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ABSTRACT  

   

The use of Reclaimed Asphalt Pavements (RAP) in newly produced asphalt 

mixtures has been gaining a wide attention from state Departments of Transportations 

(DOTs) during the past four decades. However, the performance of these mixtures in harsh 

and hot climate areas such as Phoenix, Arizona has not been carefully addressed. This 

research focuses on evaluating the laboratory and field performance of Hot Mix Asphalt 

Mixtures (HMA) produced with two different RAP contents 15%, and 25%. A road section 

was identified by the City of Phoenix where three test sections were constructed; the first 

being a control (0% RAP), the second and the third sections with 15% and 25% RAP 

contents, respectively. The 25% RAP mixture used a lower Performance Grade (PG) 

asphalt per local practices. During construction, loose HMA mixtures were sampled and 

transported to the laboratory for advanced material characterization.  

The testing included Dynamic Modulus (DM) test to characterize the stiffness of 

the material, Flow Number (FN) test to characterize the rutting resistance of the mixtures, 

IDEAL CT test to characterize the crack initiation properties, C* Fracture test to investigate 

the crack propagation properties, Uniaxial Fatigue to evaluate fatigue cracking potential, 

and Tensile Strength Ratio test (TSR) to evaluate the moisture susceptibility. Field cores 

were obtained from each test section and were tested for indirect tensile strength 

characteristics. In addition, asphalt binder testing was done on the extracted and recovered 

binders. 

The laboratory results, compared to the control mixture, indicated that adding 15% 

and 25% RAP to the mix did not have significant effect on the stiffness, improved the 

rutting potential, had comparable cracking potential, and gave an acceptable passing 
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performance against potential moisture damage. The binder testing that was done on the 

extracted and recovered binders indicated that the blended RAP binder yields a high 

stiffness. Based on results obtained from this study, it is recommended that the City of 

Phoenix should consider incorporating RAP in their asphalt mixtures using these low to 

moderate RAP contents. In the future implementation process, it is also recommended to 

include specifications where proper mixture designs are followed and supported with some 

of the laboratory tests outlined in this research.    
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CHAPTER 1 INTRODUCTION 

1.1- Background 

The American Society of Civil Engineers ASCE (2017) report card graded the road 

network in the United States with a grade D. There are more than four million miles of 

roads in the US, in which 21% have a poor pavement condition. This poor pavement 

condition has cost the US motorist around 120.5 billion dollars in vehicle repairs in 2015 

alone (ASCE, 2017).  

The highway system in the US has been underfunded for years, causing an $836 billion of 

backlog in highway and bridge funding. Among this backlog, $420 billion are needed just 

for existing highways repair. Failure to spend this amount of money on the infrastructure, 

the economy will lose around $4 trillion in the Gross Domestic Product (GDP), resulting 

in a loss of 2.5 million jobs by 2025. This loss will cost each household a $3400 each year.  

Hot Mix Asphalt (HMA) pavements constitutes more than 90% of the road network in the 

US. The materials cost represents a large portion of the total asphalt pavement construction 

process, as seen in Figure 1 (Copeland, 2011). Thus, reducing the cost of HMA production 

will save a lot of money, and will allow the Departments of Transportation (DOTs) to make 

better use of their budgets in maintaining and rehabilitating the road network. The use of 

Reclaimed Asphalt Pavements (RAP) as a component in the new produced HMA will 

reduce the needed amount of virgin aggregates and virgin binder, which may lead to cost 

reduction and, more importantly, energy conservation and recyclability program, leading 

to sustainable pavements implementation. In order to have a successful use of RAP in 

HMA, the inclusion of RAP shouldn’t compromise the performance of the pavement.  
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Figure 1. Cost of Different Pavement Construction Components (Adapted from 

Copeland, 2011) 

 

According to the National Asphalt Pavement Association NAPA (2017), around 76.2 

million tons of RAP were used in newly produced asphalt mixtures in 2017. This amount 

of RAP has reduced the need of 21.5 million barrels of asphalt binder, and more than 72 

million tons of aggregates, which led to a saving of more than $2.1 billion.  

Although asphalt is the most recycled material in the US, yet, 102.1 million tons of asphalt 

still stockpiled at the end of the 2017. Also, agencies have limited the use of RAP in their 

asphalt mixtures. There are concerns regarding increasing the RAP content in the newly 

produced asphalt mixtures by both state agencies and contractors. The most common 

challenges for the state DOTs in using more RAP are many; such as RAP quality and 

consistency, mix design procedure and volumetric requirements, degree of blending and 
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binder selection, risk of compromising cracking performance and durability, and the use of 

RAP with polymers. Whereas, contractors are facing the following barriers in using more 

RAP: dust and moisture contents of RAP, the need to increase the quality control on the 

production and construction of pavements with RAP mixtures, the control of RAP 

properties, and most importantly, the limitations of State DOTs specifications. Figure 2 

shows the most common factors that limit the increase of RAP contents. As the figure 

shows, the specification limits are the most common reported factor. The specification 

limits are usually set by owner agencies based on their previous experience with RAP 

performance.  

 

 

Figure 2. Road Blocks Behind Using More RAP (Adapted from NAPA, 2017) 

 

During its service life, asphalt pavements are subjected to aging mainly due to sun, 

ultraviolet radiations, and oxygen. This aging process results in the stiffening of the 

material. Several studies have reported a successful use of RAP with a satisfying 

performance. However, the performance of pavements with RAP in harsh hot climate is 
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yet to be studied. Arizona is one example that experience hot climate. Figure 3 shows the 

use of RAP in the US between 2013 and 2017. As the figure shows, Arizona (at the State 

level) doesn’t use more than 15% of RAP in its asphalt mixtures. Thus, the performance of 

using higher RAP contents in hot climate areas is yet to be studied, especially at the level 

of public works. This thesis focuses on studying the performance of RAP mixtures, with 

higher RAP content, for the City of Phoenix, Arizona.  

 

Figure 3. RAP Usage in the US Between 2013 And 2017 (Adapted from NAPA, 

2017) 

1.2-  Study Objective  

The objective of the study presented herein is to evaluate the laboratory and field 

performance of asphalt mixtures containing different percentage of RAP for the City of 

Phoenix, Arizona.  

1.3-  Scope of Work 

Although many researchers have studied the performance of RAP mixtures, the 

performance of these mixtures in hot climate areas with plant produced mixtures-in the 

absence of RAP size control- is yet to be studied. This study will cover the work done in 
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the literature with a focus on RAP in hot climate areas. In cooperation with the City of 

Phoenix, three road sections with different RAP percentages (0%, 15%, and 25%) used in 

an asphalt base layer were constructed in Phoenix, Arizona. A PG 70-10 was used for both 

the control and 15% RAP mixtures per Maricopa Association of Governments (MAG) 

specification. For the 25% RAP mixture, a drop of one binder grade was used (PG 64-16) 

per the Maricopa Association of Governments (MAG) specifications. The laboratory 

testing program included assessment of mixture stiffness through the Dynamic Modulus 

test, mixture resistance to each of (i) rutting (through Flow Number test), (ii) Fatigue 

(through Uniaxial Fatigue test), and (iii) Moisture Damage (through Tensile Strength 

Ratio). In addition, the crack initiation and propagation properties of the three mixtures 

were studied through the Indirect Tension Test (IDT) and C* Fracture test, respectively. 

Extraction and recovery of the asphalt binder were performed on the sampled material and 

the following tests were conducted using the Dynamic Shear Rheometer (DSR): (i) 

Complex Modulus, (ii) Multiple Stress Creep and Recovery (MSCR), and (iii) 

Performance Grading (PG). Field cores from the test sections were extracted and tested for 

their indirect tensile strength properties. The experimental plan is shown in Figure 4.  
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Figure 4. Experimental Plan 
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1.4- Thesis Organization  

This thesis is divided into seven chapters. Chapter 1 gives the introduction, some 

background about RAP research, and identifies the objective and scope of this work. 

Chapter 2 provides a summary of the literature review with a focus on using RAP in 

Arizona. Chapter 3 documents the road test sections construction, and some information 

about the material used in this study. Chapter 4 presents the mixture level testing and 

analysis. Chapter 5 includes the binder level testing and analysis. Chapters 6 reports the 

field cores testing results and analysis. Finally, Chapter 7 provides a summary and 

conclusions of the study.  
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CHAPTER 2 LITERATURE REVIEW 

2.1- RAP Background 

At the end of its service life, asphalt pavement materials still have a value and can be used 

to construct new asphalt pavements. Reclaimed Asphalt Pavement (RAP), which is 

basically obtained from old asphalt, can be mixed with different percentages of virgin 

aggregates and binder to produce a new asphalt.  

Serious interest in using RAP in the US started in 1970s when the nation experienced an 

oil embargo leading to very expensive oil products. Before that time, the cost of recycling 

asphalt was higher than using virgin materials due to old equipment. After 1970s, serious 

attention about the feasibility of using RAP has started, in which agencies started 

incorporating RAP in their mixtures. Among these agencies, some of them witnessed 

positive benefits and others experienced different problems mainly related to cracking. 

Regardless of these failures, many agencies persisted on the importance of using RAP in 

their mixtures, and after more than two decades of trial and error, best practices were 

identified, and a better performance was obtained.    

There are generally five different methods of recycling. These five methods can either be 

used alone or in conjunction with each other on a certain pavement section (ARRA, 2015). 

These methods are:  

- Hot Recycling  

- Hot In-Place Recycling (HIR) 

- Cold In-Place Recycling (CIR) 

- Cold Central Plant Recycling (CCPR) 

- Full Depth Reclamation (FDR) 
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2.1.1- Hot Recycling 
Hot Recycling is a method of recycling in which RAP is combined with virgin aggregates 

and binder at a central plant. This RAP is usually a result of milling/removing of an old 

asphalt pavement that has been transported and stockpiled at the plant. Figure 5 is an 

example of such millings stockpiled at an asphalt plant. Then, these millings will be 

processed and stockpiled again, to make it ready to be incorporated in the newly produced 

mixtures. Figure 6 shows a processed RAP stockpile. This method utilizes the heat-transfer 

approach to soften the RAP binder to allow proper blending with the virgin binder. If the 

RAP binder is too stiff, it might not blend well and might be prone to cracking. This may 

lead to some adjustments in the RAP content or the amount of virgin aggregate and binder. 

Once the recycled mix has been produced, it can be transported to the site, placed, and 

compacted just as any regular asphalt.  

 

Figure 5. Unprocessed Milled RAP 
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Figure 6. Processed RAP Stockpile 

                                                                    

2.1.2- Hot In-Place Recycling (HIR) 

During this method, asphalt is completely recycled on site. Usually, the treatment depth of 

an HIR is between 20 to 50 mm. During an HIR, asphalt is heated and softened so that it 

can be scarified or milled to the required depth. Then, the scarified material is mixed and 

placed and compacted using a conventional HMA paving equipment. During mixing, 

virgin aggregates, asphalt binder, or recycling agents can be added based on the need. 

Figure 7 describes the HIR process.  
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Figure 7. HIR Process (Adapted from Gallagher Asphalt Corporation, by Zeller 

Marketing and Design) 

 

 

2.1.3- Cold In-Place Recycling 
Cold recycling is a rehabilitation technique in which the deteriorated pavement materials 

are used in place without the application of heat. The RAP in this method is obtained by 

milling or crushing the in-place pavement. Virgin aggregates, asphalt binder, and recycling 

agents can be added to the RAP before laying it down and compacting it. CIR is suitable 

for a low volume roads that are not close to a central plant. Figure 8 shows an example of 

a CIR process.  
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Figure 8. CIR Process (Adapted from Asphalt Paving Systems) 

 

2.1.4- Cold Central Plant Recycling (CCPR) 

During CCPR, material is removed from the existing pavements and transported to a 

central plant. This material can be processed (screened or crushed) and then used again in 

the construction of new pavements. Similar to CIR, CCPR relies on the use of emulsion or 

foamed asphalt as a binding agent. Once the material and the agent are mixed, it can be 

transported to the project site, laid down, and compacted.   

2.1.5- Full Depth Reclamation (FDR) 

During FDR, the full asphalt pavement layer and portion of the underlying materials (base, 

subbase, or subgrade) is pulverized and mixed properly to provide an upgraded base 

material. Similar to CIR, the process is performed in the absence of heat. The FDR process 

is summarized in the following steps: reclamation of the existing pavement materials, 

adding virgin materials if required, proper mixing, initial laying down of the mix, 

compaction, then final shaping followed by an application of an asphalt surface or wearing 

course. This method produces a granular pavement layer which might be ready for direct 
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use, have additional granular materials on top of it, or can be improved by adding 

stabilizing additives. Figure 9 shows and example of FDR project.  

 

Figure 9. FDR Process (Adapted from SUIT-KOTE CORPORATION) 

 

Among the recycling methods presented above, Hot plant recycling is the most common. 

In this process, mixtures containing RAP are produced and moved to the constructed site, 

before being laid down and compacted. However, in the mixing process, some sort of 

blending will occur between the virgin asphalt binder, and the aged asphalt binder on the 

RAP aggregates. The degree of blending will have a significant effect on the performance. 

The highly aged asphalt binder also plays an important role in the performance. Many 

researchers have found a successful performance of RAP, while others reported some 

failures. Yet, research on highly aged RAP in an extreme weather is yet to be studied. This 

chapter represents the state-of-the-art work in RAP research in the United States with a 

focus on Arizona.  
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2.2- RAP Asphalt Mixtures Performance Testing 

 

Performing mixture testing on RAP is necessary to predict the performance especially 

when high RAP contents exist. Researchers have performed many studies to evaluate the 

effect of replacing RAP (with different contents) on the mechanical properties of the mix.  

 

A study done by Shah et al (2007) investigated the effect of adding 3 different contents of 

RAP (15, 25, and 40%) on the stiffness and low temperature properties of the mix. The 

Indirect Tensile Strength (IDT) test was performed at three different temperatures (0, -10, 

and -20°C) and the strength values at -10°C were used to calculate the critical cracking 

temperature. A PG 64-22 binder was used with the three RAP mixtures in addition to the 

control mix, another two mixtures were prepared by adding PG 58-28 to the RAP mixtures 

with both contents 25% and 40%.  

The Dynamic Modulus test results indicated that adding 15% RAP on the mix significantly 

increase the stiffness values, whereas adding 25% RAP didn’t have any significant effect. 

The high RAP content (40%) addition increases the stiffness significantly at warmer 

temperatures. However, increasing the RAP content from 15% to 25%, 15% to 40%, and 

from 25% to 40% significantly increased the stiffness.  

