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ABSTRACT  
   

The 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters 

observed at 3.6- and 4.5 μm using the Spitzer Space Telescope is here reported. Eclipse 

results for 27 of these planets are new and include highly irradiated worlds such as 

KELT-7b (Kilodegree Extremely Little Telescope), WASP-87b (Wide Angle Search for 

Planets), WASP-76b, and WASP-64b, and important targets for the James Webb Space 

Telescope (JWST) such as WASP-62b. WASP-62b is found to have a slightly eccentric 

orbit (ecosω=0.00614±0.00058), and the eccentricities of HAT-P-13b (Hungarian 

Automated Telescope Project) and WASP-14b are confirmed. The remainder are 

individually consistent with circular orbits, but there is statistical evidence for 

eccentricity increasing with orbital period in this range from 1 to 5 days. Day-side 

brightness temperatures (Tb) for the planets yield information on albedo and heat 

redistribution, following Cowan and Agol (2011). Planets having maximum day side 

temperatures exceeding ∼2200 K are consistent with zero albedo and distribution of 

stellar irradiance uniformly over the day-side hemisphere. The most intriguing result is a 

detection of a systematic difference between the emergent spectra of these hot Jupiters as 

compared to blackbodies. The ratio of observed brightness temperatures, Tb(4.5)/Tb(3.6), 

increases with equilibrium temperature by 98±26 parts-per-million per Kelvin, over the 

entire temperature range in the sample (800K to 2500K). No existing model predicts this 

trend over such a large range of temperature. This may be due to a structural difference in 

the atmospheric temperature profile between the real planetary atmospheres as compared 

to models. 
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CHAPTER 1 

INTRODUCTION 

The secondary eclipse of a transiting planet provides an opportunity to measure 

the planet’s emitted thermal flux in the infrared spectral region (Charbonneau et al. 2005; 

Deming et al. 2005). When measured over multiple bands, that flux can be used to infer 

the emergent spectrum of the planet, and numerous investigations have observed and 

analyzed eclipse photometry for that purpose using the Spitzer Space Telescope (e.g., 

Charbonneau et al. 2008; Knutson et al. 2009; for a recent review see Alonso 2018). 

Ideally, the eclipse could be measured spectroscopically with Spitzer, but Spitzer’s 

modest aperture has collected sufficient light to allow eclipse spectroscopy for only two 

of the brightest hot Jupiter systems (Richardson et al. 2007; Grillmair et al. 2008; 

Todorov et al. 2014). Emergent spectra of several hot Jupiters have been measured near 

1.4 µm wavelength using the Hubble Space Telescope (Sheppard et al. 2017; Stevenson 

et al. 2017; Arcangeli et al. 2018; Kreidberg et al. 2014, 2018; Mansfield et al. 2018; 

Nikolov et al. 2018). The James Webb Space Tele- scope is projected to obtain emergent 

spectra for numerous hot Jupiters (Greene et al. 2016; Stevenson et al. 2016; Bean et al. 

2018), enabling a major advance in our understanding of their atmospheric physics and 

chemistry. 

In this paper, we set the stage for JWST eclipse spectroscopy of hot Jupiters by 

reporting a statistical analysis of 27 new hot Jupiters observed in eclipse at both 3.6 µm 

and 4.5 µm using Spitzer. We are currently engaged in a uniform re-analysis of the 

secondary eclipses of all transiting planets observed by Spitzer. A full report on that re-

analysis is not yet possible, so we here apply our uniform analysis to hot Jupiters that 
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have not been previously observed or analyzed in secondary eclipse, supplemented by re-

analysis of a few planets that either have special and timely interest, such as HAT-P-13b 

(Buhler et al. 2016; Hardy et al. 2017), KELT- 2Ab (Piskorz et al. 2018), and WASP-18b 

(Sheppard et al. 2017; Arcangeli et al. 2018), or help us to check our eclipse depths in a 

statistical sense, such as WASP-14b (Wong  et al. 2015). Given recent interest in the 

hottest of the hot Jupiters (Haynes et al. 2015; Bell et al. 2017, 2018; Evans et al. 2017; 

Sheppard et al. 2017; Stevenson et al. 2017; Arcangeli et al. 2018; Kreidberg et al. 2018; 

Mansfield et al. 2018), we have tried to be as complete as possible for the hottest planets. 

JWST observations of these planets at secondary eclipse will require knowing the orbital 

phase of their eclipses. Moreover, slightly non-zero eccentricities for the orbits of hot 

Jupiters, as revealed by the phase of the secondary eclipse, can be diagnostic of their 

orbital and physical evolution. Hence, we also report and discuss the central phase of the 

eclipses we analyze. Our work here represents the largest collection of Spitzer’s 

secondary eclipse depths ever reported in a single paper. 

This paper is organized as follows. We describe our observations and photometry 

procedures in Section 2. Section 3 describes the analysis of the data, beginning with 

transits of three planets to update their orbital periods (Section 3.1). Section 3.2 derives 

eclipse depths and orbital phases by applying pixel-level decorrelation (PLD) to the 

photometry (Deming et al. 2015). Section 3.3 describes some checks that we have 

performed to validate our eclipse depths. The eclipse depths of some planets must be 

corrected for the presence of close companion stars, and those corrections are described 

in Section 3.4. Section 4 discusses the observed phases of the eclipses, and the 

implications for orbital dynamics and also for the exoplanetary atmospheres. Section 5 
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describes how we convert the eclipse depths to brightness temperatures, that are used in 

the remainder of the analyses. Sec 6 uses those brightness temperatures to study the re-

distribution of heat on the planets, and Section 7 compares our measured brightness 

temperatures to theoretical emergent spectra of the planets. Section 8 summarizes our 

results and conclusions. An Appendix gives notes on individual planets. 
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CHAPTER 2 

OBSERVATIONS AND PHOTOMETRY 

The bulk of our observations were made under Spitzer programs 10102, 12085, 

and 13044 (PI: Drake Deming) in the 2014-2017 time period. We supplement those 

observations using archival data for planets observed under other programs. Table 1 lists 

the planets we analyze, and the Astronomical Observation Request (AOR) number of 

each eclipse. Every planet was analyzed using post-cryogenic 3.6- and 4.5 µm data from 

the IRAC instrument. Most planets were observed in subarray mode, yielding 32x32-

pixel images in cubes of 64 frames. In addition to observations of secondary eclipses, our 

Cycle-13 program included observations of transits for many planets. Analysis of the 

transits is relevant to transmission spectroscopy of these planets, many of which are being 

observed by HST/WFC3. Although this paper focuses on secondary eclipses, we analyze 

transits of three planets (Sec. 3.1) in order to improve their orbital ephemerides and 

thereby derive more accurate secondary eclipse phases. 

To perform photometry, we first remove hot pixels in each frame through a 4σ 

rejection applied to each pixel as a function of time. We replace bad pixels with the 

median value of that pixel over time (see Tamburo et al. 2018 for a discussion of this 

median-replacement procedure). We estimate the background by first masking the star 

with a 5x5 pixel box and tabulating the distribution of pixel intensities outside of this 

box. The center of a Gaussian fit to this distribution is used as the background value. The 

code produces photometry by first locating the center of the stellar image on the cleaned 

32x32 pixel frame with a 2D Gaussian fit. This initial estimate is refined by two methods: 

a second 2D Gaussian fit or a center-of-light method. The second Gaussian fit is per- 
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formed on a smaller (4x4 pixel) box surrounding the initial estimate of the centroid. The 

center of light position is found with an intensity-weighted average of the X and Y 

positions nearest the initial estimate. 

We use the aper procedure in the IDL’s Astronomy User Library to perform the 

actual aperture photometry, with both fixed-radius and variable-radius apertures methods. 

Our fixed aperture radii are incremented by 0.1 or 0.2 pixels from 1.6 to 3.5 pixels, 

producing 11 sets of photometry. The variable radii are computed using the noise-pixel 

parameter, β from Lewis et al. (2013), added to a constant that ranges from 0.0 to 2.0 

pixels, depending on the aperture set of the photometry. The combination of two 

centering methods, and two aperture radii sets, produces a total of four photometric 

versions of the secondary eclipse for each visit to a given system. Each version 

encompasses multiple sets of photometry with different aperture radii. 
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CHAPTER 3 

EXTRACTION OF SECONDARY ECLIPSE PARAMETERS 

3.1 Ephemeris Updates 

The time scale for tidal circularization of a hot Jupiter’s orbit is typically much 

less than the age of the system (Jackson et al. 2008). Observations commonly find hot 

Jupiter secondary eclipses to be centered very close to phase 0.5 (e.g., Garhart et al. 

2018), consistent with a circular orbit. When we find a displacement of the eclipse from 

phase 0.5, we first check the impact of potential ephemeris error on the observed phase of 

the eclipse.  We found three planets whose ephemerides we were able to update: KELT-

7b, WASP-62b, and WASP-74b. We fit Spitzer transits for each planet at both 3.6- and 

4.5 µm using the same procedure as for our eclipse fits (See Section 3.2 below), except 

that we include quadratic limb darkening based on coefficients in each band from Claret 

et al. (2013). We freeze the orbital parameters and limb darkening coefficients during the 

fit, and we vary the ratio of radii (planet-to-star) and the central phase of the transit. Low 

infrared limb darkening produces a sharp ingress/egress for the Spitzer transits, and 

facilitates a precise measurement of the transit time. For KELT-7b and WASP- 74b, we 

find that the Spitzer transits are displaced from their predicted phases by amounts that are 

consistent between the two Spitzer bandpasses, and commensurate with the offsets we 

encountered for the eclipses. The observed transits and fits are illustrated in Figures 1, 2 

and 3. The transit times are given in Table 2, and the transit depths are given in Table 3.  

We update the orbital periods of KELT-7b and WASP-74b. using the Spitzer 

transit times. For each planet, we use the transit epoch (T0) from Bieryla et al. (2015) and 

Hellier et al. (2015), and we calculate a new period using three points: the epoch listed in 
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the discovery paper, and the transit times from our new Spitzer transits (one at each 

wavelength). We calculate the period via error-weighted linear least-squares (linfit 

routine in IDL), and the error on the slope (i.e., the period) follows from the precision of 

the original T0 value and the precision of the Spitzer transit times. The precision of the 

updated period for KELT-7b is improved by a factor of 8 compared to Bieryla et al. 

(2015), and for WASP-74b by a factor of 2 compared to Hellier et al. (2015). The Spitzer 

transit times and updated periods are given in Table 2, and those values are used to 

calculate the secondary eclipse phases reported in this paper (Section 4). 

For WASP-62b, the transits are similarly displaced slightly from the predicted 

time, as shown on Figure 3.  Again, there is excellent agreement between the transits 

measured independently in both Spitzer bands. We have updated the ephemeris based on 

the Spitzer transits, and the updated results are included in Table 2. However, even with 

our updated ephemeris, the eclipses of WASP-62b remain displaced from phase 0.5 due 

to an eccentric orbit, as discussed in Section 4. 

 

3.2 Derivation of Eclipse Depths 

Two major instrumental systematic effects are known to contaminate Spitzer 

observations and introduce fluctuations in the photometry that can often be an order of 

magnitude larger than the eclipse being sought. First, there is a characteristic ramping 

feature that varies with time (Knutson et al. 2012). This ramp-like increase in flux is 

often most rapid at the beginning of each observation, so by default we omit the first 30 

minutes of data from every eclipse to eliminate the potentially steepest portion of the 

ramp. We model the ramp in the remaining data using either a linear, quadratic, or 
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exponential function of time. We decide between a linear and quadratic ramp model 

using a Bayesian Information Criterion (BIC) applied to the fitted eclipse. In the 

(infrequent) cases where the fit is inadequate near the beginning of the time series 

(judged by structure in the residuals), we either omit 45 or 60 minutes of data instead of 

the default 30 minutes, or we use an exponential ramp, depending on the characteristics 

of those specific data. 

The second source of noise for Spitzer is the intra-pixel sensitivity variations 

across the detector. We correct for this effect using Pixel Level Decorrelation (PLD, 

Deming et al. 2015), and including the temporal ramp as integral to the PLD fitting 

process. In a Spitzer data challenge, Ingalls et al. (2016) found PLD to have the smallest 

bias in eclipse measurements as compared to other current decorrelation methods. PLD 

has been extensively used for Spitzer analyses (Dittmann et al. 2017; Kilpatrick et al. 

2017; Buhler et al. 2016; Fischer et al. 2016; Wong et al. 2016; Tamburo et al. 2018), and 

higher-order PLD is the foundation of the EVER- EST code for analysis of K2 

photometry (Luger et al. 2016). The PLD formalism was described by Deming et al. 

(2015), and we do not repeat the equations here. But we summarize that the photometry 

is modeled as proportional to a linear sum of normalized relative pixel intensities times 

coefficients determined by the fit and including the temporal ramp and the eclipse shape. 

