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ABSTRACT

Developing countries suffer from various health challenges due to inaccessible med-

ical diagnostic laboratories and lack of resources to establish new laboratories. One

way to address these issues is to develop diagnostic systems that are suitable for the

low-resource setting. In addition to this, applications requiring rapid analyses fur-

ther motivates the development of portable, easy-to-use, and accurate Point of Care

(POC) diagnostics. Lateral Flow Immunoassays (LFIAs) are among the most success-

ful POC tests as they satisfies most of the ASSURED criteria. However, factors like

reagent stability, reaction rates limit the performance and robustness of LFIAs. The

fluid flow rate in LFIA significantly affect the factors mentioned above, and hence, it

is desirable to maintain an optimal fluid velocity in porous media.

The main objective of this study is to build a statistical model that enables us

to determine the optimal design parameters and ambient conditions for achieving a

desired fluid velocity in porous media. This study mainly focuses on the effects of

relative humidity and temperature on evaporation in porous media and the impact of

geometry on fluid velocity in LFIAs. A set of finite element analyses were performed,

and the obtained simulation results were then experimentally verified using Whatman

filter paper with different geometry under varying ambient conditions. Design of

experiments was conducted to estimate the significant factors affecting the fluid flow

rate.

Literature suggests that liquid evaporation is one of the major factors that inhibit

fluid penetration and capillary flow in lateral flow Immunoassays. The obtained

results closely align with the existing literature and conclude that a desired fluid

flow rate can be achieved by tuning the geometry of the porous media. The derived

statistical model suggests that a dry and warm atmosphere is expected to inhibit the

fluid flow rate the most and vice-versa.
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Chapter 1

INTRODUCTION

The socio-economic sustainability of a country is highly dependent on its advance-

ments in health and technology. Reliable and accurate diagnostics play an essential

role in the choice of treatment and in developing public healthcare policies that are

beneficial to everyone. Currently, developing countries bear 90% of the global disease

burden but account for only 12% of global health expenditure (Sharma et al. (2015)).

Over 95% of mortalities due to acute respiratory infections, malaria, HIV, and tuber-

culosis occur in developing countries, and Africa bears much of this disease burden

(Yager et al. (2008)).

Mathers and Loncar (2006) estimated the global mortality rate and disease bur-

den from 2002 to 2030. Using the data from the Global Burden of Disease project,

they have projected baseline, optimistic, and pessimistic projection of various disease

burden, including HIV AIDS. Global HIV/ AIDS deaths are estimated to rise from

2.8 million in 2002 to 6.5 million in 2030, and this is the baseline estimate. Figure

1.1 shows the projected life expectancy of various countries. Despite the uncertainty

in predictions, the plot helps us appreciate the impacts of national health investment

and health policies.

Developing countries face various health challenges, mainly due to the limited

access to laboratories or medical testing facilities resulting in high mortality rates.

The scarcity of water and uninterrupted power supply in rural areas are some of the

reasons that amplify these issues. One way to address this is to develop easy-to-use,

portable, and relatively accurate diagnostics. While the lack of access to expensive

laboratories is the primary motivation for developing such systems, applications that
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Figure 1.1: Projected life expectancy based on gender and region’s income by Mathers

and Loncar (2006)

require rapid analysis such as pregnancy tests demand portable point of care (POC)

diagnostics as well.

1.1 Point of Care Diagnostics

An ideal point of care diagnostics test for limited-resource setting should satisfy

ASSURED criteria - Affordable, Sensitive, Specific, User-friendly, Rapid and Robust,

Equipment-free, and Deliverable to end-users. Figure 1.2 shows various implementa-

tions that are currently available, and they vary significantly relating to complexity.

For example, Accutest as shown in figure 1.3 is a urine test for pregnancy that

satisfy most of the ASSURED criteria. The urine sample is added at the sample site

denoted by ’S’. The analyte then travels to test line and control line using capillary

2



Figure 1.2: Commercially available Point of Care tests

Figure 1.3: An example of urine test for pregnancy manufactured by Jant Pharmacal

Corporation

flow, denoted by ”T” and ”C” respectively. The control line indicates the validity of

the test, whereas the test line suggests the presence of human chorionic gonadotropin

(hCG) in urine specimens. The cassette format of the test makes it portable, and

the capillary flow avoids the use of complex micro-pumps for analyte delivery. The

qualitative nature of the test makes it easy to use.

One of the significant challenges of developing POC products is integration. Many

3



research groups are trying to develop innovative methods for fluid delivery, pre-

treatment, and sample detection. However, the inclusion of these segments as an

afterthought has been a significant hurdle for commercialization of POC devices. An

ideally integrated POC device must offer sample collection, pre-processing, analyte

reaction, sample detection, and display results to the patient. In addition to this,

it should be cost-effective, portable, and easy to use. The design of these segments

must be compatible with each other to achieve a highly efficient system. It has be-

come increasingly problematic to achieve mutual compatibility with an increase in

the number of components to integrate.

Chin et al. (2012) discuss various commercially available POC products and the

challenges for commercialization. In addition to issues with mutual compatibility,

they mention problems due to global health investments, business strategies, manu-

facturing, and regulatory approval. With respect to production, until now, most of

the devices are based on glass or silicon micromachining or PDMS soft lithography.

Although they offer the desired functionality, the cost of manufacturing has inhibited

their commercialization. With the desire to reduce the cost of production, there is an

increase in interest to develop systems based on Plastics and Paper or porous mem-

branes. Nitrocellulose is often used in later flow assays and is very cost-effective. A

system with multiple test steps can be developed by controlling, geometry, size, and

porous media parameters.

In addition to the integration and cost of manufacturing, a POC device faces

challenges due to the complexity of the test procedure. It includes user training,

manual, and user intervention steps. Current tests that are portable and easy to use

are usually qualitative or semi-quantitative and are often not sensitive or specific.

Yager et al. (2008) discuss significant constraints in developing a quantitative diag-

nostic test in low resource settings. Under ideal conditions, most diagnostic tests for
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infectious diseases work well, but all the platforms like microscopy and lateral flow

assays perform poorly in a non-ideal resource setting. LFIAs are the most successful

POC tests, but the sensitivity and specificity are not optimal for quantitative results;

reagent stability under harsh conditions is one of the reasons. However, there is an

increase in interest for signal amplification and quantitative LFIAs.

Specimen collection and Specimen Processing also impact the test complexity

as well as test performance. The collection techniques that are available in ideal

conditions are not available in low-resource settings. Therefore, the absence of ideal

conditions makes it imperative to evaluate POC technologies with samples collected

under harsh conditions. Sample processing includes cell isolation, plasma separation,

and nucleic acid extraction. There seems to be an enormous technology gap for

such sample processing techniques in a low-resource setting. In addition to these

challenges, bio-waste disposal, environmental impacts, standards for evaluation are

some of the issues that also require considerable attention.