The critical cracking temperature (Tc) indicated that mixture with 40% RAP has the highest 

cracking temperature, followed by 15% RAP, 25% RAP, and then control. The 25% RAP 

mix had a surprising critical cracking temperature as it was expected to show a higher one 

than the 15% RAP. Adding a softer binder to the mix had an improvement on the low 

temperature cracking potential of the 25% and 40% RAP mixtures by decreasing the Tc 

value compared to PG 64-22. 
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Shu et al (2008) evaluated the fatigue characteristics of HMA mixtures containing different 

RAP contents (0, 10, 20, and 30%). Both IDT and Beam Fatigue tests were conducted to 

evaluate the cracking potential of the 4 mixtures. The results indicated that mixtures with 

higher RAP contents had higher indirect tensile strength (ITS), lower toughness index, and 

lower strain at peak load. Conducting the Resilient Modulus test on the IDT specimens 

showed that increasing RAP content will lead to an increase in the stiffness. The beam 

fatigue test results analyzed with the plateau analysis method indicated that mixtures with 

higher RAP contents experience more damage that would result in shorter fatigue life. 

Although these results contradict the load cycles results, yet, the authors believed that the 

plateau method is more reasonable.   

 

Loria et al (2011) conducted a field and laboratory study to investigate the effect of adding 

two RAP contents (15% and 50%) on moisture resistance and thermal cracking resistance 

of the asphalt mix. Two binders were used with the mixture that incorporates 50% RAP, 

PG 58-28, and PG 52-34. Materials were sampled from the field during construction and a 

laboratory fabricated samples were also prepared with the same virgin materials to compare 

both the field and laboratory results.  

The moisture damage assessment was conducted by evaluating the measured tensile 

strength of unconditioned samples, in addition to samples conditioned with one freeze-

thaw cycles, and samples conditioned with three freeze-thaw cycles. The results indicated 

that RAP increased the tensile strength of unconditioned and both one and three cycle 

conditioned samples. The results were consistent between the field and laboratory samples.  
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The dynamic modulus test was performed on unconditioned specimens, and specimens 

subjected to one and three freeze-thaw cycles. The results indicated that at a given freeze-

thaw cycle, RAP mixtures had higher stiffness compared to the control one. This stiffness 

increased with increasing RAP content.  

The thermal cracking resistance of the mixtures was evaluated using the Thermal Stress 

Restrained Specimen Test (TSRST) after multiple freeze-thaw cycles. The results showed 

that the 50% RAP without a grade change field mixture yielded a greater fracture 

temperature than both 0% and 15% RAP mixtures at unconditioned and conditioned 

specimens. However, the use of a softer binder resulted in a similar fracture temperature to 

that of the control mix.  

 

A study by Apeagyei et al (2011) evaluated the rutting resistance of plant produced asphalt 

mixtures with different RAP contents. The dynamic modulus and flow number tests were 

performed to evaluate the stiffness and permanent deformation properties of the mixtures. 

19 mixtures were evaluated in the study in which 8 were surface mixtures with Nominal 

Maximum Aggregate Size (NMAS) of 9.5 mm, another 8 were base mixtures with NMAS 

of 12.5 mm, and the remaining 3 are Stone Matrix Asphalt (SMA) with NMAS of 12.5 

mm. In this study, a PG 70-22 binder was used for the mixtures with RAP content less than 

20%, whereas mixtures with RAP content of more than 20% were prepared using PG 64-

22.  

The dynamic modulus testing results showed that stiffness has increased with the addition 

of 10% and 15% RAP, however, mixtures with 25% RAP content showed stiffness values 
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similar to that of the control. The authors interpretation of these results is the softer binder 

that was used with the 25% RAP mixtures.  

The flow number test results showed that incorporating 10% and 15% of RAP in the mix 

will lead to a significant increase in the flow number values compared to that of the 25% 

RAP with softer binder.  

City of Phoenix 2017 Study  

Similar to the work in this study, the City of Phoenix Public Works in conjunction with the 

Resource Innovation and Solutions Network (RISN) program at Julie Ann Wrigley Global 

Institute of Sustainability, Arizona State University (ASU), conducted a 2017 limited 

laboratory study to evaluate the viability of using RAP in future pavement maintenance 

and rehabilitation projects. The study also included a survey of current practices by local 

and national agencies. Overall, public works agencies in Arizona have been slow in 

adopting the use of RAP. The survey conducted on the current use of RAP is shown in 

Table 1.  

Other uses of RAP in the table below were identified as backfills, dust control, dirt road 

stabilization and shoulders, among others. 

The study reported RAP asphalt contents between 3.70% and 6.26%. The recovered binder 

Performance Grading (PG) results showed very stiff characteristics and as high as PG 

130+26. Gradation of extracted aggregates from RAP were within specification limits of 

common mixtures. The mixture designs were conducted based on City of Phoenix 
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Table 1. Summary of Practices from Other Agencies – City of Phoenix 2017 Study 

(Arredondo, 2018) 

Agency Surface Non-Surface 
Unbound 

Base 
Other 

City of Phoenix   X* X 

Arizona Department of Transportation (ADOT) X X X X 

Maricopa Association of Governments (MAG)  X X* X 

Pima Association of Governments (PAG) X X X  

Maricopa County Dept. of Transportation (MCDOT)  X X* X 

East Valley Asphalt Committee (EVAC)  X  X 

Apache Junction   X X 

Mesa  X X X 

Queen Creek   X X 

Las Vegas (Nevada) X X X X 

Nevada Department of Transportation (NDOT) X X X X 

Texas Department of Transportation (TxDOT) X X X X 

New Mexico Department of Transportation (NMDOT) X X X X 

California Department of Transportation (Caltrans) X X X X 

*Conditional 

specifications for gyratory compaction and followed the Superpave methodology. The 

procedure to incorporate RAP was customized based on national and local practices.  

Dynamic modulus and flow number test results showed no statistical difference between 

the RAP mixtures and control. The TSR testing showed that all mixtures performed well 

and above the specified minimum limit of 75% required by the City specifications.  
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The study indicated that the 15% RAP contents are feasible to use and will not affect greatly 

nor negatively the pavement performance based on the preliminary laboratory performance 

testing done at ASU.  

Arredondo (2017) performed and expanded the City of Phoenix 2017 study as part of his 

master’s thesis at ASU. He used two asphalt binders: PG 70-10 and PG 64-16 and four 

different RAP contents: 10%, 15%, 25% (using PG 70-10), and 25% content with the softer 

PG64-16 binder; this is in addition to a control mix (0% RAP).   

Laboratory test results showed slightly higher modulus as RAP content increased.  For TSR 

testing, all mixtures performed well and showed some improvement for the RAP mixtures.   
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CHAPTER 3 MATERIALS AND SECTIONS CONSTRUCTION  

3.1-      Pavement Structure 

In this project, pavement designs that are typically used by the CoP were used for the test 

sections, except RAP was used in the base layer. These sections were constructed using a 

mixture with a Nominal Maximum Aggregate Size (NMAS) of ¾ inches in the base layer, 

and a Terminal Blend (TR) mixture with NMAS of ½ inch was used in the surface. The 

TR mix includes some polymer and rubber. Section 1 was a control, where Section 2 had 

a RAP replacement of 15 percent in the base layer, and Section 3 had a 25 percent RAP 

replacement in the base layer. Figure 10 shows a schematic of the three sections.  

 

 

Figure 10. Pavement Structure of the Three Sections 

3.2-     Material Selection 

The materials used in this project are the most widely used aggregates and binders in 

Phoenix. The RAP incorporated in sections 2 and 3 mixtures are a result of millings that 
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are processed and stockpiled in the plant. Below are the properties of the materials selected, 

in addition to the mixture properties.  

3.2.1- Aggregates 

The aggregates used in this study are constantly used by contractors in the Phoenix Area. 

The base layer mixtures have an NMAS of ¾ inches, whereas the surface TR mix has an 

NMAS of ½ inch. Table 2 shows the properties of the virgin aggregates used in the three 

base mixtures. Figure 11 shows the gradation of the 3 base mixtures. 

Table 2. Virgin Aggregate Properties 

 Coarse 

Aggregates 

Fine 

Aggregates 

Combination 

(without 

Admixture) 

Combination 

(with 

Admixture) 

Specifications 

Bulk OD Specific 

Gravity 
2.672 2.635 2.654 2.647 2.35-2.85 

SSD Specific 

Gravity 
2.704 2.664 2.685 2.677  

Apparent Specific 

Gravity 
2.761 2,714 2.738 2.729  

Absorption (%) 1.207 1.112 1.159 1.141 0.00-2.50 

Effective Specific 

Gravity (Gse) 
   2.682  

Sand Equivalent  64   50 Min 

Uncompacted Voids  48.1   45 Min 

%1 or more 

fractured face 
96    85 Min 

%2 or more 

fractured face 
90    80 Min 

Los Angeles 

Abrasion 
     

% Loss @100 Rev-

Grading B 
4    9 Max 

% Loss @500 Rev-

Grading B 
17    40 Max 

% Clayclumps and 

Friable Particles 
0.2 0.3    

 

 



  22 

 

Figure 11. Aggregate Gradation of the Three Base Mixtures 

 

The properties of RAP aggregates were measured and reported in Table 3. 

Table 3. RAP Aggregate Properties 
 

RAP Specifications 

Bulk OD Specific Gravity 2.543 2.35-2.85 

SSD Specific Gravity 2.573 
 

Absorption (%) 1.159 0.00-2.50 

Effective Specific Gravity (Gse) 2.574 
 

Los Angeles Abrasion 
  

%1 or more fractured face 5 9 Max 

%2 or more fractured face 21 40 Max 

 

 

3.2.2- Binder Properties 

The asphalt binders used in mixtures production in this study are a Superpave performance-

graded binder, PG 70-10 for mixtures with 0% and 15% RAP, and PG 64-16 for the 25% 

RAP mixture. These binders were provided by Western Refining located in Phoenix, 

Arizona. The binder used for the surface mix is PG 76-22 TR+. This binder was provided 
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by HollyFrontier located in Phoenix, Arizona as well. Tables 4 and 5 show the properties 

of the PG 70-10 and PG 64-16 binder respectively.  

Table 4. PG 70-10 Properties 

  Test 
Test 

Temperature 
Test Result Specification 

Tests on 

Original 

Binder 

Flash Point, T48   >230 C Min. 230 C 

Apparent Viscosity, AASHTO 

T316 

135 °C 0.565 Pa-s Max. 3 Pa-s 

175 °C 0.101 Pa-s   

Dynamic Shear, T315, G*/sin δ 70 °C 1.19 kPa 
Min. 1.00 

kPa 

Tests on 

Residue 

from 

RTFO 

Mass Change    -0.143 Max 1.0 

Dynamic Shear, T315, G*/sin δ 70 °C 3.05 kPa 
Min. 2.20 

kPa 

Tests in 

Residue 

from 

PAV 

PAV Aging Temperature 110 °C     

Dynamic Shear, T315, G*sin δ 34 °C 3840 kPa 
Max. 5000 

kPa 

Creep Stiffness, T313 0°C 93.0 Mpa 
Max. 300 

Mpa 

m-value, T313 0°C 0.312 Min. 0.300 

 

Table 5. PG 64-16 Properties 

  Test 
Test 

Temperature 
Test Result Specification 

Tests on 

Original 

Binder 

Flash Point, T48   >230 C Min. 230 C 

Apparent Viscosity, AASHTO 

T316 

135 °C 0.428 Pa-s Max. 3 Pa-s 

175 °C 0.082 Pa-S   

Dynamic Shear, T315, G*/sin δ 64 °C 1.62 kPa 
Min. 1.00 

kPa 

Tests on 

Residue 

from 

RTFO 

Mass Change    
-0.106 weight 

% 
Max 1.0 

Dynamic Shear, T315, G*/sin δ 64 °C 3.85 kPa 
Min. 2.20 

kPa 

Tests in 

Residue 

from 

PAV 

PAV Aging Temperature 100 °C     

Dynamic Shear, T315, G*sin δ 28 °C 3790 kPa 
Max. 5000 

kPa 

Creep Stiffness, T313 -6°C 117.0 Mpa 
Max. 300 

Mpa 

m-value, T313 -6°C 0.335 Min. 0.300 
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3.3-      Mix Design Methods 

The Marshall mix design method was used to design the asphalt mixtures used in this study. 

The Maricopa Association of Governments (MAG) guidelines were followed during the 

mix design. MAG specification requires a drop in one PG grade when RAP content of 15% 

or higher is used. Thus, in the current mix design, PG 64-16 was used for the 25% RAP 

mix instead of PG 70-10. The mixtures were designed with 75 blows on each side. Table 

6 shows the volumetric properties of the three base mixtures used in this study. More 

information in the mix design calculations are provided in APPENDIX A.  

 

Table 6. Volumetric Properties 
 

0% RAP 

(Control) 

15% RAP 25% RAP 

Total Binder Content 5 5 5 

Marshall Bulk Density (pcf) 148 148.7 149.2 

Max. Theoretical Specific Gravity 2.478 2.481 2.486 

Max. Theoretical Specific Density (pcf) 154.6 154.8 155.1 

Stability 5010 5390 5210 

Marshall Flow (in) 11 10 11 

% Air Voids 4.3 3.9 3.8 

% VMA 14.5 14.5 14.2 

% Air Voids Filled 70.5 72.7 72.8 

% Eff Asphalt Total Mix 4.39 4.52 4.41 

Film Thickness (micro) 9 9 9 

Dust/Bitumen Ratio 1.1 1 1.1 

 

3.4-        Project Description 

The test sections were built on 15th Avenue from Roeser Road to Broadway Road. The 

total project length is around 2685 feet divided equally between the three sections. Figure 

12 shows the as-constructed sections layout. These test sections were constructed in 

December 2018.  
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Figure 12. As-Constructed Map of the Sections 

 

 

3.5-       Sections Construction 

Road Sections were constructed following City of Phoenix specifications. Loose asphalt 

mixtures were sampled from the plant. Trucks were stopped randomly before going out to 

the site and metal buckets were used to sample the asphalt mixtures directly from the truck. 

These buckets were transported to the ASU pavement laboratory and the buckets were 

processed by splitting into bags of uniform gradations as much as possible. These bags 
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were stored at a controlled temperature conditions to prevent any potential aging. The bags 

after that were used to prepare samples and start the testing process (Figure 13). 