Moreover, our PLD fit uses binned data, because binning averages out small temporal 

scale fluctuations in the basis pixels and reduces or eliminates red noise much more 

efficiently than with unbinned data. Normalizing the pixels is used to remove all 

astrophysical information from the independent variables in the fitting process. We 

calculate the shape of the eclipse with an adapted version of the procedure described by 
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Mandel and Agol (2002). As described by Garhart et al. (2018), our version of PLD uses 

12 basis pixels, versus the original 9 pixels used by Deming et al. (2015). These 12 pixels 

are the closest to the median stellar center found in the photometry and generally form a 

4x4 pixel box without corners. The eclipse depth is not sensitive to the number of basis 

pixels per se, but the stars in our sample are sufficiently bright on average that significant 

flux can be detected in more than the 9 pixels originally used by Deming et al. (2015), 

and we want to use all significant pixel-level information. Note that Tamburo et al. 

(2018) used 25 basis pixels for the very bright star 55 Cnc. 

Our fitting code uses an initial linear regression to locate the eclipse and estimate 

the best central phase and pixel coefficients by minimizing the χ2 of a fit to the unbinned 

data. Then, we freeze the phase of the eclipse, and re-fit for the Spitzer systematics and 

the eclipse depth using binned data with combinations of aperture radius and bin size, 

again using linear regression. For each fit to binned data, the code uses the best pixel 

coefficients and best eclipse depth from the regression to calculate a fit to the unbinned 

data, and sub- tracts that to form residuals. The code then calculates the variance (σ2) of 

the residuals as a function of bin size (this is called the Allan deviation relation, Allan 

1966). We adopt the combination of bin size, aperture type and size, and centering 

method, that minimizes the scatter in the Allan deviation relation (see Garhart et al. 

2018). 

Once the best aperture radius, bin size, and best-fit parameters have been found, 

they are used to seed a 1x106 step Markov Chain Monte Carlo (MCMC) procedure (Ford 

2005) in order to estimate the errors on both the central phase and eclipse depth. We 

separate the MCMC into three distinct stages: an initial burn-in period of approximately 
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1x104 steps on the unbinned data to find the best step sizes for each parameter. After the 

burn-in, we re-scale the photometric errors so that the reduced χ2 is 1 for the rest of the 

analysis. Approximately 8x105 steps are used to fit the binned data and adequately 

sample the entire parameter space as well as to significantly reduce computation time. 

Finally, the last 1x104 steps also calculate the fit to the unbinned data, and re-compute the 

Allan deviation relation at each step, so as to possibly find a slightly better solution. The 

MCMC varies the eclipse phase simultaneously with other parameters in this process 

(whereas the linear regressions held the phase constant after an initial estimate). Thereby, 

the MCMC is sometimes able to find a slightly better central phase and eclipse depth 

value than the linear regressions. We post-process the MCMC chains to calculate the 

errors on eclipse depth and central phase by fitting Gaussians to the posterior distribu- 

tions from the MCMC, and those are virtually always excellent fits. 

As mentioned above, there are four sets of photometry for each wavelength. We 

fit the four versions separately and select the best combination of centering method 

(Gaussian or center-of-light) and aperture type (fixed or variable radii) by considering the 

ratio of scatter relative to the photon noise, on both the binned and unbinned time scale. 

The ratio can vary with bin size, and there is a trade-off between minimizing red noise as 

opposed to noise on the unbinned time scale. We have not found a rigid formula to 

implement this trade-off, so subjective judgment is sometimes needed depending on the 

characteristics of specific eclipses. However, we check to ensure that the eclipse depth is 

not sensitive (within the errors) to the choice, and we also inspect each fitted eclipse 

visually to check for potential anomalies in the fit. In all cases we also re-run the code 
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with a different MCMC random seed, to verify convergence to closely similar posterior 

distributions of eclipse depth and central phase. 

 

3.3 Properties and Checks on the Eclipse Solutions 

We here describe the properties of our PLD eclipse solutions, and we make a 

number of checks to ensure the validity of the eclipse depths. Recall that our PLD fitting 

process operates on binned data and chooses a ’broad bandwidth’ solution by minimizing 

the scatter in the Allan deviation relation (see Garhart et al. 2018 and Sec. 3.3 of Deming 

et al. 2015). We thereby expect that the solutions should be good fits to the data on all 

time scales, no matter how we bin the data. For clarity of presentation, we bin the data to 

between 20 and 40 points spanning each data set, and we show all of the eclipses at 3.6 

µm in Figure 22, and all of the 4.5 µm eclipses in Figure 23.  The eclipse of every planet 

is nominally detected at 4.5 µm (albeit some with low signal-to-noise), and all except for 

WASP-75b and WASP-49b are detected at 3.6 µm (the fitted 3.6 µm eclipse has a 

negative depth for WASP-75b and -49b, indicating that the eclipse amplitudes are 

beneath the noise). 

In addition to the eclipse fits shown in Figures 22 and 23, we here explore 

additional properties of the solutions. The arrangement of pixels relative to the position of 

the stellar image means that the pixel coefficients in the PLD fitting process can correlate 

and anti-correlate with each other as the stellar image moves. Given that we expect pixel-

to-pixel correlations, a traditional corner plot using the full array of pixel covariances is 

not particularly useful. However, the eclipse depth should not correlate with any pixel 

coefficient, since we expect that the pixels will trade-off appropriately in the presence of 
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a stable eclipse depth as the MCMC evolves. Accordingly, we illustrate the lack of 

correlation between the eclipse depth and pixel coefficients, for two representative 

eclipses, choosing a strong eclipse (WASP-76b) and a weak eclipse (WASP-131b). 

Figures 4 and 5 show the posterior distributions for both eclipse depth and central phase, 

versus the distributions for the three brightest pixel coefficients. In all cases, the lack of 

correlation is obvious. Although we illustrate the three brightest pixels, we checked to 

ensure that the same is true for all pixels. And we also checked all eclipses, not just 

WASP-76b and WASP-131b. Also, we run duplicate MCMC chains starting with a 

different random seed, to verify convergence and stability. The distributions for eclipse 

depths and central phase for the duplicate chains of WASP- 76b and WASP-131b are 

shown as dashed lines in the top panels of Figures 4 and 5. Those dashed lines can hardly 

be distinguished from the distribution for the first chains. 

Although the derived eclipse depths and phases do not correlate with the PLD 

pixel coefficients, they do (and should) correlate with the parameters of the temporal 

ramp, both for the linear and quadratic case. That occurs because the presence of a ramp 

perturbs the out-of-eclipse reference flux, and it also shifts the centroid of the eclipse. 

Indeed, the entire point of including the ramp in the solution is to account for such 

correlations. Figures 6 and 7 show those correlations for WASP-76b and -131b, 

respectively. The correlations are included in our quoted errors for eclipse depth and 

central phase (not only for these planets we illustrate but also for all planets we analyze). 

An important check on the properties of our solutions for eclipse depth is to 

examine the amplitude of the residuals (data minus fit) as a function of bin size. Recall 

that our code fits to binned data, because we find that it helps to reduce red noise. We 
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apply the coefficients from that best fit to the unbinned data and subtract that fit. We re-

bin the residuals with a variety of bin sizes, and calculate the scatter (standard deviation, 

σ) of each set of binned residuals for both the binned and unbinned data. Figure 8 shows 

histograms of this ratio for the unbinned data at both 3.6- and 4.5 µm. The scatter is 

always greater than the photon noise; at 3.6 µm the median ratio is 1.19, and at 4.5 µm 

the median is 1.17. The distribution at 4.5 µm is more strongly concentrated at ratios near 

unity. At each wavelength, only two eclipses have ratios exceeding 1.5. The bottom panel 

of Figure 8 shows the ratio of the scatter to the photon noise on the binned time scales 

that were actually used for each eclipse solution. The median values of that ratio are 1.22 

and 1.14 at 3.6- and 4.5 µm, respectively, but two eclipses scatter to ratios above 1.5 at 

3.6 µm, versus none at 4.5 µm. We conclude that the eclipse solutions are giving good 

performance over a wide range of time scales. Note also the ratio of scatter to the photon 

noise does not correlate with the bin time on the bottom panel of Figure 8, indicating that 

the scatter is decreasing versus bin size with approximately the same functional behavior 

for all eclipses. 

Another way to view the noise performance of the eclipse solutions is from the 

slope of the Allan deviation relation, i.e. the standard deviation of the binned residuals as 

a function of bin time. Histograms of the Allan deviation slope are shown for both 

wavelengths in Figure 9. For photon-limited performance, the standard deviation (σ) 

should decrease as the square root of the bin size with a slope of -0.5 in log space. If, for 

example, we were to over-fit the data, then we might find the slope to be consistently less 

than -0.5, which is not physically possible for a valid fitting process (because we cannot 

overcome the photon noise). The distributions of Allan deviation slope over all of our 
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eclipse depth solutions are therefore useful diagnostics of our fitting procedure. Figure 9 

shows histograms of the slopes for the 3.6- and 4.5 µm eclipses. The median value for the 

3.6 µm slopes is -0.45 and for 4.5 µm it is -0.48. Both distributions cut off at -0.5, albeit 

with some values as small as -0.54. Our 3.6 µm solutions have 4 slope values less than -

0.5, but all of them greater than -0.53. At 4.5 µm, 6 slopes are less than -0.5, with the 

smallest value being -0.54. Given that the slope has its own intrinsic uncertainty, We 

conclude that the values falling below -0.5 are due to random fluctuations, and that our 

eclipse depth solutions approach closely to the photon noise limit, but we are not over-

fitting. 

As described above, we examine four different versions of the photometry at each 

wavelength, independently choosing the best overall fit from among them for each planet 

and each wavelength. Thus, we might adopt Gaussian centroiding with variable-radius 

photometry apertures at 3.6 µm for a given planet, and center-of-light centroiding with 

constant radius apertures for the same planet at 4.5 µm. Our rationale is that each data set 

is different and has unique characteristics that require flexibility in the fitting process. 

Nevertheless, a strength of our work is that we analyze eclipses for 27 new planets using 

a uniform methodology, to facilitate accurate statistical conclusions. In light of that goal, 

it may seem odd that we utilize one of four different sets of photometry for each planet at 

each wavelength. Does this variation destroy the uniformity of our analysis, and 

introduce additional noise or systematic effects? To investigate that possibility, we com- 

pare our adopted eclipse depths with the eclipse depths that are derived always using 

Gaussian centroiding and constant- radius apertures (hereafter, Gaussian-constant = GC). 

One way to evaluate uniformity is to compare each set of eclipse depths with some 
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physical variable that is independent of our data analysis but should correlate with eclipse 

depth. Whatever the shape of that functional relation, the best set of eclipse depths should 

exhibit less scatter. We use the equilibrium temperature of each planet as the independent 

variable, calculated assuming zero albedo, a circular orbit, and uniform distribution of 

heat. We remove the effect of different stellar and planetary radii by dividing each 

measured eclipse depth (not including the dilution correction described in Sec. 3.4) by the 

ratio of planetary to stellar disk areas, and we multiply the result by 100 to put the 

numbers on a convenient scale. These scaled eclipse depths are shown at 3.6- and 4.5 µm 

in Figure 10. As expected, both sets of eclipse depths correlate with equilibrium 

temperature, albeit not a purely linear relation (the exact shape of the relation is 

unimportant for our immediate purpose). 

Interestingly, the GC eclipse depths yield virtually the same correlation on Figure 

10, with the same scatter, as do our adopted eclipse depths. This shows that we are not 

introducing a source of significant non-uniformity when choosing from among four 

different sets of photometry, but neither are we significantly improving the results. To 

investigate further, we calculated the linear regression relation between the GC depths 

and our adopted depths. A Bayesian linear regression (see below) with the adopted depths 

as Y and GC depths as X yields a slope of 1.0012±0.018, with a tight relation (not 

illustrated). The scatter from that relation is virtually the same (close to 220 ppm) in each 

coordinate, indicating that the two sets of eclipse depths have approximately the same 

uniformity. We conclude that our procedure of choosing among four alternate sets of 

photometry does not degrade the uniformity of our results, but neither does it improve it 

significantly. Given that different data sets can have potentially very different 
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characteristics, we consider it prudent to use our adopted depths in our analyses reported 

below, but we also check the results using the GC depths. Finally, we also have a third set 

of eclipse depths, obtained as the centroid of the posterior distribution for eclipse depth, 

rather than the specific value selected using our Allan deviation slope criterion. Those 

posterior distribution (PD) depths are very close to our adopted values, as can be seen by 

comparing the vertical lines to the posterior distributions on the top left panels of Figure 

4 and Figure 5. 

Finally, we examine how our eclipse depths correlate with values published in the 

peer-reviewed literature. We make this comparison for seven planets at 3.6 µm and eight 

planets at 4.5 µm. These planets and their previous eclipses are: HAT-P-13b observed by 

both Hardy et al. (2017) and Buhler et al. (2016), KELT-2b (Piskorz et al. 2018), WASP-

12b (Stevenson et al. 2014), WASP-14b (Wong et al. 2015), WASP-19b (Wong et al. 

2016), and WASP-43b (Stevenson et al. 2017). At 4.5 µm, we added WASP-62b 

(Kilpatrick et al. 2017). Details of our comparisons for some of these cases are discussed 

under the notes for individual planets in the Appendix. Although we have analyzed 

WASP-103b (Kreidberg et al. 2018), we omit it from our comparison, for the reason 

discussed in the notes for that planet. 