With an emphasis on HIV and Tuberculosis, Schito et al. (2012) discuss the chal-

lenges and opportunities for low-cost point of care tests. Many Infants born in sub-

Saharan Africa infected with HIV go undiagnosed due to long turnaround times and

insufficient infrastructure for traditional tests such as collecting dried blood spots and

performing DNA testing. Tuberculosis tests rely on central diagnostics laboratories

for microscopy and chest radiography for diagnosis. POC tests with good sensitivity

and specificity will significantly mitigate the challenges mentioned above by comple-

menting the traditional techniques that require central diagnostic laboratories.

As we discussed before, there is a need to integrate biosensors and to incorpo-

rate biosensors with microfluidics gained interest as it provides many advantages for

miniaturizing multi-step sophisticated tests. Some of the benefits include laminar

flow, multiple sample detection, and the ability to integrate with micro-valves, micro-
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pumps, and other MEMS devices. Kumar et al. (2013) discuss the prospective role

of microfluidics in point of care diagnostics. Many academic groups are focusing

on devices fabricated using materials like PDMS, glass, and nitrocellulose. Some of

the microfluidics-based sensors include Enzymatic sensor, Microarrays, Opto-fluidics,

Immunosensors, and Non-invasive sensors.

1.2 Lateral Flow Immunoassays

Lateral flow Immunoassays (LFIA) are among the most established point of care

testing platforms applied in various areas. Human pregnancy tests in the 1970s first

motivated the development of LFIA. It later extended towards diagnosing human im-

munodeficiency virus (HIV-1 and HIV-2), TB, and hepatitis B. The stability of LFIA,

accuracy, usability with a wide range of analytes and storage were attractive features

for developing countries. LFIA uses porous media that facilitates the separation,

capture, and detection of the target analyte of interest. Fluid flow through porous

media with small pores is majorly governed by capillary forces, thereby eliminating

the need to use external pumps.

A wide variety of porous media and pore sizes are commercially available. The an-

alyte and the application determine the porous media. Nitrocellulose membranes are

the most widely used materials in LFIA applications due to the affinity for proteins,

wettability, lack of interference with the assay, relatively inexpensive, and true capil-

larity. LFIAs meet most of the requirements of an ideal point of care tests, but the

simplicity limits their performance. The pure capillarity avoids the usage of external

pumps but offers limited control on the fluid flow resulting in variability in sample

addition and pore precision. In addition to this, the limit of detection may result

in qualitative or semi-quantitative tests. Also, it is observed that the performance

of LFIAs is often affected by environmental factors such as temperature, humidity,

6



Figure 1.4: A schematic representing the working principle of Lateral Flow Immunoas-

says from a study by Lee et al. (2013)

heat, air, and sunlight.

LFIAs are highly demanded mainly due to user-friendly formats, short turnaround

times, and relatively simple assay processes. Nitrocellulose, a vital component of

LFIA, plays a key role by acting as a platform for reaction and as a pump to deliver

fluid to the reaction site. Bahadır and Sezgintürk (2016) present a standard architec-

ture lateral flow assay and reviews a variety of lateral flow assay implementations such

as antibody-based assays, sandwich format assays, and nucleic acid-based assays.

Figure 1.4 shows a schematic representing the typical working principle of LFIAs.

The target analyte from clinical sample interacts with labeled antibody, in this case,

7



Figure 1.5: An example of a porous structure, a pumice stone, with void space occu-

pied by air or water

colloidal gold, already pre-loaded on the nitrocellulose membrane. The target an-

alyte, along with antibody travels laterally through porous media using capillarity

as the driving force. The migration continues until it encounters a target-specific

antibody, in this case, a test line. The captured antibody-antigen-labeled antibody

can be visually observed or can be measured using appropriate instrumentation. An

additional control line is present to indicate the validity of the test. A wicking pad is

included to avoid backflow and absorb excess reagents.

1.3 Porous Media and Nitrocellulose

Porous media is a solid matrix, that is rigid or flexible, with interconnected pores.

The interconnected pores act as a bundle of channels that allows fluid flow through

the solid matrix. The porous media parameters such as pore size, porosity, tortuosity,

and permeability affect the fluid mass transfer rates. Common porous media include

rock, soil, paper, foam, biological tissues, wood, as shown in figure 1.5. Typically,

the void is filled with either single-phase (saturated) fluid like air or water or with a

8



Figure 1.6: Scanning Electron Microscope image of Whatman 42 filter paper taken

by Kim et al. (2016)

two-phase (unsaturated) fluid like water and water vapor. Some of the applications

that use materials with such characteristics include filtration, petroleum engineering,

bio-medical application. The usage of porous media like nitrocellulose strips in LFAs

for fluid delivery and reagent reaction is justified because it is inexpensive and renders

the usage of external pumps unnecessary.

Nitrocellulose or cellulose nitrate is commercially manufactured by phase inver-
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sion, and the porous media parameters can be tuned by solvents used, temperature,

relative humidity, and evaporation rates.Fridley et al. (2013) discuss the evolution

of nitrocellulose material for biomedical applications. Figure 1.6 is a Scanning Elec-

tron Microscope (SEM) image of the nitrocellulose paper (Whatman Grade 42). The

interaction between fluid molecules and the wall of nitrocellulose material results in

capillary pressure that drives the fluid. The physics related to fluid flow in porous

media and evaporation is discussed in later sections.

1.4 Motivation

Some of the factors that affect the performance of the LFIAs are reagent stability,

reaction rate, and binding kinetics. A rapid reaction may affect the accuracy, and a

slow reaction may affect the turnaround time. In some cases, the reduced reaction

time causes insufficient time for antibody-antigen reaction and binding. In short,

the fluid flow rate dictates the robustness and repeatability of LFIAs. Literature

suggests that ambient conditions such as temperature, relative humidity, wind velocity

can affect the fluid flow rate due to evaporation. Evaporation rate in porous media

results in a viscous pressure loss, thereby inhibiting the capillary penetration and

fluid velocity.

This study employs finite element (FE) analyses and experimental analyses to

estimate the effects of above-mentioned parameters and the effect of geometry on fluid

flow rate. First, a set of FE analyses were performed to compare various porous media

modeling techniques. The accuracy of these models was compared using Newtonian

and Non-Newtonian fluids. To assume a simplified case, a Newtonian fluid (water)

is used for further modeling of evaporation in porous media and its dependency on

relative humidity and geometry. The simulation results were validated using the

design of engineering experiments.
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1.5 Thesis Statement

Relative humidity and temperature affect the evaporation rate and the fluid flow

rate in porous media; the geometry of the nitrocellulose membrane can be tuned to

achieve a desired fluid front velocity.
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Chapter 2

BACKGROUND

The objective of this study is to understand the working principles of LFIAs and

to enhance the robustness of the tests by tuning fluid flow rates. This process requires

a good understanding of fluid transport mechanisms in porous media. Therefore, this

chapter briefly discusses the fundamental parameters and properties that determine

the fluid mass transfer and energy transfer in porous media. These parameters will

be invoked in later sections while formulating numerical models to address the thesis

statement.