 

Figure 13. Sections Construction and Material Sampling 
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CHAPTER 4 TESTING AND ANALYSIS 

4.1-      Introduction  

The goal of performing mixture laboratory testing is to measure and compare the 

mechanical properties of each mixture that reflect the performance in the field. These 

properties range from characterizing material stiffness, permanent deformation, crack 

initiation properties, crack propagation properties, fatigue cracking resistance, and 

moisture damage. In this research, the Dynamic Modulus test (E*) was performed to 

characterize the stiffness properties, the Flow Number test (FN) to evaluate the permanent 

deformation properties (which indicates the rutting performance in the field), the IDEAL 

CT test to evaluate the crack initiation properties, C* fracture test to determine the crack 

propagation properties, uniaxial fatigue test to investigate the fatigue cracking potential of 

the mix, and the Tensile Strength Ratio (TSR) which is based on testing the sample in 

indirect tension mode before and after conditioning to evaluate the moisture resistance.  

 

4.2-      Mixture Testing 

 4.2.1- Dynamic modulus 

Stiffness is one of the important parameters that characterize HMA. This parameter defines 

the stress-strain relationship of the material, which can give a good indication on the 

performance. Stiffness varies depending on the type of asphalt binder used, air voids, 

asphalt binder content, aggregate gradation and definitely temperature. The dynamic 

modulus of asphalt is a fundamental property that is determined by testing asphalt in its 

linear viscoelastic range. This parameter is important in the analysis of pavement response 

under traffic loading and different climatic condition.  It is one of the main inputs to the 

AASHTO Pavement Mechanistic Empirical (ME) design software, level 1 analysis.  
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The test measures the strain response of the asphalt to determine its stiffness under a 

continuous sinusoidal loading. This test also measures the phase angel of the material, 

which is basically the lag between the stress and its corresponding strain. This phase angel 

reflects the viscous properties of the material.  

For a linear viscoelastic material, the parameter that defines the stress-strain relationship is 

a complex number called “Complex Modulus”, which is symbolized by E*. The absolute 

value of this complex number is the dynamic modulus value, which is basically the ratio 

of peak stress to the peak strain. The dynamic modulus is defined using Equation 1 below: 

 

|E ∗  (𝜔)| = √(
𝜎0

𝜀0
𝑐𝑜𝑠 𝜙)

2

+ (
𝜎0

𝜀0
𝑠𝑖𝑛 𝜙)

2

=
𝜎0

𝜀0
    (1) 

Where: 

E*  = Complex modulus or dynamic modulus 

Φ  = Phase angle 

σ0  = peak stress amplitude (applied load/sample cross area) 

ε0  = peak amplitude of recoverable axial strain 

 

The Dynamic Modulus protocol (AASHTO TP62-03) was developed at Arizona State 

University and consists of applying a repeated axial cyclic load at different frequencies and 

different temperatures. The protocol recommends conducting the test at five temperatures 

(-10, 4.4, 21.1, 37.7, and 54.4°C) and six frequencies (25, 10, 5, 1, 0.5, and 0.1 Hz) to 

develop the full master curve based on the Time-Temperature superposition principle.  
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The Dynamic Modulus test was conducted using IPC Global Universal Testing Machine 

(UTM) shown in Figure 14. The environmental chamber act to keep the specimen at the 

required testing temperature. The low temperature (-10°C) was not considered in this study 

since pavements in Phoenix don’t experience this temperature.  

 

Figure 14. UTM Machine for Dynamic Modulus Testing 

 

Samples of each mixture were compacted using a Superpave Gyratory Compactor (SGC) 

then cored and cut to arrive at the recommended specimen size of 100 mm in diameter and 

150 mm in height. The air voids content was then determined and verified to be in the range 

of 6.5 ± 0.5%. Specimens with air voids outside this range were discarded.  LVDTs were 

used to measure the strain caused by the load applied form the actuator.  

Specimens were placed in the environmental chamber for 8 hours before performing the 

test at the first temperature (4°C), and then for 5 hours between each temperature. The 

testing temperature order was from the lowest till the highest. At each temperature, six 

frequencies were tested. These frequencies are 0.1, 0.5, 1, 5, 10, and 25 Hz. The highest 
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frequency was tested first followed by the others in the descending order. Three replicates 

were tested for each mix, and the coefficient of variation (CoV) was calculated and verified 

to be below the maximum allowable value.  

Once the test is done, the E* master curves were constructed using equations 2 to 4 below. 

The dynamic modulus for each mix were plotted conforming the isothermal curves. Then, 

using the time-temperature superposition principle, the data were shifted to arrive to the 

final master curve for each mix. These master curves are constructed by shifting the 

isothermal curves horizontally using a shift factor a(t). The curves were shifted to a 

reference temperature of 70 F (21.1°C).  

 

 

                                      𝑙𝑜𝑔 | 𝐸∗| = 𝛼 +
𝛽

1+𝑒𝛿+𝛾 𝑙𝑜𝑔(𝑓𝑟)                          (2) 

                                      𝐿𝑜𝑔(𝑎𝑡) = 𝑎𝑇2 + 𝑏𝑇 + 𝑐                          (3) 

                                      𝑙𝑜𝑔( 𝑓𝑟) = 𝑙𝑜𝑔( 𝑓) + 𝑙𝑜𝑔( 𝑎(𝑇))              (4) 

 

Where 

|E*|   = dynamic modulus, psi 

f   = loading frequency at the test temperature, Hz 

fr   = reduced frequency at the reference temperature, Hz 

α, β, δ, γ  = regression coefficients 

a(T)   = temperature shift factor 
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4.2.2- Flow Number (FN) 
The flow number test was recommended during the NCHRP 9-19 project as a simple 

performance test to indicate the rutting potential of asphalt mixtures. The flow number 

results have been showing good correlations with field performance. This test indicates the 

stage where shear deformation starts, which strongly represents the start of permanent 

deformation in the field. The test procedure is outlined in AASHTO TP79.  

 

The flow number test is conducted by applying a uniaxial compressive load, with a 0.1 

seconds haversine pulse and a 0.9 seconds rest period. The test is done at a constant and 

specific temperature, usually close to the effective temperature at the studied location. The 

cumulative strain graph has a three stage as shown in Figure 15. The first section (stage 

one) represents the deformation that occurs during asphalt compaction and initial traffic 

loading. The second section (secondary stage) reflects the majority of the shear 

deformation that occurs in the asphalt during its service life. The third section (tertiary 

stage) describes the point in which the maximum limit of the shear deformation has been 

crossed and rutting begins. The flow number value is basically the cycle number where the 

tertiary stage begins.  

 

Similar to dynamic modulus, samples of 100 mm in diameter and 150 mm in height were 

prepared for FN testing. The Air voids were measured and validated to be within 6.5 +_ 

0.5%. The selected testing temperature was 50°C, which is the recommended effective 

temperature for Phoenix. Before testing, the sample was conditioned inside the 

environmental chamber for 5 hours, in which the temperature stabilizes at 50°C after this 
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period. The test was conducted using IPC Global Universal Testing Machine (UTM) shown 

in Figure 16. 

 

Figure 15. Accumulated Strain Zones 
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Figure 16. UTM Machine Used for Flow Number Testing 

 

The Francken model (equation 5) was used to model the permanent strain curve. The 

parameters a, b, c, and d are determined using the nonlinear regression analysis.  

To determine the flow number value (i.e inflection point), the second derivative (equation 

7) is set to zero.  

 

휀𝑝(𝑁) = 𝑎 ⋅ 𝑁𝑏 + 𝑐(𝑒𝑑⋅𝑁 − 1)             (5) 

 

𝜕𝜀𝑝

𝜕𝑁
= 𝑎𝑏𝑁𝑏−1 + 𝑐𝑑𝑒𝑑𝑁                  (6) 
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𝜕2𝜀𝑝

𝜕𝑁2
= 𝑎𝑏(𝑏 − 1)𝑁𝑏−2 + 𝑐𝑑2𝑒𝑑𝑁               (7) 

 

Where: 

εp(N) = Permanent strain at N cycles 

N = Number of cycles 

a, b, c, d = Regression coefficients 

 

4.2.3 IDEAL CT Test  

 

The indirect tensile cracking test is performed to determine the cracking potential of asphalt 

mixtures at intermediate temperatures. This test is performed on disk specimens obtained 

from the Super Pave Gyratory Compactor (SGC) specimens. The disks used in this research 

were 100 mm in diameter and 62 mm in thickness.  

 

The test was conducted at 25°C intermediate temperature at a loading rate of 50 mm/min. 

This high loading rate allows the test to be performed in less than 1 minute. The specimens 

were conditioned in an environmental chamber for around 5 hours at the testing 

temperature before conducting the test.  

 

The output of this test is a typical load-displacement curve as shown in Figure 17. The 

slope at the point corresponding to 75% of the maximum load is determined and considered 

as a post peak behavior. Zhou et al. (2017) have determined that this point is typically the 

inflection point of the post peak behavior and can identify the brittle or ductile material  
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Figure 17. Typical Load-Displacement Curve for IDEAL CT Analysis (Adapted 

from Zhou et al. 2017) 

 

behavior. Based on all these parameters, the CTI index is calculated using Equation 9. As 

it can be seen, the higher the fracture energy, the higher the work needed to fracture the 

material, thus the higher the CTI. From the other side, the lower the slope, the better 

ductility or post peak behavior, the higher the CTI. Thus, higher CTI values correspond to 

better cracking resistance.  

                                                𝐶𝑇𝐼 =
𝑡

62
×

𝐼75

𝐷
×

𝐺𝑓

𝑚75
× 10^6                    (9) 

 

Where:  

 

CTI                       = Cracking Tolerance Index 

Gf                         = failure energy (Joules/m2), Gf = Wf/Dxt, where Wf is the area                            

below the load displacement curve 

m75                      = absolute value of the post-peak slope m75 (N/m) 

I75                        = displacement at 75 percent the peak load after the peak (mm) 
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D                             = specimen diameter (mm)  

t                               = specimen thickness (mm)   

 

 

 

4.2.4- C* Fracture Test 

Having measured the energy required for the crack to start, it is important to determine the 

rate of propagation of this crack inside the asphalt layer. To do so, the C* fracture test 

which was developed by Stempihar and Kaloush (2013) was used. This test applies load to 

a notched disk specimen cut from a gyratory compactor as shown in Figure 18. A small cut 

is initiated in the disk since the test measures the crack propagation only and not the 

initiation. The specimen dimensions is shown in Figure 19. Figure 20 shows the test setup. 

 

 

 

 
Figure 18. C* Sample Preparation 



  37 

 

 
Figure 19. C* Specimen Geometry (Stempihar, 2013) 

 

 

Figure 20. Typical C* Fracture Test Setup 
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The initiation and propagation of the crack inside the asphalt material in governed by the 

principles of fracture mechanics. The local stress distribution in this material is 

strengthened by the available surface notches. The crack starts to propagate when the stored 

energy is enough for new crack surface. When the strain energy release rate becomes equal 

to the fracture toughness, the crack growth take place under steady state conditions. 

Majidzadeh (1970) research was one of the earlies in applying the fracture mechanics to 

asphalt concrete. After that, Abulshafi (1992) applied the C*-line integral method to predict 

the fatigue life of pavements using crack initiation, crack propagation, and failure. He 

concluded that it is required to conduct two different tests, the first one is to evaluate the 

crack initiation properties and the second one to reflect on the crack propagation properties 

using notched specimen subjected to repeated loading. Later Abdulshafi and Majidzadeh 

used notched disk specimens to utilize the J-integral concept to the fracture and fatigue of 

asphalt pavements. A recent research by Stempihar (2013) developed a procedure for the 

C* Fracture Test (CFT). Stempihar and Kaloush (2017) provided the technical details on 

performing the test including the specimen geometry, selecting test temperature, and the 

analysis procedure to arrive to the results.  

 

Landes and Begley (1976) were the first to apply the C* parameter to fracture mechanics 

to describe the stresses and stains surrounding the crack tip in metals at high temperatures. 

In a viscous material, C* can be defined as the energy rate line integral that describes the 

stress and strain rate field surrounding the crack tip. The C* can be measured 

experimentally due to the relationship between the J-integral and C* parameter. J can be 
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defined as the energy difference between two specimens subjected to the same load yet 

have different crack length. Thus, C* can be calculated as power or energy rate difference 

between two specimens, under same loading, with incrementally different crack length. 

Mathematically, C* can be expressed by Equation 10 below.  

                                                                  𝐶∗ = (−
1

𝑏
) (

𝑑𝑈∗

𝑑𝑙
)          (10) 

Where  

U*                                  = Power or energy rate for a given load P 

b                                     = Specimen thickness 

 

The rate of work done (U*) is defined as the area under the P* vs displacement curve. It is 

calculated using Equation 11 below: 

 

 

                                                                   𝑈∗ = ∫ 𝑃
𝑢

0
𝑑𝑢                     (11) 

 

 

4.2.5- Uniaxial Fatigue Test 

 

The uniaxial fatigue test was conducted to evaluate the effect of adding RAP on the fatigue 

life of the asphalt mix. The test was conducted at 18°C by subjecting a cylindrical specimen 

of 150 mm height and 75 mm diameter to sinusoidal displacement.  Figure 21 shows the 

test setup. The failure criteria used in this test is the drop-in phase angle.  
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Figure 21. Uniaxial Fatigue Test Setup 

The test was conducted at four strain levels, which were estimated such that the sample 

will fail in less than 10,000 cycles, between 10,000 and 50,000 cycles, between 50,000 and 

100,000 cycles, and greater than 100,000 cycles. The Simplified Viscoelastic Continuum 

Damage (S-VECD) model was used to analyze the test results. The result of this analysis 

is the damage characteristic curve (C vs. S). The power function shown in Equation 12 was 

used to fit the curves.  

  

 

𝐶 = 1 − 𝐶11𝑆𝐶12          (12) 

 

Although the C vs. S is a good indication of the performance and can indicate the level of 

damage sustained before failure, yet, it doesn’t indicate directly the fatigue performance. 

In order to predict the number of cycles needed for fatigue failure at different strain levels, 

Equation 13 was used. 
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𝑁𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =
(𝑓)(23𝛼)𝑆𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝛼−𝛼𝐶12+1

(𝛼−𝛼𝐶12+1)(𝐶11𝐶12)𝛼[(𝛽+1)(𝜀0.𝑝𝑝)(|𝐸∗|𝐿𝑉𝐸)]
2𝛼

𝐾1

     (13) 

 

 

Where: 

Nfailure = predicted cycles to failure, 

f = frequency of loading, 

|E*| = dynamic modulus at the frequency and temperature of loading simulated, 

 = viscoelastic damage rate (characterized from the dynamic modulus 

mastercurve), 

 = load form factor, taken as 0 in this work to simulate reversed sinusoidal loading, 

0.pp  = the peak-to-peak strain magnitude for the simulated loading history, 

K1 = loading shape factor, and 

Sfailure = damage level at failure (defined from the experimental results). 