Figure 11 shows the comparisons between our eclipse depths and published 

values at both wavelengths. Taking the published values as the independent variable (x), 

and our values as the dependent variable (y), we calculate the slope and zero-point of a 

linear relation, using the Bayesian regression method described by Kelly (2007), and 

accounting for errors in both x and y. The solution also yields the error in the slope, from 

the posterior distribution of an MCMC sampling (Kelly 2007). A main result of this 



  17 

paper is a systematic trend in exoplanetary brightness temperatures as a function of 

equilibrium temperature (Section 7.3). Since planets with the highest equilibrium 

temperatures tend to have the greatest eclipse depths, we want to verify that our main 

result will not be contaminated by a systematic error that trends with eclipse depth. 

Comparing to previously published results, we expect to find slopes near unity, and small 

zero-point constants (although the exact value of the zero-point is unimportant). The 

Bayesian regressions yield a slope of 1.03±0.08 and 0.91±0.07 at 3.6- and 4.5 µm, 

respectively. Thus, the slopes of the relations are consistent with unity, to within the 

errors (0.4σ and 1.3σ), and we conclude that our eclipse depths do not deviate 

systematically from previous work. 

 

3.4 Dilution Corrections 

 Our photometry is normalized to unity during eclipse. When a stellar companion 

is present, that normalization can include contaminating light from the companion, thus 

requiring a dilution correction applied to the measured eclipse depths. We identify 

systems needing dilution correction by inspecting the Spitzer images themselves, and by 

consulting results from high resolution imaging (Ngo et al. 2015, 2016; Wollert et al. 

2015; Wollert & Brandner 2015; Evans et al. 2018). For systems with identified 

companions, we multiply our fitted eclipse depths times a dilution correction factor fd 

given as: 

𝑓# = 1 +	𝑓(𝑟(, 

where fs is the fraction of the light from the companion star that is scattered or diffracted 

into the photometric aperture centered on the target star, and rs is the ratio of the total 
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brightness of the companion star to the total brightness of the target star in a given Spitzer 

band. Multiplying our fitted eclipse depth times fd yields the true astrophysical eclipse 

depth. Twelve of the systems we analyze have stellar companions that are sufficiently 

bright and close that fd significantly exceeds unity. Those twelve systems are listed in 

Table 4, with our calculated fd factors. 

The twelve systems listed in Table 4 can be divided into two groups. First, there 

are WASP-12, -49, -76, -103, HAT-P-33, and KELT-2, whose stellar companions are 

entirely contained in the photometric aperture used for our Spitzer photometry ( fs = 1). 

The remainder of the Table 4 systems have companions that contribute only a fraction of 

their light to our photometric aperture ( fs < 1). For this second group, we determined fs 

by placing an aperture at a position adjacent to the target star, choosing the location to be 

symmetrically opposite the contaminating star. For example, if the contaminating star is 4 

pixels below the target star, we place our aperture 4 pixels above the target star. Our 

assumption is that the point-spread-function for the target star and the companion are the 

same, because they are both very close to the center of Spitzer’s field of view. In that 

case, the fraction of target light scattered or diffracted into our symmetric aperture will be 

the same as the fraction of companion light scattered or diffracted into the target aperture. 

Also, the symmetric aperture is sufficiently distant from the companion star to be 

unaffected by light from the companion. We choose the symmetric aperture to have the 

same size as the target aperture. For cases where we use a variable-radius aperture on the 

target star, we use a symmetric aperture having a constant radius closest in size to the 

median value of the variable aperture used for the target. From the time series 

photometry, we determine the median value of the flux in the symmetric aperture, after 



  19 

subtracting a background value, and we divide that by the median background-subtracted 

flux measured for the target star, and the ratio of those fluxes is fs. In the cases where the 

companion star is spatially separated from the tar- get in the Spitzer images, we calculate 

rs by fitting 2-D Gaussian functions to both stars and calculate rs as the ratio of the areas 

under those Gaussians. 

The procedure described above does not require independent measurements of the 

spectral type or magnitude difference between the target and companion star. Instead, we 

measure rs directly from the Spitzer data. However, for WASP-12, -49, -76, -103, HAT-

P-33, and KELT-2, the companion stars are too blended with the target to make that 

direct measurement, and for HAT-P-30 the blend is also problematic. In those cases, we 

estimate rs in the Spitzer bands based on the difference in K-magnitudes, and the spectral 

types (effective temperatures) given by various sources (see the Appendix). From those 

magnitudes and effective temperatures, we calculate the flux ratio in the Spitzer 

bandpasses by interpolating among values output by the STAR-PET1 online calculator. 

In addition to the correction factors listed in Table 4, WASP-49 and WASP-121 

have other stars at 9 and 7 arcsec distant, respectively, (Lendl et al. 2012; Delrez et al. 

2016), Those companions are too faint and too distant in sky separation to significantly 

contaminate our Spitzer observations, and no dilution correction is required. 

Our dilution correction factors listed in Table 4 have not been applied to the ’as-

measured’ eclipse depths listed in Table 1. However, they have been applied before we 

use the Table 1 values in our subsequent analyses. 

  
 

1 http://ssc.spitzer.caltech.edu/warmmission/propkit/pet/starpet/ 
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Figure 1. Spitzer transits of KELT-7b. The top panel shows the fit to the data, that are 
here binned so that 50 points span the range of the data, for clarity and consistency of the 
illustration. (Our fits were carried out using an alternative binning selected by our code). 
The lower panel shows the posterior distributions for the central phase; note that they are 
significantly offset from the predicted phase of zero, but the two Spitzer wavelengths are 
in agreement to within the errors. The vertical lines mark the phase of the best fits 
selected by our MCMC code, see Section 3.2. For this plot, we use the ephemeris given 
in the discovery paper by Bieryla et al. (2015); see Table 2 for transit times and our 
updated ephemeris. 
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Figure 2. Spitzer transits of WASP-74b. The top panel shows the fit to the data, which 
are binned so that 50 points span the range of the data for clarity and consistency of the 
illustration. (Our fits were carried out using an alternative binning selected by our code). 
The lower panel shows the posterior distributions for the central phase; note that they are 
significantly offset from the predicted phase of zero, but the two Spitzer wavelengths are 
in agreement to within the errors. The vertical lines mark the phase of the best fits 
selected by our MCMC code, see Section 3.2. For this plot, we use the ephemeris given 
in the discovery paper by Hellier et al. (2015); see Table 2 for transit times and our 
updated ephemeris. 
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Figure 3. Spitzer transits of WASP-62b. The top panel shows the fit to the data, that are 
here binned so that 50 points span the range of the data, for clarity and consistency of the 
illustration. (Our fits were carried out using an alternative binning selected by our code). 
The lower panel shows the posterior distributions for the central phase; note that they are 
significantly offset from the predicted phase of zero, but the two Spitzer wavelengths are 
in agreement to within the errors. The vertical lines mark the phase of the best fits 
selected by our MCMC code, see Section 3.2. For this plot, we use the ephemeris given 
in the discovery paper by Hellier et al. (2012); see Table 2 for transit times and our 
updated ephemeris.  
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Figure 4. Top panel illustrates the posterior distributions for 3.6 µm eclipse depth and 
central phase for WASP-76b. The dashed line (nearly coincident with the solid line) 
shows nearly identical distributions from duplicate Markov chains with different starting 
seeds. The vertical lines are the best-fit values chosen by our code, based on minimizing 
the scatter in the Allan deviation relation. The three lower panels are the posterior 
distributions for the three brightest pixels in the PLD solutions, versus the distribution of 
eclipse depth and central phase. The contours are point densities of 0.01, 0.1, and 0.9 of 
the maximum density. In all cases, the depth and phase are uncorrelated with the pixel 
coefficients. 
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Figure 5. Top panel illustrates the posterior distributions for 4.5 µm eclipse depth and 
central phase for WASP-131b. The dashed line (nearly coincident with the solid line) 
shows nearly identical distributions from duplicate Markov chains with different starting 
seeds. The vertical lines are the best-fit values chosen by our code, based on minimizing 
the scatter in the Allan deviation relation. The three lower panel are the posterior 
distributions for the three brightest pixels in the PLD solutions, versus the distribution of 
eclipse depth and central phase. The contours are point densities of 0.01, 0.1, and 0.9 of 
the maximum density. In all cases, the depth and phase are uncorrelated with the pixel 
coefficients. 
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Figure 6. Posterior distributions of the temporal ramp coefficients for WASP-76b at 3.6 
µm, versus the distributions of eclipse depth (left column) and central phase (right 
column). The top row is the coefficient of t (t=time), and the bottom row is the coefficient 
of t2. The contours are point densities of 0.01, 0.1, and 0.9 of the maximum density. 
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Figure 7. Posterior distributions of the temporal ramp coefficient of t (=time) for WASP-
131b, versus the distributions of eclipse depth (left) and central phase (right). (Our 
WASP-131b eclipse used only a linear, not a quadratic ramp). 
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Figure 8. The upper two panels (read upper axis scale) show histograms of the ratio of 
the unbinned scatter in our residuals to the photon noise for all eclipse depth solutions 
(each planet contributes one point to each histogram). Alternate colors for adjacent 
histogram bins are used solely for visual clarity. The bottom panel (read lower axis scale) 
shows the ratio of the scatter to the photon noise on the binned time scale used for each 
eclipse solution, versus the bin time for that solutions. Point colors identify the 
wavelength, as per the two upper panels. 
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Figure 9. Histograms of the Allan deviation slope for our collection of eclipse depth 
solutions. Alternate colors for adjacent histogram bins are used solely for visual clarity. 
The top panel shows the distribution at 3.6 µm, and the bottom panel at 4.5 µm. 
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Figure 10. Scaled eclipse depths (see text) versus the equilibrium temperature of each 
planet. The purpose of this comparison is to check the consistency between our adopted 
eclipse depths (solid points with error bars), and the eclipse depths derived always using 
Gaussian centroiding and constant-radius photometric apertures (GC depths). The GC 
depths are plotted as open squares without error bars. Both sets of eclipse depths are in 
excellent agreement. 
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Figure 11. Comparison between our derived eclipse depths and previously published 
results, for seven planets at 3.6 µm, and adding WASP-62b at 4.5 µm. The red lines 
represent slopes of unity, i.e. perfect agreement. The solid lines in the same color as the 
points are the results of Bayesian linear regressions, considering errors in both 
coordinates. The dotted lines are the 3σ limits on the regression lines. At both 
wavelengths, the regression line agrees with a slope of unity to better than 2σ, see text. 
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CHAPTER 4 
RESULTS FOR ORBITAL PHASE 

Previous secondary eclipse observations have shown that the majority of 

transiting hot Jupiters have orbital eccentricities close to zero due to tidal circularization 

(e.g.,  Baskin  et al. 2013; Todorov et al. 2013; Beatty et al. 2014; Deming et al. 2015; 

Garhart et al. 2018). Our results are consistent with that trend. The times and orbital 

phases of our observed eclipses are listed in Table 5. The top panel of Figure 12 shows 

our measured central phase for all of the eclipses we measure, corrected for light travel 

time across the orbit (a small effect, about 0.0002 in phase), and plotted versus the orbital 

period of the planet. For all planets, we add the precision of their orbital ephemerides in 

quadrature with the observed phase error to produce the error bars for phase on the figure. 

Two planets on Figure 12 are already known to have eccentric orbits: WASP-14b (Blecic 

et al. 2013; Wong et al. 2015), and HAT-P-13 (Buhler et al. 2016; Hardy et al. 2017). 

WASP-14b is labeled on the top panel of the figure. 

The bottom panel of Figure 12 plots the deviation from phase 0.5 divided by the precision 

of the measurement (including ephemeris error), again versus the orbital period. The 

scale of the ordinate is expanded, so that WASP-14b is now beyond the limits of the plot. 

HAT-P-13b is labeled on this bottom panel, and also WASP-62b is labeled and has a 

clearly detected orbital eccentricity. Spitzer eclipse phases for WASP-62b agree very well 

between the two independent measurements, and the high statistical significance of the 

deviations (> 6σ) makes the planet very obvious on the bottom panel of Figure 12. The 

two measured phase values, corrected for light travel time, are 0.50406±0.00052 and 

0.50375±0.00053 at 3.6- and 4.5 µm respectively. The quoted errors again include 
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imprecision in our improved ephemeris. Weighting the phase in each band by the in- 

verse of its variance yields an average orbital phase of 0.50391±0.00037; the 

corresponding value of e cos ω is 0.00614±0.00058.   The orbital eccentricity of this 

planet   is especially important because it is in the continuous viewing zone for JWST. 

The eclipse occurs about 23 minutes later than phase 0.5, and that could potentially cause 

a significant degradation in JWST spectroscopy if the eclipse were incorrectly assumed to 

occur exactly at phase 0.5. 

