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ABSTRACT

The problem of multiple object tracking seeks to jointly estimate the time-varying

cardinality and trajectory of each object. There are numerous challenges that are en-

countered in tracking multiple objects including a time-varying number of measure-

ments, under varying constraints, and environmental conditions. In this thesis, the

proposed statistical methods integrate the use of physical-based models with Bayesian

nonparametric methods to address the main challenges in a tracking problem. In par-

ticular, Bayesian nonparametric methods are exploited to efficiently and robustly infer

object identity and learn time-dependent cardinality; together with Bayesian infer-

ence methods, they are also used to associate measurements to objects and estimate

the trajectory of objects. These methods differ from the current methods to the core

as the existing methods are mainly based on random finite set theory.

The first contribution proposes dependent nonparametric models such as the de-

pendent Dirichlet process and the dependent Pitman-Yor process to capture the in-

herent time-dependency in the problem at hand. These processes are used as priors

for object state distributions to learn dependent information between previous and

current time steps. Markov chain Monte Carlo sampling methods exploit the learned

information to sample from posterior distributions and update the estimated object

parameters.

The second contribution proposes a novel, robust, and fast nonparametric ap-

proach based on a diffusion process over infinite random trees to infer information

on object cardinality and trajectory. This method follows the hierarchy induced by

objects entering and leaving a scene and the time-dependency between unknown ob-

ject parameters. Markov chain Monte Carlo sampling methods integrate the prior

distributions over the infinite random trees with time-dependent diffusion processes

to update object states.
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The third contribution develops the use of hierarchical models to form a prior for

statistically dependent measurements in a single object tracking setup. Dependency

among the sensor measurements provides extra information which is incorporated

to achieve the optimal tracking performance. The hierarchical Dirichlet process as

a prior provides the required flexibility to do inference. Bayesian tracker is inte-

grated with the hierarchical Dirichlet process prior to accurately estimate the object

trajectory.

The fourth contribution proposes an approach to model both the multiple depen-

dent objects and multiple dependent measurements. This approach integrates the

dependent Dirichlet process modeling over the dependent object with the hierarchi-

cal Dirichlet process modeling of the measurements to fully capture the dependency

among both object and measurements. Bayesian nonparametric models can success-

fully associate each measurement to the corresponding object and exploit dependency

among them to more accurately infer the trajectory of objects. Markov chain Monte

Carlo methods amalgamate the dependent Dirichlet process with the hierarchical

Dirichlet process to infer the object identity and object cardinality.

Simulations are exploited to demonstrate the improvement in multiple object

tracking performance when compared to approaches that are developed based on

random finite set theory.
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Chapter 1

INTRODUCTION

Multi-object tracking (MOT) refers to the problem of jointly estimating the time-

varying cardinality and trajectories of multiple objects from noisy or cluttered mea-

surements. With the development of the Kalman filter (1960), the object tracking

problem became an active area of research. This area of research was primarily fo-

cused on the problem of single object tracking; however, with new advancements in

technology, computational and embedded systems, this problem has rapidly grown

to a multi-object tracking problem. The continued growth of multi-object tracking

may be attributed to human needs and has drawn enormous attention in recent years.

The multi-object tracking problem has found various applications in different areas of

research including computer vision [1–4], driver assistance [5, 6], surveillance [7], im-

age processing [8–10], remote sensing [4, 11], robotics [12], and radar target tracking

[13–15] .

1.1 Overview of Methods and Challenges

Despite advancement in the field of multi-object tracking, several problems have

remained unclear. To see why the MOT problem is challenging, consider an environ-

ment in which multiple moving targets use different types of radar on a multimodal

system under high clutter and high noise conditions. At each time step, targets can

leave the scene and some new targets may come to the scene. Some of the chal-

lenges that are imposed by this problem include the time-dependent cardinality of

objects, unordered measurements, unknown measurement-to-object association, and

the association between object and the estimated object state.
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Regardless of these difficulties which makes it typically impossible to directly label

the objects, there have been various attempts to address the challenges in the MOT

problem [16]. Historically, Bayesian methods have been used to track a single object,

however, these methods become extremely complicated, if not impossible, when there

is a multiple numbers of objects to track simultaneously. The simplest MOT algo-

rithm is the nearest-neighbor Kalman filter. This technique updates the object state

estimate only through the measurements that are in the statistical vicinity of the pre-

dicted track. Some variants of this approach include the strongest neighbor filter that

considers the signal-to-noise ratio (SNR) to address the association ambiguity, and

2-dimensional (2-D) assignment algorithms in which an assignment problem accounts

for the distances between all measurement and all tracks. This method employs a

Kalman filter to update; however, it considers data association decisions one scan

at each time step and encapsulates all previously collected data by a set of track

estimates and their covariances [17].

Methods depending on maximum likelihood (ML) [18] or maximum a posteriori

(MAP) estimation [19] have also been developed. These estimation approaches inte-

grate the object labeling uncertainties with multiple hypotheses tracking algorithms

[20]. Algorithms developed to perform this task include the Viterbi algorithm [21], the

EM algorithm [22], network theoretic algorithms [23], and set partitioning [24, 25].

More than two decades ago, first order approximation models such as the joint

probabilistic data association filter (JPDAF) and multiple hypothesis tracking (MHT)

were introduced [26, 27]. Some recent developments that have received a great amount

of attention are based on the theory of random finite set (RFS) [28]. These RFS based

methods include probability hypothesis density filtering (PHDF) and multi-Bernoulli

filtering (MB) [29, 30]. These models are used to model and track object states. In an

RFS setup, most methods pair objects to their associated estimated state parameters
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using clustering methods after tracking [31]. In recent studies on RFS theory and its

application on multi-object tracking, some new methods such as the labeled multi-

Bernoulli filtering, generalized multi-Bernoulli filtering are introduced in which the

labeled RFS is exploited to estimate the object tracks and update the trajectory [32].

Despite success in MOT algorithms through RFS methods, their use is more suited

for the small number of objects; these methods are computationally expensive and do

not perform in high noise conditions. These methods are often too slow and cannot

robustly and efficiently estimate the trajectories simultaneously.

Bayesian nonparametrics is the area of Bayesian statistics in which the finite-

dimensional parametric prior distributions of classical Bayesian statistics are replaced

with stochastic processes. In practice, however, two stochastic processes—the Gaus-

sian process and the Dirichlet process— are the most used processes in this context

due to their flexibility. Bayesian nonparametric methods have recently become very

popular in various research areas. Advances in computing the posterior distributions

have turned this area of Bayesian statistics to a feasible and reliable field of study;

Markov chain Monte Carlo (MCMC), and variational Bayes (VB) sampling meth-

ods are amongst the popular sampling approaches that facilitate computation of the

posterior distribution.

Bayesian nonparametric models have recently been introduced to the problem of

multi-object tracking [33]. For example, a hierarchical Dirichlet process on the modes

is employed to provide a prior over the unknown number of unobserved modes for

tracking with maneuvering [34, 35] and a generalized Pólya scheme is employed to

track multiple objects [36, 37].
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1.2 Contributions

In this work, we mainly focus on constructing robust Bayesian nonparametric pri-

ors with some desired properties over multiple object tracking. We develop efficient

Bayesian inference methods to sample from posterior distributions. To this end, we

propose several approaches to improve both the prediction and update performance

of multi-object tracking. In the first approach, we primarily concentrate on the con-

struction of dependent prior models over objects for which the marginal distributions

have well known nonparametric distributions. The second approach constructs an

inexpensive nonparametric method based on an infinite random tree and diffusion

processes. The third approach, informations of multiple sensors is exploited through a

hierarchical nonparametric modeling over the dependent measurements received from

multiple sensors to track a single object. Lastly, we propose a Bayesian nonparamet-

ric modeling for multiple object tracking with multiple dependent measurements. We

integrate the proposed dependent Dirichlet process prior over the object states with

the hierarchical Dirichlet process prior over the dependent measurements to success-

fully associate each measurement to the corresponding object and to more accurately

estimate the cardinality of objects at each time step.

1.2.1 Dependent Bayeisan Nonparametric Modeling and Identity Learning for

Multiple Object Tracking

Our contributions mainly encompass tracking multiple objects with unknown,

time-dependent cardinality and identity using measurements received from multiple

sensors.

We propose a class of time-dependent distributions for multi-object tracking prob-

lem that exploits a dependent Dirichlet process as the prior on the object state pa-
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rameters to infer the trajectory of each object. We propose MCMC methods to do

inference. The problem of multi-object tracking becomes even more challenging when

the unordered measurements have a large number of false alarms due to high noise

[13, 24]. In general, we aim to accurately and robustly estimate the trajectory of each

object and learn the cardinality of time-varying objects at any time step. There are

various practical examples: dependent Dirichlet process to model the time-dependent

targets in a radar tracking problem, locating specific cognitive and behavioral informa-

tion in different regions in the brain by tracking multiple neural dipole sources using

patient-dependent electroencephalography (EEG) recordings which include interfer-

ence from physiologic and extra-physiologic artifacts. We simulate a multi-object

tracking problem to exhibit the advantages of Bayesian nonparametric models to

infer and estimate the tracks.

We also construct another class of time-dependent distributions that can be used

to tack multiple objects. The family of dependent Pitman-Yor (DPY) process is pro-

posed to model the state prior in multiple object tracking. This process is shown to

be more flexible and a better match than the dependent Dirichlet process in tracking

a time-varying number of objects. The DPY model directly incorporates learning

multiple parameters from correlated information. This prior not only obtains the full

dependency amongst the objects but may also be integrated with a Dirichlet process

mixture model to accurately estimate time-dependent object cardinality, to provide

object labeling, and to identify object-to-measurement association. We provide an

MCMC sampling method to do inference and track the trajectory of each object.

Simulations are used to demonstrate that the proposed nonparametric model effec-

tively traces the objects and extends to learning the object cardinality based on the

received measurements.
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1.2.2 Random Infinite Tree and Dependent Poisson Diffusion Process for Multiple

Object Tracking

Tracking a time-varying number of objects using unordered sets of measurements

can be a challenging and computationally intensive problem; most methods require

the pairing of objects to their associated estimated state parameters after tracking.

However, the main challenge is how to robustly associate objects on a new scene with

previously estimated objects. We propose a new approach that links random graph

theory, Bayesian nonparametrics, and multi-object tracking to track multiple objects

at each time step using previously tracked objects. This model utilizes diffusion

processes to construct an evolutionary process. This method efficiently estimates the

object trajectory along with object identification at each step by tracing the paths on

a random tree. This method is not only robust but also inexpensive since it directly

takes advantage of information learned at the previous time step to evolve objects.

Searching over random trees produces the trajectory of each object at each time

step. We also study the performance of the proposed method. Empirical results on

a dataset containing five objects demonstrate the benefits of this graph-based model,

and thus the advantages of inference algorithms derived from nonparametric models.

1.2.3 Bayesian Nonparametrics for Dependent Measurements

We investigate a single object tracking using multiple dependent measurements

provided from multiple dependent sensors. We consider a multimodal dependent

framework for integration of complementary information in analyzing a scene. We

develop a method based on the hierarchical Dirichlet process to group the dependent

measurements such that the sensor information and the dependency among the mea-

surements are preserved. The Hierarchical Dirichlet process to group the dependent
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measurements improves the performance of the tracker. This method clusters mea-

surements that are collected by each sensor and estimates joint density of dependent

measurements. We show through simulations that assuming dependency among the

sensor measurement may improve the tracker in the sense that mean square error

(MSE) of the tracker is much smaller than that of with no dependency assumption.

1.2.4 Bayesian Nonparametrics for Multiple Dependent Measurements and

Multiple Object Tracking

We extend the multi-object tracking to include statistically dependent measure-

ments from multiple sensors by proposing a dependent Dirichlet process prior over the

object state parameters and a hierarchical model to take advantage of the additional

information provided by multimodal dependent measurements to improve tracking

performance. This model fully captures the dependency among objects and mea-

surements and can robustly associate each measurement to the corresponding object

and accurately infer the trajectory of objects by exploit dependency among measure-

ments. We demonstrate through simulations that taking the dependency among the

measurements and information provided by multiple dependent sensors into account

may improve the tracking procedure. Simulations also show that assuming dependent

measurements may improve the object cardinality at each time step.

1.3 Organization

This dissertation is organized as follows. Chapter 2 surveys a broad range of

Bayesian nonparametric and inferential methods upon which models in the thesis are

constructed. In Chapter 3, a class of dependent nonparametric models is proposed

for which the marginal distribution follows a Dirichlet process. Gibbs sampler for

this model to sample from the posterior is also provided. We discuss the consistency
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and contraction rate of this nonparametric process. Chapter 4 generalizes the model

introduced in Chapter 3 to a family of dependent processes where the marginal dis-

tribution is a two-parameter Poisson-Dirichlet process (Pitman-Yor process). This

model benefits from the power law property of the Pitman-Yor process, and therefore

it is more suited for the multiple object tracking. In Chapter 5, we propose a new

approach to introduce a class of dependent processes over random trees. This model

accurately and efficiently estimates the trajectory by tracing the paths on the infi-

nite random trees. In Chapter 6, we investigate the multi-object tracking problem

when multiple sensors provide dependent measurements. We utilize the information

obtained through the dependency of measurements to accurately and robustly track

each object. In Chapter 7, we conclude by summarizing the contributions of this

work and outline directions for future research. The acronyms and notation used

throughout the dissertation are summarized in the following tables.
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1.4 List of Symbols

General Notation

Symbols Definition

|| · || , || · ||2 L2 Distance

|| · ||TV Total Variation Distance

KL(p, q) Kullback-Leibler Distance between Densities p and q

KL(Π) Kullback-Leibler Support of Prior Π

dH(p, q) Hellinger Distance between Densities p and q

Hκ κ-smoothed Holder Space

δθ(A) Indicator Function

1θ(A) Indicator Function

xn Collection of Random Variables {x1, . . . , xn}

X n Sample Space of n-dimensional Vector

Rn Vector Space of Real-valued n-dimensional Vector

I Identity Matrix

p(x) Probability Density Function (p.d.f) of random variable x

p(x|y) Conditional Probability Density Function of Random Variable of x

Given Random Variable y

Px,Px Distribution of x whose density is p(x)

Px|z Conditional Distribution of Random Variables x given z

µ << ν µ Absolutely Continuous with respect to ν

i.i.d. Independently and Identically Distributed

x1, x2 · · ·
i.i.d.∼ Px Random Variables x1, x2 . . . Drawn i.i.d. from Distribution Px

Eθ[·] Expected Value for Fixed Parameter θ

Card(A), #A Cardinality of A
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Symbols Definition

sk k-dimensional Unit Simplex

s∞ Infinite-dimensional Unit Simplex

oP (an) Sequence of Random Variables an Approaching Zero in Probability

P

OP (an) Sequence of Random Variables an Bounded in Probability P

H(X), H(p) Shannon Entropy of Random Variable X ∼ p

D(ϵ,Θ, d) ϵ-packing Number of Θ with respect to Distance d

N(ϵ,Θ, d) ϵ-covering Number of Θ with respect to Distance d

N[](ϵ,Θ, d) ϵ-bracketing Number of Θ with respect to Distance d

logN[](ϵ,Θ, d) Entropy

Unif([a, b]) Uniform Distribution on [a, b]

N (µ,Σ) Normal Distribution with Mean µ and Covariance Matrix Σ

NIW(µ0, λ, ν,Ψ) Normal-inverse-Wishart Distribution with parameters µ0 ∈ RN , λ ∈

R+, ν ∈ R, and Ψ ∈ RN×N

Po(λ) Poisson Distribution with Mean λ

Γ(a, b) Gamma Distribution with Shape Parameter a and Rate b

Beta(a, b) Beta Distribution with Parameters a, b > 0

Mult(n; π1, . . . , πK)Multinomial Distribution with Parameters n, πk > 0 and
K∑
k=1

πk = 1

Dir(α1, . . . , αK) Dirichlet Distribution with Parameters αk > 0 and
K∑
k=1

αk = 1

DP(α,H) Dirichlet Process with Hyperparameter α and Base Distribution H

PY(d, α,H) Pitman-Yor Process with Hyperparameters: Discount Parameter d,

Concentration Parameter α, and Base Distribution H
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Multiple Object Tracking

Symbols Definition

Nk Number of Objects at Time Step k

Mk Number of Measurements at Time Step k

xℓ,k ℓth Object State Vector at Time Step k

Xk Set of All Objects at Time Step k

X−i
k Xk \ {xi,k}

Xℓ
1,k Collection of {X1,k, . . . , Xℓ,k}

Qθ(·, ·) Probability Transition Kernel given parameters θ

Pk|k−1 Probability of Remaining in the Scene from time (k − 1) to k

zl,k lth Measurement Vector at Time Step k

Zk Set of all Measurements at Time Step k

Z Measurements Space

Zi
k Set of all Measurements Received from ith Sensor at Time Step k

θℓ,k ℓth Object Parameter at Time Step k

Θk Set of All Parameters at Time Step k

Θ⋆
k Set of All Unique Parameters at Time Step k

ν(·, ·), ξ(·, ·) Transition Kernels

Ck Cluster Assignment up to Time Step k
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Chapter 2

BAYESIAN NONPARAMETRIC AND INFERENCE MODELS

This chapter outlines the background necessary for subsequent developments in this

thesis. Bayesian nonparametric models provide a flexible statistical model selection

method as well as a method to choose a model at an appropriate level of complexity

for a variety of problems in statistics, computer science, and electrical engineering.