 

4.2.6- Tensile Strength Ratio (TSR) 
Moisture damage is one of the major distresses of asphalt pavements. It is due to the loss 

of adhesion between the aggregate and binder in the presence of water. This loss of bond 

separates the aggregate and binder and causes stripping.  

 

TSR is a performance test that indicates the resistance of the mix to moisture damage. The 

test protocol is described in AASHTO T283. The gyratory compacted specimens of 150 
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mm in diameter and 180 mm in height were prepared for each one of the mixes (0% RAP, 

15% RAP, and 25% RAP). After cooling, the samples were cored to a diameter of 100 mm. 

then, two samples of 62 mm thickness were cut from each sample, conforming six samples 

(disks) for each mixture. The air voids were determined for each disk. The disks from each 

mixture were divided into two subsets: unconditioned subset and condition subset. The 

unconditioned subset was stored at room temperature, and the conditioned subset was 

partially vacuum-saturated, by applying a partial pressure of 26 in Hg for a short time (5 to 

10 minutes). After that the specimen was kept submerged in water for another 5 minutes, 

and the saturation level was measured using Equation 12 below. The sample was 

considered ready for freeze-thaw conditioning when the saturation level is between 70% 

and 80%.  

𝑆 =
(𝐵−𝐴)

𝑉
⋅ 100    (12) 

Where,  

A    = Weight of dry specimen in air (gm) 

B    = Weight of saturated surface dry specimen after partial vacuum saturation (gm) 

V    = Volume of air voids 

 

 The saturated set is conditioned first at -16°C for at least 16 hours (Figure 22), and then in 

hot water bath at 60°C for 24 hours (Figure 23). Then, both conditioned and unconditioned 

subsets are placed in a water bath of temperature 25°C (after wrapping the disks with plastic 

wrap to keep the unconditioned subset dry). After that, the IDT is performed (Figure 24) 

on both the conditioned and unconditioned samples and the ratio of the tensile strength of 
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the conditioned set to that of unconditioned set is determined and defined as TSR. The 

Tensile Strength (T) is determined using the equation 8 below.  

 

𝑇 =
𝑃⋅2000

𝜋⋅𝐷⋅𝑡
                   (8) 

Where:  

P = Maximum load, in N 

D = diameter of sample, in mm 

t = thickness of sample, in mm 

 

 

 

Figure 22. Specimens During the Freeze Cycle 
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Figure 23. Specimens During the Thaw Cycle 

 

 

 

 

 

 

Figure 24. Specimen During IDT Testing 
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4.3-    Results 

4.3.1- Dynamic Modulus Test results 
The master curves based on the dynamic moduli of each mix were obtained. The average 

dynamic modulus master curves for each mix are shown in Figure 25. As it can be seen, 

adding 15% on the RAP mix didn’t not have a stiffening effect when compared to the 

control mix. Adding 25% RAP on the mix while dropping one binder grade (PG 64-16) 

resulted in almost similar stiffness to the control and 15% RAP mixture.  

To clarify the differences in the modulus values, the dynamic modulus values at each 

temperature and each frequency were plotted in Figure 26. It can be noted from the figures 

that as the frequency decreases, the value of the dynamic modulus decreases, as the material 

is experiencing slower loading. From the other side, as the temperature increases, the value 

of the dynamic modulus decreases, due to binder softening at higher temperature. In all 

cases, the dynamic modulus values are comparable.  

 

Having a comparable stiffness at the different frequencies and temperatures indicate that 

adding 15% RAP and 25% RAP (with softer binder) will not have an impact on the 

cracking properties of the mix, yet, this will be thoroughly investigated in the cracking 

testing and evaluation.  
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Figure 25. E* Master Curves of the 3 Mixtures 

 

 

Figure 26. Dynamic Modulus Values at Each Temperature and Frequency 
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The ANOVA analysis was conducted on the results at all tested temperatures and 

frequencies. The results are presented in Table 7. The results indicated that generally there 

is no statistical difference between the modulus values, except at 37.8°C in which there are 

some differences at the frequencies of 1, 0.5, and 0.1 Hz.    

 

Table 7. ANOVA of Dynamic Modulus Results 

Frequency 

(Hz) 

Temperature (°C) 

4.4 21.1 37.8 54.4 

25 NS NS NS NS 

10 NS NS NS NS 

5 NS NS NS NS 

1 NS NS S NS 

0.5 NS NS S NS 

0.1 NS NS S S 
                                   NS= Not Statistically Significant S= Statistically Significant 

 

The t-test (with one and two tails) was conducted to compare each two mixtures at a time. 

The results are presented in Tables 8 and 9. The results also assure that there are no 

differences in the modulus values at most combinations of frequency and temperatures, 

except at 37.7 °C where some differences are reported.  These tests are based on the null 

hypothesis (Ho) which compares the group mean values to see if they are statistically equal 

or not, so the null hypothesis can be rejected (R) or if there is no statistical difference, the 

hypothesis cannot be rejected (CNR). 
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Table 8. t-Test (One Tail) of Dynamic Modulus Results 

Freq   

(Hz) 

t-Test  

comparing: 

Temperature (°C) 

4.4 21.1 37.7 54.4 

25 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR R CNR CNR 

15% to 

25% 
CNR CNR CNR CNR 

10 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR R CNR 

5 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR R CNR 

1 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR R CNR 

15% to 

25% 
CNR CNR R CNR 

0.5 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR R CNR 

15% to 

25% 
CNR CNR R CNR 

0.1 

0% to 15% R CNR R CNR 

0% to 25% CNR CNR R R 

15% to 

25% 
CNR CNR R CNR 

R= Reject H0 CNR= Cannot reject H0 
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Table 9.  t-Test (Two Tail) of Dynamic Modulus Results 

Freq   

(Hz) 

t-Test  

comparing: 

Temperature (°C) 

4.4 21.1 37.7 54.4 

25 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR R CNR CNR 

15% to 

25% 
CNR CNR CNR CNR 

10 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR CNR CNR 

5 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR R CNR 

1 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR R CNR 

0.5 

0% to 15% CNR CNR CNR CNR 

0% to 25% CNR CNR CNR CNR 

15% to 

25% 
CNR CNR R CNR 

0.1 

0% to 15% CNR CNR R CNR 

0% to 25% CNR CNR R R 

15% to 

25% 
CNR CNR CNR CNR 

R= Reject H0 CNR= Cannot reject H0 

 

4.3.2- Flow Number Test Results 

The Flow Number (FN) test results were in agreement with most studies found in literature, 

where there is an expected improvement in the rutting resistance of the asphalt mix when 

RAP is incorporated. The change in the accumulated strain percentage with the increased 

number of loading cycles is shown in Figure 27. The graph shows that with the increase in 

RAP content, the number of cycles to reach a certain strain percentage get higher, which 
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indicates the increase in mixture resistance to rutting. It is also noted that the stiffening 

effect of the 25% RAP has dominated the softening effect of the PG 64-16 binder.  

 

To clarify the results, the average FN value of each mix were compared in Figure 28. The 

addition of 15% RAP had a stiffening effect to the mix that lead to a better resistance to 

rutting failure, as the 15% RAP mix failed at around 1400 cycles. Moreover, the addition 

of 25% RAP improved the rutting performance, in which the 25% RAP mixture had the 

best rutting resistance with failing cycle around 1863. The aged binder in the RAP has 

contributed to the stiffening of the final asphalt mix which lead to a better rutting resistance.  

 

 

       Figure 27. Accumulated Strain Curves of the 3 Mixtures 
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                Figure 28. Number of Cycles Till Rutting Failure 

 

The statistical analysis presented in Table 10 showed that there is statistical significance in 

the difference between the three flow number values. The t-test results showed that adding 

15% RAP will significantly improve the rutting potential of the mix and adding more RAP 

(25%) will significantly improve it better.  

 

 

Table 10. Flow Number Statistical Analysis 

Mixture 

Flow Number (Cycles) α = 0.05 
t-Test  

comparing: Repl. 1 Repl. 2 Repl. 3 Average CV (%) ANOVA 
t-Test    

one-tail 

t-Test    

two-tail 

0% 

RAP 
533 509 397 480 15.1 

S 

R CNR 0% to 15% 

15% 

RAP 
1047 1519 1663 1410 22.9 R R 0% to 25% 

25% 

RAP 
1535 1967 2087 1863 15.6 R R 

15% to 

25% 

 NS= Not Statistically Significant; S= Statistically Significant; R= Reject H0; CNR= Cannot reject H0 
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4.3.3- IDEAL CT Test 

The IDEAL CT test has been proven to be well correlated to cracking potential in the field 

(Zhou et al. 2017). The CTI Index was also found to be sensitive to the presence of RAP 

contents. The test analysis provides us with 3 important parameters: (i) maximum tensile 

strength, which is determined from the maximum load attained before failure, (ii) Fracture 

energy which is basically the area under the load-displacement curve, and it represents the 

energy needed to cause the fracture, and (iii) CTI index which is a cracking index that 

indicates the cracking potential of the mix. The higher the CTI value, the better resistance 

to cracking.  

 The effect of adding RAP on the maximum tensile strength is shown in Figure 29. As 

expected, the addition of 15% RAP to the mix yielded higher tensile strength, due to the 

stiffening effect of the RAP. Moreover, the addition of 25% RAP with its corresponding 

stiffening effect yielded a higher tensile strength. These results agree with the work that 

have been reported in the literature. 
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Figure 29. Maximum Tensile Strength of the Three Mixtures 

 

When it comes to fracture energy, the work required to fracture the sample doesn’t only 

depend on the maximum load to fail it, but also on the post-peak behavior. The average 

area below the load-displacement curve of each mix was calculated and presented in Figure 

30. As it can be seen from the figure, the addition of 15% RAP yielded a slight increase in 

the fracture energy, and further increase in the RAP content to 25% yielded even a higher 

value.  
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Figure 30. Fracture Energy of the Three Mixtures 

 

The CTI was calculated based on Equation 9 presented earlier. The higher CTI index 

reflects a better resistance to cracking. The CTI calculation procedure includes values of 

both fracture energy and post-peak behavior (slope at inflection point). Thus, this index 

reflects both properties. Since these two properties describe the cracking behavior of the 

material, the index was found to be well correlated to field cracking. The CTI values are 

presented in Figure 31. As expected, the addition of 15% RAP increased the cracking 

potential, and adding more RAP yielded to a lower cracking resistance, as it can be 

concluded from the decrease in CTI values.  
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Figure 31. CTI Values of the Three Mixtures 

 

The statistical analysis presented in Table 11 indicates that adding RAP in both percentages 

didn’t have any effect on the tensile strength, fracture energy, and CTI values, which means 

that RAP didn’t affect the cracking potential of the mix.   

 

Table 11. IDEAL CT Results Statistical Analysis 

Measured 
Parameter 

Mixture 

 α = 0.05 

t-Test  
comparing: Repl. 1 Repl. 2 Average CV (%) ANOVA 

t-Test    

one-tail 

t-Test    

two-tail 

St 

0 1303.7 1221.2 1262.5 4.6 

NS 

CNR CNR 0% to 15% 

15% 1552.8 1585.1 1568.9 1.5 CNR CNR 0% to 25% 

25% 1609.8 1746.6 1678.2 5.8 CNR CNR 15% to 25% 

Wf 

0 32.5 29.2 30.8 7.7 

NS 

CNR CNR 0% to 15% 

15% 30.3 32.2 31.2 4.4 CNR CNR 0% to 25% 

25% 35.2 37.0 36.1 3.6 R R 15% to 25% 

CTI 

0 13.1 15.2 14.2 10.7 

NS 

R R 0% to 15% 

15% 7.2 8.7 7.9 13.1 CNR CNR 0% to 25% 

25% 11.4 7.8 9.6 26.5 CNR CNR 15% to 25% 

  NS= Not Statistically Significant; S= Statistically Significant; R= Reject H0; CNR= Cannot reject H0 
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4.3.4- C* Fracture Test 

When the cracks propagate through the asphalt layer and reach the surface, moisture finds 

its way to the base and subbase materials, which weakens its properties and leads to more 

distresses. Thus, it is important to characterize the rate of crack propagation inside the 

asphalt layer. The slower the propagation rate, the longer pavement life. The C* versus the 

crack growth rate (a*) are plotted in Figure 32. The higher the slope the more energy 

needed to propagate the crack. As it can be seen from Figure 32, the 15% RAP mix has a 

better crack propagation property than both the control and the 25% RAP. The 25% RAP 

mix has the worst crack propagation properties, yet, it is not far from the control. One of 

the potential reasons behind having the best crack propagation properties in the 15% RAP 

in the higher VMA value of this mix.  

 

              Figure 32. C* Test Results 
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4.3.5- Uniaxial Fatigue 

The fatigue test was conducted at an intermediate temperature of 18°C and following 

AASHTO TP107 procedure. The outputs of this test are the damage characteristic curve 

(C vs. S) which reflects the material integrity changes with damage, and the number of 

loading cycles till fatigue failure for different strain levels, which reflects the fatigue life 

of the mix. The damage characteristic curves of the three mixtures are presented in Figure 

33. As expected, the control mixture sustained more damage before failure, while the 15% 

RAP and 25% RAP mixtures sustained less damage.  

 

 

Figure 33. Damage Characteristic Curves of the Three Mixtures 

 

These curves are not enough to tell the full story, thus the number of cycles till fatigue 

failure were determined for each mix and presented in Figure 34. As it can be seen from 

the figure, the three curves almost overlap on top of each other. Thus, for a certain strain 
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level, the number of cycles required to cause fatigue failure is almost identical, yielding to 

the fact that adding 15% and 25% (with softer binder) RAP contents will not have a 

significant effect on the fatigue life of the mixtures.  

 

 

Figure 34. Fatigue Life Curves of the Three Mixtures 

 

4.3.6- Tensile Strength Ratio Test (TSR) Results 

Moisture damage is a result of loss of adhesion between the binder and aggregate in the 

presence of moisture. The TSR method was conducted in the three mixtures to evaluate the 

change in the indirect tensile strength after moisture conditioning. The TSR results are 

presented in Figure 35. As it can be seen, adding 15% and 25% RAP to the mixture didn’t 

have any significant effect on the moisture damage resistance, as the TSR values are 

comparable. Moreover, all the mixtures passed both City of Phoenix specifications of TSR 

value above 75%, and the recommendations based on the literature of TSR value above 
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80%. It is worth to note that hydrated lime was used as antistripping agent in the three 

mixtures, which improved the moisture resistance properties.  