We have investigated whether the secondary eclipse phase deviates systematically 

from phase 0.5 at longer orbital periods, due to incomplete tidal circularization at greater 

orbital distances. Figure 13 shows the absolute deviation of the eclipse phase from 0.5, 

versus orbital period. A least-squares fit accounting for the errors in phase yields a slope 

of 0.00042±0.000072, if we ignore WASP-14b that would otherwise dominate the fit. On 

that basis, the eclipse phase (on average) deviates from 0.5 by 0.00042 for each 1-day in- 

crease in orbital period. If we also ignore WASP-62b and HAT-P-13b, the fitted slope 

becomes 0.00023±0.000078. However, those three planets are unambiguous examples of 

eccentric orbits, so ignoring them is ignoring the effect that we seek. Given that the fitted 

slope is still 3σ above zero even when the obvious eccentric planets are ignored, we 

conclude there is evidence for an increasing lack of tidal circularization, increasing with 

orbital period in the range of our sample (0.8 to 5.5 days). However, this conclusion is 

sensitive to imprecision in orbital ephemerides, so this issue should be re-visited when 

more precise transit times and orbital periods become available (i.e., adding TESS data). 

Figure 14 shows distributions of the phase offset from 0.5 for most planets, 

normalized by the error of each measurement, i.e., a histogram of the values plotted in the 
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lower panel of Figure 12. When constructing the histograms, we omitted WASP-14, 

WASP-62 and HAT-P-13, so the histograms rep- resent only planets whose potential 

orbital eccentricity is not detected. The green curves are the result of fitting Gaussian 

functions to the distributions defined by these histograms. (Fitting Gaussians to these 

binned distributions is a good way of measuring the dispersion in the core of the 

distribution, with minimal sensitivity to outliers.) If all planets represented in the 

distribution have tidally circularized orbits with zero eccentricity, and if our errors are 

correctly estimated, then the fitted Gaussians should be centered at zero, with standard 

deviations of unity. The fitted Gaussian functions come close to that expectation but 

differ slightly. The standard deviations of the Gaussians at 3.6- and 4.5 µm are 1.21 and 

1.19, respectively. Given that those values exceed unity and are consistent between the 

two Spitzer bands, and given the evidence discussed above for eccentricity increasing 

with orbital period, we conclude that there may be a small amount of undetected orbital 

eccentricity in our sample of planets. 

We are also interested in whether the average phase deviates from 0.5 

systematically in one direction, such as the “uniform time offset” effect described by 

Williams et al. (2006). Although the binned histograms in Figure 14 are good visual 

representations, and a good way of evaluating the scatter in the data compared to our 

estimated errors, they are not optimum for measuring potential systematic displacement. 

The binning process slightly distorts the distributions (Kipping 2010), and they 

effectively weight each measured phase by the inverse of its standard deviation, whereas 

correct weighting is proportional to the inverse of the variance (variance = standard 

deviation squared).  So, we also use the original phase data (top panel of Figure 12), and 
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we compute the average phase, correcting for light travel time and weighting each 

measurement by the inverse of its variance. We again omit WASP-14, WASP-62, and 

HAT-P-13. We find average eclipse phases of 0.499984±0.000168 and 

0.500357±0.000176 at 3.6- and 4.5 µm, respectively.  If we combine the bands, we derive 

a grand average phase of 0.500161±0.000122. Note that even with slightly non-zero 

eccentricities, the average phase should indeed be very close to 0.5, because ω is 

effectively random. 

Only with the uniform time offset effect described by Williams et al. (2006) 

would we expect to detect an average difference from phase 0.5. However, we find no 

statistically significant difference. Considering the average orbital period of our planet 

sample (~2.3 days), our precision on the grand average phase corresponds to about 24 

seconds. That is comparable to the uniform time offset values calculated by Williams et 

al. (2006) and eliminates some of their largest modeled offsets. Our precision for this 

aggregate sample of planets is only modestly poorer than the offset actually detected (33 

seconds) for the high signal-to-noise planet HD 189733b by Agol et al. (2010). With a 

larger sample of secondary eclipses (by a factor of 4), and with better ephemerides (less 

ephemeris error), it is reasonable to project that the average time offset value would be 

measurable using Spitzer eclipses in a more extensive statistical study. 
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Figure 12.   The top panel plots the measured orbital phase of our secondary eclipses, 
corrected for light travel time across the orbit, versus the orbital period of each planet.  
Error bars include our measurement error and also imprecision in the orbital 
ephemerides. Red points are 3.6μm and blue are 4.5μm.  WASP-14b (labeled) is known 
to have an eccentric orbit, so the central phase deviates from0.5. The lower panel plots 
the phase minus 0.5, divided by the error on the phase. The scale of the ordinate is 
expanded, so WASP-14 is off-scale, and HAT-P-13 and WASP-62 are labeled (larger 
points). Note the prominent deviation of WASP-62b due to a slightly eccentric orbit. 
Horizontal dashed lines mark ±3s. 
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Figure 13. Absolute deviation of the secondary eclipse phase from 0.5, versus orbital 
period in days. The green line is a least-squares fit, ignoring WASP-14b (that is off 
scale). Dotted lines indicate the 1σ error on the slope. Planets with well-established 
eccentric orbits (HAT-13b and WASP-62b) are plotted with open squares to distinguish 
them, and without error bars to minimize confusion. 
  



  37 

 
 

Figure 14. Histograms of the deviation of our measured phase from 0.5, normalized by 
the error bar (i.e., histograms of the points on the lower panel of Figure 12. Alternate 
colors for adjacent histogram bins are used solely for visual clarity. We omit eccentric 
planets (WASP-14, WASP-62 and HAT-P-13). The green curves are best-fit Gaussians 
(see text). 
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CHAPTER 5 
CONVERTING ECLIPSE DEPTHS TO BRIGHTNESS TEMPERATURE 

The depth of a secondary eclipse is the ratio of flux from the planet to the flux 

from the star. We convert eclipse depths to a brightness temperature for the planet’s 

emission in both Spitzer bands. Before doing this, we correct the ‘as observed’ depths 

(Table 1) for dilution by companion stars using the factors in Table 4. We then divide the 

corrected eclipse depth by the ratio of solid angles (planet-to-star, based on their radii). 

That quotient is the disk-averaged intensity of an equivalent blackbody for the planet, 

divided by the disk- averaged intensity of the star. We represent the host stars using 

ATLAS model atmospheres (Kurucz 1979), rounding the stellar surface gravity to the 

nearest 0.5 in log(g), but interpolating in the model grid to the exact stellar temperature 

(usually as reported in the discovery paper of each planet). For both planet and star, we 

must account for the Spitzer band- pass functions. We multiply those functions times the 

stellar- disk-averaged intensity from the ATLAS models and integrate over wavelength. 

We do the same for a series of Planck functions whose temperatures bracket the 

temperature of the planet and take the ratio to the bandpass-integrated stellar spectrum. 

We then interpolate in that grid of bandpass- integrated intensity ratios to find the 

equivalent blackbody temperature that matches the ratio calculated from the eclipse 

depth. That temperature is the brightness temperature of the planet in that particular 

Spitzer band. As for error bars, the precision of the planetary brightness temperature is 

dominated by the fractional error in the eclipse depth, so we propagate the eclipse depths 

error bars to the brightness temperatures. Our observed brightness temperatures and 

errors are listed in Table 6, together with equilibrium temperatures for the planets. 
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In addition to the observed planets, we also calculate brightness temperatures for 

models of the planets (see Section 7). We multiply the modeled spectra over the Spitzer 

bandpass functions, integrate over wavelength, and interpolate in a grid of blackbodies, 

just as for the observed planets. We also check the calculation by replacing the planetary 

modeled spectra with blackbodies and verifying that the retrieved brightness temperature 

closely equals the temperature of the blackbody substitute (difference less than 1 Kelvin). 
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CHAPTER 6 

IMPLICATIONS FOR HEAT RE-DISTRIBUTION 

Secondary eclipses can be used to make statistical inferences concerning 

longitudinal heat redistribution on hot Jupiters (Cowan and Agol 2011). Given a value for 

the Bond albedo, redistribution of heat from stellar irradiance determines the day-side 

temperature, that can be inferred from the Spitzer eclipse depth. The hottest planets tend 

to have low albedos because they are too hot for significant cloud condensation 

(Sudarsky et al. 2000). To the extent that their albedos approach zero, their eclipse depths 

are therefore indicative of the degree of longitudinal heat redistribution. Although 

infrared phase curve observations are the gold standard for measuring longitudinal heat 

redistribution, it is easier to observe a large sample of infrared eclipses than the same 

number of phase curves. Hence, eclipses can usefully speak to the statistical properties of 

heat redistribution, especially in the strong irradiance limit. We calculate the observed 

day side temperature for each planet in our sample, using an average of the 3.6- and 4.5 

µm brightness temperatures, weighted by the inverse square of their errors. (For planets 

without 3.6 µm eclipses, we use the 4.5 µm brightness temperature.) 

Figure 15 uses the observed day side temperatures for the 36 hot Jupiters analyzed 

here in a replication of Figure 7 from Cowan and Agol (2011). The X-axis is the 

calculated maximum day side temperature, assuming zero albedo and no redistribution. 

The Y-axis is the observed day side temperature, normalized as described by Cowan and 

Agol (2011). Our version of this figure has less scatter than the original from Cowan and 

Agol (2011). (Although our sample is not identical to Cowan and Agol 2011, they did 

predict that reduced scatter would be possible with a uniform analysis.) Notice that no 
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planet lies in the unphysical region above the solid line by more than 1.4σ. The figure 

suggests a division into two regimes. The hottest planets (Tmax >  2200K) all  lie above 

the dotted red line that indicates uniform redistribution. About 35% of planets whose 

calculated maximum temperature falls between 1700K and 2200K require non-zero 

albedos (below the dotted red line), even if their redistribution of stellar irradiance is 

uniform over the entire planet. We interpret this division as being due to a combination of 

factors, including the onset of cloud condensation at the cooler temperatures (increasing 

the albedo), as well as the hydrodynamic properties of the circulation, which inhibit 

efficient redistribution at the highest levels of irradiance (Komacek et al. 2017; 

Parmentier & Crossfield 2018a). The planets hotter than Tmax ~ 2200K are distributed 

near the dashed red line corresponding to zero albedo and uniform re- distribution only 

on the day-side hemisphere. While some of these planets may have Bond albedos 

significantly exceeding zero (e.g., WASP-12b, Schwartz et al. 2017), our eclipse data do 

not require that because we do not find any of the hottest planets lying below the dotted 

line on Figure 15. Figure 16 shows a histogram of the Td/T0 values for all 36 planets, 

illustrating that the peak of the distribution is very close to the dashed line. We note that 

common practice in the community is to estimate the temperature of hot Jupiters (e.g., in 

discovery papers) by adopting zero albedo and uniform redistribution. Figure 15 shows 

that uniform day-side redistribution is more accurate for the hottest planets. 

Six planets in our sample (WASP-12, -14, -18, -19, -43, and -103) have published 

Spitzer phase curves. Those planets are plotted in magenta on Figure 15 (but using our 

eclipse results), and they are typical of the hotter group. Therefore, we conclude that the 

Spitzer phase curve results for the hottest planets represent an unbiased sample. 
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Figure 15. Figure 7 of Cowan and Agol (2011) replotted with the 36 hot Jupiters 
analyzed in this paper. WASP-14b, -19b, and -103b are represented by two eclipses each 
(as per Table 1), so there are 39 total points. The x-axis is the maximum expected day 
side temperature when there is no redistribution of heat, and the y-axis is Td/T0 which is a 
dimensionless measure of the observed day side temperature. Just as in their original 
figure, the solid line shows zero recirculation, the dashed line is a uniform day-
hemisphere, and the dotted line is a uniform planet. An albedo of zero was used to 
calculate the red lines. Planets with published Spitzer phase curves are plotted in magenta 
but using values from our eclipse results. 
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Figure 16. Histogram of Td/T0 values from the Y-axis of Figure 15. Alternate colors for 
adjacent histogram bins are used solely for visual clarity. As in Figure 15, the solid red 
line shows zero heat redistribution, the dashed line is a uniform day-hemisphere, and the 
dotted red line is a uniform planet.   The median value of Td/T0 is 0.79 for our sample, 
very close to uniform day-side hemispheres. An albedo of zero was used to calculate the 
red lines. Planets falling left of the dotted red line must have albedos significantly greater 
than zero. 
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CHAPTER 7 
IMPLICATIONS FOR EMERGENT SPECTRA AND ATMOSPHERES  

We now discuss the implications of our secondary eclipse depths for the emergent 

spectra of hot Jupiters, and for physical conditions in their atmospheres. As prelude to the 

results, we first explain the rationale for a statistical approach (Sec. 7.1), and we describe 

two sets of modeled spectra that we use in this study (Sec. 7.2). Our results for the planets 

(Secs. 7.3 to 7.5) differ from expectations based on classic 1-D model atmospheres, and 

in Sec. 7.6 we discuss that difference in terms of the atmospheric structure of the planets. 

 

7.1 A Statistical Approach 

The earliest results for Spitzer’s secondary eclipses of hot Jupiters were 

interpreted in terms of molecular absorptions (e.g., Madhusudhan et al. 2011). Hansen et 

al. (2014) questioned whether molecular features can be reliably detected using Spitzer’s 

photometry, and their view is now generally accepted (e.g., Burrows 2014), especially 

using data from Warm Spitzer that provides only the 3.6- and 4.5 µm bands. Figure 17 

shows an example of fitting eclipse depths in those two channels to a blackbody planet. 