The primary focus of this thesis is on problems that arise in multi-object tracking and

how to address them through Bayesian nonparametric models. In this chapter, we

briefly discuss two main nonparametric models and discuss their basic properties. In

Section 2.1, we provide a comprehensive analysis of distributions that play an integral

role in Bayesian statistics; highlighting the importance of conjugate priors in Bayesian

analysis. In Section 2.2, we describe the significance of Bayesian nonparametrics. In

the subsequent sections, we study the main nonparametric models from which we

construct our novel models in this thesis. Section 2.3 discusses the Dirichlet process

and its properties and the generalized Dirichlet process. The two-parameter Poisson-

Dirichlet process (Pitman-Yor Process) is studied in detail in Section 2.4. Bayesian

inferential methods should be adapted to be able to make inference in the nonpara-

metric models. The invention of Markov chain Monte Carlo (MCMC) methods en-

ables us to do inference in high-dimensional datasets. In Section 2.5, we discuss core

inferential methods; Monte Carlo methods and variational Bayes methods to achieve

flexible and robust inferential methods in infinite-dimensional spaces. We propose

novel inferential models over infinite-dimensional spaces that are mainly based on

these two methods. These models are adapted to provide a tractable analysis of

Bayesian nonparametric models.
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2.1 Analysis of Distributions

2.1.1 Exponential Family

In this section, we introduce a class of parametric distributions; this family of

distributions include the Gaussian, multinomial, Poisson, Beta and many other dis-

tributions. For a random variable x ∈ X , an exponential family of distributions are

distributions whose densities (given θ) follow

p(x|θ) = h(x) exp{θTT (x)− A(θ)} (2.1)

where the parameter vector θ is often called the family’s natural or canonical param-

eters, h(x) is a nonnegative reference measure. T (x) is the sufficient statistics for the

exponential family. The cumulant function A(θ) is a logarithm of a normalizer and

defined as

A(θ) = log

∫
h(x) exp{θTT (x)}ν(dx) (2.2)

for a deterministic measure ν(·). The exponential family is well defined if the integral

in Equation (2.2) is finite. The set of canonical parameters for which Equation (2.2)

is finite defines the natural parameter space and mathematically formulated as

C = {θ : A(θ) <∞}. (2.3)

We restrict our definition to the exponential family that is regular, meaning C is a

nonempty open set. As a case in point, the Gaussian, Poisson, Beta, and gamma

distributions fall into this category. It is straightforward to see that the convexity

of A(θ) in θ results in the convexity of C, and if the family is minimal, then A(θ)

is strictly convex [38]. There is a close relationship between the derivatives of the

cumulant function and the moments of sufficient statistics [38–40]; it can be easily
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shown that

∂A

∂θT
= E[T (x)]

∂2A

∂θ∂θT
= Var[T (x)].

(2.4)

where E[·] and Var[·] denote statistical expectation and variance, respectively.

Maximum Likelihood Estimator

In this section, we study the maximum likelihood (MLE) estimator of µ := E[T (x)]

as a function of the canonical parameter θ. Assuming x1, . . . , xN ∼ p(x|θ)1 and using

Equation (2.1), the log-likelihood is

ℓ(θ) = log
( N∏

j=1

h(xj)
)
+ θT

( N∑
j−1

T (xj)
)
−NA(θ). (2.5)

Taking the partial derivative of the Equation (2.5) with respect to θ and setting the

result to zero yields the unbiased maximum likelihood estimator of θ as

θ̂MLE =
1

N

N∑
j=1

T (xj). (2.6)

It is shown that θ̂MLE is an unbiased estimator and attains the Cramér-Rao lower

bound, i.e., the Fisher information is

ℓ(θ) =
1

Var[T (x)] .

assuming that samples x1, . . . , xN ∼ p̃ are drawn independently and identically

(i.i.d.) distributed, empirical density p∗(x) is

p∗(x) =
1

N

N∑
j=1

δxj
(x). (2.7)

1Note that x ∼ P or equivalently x ∼ p indicates that random variable x is drawn from a

distribution P whose density is p. Notation x|P ∼ P displays the conditioning on a distribution.
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where δxj
(x) = δ(x − xj) is the delta function, defined to be 1 if x = xj and zero if

x ̸= xj.

There is a close correspondence between the maximizing the likelihood and min-

imizing the Kullback-Leibler (KL) distance. This correspondence often provides an

alternative approach to optimize the likelihood function. In particular, the KL dis-

tance between densities p∗ and pθ is given by

KL(p∗, pθ) =
∑
x

p∗(x) log
p∗(x)

p(x|θ)

=
∑
x

p∗(x) log p∗(x)−
∑
x

p∗(x) log p(x|θ)

= −H(p∗)−
∑
x

1

N

N∑
j=1

δxj
(x) log p(x|θ)

= −H(p∗)− 1

N

N∑
j=1

log p(xj|θ)

= −H(p∗)− 1

N
ℓ(θ)

(2.8)

where H(p∗) is the entropy of X with respect to the empirical density p∗ and is not

a function of θ. Moreover, Equation (2.8) shows that

θ̂MLE = argmax
θ

ℓ(θ) = argmin
θ

KL(p∗, pθ). (2.9)

Bayesian Inference

So far, we treated the parameters fixed but unknown. In this section, we develop a

Bayesian inference method by treating the parameters as random. A comprehensive,

detailed version of this topic can be found in [40, 41].

Assume x1, . . . xN ∼ p(x|θ) where p(x|θ) is the canonical exponential family with

parameter θ. We assume a prior p(θ|γ) on the parameter θ with hyperparameters γ.
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By Bayes’ rule, the posterior distribution equals to

p(θ|{xj}Nj=1, γ) ∝ p(θ|γ)
N∏
j=1

p(xj|θ). (2.10)

Typically in Bayesian statistics, a prior p(γ) is placed over the hyperparameter γ.

In practice, however, γ is often estimated using a frequentist method. In particular,

γ̂ = argmax
γ

p(x1, . . . , xN |γ). (2.11)

However, this optimization problem is not tractable. The solution to find the optimal

γ is often computed via leave-one-out cross validation.

In many applications, statistical models are particularly used to predict new ob-

servations. For a new observation xnew, the predictive distribution is given by

p(xnew|{xj}Nj=1, γ) =

∫
C
p(xnew|θ)p(θ|{xj}Nj=1, γ)dθ. (2.12)

Often, Equation (2.12) is intractable, in which case we approximate the parameters

using the maximum a posteriori (MAP) estimator,

θ̂MAP = argmax
θ

p(θ|{xj}Nj=1, γ). (2.13)

We study cases for which Equation (2.12) is tractable. This class of distributions are

called conjugate prior.

Definition: A family of distribution, F , is called conjugate prior for likelihood p(x|θ)

if for every prior p(θ) ∈ F , the posterior p(θ|x) ∈ F .

For the exponential family with density as in Equation (2.1), the likelihood for

independent samples x1, . . . , xN is given by

p(x1, . . . , xN |θ) =
( N∏
j=1

h(xj)
)
exp

(
θT

( N∑
j=1

T (xj)
)
−NA(θ)

)
. (2.14)
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Propositions 1. A conjugate family for the likelihood p(x1, . . . , xN |θ) is

p(θ|τ, ζ) = Z(τ, ζ) exp
(
τT θ − ζA(θ)

)
(2.15)

where Z(τ, ζ) is the normalizer. Then, the posterior distribution is

p
(
θ|τ +

N∑
j=1

T (xj), ζ +N
)
. (2.16)

Given Proposition 1, we can compute the predictive likelihood as follows:

p(xnew|{xj}Nj=1, γ) =

Z(τ +
N∑
j=1

T (xj), ζ +N)

Z(τ +
N∑
j=1

T (xj) + T (xnew), ζ +N + 1)

. (2.17)

(see [40, 42] for a detailed proof). It can be shown that the posterior expectation

of µ = E[T (x)] is a convex combination of the prior expectation and the maximum

likelihood estimate.

2.1.2 Multinomial Distribution and Dirichlet Distribution

Multinomial Distribution

Consider a random variable x taking K possible categorical outcomes, i.e., the out-

come space is X = {1, 2, . . . , K}. Suppose each category is selected with probability

πk = P(x = k). The distribution that characterizes random variable x given πk,

k = 1, . . . , K has the following probability mass function

p(x|π1, . . . , πK) =
K∏
k=1

π
1x(k)
k , 1x(k) =


1 if x = k

0 otherwise
. (2.18)

Let xk be the random variable which counts the number of observations selecting

category k. Define random vector x = (x1, . . . , xK) to be the vector of counts such
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that
K∑
k=1

xk = n. Random vector x has a multinomial distribution if its probability

mass function follows [40, 43]

p(x) = p(x1, . . . , xK) =
( n!∏

k xk!

K∏
k=1

πxk
k

)
1[

∑
k xk](n). (2.19)

For K = 2 is simplifies to the binomial distribution. One can observe that the

parameters of a multinomial distribution lie in a K − 1 dimensional simplex

ΠK−1 = {π ∈ RK : 0 ≤ πk ≤ 1,
∑
k

πk = 1}. (2.20)

It is simple to show that if x ∼Mult(n; π1, . . . , πK), then

E[xk] = nπk

Var(xk) = nπk(1− πk).
(2.21)

The multinomial distribution defines a regular exponential family since it may be

re-written as

p(x) =
( n!∏

k xk!
exp

{ K∑
k=1

xk log πk

})
1[

∑
k xk](n) (2.22)

=
( n!∏

k xk!
exp

{K−1∑
k=1

xk log πk +
(
1−

K−1∑
k=1

xk
)
log

(
1−

K−1∑
k=1

πk
)})

1[
∑

k xk](n)

=
( n!∏

k xk!
exp

{K−1∑
k=1

log
( πk
Πk

)
xk + log

(
1−

K−1∑
k=1

πk)
})

1[
∑

k xk](n)

where ΠK = 1−
∑K−1

k=1 πk and hence, it follows the exponential family with canonical

parameters θk = log
(

πk

ΠK

)
and cumulant A(θ1, . . . , θK) = − log

(
1−

∑K−1
k=1 πk

)
. Using

θk = log
(

πk

ΠK

)
, we can re-write the cumulant A(θ1, . . . , θK) = log

( K∑
k=1

exp(θk)
)
. The

maximum likelihood estimator of the multinomial parameters is π̂k = xk/n.

Dirichlet Distribution

The Dirichlet distribution [40, 42] is a class of distributions which is the conjugate

prior for the multinomial distribution. The Dirichlet distribution with parameters
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Figure 2.1: Dirichlet Distribution as Uniform Prior (Top, Left), Prior Favoring Sparse

Multinomial Distribution(Top, Right), Biased Prior(Bottom, Left), and Unbiased

unimodal prior (Bottom, Right).

(α1, . . . , αK) is denoted by Dir(α1, . . . , αK) and has the probability density function

p(π1, . . . , πK |α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k (2.23)

where π = (π1, . . . , πK) ∈ ΠK−1. When K = 2, Dirichlet distribution is known as

Beta distribution. We discuss Beta distribution in the next section in detail.

Propositions 2. If π ∼ Dir(α1, . . . , αK), and α0 =
∑

k αk, then

a) E[πk] = αk

α0
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b) Var(πk) = αk(α0−αk)

α2
0(α0+1)

c) Cov(πj, πk) = −αjαk

α2
0(α0+1)

, j ̸= k

d) Aggregation property: The combination of a subset of categories is also Dirich-

let, for example, if π ∼ Dir(α1, . . . , αK−1, αK), then (π1, . . . , πK−1 + πK) ∼

Dir(α1, . . . , αK−1 + αK)

e) Marginal distribution of any individual πk has a Beta density, i.e.,

πk ∼ Beta(αk, α0 − αk)

f) Multinomial and Dirichlet distributions are conjugate priors. The posterior

distribution has a Dirichlet distribution. If we have N observations {xn}Nn=1

from a multinomial distribution, then the posterior distribution is

p(π|{xk}Nn=1, α) ∼ Dir
(
α1 +

∑
n

1xn(1), . . . , αK +
∑
n

1xn(K)
)
. (2.24)

Figure 2.1 displays a Dirichlet distribution for different values of α and K = 3 on

the simplex Π2 = (π1, π2, 1− π1 − π2).

2.1.3 Beta Distribution

The Beta distribution is a class of continuous probability distributions defined

on [0, 1]. It is parametrized by parameters a, b > 0, and it is a special case of the

Dirichlet distribution. A random variable x ∼ Beta(a, b), then it has distribution of

P (dx|a, b) = 1

β(a, b)
xa−1(1− x)b−1dx (2.25)

where β(a, b) = Γ(a)Γ(b)
Γ(a+b)

and Γ(·) is the gamma function. The probability density

function for different values of (a, b) is depicted in Figure 2.2.

20



Figure 2.2: Beta Probability Density Function.

If x ∼ Beta(a, b), then

E(x) =
a

a+ b

Var(x) = ab

(a+ b)2(a+ b+ 1)

E[lnX] =
∂ ln Γ(a)

∂a
− ∂ ln Γ(a+ b)

∂a
= ψ(a)− ψ(a+ b)

(2.26)

where ψ is digamma function.

The Beta distribution is the conjugate prior for the Bernoulli, binomial, negative

binomial, and geometric distribution. The moment generating function of the Beta

distribution is given by

E[eλX ] = 1 +
∞∑
k=1

( k−1∏
i=0

a+ j

a+ b+ j

)λk
k!
. (2.27)

2.1.4 Gamma Distribution

The two-parameter family of continuous probability distributions is called Gamma

distribution and denoted by x ∼ Γ(α, β) if, for α, β > 0, the density follows

P (dx|α, β) = βα

Γ(α)
xα−1 exp (−βx)1x[0,∞]dx. (2.28)
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where Γ(·) is the gamma function. Gamma distribution is exponential family for

natural parameters θ = [α− 1,−β]T . If x ∼ Γ(α, β), then

E[x] =
α

β

Var[x] = α

β2
.

(2.29)

Suppose xj ∼ Γ(αj, β) for j = 1, 2, . . . , N , then
N∑
j=1

xj ∼ Γ(
N∑
j=1

αj, β).

Propositions 3. Assume x ∼ Γ(α, β), then y = 1
x

is distributed as the inverse-

Gamma distribution whose density follows

P (dy|α, β) = βα)

Γ(α)
y−α−1 exp (

−β
y

)1y[0,∞]dy (2.30)

and denoted by IG(α, β). The mean and variance of y ∼ IG(α, β) is

E[y] =
β

α− 1
, α > 1

Var(y) = β2

(α− 1)2(α− 2)
, α > 2.

(2.31)

2.1.5 Student’s t-Distribution

There are two ways to derive the Student’s t-distribution; first, as conjugate prior

for the variance of the Gaussian distribution; second, square root of a Gamma random

variable [44]. Let x ∼ N (µ, σ2) and assume that µ is fixed and known. Assuming a

Γ(α, β) prior over precision parameter τ = 1/σ2 results in the marginal density that

has Student’s t-distribution. The Student’s t-distribution follows

P (dx|µ, α, β) = Γ(α + 1/2)

Γ(α)(2πβ)1/2
1

(1 + 1
2β
(x− µ)2)α+1/2

dx (2.32)

where Γ(·) is gamma function. It is easy to see if α = 2, then Student’s t-distribution

is the Cauchy distribution and if α→∞, then the limiting distribution is a Gaussian
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distribution. It is common to define ν = α/2 and λ = α/β and re-write the density.