2.1 Porous Media Properties

The porosity (φ) of a porous media is the ratio of the volume of void space within

the solid matrix to the volume of solid. Therefore, (1 − φ) is the fraction of volume

occupied by solid. However, the definition of porosity assumes that all the pores are

connected. In reality, a significant fraction of void space is disconnected and thereby

do not contribute towards fluid flow. The actual porosity or effective porosity is

defined as the fraction of connected void volume to the volume of the solid matrix.

Figure 2.1 shows a schematic of porous media with interconnected and disconnected

pores. The difference in porosity and effective porosity is attributed to the presence

of ineffective pores.

In addition to φ, tortuosity (τp) indicates the ratio of the curved or actual length

a fluid molecule has to travel to the length of the porous media. Tortuosity along

with pore size (r) incorporate geometrical properties of the porous media. These

properties are necessary in determining the mass transfer and energy transfer in

12



Figure 2.1: A schematic of porous media with interconnected and disconnected pores

porous media. When dealing on a macro scale, such as LFIAs, a continuum approach

with permeability (k) as the lumped parameter is more practical. Permeability is

determined by geometrical and fluid properties of the system.

2.2 Fluid Properties

In addition to porous media parameters, fluid parameters such as density (ρ), sur-

face tension (σ), contact angle (θ) and dynamic viscosity (µ) determine the mass and

energy transfer in porous media. Since some of the fluids in interest for biomedical

applications are Non-Newtonian, it is essential to understand the effects of dynamic

viscosity on fluid flow in porous media. Therefore, this section briefly discusses dif-

ferent types of fluids based on viscosity.

Dynamic viscosity or viscosity (µ) of fluid is the degree of resistance to deformation

at a given shear rate. A Newtonian fluid is any fluid that demonstrates a linear

relationship between shear stress and shear rate, as shown in equation 2.1.
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Figure 2.2: Newtonian and Non-Newtonian fluids, respectively, demonstrate the linear

and non-linear relationship between shear stress and shear rate

τ = µ
du

dy
(2.1)

where τ is the shear stress, µ is the dynamic viscosity and du
dy

is the local shear velocity

(γ). The viscosity is constant in the case of Newtonian fluids. Any fluid that does not

follow a linear relationship is called Non-Newtonian fluid. In this case, the viscosity

can either increase or decrease under stress. Figure 2.2 plots the relation between

shear stress and shear rate; the slope of the curve represents the dynamic viscosity.

For a shear thickening fluid, such as starch solution, the viscosity (slope) increases as

the shear rate increases. Shear-thinning fluid, such as blood or ketchup, exhibits a

reduction in fluid viscosity (slope) with an increase in shear rate.
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Chapter 3

LITERATURE REVIEW

The geometry of the model often determines the accuracy of the finite element

(FE) analysis model. Therefore, the most accurate model is the one that closely

represents the interconnected pores at micro-scale. However, discretizing a complex

geometry and solving for a solution is computationally expensive, and hence, a sim-

plified model is often desired if it results in solutions within an acceptable range. To

compare the FE models for porous media, blood is used as the reference fluid as it

can be modeled as both Newtonian and Non-Newtonian fluid. Later, water is used as

the reference fluid to simulate the effects of evaporation on porous media due to the

ease of experimental validation. The following section reviews the available literature

on fluid properties, porous media properties, and techniques to model fluid flow and

evaporation in porous media.

3.1 Properties of Blood

Blood is often modeled as a Newtonian fluid by neglecting the shear-thinning

characteristics of it. The dynamic viscosity stays constant during the simulation

and is independent of the geometry. Although this approximation is valid for higher

velocities in wider channels or extremely low velocities, a Newtonian model of blood

results in inaccuracies when it comes to intermediate speeds such as flow in Lateral

Flow Immunoassays. The most common Non-Newtonian models of human blood are

Power Law, Casson model, Walburn-Schneck model, Carreau, and Carreau Yasuda

model. Since blood demonstrates non-zero viscosity at zero shear rates, Carreau

Yasuda model is more appropriate for numerical analysis and will be discussed in
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Table 3.1: Newtonian and Non-Newtonian properties of blood.

Parameters [units] Newtonian Model Carreau Yasuda Model

a[1] - 0.500

λ[s] - 0.021

µ0 [mPa.s] - 150.000

µ∞ [mPa.s] 3.892 3.500

n[1] - 0.342

section 4.1.

To test the influence of blood’s dynamic viscosity, Mach et al. (2016) have modeled

a bent intracranial blood vessel with flow diverting stunt. To estimate the velocity

profile of the bloodstream, they measured the viscosity of human blood at different

shear velocities and determined the parameters for Non-Newtonian fluid model. The

estimated parameters for both Newtonian and Carreau Yasuda model are shown in

table 3.1. Where a is the dimensionless factor, λ is the relaxation time, µ0 is the

viscosity at zero shear rate, µ∞ is the viscosity at infinite shear rate and n is the

power index.

3.2 Properties of Whatman Filter Paper

The porosity of a porous media fundamentally characterizes the material, and

multiple experimental methods determine this parameter. The techniques include

porometry, porosimetry, image analysis, and void network modeling. Gribble et al.

(2011) present a quantitative comparison between these techniques by performing

experimental analysis on seven different porous media, including nitrocellulose. It was
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Figure 3.1: A schematic representing the Lucas-Washburn approximation of capillary

flow in porous media. A) Single pore size. B) Three different pore sizes taken from

Cummins et al. (2017)

concluded that the porometry resulted in unrealistically narrow void size distribution,

and the mercury porosimetry underestimated a large number of voids. However, the

error of mercury porosimetry was significantly mitigated by using a void network

model. Therefore, mercury porosimetry was confirmed to be a robust method for

estimating porosity.

With information on pore-sizes and porosity, various numerical models can be

developed to understand fluid behavior in porous media. Figure 3.1(A) shows the

schematic representation of the Lucas-Washburn approximation for capillary flow in

porous media. The model approximates the porous media as a bundle of cylindrical

channels with a single pore size and estimates the fluid front position as a function of

time. In addition to this, the model also assumes complete saturation behind the liq-
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Table 3.2: Porous media parameters for Grade 1 Whatman filter paper

Parameters [units] Value

φ[1] 0.55

r[µm] 1 to 20

θwater [radians] 1.309

θblood [radians] 0.908

Kdimensionless [1] 0.0063

uid front. However, the porous media, like nitrocellulose paper, often demonstrates a

distribution of pore sizes and is not fully saturated behind the liquid front. Therefore,

these assumption results in inaccurate estimation for fluid flow rate.

To mitigate these inaccuracies Cummins et al. (2017) developed a time-dependent

model for estimating the fluid flow rate in porous media with multiple pore size.

Figure 3.1 part B represents the extension of the Lucas-Washburn approximation.

Where L1, L2, L3 are the fluid fronts of capillaries with three different pore sizes.

They performed experimental analysis to estimate the pore size, contact angle, and

permeability of Whatman filter paper Grade 1 to estimate the liquid front velocity.

