1841 & 1865 & 1942 & 1952 & 2004 & 2021 & 2066 & 2083 \\
\hline\(v\) & 1521 & 1534 & 1552 & 1604 & 1726 & 1803 & 1942 & 2437 & & & & \\
\(k_{\text {fractal }}\) & 2535 & 2561 & 2586 & 2670 & 2881 & 3006 & 3241 & 4060 & & & & \\
\(k_{\text {old }}\) & 2121 & 2134 & 2152 & 2204 & 2486 & 2563 & 2824 & 3517 & & & & \\
\hline
\end{tabular}

Table A.22: Further Improvements for Strength 11, Nine Rows
\[
\begin{array}{r|r}
v & 29 \\
k_{\text {fractal }} & 39 \\
k_{\text {old }} & 36
\end{array}
\]

Table A.23: Further Improvements for Strength 11, Ten Rows
\[
\begin{array}{r|r}
v & 32 \\
k_{\text {fractal }} & 44 \\
k_{\text {old }} & 41
\end{array}
\]```


[^0]:    ${ }^{1}$ Also, the only work (as far as we are aware) on covering arrays with regard to higher index was for $\lambda=2$ in [8].

[^1]:    ${ }^{2}$ Available at http://fmv.jku.at/limboole/.

[^2]:    ${ }^{3}$ All we need is that $\lambda<N / 2$ for a given fixed $N$, where $N$ is the number of rows, so $\lambda$ being asymptotically slower than $\log k$ guarantees this since $N$ will always be at least $\log k$.