A detailed discussion on the second method is discussed in detail in [39, 40, 44].

2.1.6 Normal-Inverse-Wishart Distribution

A d-dimensional random variable x taking values in X = Rd has a Gaussian

distribution [40, 44] with mean µ and covariance matrix Σ if the distribution follows

P (dx|µ,Σ) = 1

2π)d/2|Σ|1/2
exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
dx. (2.33)

and is denoted by N (µ,Σ). The maximum likelihood estimator for the parameters

upon receiving N observations {xn}Nn=1 are

µ̂ =
1

N

N∑
n=1

xn

Σ̂ =
1

N

N∑
n=1

(xn − µ̂)(xn − µ̂)T .

(2.34)

It is easy to confirm that the Gaussian distribution is in the class of exponential

families with canonical parameters θ = (Σ−1µ,Σ−1) and sufficient statistics T (x) =

[µ̂, Σ̂].

As suggested earlier, assuming conjugate priors leads to a tracktable posterior

and facilitates inference. The conjugate prior for the covariance matrix of a Gaus-

sian distribution with known mean has inverse-Wishart distribution [40, 45]. The

inverse-Wishart distribution is the multivariate generalization of the inverse-Gamma

distribution studied in Section 2.1.4. A d-dimensional inverse-Wishart distribution

with parameters ν,Ψ is denoted by IW(ν,Ψ) and equals

P (dΣ|ν,Ψ) =
S−ν/2

2νd/2Γd(ν/2)
|Σ|(ν+d+1)/2 exp

{
− 1

2
tr(ΨΣ−1)

}
(2.35)
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The mean and mode for x ∼ IW(ν,Ψ) are respectively

E[x] =
Ψ

ν − d− 1
, ν > d+ 1

argmax
Σ

IW(Σ; ν,Ψ) =
Ψ

ν + d+ 1
.

(2.36)

If both mean and covariance matrix are unknown, the Normal-inverse-Wishart

distribution provides the conjugate prior. To this end, we first draw a covariance

matrix from an inverse-Wishart prior, Σ ∼ IW(Σ; ν,Ψ). Conditioning upon the

covariance matrix Σ and a scale hyperparameter λ, we then draw the mean from a

normal distribution, i.e., µ|µ0,Σ, λ ∼ N (µ;µ0,Σ/λ), where µ0 is the expected mean.

Note that λ may be interpreted as the pseudo observations to scale the observations.

We denote the joint distribution by NIW(µ0, λ, ν,Ψ) which equals

P (dµ, dΣ|µ0, λ, ν,Ψ) = N
(
µ;µ0,

Σ

λ

)
× IW(Σ; ν,Ψ)dµdΣ. (2.37)

Posterior Distribution

Suppose N observations {xn}Nn=1 are drawn from a Gaussian distribution N (µ,Σ).

Assume a normal-inverse-Wishart distribution NIW(µ0, λ, ν,Ψ) as a prior on µ,Σ.

The posterior distribution is also a normal-inverse-Wishart distribution with updated

hyperparameters, NIW(µ̂, λ̂, ν̂, Ψ̂) [43, 45]. These hyperparameters can be computed

as

µ̂ =

λµ0 +
N∑

n=1

xn

λ+N

λ̂ =λ+N

ν̂ =ν +N

Ψ̂ =Ψ+ S+
λN

λ+N
(x̄− µ0)(x̄− µ0)

T

(2.38)

where x̄ =
∑

n x
n and S =

∑
n(x

n− x̄)(xn− x̄)T are the sample mean and covariance

matrix, respectively.
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Predictive Distribution

Marginalizing over the parameters of normal-inverse-Wishart, the predictive distri-

bution of a new observation xnew has a multivariate Student’s t-distribution with

(ν̄ − d + 1) degrees of freedom [43, 45]. Suppose that the normal-inverse-Wishart is

proper, n̄u > d + 1, the posterior density has finite covariance and is approximated

by

p(xnew|{xn}Nn=1, µ0, λ, ν,Ψ) ≈ N (xnew; ν̂,
(λ̂+ 1)ν̂

λ̂(ν̂ − d− 1)
Ψ̂). (2.39)

This approximation is the moment-matched Gaussian approximation of the posterior

distribution [42, 43].

2.2 Introduction to Bayesian Nonparametrics

In traditional Bayesian statistics, upon receiving data x, with likelihood L(x|θ),

the Bayes formula assumes a prior π(θ) over the parameters and computes a posterior

distribution. Therefore, a Bayesian model consists of a prior π(θ) on the parameters,

and the likelihood L(x|θ) as a function of parameters. The data is assumed to be

generated in the following manner:

θ ∼ π(θ)

xi ∼ L(·|θ) j = 1, . . . , n

(2.40)

This model implies that the data is conditionally i.i.d. rather than i.i.d. Using Bayes’

theorem, the posterior density is then computed as:

π(θ|x) = π(θ)L(x|θ)∫
π(θ′)L(x|θ′)dθ′

. (2.41)

The value of the parameter often remains uncertain given a finite number of obser-

vations, and Bayesian statistics uses the posterior distribution to express this uncer-

tainty. However, in order to compute the posterior density in Equation (2.41), we
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require all densities to be well-defined with respect to a suitable measure. In particu-

lar, the space of parameters Θ is assumed to be finite-dimensional. The requirement

to use Bayes formula is not often met if the dimension of space of parameters, Θ, is

infinite, and thus computing the posterior density using Bayes’ formula is impossible

[46]. As such, Bayesian nonparametric models fall into this category since their space

of parameters is assumed to be infinite-dimensional.

The area of Bayesian nonparametrics has become more popular since as the num-

ber and size of the datasets grow, we can learn increasingly more complex information

from data. This property makes Bayesian nonparametric modeling extremely appeal-

ing to the practitioners. Furthermore, the de Finetti’s theorem for an exchangeable

sequence of data provides a probabilistic justification for employing Bayesian non-

parametric models.

Defenition: A sequence of random variables is infinitely exchangeable if the distri-

bution is invariant for any finite sequence, i.e., for any n and permutation σ

P (x1 ∈ A1, . . . , xn ∈ An) = P (xσ(1) ∈ A1, . . . , xσ(n) ∈ An) (2.42)

Theorem 1. (de Finetti’s Theorem) A sequence x1, x2, . . . is infinitely exchangeable

if and only if for all n and some distribution G

P (x1 ∈ A1, . . . , xn ∈ An) =

∫
θ

n∏
j=1

P (xj ∈ Aj|θ)G(dθ).

This theorem explicitly guarantees that there is a random measure G from which

parameters are drawn such that, given parameters, data points are conditionally

independent of one another.

In general, Bayesian nonparametrics answers the following questions:

A. How do we construct a prior on an infinite dimensional set?
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B. How do we compute the posterior? How do we draw random samples from the

posterior?

C. What are the properties of the posterior? Is the posterior consistent? What is

the posterior rate of convergence?

In the next sections, we introduce a family probability measures over the space of

probability measures. We first introduce the Dirichlet process and different methods

to construct it. We introduce a probability distribution on partitions known as the

Chinese restaurant process, and we show that the exchangeability property of the

Chinese restaurant process leads to the Dirichlet process. We then study the two-

parameter Poisson-Dirichlet distributions (also known as Pitmna-Yor process) and

compare it to the Dirichlet process. It is worth mentioning that Bayesian inference

methods do not necessarily coincide with that of frequentist. Also, Bayesian models

do not necessarily have properties like consistency or optimal rates of convergence.

2.3 Dirichlet Process

To do Bayesian nonparametric inference, we need to put a prior π on infinite di-

mensional space. The most popular Bayesian nonparametric model over the space of

distributions is the Dirichlet process. The Dirichlet process first appeared in a paper

by Ferguson [47]. A prior over an infinite dimension leaves open the question as to

whether such a process actually exists. In [47], Ferguson makes use of Kolmogorov

extension theorem to prove the existence of such processes. Such a construction,

however, encounters a measure-theoretic difficulty that requires certain topological

conditions to be placed on the space of parameters (space of distributions). Sethu-

raman provides a constructive definition of the Dirichlet process that removes the

restrictions of the original definition [48]. Aldous later introduced a distribution over
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Figure 2.3: Partition of the Parameter Space.

partitions where underlying distribution is the Dirichlet process [49]. Blackwell and

McQueen introduced another equivalent definition of the Dirichlet process based on

Pólya urn scheme [50].

In this work, we only study the following representations:

• Ferguson definition of Dirichlet process [47]

• Stick-breaking process [48]

• Chinese restaurant process [49]

• Blackwell-MacQueen process (Pólya urn scheme) [50]

2.3.1 Ferguson Definition of Dirichlet process

Ferguson presents a class of priors that have a large support for which given the

data, the posteriors can be computed analytically.

Definition: Dirichlet process is a random probability measure over the space Θ

satisfying:

• Let A1, . . . , An be a partition of the Polish space Θ as shown in Figure 2.3.

Let G ∼ DP (α,H) be a realization of a Dirichlet process with concentration

parameter α, and base distribution H, then

a) G is a random measure
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b) G is discrete with probability one

c) The vector (G(A1), . . . , G(An)) is a probability vector

d) (G(A1), . . . , G(An)) ∼ Dirichlet(αH(A1), . . . , αH(An))

It is clear that G is a random measure therefore G(A) is a random variable given an

event A. It is straightforward from the definition to prove the following:

E[G(A)] = H(A)

Var[G(A)] = H(A)(1−H(A))

α + 1

(2.43)

2.3.2 Posterior Distribution of Dirichlet Process

In this section, we study the problem of obtaining the posterior distribution of a

Dirichlet process. We assume a model as in Equation (2.40) with a Dirichlet process

as the prior. Ferguson shows that given the model in Equation (2.40), the posterior

distribution also follows a Dirichlet process [47].

Theorem 2. Considering the following hierarchy

G ∼ DP(α,H)

θj|G ∼ G j = 1, . . . n

(2.44)

then the posterior distribution is DP(α + n, 1
α+n

∑
δθi +

α
α+n

H).

2.3.3 A Constructive Method: Stick-Breaking Construction

In spite of the fact that the Ferguson’s definition of the Dirichlet process is well-

defined, it is not truly practical. In [48], Sethuraman provides a practical way of

drawing from the Dirichlet process. It is shown that the following hierarchy presents
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Figure 2.4: Stick-brealking Process.

a single draw from DP(α,H):

θj
i.i.d.∼ H

πj ∼ GEM(α),

G =
∞∑
j=1

πjδθj

(2.45)

where GEM(α) is Griffiths-Engen-McCloskey distribution defined as

βj
i.i.d.∼ Beta(1, α)

πj = βj

j−1∏
i=1

(1− βi)

This process is often known as stick-breaking process. Intuitively speaking, the con-

struction of the weights πj, j = 1, 2, . . . resembles breaking off a unit length stick. In

particular, given a unit length stick, π1 is obtained by breaking the stick at a random

point β1. We choose β2 at random and select the second weight π2 from the remaining

of the stick. The process continues and generates the whole sequence of weights πj,

j = 1, 2, . . . . This procedure is depicted in Figure 2.4.

Remark1: It is straightforward to confirm that G drawn based on stick-breaking

process is a random probability measure probability and is discrete with probability

one. Figure 2.5 shows a draw from a Dirichlet process with Gaussian mean.

Remark2: Weights π = (π1, π2, . . . , ) is a probability measure, i.e.,
∑
πj = 1.
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Figure 2.5: A Draw from the Dirichlet Process with Gaussian Mean and α = 10.

Remark3: The weights πj, j = 1, 2, . . . are decreasing on average but not strictly.

Ordering the weights leads to the Poisson-Dirichlet process [51]. However, ordering

the weights make this computationally intractable.

2.3.4 Dirichlet Process Mixture Model

The Dirichlet process presents a discrete random measure which does not have

densities. Therefore, it is not an appropriate prior to estimate the density. Instead,

we can use a generalization of the Dirichlet process to do density estimation.

Suppose x1, x2, . . . are drawn independently and identically from a distribution

P whose density is p. The goal is to employ a Dirichlet process to estimate p. To

estimate p, we place a Dirichlet process on the space of the parameters and draw

parameters from the mean of the Dirichlet process. Each parameter may be selected

with some probability according to GEM(α) and form an infinite mixture model.

The infinite mixture model is known as the Dirichlet process mixture model. This

infinite mixture is the same as the random distribution P ∼ DP(α,H) which had the

form P =
∑∞

j=1 πjδθj except that the point mass distributions δθj is smoothed out by
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Figure 2.6: (a) Graphical Model Representing the Dirichlet Process Mixture Model.

(b) Graphical Model Representing the Dirichlet Process Mixture Model Where G in

Marginalized.

densities p(·|θj). The infinite mixture is modeled by the following hierarchy

G|α,H ∼ DP(α,H)

θj|G
i.i.d.∼ G

xj|θj ∼ p(·|θj).

This hierarchy is shown in Figure 2.6a. By marginalizing G, we obtain a model that

depends only on the mean and the concentration parameter of the Dirichlet process.

This representation of the infinite mixture model is given by

π|α ∼ GEM(α)

θj|H
i.i.d.∼ H

zj|π ∼ Cat(π)

xj|Θ, zj ∼ p(·|θzj),

where Cat(π) is a categorical distribution with parameter π. The indictor variable

32



z assigns the appropriate probability to each of the infinite parameters drawn from

the base distribution of the Dirichlet process. The graphical model representing

this hierarchy is depicted in Figure 2.6b. Bayesian inference methods such as Markov

chain Monte Carlo(MCMC) or variational Bayes methods are provided to do inference

[52, 53].

2.3.5 Dirichlet Process and Clustering: Chinese Restaurant Process

Consider a Chinese restaurant with infinitely many tables. The first customer

comes into the restaurant and sits at the first table with probability one. As customers

enter the restaurant, they choose an occupied table with probability proportional to

the number of customers that are already seated at the table or choose a new table

with probability proportional to α. This analogy leads to the Chinese restaurant

process.

For a fixed α > 0 and for every n ∈ N, the Chinese restaurant process, CRP(α),

is a distribution over all partitions of the set [n] := {1, 2, ..., n}. A draw from the

CRP(α), ρ ∼ CRP(α), provides a partition on [n]. Subsets of the partition and data

points are referred to as tables/clusters and customers, respectively. The Chinese

restaurant process is mathematically constructed as follows; each customer comes

into the restaurant and picks a table at random with probability:

P(Choose table C) = nC

α +
∑

ρ nC

P(Choose a new table) = α

α +
∑

ρ nC

(2.46)

where nC is the number of customers at the table C. This process is depicted in

Figure 2.7. The CRP is an example of the preferential attachment which is proven

to be exchangeable.

Definition: A random partition is called exchangeable if its distribution is invariant

33



Figure 2.7: Chinese Restaurant Process.

under permutation. Equivalently, a random partition is exchangeable if there is a

symmetric function p such that probability of each partition only depends on the size

of each subset, i.e., for the random partition ρ = {C1, . . . , Ck}

P(ρ) = p(|C1|, . . . , |Ck|). (2.47)

The function p is called the exchangeable partition probability function (EPPF).

The Chinese restaurant process is partition exchangeable, therefore, for a partition

ρ = {C1, . . . , Ck} the EPPF induced by the distribution over the partition is given by

P
(
|C1|, . . . , |Ck|

∣∣α) = αK

α[n]

∏
j

(|Cj| − 1)! (2.48)

where α[n] = α(1+α) . . . (α+n− 1). The Chinese restaurant process is not sequence

exchangeable (de Finetti’s theorem). However, there is close relationship between the

partition exchangeability and sequence exchangeability. A sequence exchangeable is

constructed as follows:

• For each C ∈ ρ define θ⋆C ∼ H

• For each j ∈ [n] define θj = θ⋆C, where C ∈ ρ and j ∈ C

The resulting sequence θ1, θ2, . . . is de Finetti exchangeable. To summarize the pro-

cedure of constructing of random sequence from a random partition, we follow the
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hierarchy

ρ ∼ CRP(α)

θ⋆C ∼ H for each C ∈ ρ

θj = θ⋆C for each j ∈ [n], C ∈ ρ, j ∈ C

(2.49)

Theorem 3. (Aldous 1985) Assume the sequence θ1, θ2, . . . is generated as in Equa-

tion (2.49). This sequence is de Finetti exchangeable and therefore, there is a random

probability measure under which the data is conditionally independent. The under-

lying distribution is a Dirichlet process.