The pore sizes were determined by mercury porosimetry, and the contact angle and

the dimensionless permeability were determined by vertical imbibition. The porous

media parameters for Grade 1 Whatman filter paper are shown in table 3.2. The

contact angle for blood and Whatman paper was obtained from Chao et al. (2016).
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Figure 3.2: Radial penetration of liquid vs. time taken from Hyväluoma et al. (2006)

3.3 Capillary Penetration in Paper and Evaporation

As mentioned above, the underlying mathematical model to describe capillary

flow in porous media is the Lucas-Washburn model. However, the validity of this

model is still being analyzed. Meanwhile, the development of sophisticated models for

capillary penetration allows us to model complex multi-phase flow in porous media.

Hyväluoma et al. (2006) have estimated multi-phase liquid penetration in a paper

using the Lattice-Boltzmann (LB) method. LB method, with spatially updating rules,

makes it possible to handle fluid-solid boundaries. A set of two-dimensional radial

penetration simulations were performed, and the penetration distance (radius) vs.

time is shown in 3.2. The plot shows that the time taken to travel a particular length

is non-linear. This result can be used as a reference to validate the simulation and

experimental results obtained from this study and understand the effects of geometry

on time taken to travel a known length.
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An important factor affecting capillary flow is evaporation, especially for highly

volatile liquids such as reacting reagents in lateral flow assays. Although Lucas-

Washburn is a good approximation for one-dimensional penetration, a two-dimensional

simulation requires a model based on Darcys law. Liu et al. (2018) formulated a the-

oretical model that considers the effects of evaporation along with geometry on capil-

lary penetration in porous media. In addition to this, they performed two-dimensional

and three-dimensional finite element analysis using COMSOL and estimated the ef-

fects of geometry on fluid flow rate.

Figure 3.3 represents the geometry of the sample in interest. The assumed geom-

etry is a trapezoid with length( l0), width of source edge (W0), and width of sink

edge (W1). The dimension (l) represent the distance between the source edge and

the liquid front at time t. Keeping l0 constant, α = W1

W0
determines the base angle of

the trapezoid.

Figure 3.4 shows the impact of geometry, represented by α, on fluid penetration

as a function of time. The distance on the vertical axis and the time on the horizontal

axis are normalized by using the length of the trapezoid (l0) and the time taken to

travel l0 for a sample geometry with α = 1, represented by t0. Liu et al. (2018)

concluded that as the base angle increases the fluid front velocity is significantly

reduced and vice versa.

The above-mentioned theoretical model will be employed in this thesis to estimate

the effects in Whatman filter paper using water as the fluid. The current study will

complement the theoretical model by incorporating the effects of relative humidity

and by validating the model by experimentation. The numerical plot will be used as

a reference to validate the simulation and experimental results obtained in this thesis.

While capillary penetration is modeled using the above-mentioned theoretical

model, the simulation for evaporation and transport of water vapor requires a more
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Figure 3.3: A schematic representing the geometry of the sample

Figure 3.4: A plot showing the impact of geometry on capillary penetration in porous

media. Figure was replicated from Liu et al. (2018)
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fundamental formulation. Datta (2007a) and Datta (2007b) describe a detailed for-

mulation of multiphase transport in porous media, including evaporation. The the-

oretical model utilizes Darcys law for transport in porous media, molecular diffusion

for the transport of gases in porous media, and conservation of mass equations for

phase change. This formulation will be employed to model evaporation in porous

media.
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Chapter 4

MODELLING OF FLUID FLOW IN POROUS MEDIA

This section describes the methodology for modeling porous media, fluids, mass

and energy transport in porous media.

4.1 Non-Newtonian Fluid - Carreau Yasuda Model

As we discussed in 3.1, Non-Newtonian blood is defined by Carreau Yasuda model

and the relation between dynamic viscosity and shear rate is give by equation 4.1.

µ(γ) = µ∞ + (µ0 − µ∞).[1 + (λγ)a]
n−1
2 (4.1)

where a, n, and λ are empirically determined constant parameters. The parameters

a and n are dimensionless. The parameter λ is the relaxation time and has units of

(s). µ0 is the zero-shear viscosity, defined as the viscosity at zero shear rate. µ∞ is

the infinite-shear viscosity, defined as the viscosity at infinite shear rate and γ is the

shear rate.

The main advantage of this model over other Non-Newtonian models is that it

is continuous for all γ ≥ 0. For blood with n = 0.342, the Carreau Yasuda model

suggests that the dynamic viscosity is close to µ∞ at high shear rates and therefore

can be modeled as a Newtonian fluid with dynamic viscosity µ∞. Similarly, at low

shear rates, blood can be modeled as a Newtonian fluid with dynamic viscosity µ0

(Boyd et al. (2007)). The parameters mentioned in table 3.1 determines the fluid

behavior in Non-Newtonian regime between the two limiting cases µ0 and µ∞.
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4.2 Lucas-Washburn Model

The Lucas-Washburn model assumes that any porous media is a bundle of parallel

capillary tubes with one pore size (r) as shown in figure 3.1(A), and the equation to

estimate the position of the liquid front is given by equation 4.2.

L2(t) =
σ.Cos(θ).r

2µ
t (4.2)

where L(t) is the position of the liquid front as a function of time t. The relationship

is determined by liquid surface tension (σ), contact angle (θ), and dynamic viscosity

(µ) of the fluid. Further, L(t) can be estimated experimentally and the contact angle

of a liquid (θ) in any porous media can be determined by equating equation 4.2 to

experimentally determined L(t).

Pcapillay =
2.σ.Cos(θ)

r
(4.3)

The capillary pressure inside the capillary tubes with a pore size (r) can be deter-

mined by equation 4.3 and will be used as an input parameter for simulating capillary

flow in porous media.

4.3 Heat and Mass Transfer in Porous Media

Fluid transport in porous media can be due to three primary mechanisms molec-

ular diffusion for gases, pressure-driven flow for gases, and capillary flow for liquids

(Nield et al. (2006)). All these mechanisms are dependent on the fluid properties as

well as the internal geometry of the solid matrix. Although a simple laminar flow

through a complex pore structure can be assumed, simulating the fluid flow in porous

media on a macro-scale can be computationally expensive. Therefore, a continuum

approach is more desirable, and the following transport mechanisms incorporate ma-

24



terial properties to estimate the fluid behavior on a scale that is close to Lateral Flow

Immunoassays.

Molecular diffusion of gases, such as water vapor and air, is described by Ficks

law as shown in equation 4.4.

ndiffg = −Dg.
∂Cg
∂S

(4.4)

where ndiffg is the mass flux due to diffusion, Cg is the gas concentration, S is the

distance and Dg is the molecular diffusivity of the gas in porous media. The molecular

diffusivity of gas in porous media is related to the gas diffusivity in bulk (D), porosity

(φ) and tortuosity (τp) as shown in equation 4.5.

Dg = −D. φ
τp

(4.5)

Transport of gases in porous media due to pressure gradient is defined by Darcy’s

law as shown in equation 4.6

npressg = −ρg.Kg

µg
.
∂P

∂S
(4.6)

where npressg is the mass flux due to pressure gradient, P is the total gas pressure, S is

the distance, ρg and µg are the density and dynamic viscosity of the gas respectively.