This fit yields a good estimate for the day side temperature of the planet. However, due to 

modest signal-to-noise and the lack of molecular band shape information, it is not 

typically possible to confidently associate molecular features with deviations from the 

best-fit blackbody. 

Rather than attempting to identify molecular absorptions in individual planets, we 

adopt a statistical approach wherein we look for trends in our total sample. Pioneering 

work of this type was reported by Triaud (2014a); Triaud et al. (2014b); Beatty et al. 
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(2014, 2018), and also Kammer et al. (2015), Adams & Laughlin (2018), and Wallack et 

al. (2018). A statistical approach to transit (not eclipse) spectroscopy was elucidated by 

Sing et al. (2016). Our statistical approach differs somewhat from past work, as we 

explain in Sec. 7.3. 

 

7.2 Two Sets of Models 

We use two sets of well documented model atmospheres for the planets, from 

Adam Burrows (Burrows et al. 1997, 2006) and Jonathan Fortney (Fortney et al. 2005, 

2008). Rather than calculating individual models for each of the 36 hot Jupiters in our 

sample, we model the planets using ’tracks’ wherein the stellar insolation varies in 

magnitude. We adopt stellar and planetary mass and radius based on the median values of 

our sample, thereby making an average hot Jupiter orbiting an average star. We vary the 

planetary temperature by placing that average planet at different orbital distances, and we 

use solar metallicity cloudless atmospheres for all models. The Burrows and Fortney 

codes use different treatments of heat redistribution: Fortney adopts a uniform 

redistribution over both day and night hemispheres, whereas Burrows redistributes 

approximately over the day hemisphere, and partially into the night hemisphere. The 

consequence is that the Fortney models are cooler than the Burrows models at a given 

orbital distance. But a Fortney model at an orbital distance of a/√2 should produce a 

comparable spectrum to a Burrows model orbiting at distance a; in particular it will have 

a very similar day side effective temperature (total energy re-radiated). That comparison 

is shown in Figure 18. 



  46 

The two spectra in Figure 18 indeed have close overall flux levels, and spectral 

features that correspond in relative strength and shape versus wavelength, but not in total 

amplitude. The Burrows models have overall deeper absorption features than the Fortney 

models at the same effective temperature. The reason for that difference is not obvious, 

due to the complexity of the models. A myriad of possible differences can come into 

play, and fully exploring the underlying physics is beyond the scope of this paper. As one 

example, the different treatments of longitudinal heat redistribution can also affect the 

vertical temperature structure, and different temperature structures as a function of optical 

depth will pro- duce different emergent spectra. Fortunately, our principal result is not 

affected by the differences between the two sets of models, as we discuss in Sec. 7.3. 

Also, we find that the two sets of models produce tracks that conveniently bracket the 

observed locus of the planets. We thereby use the models to gauge the average magnitude 

of absorption features in the exoplanetary spectra (Sec. 7.3). 

We also utilize both Burrows and Fortney models that feature temperature 

inversions. The Burrows inverted models were computed by adding extra absorbing 

opacity between 0.003 and 0.6 bars and preserving flux-constancy.  The inverted Fortney 

models simply specified temperature to in- crease linearly with decreasing log of pressure 

below one bar (dT /d log P = -160K). Those models are not flux-constant, but we use 

them only to explore how the inverted profiles affect the relative brightness temperature 

of the planets in the two Spitzer bands (Sec. 7.6). 
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7.3 Deviations from Blackbody Spectra 

 Several statistical treatments have examined Spitzer colors of hot Jupiters versus 

their brightness in a particular band (i.e, an HR-diagram analogy). That approach is 

particularly useful when the luminosity of the planet is produced by an internal source. 

But hot Jupiters primarily re-radiate external energy from their star, and their emergent 

spectrum is determined to first order by the level of irradiance. In this case we find it 

useful to relate the planetary brightness temperatures in the two Spitzer bands, rather than 

to correlate color with total brightness. In other words, we want to study the shape of the 

emergent spectrum, not the total luminosity of the planet. 

Figure 19 shows the brightness temperature of our planets at 4.5 µm versus their 

3.6 µm brightness temperature. The model tracks from Burrows and Fortney are 

included, and the relation for purely blackbody planets (T4.5 = T3.6) is shown as a dotted 

blue line. In general, the Fortney model track lies at the upper envelope of the observed 

planets, and the Burrows track lies at the lower envelope. The 4.5 µm Spitzer band 

contains strong opacity from both water vapor and car- bon monoxide, that is especially 

manifest in the Burrows spectra compared to Fortney (see Figure 18). That causes the 

Burrows models to have a lower 4.5 µm brightness temperature than Fortney, and thereby 

the Burrows track lies lower. The 4.5 µm band is thus indicative of overall stronger 

absorptions in the Burrows models versus Fortney (as per Figure 18), and we find that 

difference to be very useful as a diagnostic of the spectra of the planets. The observed 

planets lie between the two model tracks, indicating that the amplitudes of their spectral 

absorptions (especially at 4.5 µm) are intermediate between the Burrows and Fortney 
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models. That is an interesting inference, because to date there is little in- formation on the 

magnitude of spectral features that applies to a comparably large sample of hot Jupiters. 

Although the planets are close to the blackbody line on Figure 19, they differ 

from blackbodies in a subtle but significant way: at low temperature the planets tend to 

lie below the blackbody line (they become more “Burrows-like”), and at high 

temperatures they lie at or above the blackbody line (more “Fortney-like”). Fitting a 

straight line to the locus of the observed planets (see below) yields a slope greater than 

unity. There have been previous hints of this effect. Kammer et al. (2015) and Wallack et 

al. (2018) found that cool Jupiters (T < 1200K) tend to have lower brightness 

temperatures at 4.5 µm than at 3.6 µm (see below). Beatty et al. (2018) examined 

brightness temperatures in the two Spitzer bands as a function of equilibrium temperature 

for hot Jupiters with phase curves, and their data suggest (but do not prove) a greater 

slope at 4.5- versus 3.6 µm, consistent with our Figure 19. Beyond hot Jupiters, it has 

long been known that the exo-Neptune GJ 436b (T 800K) exhibits a puzzling flux excess 

at 3.6 µm, that was attributed to disequilibrium chemistry (Stevenson et al. 2010). We 

hypothesize that Figure 19 reflects a pervasive and general effect that occurs over a large 

range of equilibrium temperature. We first discuss the statistical significance of the slope 

in Figure 19, then we discuss possible interpretations. 

 

7.4 Statistical Significance of the Slope 

We are especially interested in the astrophysical implications of a slope that is 

greater than unity on Figure 19 (as opposed to a constant offset in either coordinate). We 

must first investigate whether that slope deviates from unity (i.e., from blackbody 
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planets) to a statistically significant degree. We implement the Bayesian regression 

method (Kelly 2007), accounting for errors in both X and Y, and examine the posterior 

distribution of the slope. That distribution is shown in the upper panel of Figure 20, from 

50,000 Metropolis-Hastings samples. The best fitting line has a slope of 1.217±0.082, 

deviating from unity at 2.6σ significance. Although that’s a marginal significance, results 

for photometry of exoplanetary atmospheres are seldom much stronger, so this effect 

merits additional investigation. Moreover, the posterior distribution is close to Gaussian, 

and a slope of unity lies in the wing of the distribution, as shown in the upper panel of 

Figure 20. 

One way to gain additional confidence in a non-blackbody slope in the 4.5- versus 

3.6 µm brightness temperature is to add additional planets. Kammer et al. (2015) and 

Wallack et al. (2018) report brightness temperatures in both Spitzer bands for a total of 

ten planets with temperatures less than 1200K (see caption of Figure 19). Our 

observations are focused on hotter planets, so adding cooler planets will increase our 

leverage on the best-fitting slope. Moreover, both Kammer et al. (2015) and Wallack et 

al. (2018) used multiple eclipses to increase the signal-to-noise. Adding those ten planets 

decreases the slope to 1.078 0.040, and decreases the significance to at 2.0σ, and the 

posterior distribution is more narrow, as shown on Figure 20. Although the significance 

has formally decreased, eight of those 10 planets fall below the blackbody line. 

Extrapolating our own sample to the lower brightness temperature regime investigated by 

Kammer et al. (2015) and Wallack et al. (2018) predicted a larger offset below the 

blackbody line, to an unrealistic degree. The addition of the lower temperature planets 

tells us that the slope is not as steep as our own sample suggests. Nevertheless, the fact 
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that the low temperature planets still lie systematically below the blackbody line 

reinforces our belief that the slope does exceed unity, albeit by a smaller amount that is 

more difficult to prove. 

If indeed the 4.5 µm versus 3.6 µm brightness temperature relation has a slope 

that exceeds unity, then the ratio of those brightness temperatures should be an increasing 

function of the equilibrium temperature of the planets, whereas the ratio would be 

constant (slope equal to zero) for blackbody planets. The observed relation (including the 

planets from Kammer et al. 2015 and Wallack et al. 2018) is shown in Figure 21, and a 

Bayesian regression yields a slope of 98 ± 26 parts-per-million per Kelvin. That slope is 

significant at 3.8σ and is obvious on Figure 21. The posterior distribution for the slope is 

shown on the lower panel of Figure 20, and a slope of zero is clearly outside of the 

distribution. For each 1K increase in equilibrium temperature, the ratio of brightness 

temperatures (4.5 to 3.6) increases by 0.01%. Thus, from 800K to 2500K (for example), 

the ratio increases by 0.167, as shown by the red line on Figure 21. We repeated this 

analysis using our set of GC eclipse depths (Section 3.3), and that decreases the slope to 

88 ± 26 ppm per Kelvin, still significant at 3.3σ. As a third possible case, we use our set 

of PD eclipse depths (also described in Section 3.3), and the slope is 99 ± 24 ppm per 

Kelvin, significant at 4.1σ. We conclude that the observed planets robustly deviate from 

the blackbody line - and from both sets of model atmospheres - in the sense that hotter 

planets tend to become more prominent at 4.5 µm relative to 3.6 µm. 

We also investigated whether the Tb(4.5)/Tb(3.6) ratio correlates with stellar host 

temperature, and we find a 2.2σ effect. However, planetary equilibrium temperature is a 

function of stellar temperature, so we would expect some degree of correlation with 
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stellar temperature as a by-product of the correlation with planetary equilibrium 

temperature. The stronger correlation of Tb(4.5)/Tb(3.6) with planetary equilibrium 

temperature indicates that the temperature of the host star per se is not a primary factor. 

 

7.5 A Selection Effect? 

We first consider whether the slope on Figure 21 could be due to a selection 

effect. Eclipses in Spitzer’s 3.6 µm band are harder to detect than at 4.5 µm. If the cooler 

planets have undetectable 3.6 µm brightness temperatures, then the sample will tend to be 

incomplete for cool planets with high brightness temperature ratios (4.5 divided by 3.6). 

That will bias the slope in the direction that we observe. To evaluate whether this is a 

significant effect, we add five planets that are not currently included on Figure 21 

because their eclipses were too weak to measure at 3.6 µm. Those are WASP-75b and -

49b (Figure 22), WASP-67b from Kammer et al. (2015), and HAT-17b and -26b from 

Wallack et al. (2018). For each of those planets, we postulate a 3.6 µm eclipse depth that 

equals twice the error of the fit, a 2σ ‘detection’. Using a hypothetically minimal 

detection is conservative in this context, because it will maximize the brightness 

temperature ratio, while remaining consistent with the fact that the eclipses are not 

detected. Adding those five planets, the significance of the slope on Figure 21 indeed 

decreases, but only from 3.8σ to 3.6σ. We conclude that a selection effect is not 

sufficiently strong to produce the slope that we observe, and we turn to possible 

astrophysical explanations. 
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7.6 Atmospheric Temperature Structure 

Since the emergent flux from exoplanetary atmospheres is directly related to the 

atmospheric source function (= the Planck function in LTE), it is virtually axiomatic that 

the slope we observe is related to the temperature structure of the atmospheres. A 

prominent type of perturbation to exoplanetary atmospheric structure is the possible 

presence of temperature inversions. Inversions have a long and popular history in 

exoplanetary science (e.g., Hubeny et al. 2003; Knutson et al. 2008, 2009; Nymeyer et al. 

2011; Haynes et al. 2015; Sheppard et al. 2017; Arcangeli et al. 2018; Kreidberg et al. 

2018; Mansfield et al. 2018). Spitzer’s 4.5 µm band is formed high in the atmosphere 

(Burrows et al. 2007), so an atmospheric temperature rising with height can in principle 

produce an excess brightness temperature at 4.5 µm relative to 3.6 µm. Strong stellar 

irradiance provides the energy to maintain inversions, so a ratio of brightness 

temperatures (4.5 to 3.6) that increases with equilibrium temperature (as we observe) is at 

least qualitatively consistent with temperature inversions. Nevertheless, we do not 

conclude that temperature inversions are the dominant effect that we are observing in 

Figure 21. Instead, we believe that the dominant effect is more subtle and pervasive than 

the temperature inversion phenomenon, as we now discuss. 