2.3.6 The Blackwell-MacQueen Distribution: Pólya Urn Scheme

The Blackwell-MacQueen is a generalization of the Pólya urn that essentially

captures the Chinese restaurant process model discussed in Section 2.3.5. Let θ1, . . . θn

be the parameter associated with clusters (not necessarily unique). The predictive

distribution is

θn+1|θ1, . . . θn ∼
1

α + n

n∑
j=1

δθj +
α

α + n
H (2.50)

where δθj is the point mass at θj and H is the base distribution. The distribution

on the sequence of θ has the Blackwell-MacQueen distribution [50]. Assuming that

θ∗1, . . . , θ
∗
K are the unique parameters, the predictive distribution can be re-written as

θn+1|θ1, . . . θn ∼
K∑
j=1

nj

α + n
δθ∗j +

α

α + n
H (2.51)

where nj =
∣∣{i : θi = j}

∣∣.
2.3.7 Hierarchical Dirichlet Process Modeling

Often in statistics, we wish to divide the data into groups such that the depen-

dency and statistical strength among the groups are preserved. In classical Bayesian
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Figure 2.8: Hierarchical Dirichlet Process Mixture Model for 2 Groups.

statistics, a hierarchical modeling is typically employed to allow the groups to remain

linked. The hierarchical Dirichlet process (HDP) provides a nonparametric hierarchi-

cal framework that captures the dependency among the groups [54]. In particular,

assume that the random measure Gj which represents the jth group is a conditionally

independent draw from a Dirichlet process DP(α,G0). To maintain the dependency

among all groups, the hierarchical modeling suggests a discrete prior on G0. Assume

that G0 is absolutely continuous probability measure with respect to the Lebesgue

measure, then there is almost surely no shared cluster among the groups. Thus, a

nonparametric hierarchical model assumes that G0 is itself drawn from a Dirichlet

process as shown in Figure 2.8. Adding one more level of Dirichlet process over the

base distribution guarantees that the HDP shares countable infinite cluster parame-

ters among the groups. The hierarchical Dirichlet process is modeled as:
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G0 ∼ DP (γ,H)

Gm|G0 ∼ DP (α,G0)

θj,m|Gm ∼ Gm.

(2.52)

Note that there are equivalent constructions of the HDP which are analogous to

the DP constructions. The Chinese restaurant franchise which is the generalization

of Chinese restaurant process is an equivalent method of HDP construction [54].

A stick-breaking definition of HDP is also discussed in [54]. Furthermore, we may

generalize the hierarchical Dirichlet process in Equation (2.52) to the hierarchical

Dirichlet process mixture to estimate the density using an infinite mixture model.

The hierarchical Dirichlet process mixture model is given by

G0 ∼ DP (γ,H)

Gm|G0 ∼ DP (α,G0)

θj,m|Gm ∼ Gm

xj,m|θj,m ∼ f(·|θj,m).

(2.53)

2.4 Two-Parameter Poisson-Dirichlet Process

As discussed in Section 2.3, the Dirichlet process is a distribution over an infinite

dimensional space. Regardless of generating an infinite number of clusters, the rate

at which clusters are generated in slow. It is easy to show that for a Dirichlet process,

the expected number of clusters after observing n data points is α log n. However,

many phenomena can be characterized by the growth of polynomial known as power

law [55, 56]. Pitman and Yor introduce a random probability measure that induces

marginal distributions characterized by a two-parameter Chinese restaurant process.

A two-parameter Chinese restaurant process, CRP([n], d, α), is a distribution over

all partitions with two parameters α > 0 and discount parameter d such that α > −d
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Figure 2.9: Heap’s Law for Pitman-Yor Process.

and 0 ≤ d < 1. The probability of choosing a table (cluster) is given by

P(Choose table C) = nC − d
α +

∑
ρ nC

P(Choose a new table) = α + d|ρ|
α +

∑
ρ nC

.

(2.54)

The two-parameter Chinese restaurant process is an exchangeable process [56].

Consequently, there exist a probability measure (de Finetti’s distribution) such that

the data are conditionally independent of one another. The de Finetti measure is

known as two-parameter Poisson-Dirichlet process or Pitman-Yor process [56, 57].

It is shown that expected number of generated clusters through Pitman-Yor process

follows a power law, and therefore is more suitable for phenomena that follow power

law such as text [54, 58].

Equation (2.54) verifies the willingness of Pitman-Yor process to generate more

clusters; tables with more occupants are more likely to become even larger and tables

with small occupancy numbers tend to have a lower chance of getting new customers.

However, bigger values of the discount parameter d tends to have more tables with

fewer customers. As shown in Figure 2.9, Pitman-Yor process follows Heap’s law

where the Dirichlet process tends to have less number of tables.

38



Figure 2.10: Comparison between Pitman-Yor Process and Dirichlet Process for α =

10 and d = 0.9 (Red), d = 0.5 (Green), and d = 0 (Blue).

Figure 2.10 compares the Dirichlet process with α = 10 to the Pitman-Yor process

with α = 10. and d = 0.9, d = 0.5. We can observe that (a) as the discount parameter

d grows, the Pitman-Yor process tends to have more tables with less occupants, (b)

larger values of d makes the proportion of tables and customers to follow Zip’s law (c)

as the number of customers grows, the Dirichlet process tends to have fewer tables

where the Pitman-Yor tends to create more tables as required [58]. It is shown that

after observing n data points, the expected number of clusters generated though the

Pitman-Yor process is αnd.

2.5 Inferential Methods

Invention of inferential methods makes the inference for high-dimensional data

possible [59–61]. These methods are most useful when it is difficult or impossible to

explicitly compute some probability distributions given parameters. In particular, we

discuss two main inference methods: Monte Carlo methods and variational Bayes.

It is shown that by designing efficient algorithms Monte Carlo methods can produce
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accurate, exact, and tractable estimates [62]. However, variational Bayes models are

an approximation for intractable integrals or posterior distributions [63].

Although, MCMC methods provide a precise estimate to the problem of inference,

these methods are expensive for large data. To resolve this issue, we can settle for

an approximation rather than the exact solution. Variational Bayes methods offer

the approximate solution. These methods may be much faster to sample in high-

dimensional data.

2.5.1 Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods are the most used inferential meth-

ods which provide exact samples from the target distribution for any problem with

probabilistic interpretation with some parameters, for example, many problems in

machine learning, optimization, and statistics. These inferential methods utilize in-

dependent samples of distribution to analyze the distribution for which explicit com-

putation of the distribution is difficult.

Many inference tasks such as computing the marginal can be represented as the

integral, and therefore as the expected value of some appropriately chosen function

[64, 65]. Consequently, due to the law of large number, the expected value can be

described as the empirical mean of independent random variables.

There are various Monte Carlo methods that offer different approaches to generate

independent samples; most of which are based on the random walk. These methods

are based on choosing a proposal distribution, and thus are very sensitive to the

step size. The primary idea is to design a first order Markov chain with the target

stationary probability distribution where the distribution of the samples converges to

the target distribution asymptotically. In addition, the ergodic theorem indicates that

the stationary distribution of a Markov chain may be approximated by the empirical
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measures of the random states of the MCMC sampler [59]. The following theorem is

the fundamental idea behind the Monte Carlo methods.

Theorem 4. the following statements are equivalent:

(i) x ∼ p(x)

(ii) (x, u) ∼ Unif{(x, u) : 0 ≤ u ≤ p(x)}.

In the following sections, we briefly study the inferential models that are primarily

used to develop the methods in this thesis. We discuss MCMC methods which are

designed according to a random walk process. In addition to the random walk based

MCMC methods, we explore the slice sampling method to solve the issues arising

from the random walk modeling.

2.5.2 Generalized Importance Sampling

Importance sampling approach is an MCMC sampling method to estimate the

expected value. This method exploits a proposal distribution, and thus relies upon

importance functions. Suppose p(x) = p̄(x)/Z can be evaluated up to the normaliz-

ing constant Z. A proposal distribution q(x) is chosen such that q(x) is absolutely

continuous with respect to p(x). In particular, supp(p(x)) ⊂ supp(q(x)). Assume

x1, . . . , xN ∼ q(x), then for any function h

1

N

N∑
j=1

ωjh(xj)
N→∞−−−→ Ep[h(x)] =

∫
h(x)q(x)

p(x)

q(x)
dx (2.55)

where ωj =
ω̃j∑
j ω̃j

and ω̃j =
p̄(xj)

q(xj)
. This estimation is asymptotically consistent [60].

Moreover, the Equation (2.55) indicates that the expected values can be estimated

using the importance functions {ω̃j}Nj=1.

In this section, we provide a general framework for importance sampling based

on dependent proposal distributions and adaptive algorithms where it provides an
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Algorithm 1: Dynamic Importance Sampling.
Input: (x, ω̃), and K(x, x′) where ω̃ = p̄(x)

q(x)

for k = 1,2, … do

Draw x′ ∼ K(xk, x
′)

Compute γk = ω̃ p(x′)K(x′,xk)
p(x)K(xk,x′)

Draw u ∼ Unif(0, 1)

(xk+1, ω̃k+1)← (x′, (1+δ)γk
c

) if u < c

(xk+1, ω̃k+1)← (xk,
(1+δ)ω̃k

1−c
) if u > c

where c = γk
γk+η(xk,ωk)

, δ > 0 and η are either constant or independent

end for

unbiased estimator for the target expected value. It is proven that dependency in the

samples still preserves the unbiasedness property [66]. The following lemma shows

that the modification of importance weights by a kernel preserves the unbiasedness

of the estimator.

Lemma 1. if p and q are distributions such that p << q and importance weight

ω̃ = p(x)
q(x)

, then for any kernel K(x, x′) with stationary distribution p∫
ω̃K(x, x′)q(x) = p(x′). (2.56)

Since the kernel K(x, x′) corresponds to the target distribution, it can correct the

poor choice of proposal distribution. A dynamic approach to importance sampling is

introduced in [67]. We summarize this method in Algorithm 1.

2.5.3 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm is the universal MCMC algorithm where it pro-

duces an ergodic Markov chain whose stationary distribution is the target distribu-

tion p(x). In particular, to sample from the posterior distribution p(θ|z), samples θk
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Algorithm 2: Metropolis-Hastings Algorithm.
Input: proposal distribution q(·|·)

Initialize x0 at random

for k=0,1,2,… do

Draw yk+1 ∼ q(·|xk = xk)

Draw uk+1 ∼ Unif(0, 1)

Compute the acceptance probability α(xk, yk+1) in Equation (2.58)

if uk+1 ≤ α(xk, yk+1) then

xk+1 ← yk+1

else

xk+1 ← xk

end if

end for

Burn-in Dismiss the first x1, . . . xr

are sequentially drawn from a Markov chain with stationary distribution p(θ|z); we

construct a Markov chain K such that for sufficiently large k, θk is drawn from the

desired posterior distribution, i.e., Kk → p(θ|z).

Suppose that Markov chain K is irreducible2 and aperiodic3 whose stationary

distribution is p. The stationary distribution follows the detailed balance condition,

K(x, y)p(y) = K(y, x)p(x). (2.57)

The Metropolis-Hastings algorithm starts by selecting an easy to implement condi-

tional distribution q(·|·) which is absolutely continuous with respect to the target

distribution p. Without loss of generality, we can assume q(x|y)p(x) > q(y|x)p(y),
2All states can communicate with one another with positive probability in finite time.
3To ensure uniqueness of stationary distribution almost surely.
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and hence there exist an acceptance probability 0 ≤ α(x, y) ≤ 1 such that

q(x|y)p(x) = α(x, y)q(y|x)p(y) =⇒ α(x, y) = min
{
1,
q(x|y)p(x)
q(y|x)p(y)

}
. (2.58)

It is shown in [68], the transition kernel associated with this equation follows

K(x,Θ) =

∫
Θ

α(x, y)q(y|x)dy + 1x(Θ)
(
1−

∫
Θ

α(x, y)q(y|x)dy
)
. (2.59)

The Metropolis-Hastings algorithm associated with the target density p with condi-

tional proposal distribution q produces a Markov chain {xk}k using Equation (2.59).

This method is referred to as Metropolis-Hastings algorithm and summarized in Al-

gorithm 2.

Theorem 5. Suppose that the Markov chain produced by Metropolis-Hastings is

p-irreducible, then

a) For any function g ∈ L1(p),

lim
N→∞

1

N

N∑
k=1

g(xk) =

∫
g(x)dP(x) (2.60)

b) If xk is aperiodic, then for every initial distribution ν

lim
N→∞

||
∫

KN(x, ·)ν(dx)− p||TV = 0. (2.61)

Choice of q result in different Metropolis-Hastings algorithms. We study two main

choices of q next.

Independent Metropolis-Hastings

Assume q(x|y) is independent of y, that is, q(y|x) = q(y). This leads to an algorithm

called Independent Metropolis-Hastings algorithm. In this case, the acceptance prob-

ability α(x, y) is simplified to

α(x, y) = min
{
1,
q(x)p(x)

q(y)p(y)

}
. (2.62)
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Although yk’s are generated independently in Algorithm 2, the resulting samples xk’s

are not i.i.d. since, for instance, probability of acceptance of yk relies directly on xk.

Random Walk Metropolis-Hastings

Assume q is symmetric, that is, q(x|y) = q(y|x). This leads to a method which

is referred to as Metropolis-Hastings random walk algorithm. In this case proposal

distribution q depends only on |x−y|. In this case, the acceptance probability α(x, y)

is given by

α(x, y) = min
{
1,
p(x)

p(y)

}
. (2.63)

Despite simplicity of computing the acceptance probability, this method tends to con-

verge with slower rate. In addition, the random walk Metropolis-Hastings algorithm

does not satisfy the uniform ergodicity property [69].

2.5.4 Gibbs Sampling

Gibbs sampling, also known as alternating conditional sampling, is a special case

of the Metropolis-Hastings algorithm where we partially update our joint distribu-

tion. Gibbs sampler is mostly used when computing the conditional distribution is

straightforward. The idea is to use the conditional distribution associated with the

target distribution to generate samples from it. In the section, we first study the

Gibbs sampler for two variables and then generalize it to a vector of random vari-

ables with undemanding conditional distributions. Gibbs sampling can be very slow

if the parameters in target distribution are highly correlated. To avoid this issue, one

can re-parametrize the parameters of interest.
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Algorithm 3: Two-Stage Gibbs Sampler to Sample from p(x, y)

Initialize (x0, y0)

for k=1,2,… do

xk ∼ p(·|yk−1)

yk ∼ p(·|xk)

end for

Repeat until convergence

Two-Stage Gibbs Sampler

Consider the joint probability density p(x, y) on the product space X × Y . Using

Theorem 4, define E(p) = {(x, y, u) : 0 ≤ u ≤ p(x, y)}. We generate

• x uniformly on Ex(p) = {x : u ≤ p(x, y)} or equivalently from Ex(p) = {x :

u
py(y)

≤ p(x|y)}.

• y uniformly on Ey(p) = {y : u ≤ p(x′, y)} or equivalently from Ey(p) = {y :

u
px(x)

≤ p(y|x′)}.

• u uniformly on {u : 0 ≤ u ≤ p(x′, y′)}.

However, if we leave y fixed and repeat this procedure infinite times, we end up with

the samples from p(x|y). One can do the same along y-axis and end up with the

samples from p(y|x). We summarize this procedure in Algorithm 3. To illustrate the

two-state Gibbs sampling procedure, we assume X = (x, y) ∼ N (µ,Σ) for unknown

mean µ = (θ1, θ2) and known covariance matrix

Σ =

1 ρ

ρ 1

 .
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Figure 2.11: Gibbs Sampler for A Bivariate Gaussian Distribution with 10,000 Sim-

ulations.