 

 

Figure 35. TSR Results of the 3 Mixtures 

 

The statistical analysis shown in Table 12 indicated that there is not statistically significant 

difference between the three percentages, which means that adding RAP didn’t affect the 

moisture resistance of the mix.  

Table 12. TSR Statistical Analysis 

Mixture 

Tensile Strength (kPa) α = 0.05 
t-Test  

comparing: Repl. 1 Repl. 2 Repl. 3 Average CV (%) ANOVA 
t-Test    

one-tail 

t-Test    

two-tail 

0% 

RAP 
84 90 86 86.8 3.6 

NS 

CNR CNR 
0% RAP-

15% RAP 

15% 

RAP 
78 88 79 82.1 7.1 CNR CNR 

0% RAP-

25% RAP 

25% 

RAP 
85 96 83 88.2 8.1 R R 

15% RAP-

25% RAP 

 NS= Not Statistically Significant; S= Statistically Significant; R= Reject H0; CNR= Cannot reject H0 
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CHAPTER 5 BINDER LEVEL TESTING 

 

The mixture testing performed and described in earlier chapters reflects the changes in the 

mechanical properties of the asphalt mix while adding two different percentages of RAP. 

Yet, there are two different factors that need to be considered before jumping to 

conclusions: (i) degree of binder blending and (ii) role of the variable RAP gradation of 

the properties of the mix. In order to eliminate or minimize the effect of these two variables, 

it is required to remove these components from the story, which means conducting testing 

at the binder level. Although binder testing will eliminate the effect of RAP gradation in 

the analysis yet will not completely solve the degree of blending issue. When testing at the 

mixture level, the aged RAP binder will not completely blend with the virgin binder, which 

will affect the properties of the final mix. Yet, the binder level testing might give a better 

indication on the properties of the aged-virgin binder composite, although it can’t be 

assumed fully blended.  

5.1-      Binder Extraction and Recovery 

During the mixing process, RAP is mixed with virgin aggregates and virgin binder at high 

temperature. The aged RAP binder affects the properties of the total binder in the mix, yet 

the extent of this effect is dependent on the degree of blending. Figure 36 below explains 

the mixing process and how the final binder might be affected.  
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Figure 36. Binder Grade Changes After RAP Replacement 

 

In the control mix (0% RAP) case, the PG 70-10 virgin binder was mixed with virgin 

aggregates, yielding to the final asphalt mix. Since no RAP was introduced in this mixture, 

the binder properties will not change and the final binder in the mix will have the same PG. 

However, in the other two mixtures, the properties of the final binder will change. In the 

case of the 15% RAP mix, a PG 70-10 virgin binder was added to virgin aggregate and 

RAP of 15% content. Some of the aged binder in this mix will blend with the virgin binder 

and might affect its properties. Thus, the properties of the binder in the final mix can’t be 

assumed unchanged. Similarly, in the 25% RAP mix case, the PG 64-16 virgin binder will 

blend with some of the RAP binder (25% content) and the properties of the binder in the 

final mix will change. Thus, in order to determine the properties of these binders, extraction 

and recovery of the binder were performed.  
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The extraction process was carried using the centrifuge method, according to AASHTO T 

164 “Standard Method of Test for Quantitative Extraction of Asphalt Binder from Hot Mix 

Asphalt (HMA)”. The loose asphalt mixture was placed in the centrifuge bowl (Figure 37) 

and then Trichlorethylene (TCE) solvent was added to remove the asphalt from the 

aggregates. The asphalt was kept immersed in the TCE for 1 hour to give some time for 

the TCE to remove the binder. After that the centrifuge machine was used to remove all 

the binder and TCE from the bowl.  

 

 

Figure 37. Extraction and Recovery Processes 
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The extraction process output is binder mixed with TCE. However, in order to determine 

the properties of the binder, the TCE has to be removed, as the TCE affects the properties 

of the binder. For this purpose, the RotoVap equipment (Figure 38-a) was used. In this 

process, the solution of TCE and asphalt was distilled by partially immersing the rotating 

distillation flask of the rotary evaporator in a heated oil bath while the solution is subjected 

to a partial vacuum and a flow of nitrogen gas to prevent binder oxidation. The recovered 

asphalt can then be subjected to testing as required. The process was done according to 

ASTM D5404 standard “Standard Practice for Recovery of Asphalt from Solution Using 

the Rotary Evaporator”. Figure 38-b shows the binder in the flask that is immersed in a 

hot oil bath during the recovery process. 

 

Figure 38. Binder Recovery using RotoVap (a) Equipment and (b) During Flask 

Immersion in the Hot Oil Bath 

 

After that, the binder was removed from the flask and poured into metal cans for DSR 

testing (Figure 39). 
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Figure 39. Recovered Binder Poured Into: (a) Metal Cans Then (b) DSR Specimen 

Molds 

 

5.2-    Binder Level Testing 

5.2.1- High Temperature PG Grading  

Having extracted and recovered the binder from the three mixtures, the high temperature 

PG grading was conducted to evaluate the stiffening effect of the RAP binder, on the binder 

of the final mix. The PG grading was performed based on AASHTO M320, in which the 

recovered binders were considered short term aged since it is a plant mixture and it was 

already mixed before sampling. The AASHTO M320 high temperature PG grading RTFO 

criteria is presented in Equation 14: 

𝐺 ∗

𝑆𝑖𝑛 𝛿
 ≥ 2.2 𝑘𝑃𝑎           (14) 

A 25 mm diameter plate geometry was used for this test, since the binder testing will take 

place at high temperature. The procedure of preparing the binder specimen is presented in 

Figure 40. The tested was set to start at 64°C for both the control and 15% RAP mixture, 

since the virgin binder was PG 70-10. For the 25% RAP mix, the test was set to start at 

58°C, since the virgin binder was PG 64-16. The shear modulus and the phase angel were 

                           

                                 (a)                                                                 (b) 
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determined at each temperature, until Equation 14 was satisfied, the failing temperature 

was determined, and the test was completed.  

 

Figure 40. DSR Sample Preparation 

 

5.2.2- Time-Temperature Sweep test (Complex Shear Modulus) 

To determine the stiffening effect that the RAP binder induces in the blended binder, the 

complex shear modulus was performed on the extracted and recovered binders. The test 

was conducted at five different temperatures (10, 20, 30, 40, and 54°C) and at nine different 

frequencies ranging from 30 Hz to 0.1 Hz. The test allows the evaluation of the binder 

stiffness at different loading rates and different temperatures. Similar to the dynamic 

modulus, the time-temperature superposition principle was used to shift the isothermal 

curves into a final master curve. The CAM model presented in Equation 15 was used to 
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perform the shifting. The WLF equation presented in Equation 16 was used to model the 

shift factor. 

                                                                     |𝐺∗| =
10𝑔

(1+(
𝜔𝑐
𝜔𝑅

)
𝑘

)

𝑚𝑒
𝑘

                   (15) 

 

                                                    𝑙𝑜𝑔𝑎𝑇 =
𝐶1(𝑇 − 𝑇𝑅)

𝐶2 + 𝑇 − 𝑇𝑅
                                             (16) 

 

Where: 

 |G*| = the dynamic shear modulus (Pa) 

10g = binder glassy modulus (Pa) (determined through optimization) 

Ωc = crossover frequency (rad/s)  

 me and k = fitting coefficients 

T = test temperature (°C) 

TR = reference temperature (C) 

C1 and C2 = time-temperature shift factor function fitting coefficients. 

 

5.2.3- Multiple Stress Creep and Recovery (MSCR) 

MSCR tests were performed on the three recovered binders. The test temperature was 

maintained at 64°C for all the binders, and creep and recovery parameters were  
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Figure 41. MSCR Test Setup 

 

determined. The test setup is shown in Figure 41. The two test parameters determined from 

the MSCR tests are the percentage recovery (R), and the nonrecoverable compliance (Jnr). 

The MSCR test is done by subjecting the binder to repeated cycles of shear creep and 

recovery. MSCR tests characterize the viscoelastic properties based on the amount of 

strains incurred and recovered during the creep and recovery cycles respectively. Repeated 

cycles of 1 s creep loading and 9 s recovery periods are used to measure the strains incurred 

by the binders. The test is performed at two separate stress levels of 0.1 and 3.2 kPa to 

simulate the linear and nonlinear viscoelastic regions respectively. Jnr measures the non-

recoverable strains of the binder with respect to the stress at which the deformation occurs, 

thus it is desired to minimize it. R measures the recovery of the asphalts observed during 

the rest period of the MSCR test as a ratio of the recovered strain to the original strain at 

the beginning of each creep and recovery cycle. A higher R indicates more elastic binder 

with lower accumulated strains in each loading cycle. Equations 17 and 18 were used to 

determine the creep and recovery parameters (AASHT T350). 
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𝐽𝑛𝑟 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑜𝑛 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑙𝑒 𝑆𝑡𝑟𝑎𝑖𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑡𝑟𝑒𝑠𝑠
                  (17) 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑆𝑡𝑟𝑎𝑖𝑛

𝑇𝑜𝑡𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛
∗ 100    (18) 

 

5.3-   Results  

5.3.1- PG Grading Results 

The PG grading results are shown in Figure 42. The testing was performed on the binder 

recovered from the control mix just to ensure that the extraction, recovery, and testing 

procedures were properly done. The resulted PG was expected with a high temperature PG 

grading of 70. This because there is no RAP in the control mix so there was no stiffening 

effect. The test stopped at 71 °C after the failure criteria was met. The testing on the binder 

recovered from the 15% RAP mix showed that the addition of 15% RAP had a slight 

stiffening effect, in which the binder failed at 74°C, yet, the high temperature PG grading 

didn’t change. For the 25% RAP binder, which was initially with high temperature PG 

grade of 64, the addition of 25% RAP yielded to an increase from 64 to 76. The test was 

completed at a temperature of 80°C, which means the binder was close to be graded as 82. 

The reason behind this is the very stiff RAP binder, which was shown to have a high 

temperature PG of 108 (Figure 43). 
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Figure 42. PG Results 

 

 

Figure 43. Aged RAP Binder PG 

 

5.3.2- Complex Shear Modulus (G*) 

The complex shear modulus test was conducted on the three recovered binder, to evaluate 

the stiffness at different loading rates and different frequencies. The master curves for the 

three binders are shown in Figure 44. As the figure illustrates, the addition of 15% RAP to 

the mix doesn’t have a significant stiffening effect on the binder, in which the two master 
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curves corresponding to the control binder and 15% RAP binder are very close. this is also 

in agreement with the PG grading results. For the 25% RAP binder, the stiffening effect of 

the highly aged RAP is clearly shown, in which the master curve is above the two other 

binders at all combinations of temperature and frequencies. This result is in contrast with 

the mixture dynamic modulus results due to the blending that occurred while extracting 

and recovering the binder.  

 

Figure 44. Complex Shear Modulus Master Curves of the Three Recovered Binders 

 

5.3.3- Multiple Stress Creep and Recovery (MSCR) 

The MSCR test gives a clear idea on the recovery properties of binders outside the linear 

viscoelastic range, which is typically the range where damage and deformation start 

happening in the field. Figures 45 and 46 show the Jnr and recovery percentage for the 3 

binders, respectively. As expected, the addition of 15% RAP decreases the Jnr values and 
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increase the recovery values, and these changes are due to the increase in the elastic 

components inside the binder caused by the addition of aged RAP binder. Similarly, the 

addition of 25% RAP yields a lower Jnr and higher recovery, due to the availability of more 

elastic binder.  

 

       Figure 45. Jnr Values of the Three Recovered Binders 

 

 

           Figure 46. Recovery Values of the Three Recovered Binders 
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CHAPTER 6 Field Evaluation  

Having constructed three different sections to evaluate the field performance of the 

mixtures containing two different percentages (15% and 25%) in the field, it is very 

important to keep monitoring the performance of these 3 sections. To do so, surface 

evaluation (distress survey) was conducted on April 24, 2018 to evaluate the distresses in 

each section. Moreover, 5 cores were taken from each section to measure the thicknesses 

and air voids, and at the same time perform the Indirect Tensile Strength (IDT) test to 

compare the field results to that of the laboratory one.  

 

6.1-      Surface Evaluation 

A field visit was conducted on April 24, 2019 to evaluate the field performance of the three 

sections. At the time of the visit the road has been subjected to light traffic for a period of 

142 days and considerable rain over the winter months. As expected, the three test sections 

showed no distresses at this time as shown in Figure 47. The road is still relatively newly 

constructed, and distresses need more time to develop. In addition, the test sections are also 

protected with the surface mix (terminal blend), that is, the RAP mixtures are placed below 

this layer. Future field monitoring over the next few years needs to be continued to monitor 

the field performance of the RAP base layers.  
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Figure 47. Surface Evaluation of the Three Sections 

 

6.2-      Field Cores 

Five cores were taken from each test section to determine the air voids and thicknesses of 

the layers. Figures 48 to 50 show the five cores taken from each section. One core from 

each of the 15 percent RAP and 25 percent RAP sections fell apart during coring, so 

obviously no measurements were taken for these samples.  
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Figure 48. Cores Taken from the Control Section 

 

 

Figure 49. Cores Taken from 15% RAP Section 

 

 
Figure 50. Cores Taken from 25% RAP Section 
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For each core, four different thickness measurements were taken, and the average was 

reported. The cores were cut using a cutting saw blade to arrive at a thickness of 62 mm 

that was determined suitable for testing. In the case where the core thickness did not allow 

to reach this value, the thickness closest to 62 mm was chosen. The air voids were measured 

for each core and reported. The IDT test was performed. Figure 51 shows the thicknesses, 

air voids, and tensile strengths for each core. As it can be seen from the Figure, the results 

were variable for all these properties across the sections.  

The average thicknesses, air voids, and tensile strengths for the cores from each test section 

were calculated and presented in Figure 52. The control and 15 percent RAP sections had 

similar air voids, whereas the 25 percent RAP section had a lower air void content. As far 

as thicknesses, the control section had the least average thickness followed by the 15 

percent RAP section. The 25 percent RAP section had the highest thickness. While the 

variation in the air voids and thicknesses will affect the performance, it is noted that these 

test sections were placed on a small residential street that had variable subbase conditions 

and elevations. Therefore, the comparison between the three sections in terms of these 

properties may not be best represented. However, the 25 percent RAP showed the highest 

tensile strength followed by the 15 percent RAP section and then the control section. This 

result is in general agreement with the laboratory test results.  
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Figure 51. Field Cores Properties 

 

 

Figure 52. Average Cores Properties for Each Section 
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 Figure 53 shows the air voids values for each core; the red bar being the generally targeted 

air voids of 6.5%. It is noted that all the laboratory specimens were compacted to this air 

void level. As shown in Figure 53, many cores deviated from the target air voids level in 

the 15 percent RAP and control sections. The air voids level in the 25 percent RAP section 

appeared to be comparable to the target. In general, this difference in the air voids may 

affect the rutting and fatigue performance in the test sections, thus it will be equally 

important to consider these variations when comparing the performance in the future.  