Since Spitzer’s 4.5 µm band contains both strong water vapor opacity, and the 

strong 1-0 band of carbon monoxide, it is indeed sensitive to high altitude temperature 

inversions. Three planets in our sample (WASP-18b, -103b, and -121b) have been 

reported as hosting inversions (Nymeyer et al. 2011; Sheppard et al. 2017; Arcangeli et 

al. 2018; Kreidberg et al. 2018; Evans et al. 2017). Those three planets are highlighted on 

Figure 19, and they tend to lie at the upper envelope with a high 4.5 µm brightness 
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temperature, albeit they are not decisively separated from the remainder of the sample. 

However, the contribution functions of the 3.6- and 4.5 µm bands are often overlapping 

(see Figure 12 of Kreidberg et al. 2018), so temperature inversions will tend to raise both 

the 3.6- and 4.5 µm brightness temperatures. In the case where the inversion extends over 

a broad range of pressure, planets will tend to move along the model track, rather than 

perpendicular to it. The inverted Fortney model track illustrates this point: at high 

temperature it merges with the track for non-inverted models, but a given planet lies at a 

lower or higher position on the track depending on whether the temperature gradient is 

normal or inverted. In order to move planets above and away from the model track 

(significantly brighter at 4.5 µm), it is necessary to ’fine tune’ the temperature inversion 

to affect the 4.5 µm contribution function, while minimizing the impact on the 3.6 µm 

contribution function. 

We cannot exclude the possibility that multiple mechanisms are at play when 

accounting for our results. One possibility is Burrows-like strong absorption (see Sec. 

7.3) for planets with equilibrium temperatures below 2000K, coupled with blackbody-

like behavior for the hottest planets due to the water dissociation and chemistry/opacity 

issues discussed by Parmentier et al. (2018b) and Lothringer et al. (2018). Another 

possibility is a metallicity effect that comes into play at low temperature as discussed by 

Kammer et al. (2015), as well as possible temperature inversions for the hottest planets. 

Also, emission in CO due to mass loss (Bell et al. 2018) could increase Tb(4.5) for the 

most strongly irradiated planets. However, we prefer the simplicity of a single hypothesis 

to account for the total effect that we observe. As regards temperature inversions, we do 

not think they play a major role in our results, for several reasons: 1) Inversions have to 
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be fine-tuned to raise planets relative to the model track, 2) the three nominally inverted 

planets on Figure 19 are not significantly separated from the rest of the sample, and 3) 

inversions are unlikely to be sufficiently prevalent to affect the brightness temperature 

ratio over the large range of temperature illustrated on Figure 21. 

We point out that Spitzer’s Tb(4.5) measurement can be a significant factor 

driving retrievals toward an atmospheric temperature inversion (e.g., for WASP-18b, 

Nymeyer et al. 2011; Sheppard et al. 2017). Given a systematic tendency for hotter 

planets to be relatively brighter than the models at 4.5 µm, together with random noise, 

some of the hottest planets may then reach a threshold where the retrieval codes react by 

requiring a temperature inversion for planets at the upper end of the distribution in 

Tb(4.5). Our ‘big picture’ data suggest that the primary difference between the models 

and the real planets is systematic over a large range of temperature, rather than inversions 

in some of the hottest planets. 

We suggest that Figure 21 requires a pervasive difference between the models and 

the real planets, systematically affecting the temperature versus optical depth structure as 

a function of equilibrium temperature. The effect of a vigorous zonal circulation on the 

radial temperature gradient (i.e., 3-D versus 1-D models) is one possibility. In that 

respect, the greater efficiency of heat redistribution on cooler versus hotter planets 

(Figure 15) is potentially an important factor. Other possibilities include systematic 

changes in haze opacity (particle size, composition, and height) as a function of 

equilibrium temperature, and height gradients in the relative mixing ratios of CO and 

water vapor (chemical equilibrium, or not). The physics underlying this systematic trend 

can hopefully be clarified using spectroscopy by JWST. 
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Figure 17.   Example of fitting 3.6- and 4.5 µm eclipse depths to a blackbody planet, 
with an ATLAS model atmosphere to represent the star. The squares with error bars are 
the observed eclipse depths, and the triangles are the values expected from integrating 
models of the planet and star over the Spitzer bandpasses, using the IRAC response 
functions. WASP-64b has an equilibrium temperature of 1674K, assuming zero albedo 
and redistribution uniformly over both the day and night hemispheres. The best-fit 
blackbody has a temperature of 2018K, consistent with less than uniform re- distribution 
(as per Figure 15). The ripples in the best-fit curve are due to spectral structure in the 
modeled stellar spectrum. 
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Figure 18. Comparison of Burrows and Fortney modeled spectra for planetary and stellar 
parameters equal to our average host star, and average planet. Those parameters are Ts =  
6040K, Rs  =  1.4RSun  ,  Rp = 1.4RJ , and Mp = 1.5MJ . The Burrows model lies at an 
orbital distance of 0.025 AU, versus 0.018 AU for the Fortney model. Their day side 
temperatures are closely similar, due to different prescriptions for redistribution of stellar 
irradiance (see text, Sec. 7.2). The Burrows model has stronger spectral features, as 
discussed in Sec. 7.2. The Spitzer band response functions at 3.6- and 4.5 µm are 
included for comparison. 
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Figure 19.  Comparison of brightness temperatures in both Spitzer bands.  Blackbody 
planets would fall along the dotted blue line which has a slope of unity. Tracks of models 
from Burrows and Fortney are shown, and they bracket the observed planets. The 
inverted Fortney track merges with the normal track at high temperature (see text, Sec. 
7.6), and the inverted Burrows track (not illustrated) does also. The observations indicate 
that the planets are close to blackbodies, but with a subtle difference: the slope of the 
best-fit line is statistically greater than a blackbody, and also greater than the slope of the 
model tracks. Cooler planets tend to have lower brightness temperatures at 4.5 µm 
compared to 3.6 µm, whereas hotter planets tend to be brighter at 4.5 µm compared to 3.6 
µm. Brightness temperatures from Kammer et al. (2015) and Wallack et al. (2018) are 
included in order to enhance the comparison for the coolest planets observed in 
secondary eclipse. The planets from Kammer et al. (2015) are HAT-19b, WASP-6b, -
10b, and -39b. The planets added from Wallack et al. (2018) are HAT-12b, -18b, -20b, 
and WASP-8b, -69b, and 80b. See Sec. 7.3 for discussion. 
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Figure 20. Upper panel: posterior distributions of slope from a Bayesian regression, 
expressing 4.5 µm brightness temperature as a linear function of the 3.6 µm brightness 
temperature (see Figure 19). Two regressions are represented, one without the planets 
from Kammer et al. (2015) and Wallack et al. (2018), and one including them (see text). 
In both cases the slope of unity (blackbody planets) lies in the wing of the distributions, 
at or greater than 2σ. Lower panel: posterior distribution of the slope of the ratio of 4.5- 
to 3.6 µm brightness temperature versus calculated equilibrium temperature. In this case 
a slope of zero (blackbody planets) lies in the far wing of the distribution, close to 4σ. 
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Figure 21. Ratio of the 4.5- to 3.6 µm brightness temperature for our planets, plus planets 
from Kammer et al. (2015) and Wallack et al. (2018). The brightness temperature ratio is 
shown versus exoplanetary equilibrium temperature. The ratio would be constant at unity 
for blackbody planets (dashed line), but a Bayesian regression (Kelly 2007) indicates an 
upward slope (red line), significant at 3.8σ. 
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CHAPTER 8 
SUMMARY 

In this paper we have investigated the emergent spectra of transiting hot Jupiters, 

using their secondary eclipses as observed in the two warm Spitzer bands at 3.6- and 4.5 

µm. We report eclipse depths for twenty-seven previously unobserved planets, and we re-

analyze eclipses of 9 previously observed planets in order to compare and relate our 

results to published work. Our new planets include highly irradiated worlds such as 

KELT-7b, WASP-87b, WASP-76b, and WASP-64b, as well as others that are important 

targets for JWST, such as WASP-62b. We also analyze Spitzer transits of KELT-7, 

WASP-62, and WASP-74, in order to improve the precision of their orbital periods 

(Section 3.1). Our Spitzer eclipse fits (Section 3.2) utilize photometry extracted using 

four different methods (Section 2), each with multiple aperture sizes, and a pixel-level 

decorrelation method to correct instrumental effects and thereby select the optimum 

values of eclipse depth. We investigate and discuss the statistical properties of our fitted 

eclipse depths (Section 3.3), including a comparison to the magnitude of the photon 

noise, analysis of the Allan deviation slope, and comparison to eclipse depths for the 9 

planets previously published. 

The orbital phase of a secondary eclipse is sensitive to non- zero orbital 

eccentricities, and we investigate those phases for our sample of planets (Section 4). We 

find statistical evidence that eclipses tend to increasingly deviate from phase 0.5, the 

deviation increasing with orbital period in the range of our sample (periods 0.8 to 5.3 

days), indicating an increasing lack of orbital circularization. We conclusively find a 

slightly eccentric orbit for WASP-62b (e cos ω = 0.00614 0.00058, Section 4), that lies in 
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the continuous viewing zone of JWST. The eclipse of that planet occurs about 23 minutes 

later than orbital phase 0.5, and that delay is significant for planning of JWST 

observations. Even for circular or- bits, the phase of secondary eclipse is predicted to be 

offset from 0.5 due to temperature structure on the exoplanetary disk (Williams et al. 

2006). Excluding planets with notably eccentric orbits, our sample has an average eclipse 

phase over both Spitzer wavelengths that is centered on 0.5 to a precision of about 24 

seconds. We do not detect a time offset because our precision is comparable to the offset 

predicted by Williams et al. (2006), but we do exclude some of the larger values that they 

modeled. Our precision on the average eclipse phase of our sample is modestly poorer 

than the offset successfully measured for HD 189733b by Agol et al. (2010). We project 

that a complete sample of Spitzer eclipses (all planets observed), especially with 

improved precision in their orbital ephemerides, would be sufficient to detect the offset 

for the ‘average planet’, thereby extending the result from Agol et al. (2010) to the larger 

sample. 

We apply corrections for dilution of eclipse depths by stellar companions to some 

systems (Sec. 3.4), and then convert the eclipse depths to brightness temperatures in each 

Spitzer band (Section 5), using ATLAS model atmospheres for the host stars (Kurucz 

1979). We use those brightness temperatures to investigate heat redistribution on the day 

sides of the planets (Section 6), following the approach of Cowan and Agol (2011). We 

find that planets whose calculated maximum day side temperature exceeds ~2200K are 

well described by an observed brightness temperature consistent with zero albedo and 

redistribution of stellar irradiance uniformly over the day side. About 35% of planets 

whose calculated maximum temperature falls between ~1700K and 2200K require non-
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zero albedos, even if their redistribution of stellar irradiance is uniform over the entire 

planet. Six planets in our sample have published Spitzer phase curves, and these planets 

are typical of the entire sample, and consistent with uniform redistribution of stellar 

irradiance over the day side. 

To investigate the emergent day side spectra of our planets, we invoke a statistical 

approach whereby we compare brightness temperatures in the two Spitzer bands, and 

seek trends for the entire sample (Section 7.1). We compare the observed brightness 

temperatures (Tb) to two sets of well documented model atmospheres, from Adam 

Burrows and Jonathan Fortney (Section 7.2), both based on cloudless atmospheres with 

solar abundances. Those models differ in the amplitude of their absorption features due to 

differences in their temperature structures, with the Burrows models predicting stronger 

absorptions than the Fortney models. We also compare the observed brightness 

temperatures to black- body planets (Section 7.3), for which the day side brightness 

temperatures would be equal in the two Spitzer bands. In the Tb(4.5) versus Tb(3.6) 

plane, the observed planets slope more steeply than a blackbody, with the hottest planets 

being brighter at 4.5 relative to 3.6, and the cooler planets being fainter at 4.5 relative to 

3.6. For a given Tb(3.6), the Burrows and Fortney models bracket the observed planets in 

Tb(4.5), with the Fortney models lying at the observed upper envelope in Tb(4.5), and the 

Burrows models at the lower envelope. Because molecular absorptions are stronger in the 

4.5 µm band than at 3.6 µm, that bracketing thereby constrains the average amplitude of 

absorption features in the day side spectra of our planets. 