Assuming a uniform distribution as prior on µ, according to Section 2.1.1, the

conditional posterior distribution is given by

θ1|θ2,X ∼ N (x+ ρ(θ2 − y), 1− ρ2)

θ2|θ1,X ∼ N (y + ρ(θ1 − x), 1− ρ2).
(2.64)

Figure 2.11 demonstrates the Gibbs sampler for this model for 10,000 iterations and

ρ = 0.5 and burn in r = 100

Multi-Stage Gibbs Sampler

Multi-stage Gibbs sampler is the natural generalization of two variables to L variables.

Suppose for any j,

xj|x1, . . . , xj−1, xj+1, . . . , xL ∼ pj(·|x1, . . . , xj−1, xj+1, . . . , xN) (2.65)

is simply computed. Then, we can naturally generalize the two-stage Gibbs sampler

to a multi-stage Gibbs sampler. The multi-stage Gibbs sampler is summarized in

Algorithm 4.
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Algorithm 4: Multi-Stage Gibbs Sampler to Sample from p(x1, . . . , xN).
Initialize (x1,0, . . . , xN,0)

for k=1,2,… do

x1,k ∼ p1(·|x2,k−1 . . . , xN,k−1)

x2,k ∼ p2(·|x1,k, x2,k−1 . . . , xN,k−1)

...

xL,k ∼ pN(·|x1,k, . . . , xN−1,k)

end for

Repeat until convergence

Despite the polynomial bounds for the Gibbs sampler convergence to the sta-

tionary distribution, it is difficult to guarantee the convergence in high-dimensional

models [43, 70, 71]. One method to resolve this issue is blocked Gibbs sampling which

rather than sampling the individual variables, it samples from a group of random

variables that are assumed to be highly correlated [70, 71]. Another method to im-

prove the convergence rate of Markov chain is auxiliary variable methods [60, 62]. The

auxiliary variable methods introduce an auxiliary random variable u to sample from

the joint distribution p(x, u) rather than the target distribution p(x). Marginalizing

the joint distribution leads to sampling from the target distribution p(x).

The Expectation Minimization Algorithm and Gibbs Sampling

The Expectation Minimization (EM) algorithm first introduced by Dempster to ad-

dress the problem of maximizing the likelihood of incomplete data [72]. The original

method is not considered a stochastic approach for parameter estimation. However,

there is a close relationship between the EM and Gibbs sampling algorithms.

Suppose x1, . . . , xN ∼ p(x|θ) where p(x|θ) is the density of incomplete data. The
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idea is to use the Bayes rule and augment latent variables z’s such that (x, z) ∼

p(x, z|θ) is drawn from the complete data density. The EM algorithm aims to estimate

the unknown parameters θ via maximum likelihood (MLE), that is,

θ̂MLE = argmax
θ

log p(x|θ) = argmax
θ

log

∫
z

p(x, z|θ)dz (2.66)

or estimate the parameters through maximum a posteriori (MAP), that is,

θ̂MAP = argmax
θ

log

∫
z

p(x, z, θ)dz = argmax
θ

(
log

∫
z

p(x, z|θ)dz + log p(θ)
)
. (2.67)

However, maximizing the likelihood is often troublesome since the integral is

taken over a multimodal distribution. Instead, we find a lower bound and maxi-

mize the lower bound to be the closest to the log-likelihood. Consider the following

log-likelihood function

log p(x|θ) = log

∫
z

p(x, z|θ)dz = log

∫
z

q(z)
p(x, z|θ)
q(z)

dz

= logEq

[p(x, z|θ)
q(z)

]
(2.68)

≥ Eq log
[p(x, z|θ)

q(z)

]
= Eq log p(x, z|θ)− Eq log q(z) = ELBOq(θ)

where the inequality is due to the Jensen’s inequality. The ELBOq(θ) is called the

variational lower bound. Equality in Equation (2.68) holds if and only if

q(z) = log
[p(x, z|θ)

q(z)

]
(2.69)

is affine. This condition is obtained if q(z) = p(x|z, θ). The inequality in Equa-

tion (2.68) is the fundamental equation in variational methods. The EM algorithm

via MLE maximizes the log-likelihood in two steps as a coordinate ascent iteration
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on the log-likelihood [73]:

E-Step: qk+1 = argmax
q

ELBOq(θ
k)

M-Step: θk+1 = argmax
θ

ELBOqk+1(θ)

(2.70)

It can be shown that the E-Step is equivalent to set qk+1(z) = p(z|x, θk). Intu-

itively speaking, the EM algorithm alternates between updating q and θ first by

setting q(z) = p(z|x, θ) to obtain log(p(x|θ)) = ELBOq(θ) for a fixed θ and then by

maximizing ELBOq(θ) with respect to θ for a fixed q. This method converges to a

local maxima. Maximization in Equation (2.67) is analogous to the aforementioned

method. However, the M-Step is a MAP estimate rather than a MLE estimate.

Although the EM algorithm is not a stochastic algorithm, it is linked to the two-

stage Gibbs sampling algorithm in the sense that rather than maximizing in the steps

of the EM algorithm, we sample from the conditional distribution.

Application of EM Algorithm in Bayesian Inference

We can exploit the EM algorithm to estimate the mode of the posterior distribution,

p(θ|x). Suppose p(θ) is the prior on the unknown parameters θ. Bayes’ rule suggests

log p(θ|x) = log p(x|θ) + log p(θ)− log p(x)

= ELBOq(θ) + log p(θ)− log p(x).

(2.71)

For all distribution q, one can rewrite Equation (2.68) as follows:

ELBOq(θ) =

∫
z

q(z) log
[p(x, z|θ)

q(z)

]
dz −

∫
z

q(z) log
[p(z|x, θ)

q(z)

]
dz

= L(q, θ) + KL(q, pz|x,θ)
(2.72)

where L(q, θ) equals to the negative free energy and KL(·, ·) is the Kullback-Leibler

divergence [73]. By substituting Equation (2.72) into the Equation (2.71), we can use

the EM algorithm to find the posterior mode.
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Figure 2.12: (a) Graphical Model Representing Finite Mixture Model (K-clusters)

π ∼ Dir(α/K, . . . , α/K) and θi ∼ H. (b) Graphical Model Representing K-finite

Mixture Model Where G Is Marginalized.

Gibbs Sampler for Finite Mixture Models

Finite mixture models propose a clustering method for heterogeneous unknown pop-

ulations. Let cj ∈ {1, . . . , K} be the latent cluster indicator where K unique clusters

is assumed. For the observed data x = {xj}Nj=1, the simplest mixture model given the

mixing distribution π and cluster distribution H is summarized as

cj|π ∼ π

xj|cj ∼ p(θcj)

(2.73)

where π = (π1, . . . , πK)|α ∼ Dir(α/K, . . . , α/K) and θ ∼ H. Note that θj is the jth

cluster parameter. Equation (2.73) can be re-written as follows:

p(x|π, {θj}Kj=1) =
K∑
j=1

πjp(x|θj). (2.74)

Using Bayes’ rule and Equation (2.74)), the Gibbs sampler for the finite mixture
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model is given by

p
(
cj = k|c−j, x, π, {θj}Kj=1

)
∝ πkp(xj|θk) (2.75)

π|c1, . . . , cK , α ∼ Dir( α
N1

, . . . ,
α

NK

), Nj =
N∑
i=1

1ci(j) (2.76)

p(θk = θ|π, c1, . . . , cK , x, α) ∝ h(θ)
∏

{j:cj=k}

p(xj|θ) (2.77)

where c−j in Equation (2.75) indicates all cluster indicators with the exception of cj

and h(θ) is the density associated with the distribution H. This method is not as

efficient as collapsed Gibbs sampling [52]. We study an efficient implementation of

the finite mixture models next.

2.5.5 Rao-Blackwellization

Rao-Blackwellization is a general method to construct a tractable Monte Carlo

method to improve the estimator. This method is based on the Rao-Blackwell theorem

[41, 74] which reduces the variance of an estimator by conditioning.

Theorem 6. (Rao-Blackwell Theorem) Suppose x and z are independent ran-

dom variables and T (x, z) is a scaler statistics. Then,

Varpz(Epx [T (x, z)|z]) ≤ Varpx,z(T (x, z)) (2.78)

in square error loss.

The variance reduction guaranteed in Theorem 6 can be used in sampling al-

gorithms, e.g., Gibbs sampler, to much more rapidly estimate Ep[h(x)]. In other

words, if T (x) is an estimator of Ep[h(x)] and x can be simulated from distribution

p(x, z) such that it satisfies the marginal distribution of p(x), then the estimator

T ∗(X) = Ep[T (x)|z] has the smaller variance. One can apply the same results for z

[42, 74]. We construct a tractable Monte Carlo method in the next section in detail.
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Rao-Blackwellized Sampling Schemes

Let p(x) be the target distribution. We introduce an auxiliary random variable z

with joint distribution p(x, z) such that the marginal distribution satisfies p(x) =∫
z
p(x, z)dz. The idea is to sample from the joint distribution rather than the marginal

distribution. To this end, suppose the conditional density p(x|z) has a tractable ana-

lytic form and N samples {(xj, zj)}Nj=1 are drawn from the joint distribution p(x, z).

For the statistics T (x, z), the expected values is estimated as

EPx,z [T (x, z)] ≈
1

N

N∑
j=1

T (xj, zj) = EP ∗
x,z
[T (x, z)] (2.79)

where P ∗ is the empirical distribution. Assuming p(x|z) is tractable the alternative

estimator is

Epx,z [T (x, z)] =

∫
z

[ ∫
x

T (x, z)p(x|z)dx
]
p(z)dz

≈ 1

N

N∑
j=1

∫
x

T (x, zj)p(x|zj)dx = EP ∗
z
EPx|z [T (x, z)|z].

(2.80)

These estimators are both unbiased estimators; therefore, due to Rao-Blackwell theo-

rem the latter estimator has s lower variance than the former. Intuitively, the second

estimator is more concentrated and has less random variables over which to iterate

at each step. Generally speaking, Rao-Blackwellization may improve the efficiency

of the samplers like Gibbs sampler and may quickly estimate parameters with high

posterior probability [42, 75, 76]. While Rao-Blackwellizaion improves the accuracy

of samplers, convergence diagnostic is critical [42].

Rao-Blackwellized Gibbs Sampling for Finite Mixture Model

To show the design of Rao-Blackwellized samplers, we directly compute the predic-

tive distribution of cluster assignments. Assume a K-component mixture model as
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Equation (2.73). To obtain a collapsed Gibbs sampler, π and θ are marginalized:

p(cj = k|c−j, x, α) ∝
α
k
+N−j

k

α +N − 1
p(xj|{xi : i ̸= j, ci = k}) (2.81)

where N−j
k is the number of data currently assigned to cluster k excluding the ith

data point, and the predictive likelihood

p(xj|{xi : i ̸= j, ci = k}) ∝
∫
Θ

h(θ)p(xj|θ)
∏

{i ̸=j:ci=k}

p(xi|θ)dθ. (2.82)

Computing the predictive likelihood Equation (2.82) is straightforward when p and h

are conjugate priors, for instance, Gaussian cluster distribution result in a Student’s

t-distribution predictive distribution [42, 52, 77, 78].

2.5.6 Slice Sampling

While MCMC methods presented in previous sections rely on a random walk

process, slice sampling introduces an important class of Monte Carlo methods which

is more model dependent. These MCMC methods may not adapt the local properties

of the density function. On the contrary, slice sampling methods employ the local

properties of densities to simulate [79].

Theorem 4 states that sampling from density p(x) is equivalent to sampling uni-

formly on E(p) = {(x, u) : 0 ≤ u ≤ p(x)}. One way to sample on E(p) is via random

walk on the set. Neal showed that a natural way is to move towards one direction at

a time, that is, moving along the u-axis which is the conditional distribution

u|x = x ∼ Unif({u : u ≤ p(x)}) (2.83)

and then moving along x-axis which corresponds to the conditional distribution

x|u = u′ ∼ Unif({x : u′ ≤ p(x)}). (2.84)

This procedure is depicted in Figure 2.13. Note that sampling from Equation (2.84)
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Figure 2.13: Slice Sampler.

can be intractable as x-dimension may grow. To address this issue, one can decompose

the density p(x) into some positive functions pj, j = 1, 2, . . . , L:

p(x) ∝
L∏

j=1

pj(x) (2.85)

and apply the aforementioned slice sampling method to each pj(x). This generalized

algorithm is summarized in Algorithm 5.

Algorithm 5: Slice Sampling.
At iteration k

for j = 1, . . . , L do

ukj ∼ Unif
(
[0, pj(x

k−1)]
)

end for

xj ∼ Unif
(
{x : ukj ≤ pj(x), j = 1, 2, . . . L}

)
Repeat till convergence

2.5.7 Variational Inference Methods

One of the main problems in statistics, machine learning, and engineering is to

approximate posterior probability densities in Bayesian models. These methods are
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an alternative to MCMC sampling methods which tend to converge faster for high-

dimensional data [38].

Suppose x = {x1, . . . xN} and z = {z1, . . . zM} are the sets of observed variables

and latent variables, respectively. We aim to estimate the conditional density p(z|x)

to do inference. The core idea behind the variational method is to select a varia-

tional family of distribution D over latent variables, q(z|ν) ∈ D for some variational

parameter ν, and then optimize this distribution to be the closest to the posterior

distribution p(z|x) [63]. The best candidate, q∗(z|ν), is chosen in KL distance, i.e.,

q∗(z|ν) = argmin
q(z|ν)∈D

KL(q(z|ν), p(z|x)) (2.86)

where KL(q(z|ν), p(z|x)) is written as (see Section 2.5.4)

KL(q(z|ν), p(z|x)) = −ELBOq + log p(x)

= −
(
Eq(z|ν)[log p(x, z)]− Eq(z|ν)[q(z|ν)]

)
+ log p(x).

(2.87)

The ELBOq and log p(x) are the evidence lower bound and the log evidence, respec-

tively. Note that the log evidence is a constant with respect to q, and hence optimizing

KL distance is the equivalent to maximizing the ELBO. The advantage of maximizing

the ELBO rather than minimizing the KL distance is that the ELBO can analytically

be computed for a proper choice of q where the evidence (or equivalently log evidence)

cannot simply be computed. It is easy to verify that the EM algorithm discussed in

Section 2.5.4 is a special case of variational Bayes method where in E-Step the ELBO

is maximized.

The Mean-Field Variational Family

There are various ways to choose the variational family of distribution D to ap-

proximate the posterior distribution. The mean-field variational family is a class of

distributions that is useful for high-dimensional data.
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One of main the choices for q to make the posterior distribution tractable is to

assume that the latent variables are independent, i.e.,

q(z|ν) =
M∏
j=1

q(zj|ν). (2.88)

The above variational family assumes a complete factorization of the distribution over

each latent variable. Assuming independency, the ELBO can be re-written as

ELBOq =
M∑
j=1

(
Eqj(z|ν)[log p(zj|zj−1, xn)]− Eqj(z|ν)[q(zj|ν)]

)
. (2.89)

Given this family of distributions, we can employ the coordinate ascent optimiza-

tion method to maximize the ELBO. However, the coordinate ascent optimization

may not converge to the local maxima since the convexity of ELBO is not guaran-

teed. Using the Lagrange multiplier method, the coordinate ascent update of q(zj|ν)

is given by

q∗(zj|ν) ∝ expEqj [log p(zj, z−j, x)]. (2.90)
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Chapter 3

DEPENDENT DIRICHLET PROCESS MODELING AND IDENTITY

LEARNING FOR MULTIPLE OBJECT TRACKING

The goal of any multi-object tracking model is to (A) successfully estimate the tra-

jectory of each object given the observation and (B) learn the number of the objects

at each time step. Given the state vector configurations at the previous time step

and current time observations, we propose nonparametric algorithms to satisfy (A),

(B) [80, 81]. In this chapter, we develop probabilistic methods for estimating the

trajectory of each object as well as learning the object cardinality using received mea-

surements. We adapt the Bayesian nonparametric models introduced in Chapter 2

to accomplish the aforementioned tasks.

To fully develop a graphical model describing the multiple object tracking, we

need to take the following processes into account upon which we model this problem:

(a) Survival and transition; (b) Death; and (c) Birth. We develop algorithms that

infer object identity and accurately track each object using a measurement set that

is collected by sensors. In Section 3.1, we formulate the model constraints and condi-

tions under which the dependency among the objects is captured. In Section 3.2, we

construct a class of nonparametric time-dependent prior on the object state parame-

ters. Section 3.3 discusses the inference methods based on the received measurements

and constructed prior. A Markov chain Monte Carlo (MAMC) sampling method

is proposed and conditions under which the convergence is guaranteed is provided.