 

 

Figure 53. Air Voids Analysis of the Field Cores 

 

 

Figure 54 shows a detailed thickness analysis for the three sections. The red bar in each 

graph is the target pavement design thickness of 3.5 inches. Again, it is noted that the core 
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thicknesses in each section were variable, mostly lower than the target but in few cases 

higher. As mentioned earlier, this variation in thickness may lead to a difference in 

performance especially when the driven distress is structural, such as fatigue cracking. This 

will also make the field performance comparison between the three sections inaccurate, in 

which fatigue might be due to structural failure governed by the low thickness and not 

necessarily the addition of RAP. This variation needs to be considered for such comparison.  

 

 

Figure 54. Field Cores Thickness Analysis 

 

 

Figure 55 shows a detailed representation of the tensile strength values of the field cores. 

The red bar indicates the laboratory measured value of the tensile strength. As it can be 

seen, all field cores had a lower tensile strength, which is expected because of the higher 
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air voids. The tensile strength also showed higher variability and deviation from the 

laboratory measured values. It is understandable that this was a local street constructed 

with minimum field tests; however, this emphasizes the fact that better quality control 

testing needs to be enforced in future projects.   

 

 

 

Figure 55. Tensile Strength Analysis of the Field Cores 

 

Although the laboratory testing showed similar characteristics when 15 and 25 percent 

RAP were included in the mixtures, there is incompatibility between laboratory studies and 

field performance. This inconsistency gap needs to be better controlled and considered in 

future evaluation of the sections.   
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CHAPTER 7 Summary, Conclusions, and Recommendations 

 

Asphalt concrete recycling can potentially save public works agencies money and energy. 

In this research, the effect of adding 15% and 25% RAP on the mix was studied through 

constructing field sections and through performing laboratory testing. The following 

conclusions can be drawn from this study: 

- Incorporating 15% RAP into HMA will not affect the stiffness of the mix, given 

that the same binder grading is kept.  

- The addition of 25% RAP into HMA required dropping one binder grade down at 

each temperature. In this study, PG 64-16 was used instead of PG 70-10 when 25% 

RAP was added.  

- The dynamic modulus of an HMA doesn’t change significantly when 25% RAP is 

added and when binder grade is lowered.  

- Incorporating 15% and 25% (with softer binder) RAP will improve the rutting 

resistance of the mixtures.  

- Mixtures with the aforementioned RAP contents have similar crack initiation 

properties as the control mixture.  

- The crack propagation properties of the mixtures will be affected when 25% RAP 

is added, yet still comparable to the control. The addition of 15% RAP had a 

positive effect on the crack propagation properties of the mix.  

- The fatigue life of the mixtures studied in this research wasn’t affected with the 

incorporation of the used two RAP contents.  
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- The addition of RAP into HMA at both contents doesn’t affect the mixture 

resistance to moisture damage.  

- Performance Grading of the extracted and recovered binders indicated that the 

addition of 15% RAP will not affect the grading of the final binder, whereas the 

addition of 25% RAP will increase the grade of the binder. This was explained by 

the high temperature PG of the RAP itself in which it exceeded 100. 

- The complex shear modulus testing indicated that the addition of 25% RAP binders 

will affect the stiffness of the final binder at the different temperatures and 

frequencies tested, yet the addition of the 15% RAP didn’t yield any stiffening 

effect.  

- Binder recovered from 15% RAP mixtures and 25% RAP mixtures showed better 

recovery behavior and less non-recoverable strain values when the MSCR test was 

performed. This is a result of the additional elastic component that the aged RAP 

binder adds to the binder.  

- The surface evaluation performed to date showed no difference in the 

performance between the three test sections. However, the road sections are 

newly constructed, and more time should be given to investigate the long-term 

durability of the test sections.   

- The testing performed on the field cores indicated that there were variability 

issues in thicknesses and air voids between the three sections and within each test 

section. These differences may lead to widen the gap between the laboratory test 

results and field performance. These issues should be carefully taken into 

consideration in future follow up projects and performance monitoring, and a 
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good Quality Control and Quality Assurance (QC/QA) program need to be 

enforced on all future projects. 

 

Based on this study’s results, it is recommended that the City of Phoenix consider the 

immediate implementation of using 15 percent RAP in their asphalt mixtures while keeping 

the same binder grade; it is also recommended that the City consider additional test sections 

incorporating 25 percent RAP while dropping one PG grade at both temperature ends. 

In addition, it is recommended to move on to the next stage of this collaborative research 

effort between the City of Phoenix and ASU. This phase would investigate the effect of 

using RAP in the Terminal Blend mixture which was used as a surface layer in this study. 

Surface layer replacement comprises the majority of the road maintenance repaving work 

done by the City of Phoenix. Incorporating RAP into the mix design for the surface layer 

will greatly expand the use of RAP, decreasing the environmental footprint (GHG) of their 

road maintenance operations. Finally, a continued laboratory testing program over the next 

few years is recommended to build historical records and supports findings from this study. 
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APPENDIX A 

MIXTURE DESIGN 
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APPENDIX B 

MIXTURE TESTING RESULTS 
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Dynamic Modulus Results 

Control (0% RAP) 

 

 

 

 

Table 13. Dynamic Modulus Data of Control Mix Tested Replicates 

Temp 

(°C) 

Freq  

(Hz) 

Dynamic Modulus, |E*| 

Repl. 1 

(ksi) 

Repl. 2 

(ksi) 

Repl. 3 

(ksi) 

Aver. 

(ksi) 

Std. 

Dev. 

Coeff. Of 

Var. (%) 

4.4 

25 3334 3310 3449 3364 74 2 

10 3165 3134 3292 3197 84 3 

5 3016 2978 3119 3038 73 2 

1 2639 2572 2676 2629 52 2 

0.5 2478 2419 2510 2469 46 2 

0.1 2111 2038 2126 2092 47 2 

21.1 

25 2123 2223 2127 2158 57 3 

10 1901 1967 1840 1903 64 3 

5 1724 1765 1654 1714 56 3 

1 1335 1374 1215 1308 83 6 

0.5 1177 1201 1060 1146 75 7 

0.1 847 842 714 801 76 9 

37.8 

25 733 790 657 727 67 9 

10 572 623 512 569 55 10 

5 467 508 413 463 48 10 

1 288 297 237 274 33 12 

0.5 228 235 186 216 26 12 

0.1 132 132 114 126 10 8 

54.4 

25 213 235 188 212 23 11 

10 159 167 143 156 12 8 

5 129 131 113 125 10 8 

1 76 77 72 75 3 3 

0.5 63 63 63 63 0 0 

0.1 42 45 45 44 1 3 
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Figure 56. Dynamic Modulus Replicates Master Curves of the Control Mix 
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Dynamic Modulus Results 

 

15% RAP 

 

Table 14. Dynamic Modulus Data of 15% RAP Mix Tested Replicates 

Temp 

(°C) 

Freq   

(Hz) 

Dynamic Modulus, |E*| 

Repl. 1 

(ksi) 

Repl. 2 

(ksi) 

Aver. 

(ksi) 

Std. 

Dev. 

Coeff. Of 

Var. (%) 

4.4 

25 3360 3308 3334 37 1 

10 3184 3162 3173 16 1 

5 3083 2966 3025 83 3 

1 2742 2598 2670 102 4 

0.5 2604 2459 2532 103 4 

0.1 2278 2163 2221 81 4 

21.1 

25 2222 1913 2068 218 11 

10 1961 1708 1835 179 10 

5 1775 1533 1654 171 10 

1 1379 1166 1272 151 12 

0.5 1214 1038 1126 124 11 

0.1 866 762 814 73 9 

37.8 

25 674 637 655 27 4 

10 541 517 529 17 3 

5 446 430 438 12 3 

1 270 266 268 3 1 

0.5 216 216 216 0 0 

0.1 122 123 123 0 0 

54.4 

25 210 252 231 30 13 

10 161 196 179 25 14 

5 128 155 141 19 13 

1 76 92 84 11 13 

0.5 63 75 69 9 13 

0.1 43 52 47 7 14 
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Figure 57. Dynamic Modulus Replicates Master Curves of the 15% RAP Mix 
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Dynamic Modulus Results 

 

25% RAP 

 

 

Table 15. Dynamic Modulus Data of 25% RAP Mix Tested Replicates 

Temp 

(°C) 

Freq   

(Hz) 

Dynamic Modulus, |E*| 

Repl. 1 

(ksi) 

Repl. 2 

(ksi) 

Repl. 3 

(ksi) 

Aver. 

(ksi) 

Std. 

Dev. 

Coeff. Of 

Var. (%) 

4.4 

25 2850 3330 2847 3009 278 9.2 

10 2725 3176 2721 2874 262 9.1 

5 2601 3019 2623 2748 235 8.6 

1 2313 2686 2290 2430 222 9.2 

0.5 2211 2553 2194 2319 203 8.7 

0.1 1926 2233 1939 2033 173 8.5 

21.1 

25 1855 2016 1897 1923 84 4.3 

10 1664 1845 1790 1767 93 5.2 

5 1511 1655 1666 1611 86 5.4 

1 1179 1311 1288 1259 71 5.6 

0.5 1063 1178 1150 1130 60 5.3 

0.1 786 866 873 842 48 5.7 

37.8 

25 709 714 707 710 3 0.5 

10 600 595 595 597 3 0.5 

5 510 502 502 505 4 0.9 

1 332 332 316 327 9 2.8 

0.5 272 270 260 267 6 2.3 

0.1 167 159 156 161 6 3.6 

54.4 

25 262 253 264 259 6 2.3 

10 187 183 203 191 11 5.7 

5 146 141 158 148 8 5.7 

1 78 77 83 79 3 4.1 

0.5 61 59 65 62 3 4.8 

0.1 37 37 38 37 0 1.2 
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Figure 58. Dynamic Modulus Replicates Master Curves of the 25% RAP Mix 
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Flow Number 

Control (0% RAP) 

 

 
Figure 59. Accumulated Strain Versus Number of Cycles for All Replicates of the 

Control (0% RAP) mix 

 
Figure 60. Permanent and Recoverable Strain Ratio for Number of Cycles for all 

Replicates of the Control (0% RAP) Mix 
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Figure 61. Flow Number Values for the Three Replicates of the Control Mix 
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15% RAP 

 

 
Figure 62. Accumulated Strain Versus Number of Cycles for all Replicates of the 

15% RAP Mix 

 

 
Figure 63. Permanent and Recoverable Strain Ratio for Number of Cycles for All 

Replicates of the 15% RAP Mix 
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Figure 64. Flow Number Values of 3 Replicates of the 15% RAP Mix 
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25% RAP 

 

 
Figure 65. Accumulated Strain Versus Number of Cycles for all Replicates of the 

25% RAP Mix 

 

 
Figure 66. Permanent and Recoverable Strain Ratio for Number of Cycles for All 

Replicates of the 25% RAP Mix 
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Figure 67. Flow Number Values of 3 Replicates of the 25% RAP Mix 
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IDEAL CT 

Load-Displacement Curves 

 

 
Figure 68. Load-Displacement Curve of 2 Replicates of the Control Mix 

 

 
Figure 69. Load-Displacement Curve of 2 Replicates of the 15% RAP Mix 
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Figure 70. Load-Displacement Curve of 2 Replicates of the 25% RAP Mix 
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Indirect Tensile Strength 

 

 

 
Figure 71. Indirect Tensile Strength Values of 2 Replicates of the Control Mix 

 

 
Figure 72. Indirect Tensile Strength Values of 2 Replicates of the 15% RAP Mix 
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Figure 73. Indirect Tensile Strength Values of 2 Replicates of the 25% RAP Mix 
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Fracture Energy 

 
Figure 74. Fracture Energy Values of 2 Replicates of the Control Mix 

 

 

 

 
Figure 75. Fracture Energy Values of 2 Replicates of the 15% RAP Mix 
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Figure 76. Fracture Energy Values of 2 Replicates of the 25% RAP Mix 
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Cracking Tolerance Index (CTI) 

 

 
Figure 77. CTI Values of 2 Replicates of the Control Mix 

 

 

 

 

 

 
Figure 78. CTI Values of 2 Replicates of the 15% RAP Mix 
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Figure 79. CTI Values of 2 Replicates of the 25% RAP Mix 
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C* Fracture Test 

 

Control (0% RAP) 

 

 

Table 16. Summary of C* Fracture Test Analysis for the Control Mix 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

C9-1 6.73 51.50 0.15 

Crack 

Length,            

a (mm) 

Time                

T, 

(Min) 

Force (KN) Force per Unit 

Thickness P* 

(N/mm) 

Crack 

Growth Rate, 

a* (m/hr)  

10.00 9.47 7.28 141.27 1.55 

20.00 9.98 6.24 121.12 

30.00 10.60 4.19 81.30 

40.00 10.97 3.02 58.55 

50.00 11.17 2.38 46.28 

60.00 11.28 2.05 39.76 

70.00 11.83 1.18 22.93 

80.00 12.50 0.69 13.39 

      R2 = 0.95 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

C9-2 6.69 52.00 0.23 

10.00 4.80 7.87 151.42 2.30 

20.00 5.90 6.81 130.93 

30.00 6.67 4.36 83.92 

40.00 6.80 3.81 73.24 

50.00 6.90 3.65 70.19 

60.00 7.10 3.07 58.98 

70.00 7.25 2.75 52.94 

80.00 7.60 2.22 42.67 

      R2 = 0.90 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

C12-1 7.14 50.80 0.30 

10.00 4.53 9.98 196.38 4.14 

  20.00 4.77 8.96 176.32 

30.00 4.87 8.11 159.62 

40.00 4.93 7.68 151.15 

50.00 5.03 6.29 123.87 

60.00 5.12 4.96 97.56 
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70.00 5.23 2.87 56.47 