Our most intriguing result is that the ratio of Tb(4.5) to Tb(3.6) increases with 

equilibrium temperature, and we show that this trend is statistically significant (Section 
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7.4), and is not due to selection effects (Section 7.5). Adding lower temperature planets 

(800 to 1200K) from Kammer et al. (2015) and Wallack et al. (2018), we find that the 

ratio of Tb(4.5)  to Tb(3.6) increases by 98 26 ppm for each 1K increase in equilibrium 

temperature from 800K to 2500K. No existing model predicts this trend over such a large 

range of temperature. While it could in principle be due to a combination of effects such 

as temperature inversions in the hotter planets of the sample, coupled with stronger-than-

modeled molecular absorption for the cooler planets, we advance the simple hypothesis 

(Section 7.6) that it represents a structural difference in the atmospheric temperature 

profile between the real planetary atmospheres compared to models. 
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Figure 22. Eclipses at 3.6 µm for all hot Jupiters analyzed in this paper. The abscissa for 
all plots is orbital phase and the ordinate is relative flux. The eclipses are sorted by 
deepest to shallowest eclipse depth, going top to bottom and left to right. The data are 
binned for clarity, with between 20 and 40 points per dataset. The fitted eclipse is 
overplotted in red. The error bars are the scatter in each individual bin. The planet names 
are to the right of each plot. Note that the x-axis scale changes between columns and y-
axis scale changes between each eclipse. All eclipses are nominally detected (i.e., they 
have positive depths near the expected phase), except for WASP-75b and -49b (lowest 
right), where negative eclipse depths are derived. Considering the planets with positive 
eclipses, the ratio of eclipse depth to its random error varies from 1.6 (WASP-36) to 48 
(WASP-18), and the median is 15. 
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Figure 23. Eclipses at 4.5 µm for all hot Jupiters analyzed in this paper, similar to the 3.6 
µm eclipses shown in Figure 22. All eclipses are nominally detected, and the ratio of 
eclipse depth to its random error varies from 1.1 (WASP-75) to 41 (WASP-18), and the 
median is 12. 
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Table 1. Eclipse depths (ED) in contrast units of parts-per-million, normalized to the flux from the host star. These 
are ’as observed’, without dilution corrections applied. Dilution correction factors are given in Table 4. The type of 
fit to the photometry is encoded as: temporal baseline (L=linear, Q=quadratic, E=exponential), centroiding method 
(C=center of light, G=2-D Gaussian fit), photometric aperture type (F=fixed radii, V= variable, using the noise-pixel 
formulation), and the number of minutes trimmed from the start of the observations. For example, LGF30 means a 
linear baseline, Gaussian centroiding, fixed radius aperture, and 30 minutes trimmed from the start of the 
observations. The ’bin’ column lists the bin size used in the PLD solutions (see text). ’Ratio’ is the ratio of scatter 
in the unbinned residuals, divided by the photon noise. ’Slope’ is the slope of the relation between the log of standard 
deviation of the residuals using multiple bin sizes, versus the square root of the bin size. The AOR is the 
Astronomical Observation Request number that uniquely identifies the data we used from the Spitzer Heritage 
Archive. 

 

Planet Name AOR 3.6 ED (ppm) Fit Type Bin Ratio Slope AOR 4.5 ED (ppm) Fit Type Bin Ratio Slope 

HAT-13 38808320 851±107 ECV30 120 1.28 -0.42 38808832 1090±124 LCF30 96 1.17 -0.50 

HAT-30 42612736 1584±107 LCV60 28 1.11 -0.45 42613504 1825±147 LCF60 16 1.21 -0.45 
HAT-33 62151424 1603±127 QGF45 18 1.15 -0.47 51838720 1835±199 LCF45 1344 1.25 -0.48 
HAT-40 51832064 988±168 LGF30 544 1.30 -0.40 62151936 1057±145 LGF30 2 1.08 -0.51 
HAT-41 51840512 1829±319 QGF30 512 1.23 -0.39 51838464 2278±177 LGF30 640 1.20 -0.45 
KELT-2 51835136 650± 38 QGV30 34 1.11 -0.40 51833600 678± 47 QGV30 26 1.09 -0.49 
KELT-3 51815936 1766± 97 LGF30 480 1.28 -0.40 51842048 1656±104 LGF30 320 1.16 -0.45 
KELT-7 62154496 1688± 46 QGV30 34 1.05 -0.43 62155520 1896± 57 QGF30 46 1.12 -0.46 
Qatar-1 51819776 1511±455 LGF45 336 1.36 -0.49 51816960 2907±415 LGF0 544 1.58 -0.49 
WASP-12 48014848 4247±243 QGF30 28 1.15 -0.40 48015872 3996±171 LCF30 10 1.21 -0.46 
WASP-14 45426944 1816± 67 QCV30 60 1.10 -0.46 45426688 2161± 88 QCF30 12 1.19 -0.43 
WASP-14 45427968 1798± 59 LCV30 8 1.11 -0.49 45428992 2284± 90 QCF30 54 1.19 -0.40 
WASP-18 38805760 3037± 62 QCF30 24 1.10 -0.46 40269312 4033± 97 QCF30 26 1.10 -0.49 
WASP-19 43970048 4944±266 QCV30 120 1.31 -0.49 43970560 5081±392 QGF30 6 1.17 -0.48 
WASP-19 43970048 5070±233 QCF30 4 1.14 -0.53 43970560 5848±544 QGF30 108 1.17 -0.48 
WASP-36 51829504 913±578 LGF30 18 1.25 -0.47 51827456 1948±544 LGF30 62 1.16 -0.51 
WASP-43 42614272 3773±138 QGV30 32 1.22 -0.45 42615040 3866±195 LCF30 14 1.23 -0.45 
WASP-46 51823872 1360±701 LGF30 50 1.38 -0.49 51821568 4446±589 LGV30 92 1.34 -0.54 
WASP-49 51828480 -189±265 LCF60 184 1.21 -0.40 51826688 1073±336 LCF60 304 1.22 -0.51 
WASP-62 51823360 1616±146 QGF45 352 1.16 -0.46 51821056 1359±130 QGF45 448 1.15 -0.47 
WASP-63 51835904 552± 95 LGF30 42 1.23 -0.43 51834112 533±128 LGF30 1024 1.18 -0.50 
WASP-64 51816704 2859±270 LGF30 18 1.24 -0.44 51842560 2071±471 LGF30 108 1.16 -0.48 
WASP-65 51828224 1587±245 LGV30 2 1.67 -0.40 51826432 724±318 LGV30 2 1.56 -0.46 
WASP-74 62170880 1446± 66 LGV30 34 1.07 -0.44 62171904 2075±100 LGF30 136 1.10 -0.50 
WASP-75 51826176 -86±290 QCV 2 1.44 -0.44 51824384 452±399 LCF0 168 1.29 -0.49 
WASP-76 58239232 2645± 63 QGF30 18 1.11 -0.43 58238720 3345± 82 QCF30 96 1.11 -0.48 
WASP-77 51820544 1845± 94 QGF30 4 1.19 -0.46 51818496 2362±127 QGF30 40 1.20 -0.47 
WASP-78 51833088 2001±218 LGV30 80 1.54 -0.45 51830528 2013±351 QGF30 168 1.14 -0.49 
WASP-79 51841536 1394± 88 LCF60 64 1.19 -0.41 51839488 1783±106 LCF60 288 1.15 -0.48 
WASP-87 62173952 2077±127 LCV45 88 1.10 -0.45 62174464 2705±137 LGF45 8 1.21 -0.49 
WASP-94A 62174976 867± 59 LCV30 10 1.16 -0.42 62176000 995± 93 LGF30 12 1.23 -0.42 
WASP-97 62177024 1359± 84 QCV30 4 1.09 -0.48 62177536 1534±101 LCF30 12 1.12 -0.46 
WASP-100 62156544 1267± 98 LGF30 30 1.19 -0.40 62157056 1720±119 LGF30 18 1.13 -0.46 
WASP-101 62157568 1161±111 LGV30 8 1.26 -0.43 62158592 1194±113 LGV30 10 1.13 -0.47 
WASP-103 53518080 3702±256 QGV30 6 1.15 -0.51 53513472 4552±369 QCF30 14 1.14 -0.47 
WASP-103 53519104 3350±218 QCV30 4 1.26 -0.51 53514240 4711±339 QCF30 8 1.12 -0.47 
WASP-104 62179584 1709±195 LGF30 18 1.27 -0.45 62180864 2643±303 QGF30 12 1.18 -0.47 
WASP-121 62159616 3685±114 QCV30 26 1.08 -0.50 62160640 4684±121 LCF30 12 1.11 -0.48 
WASP-131 62162688 364± 97 QCV30 68 1.16 -0.45 62163712 282± 78 LCF30 8 1.16 -0.42 
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Table 2. Transit times in BJD(TDB), transit depths, and updated orbital periods for KELT-7b, WASP-62b, and WASP-
74b, based on the transits discussed in Section 3.1. The values of T0 for all three planets are repeated from Bieryla et 
al. (2015), Hellier et al. (2012), and Hellier et al. (2015), but converted to TDB as needed. 

 

 

 

    Planet              3.6 µm time                            4.5 µ time                     T0 BJD(TDB)                        Period (days) 

     KELT-7b      2457749.95953 ± 0.00016    2457758.16446 ± 0.00019    2456355.229809 ± 0.000198   2.73476468 ± 0.00000046 

    WASP-62b    2457717.23121 ± 0.00021    2457730.46660 ± 0.00024    2455855.39272 ± 0.00027        4.41193897 ± 0.00000074 

    WASP-74b    2457768.16637 ± 0.00024    2457770.30472 ± 0.00029    2456506.8926 ± 0.0002             2.13775257 ± 0.00000046 
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Table 3. Spitzer transit depths (Rp
2 /Rs

2, in ppm) for KELT-7b, WASP-62b, and WASP-74b. 
  

Planet 3.6 µm 4.5 µm 
KELT-7b 7925±62 8092±36 

WASP-62b     12189±101    12250±87 

WASP-74b    9044±56 9197±43 
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Table 4. Dilution corrections for secondary eclipse depth at both Spitzer wavelengths. The ”as measured” eclipse 
depths listed in Table 1 were multiplied by these factors before they were used in the analyses reported in Sec. 7, 
and for the brightness temperatures listed in Table 6. 

Planet            3.6 µm factor  4.5 µm factor   

    HAT-P-30b       1.0121 1.0117 
    HAT-P-33b 1.0377         1.0332 
    HAT-P-41b 1.0069         1.0111 
    KELT-2b 1.137         1.123 
    KELT-3b 1.0125         1.0127 
    WASP-12b 1.1101         1.0983 
    WASP-36b 1.0015         1.0026 
    WASP-49b 1.0130         1.0124 
    WASP-76b 1.1470         1.1250 
    WASP-77b 1.0929         1.0530 
    WASP-87b 1.0014         1.0011 
    WASP-103b    1.1700         1.1490 

  



  77 

 
 
Table 5. Central phases and times of the secondary eclipses. The ephemeris source column gives the reference used to 
calculate the orbital phase from the BJD(TDB) times. The phases are ’as observed’ and have not been corrected for 
light travel time across the orbit. The errors in eclipse phase are purely due to the eclipse observations and do not 
include imprecision in the orbital ephemeris. Note that our analysis in Sec. 4 does include uncertainty in the orbital 
ephemeris when analyzing the properties of the eclipse phases. 
 

Planet 3.6 µm Phase 3.6 µm BJD(TDB) 4.5 µm Phase 4.5 µm BJD(TDB) Ephemeris source 

HAT-13 0.49378 ± 0.00120 55326.70691 ± 0.00351 0.49495 ± 0.00110 55355.87271 ± 0.00319 Southworth+2012 

HAT-30 0.50284 ± 0.00073 55930.06169 ± 0.00205 0.50069 ± 0.00089 55944.10870 ± 0.00250 Maciejewski+2016 

HAT-33 0.50109 ± 0.00070 57784.53823 ± 0.00243 0.50025 ± 0.00144 57027.10001 ± 0.00501 Hartman+2011 

HAT-40 0.49829 ± 0.00096 57058.96841 ± 0.00428 0.49815 ± 0.00070 57705.26801 ± 0.00312 Hartman+2012 

HAT-41 0.50689 ± 0.00098 57008.45732 ± 0.00264 0.50074 ± 0.00121 57021.91098 ± 0.00325 Hartman+2012 

KELT-2 0.49946 ± 0.00040 57009.21971 ± 0.00163 0.49952 ± 0.00041 57017.44755 ± 0.00170 Beatty+2012 

KELT-3 0.50691 ± 0.00059 57060.22792 ± 0.00158 0.50822 ± 0.00063 57057.52805 ± 0.00171 Pepper+2013 

KELT-7 0.50019 ± 0.00024 57737.65388 ± 0.00067 0.50022 ± 0.00026 57754.06256 ± 0.00071 Bieryla+2015;Table 2 

Qatar-1 0.49900 ± 0.00499 56987.42464 ± 0.00709 0.49806 ± 0.00186 56993.10340 ± 0.00264 Collins+2017 

WASP-12 0.49923 ± 0.00101 56638.88641 ± 0.00110 0.49784 ± 0.00129 56642.15916 ± 0.00141 Chan+2011 

WASP-14 0.48310 ± 0.00043 56033.05283 ± 0.00096 0.48410 ± 0.00043 56042.03013 ± 0.00096 Wong+2014 

WASP-14 0.48461 ± 0.00035 56035.30000 ± 0.00078 0.48454 ± 0.00042 56044.27490 ± 0.00093 Wong+2014 

WASP-18 0.50045 ± 0.00038 55220.83391 ± 0.00035 0.50083 ± 0.00040 55432.66092 ± 0.00037 Southworth+2009 

WASP-19 0.50038 ± 0.00101 55776.76950 ± 0.00080 0.49982 ± 0.00152 55787.02396 ± 0.00120 Wong+2016 

WASP-19 0.49962 ± 0.00092 55777.55774 ± 0.00073 0.50011 ± 0.00160 55787.81303 ± 0.00126 Wong+2016 

WASP-36 0.50140 ± 0.00412 57055.70407 ± 0.00634 0.49832 ± 0.00368 57063.38618 ± 0.00566 Mancini+2015 