Section 3.4 discusses the consistency and contraction rate of the proposed methods

and show that the contraction rate matches the optimal frequentist rate (minimax

rate). We conclude in Section 3.5 with simulations demonstrating the performance of
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introduced methods and compare their performance in multi-target tracking applica-

tion. Portions of these results were presented at the Asilomar conference on Bayesian

inference [80, 82] and at the IEEE Transaction on Signal Processing [83].

3.1 Problem Formulation

We consider the problem of multiple object tracking with time-varying number

of objects remaining, entering, and/or leaving the field of view (FOV). Let the time-

dependent object and measurement cardinality at time step k be Nk and Mk, re-

spectively. We define Xk = {x1,k, . . . ,xNk,k} and Zk = {z1,k, . . . , zMk,k} to be the

collection of object state vectors taking values in state space XNk and the set of ob-

servations taking values in observation space ZMk at time k, respectively. Assume

space X and Z are Polish spaces. Note that the time-dependent object cardinality

Nk is unknown and we aim to learn this unknown upon receiving the measurements

at each time step. Given a state vector at time (k− 1), three possible situations may

occur at time k:

(a) Survival and Transition: the object remains in the FOV with probability

P·,k|k−1 and its state transitions to the time step k according to the transition

probability kernel Qθ·,k(x·,k−1, ·) for unknown parameters θ.

(b) Death: the object leaves the FOV with probability with probability 1−P·,k|k−1.

(c) Birth: new object enters the scene.

We assume each measurement is generated by only one object and also the mea-

surements are independent of one another. An object with state vector xℓ,k ∈ Xk

generates an observations zl,k ∈ Zk corresponding to the likelihood p(zl,k|xℓ,k). We

employ Bayesian nonparametric methods to model uncertainties in the multiple ob-

ject tracking. The nonparametric models are versatile tools to model a prior, however
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it cannot capture evolution over a period of time. Therefore, we need a more powerful

tool to capture (a)-(c) over time. To model a collection of random distributions that

are related but not identical, we define dependent nonparametric models to not only

satisfies (a)-(c) but also captures time dependency. In what follows, we introduce a

class of time-dependent nonparametric object-state prior models that conditioned on

the process at time (k − 1) satisfies the following at time k:

A. Survival: Given the ℓth state at time k−1, xℓ,k−1, we define Pℓ,k|k−1 : Ω→ [0, 1]

to be the survival probability of state ℓ at time k − 1.

B. Transition: Let ν : Ω × B → R+ be the transition kernel. For each survived

state with parameter θ⋆ℓ,k−1 at time (k − 1), the parameter is evolved through

θℓ,k ∼ ν(θ⋆ℓ,k−1, ·). We refer to these parameters as cluster parameters.

C. Trajectory: Given the measurements, update the marginal (predictive) distri-

bution.

Employing (A) - (C) provides nonparametric frameworks such that an object may per-

haps disappear or remain and evolve over time. The evolution of the object through-

out the time is recorded and is updated based on observing the measurements, and

thus estimating the trajectory.

3.2 Evolutionary Time-Varying Prior Construction

In this section, we propose an evolutionary time-dependent model for multiple

object tracking using dependent Dirichlet processes (DDP) to capture the full depen-

dency among the objects. The marginal distribution of this dependent process is a

Dirichlet process so that inference is simple and can efficiently be implemented. The

proposed DDP evolutionary Markov modeling (DDP-EMM) approach can be used
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to learn multiple object clusters or labels over related information. The DDP-EMM

algorithm is different from the random finite set (RFS) based algorithms for charac-

terizing multiple object states and measurements [30, 84]. In particular, our approach

directly incorporates learning multiple parameters through related information, in-

cluding object labeling at the previous time step or labeling of previously considered

objects at the same time step. In particular, the choice of the DDP as a prior on

the object state distributions is based on the following dynamic dependencies in the

state transition formulation: (I) the number of objects present at time step k not

only depends on the number of objects that were present at the previous time step

(k − 1) but it also depends on the popularity of the objects at time k (preferential

attachment), (II) the clustering index of the parameter state of the ℓth object at

time step k depends on the clustering index of the parameter states of the previous

(ℓ− 1) objects at the same time step k, and (III) a new object entering the scene is

modeled without requiring any prior knowledge on the expected number of objects.

We show that this process is exchangeable. In particular, the exchangeable partition

probability function (EPPF) depends only on the size of the clusters. We may thus

assume that the ℓth object is the last one to consider for clustering. The DDP-EMM

algorithm is discussed next in detail and summarized in Algorithm 6. In particular,

we provide: (i) the information available at time step (k−1), (ii) how this information

transitions from time step (k − 1) to time step k, and (iii) how the state transition

stochastic model is constructed at time step k to form the multiple object state prior.

Available Parameters at time (k − 1)

The following set of parameters are assumed to be available at time step (k − 1):

• Xk−1 = {x1,k−1, . . . ,xNk−1,k−1}, where xℓ,k−1, ℓth object state vector, ℓ =

1, 2, . . . , Nk−1
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• Θk−1 = {θ1,k−1, . . . ,θNk−1,k−1}, where θℓ,k−1, ℓth object-state cluster parameter

vector associated with ℓth object

• Θk−1 = {θ1,k−1, . . . ,θNk−1,k−1}, collection of the cluster parameters

• Dk−1 = # of unique DP clusters used as state prior

• Θ⋆
k−1 = {θ⋆

1,k−1, . . . ,θ
⋆
Dk−1,k−1}, collection of the unique parameters such that

Θ⋆
k−1 ⊆ Θk−1

• V ⋆
k−1 = vector of size Dk−1 where

[
V ⋆
k−1

]
i

is the number of objects in the ith

cluster i= 1, . . . , Dk−1.

The induced cluster assignment indicator sequence at time k − 1 is defined as

Ck−1 = {c1,k−1, . . . , cDk−1,k−1}, (3.1)

where ci,k−1 ∈ {1, . . . , Dk−1}. Let CAk−1 be the collection of clustering assignment

up to time (k − 1), i.e., CAk−1 = {C1, . . . , Ck−1}.

Transitioning from time (k − 1) to time k

When transitioning from time step (k − 1) to time step k, it is assumed that the

object with the state xℓ,k−1 ∈ Xk−1 may disappear from the FOV with probability

1 − Pk|k−1 or can stay in the scene with probability Pk|k−1 and transition to a new

state according to the transition kernel Qθℓ,k
(xℓ,k−1, ·). Let Θ⋆

k|k−1 be the set of unique

transitioned parameters to time step k. We assume if all the objects in a cluster leave

the scene the corresponding cluster no longer exists. Therefore, the Bernoulli process

associated with appearance/disappearance of the objects during transition from time

(k − 1) to time k is defined as:

Bk−1 = {s1,k|k−1, . . . , sNk−1,k|k−1} (3.2)
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where sℓ,k|k−1 ∼ Ber(Pℓ,k|k−1), where Ber(p) indicates a Bernoulli distribution with

mean p. Note that sℓ,k|k−1 = 1 indicates the survival of the ℓth object and transitioning

to time k. Let the size vector V ⋆
k|k−1 be the vector of size Dk−1 with entries indicating

the size of each cluster after transitioning to time k. Note that some of the elements

of the size vector may be zero. Since a cluster of size zero suggests that the cluster

no longer exists, we may eliminate zeros in V ⋆
k|k−1. We thus define the cluster survival

indicator corresponding to nonempty clusters as

CSk|k−1 = {λ1,k|k−1, . . . , λDk−1,k|k−1} (3.3)

where λj,k|k−1 ∈ {0, 1}. Note that
[
V ⋆
k|k−1

]
j
= 0 implies λj,k|k−1 = 0 and if there is

at least one object in the jth cluster, then λℓ,k|k−1 = 1. Note that the number of

non-zero clusters that transitions to time k is Dk|k−1 =
∑

j λj,k|k−1.

DDP Prior Construction at time k

The DDP-EMM algorithm employs the parameters from time (k− 1) and the transi-

tion step to estimate the state distribution. Each cluster with λj,k|k−1 = 1, j ≤ Dk|k−1,

a non-zero cluster, transitions to time k according to the transition kernel ν(θ⋆
j,k−1, ·).

Assume θj,k is the jth cluster parameter at time k, we construct a dependent Dirichlet

process as follow:

Case 1: The ℓth object is assigned to one of the survived and transitioned clusters

from time (k − 1) which is occupied by at least one of the previous ℓ − 1

previous objects. The survival of each object is determined by the survival

indicator s·,k|k−1 ∈ Bk−1. Due to partition exchangeability, we may assume the

ℓth object is the last one to cluster. The object selects one of these clusters

with probability:
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Π1
j,k(Select jth cluster, j ≤ Dk−1|θℓ−1

1,k ) =

[Vk]j +
Dk−1∑
i=1

[
V ⋆
k|k−1

]
i
λi,k|k−1δi(cj,k)

gℓ−1,k−1

(3.4)

where θℓ−1
1,k = {θ1,k, . . . ,θℓ−1,k}, |A| is the cardinality of set A, and δi(·) is the

Dirac delta function, defined as δi(A)= 1 if i∈A and δi(A)= 0 if i/∈A. The

normalization term in Equation (3.4) is given by

gℓ−1,k−1 = (ℓ− 1) +
ℓ−1∑
j

Dk−1∑
i=1

[
V ⋆
k|k−1

]
i
λi,k|k−1δi(cj,k) + α

where α>0 is the concentration parameter.

Assume the space of states, X , is Polish, given Equation (3.4) state distribution

is drawn from as:

p(xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk) = Qθℓ,k

(xℓ,k−1,xℓ,k)f(xℓ,k|θℓ,k) (3.5)

for some density f that describes the physical model.

Case 2: The ℓth object is assigned to one of the survived and transitioned clusters from

time (k− 1). However, this cluster has not yet been assigned to any of the first

ℓ− 1 objects. The object selects such a cluster with probability:

Π2
j,k(Select jth cluster that has not been selected yet, j ≤ Dk−1|θℓ−1

1,k ) = (3.6)
Dk−1∑
i=1

[
V ⋆
k|k−1

]
i
λi,k|k−1δi(cj,k)

gℓ−1,k−1

where gℓ−1,k−1 is defined as in Case 1. Note that xℓ,k−1 and θ⋆
ℓ,l−1 transition

to time k using transition kernels Qθℓ,k
(xℓ,k−1, ·) and ν(θ⋆

ℓ,k−1, ·), respectively.
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Assuming the state space X is Polish and given Equation (3.6), the state dis-

tribution is:

p(xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk) = (3.7)

Qθℓ,k
(xℓ,k−1,xℓ,k)ν(θ

⋆
ℓ,k−1,θℓ,k)f(xℓ,k|θℓ,k)

for some density f that best describes the physical model.

Case 3: The object does not belong to any of the existing clusters; a new cluster parameter

is drawn with probability:

Π3
k(Creating new cluster|θℓ−1

1,k ) =
α

gℓ−1,k−1
(3.8)

The state distribution thus may be drawn as:

p(xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk) =

∫
θ
f(xℓ,k|θ)dH(θ) (3.9)

for some density f according to the physical model and the base distribution H on

parameters. Algorithm 6 summarizes this process.

This model holds the following properties:

(A) This model allows for modification of both cluster location and dependent

weights,

(B) This model ensures that the conditional distribution of DDP at time k given

the DDP at time (k − 1) is a Dirichlet process,

(C) This model records the labels since it is defined in the space of partitions,

(D) There exist a simple MCMC inference method to learn the trajectories based

on this dependent statistical model.

Properties (A)-(D) are demonstrated in detail in the following theorems.
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Algorithm 6: DDP-EMM: Time-Dependent Arrival and Survival Process
At time (k − 1)
• xℓ,k−1: ℓth object state parameter vector, ℓ= 1, . . . , Nk−1

• Dk−1: # of unique DP clusters used as priors
• V ⋆

k−1: vector of size Dk−1 where
[
V ⋆
k−1

]
i

is # of objects in ith cluster
• Θ⋆

k−1 = {θ
⋆
1,k−1, . . . ,θ

⋆
Dk−1,k−1}: Cluster sequence of unique cluster parameters

• Bk−1 : Bernoulli collection of appearance and disappearance association
• Ck−1 : cluster assignment

Transitioning from time (k−1) to k

Input: Pℓ,k|k−1, transition kernel Qθℓ,k
(xℓ,k−1,xℓ,k)

Draw ℓth state survival indicator sℓ,k|k−1∼Ber(Pℓ,k|k−1)

If sℓ,k|k−1 = 1, ℓth object survives w.p. Pℓ,k|k−1 and transitions according to the
transition kernel xℓ,k ∼ Qθℓ,k

(xℓ,k−1,xℓ,k)

Form the object survival indicator set: CSk|k−1 = {s1,k|k−1, . . . ,sNk−1,k|k−1}
• Compute the # of survived DP clusters after transitioning: Dk|k−1

• Form the size vector with entries
[
V ⋆
k|k−1

]
j
, j = 1, . . . , Dk|k−1

At time k

Set Dk =Dk|k−1

for ℓ = 1 to Dk do
Set [Vk]ℓ =

[
V ⋆
k|k−1

]
ℓ

if ℓ ≤ Dk and ℓth cluster already selected then
Draw θℓ,k ∼ ν(θℓ,k−1, ·) for cluster associated to ℓth object state w.p. Π1

j,k

Draw xℓ,k|θℓ,k for ℓth object state from Equation (3.5)

else if ℓ ≤ Dk and ℓth cluster not yet selected then
Draw θℓ,k ∼ ν(θℓ,k−1, ·) for cluster associated to ℓth object state w.p. Π2

ℓ,k

Draw xℓ,k|θℓ,k for ℓth object state from Equation (3.7)

else
Draw θℓ,k ∼ H for new cluster associated toℓth object state w.p. Π3

k

Draw xℓ,k|θℓ,k for ℓth object state from Equation (3.9)
end if

end for
return {x1,k,x2,k, . . . , . . .}, {θ1,k,θ2,k, . . . , . . .}
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Theorem 7. Suppose that the space of state parameters is Polish. The dependent

Dirichlet process in cases (1)-(3) define a Dirichlet process at each time step given

the previous time configurations, i.e.,

DDP-EMMk|DDP-EMMk−1 ∼ DP
(
α,

∑
Θk

Π1
j,kδθℓ,k

+
∑

Θ⋆
k|k−1

\Θk

Π2
j,kν(θ

⋆
ℓ,k−1,θℓ,k)δθℓ,k

+Π3
kH

)
.

(3.10)

Proof. To prove this theorem we need to prove (A1) The conditional distribution is

a Dirichlet process, (A2) the base distribution is

∑
Θk

Π1
j,kδθℓ,k

+
∑

Θ⋆
k|k−1

\Θk

Π2
j,kν(θ

⋆
ℓ,k−1,θℓ,k)δθℓ,k

+Π3
kH.

Propositions 4. (Lemma 3.2 [85]) Let S be a countable set or an open set in Rn,

and FS ∼ DDP . Then, for every s ∈ S, Fs ∼ DP .

Proposition 4 guarantees that (A1) holds. Thus, it is sufficient to prove (A2). The

base distribution in the Dirichlet process is the mean of the process and therefore is

the distribution from which parameters are drawn. Case (1) implies that θ·,k at time

k has degenerate distribution δθℓ,k
for all ℓ that are survived and transitioned to time

k. Case (2) implies that θ·,k has the same distribution as one of the parameters at

previous time step (k−1) that has yet to transition to time k; hence, the distribution

is proportional to the transition kernel, i.e., ν(θ⋆
ℓ,k−1,θℓ,k)δθℓ,k

for all ℓ. Case (3)

corresponds to θ·,k drawn from the base distribution H. Probability of selecting

each of these cases is given in Equation (3.4), Equation (3.6), and Equation (3.8),

respectively. Note that it is straightforward to show these are exactly the features

that Sethuraman uses to describe the Dirichlet process [48]. ■

Theorem 7 guarantees the conditional distribution given the configurations at

previous time step and identifies the probability of choosing each parameter; thus,
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θℓ,k−1 θℓ,k|k−1 θℓ,k

θℓ,k+1

ℓ = 1, . . . , Nk−1 ℓ = 1, . . . , Dk|k−1
∞

ℓ = 1, . . . , Dk+1|k

Xk−1 Xk

Zk−1 Zk

Figure 3.1: Graphical Model Capturing the Temporal Dependence, DDP-EMM Con-

struction.

we can estimate the object density. The following theorem summarizes the density

estimation:

Theorem 8. Assume that the space of object state parameters is separable and

complete. Given the past configurations, the state distribution

p(xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk)

is given by
Qθ(xℓ,k−1,xℓ,k)f(xℓ,k|θ⋆

ℓ,k) If case 1 happens

Qθ(xℓ,k−1,xℓ,k)ν(θ
⋆
ℓ,k−1,θℓ,k)f(xℓ,k|θ⋆

ℓ,k) If case 2 happens∫
θ
f(xℓ,k|θ)dH(θ) If case 3 happens

(3.11)

for some density f that is based on the physical model.