The permeability of the gas phase kg is given by K.Kgr, where K is the intrinsic

permeability of the porous media and Kgr is the relative permeability of the gas.

Similarly, Darcys law can be applied to liquid flow in porous media due to gas

pressure on liquid and capillary pressure. The capillary attraction between liquid

molecules and the walls of the porous media results in negative pressure (Pcap or Pc)

given by equation 4.3. Therefore, the mass flux of liquid due to a pressure gradient

can be written as equation 4.7.
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npress,capl = −ρl.Kl

µl
.
∂(P − Pc)

∂S
= −ρl.Kl

µl
.
∂P

∂S
+
ρl.Kl

µl
.
∂Pc
∂S

(4.7)

where npress,capl is the mass flux of liquid due to the pressure gradient. Kl is the per-

meability of liquid phase and is given by K.Klr, where K is the intrinsic permeability

of the porous media and Klr is the relative permeability of the liquid.

The capillary pressure is a function of concentration and temperature, and, in

the case of water, the relationship is given by moisture characteristic curves that

are specific to involved materials. Since Pc is a function of temperature (T ) and

concentration (C), equation 4.7 can be re-written as equations 4.8 and 4.9.

npress,capl = −ρl.Kl

µl
.
∂P

∂S
+
ρl.Kl

µl
.
∂Pc
∂C

.
∂C

∂S
+
ρl.Kl

µl
.
∂Pc
∂T

.
∂T

∂S
(4.8)

npress,capl = −ρl.Kl

µl
.
∂P

∂S
−DC .

∂C

∂S
−DT .

∂T

∂S
(4.9)

where DC = −ρl.Kl

µl
.∂Pc

∂C
and DT = −ρl.Kl

µl
.∂Pc

∂T
are the capillary diffusivities due to con-

centration gradient and temperature gradient, respectively. Although the capillarity

is modeled as diffusion terms, the actual mechanism is pressure driven.

If the porous media is entirely saturated, the capillary diffusivity due concentra-

tion gradient is negligible. Similarly, if the porous media is highly unsaturated, the

capillary diffusivity due to concentration gradient dominates the capillary diffusivity

due to the temperature gradient.

Evaporation can be included by including conservation equation while solving for

the solution. After re-arranging the above equations, the transport of water liquid,

water vapor, and air are given by equations 4.10, 4.11, and 4.12.
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na = −ρa.
Kg

µg
.∇P −

C2
g

ρg
.Ma.Mv.Deff.g.∇

P − PV
P

(4.10)

nv = −ρv.
Kg

µg
.∇P −

C2
g

ρg
.Ma.Mv.Deff.g.∇

PV
P

(4.11)

nw = −ρw.
Kw

µw
.∇P −Dw.ρw.φ∇Sw −DT .∇T (4.12)

where na, nv and nw are the mass flux of air, vapor, and liquid water respectively. Dw

and Sw are the diffusivity and saturation of liquid water in porous media, respec-

tively. Evaporation rate results in phase change, and that is included by using the

conservation of mass equation.

∂Cv
∂t

+∇nv = I ′ (4.13)

∂Cw
∂t

+∇nw = −I ′ (4.14)

∂Ca
∂t

+∇na = 0 (4.15)

Equations 4.13, 4.14, and 4.15 define the phase change of liquid water into water

vapor and the evaporation rate is given by I ′. Since evaporation results in mass loss

from the liquid phase, the mass transport side of the equation (left-hand side) is

equated to −I ′. Since air does not participate in phase change, the mass transport

of air is equated to 0.

The numerical analysis solves for seven variable ( nv, nw, na, Cv, Cw, Ca, and I ′).

Therefore, an additional equation is required besides the six mass transport equations

(4.10, 4.11, 4.12, 4.13, 4.14, and 4.15). Conservation of heat energy provides us with

enough equations to solve for seven variables and is given by equation 4.16
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(ρCp)eff .
∂T

∂t
+∇(nv.hv + na.ha + nw.hw)︸ ︷︷ ︸

convection

= ∇(Keff .∇T )︸ ︷︷ ︸
conduction

− λI ′︸︷︷︸
evaporation

+ q′︸︷︷︸
heat

(4.16)

where I ′ is the volumetric evaporation rate that can vary with time, hv, ha, hw are

the enthalpies of vapor, air, and water, respectively. The effective properties ρCp and

Keff are given by equation 4.17 and 4.18.

(ρCp)eff = ρsCps(1− φ) + ρwCpwφSw + ρgCpgφ(1− Sw) (4.17)

Keff = Ks(1− φ) +KwφSw +Kgφ(1− Sw) (4.18)

where Cps, Cpw, and Cpg are specific heats of solid, water and gas phase, respectively.

The above mentioned equations will be solved using finite element analysis to simulate

evaporation in porous media.

4.4 Fluid Flow Rate and Geometry

To estimate the effects of geometry and evaporation, a two-dimensional porous

media is assumed with dimensions, as shown in figure 3.4. It is assumed that the

evaporation takes place from both the front and back sides of the sample, and the

evaporation is negligible from edges of the sample. The evaporation in porous media

can be modeled as viscous pressure loss at the fluid front and is given by equation

4.19.

Ploss = µ.
me′

K.ρ.H
.

[(
l +

l0
α− 1

)2

.ln

(
1 +

l

l0
.(α− 1)

)
− l

2
.

(
l +

2.l0
α− 1

)]
(4.19)

where H is the thickness of the sample, µ is the dynamic viscosity, m′e is the evapo-

ration rate, and K is the permeability. This viscous pressure loss results in effective
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capillary pressure given by equation 4.20.

Peff = Pcap − Ploss (4.20)

where Pcap is calculated using equation 4.3. The effective capillary pressure is used as

an input to Darcys model, and the Darcy velocity at the fluid front (l) is determined.

Since the effective capillary pressure is to be applied at the moving fluid front; the

simulation employs a moving mesh interface to iteratively apply the effective capillary

pressure as a function of l.
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Chapter 5

FIELD EXPERIMENT METHODOLOGY

The objective of this section is to discuss an experimental methodology that can

validate the finite element analysis results and determine a mathematical model that

can estimate the fluid flow rate for a given relative humidity, temperature, geometry,

and grade of material.

A design of experiments technique was employed to study the effects of control-

lable factors (relative humidity, temperature, geometry, and grade of material) on a

response variable (time taken to travel a specified distance). A full factorial exper-

imental design was used to estimate the effects of individual factors as well as the

interaction of factors on the response variable. A full factorial experimental design en-

ables us to screen the significant factors affecting the response variable, optimize the

factor settings that result in desirable response values, build a mathematical model

that represents the process and verify the system behavior with the existing theory.