80.00 5.65 1.10 21.69 

      R2 = 0.88 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

C14-1 6.65 51.90 0.38 

10.00 3.23 10.40 200.40 2.42 

20.00 3.37 9.99 192.40 

30.00 3.63 8.33 160.47 

40.00 3.75 7.46 143.83 

50.00 4.07 4.65 89.67 

60.00 4.27 3.42 65.98 

70.00 4.62 1.73 33.40 

80.00 4.83 1.33 25.64 

      R2 = 0.99 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

C17-2 6.30 50.70 0.42 

10.00 2.45 8.68 171.13 8.25 

20.00 2.58 6.31 124.36 

30.00 2.63 4.97 97.93 

40.00 2.67 4.02 79.27 

50.00 2.72 3.29 64.95 

60.00 2.85 2.10 41.35 

70.00 2.90 1.76 34.73 

80.00 3.00 1.49 29.31 

      R2 = 0.96 
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Figure 80. Load and Crack Length as Function of Time for Each Displacement Rate 

for the Control Mix 
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15% RAP 

 

Table 17. Summary of C* Fracture Test Analysis for the 15% RAP Mix 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

R2-1 6.59 55.00 0.15 

Crack 

Length,            

a (mm) 

Time                

T, 

(Min) 

Force (KN) Force per Unit 

Thickness P* 

(N/mm) 

Crack 

Growth Rate, 

a* (m/hr)  

10.00 7.67 11.16 202.92 2.76 

20.00 8.40 9.18 166.85 

30.00 8.57 8.42 153.09 

40.00 8.75 6.75 122.79 

50.00 8.90 5.64 102.60 

60.00 9.12 4.41 80.23 

70.00 9.30 3.77 68.47 

80.00 9.75 2.70 49.16 

      R2 = 0.97 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

R3-2 5.93 53.50 0.23 

10.00 4.45 9.03 168.85 3.65 

20.00 4.55 8.90 166.39 

30.00 5.00 6.23 116.42 

40.00 5.13 4.50 84.08 

50.00 5.18 4.06 75.87 

60.00 5.30 2.66 49.74 

70.00 5.47 1.67 31.15 

80.00 5.58 1.32 24.59 

      R2 = 0.91 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

R3-1 7.01 53.50 0.30 

10.00 5.33 8.79 164.28 4.75 

20.00 5.45 7.83 146.32 

30.00 5.60 5.57 104.16 

40.00 5.65 4.90 91.50 

50.00 5.70 4.12 77.01 

60.00 5.82 3.05 57.10 

70.00 5.90 2.61 48.83 

80.00 6.25 1.52 28.41 
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      R2 = 0.90 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

R13-1 6.83 53.70 0.38 

10.00 3.23 12.30 229.08 5.86 

20.00 3.42 11.49 213.91 

30.00 3.62 9.38 174.58 

40.00 3.70 7.63 142.02 

50.00 3.73 6.43 119.74 

60.00 3.77 5.29 98.43 

70.00 3.82 4.03 75.13 

80.00 4.10 1.57 29.27 

      R2 = 0.88 

Sample ID:  AV Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

R2-2 6.35 49.30 0.42 

10.00 2.72 3.85 78.18 56.37 

20.00 2.73 3.30 66.85 

30.00 2.75 2.94 59.74 

40.00 2.75 2.94 59.74 

50.00 2.77 2.67 54.16 

60.00 2.77 2.67 54.16 

70.00 2.78 2.36 47.91 

80.00 2.80 2.08 42.28 

      R2 = 0.95 
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Figure 81. Load and Crack Length as Function of Time for Each Displacement Rate 

for the 15% RAP Mix 
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25% RAP  

 

Table 18. Summary of C* Fracture Test Analysis for the 25% RAP Mix 

Sample ID:  Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

H8-1 49.90 0.15 

Crack 

Length,            

a (mm) 

Time                

T, 

(Min) 

Force (KN) Force per Unit 

Thickness P* 

(N/mm) 

Crack 

Growth Rate, 

a* (m/hr)  

10.00 7.42 9.34 187.27 1.29 

20.00 7.75 9.07 181.82 

30.00 8.17 8.27 165.74 

40.00 8.58 6.21 124.52 

50.00 9.28 3.35 67.09 

60.00 9.65 2.65 53.09 

70.00 10.07 2.10 42.02 

80.00 10.42 1.78 35.59 

      R2 = 0.99 

Sample ID:  Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

H4-1 50.50 0.23 

10.00 4.38 9.00 178.15 4.41 

20.00 4.80 8.62 170.60 

30.00 4.97 8.10 160.45 

40.00 5.07 7.36 145.76 

50.00 5.25 4.28 84.73 

60.00 5.32 3.22 63.76 

70.00 5.40 2.53 50.10 

80.00 5.67 1.55 30.64 

      R2 = 0.98 

Sample ID:  Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

H4-2 51.10 0.30 

10.00 3.23 9.91 193.98 5.26 

20.00 3.35 9.72 190.16 

30.00 3.50 8.77 171.64 

40.00 3.60 7.44 145.60 

50.00 3.68 5.93 116.04 

60.00 3.75 4.66 91.20 

70.00 3.88 2.58 50.41 

80.00 4.08 1.58 31.00 
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      R2 = 0.98 

Sample ID:  Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

H19-1 51.10 0.38 

10.00 3.02 10.65 208.37 9.54 

20.00 3.08 9.96 194.87 

30.00 3.13 9.07 177.43 

40.00 3.17 8.59 168.18 

50.00 3.22 7.23 141.54 

60.00 3.30 4.36 85.28 

70.00 3.40 2.66 51.96 

80.00 3.43 2.37 46.28 

      R2 = 0.97 

Sample ID:  Average Thickness, b 

(mm):  

Displacement Rate, Δ* 

(mm/min) : 

H8-2 49.49 0.42 

10.00 2.83 11.03 222.80 15.03 

20.00 2.87 9.07 183.21 

30.00 2.88 7.76 156.88 

40.00 2.90 6.62 133.81 

50.00 2.93 4.67 94.41 

60.00 2.95 3.99 80.53 

70.00 2.97 3.77 76.22 

80.00 3.10 2.37 47.85 

      R2 = 0.82 
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Figure 82. Load and Crack Length as Function of Time for Each Displacement Rate 

the 25% RAP mix 
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Uniaxial Fatigue 

Control 

 

 
Figure 83. Damage-Characteristic Curves of the Control Mix 

15% RAP 

 
Figure 84. Damage Characteristic Curves of the 15% RAP Mix 
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25% RAP 

 
Figure 85. Damage Characteristic Curves of the 25% RAP Mix 
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Tensile Strength Ratio 

 

Table 19. TSR Control Mix Disks Air Voids 

 Air Voids (%) 

Dry Set 
Disk 1 Disk 2 Disk 3 

7.43 6.22 7.70 

Average 7.11 

Wet Set 
Disk 1 Disk 2 Disk 3 

6.65 7.28 7.34 

Average 7.09 

 

 

Table 20. TSR 15% RAP Mix Disks Air Voids 

 Air Voids (%) 

Dry Set 
Disk 1 Disk 2 Disk 3 

6.33 6.91 6.22 

Average 6.48 

Wet Set 
Disk 1 Disk 2 Disk 3 

6.01 6.14 7.51 

Average 6.56 

 

 

Table 21. TSR 25% RAP Mix Disks Air Voids 

 Air Voids 

Dry Set 
Disk 1 Disk 2 Disk 3 

6.45 5.60 6.56 

Average 6.21 

Wet Set 
Disk 1 Disk 2 Disk 3 

7.08 6.10 6.14 

Average 6.44 
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Table 22. Tensile Strength Calculations of the Unconditioned Specimens 

Disk  

P 

(Maximum 

Load, KN) 

P 

(Maximum 

Load, N) 

t 

(thickness, 

mm) 

D 

(Diameter, 

mm) 

St 

(kPa) 

Control-1 12.92 12921 63.48 99.40 1304 

Control-2 10.97 10965 58.39 99.54 1201 

Control-3 11.28 11283 59.03 99.64 1221 

15% 

RAP-1 
15.26 15262 62.75 99.72 1553 

15% 

RAP-2 
15.20 15204 61.30 99.62 1585 

15% 

RAP-3 
14.52 14524 62.48 99.78 1483 

25% 

RAP-1 
16.06 16056 63.65 99.76 1610 

25% 

RAP-2 
18.20 18204 66.53 99.74 1747 

25% 

RAP-3 
16.34 16336 62.88 99.56 1661 

 

Table 23. Tensile Strength Calculations of the Conditioned Specimens 

Disk  

P 

(Maximum 

Load, KN) 

P 

(Maximum 

Load, N) 

t 

(thickness, 

mm) 

D 

(Diameter, 

mm) 

St 

(kPa) 

Control-1 11.46 11463 66.46 100.20 1096 

Control-2 10.79 10785 63.15 100.39 1083 

Control-3 10.70 10700 64.31 100.61 1053 

15% 

RAP-1 
12.53 12530 65.31 100.56 1215 

15% 

RAP-2 
13.92 13919 62.93 100.08 1407 

15% 

RAP-3 
11.72 11720 63.27 100.43 1174 

25% 

RAP-1 
13.86 13860 64.25 100.12 1372 

25% 

RAP-2 
14.13 14130 65.14 100.03 1380 

25% 

RAP-3 
17.30 17295 65.41 100.02 1683 
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APPENDIX C 

BINDER TESTING DATA 
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Performance Grading  

 

Control 

 

Table 24. Complex Shear Modulus Values for the First Replicate of the Recovered 

Control Binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 6.17 83.30 6.21 

70 °C 2.64 85.28 2.65 

76 °C 1.19 86.81 1.19 

 

 

Table 25. Complex Shear Modulus Values for the Second Replicate of the 

Recovered Control Binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 5.91 83.34 5.95 

70 °C 2.56 85.22 2.56 

76 °C 1.17 86.65 1.17 

 

 

 

 

 

15% RAP 

 

Table 26. Complex Shear Modulus Values for the first Replicate of the Recovered 

15% RAP binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 7.51 81.51 7.60 

70 °C 3.31 83.82 3.33 

76 °C 1.50 85.69 1.51 
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Table 27. Complex Shear Modulus Values for the Second Replicate of the 

Recovered 15% RAP Binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 8.83635 81.139 8.9429 

70 °C 3.81 83.5335 3.83435 

76 °C 1.7168 85.4555 1.7222 

 

 

 

 

 

25% RAP 

 

Table 28. Complex Shear Modulus Values for the First Replicate of the Recovered 

25% RAP Binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 19.94 77.67 20.41 

70 °C 8.41 80.68 8.52 

76 °C 3.69 83.21 3.72 

82 °C 1.68 85.24 1.68 

 

 

Table 29. Complex Shear Modulus Values for the Second Replicate of the 

Recovered 25% RAP Binder 

Temperature 
Complex Shear 

Modulus 

Phase Shift 

Angle 
|G*|/sin(delta) 

[°C] [kPa] [°] [kPa] 

64 °C 20.46 77.58 20.95 

70 °C 8.60 80.63 8.71 

76 °C 3.77 83.16 3.80 

82 °C 1.71 85.22 1.72 
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Time-Temperature Sweep Test  

 

Control 

 

Table 30. Time-Temperature Sweep Test Data for the First Replicate of the 

Recovered Control Binder 

Temperature Frequency |G*| 
Phase 

Angle 

(°C)   (rad/sec) Pa (°) 

10.00 188.51 1.02E+08 26.48 

10.00 87.96 8.09E+07 28.45 

10.00 40.84 6.30E+07 30.41 

10.00 18.85 4.82E+07 32.44 

10.00 8.80 3.64E+07 34.57 

10.00 4.08 2.69E+07 36.86 

10.00 1.88 1.95E+07 39.35 

10.00 0.88 1.39E+07 41.96 

10.00 0.63 1.20E+07 43.15 

20.00 188.51 3.90E+07 35.73 

20.00 87.96 2.85E+07 37.99 

20.00 40.84 2.05E+07 40.33 

20.00 18.85 1.43E+07 42.83 

20.00 8.80 9.88E+06 45.43 

20.00 4.08 6.64E+06 48.15 

20.00 1.88 4.35E+06 51.05 

20.00 0.88 2.79E+06 53.95 

20.00 0.63 2.28E+06 55.31 

30.00 188.51 1.14E+07 47.19 

30.00 87.96 7.58E+06 49.49 

30.00 40.84 4.92E+06 52.13 

30.00 18.85 3.11E+06 54.83 

30.00 8.80 1.93E+06 57.57 

30.00 4.08 1.17E+06 60.27 

30.00 1.88 6.86E+05 62.94 

30.00 0.88 3.98E+05 65.45 

30.00 0.63 3.11E+05 66.53 

40.00 188.51 2.84E+06 58.56 

40.00 87.96 1.68E+06 60.81 

40.00 40.84 9.83E+05 63.28 

40.00 18.85 5.62E+05 65.76 

40.00 8.80 3.18E+05 68.05 
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40.00 4.08 1.75E+05 70.17 

40.00 1.88 94987 72.35 

40.00 0.88 51477 74.44 

40.00 0.63 38989 75.38 

54.00 188.51 4.31E+05 81.97 

54.00 87.96 2.02E+05 76.84 

54.00 40.84 1.06E+05 76.24 

54.00 18.85 54959 77.31 

54.00 8.80 28398 78.54 

54.00 4.08 14394 80.28 

54.00 1.88 7155.2 81.81 

54.00 0.88 3535 83.4 

54.00 0.63 2566.4 84.49 

 

 

Table 31. CAM Model Fit Coefficients for the First Replicate of the Recovered 

Control Binder 

Master Curve 

Coefficients 
Value 

    

g 8.672335 

wc 0.657043 

k 0.176193 

me 1.135667 

C1 -20.5309 

C2 150.9084 

Tr 15 

Error^2 0.019 
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Table 32. Time-Temperature Sweep Test Data for the Second Replicate of the 

Recovered Control Binder 

Temperature Frequency |G*| 
Phase 

Angle 

(°C)   (rad/sec) Pa (°) 