Proof. The proof follows directly from the problem statement and Theorem 7. If

case (1) happens: xℓ,k−1 transitions to time k according to the probability transition
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kernel Qθℓ,k
(xℓ,k−1, ·) and then is assigned to one of the existing clusters that is already

used by one of the objects, and hence the corresponding density is f(xℓ,k|θℓ,k). If

case (2): xℓ,k−1 and the cluster parameter θ⋆
ℓ,k−1 transition to time k according to

transition kernels Qθℓ,k
(xℓ,k−1, ·) and ν(θ⋆

ℓ,k−1, ·), respectively, and therefore the object

is assigned to the this cluster. If case (3): new object does not belong to any of the

previously assigned clusters, i.e., a new object emerges to the scene. In this case, we

generate a new parameter from the base distribution H and assign the object to the

newly created cluster. ■

The graphical model describing the overall temporal dependence is depicted in

Figure 3.1. In the next section, we discuss how we integrate this constructed prior on

the states with the received measurements to learn the object cardinality and infer

the predictive distribution to estimate the tracks.

3.3 Learning Model

The DDP-EMM, as discussed in Algorithm 6, provides a prior on the object state

parameter distributions at time step k. We update our belief using the available

measurement vectors at each time step, e.g., Zk = {zl,k, l= 1, . . . ,Mk} at time k.

The posterior distribution is then used to estimate the trajectory of objects and

learn the time-dependent object cardinality. It is assumed that each measurement is

independent of each other and only generated from one object. Theorem 7 implies that

we may exploit an infinite mixture model to estimate the density of the measurements

and cluster them. Note that the measurement vectors are unordered meaning the lth

measurement is not necessarily associated to the ℓth object state, l ̸= ℓ. As the DDP

is used to label the object states at time step k, the infinite mixture model can be

used to learn and assign a measurement to its associated object identity. In order
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Algorithm 7: Infinite Mixture Model to Cluster and Track Objects
Input: Measurements: {z1,k, . . . , zMk,k}
Output: Nk, cluster configurations, and posterior distributions

From construction of prior distribution
At time k
for ℓ = 1 to Nk do

Sample {θ1,k, . . . ,θNk,k} and {x1,k, . . . ,xNk,k} as in Algorithm 6

end for

for l = 1 to Lk do
Draw zl,k|xℓ,k,θℓ,k from Equation (3.12)

end for
return Ck : induced cluster assignment indicators
Update: CAk = CAk−1 ∪ Ck: set of cluster assignments up to time k
return Nk, CAk, and posterior of zl,k|xℓ,k,θℓ,k

to create the mixtures of distributions, we use the DDP-EMM prior in Algorithm

6. We utilize the generated DDP as a mixing distribution to compute the posterior

distribution from the likelihood distribution p(zl,k|θℓ,k,xℓ,k) and update the object

state estimates. In particular, p(zl,k|θℓ,k,xℓ,k) is drawn according to the following

hierarchy:

θℓ,k ∼ DDP-EMM(α,H)

xℓ,k | θℓ,k ∼ F (θℓ,k) (3.12)

zl,k|θℓ,k,xℓ,k ∼ R(zl,k|θℓ,k,xℓ,k)

where F (θℓ,k) is a distribution whose density follows Equation (3.5), Equation (3.7),

Equation (3.9), and R(zl,k|θℓ,k,xℓ,k) is a distribution that depends on the measure-

ment likelihood function. Algorithm 7 summarizes the infinite-dimension mixture

model implementation to cluster the measurements and track the objects. Algo-

rithms 6 and Algorithm 7, together with MCMC sampling methods, constitute the
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overall DDP-EMM multiple object tracking algorithm. In the next section, sampling

algorithms are provided in detail.

3.3.1 Bayesian Inference: Gibbs Sampler

Identifying the labels in tracking multiple objects and estimating the density pa-

rameters using DDP-EMM is a state-of-the-art method. However, computing the

explicit posterior, and therefore the trajectory is impossible. The development of

MCMC methods to sample form the posterior distribution has made this issue com-

putationally feasible. The Gibbs sampler is an MCMC method to sample from a

density, without directly requiring the density, by using the marginal distributions.

The Gibbs sampler provides sample from the posterior distribution from the finite

dimensional representation rather than sampling from infinite dimension representa-

tions where one can use slice sampling methods.

We outline the Gibbs sampler inference scheme for our model. We use a Gibbs

sampling technique to iterate between sampling the state variables and the set of

dynamic DDP parameters. We propose a method that can handle conjugate prior.

This method can simply be generalized to a non-conjugate prior [52]. A key feature

of this modeling is the discreetness of the DDP [85–87]. We outline this scheme next.

Predictive Distribution: The Bayesian posterior can be solved through the follow-

ing:

P (xℓ,k|Zk) =

∫
θ

P (xℓ,k|Zk,θ)dG(θ|Zk) (3.13)

where G(θ|Zk) is the posterior distribution of the parameters given the observations.

Note that we have p(xℓ,k|Zk,θ) = p(xℓ,k|θ), and hence can be evaluated as follows:

p(xℓ,k|Θ) =

∫
p(xℓ,k|θℓ,k)dπ(θℓ,k|Θ) (3.14)

where π(θℓ,k|Θ) is posterior distribution of θℓ,k given the rest of parameters. The
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distribution of π(θℓ,k|Θ) is given by

π(θℓ,k|Θ) =
∑

θ∈Θk−{θℓ,k}

Π1
j,kδθ(θℓ,k) +

∑
θ∈Θ⋆

k|k−1
\Θ

θ≠θℓ,k

Π2
j,kν(θ

⋆
ℓ,k−1,θℓ,k)δθ(θℓ,k) + Π3

kH(θℓ,k).

(3.15)

To compute Equation (3.13), we need to calculate the parameter posterior given

observations, G(θ|Zk). However, direct computation of Equation (3.13) is extremely

computationally expensive due to the complexity of G(θ|Zk) [88]. Instead, we propose

a Gibbs sampling approximation of this distribution. The following distribution is

obtained by combining the prior with the likelihood in order to use for Gibbs sampling.

Theorem 9. (Gibbs Sampler) In the model Equation (3.12) the conditional posterior

distribution is given by

θℓ,k | θ−ℓ,k,Zk ∼
|Ck|∑
j=1

ζj,k δθj,k
(θℓ,k) +

Dk|k−1∑
j=1
j /∈Ck

βj,k Kj,k(θℓ,k) + γℓ,kHℓ(θℓ,k), (3.16)

where θ−ℓ,k by convention is the set {θj,k, j ̸= ℓ}, where

ζj,k =

[Vk]j +
Dk|k−1∑
i=1

[
V ⋆
k|k−1

]
i
λi,k|k−1δi(cj,k)

gℓ−1,k−1

R(zℓ,k|xj,k,θj,k)

βj,k =

Dk|k−1∑
i=1
i/∈Ck

[
V ⋆
k|k−1

]
j
λj,k|k−1

gℓ−1,k−1

(3.17)

|Ck|∑
j=1

ζj,k +

Dk|k−1∑
j=1
j /∈Ck

βj,k + γℓ,k = 1

where gℓ−1,k−1 = (ℓ − 1) +
∑Dk|k−1

i=1

[
V ⋆
k|k−1

]
i
λi,k|k−1 + α, α>0. Moreover, Kj,k =

R(zℓ,k|xj,k,θj,k) and dHℓ(θ) ∝ R(zℓ,k|xj,k,θ)dH(θ) where H is the base distribution

on θ.
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Proof. The proof of Theorem 9 follows the standard Bayesian nonparametric methods.

We know that the base measure in DP(α, H) is the mean of the Dirichlet prior. The

following lemma generalizes this fact.

Lemma 2. (Ferguson 1973, [47]) If G ∼ DP(α,H) and g is any measurable function,

then

E
[ ∫

g(θ)dG(θ)
]
=

∫
g(θ)dH(θ)

Suppose that A and B are measurable sets, then

P (θℓ,k ∈ A, zℓ,k ∈ B|θ−ℓ,k, z−ℓ,k) = E
[
1θℓ,k

(A)1zℓ,k(B)|θ−ℓ,k, z−ℓ,k

]
(3.18)

=E
[
E
[
1θℓ,k

(A)1zℓ,k(B)|G,θ−ℓ,k, z−ℓ,k

]
|θ−ℓ,k, z−ℓ,k

]
(3.19)

=E
[ ∫

1θℓ,k
(A)1zℓ,k(B)p(zℓ,k|θℓ,k,xℓ,k)dzℓ,kdG(θℓ,k|θ−ℓ,k)

]
(3.20)

where Equation (3.18) follows the definition of expected value, Equation (3.19) is

due to the law of iterated expectations, and G(θ) in Equation (3.20) is the posterior

dependent Dirichlet process given in Equation (3.15). Using Lemma 2

E
[ ∫

1θℓ,k
(A)1zℓ,k(B)p(zℓ,k|θℓ,k,xℓ,k)dzℓ,kdG(θℓ,k|θ−ℓ,k)

]
=∫

1θℓ,k
(A)1zℓ,k(B)p(zℓ,k|θℓ,k,xℓ,k)dzℓ,k×

d
( ∑

Θk−{θℓ,k}

Π1δθ(θℓ,k) +
∑

θ∈Θ⋆
k|k−1

\Θ
θ ̸=θℓ,k

Π2ν(θ
⋆
ℓ,k−1,θℓ,k)δθ(θℓ,k) + Π3H(θℓ,k)

)
.

(3.21)

Using the Bayes rule we have:

P (θℓ,k ∈ A|θ−ℓ,k,Zk) =

∫
B
P (θℓ,k ∈ A, zℓ,k|θ−ℓ,k, z−ℓ,k)dzℓ,k∫

Ω
P (θℓ,k ∈ A, zℓ,k|θ−ℓ,k, z−ℓ,k)dzℓ,k

(3.22)

and this concludes the claim in Theorem 9. ■

3.3.2 Convergence of Gibbs Sampler for DDP-EMM Prior

There are many sets of conditional distributions that can be used as the basis of

Gibbs sampler for which they violate the required posterior convergence conditions of
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the sampler. In this section, we discuss conditions under which the proposed Gibbs

sampler in Section 3.3.1 converges to the posterior distribution.

We first prove that the regardless of initial condition the transition kernel con-

verges to the posterior for almost all initial condition and then we provide the set of

conditional distributions to guarantee the convergence to the posterior of the intro-

duced Markov chain using Theorem 1 in [89]. To this end, let K(θ0,Θ) and Pθ(·|Zk)

be the transition kernel for the Markov chain starting at θ0 and stopping in the set

Θ after one iteration of the algorithm introduced in Section 3.3.1 and the posterior

distribution of parameters given the observations at time k, respectively.

Theorem 10. At each time step k, convergence to the posterior distribution Pθ(·|Zk)

does not depend on the starting value, i.e.,

||Kn
k(θ0, ·)− Pθ(·|Zk)||TV −→ 0 (3.23)

as n→∞, for almost all initial conditions θ0 in total variation norm.

Proof. We first state the following postulate that will be used to prove this theorem.

Postulate 1 (Theorem 1, Tierney 1994 [89]). Assume K is a π-irreducible and ape-

riodic Markov transition kernel such that πK = π. Then K is positive recurrent and

π is the unique invariant distribution of K and for almost all x we have:

||Kn(x, ·)− π||TV −→ 0 (3.24)

where || · ||TV is the total variation norm.

Therefore, to prove Theorem 10, we only need to check the conditions in Postulate

1. The proof of invariance of the posterior distribution for the Markov chain defined

in Equation (3.16) is similar to the proof of theorem 2 of [90]. We only need to prove

the aperiodicity and irreducibility of the Markov transition kernel with respect to the
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posterior distribution.

Irreducibility: Assume that Bk
θ = ∪Bk

j,θ is a partition where the elements of this par-

tition, Bk
j,θ, are the parameters configuration vector at time k and πj,k(B

k
j,θ) is the

probability measure associated for a fixed configuration. Note that the distribution

πk at time k has a unique distribution πk =
∑
πj,k(B

k
j,θ). Conditioning on a fixed

configuration with πk(B
k
j,θ) > 0, both posterior and predictive distributions depends

on distributions where posterior and πk take to be mutually absolutely continuous

with the transition kernel K(θ0, B
k
j,θ) > 0. The construction of transition kernel

implies that for any θ0 the transition kernel is positive, K(θ0, B
k
j,θ) > 0, therefore,

K(θ0, B
k
θ) > 0 with respect to πk. Note that the posterior and πk are mutually ab-

solutely continuous hence one can conclude that K(θ0, B
k
θ) > 0 with respect to the

posterior.

Aperiodicity: Note that for Bk
θ , we have πk(Bk

θ) > 0 which directly implies the ape-

riodicity of the kernel. Therefore, the defined Markov chain sampler is irreducible,

aperiodic, and invariant with respect to the posterior, hence, it satisfies the conditions

in postulate 1. ■

Theorem 10 guarantees the convergence to the posterior for almost all initial

values. This result specifically holds if normal distribution is considered [53, 90].

3.4 Properties of DDP-EMM

Given the configurations at time (k− 1), the infinite exchangeable random parti-

tion induced by Ck at time k follows the exchangeable partition probability function

(EPPF) [49]

p([Vk]
⋆
1 , . . . , [Vk]

⋆
Dk

) =
αDk

α[Nk]

Dk∏
j=1

([Vk]
⋆
j − 1)! (3.25)
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where Dk is the number of unique cluster parameter, [Vk]
⋆
j , j = 1, . . . , Dk is the

cardinality of the cluster cj,k, and α[n] = α(α + 1) . . . (α + n− 1). Note that number

of the objects at time k, Nk, plays an important rule in partitioning. Also, due to

variability of Nk at time k, the relationship between partitions based on (Nk − 1)

and Nk is important. The EPPF of the infinite random exchangeable partition based

on the partition on Nk and (Nk − 1) objects given the configuration at time (k − 1)

satisfies

pNk−1([Vk]
⋆
1, . . . , [Vk]

⋆
Dk

) =

Dk∑
j=1

pNk
([Vk]

⋆
1 , . . . , [Vk]

⋆
j + 1, . . . [Vk]

⋆
Dk

) + pNk
([Vk]

⋆
1 , . . . , [Vk]

⋆
Dk
, 1).

(3.26)

Equation (3.26) holds due to the Markov property of the process given the configura-

tion at time (k− 1). Equation (3.26) entails a notion of consistency of the partitions

in the distribution sense.

3.4.1 Consistency

Suppose Zk = {z1,k, . . . , zMk,k} is the collection of Mk measurements at time k

with joint conditional distribution R(Zk|θ,Xk) with respect to the product probabil-

ity space which is indexed by θ ∈ Θ. The probability space Θ is assumed to be a

first countable topological space1. Let rθ(Zk|Xk) be the density corresponding to the

probability measure R(Zk|θ,Xk).

Definition: The posterior distribution Pθ(·|Zk) is weakly consistent at true param-

eters θ0 ∈ Θ at each time step k if Pθ(Uk|Zk) → 1 in rθ0(Zk|Xk)-probability as

n→∞ for every neighborhood Uk of true parameters θ0.