5.1 Experimental Design

The full factorial experiment is the experimental strategy used to vary factors

together, instead of one at a time. Based on the number of levels of each of the factors,

a full factorial experiment with 23.32 design was employed. The description of each

factor and its levels are described below, and the levels of these factors are shown

in table 5.1. Factors such as wind velocity, fluid viscosity, and fluid temperature are

excluded from the study and can be attributed to the intercept in the experimentally

derived mathematical model.
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Table 5.1: Factors and levels for design of experiments

Factors Low level Medium level High level

Grade of material Grade 1 - Grade 42

Temperature 12 0C 23 0C 31 0C

Relative humidity 27 % - 43 %

α 0.33 1 3

• Grade of material: Grade of Whatman filter paper takes into consideration of

pore size, porosity, and other material-specific parameters. Therefore, effects

due to all these parameters are lumped to simplify the model. The grade of the

material was assigned as categorical (discrete) quantity with two levels. For this

study, the term material and grade of material are interchangeable, although

they are made up of nitrocellulose.

• Temperature: The experimental ambient temperature is maintained at a con-

stant level through each of the experiments. The temperature variable was

assigned as a continuous variable with three levels

• Relative humidity: A constant experimental humidity was maintained through-

out the experiment trial. The humidity variable was assigned as a continuous

variable with two levels

• α: Multiple ratios of the fluid sink width (W1) to the fluid source width (W0)

of the paper specimen were assumed throughout the experimental trial. The

variable was assigned as a continuous variable with three levels. For simplicity,

α is also denoted as alpha.
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Figure 5.1: CAD model of a cassette with α = 0.33

5.2 Experimental Setup

To facilitate the design of experiments, a set of six cassettes with different geome-

try were 3D printed to hold the nitrocellulose in place and in contact with the water

source. The CAD model of the cassette is shown in figure 5.1. A fluid source is 3D

printed to hold six cassettes and to make sure the nitrocellulose in all the cassettes

meet fluid at the same time. The CAD model of water source is shown in figure 5.2.

The intermediate α values were also tested to verify the trend of its influence on

the fluid flow rate. A set of twenty experiments, three to five runs per experiment,

were performed at varying ambient and material conditions, as discussed in table 5.1.

The final setup with nitrocellulose towards the end of the trial is shown in figure 5.3.

The white and blue interface indicates the fluid front. The obtained data is used to

develop a statistical model and to validate the existing literature.
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Figure 5.2: CAD model of the fluid source to hold six cassettes

Figure 5.3: Photograph of the experimental setup for the design of experiments testing
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Figure 5.4: Correlation plot validating the design of experiments

5.3 Statistical Model Building and Design Evaluation

Design of experiments is a very powerful statistical that employs Standard Least

Square Estimates method to fit the model with the considered factors against the

response variable. This method was preferred over other ways as it finds the best

fit for the given data by minimizing the sum of the errors of points from the plotted

curve. Standard least squares approach is expected to offer low variance and low error

for the given data.

The significant factors present in the design of experiments are expected to be the

grade of material, temperature, relative humidity, and geometry. In addition to this,
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the interaction of factors such as material and temperature, material and humidity,

etc. also affect the response variable. The statistical estimates’ validity can be verified

by observing the correlation graph shown in figure 5.4. For the design of experiments

to be valid, the factors should demonstrate zero correlation. From the correlation

plot shown in figure 5.4, the negligible correlation between the factors can validate

the experimental model.
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Chapter 6

RESULTS

A set of finite element analyses were performed to simulate the effects of evapo-

ration and geometry on fluid flow rate in porous media, and design of experiments

was employed to conduct experimental studies. This section discusses the key find-

ings from both the analyses and compares the obtained results with existing literature.

6.1 Finite Element Analysis

To estimate the effects of ambient conditions and geometry on the fluid flow rate

in porous media, a set of finite element analyses were performed. First, as an effort

to understand porous media modeling techniques, four different geometries and two

different viscosity models were included. A pore-scale model, a simplified pore-scale

model, the Lucas-Washburn model, and continuum model were compared using both

Newtonian and Non-Newtonian fluids.

Later, evaporation in porous media is modeled by assuming the evaporation rate

as a function of relative humidity. The concentration of water vapor in dry air is

plotted to demonstrate evaporation from the wicking pad. Lastly, the combined effect

of evaporation rate and geometry is modeled, and the trend concerning geometry is

observed.

6.1.1 Porous Media Modelling

To investigate the effects of porous media modeling techniques, four different

models are used with similar pore size and porosity. The different geometries are
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Figure 6.1: A schematic representation of the scale of application and the complexity

of pore scale model

shown in figure 6.2. The colored surface indicates the interconnected pores, and the

transparent structures represent the walls of the nitrocellulose membrane. All the

samples are assumed to be 640µm X 320µm.

A capillary pressure of 711Pa is applied at the source, and the estimated porosity

is around 0.55 for all the models. Models (a), (b) and (c) represent the micro-scale

structures of a porous media, and therefore, properties like pore-size, porosity and

tortuosity affect the fluid flow rate and, in case of Non-Newtonian fluids, dynamic

viscosity as well. The velocity profiles of Non-Newtonian fluid is shown in 6.3(a),

(b), and (c). The dynamic viscosity of a Newtonian fluid is constant, therefore, the

viscosity profiles of Non-Newtonian fluids are shown in 6.4 (a), (b), and (c).

Figure 6.1 demonstrates the scale of the pore scale model and the LFIA sample.

The emphasized section of the image represents the pore-scale model. Simulating

such a complex pore structure for macro-scale is impractical and computationally ex-

pensive. Therefore, model (d) shown, assumes the porous media as a simple rectangle

and utilizes a continuum approach to estimate fluid behavior. The velocity profiles

and dynamic viscosity profiles are shown in 6.3(d) and 6.4(d), respectively.

From plots 6.3 and 6.4 we can observe that the fluid behavior is dependent on

pore structure. Since blood is is shear-thinning fluid, the dynamic viscosity reduces
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(a) Pore scale model (b) Simplified pore scale model

(c) Lucas-Washburn model
(d) Darcy model

Figure 6.2: A set of two dimensional models representing a porous media

significantly at locations with high velocities and vice versa. Similarly, all the men-

tioned 2D models are simulated using blood modeled as a Newtonian fluid, and the

fluid flow rates are compared.

Table 6.1 compares the difference in various porous media models as well as fluid

models. When comparing the porous media model, the fluid velocities for both Newto-

nian and Non-Newtonian fluids are in the same order of magnitude and, Darcy model

estimation is within the range of estimated velocity values. However, when comparing

fluid models in any porous media model, the fluid velocities are overestimated in the
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(a) Pore scale model (b) Simplified pore scale model

(c) Lucas-Washburn model
(d) Darcy model

Figure 6.3: Velocity profiles of 2D models with Non-Newtonian fluid

Table 6.1: Comparison of porous media and fluid models

Porous media model Newtonian fluid velocity Non-Newtonian fluid velocity

Pore scale model 0.022 m/s 0.001 m/s

Simplified pore scale model 0.041 m/s 0.002 m/s

Lucas-Washburn model 0.062 m/s 0.005 m/s

Darcy model 0.053 m/s 0.001 m/s
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(a) Pore scale model (b) Simplified pore scale model

(c) Lucas-Washburn model
(d) Darcy model

Figure 6.4: Dynamic viscosity profiles of 2D models with Non-Newtonian fluid

Table 6.2: Comparison of porous media model computation times

Porous media model Computation time Est. computation time for LFIA

Pore scale model 7 s 257 hrs

Simplified pore scale model 3 s 95 hrs

Lucas-Washburn model 3 s 118 hrs

Darcy model 3 s 3 s
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Newtonian model. Therefore, it is crucial to model blood as Non-Newtonian fluid

when the application results in intermediate fluid velocities. Newtonian model for

blood is valid when the application results in either high or low fluid velocities.