WASP-43 0.50033 ± 0.00070 55773.31778 ± 0.00057 0.50101 ± 0.00100 55772.50487 ± 0.00082 Stevenson+2017 

WASP-46 0.50434 ± 0.00161 57000.77359 ± 0.00230 0.50298 ± 0.00161 57005.06275 ± 0.00230 Anderson+2012 

WASP-49 —- —- 0.49379 ± 0.00131 57011.78245 ± 0.00364 Lendl+2012 

WASP-62 0.50421 ± 0.00052 56991.48560 ± 0.00230 0.50390 ± 0.00053 57062.07524 ± 0.00232 Hellier+2012;Brown+2017 

WASP-63 0.49464 ± 0.00221 57013.96346 ± 0.00966 0.49445 ± 0.00144 57035.85308 ± 0.00630 Hellier+2012 

WASP-64 0.50208 ± 0.00135 57019.80703 ± 0.00213 0.50035 ± 0.00186 57015.08443 ± 0.00292 Gillon+2013 

WASP-65 0.49831 ± 0.00114 57047.96638 ± 0.00263 0.49977 ± 0.00493 57050.28117 ± 0.01139 Gomez-Maqueo-Chew+2013 

WASP-74 0.50029 ± 0.00057 57769.23614 ± 0.00123 0.50217 ± 0.00051 57797.03093 ± 0.00109 Hellier+2015;Table 2 

WASP-75 —- —- 0.49626 ± 0.00444 57058.37657 ± 0.01103 Gomez-Maqueo-Chew+2013 

WASP-76 0.49926 ± 0.00031 57469.78987 ± 0.00056 0.49951 ± 0.00033 57480.64965 ± 0.00060 West+2016 

WASP-77 0.49892 ± 0.00052 56975.47418 ± 0.00070 0.49959 ± 0.00056 56978.19514 ± 0.00076 Maxted+2013 

WASP-78 0.50180 ± 0.00253 56986.26549 ± 0.00551 0.50142 ± 0.00203 57005.84125 ± 0.00442 Smalley+2012 

WASP-79 0.50057 ± 0.00071 56993.71597 ± 0.00259 0.50133 ± 0.00062 57004.70593 ± 0.00227 Smalley+2012;Brown+2017 

WASP-87 0.49965 ± 0.00090 57690.40719 ± 0.00152 0.50037 ± 0.00092 57692.09119 ± 0.00156 Anderson+2014 

WASP-94A 0.50213 ± 0.00096 57773.30115 ± 0.00378 0.50231 ± 0.00106 57777.25201 ± 0.00420 Neveu-VanMalle+2014 

WASP-97 0.49935 ± 0.00054 57695.31527 ± 0.00113 0.49993 ± 0.00067 57699.46200 ± 0.00138 Hellier+2014 

WASP-100 0.50011 ± 0.00089 57698.45281 ± 0.00254 0.50235 ± 0.00086 57704.15794 ± 0.00245 Hellier+2014 

WASP-101 0.49837 ± 0.00066 57762.12752 ± 0.00236 0.49792 ± 0.00075 57780.05450 ± 0.00269 Hellier+2014 

WASP-103 0.50305 ± 0.00129 57171.80955 ± 0.00119 0.50062 ± 0.00183 57163.47739 ± 0.00169 Southworth+2015 

WASP-103 0.49947 ± 0.00140 57170.88069 ± 0.00129 0.49882 ± 0.00144 57162.55018 ± 0.00133 Southworth+2015 

WASP-104 0.49673 ± 0.00124 57851.68947 ± 0.00218 0.49749 ± 0.00100 57856.95704 ± 0.00176 Smith+2014 

WASP-121 0.49905 ± 0.00053 57783.77754 ± 0.00067 0.50034 ± 0.00055 57906.17204 ± 0.00070 Delrez+2016 

WASP-131 0.49786 ± 0.00119 57917.69231 ± 0.00634 0.50430 ± 0.00374 57912.40457 ± 0.01988 Hellier+2017 
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Table 6. Equilibrium temperatures and brightness temperatures in the Spitzer bands, calculated as described in Sec. 5. 
Note that the eclipse depths listed in Table 1 were corrected for dilution (Table 4) in the process of calculating these 
brightness temperatures. 
 

 
HAT-30 1718± 34 2087± 140     1970± 158 

HAT-33 1855± 148 2112± 162     1990± 209 

HAT-40 1771± 38 2074± 354     1887± 259 

HAT-41 1685± 58 1694± 294     1622± 125 

KELT-2 1721± 36 1994± 104     1782± 111 

KELT-3 1829± 42 2445± 133      2132± 133 

KELT-7 2056± 31 2512± 69        2415± 73 

Qatar-1 1422± 36 1410± 425      1532± 219 

WASP-12 2546± 82 3329± 172      2934± 114 

WASP-14 1893± 60 2302± 85        2256± 92 

WASP-14 1893± 60 2292± 76 2319± 92 

WASP-18 2416± 58 3057± 63 3323± 80 

WASP-19 2099± 39 2432± 131      2191± 169 

WASP-19 2099± 39 2465± 114      2353± 219 

WASP-36 1705± 44 1336± 844      1506± 420 

WASP-43 1444± 40 1781± 65        1537± 78 

WASP-46 1663± 54 1435± 740      2014± 267 

WASP-49 1320± 88 —-                  1256± 389 

WASP-62 1432± 33 1955± 177     1593± 153 

WASP-63 1536± 37 1616± 278     1372± 330 

WASP-64 1675± 169 2135± 202     1607± 366 

WASP-65 1490± 45 1833± 284     1179± 518 

WASP-74 1922± 46 2049± 94 2161± 105 

WASP-75 1710± 39 —- 1112± 983 

WASP-76 2190± 43 2693± 56 2747± 60 

WASP-77 1677± 28 1786± 84 1696± 87 

WASP-78 2201± 41 3034± 331      2763± 483 

WASP-79 1761± 51 1959± 125      1948± 117 

WASP-87 2320± 62 2802± 172      2988± 152 

WASP-94A     1508± 75 1385± 95        1249± 118 

WASP-97 1545± 40 1772± 111      1615± 107 

WASP-100 2208± 170 2306± 180      2429± 168 

WASP-101 1559± 38 1723± 166      1524± 145 

WASP-103 2513± 49 3183± 189      3268± 231 

WASP-103 2513± 49 2771± 181      3066± 221 

WASP-104 1502± 189 1716± 197      1783± 205 

WASP-121 2366± 57 2490± 77        2562± 66 

WASP-131 1463± 32 1397± 374      1106± 307 

Planet Equilibrium temperature 3.6 µm Tb 4.5 µm Tb 
HAT-13 1653± 50 1810± 229 1754± 200 
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HAT-P-13b has been previously analyzed by Buhler et al. (2016) and Hardy et al. 

(2017). Like those investigations, we concur that the eclipse occurs slightly before phase 

0.5, and thus the orbit is slightly eccentric. Our phases agree especially well with Buhler 

et al. (2016) but are also in reasonable agreement with Hardy et al. (2017). The previous 

investigations found somewhat discordant eclipse depths at 4.5 µm: Hardy et al. (2017) 

derived 810±80 ppm, whereas Buhler et al. (2016) derived 1426±130 ppm. Our value 

(1090±124 ppm) is intermediate between them. 

HAT-P-30b was announced by Johnson et al. (2011), and the orbital parameters 

were updated by Maciejewski et al. (2016). Since the latter are more recent, we initially 

used those orbital parameters to generate the shape of the secondary eclipse curve that we 

fit to our Spitzer data. However, we found that the eclipse shape using the original orbital 

parameters (i.e., inclination, a/Rs, etc) from Johnson et al. (2011) gave much better 

agreement with our Spitzer data. We retained the orbital period and transit epoch as 

updated by Maciejewski et al. (2016). Our dilution correction is based on our scattering 

fractions from the Spitzer photometry (see text, Section 3.4), supplemented by a 

magnitude difference from Evans et al. (2018). 

HAT-P-33b has a close companion star, entirely contained within Spitzer’s point 

spread function. Our dilution correction is based on the magnitude differences and 

temperatures from Ngo et al. (2015). 

KELT-2b has a close companion, entirely contained within Spitzer’s point spread 

function. To calculate our dilution correction, we used data from Beatty et al. (2012). 

Qatar-1b has minimal eclipse baseline at 3.6 µm before ingress due to the presence of a 

strong ramp and required trimming 45 minutes of initial data. However, we found no 
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significant ramp at 4.5 µm, allowing us to use the full data without trimming. The eclipse 

depths and phases reported here are slight updates from the values we previously 

published in Garhart et al. (2018), but the differences are within the errors, and not 

significant for the emergent spectrum or the orbital dynamics. 

WASP-12b was analyzed by one of us (D.D.) for the eclipse timing results 

reported in Patra et al. (2017). The updated eclipse times we list here agree with Patra et 

al. (2017) to < 1σ. Note also that these eclipse data were observed Spitzer program 90186 

(P.I. = Kamen Todorov), and the eclipse depths are reported here for the first time. In 

calculating the dilution correction, we used data from Hebb et al. (2009), and Bechter et 

al. (2014) (also see Crossfield et al. 2012). 

WASP-46b was observed in our Cycle-10 program that was Priority=3 for 

Spitzer. We accordingly used a minimum total duration in order to maximize the 

probability that the observations would be scheduled. Together with a slightly late eclipse 

phase (possibly due to ephemeris error), the observed eclipse has minimal eclipse 

baseline at 3.6 µm after egress. 

WASP-49b has a minimal eclipse baseline at 4.5 µm before ingress due to the 

presence of a strong ramp, that required trimming 60 minutes of initial data. Lendl et al. 

(2016) note the presence of a companion star at 2.2 arc-sec, and Evans et al. (2018) 

derived the temperature of the companion star, an M-dwarf. We based our dilution 

correction on the 2MASS K-magnitudes for the primary star and companion, together 

with the companion temperature (3230K) from Evans et al. (2018). 

WASP-62b was observed in our Cycle-10 program that was Priority=3 for 

Spitzer. We accordingly used a minimum total duration in order to maximize the 
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probability that the observations would be scheduled. Moreover, a relatively strong ramp 

at 3.6 µm required trimming 45 minutes of data at 3.6 µm. Nevertheless, good agreement 

in the phase of the eclipse in both bands reinforces our confidence in the eclipse depths as 

well as the phases. 

WASP-74b was announced by Hellier et al. (2015), who derived an optical transit 

depth (R2 /R2) of 9610±140 ppm, about 5% larger than the Spitzer transit depths we give 

in Table 3. We suggest that much of the difference is due to the stellar limb darkening, 

since this transit is nearly grazing (impact parameter = 0.86, Hellier et al. 2015). We used 

quadratic limb darkening at both Spitzer wavelengths, from Claret et al. (2013), and the 

(linear, quadratic) coefficients we used are (0.0946, 0.1141) at 3.6 µm, and (0.0798, 

0.0963) at 4.5 µm. 

WASP-75b was observed in our Cycle-10 program that was Priority=3 for 

Spitzer. We accordingly used a minimum total duration in order to maximize the 

probability that the observations would be scheduled.  Fortunately, the lack of a 

significant ramp at 4.5 µm allowed us to analyze the full data without an initial trim. The 

eclipse is weakly detected at 4.5 µm, but not at 3.6 µm. 

WASP-76b required a dilution correction due to the presence of a close 

companion, entirely contained within Spitzer’s point spread function. To calculate our 

dilution correction, we used the ∆z magnitude difference listed by Wollert et al. (2015) 

and converted that to a difference in K-magnitude using Table 7 of Covey et al. (2007) 

under the assumption that both stars are on the main sequence. 

WASP-103b was analyzed by Kreidberg et al. (2018), who derived quite a high 

value for the eclipse depth at 4.5 µm (5690±140 ppm).  We are skeptical that the eclipse 
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depth can be that large, and we note that it was 2.9σ above their best-fit model. Hence, 

we omitted the Kreidberg et al. (2018) measurement from the comparison in Figure 11. 

However, our two values corrected for dilution (5230±424 ppm and 5413±390 ppm) are 

in good agreement with their retrieved model (blue square on the right panel of their 

Figure 7). Thus, we support their retrieved results for this planet. Our dilution correction 

is based on the K-magnitude difference from Ngo et al. (2016) and Delrez et al. (2018). 

WASP-121b was observed by Evans et al. (2017) and Kovacs & Kovacs (2019) 

who quote 3.6 µm Spitzer secondary eclipse values. The preliminary depth and central 

phase values quoted by those authors were measured by one of us (D.D.) and are 

superseded by the final values in Tables 3 and 5. (The differences between the 

preliminary and final values are minor.) Kovacs & Kovacs (2019) derive an orbital 

eccentricity of 0.0207±0.0153 based on timing and duration of the primary transit and 

secondary eclipse. The prominent Spitzer eclipses (Figures 22 and 23) are very well fit 

using the orbital parameters derived for the transits by Delrez et al. (2016). Thus, we find 

no evidence for a difference in duration of the transit and eclipse. Weighting the central 

phases of the two Spitzer bands by the inverse of their variance, and correcting for light 

travel time across the orbit, we find e cos ω = −0.00088 ± 0.00060. 