10.00 188.51 9.89E+07 26.22 

10.00 87.96 7.85E+07 28.14 

10.00 40.84 6.13E+07 30.08 

10.00 18.85 4.70E+07 32.08 

10.00 8.80 3.56E+07 34.18 

10.00 4.08 2.64E+07 36.43 

10.00 1.88 1.92E+07 38.86 

10.00 0.88 1.38E+07 41.39 

10.00 0.63 1.19E+07 42.53 

20.00 188.51 3.81E+07 35.36 

20.00 87.96 2.80E+07 37.55 

20.00 40.84 2.01E+07 39.84 

20.00 18.85 1.42E+07 42.3 

20.00 8.80 9.82E+06 44.85 

20.00 4.08 6.64E+06 47.53 

20.00 1.88 4.36E+06 50.39 

20.00 0.88 2.82E+06 53.28 

20.00 0.63 2.31E+06 54.56 

30.00 188.51 1.12E+07 46.42 

30.00 87.96 7.49E+06 48.85 

30.00 40.84 4.88E+06 51.5 

30.00 18.85 3.10E+06 54.19 

30.00 8.80 1.93E+06 56.89 

30.00 4.08 1.18E+06 59.58 

30.00 1.88 6.97E+05 62.16 

30.00 0.88 4.07E+05 64.65 

30.00 0.63 3.19E+05 65.7 

40.00 188.51 2.82E+06 60.12 

40.00 87.96 1.70E+06 60.93 

40.00 40.84 1.01E+06 62.9 

40.00 18.85 5.80E+05 65.19 

40.00 8.80 3.31E+05 67.35 

40.00 4.08 1.85E+05 69.49 

40.00 1.88 1.01E+05 71.59 

40.00 0.88 54176 73.68 

40.00 0.63 40852 74.54 
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54.00 188.51 4.44E+05 77.17 

54.00 87.96 2.09E+05 74.55 

54.00 40.84 1.11E+05 74.9 

54.00 18.85 57353 76.51 

54.00 8.80 29885 77.9 

54.00 4.08 15248 79.68 

54.00 1.88 7615.3 81.43 

54.00 0.88 3787.4 83.12 

54.00 0.63 2788.3 83.47 

 

 

Table 33. CAM Model fit Coefficients for the Second Replicate of the Recovered 

Control Binder 

Master Curve 

Coefficients 
Value 

    

g 8.668545 

wc 0.543276 

k 0.172887 

me 1.138744 

C1 -20.451 

C2 149.9168 

Tr 15 

Error^2 0.018 
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   15% RAP 

 

Table 34. Time-Temperature Sweep Test Data for the First Replicate of the 

Recovered 15% RAP Binder 

Temperature Frequency |G*| 
Phase 

Angle 

(°C)   (rad/sec) Pa (°) 

10.00 188.51 1.02E+08 25.42 

10.00 87.96 8.15E+07 27.2 

10.00 40.84 6.42E+07 28.98 

10.00 18.85 4.97E+07 30.83 

10.00 8.80 3.81E+07 32.76 

10.00 4.08 2.86E+07 34.83 

10.00 1.88 2.11E+07 37.09 

10.00 0.88 1.54E+07 39.45 

10.00 0.63 1.34E+07 40.53 

20.00 188.51 4.05E+07 34.05 

20.00 87.96 3.01E+07 36.05 

20.00 40.84 2.20E+07 38.15 

20.00 18.85 1.57E+07 40.42 

20.00 8.80 1.11E+07 42.8 

20.00 4.08 7.62E+06 45.32 

20.00 1.88 5.11E+06 48.02 

20.00 0.88 3.36E+06 50.79 

20.00 0.63 2.78E+06 52.03 

30.00 188.51 1.25E+07 44.39 

30.00 87.96 8.50E+06 46.63 

30.00 40.84 5.65E+06 49.11 

30.00 18.85 3.67E+06 51.69 

30.00 8.80 2.34E+06 54.26 

30.00 4.08 1.46E+06 56.89 

30.00 1.88 8.83E+05 59.51 

30.00 0.88 5.27E+05 62.03 

30.00 0.63 4.18E+05 63.08 

40.00 188.51 3.39E+06 54.58 

40.00 87.96 2.05E+06 57.15 

40.00 40.84 1.24E+06 59.73 

40.00 18.85 7.30E+05 62.24 

40.00 8.80 4.26E+05 64.57 

40.00 4.08 2.43E+05 66.78 

40.00 1.88 1.36E+05 68.97 
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40.00 0.88 75336 71.17 

40.00 0.63 57704 72.11 

54.00 188.51 5.52E+05 67.66 

54.00 87.96 2.74E+05 68.86 

54.00 40.84 1.46E+05 71.12 

54.00 18.85 77326 73.46 

54.00 8.80 41087 75.35 

54.00 4.08 21501 77.37 

54.00 1.88 10971 79.53 

54.00 0.88 5535 81.54 

54.00 0.63 4086.4 82.26 

 

 

 

 

Table 35. CAM Model Fit Coefficients for the First Replicate of the ecovered 15% 

RAP bBinder 

Master 

Curve 

Coefficients Value 

    

g 8.693401858 

wc 0.281543219 

k 0.164511574 

me 1.147011886 

C1 -20.8620743 

C2 152.6909087 

Tr 15 

Error^2 0.016 
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Table 36. Time-Temperature Sweep Test Data for the Second Replicate of the 

Recovered 15% RAP Binder 

Temperature Frequency |G*| 
Phase 

Angle 

(°C)   (rad/sec) Pa (°) 

10.00 188.51 1.01E+08 25.26 

10.00 87.96 8.07E+07 27.06 

10.00 40.84 6.36E+07 28.86 

10.00 18.85 4.94E+07 30.71 

10.00 8.80 3.78E+07 32.64 

10.00 4.08 2.85E+07 34.73 

10.00 1.88 2.10E+07 37 

10.00 0.88 1.53E+07 39.4 

10.00 0.63 1.33E+07 40.43 

20.00 188.51 4.00E+07 33.84 

20.00 87.96 2.97E+07 35.93 

20.00 40.84 2.17E+07 38.06 

20.00 18.85 1.55E+07 40.34 

20.00 8.80 1.09E+07 42.72 

20.00 4.08 7.52E+06 45.25 

20.00 1.88 5.05E+06 47.94 

20.00 0.88 3.32E+06 50.7 

20.00 0.63 2.75E+06 51.98 

30.00 188.51 1.23E+07 44.35 

30.00 87.96 8.39E+06 46.61 

30.00 40.84 5.58E+06 49.08 

30.00 18.85 3.62E+06 51.67 

30.00 8.80 2.31E+06 54.25 

30.00 4.08 1.44E+06 56.89 

30.00 1.88 8.72E+05 59.5 

30.00 0.88 5.21E+05 62 

30.00 0.63 4.13E+05 63.16 

40.00 188.51 3.27E+06 55.92 

40.00 87.96 2.00E+06 57.69 

40.00 40.84 1.21E+06 59.96 

40.00 18.85 7.13E+05 62.37 

40.00 8.80 4.16E+05 64.66 

40.00 4.08 2.36E+05 66.85 

40.00 1.88 1.31E+05 69.06 

40.00 0.88 73461 71.16 

40.00 0.63 56188 72.08 



  155 

 

 

 

 

 

 

 

Table 37. CAM Model Fit Coefficients for the Second Replicate of the Recovered 

15% RAP Binder 

Master Curve 

Coefficients 
Value 

    

g 8.718435 

wc 6.866539 

k 0.193494 

me 0.934299 

C1 -60.6298 

C2 520.6429 

Tr 15 

Error^2 0.085 

 

 

 

 

 

 

 

 

 

 

 

 

 

54.00 188.51 5.23E+05 75.8 

54.00 87.96 2.59E+05 72.56 

54.00 40.84 1.40E+05 73 

54.00 18.85 74164 74.28 

54.00 8.80 39439 75.69 

54.00 4.08 20461 77.47 

54.00 1.88 10456 79.69 

54.00 0.88 5273.6 81.43 

54.00 0.63 3868.8 82.27 
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25% RAP  

 

Table 38. Time-Temperature Sweep Test Data for the First Replicate of the 

Recovered 25% RAP Binder 

Temperature Frequency |G*| 
Phase 

Angle 
log(|G*|) 

(°C)   (rad/sec) Pa (°)   

10.00 188.51 126145000.00 22.22 8.10 

10.00 87.96 103667000.00 23.74 8.02 

10.00 40.84 84169500.00 25.24 7.93 

10.00 18.85 67416500.00 26.78 7.83 

10.00 8.80 53481000.00 28.37 7.73 

10.00 4.08 41809500.00 30.08 7.62 

10.00 1.88 32166000.00 31.95 7.51 

10.00 0.88 24476000.00 33.91 7.39 

10.00 0.63 21672500.00 34.83 7.34 

20.00 188.51 54662500.00 29.63 7.74 

20.00 87.96 42171500.00 31.34 7.63 

20.00 40.84 32054000.00 33.10 7.51 

20.00 18.85 23961000.00 34.97 7.38 

20.00 8.80 17706500.00 36.93 7.25 

20.00 4.08 12841500.00 39.03 7.11 

20.00 1.88 9118050.00 41.32 6.96 

20.00 0.88 6381650.00 43.72 6.80 

20.00 0.63 5419500.00 44.81 6.73 

30.00 188.51 19088500.00 38.90 7.28 

30.00 87.96 13620500.00 40.82 7.13 

30.00 40.84 9543500.00 43.00 6.98 

30.00 18.85 6538300.00 45.27 6.82 

30.00 8.80 4417050.00 47.64 6.65 

30.00 4.08 2906000.00 50.09 6.46 

30.00 1.88 1874600.00 52.65 6.27 

30.00 0.88 1186950.00 55.20 6.07 

30.00 0.63 963555.00 56.43 5.98 

40.00 188.51 5588700.00 49.87 6.75 

40.00 87.96 3618750.00 51.74 6.56 

40.00 40.84 2308200.00 54.02 6.36 

40.00 18.85 1435300.00 56.49 6.16 

40.00 8.80 879975.00 58.90 5.94 

40.00 4.08 523905.00 61.32 5.72 

40.00 1.88 305500.00 63.72 5.49 



  157 

40.00 0.88 175835.00 66.04 5.25 

40.00 0.63 137340.00 67.02 5.14 

54.00 188.51 931900.00 68.30 5.97 

54.00 87.96 514045.00 66.81 5.71 

54.00 40.84 292085.00 67.59 5.47 

54.00 18.85 162020.00 69.40 5.21 

54.00 8.80 89274.00 71.29 4.95 

54.00 4.08 48579.00 73.21 4.69 

54.00 1.88 25679.00 75.38 4.41 

54.00 0.88 13430.50 77.45 4.13 

54.00 0.63 10116.45 78.40 4.01 

 

 

 

Table 39. CAM Model Fit Coefficients for the First Replicate of the Recovered 25% 

RAP Binder 

Master Curve 

Coefficients Value 

    

g 8.77148 

wc 1.412556 

k 0.173865 

me 0.932517 

C1 -70.0536 

C2 582.9776 

Tr 15 

Error^2 0.063 
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Table 40. Time-Temperature Sweep Test Data for the Second Replicate of the 

Recovered 25% RAP Binder 

Temperature Frequency |G*| 
Phase 

Angle 

(°C)   (rad/sec) Pa (°) 

10.00 188.51 1.19E+08 22.51 

10.00 87.96 9.76E+07 24.08 

10.00 40.84 7.90E+07 25.64 

10.00 18.85 6.31E+07 27.24 

10.00 8.80 4.98E+07 28.9 

10.00 4.08 3.88E+07 30.72 

10.00 1.88 2.97E+07 32.65 

10.00 0.88 2.25E+07 34.72 

10.00 0.63 1.99E+07 35.76 

20.00 188.51 5.20E+07 29.97 

20.00 87.96 4.00E+07 31.76 

20.00 40.84 3.03E+07 33.62 

20.00 18.85 2.25E+07 35.61 

20.00 8.80 1.65E+07 37.7 

20.00 4.08 1.19E+07 39.95 

20.00 1.88 8.38E+06 42.41 

20.00 0.88 5.81E+06 44.98 

20.00 0.63 4.91E+06 46.16 

30.00 188.51 1.80E+07 39.34 

30.00 87.96 1.28E+07 41.35 

30.00 40.84 8.93E+06 43.64 

30.00 18.85 6.08E+06 46 

30.00 8.80 4.08E+06 48.47 

30.00 4.08 2.67E+06 51.03 

30.00 1.88 1.70E+06 53.68 

30.00 0.88 1.07E+06 56.29 

30.00 0.63 8.65E+05 57.56 

40.00 188.51 5.33E+06 49.94 

40.00 87.96 3.44E+06 51.85 

40.00 40.84 2.20E+06 54.17 

40.00 18.85 1.36E+06 56.66 

40.00 8.80 8.35E+05 59.08 

40.00 4.08 4.96E+05 61.46 

40.00 1.88 2.89E+05 63.87 

40.00 0.88 1.66E+05 66.14 

40.00 0.63 1.30E+05 67.09 
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54.00 188.51 9.21E+05 65.81 

54.00 87.96 5.00E+05 65.82 

54.00 40.84 2.83E+05 67.14 

54.00 18.85 1.57E+05 69.17 

54.00 8.80 86359 71.16 

54.00 4.08 47052 73.13 

54.00 1.88 24846 75.3 

54.00 0.88 13015 77.38 

54.00 0.63 9820.9 78.29 

 

 

 

 

 

 

Table 41. CAM Model Fit Coefficients for the Second Replicate of the Recovered 

25% RAP Binder 

Master Curve 

Coefficients 
Value 

    

g 8.717987 

wc 0.052769 

k 0.153074 

me 1.161679 

C1 -23.4054 

C2 169.243 

Tr 15 

Error^2 0.011 
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Multiple Stress Creep and Recovery 

 

Control  

 

 

Table 42. MSCR Test Results for the First Replicate of the Recovered Control 

Binder 

Parameter Value 

R0.1 5.02 

R3.2 0.78 

Jnr 0.1 1.40 

Jnr 3.2 1.54 

 

 

Table 43. MSCR Test Results for the Second Replicate of the Recovered Control 

Binder 

Parameter Value 

R0.1 4.89 

R3.2 0.79 

Jnr 0.1 1.39 

Jnr 3.2 1.53 

 

 

15% RAP  

 

Table 44. MSCR Test Results for the First Replicate of the Recovered 15% RAP 

Binder 

Parameter Value 

R0.1 8.63 

R3.2 2.08 

Jnr 0.1 1.07 

Jnr 3.2 1.21 

 

 

 

Table 45. MSCR test Results for the Second Replicate of the Recovered 15% RAP 

Binder 

Parameter Value 

R0.1 9.36 

R3.2 2.63 

Jnr 0.1 0.91 
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Jnr 3.2 1.02 

 

 

25% RAP  

 

 

Table 46. MSCR Test Results for the First Replicate of the Recovered 25% RAP 

Binder 

Parameter Value 

R0.1 17.29 

R3.2 9.61 

Jnr 0.1 0.34 

Jnr 3.2 0.38 

 

 

 

Table 47. MSCR Test Results for the Second Replicate of the Recovered 25% RAP 

Binder 

Parameter Value 

R0.1 16.85 

R3.2 9.96 

Jnr 0.1 0.34 

Jnr 3.2 0.36 

 

 