Table 6.2 compares the computation time for each of the porous media models.

Although the difference in computation times is not significant at micro-scale, the

time taken to simulate a complex geometry at macro-scale can be extremely long.

However, the computation time for the Darcy model at macro-scale is very short,

mainly due to the continuum approach and the lack of complex geometry. Since the

fluid flow rates estimated by Darcy model are within the range of estimated values and

the time taken by Darcy model is short, this model is preferred for both Newtonian

and Non-Newtonian fluids for macro-scale simulations. Therefore, all the subsequent

finite element analyses will be based on the Darcy model.

6.1.2 Evaporation in Porous Media

To demonstrate evaporation in porous media, a two-domain system is modeled,

as shown in figure 6.5. Dry air is included to track the concentration of water vapor

in the air, and the flow is assumed to be unidirectional for demonstration purpose.

The simulation utilizes the equations discussed in section 4.3. In addition to this,

the evaporation rate as a function of relative humidity is included to understand

the effects of relative humidity on evaporation in porous media. Therefore, a set of

experimental analyses were performed to estimate the evaporation rate as a function

of relative humidity.

The experiment and the subsequent simulations were carried out using Grade 1

Whatman filter paper with a pore size of 11 µm, the porosity of 0.55, and dimen-

sionless permeability of 0.0063. The estimated evaporation rate function is given by

equation 6.1 and the plot is shown in figure 6.6
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Figure 6.5: A schematic representation of FEM model to simulate evaporation in a

porous media

Figure 6.6: Experimental estimation of evaporation rate as a function of relative

humidity

m′e(RH) = 0.6913. e−0.049(RH) (6.1)

where m′e is the evaporation rate and RH is the relative humidity.

Equation 6.1 is plugged into the simulation, and the water vapor concentration

as a function of time at a given relative humidity is plotted. Figure 6.7 shows the

difference in molar concentration of escaped water vapor at 1% and 97% relative
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(a) Evaporation at 1% RH

(b) Evaporation at 97% RH

(c) Concentration color scale in mol/m3

Figure 6.7: Water vapor concentration (mol/m3) in dry air at 1% and 97% relative

humidity

(a) High evaporation

(b) Low evaporation

(c) Concentration color scale in mol/m3

Figure 6.8: Evaporation in porous media with extreme evaporation rates
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humidity. This analysis suggests that the evaporation in porous media is inhibited

by high relative humidity. To demonstrate evaporation in porous media, figure 6.8

shows the molar concentration of water vapor in dry air at extremely high and low

evaporation rates. These set of results can be used to understand evaporation of any

analyte in LFIA, especially the reagents with high volatility.

6.1.3 Fluid Flow Rate in Porous Media

To estimate the influence of evaporation and geometry on fluid flow rate in porous

media, a set of simulations with varying α were performed. The physics behind these

simulations were discussed in section 3.3. The effective capillary pressure, given by

equation 4.20, is applied as the pressure at the fluid front. Since the fluid front is

moving, a moving mesh interface was employed.

A set of transient analyses were performed to estimate fluid velocity as a function

of time. The geometry of the nitrocellulose sample was changed by varying α from

0.33 to 3. Figure 6.9 shows the sequence of estimated fluid flow rates from the

transient analysis. It can be observed that the fluid flow rate in both α = 0.6 and

α = 1.5 reduces as shown in figures 6.9 (a) → (c) → (d) as well as (b)→ (d) → (e).

However, in the sample with α = 0.6, the maximum velocity towards the end of the

analysis is at the sink side. Whereas, in the sample with α = 1.5, the maximum

velocity towards the end of the analysis is at the source edge.

The fluid velocities as a function of time for samples with α = 0.5, and 1.5 are

plotted as shown in figure 6.10. The horizontal axis represents time (t) and the

vertical axis represents velocity. The simulated results closely align with the existing

literature, as discussed in section 3.3.
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(a) Velocity at t0 for α = 0.6
(b) Velocity at t0 for α = 1.5

(c) Velocity at t1 for α = 0.6
(d) Velocity at t1 for α = 1.5

(e) Velocity at t2 for α = 0.6
(f) Velocity at t2 for α = 1.5

Figure 6.9: Fluid velocity plots for α = 0.6 and α = 1.5 at different times
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Figure 6.10: Effect of evaporation and geometry on the fluid flow rate in porous media

6.2 Experimental Analysis

To validate the simulation results as well as the findings from Liu et al. (2018),

design of experiments statistical tool has been employed as discussed in chapter 5.

This tool helps us to determine significant factors and estimate the parametric co-

efficients of the model using linear regression techniques. The estimated parametric

coefficients are shown in table 6.3.

From the fitted model, the significant factors are found to be Intercept, Grade of

material, Relative humidity, α, and Grade of material X α. Although the tempera-

ture is expected to be a significant factor affecting the evaporation rate, the estimates

suggest that the influence of temperature on time taken to travel 5 cm is insignificant

as compared to other factors. This anomaly can be attributed to the range of temper-

atures employed during the experiment. Since the temperature difference is around
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Table 6.3: Estimation of parametric coefficients using linear regression techniques

Term Estimate Std Error t ratio Prob¿[t]

Intercept 16.0027 0.6421 24.9200 < 0.0001

Grade of material [M] -4.5874 0.6875 -6.6700 < 0.0001

Temperature [T] 0.3469 1.1075 0.3100 0.7605

Relative humidity [RH] -3.6537 0.6421 -5.6700 < 0.0002

α 4.4156 0.7142 6.1800 < 0.0001

Grade of Material X Temperature 0.0367 0.7785 0.0500 0.9638

Grade of Material X Relative humidity 1.1571 0.6771 1.7100 0.1183

Temperature X Relative humidity 0.4183 1.0988 0.3800 0.7114

Grade of material X α -2.1855 0.7164 -3.0500 0.0122

Temperature X α 0.6340 0.8362 0.7600 0.4658

Relative humidity X α -1.4951 0.7143 -2.0900 0.0628

19 0C, the effect due to temperature is not adequately represented in the analysis.

The parametric estimates can be used to determine a statistical model, and this

is done by including the most significant factors as well as interactions. The mathe-

matical model is derived, as shown below.

t5cm = 23.43 + 7.13.α− 4.59.M − 0.34.RH − 0.24.T−

0.14.α.RH + 0.05.α.T + 0.01.RH.T − 4.92.M.RH − 0.079.M.T + 1.09.M.α

where t5cm is the time taken to travel 5 cm.

For a given application and the fluid in interest, a similar statistical model can

be determined. Such models are useful to find the optimal conditions for the desired
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Figure 6.11: Interaction plot representing the relation between each of the factors

and the response variable time or time taken to travel 5 cm (minutes)

response or to estimate the response as a function of included factors.

Design of experiments also produces full factorial interaction plots, as shown in

figure 6.11.

The interaction plots are to be read as a two-dimensional matrix. For example,

the plot corresponding to material and alpha (α) denotes the combined effect of the

grade of material [M] and α on time taken to travel 5 cm. The plot suggests that

varying the grade of material from grade 1 to grade 42 increases the time taken to

travel a specified distance. In addition to this, the increase in α results in an increase
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Figure 6.12: Cube plot representing the time of travel (min) as a function of the

grade of material, temperature, and relative humidity for an alpha of 0.33 (left) and

3 (right). The conditions giving the fastest (green) and slowest (red) velocity are

indicated for each cube plot

in time taken to travel a specified length for the same grade of material. These results

closely align with the Whatman filter paper specification.

The cube plot, as shown in figure 6.12, generated by design of experiments, en-

ables us to determine the optimal settings to achieve a desired time of travel. For

example, to achieve a time of travel of 8.02 minutes, the ambient temperature should

be maintained at 120C, the relative humidity at 43 %, with α= 0.33 in Whatman

filter paper grade 1.

In addition to parametric estimates and cube plots, fluid front velocity as a func-

tion of time is determined using experimental analysis. The experimental results and

simulation results are combined and plotted together by normalizing the velocities as

well as time. Figure 6.13 shows the relation between the velocities and the geometry.

The solid line corresponds to simulated results, and the broken line corresponds to

experimental values.
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Figure 6.13: Simulated and experimental result showing the normalized velocity v.s.

normalized time for fluid flow in varying geometries of porous media (cellulose) for

Lateral Flow Immunoassays

For α = 0.33 the experimental values stop at t/t0 = 0.5. This suggests that the

fluid front reached the 5cm mark twice as fast as the fluid front in a sample with

α = 1. Similarly, the fluid front in a sample with α = 3 took almost 1.3 times longer

than the fluid front in a sample with α = 1 to reach the 5 cm mark. Hence, the values

stop at t/t0 ' 1.3.

The plot 6.13 also shows the difference between the simulated and the experimental

values. This difference can be attributed to the pore size and capillary pressure. For

simulation purposes, the capillary pressure is calculated using an average pore size

of 11 µm, but in reality, the pore size in grade 1 Whatman filter paper varies from

2.5 µm to 19 µm. While calculating the capillary pressure using the equation 4.3, a

contact angle of 1.309 radians is assumed for water (Cummins et al. (2017)).

Although Cummins et al. (2017) attempted to mitigate the inaccuracies in the

Lucas-Washburn model while estimating the contact angle of water, the accuracy of

the Lucas-Washburn model is still being studied. In addition to this, some of the
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significant parameters that result in the variation are the uncontrolled factors such

as wind velocity, fluid temperature, surface tension, etc.

However, Both finite element analyses and experimental analyses suggest that the

velocity is decreasing with time and geometry of the sample determines the initial

velocities and the rate at which the velocity is reduced. Therefore, the geometry of

the sample can be tuned to achieve a desired fluid velocity.
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Chapter 7

CONCLUSION AND FUTURE WORK

Lateral flow immunoassays offer many advantages as compared to other POC de-

vice and satisfy most of the assured criteria. However, the performance is limited by

the non-ideal test conditions. The performance determining parameters like reagent

stability and reaction rate are usually dependent on the fluid flow rate in porous

media. Therefore, estimating the fluid flow rate in porous media for a given set of

ambient conditions allows us to predict the efficiency and repeatability of the tests.

7.1 Conclusion

Literature suggests that temperature and relative humidity affect the evaporation

rate and, evaporation rate results in viscous pressure loss. Therefore, the effective

capillary pressure across the fluid source and the fluid front is altered. This study

focuses on understanding the effects of relative humidity and temperature on fluid

flow rate and the effect of geometry in tuning the fluid flow velocity. To achieve

the objective, a set of numerical and experimental analysis were performed and are

compared to existing literature.

To understand fluid flow in porous media, a set of finite element simulation was

performed to compare various porous media modeling techniques. In addition to this,

the effect of Newtonian and Non-Newtonian model of blood on fluid velocity is com-

pared. Although pore-scale modeling closely represents the porous media, discretizing

a complex geometry and solving partial differential equations can be computationally

expensive. This study suggests that Darcy approximation or continuum approach of
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porous media is more practical for macro-scale models such as lateral flow immunoas-

says and provide solutions within estimated values. However, a Newtonian approxi-

mation of a Non-Newtonian fluid such as blood requires close attention. The study

suggests that Newtonian approximation overestimates the fluid velocity in porous

media. Since blood is a shear-thinning fluid, a Newtonian approximation may be

valid in cases where the fluid flow rate is relatively high or relatively low.

To estimate the evaporation in porous media, a set of experimental analyses were

performed to determine the relationship between evaporation rates and relative hu-

midity. The obtained relationship suggests that the relationship is exponential, and

the evaporation rate decreases with increase in relative humidity. The obtained ex-

ponential function is plugged into the simulation to estimate the transport of water

vapor in dry air. The evaporation in porous media as a function of relative humidity

has been successfully simulated.

To estimate the combined effect of geometry and evaporation rate on fluid flow

rate in porous media, a set of finite element analyses were performed. The study

suggests that evaporation results in a viscous pressure loss and the fluid flow rate can

be tuned using the base angle of the test strip. These findings were then validated

using the design of engineering experiments. The design of engineering experiments

included the combined effects of , temperature, relative humidity, and lumped porous

media parameters on the fluid flow rate. The experimental study closely aligned with

available mathematical models and obtained simulation results. A high fluid flow rate

can be achieved at low temperature, high relative humidity, low , and a porous media

that is close to grade 1 Whatman filter paper.
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Figure 7.1: A schematic representing the application of this study

7.2 Future Scope

The current study derives the mathematical model using data obtained from ex-

periments that were performed in ambient conditions. Although this test setup closely

represents non-ideal test conditions, the uncontrollable nature of ambient tempera-

ture and humidity along with wind velocity results in significant intercept term in the

mathematical model. Therefore, a refined mathematical model can be achieved by

repeating the experiments in an environmental test chamber with controlled relative

humidity and temperature.

In addition to this, the study focuses on determining the effects of geometry and

evaporation on the flow rate of water. However, most of the lateral flow Immunoas-

says either use reagents with high volatility or Non-Newtonian analytes like blood.

Therefore, the current study should be further refined using a specific fluid of interest

to determine a mathematical model that closely represents the actual test.

Figure 7.1 is a schematic representation of a diagnostic test strip that is being
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developed at Arizona State University. One of the challenges faced is the lack of an

optimal fluid flow rate for reliable and repeatable antibody-receptor binding. The

main requirement of the test is to limit the flow rate as the analyte travels from the

green test site to the red test site. To address this, a nitrocellulose membrane with α

> 1 can be employed.
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