Definition: The posterior distribution Pθ(·|Zk) is strongly consistent at true param-

eters θ0 ∈ Θ, if the convergence is almost sure.
1A space Θ is first-countable if each point has a countable neighborhood basis.
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Posterior Consistency of the Model

In Section 3.2, we introduce a general model such that the distribution over the pa-

rameters at time k conditioned on the configurations at time (k − 1) is a Dirichlet

process. Schwartz [91] and Ghosal, et.al. [92] discussed the weak and strong con-

sistency of the posterior distribution for a general kernel under a DP prior. In this

section, we prove the consistency of the posterior distribution under DDP-EMM prior.

The main result on weak consistency is due to Schwartz theorem. Let rθ0 be the true

density of observations with corresponding probability measure Rθ0 ,

Propositions 5 (Schwartz 1965). If rθ0 is in the KL support of the prior distri-

bution Pk on the topological space of all parameters with an appropriate σ-field,

rθ0 ∈ KL(ϵ, Pk), then posterior distribution Pθ(·|Zk) is weakly consistent at rθ0 .

The following theorem hence guarantees the consistency of the posterior at time

k under the proposed prior distribution introduced in Equation (3.10).

Theorem 11. Let the true density be rθ0 and Pk be the prior distribution at time k

conditioned on the configurations at time (k − 1) given by Equation (3.10), if rθ0 is

in the support of Pk, then Pk(KL(ϵ, rθ0)) > 0 and therefore, the posterior is weakly

consistent.

Proof of this theorem is straightforward and aligns with the proof in [92]. Intu-

itively speaking, one can prove this theorem by drawing an arbitrary measure from

the base and show that the condition in the theorem holds for the set KL(ϵ, rθ0). It is

worth mentioning, Pk(KL(ϵ, rθ0)) > 0 is not a tight condition and holds true for many

nonparametric models. In particular, in the case of Gaussian kernel, this condition

is satisfied and hence the posterior is consistent using Gaussian kernels (Theorem 3,

[92]).
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Remark: Note that rθ0 being in the support of Pk is equivalent to support(rθ0) ⊂

support
(∑

Θk

Π1
j,kδθℓ,k

+
∑

Θ⋆
k|k−1

\Θk

Π2
j,kν(θ

⋆
ℓ,k−1,θℓ,k)δθℓ,k

+Π3
kH

)
, provided Π1

j,k,Π
2
j,k, and Π3

k

as in Equation (3.10).

Remark: The posterior is also strongly consistent due to Theorem 1 of [93].

3.4.2 Posterior Contraction Rate of the Model

Posterior contraction rate discusses how fast the posterior distribution approaches

the true parameters from which the observations are generated. The contraction rate

is highly related to posterior consistency.

Definition: A sequence ϵn is posterior contraction rate at the parameter θ0 with

respect to a metric d if for every sequence Cn → ∞, we have Pθ(θ : d(θ,θ0) ≥

Cnϵn|Zk)→ 0 in Pθ0-probability as n→∞.

The following theorem specifies the contraction rate of the posterior contraction

of the DDP based model introduced in Section 3.2. Assume that each zj,k ∈ Rnz , j =

1, . . . ,Mk. We denote N[](ϵ,Hκ([0, 1]
nz), d) to be the ϵ-bracketing number of Holder

space Hκ with κ degree of smoothness on the compact space of [0, 1]nz with respect

to the distance d.

Theorem 12. Suppose P is the set of all distributions where the square root of the

density belongs to the Holder space Hκ([0, 1]
nz). Let ϵn be a decreasing sequence

such that logN[](ϵ,P , dH) ≤ nϵ2n and nϵ2n/ log n→ 0, where dH is Hellinger distance2.

Then, the posterior distribution at time k of the DDP-EMM prior given Zk and the

previous time (k − 1) configurations converges to the true density at the rate of ϵn,

where ϵn is the order of n− κ
2κ+nz .

Remark: Note that the rate in Theorem 12 matches the minimax rate for density
2dH(p, q) = (

∫
(
√
p−√q)2dµ) 1

2 is the Hellinger distance given the dominating measure µ.
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estimators. Hence, the DDP-EMM prior constructed through this model achieves the

optimal frequentist rate.

Proof. Ghosal et.al prove that ϵn satisfying the conditions in the theorem is indeed

the contraction rate [94]. Define N(ϵ,Hκ([0, 1]
nz), || · ||∞) to be the ϵ-covering number

of Hκ([0, 1]
nz) with respect to supremum norm. Since one can find the [l, u] bracket

from the uniform approximation, the bracketing number with Hellinger distance grows

with the same rate as the ϵ-covering number with supremum norm. Therefore, it is

enough to find an upper bound for N(ϵ,Hκ([0, 1]
nz), || · ||∞).

Lemma 3 (Kolmogorov, Tihomirov 1961[95, 96]). For [0, 1]nz ⊂ Rnz , there exist

Constants C depending on κ and nz such that for every ϵ > 0, we have

logN(ϵ,Hκ([0, 1]
nz), || · ||∞) ≤ C

(1
ϵ
)
nz
κ (3.27)

Lemma 3 implies that logN[](ϵ,P , dH) ≤ C
(
1
ϵ
)
nz
κ and thus the convergence rate

is the order of n− κ
2κ+nz . ■

3.5 Simulations

We now examine the empirical performance of the Bayesian nonparametric DDP-

EMM tracker through various examples under different environmental conditions.

Section 3.5.1 compares DDP-EMM tracker to labeled multi Bernoulli tracker and

displays the error through the consistent OSPA metric [97]. In Section 3.5.2 and

Section 3.5.3, we model a real scenario of moving cars and show that our tracker

can outperform existing methods. Our results indicate that DDP-EMM can perform

well in situations that other methods fail. For example, the DDP-EMM modeling of

multiple object tracking improves the tracking and cardinality estimation performance

in low signal-to-noise ratio (SNR) scenarios.
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3.5.1 Comparison to Multi-Bernoulli Filtering

The performance of the DDP-EMM model is demonstrated and compared to the

labeled multi-Bernoulli filter (LMB) for a radar target tracking simulation example.

The time-dependent number of targets are assumed to move according to the coor-

dinated turn motion model. We assume there is a maximum number of ten targets.

To perform a fair comparison, we used the same example as used for LMB in [30].

The unknown state parameters of the ℓth target at time k are the Cartesian coordi-

nates of the 2-dimensional (2-D) position [xℓ,k yℓ,k]
T , target velocity [ẋℓ,k ẏℓ,k]

T and

target turn rate ωℓ,k. The ℓth state vector is given by xℓ,k = [xℓ,k yℓ,k ẋℓ,k ẏℓ,k ωℓ,k]
T ,

ℓ= 1, . . . , Nk, where Nk is the time-dependent target cardinality. The actual time-

dependent trajectories are shown in Figure 3.2a. The transition probability density

p(xk|xk−1) for the coordinated turn motion model is assumed to be a Gaussian distri-

bution with mean vector µ= [ζT ωk−1]
T where ζ =Aωk−1

xk−1 and covariance matrix

Q= diag([σ2
wBB

T , σ2
u]) where σw = 15 m/s2, σu = π/180 radians/s, and

Aωk−1
=



1 sin(ωk−1)

ωk−1
0 −1−cos(ωk−1)

ωk−1

0 cos(ωk−1) 0 − sin(ωk−1)

0 1−cos(ωk−1)

ωk−1
1 sin(ωk−1)

ωk−1

0 sin(ωk−1) 0 cos(ωk−1)


, B =



1
2

0

1 0

0 1
2

0 1


. (3.28)

We select the probability of a target remaining at a scene during transitioning

to be Pℓ,k|k−1 = 0.95, for all ℓ. The times each target enters and leaves the scene are

summarized in Table 3.1.

The measurement vector zk = [ϕk rk]
T at time k includes bearing ϕk and range rk,

where r∈[0, 2, 000] m and ϕ∈[−π
2
, π
2
]. The measurement noise is assumed zero-mean

Gaussian with variance σ2
r = 25 and σ2

ϕ = ( π
180

)2. For the simulations, 10,000 Monte

Carlo runs is used; the overall observed time steps is considered to be K = 100 and
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Figure 3.2: (a) Actual Target Trajectories. (b) Actual and Estimated x (Top) and y

(Bottom) Position vs. Time k Using DDP-EMM and LMB Methods.

Table 3.1: Target Existence over Time.

Object Presence Object Presence

Object 1 0 ≤ k ≤ 100 Object 6 40 ≤ k ≤ 100

Object 2 10 ≤ k ≤ 100 Object 7 40 ≤ k ≤ 100

Object 3 10 ≤ k ≤ 100 Object 8 40 ≤ k ≤ 80

Object 4 10 ≤ k ≤ 60 Object 9 60 ≤ k ≤ 100

Object 5 20 ≤ k ≤ 80 Object 10 60 ≤ k ≤ 100

SNR = -3 dB. In our proposed model, we used a normal-inverse-Wishart distribution,

NIW(µ0, λ, ν,Ψ), with values µ0 = 0.001, λ = 0, ν = 50, and an identity matrix for

Ψ as prior on the space of parameters. We consider a Gamma distribution as prior

on the concentration parameter α, Γ(α; 1, 0.1). Using the proposed DDP-EMM and

inferential methods we estimate x and y coordinates. Figure 3.2b displays the actual

and estimated target trajectories for the proposed DDP-EMM and the LMB methods

in 10,000 Monte Carlo (MC) runs. Figure 3.2b shows that DDP-EMM has a higher

estimation accuracy for the x and y coordinates in comparison with the LMB.
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Figure 3.3: Comparison between Cardinality Estimation for DDP (Top) and LMB

(Bottom) for Tracking 10 Objects.

in addition, Figure 3.3 shows that the DDP-EMM has higher accuracy than the

LMB when estimating the time-dependent target cardinality. The increase in per-

formance is also demonstrated through the optimal sub-pattern assignment (OSPA)

metric (of order p = 1 and cut-off c = 100), for the range and the time-dependent

object cardinality as in Figure 3.4. The OSPA location for both methods is compared

in Figure 3.4 (top). Note that the lower the OSPA metric is, the higher the corre-

sponding performance is. We observe that the DDP-EMM method often performs

better than the LMB; this may be due to the fact that the LMB requires approxi-

mations when updating the target state estimates. The DDP-EMM and LMB can

both track the targets. However, the DDP-EMM is computationally more efficient

and has a higher tracking performance. As shown in Figure 3.3, the LMB drastically

overestimates the cardinality of the 10 targets, when compared to the DDP-EMM;

showing the elimination of the posterior cardinality bias. This is due to the fact that
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Figure 3.4: OSPA Location (Top) and Cardinality (Bottom) of Order p= 1 and Cut-

off c= 100.

the LMB is highly sensitive to the presence of noise/clutter.

3.5.2 DDP-EMM and Low SNR: Moving Cars with Turn

In this section, we show through simulations that DDP-EMM algorithm may

accurately track objects in the presence of high noise and objects that are located

very close to one another. We consider five moving cars where it is assumed that each

car may enter, leave, or turn at any time. Each car comes to the scene at a different

time and must follow the cars in front of it. The goal is to estimate the location/range

of each car as well as the number of cars in the scene at each time step based on the

noisy measurements received from the sensor.

The unknown state of each car is considered to be [x, y, ẋ, ẏ, ω]T where (x, y),

(ẋ, ẏ), and ω are the location, velocity, and turning rate, respectively. The sensor

only collects information about the range and angle at each time step. An additive
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Figure 3.5: x-coordinate and y-coordinate Estimation Using DDP-EMM Model.

Gaussian noise is assumed throughout simulations. The SNR for this model is −3 dB.

In this scenario, the objects are assumed to be located near to one another which

makes the model complicated to analyze. We compare the tracker introduced in this

paper to the LMB tracker. We illustrate through simulations that DDP-EMM al-

gorithm produces an accurate estimate of the location and cardinality despite high

noise level and adjacency of objects. We assume a normal-inverse-Wishart distribu-

tion, NIW(µ0, λ, ν,Ψ), with values µ0 = 0.01, λ = 0, ν = 100, and an identity matrix

for Ψ as prior on the space of parameters. We consider a Gamma distribution as prior

on the concentration parameter α, Γ(α; 1, 0.3). Figure 3.5 and Figure 3.6 display the

x-coordinate and y-coordinate estimation and the location of the objects using the

DDP-EMM tracker, respectively. Running 10,000 Monte Carlo (MC) simulations,
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Figure 3.6: Location Estimation through DDP-EMM.
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Figure 3.7: Cardinality Estimation via DDP-EMM and LMB.

the estimated cardinality and the OSPA metric for the location estimation error is

depicted in Figure 3.7 and Figure 3.8, respectively. For OSPA metric, we set the order

p = 1 and the cut-off c = 100. As shown in Figure 3.7 and Figure 3.8, under the same

conditions, if the objects are located close to each other, the proposed DDP-EMM

algorithm outperforms the LMB method and estimates the trajectory of each object

more accurately.
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Figure 3.8: OSPA Comparison between DDP-EMM and LMB for Cut-off c = 100

and Order p = 1.

3.5.3 DDP-EMM under Different SNR Values

We assume the same scenario as discussed in Section 3.5.2. However, in this

example, we assume the turning rate is zero, i.e., ω = 0. Thus, the unknown state

vector is [x, y, ẋ, ẏ]T . We put our proposed DDP-EMM method to the test under

different SNR values. With the DDP-EMM prior, we model the state parameters as

a realization of the proposed process. We assume Gaussian distributions throughout

this simulation. Note that if we learn the states with zero mean, our model reduces

to that of constant acceleration model and by assuming a non-zero mean we may

consider faster changes. We simulate the algorithms for SNR = −3 dB, −5 dB,

and −10 dB by place a normal-inverse-Wishart distribution, NIW(µ0, λ, ν,Ψ), with

values µ0 = 0, λ = 0, ν = 100, and an identity matrix for Ψ as prior on the space
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Figure 3.9: Cardinality Estimation for Different SNR Values.

of parameters. we also put the Gamma distribution Γ(α; 1, 0.2) as prior over the

concentration parameter α. Figure 3.9 presents the cardinality of the model under

various SNR values for 10,000 MC simulation runs. As shown in Figure 3.9, the

DDP-EMM method enables us to obtain the correct cardinality of the states most of

the times even under high level of noise.

Figure 3.10 depicts the performance of this method under different SNR values.

Note that for higher SNRs the OSPA metric is still fairly low which verifies the

excellent performance of this method.

3.6 Discussion

Motivated by the success of Bayesian nonparametric methods in estimation and

clustering, this chapter developed a class of nonparametric, sampling–based depen-
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Figure 3.10: DDP-EMM Performance for SNR = −3 dB, SNR = −5 dB, and SNR

= −10 dB.

dent Dirichlet process as a prior on the evolving state distributions in a multiple

object tracking problem with time-dependent number of objects. Interestingly, we

have shown that the proposed prior is consistent and the contraction rate matches

the optimal frequentist minimax rate. We introduced a simple multi-scale sampling

method to efficiently and accurately do inference using the DDP-EMM tracker. Chap-

ter 4 revisits the problem of time-dependent multiple object tracking and develops

models that directly incorporates learning multiple parameters from correlated infor-

mation. We show that these models better suit the multiple object tracking with the

time-varying number of objects due to their flexibility.
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Chapter 4

DEPENDENT PITMAN-YOR PROCESS FOR MODELING EVOLUTION IN

MULTIPLE STATE PRIORS

In Chapter 3, we introduced the dependent Dirichlet process model to incorporate a

learning algorithm as a prior over the time evolving object state distribution based

on the measurements. When using the Dirichlet process to model the transitioning

of objects into clusters, the expected number of unique clusters varies exponentially

according to αlog(N), where α is the concentration parameter and N is the total num-

ber of objects to be clustered. A more flexible model is offered by the two-parameter

Poisson-Dirichlet process, Pitman-Yor process, as, in this case, an additional discount

parameter, 0 ≤ d < 1, with α > −d, is used to control the number of clusters in the

model [56, 98]. Specifically, as stated in Chapter 2, with the Pitman-Yor process

model, the expected number of unique clusters varies according to the power-law

αNd. Following the power-law, the higher the number of unique (non-empty) clus-

ters, the higher the probability of having even more unique clusters. Also, clusters

with only a small number of objects have a lower probability of having new objects.

This more flexible model offered by the Pitman-Yor process is a better match for the

tracking problem with a time-varying number of objects. With a maximum number

of Nk objects at time step k, an object may stay in the scene from the previous time

step, leave the scene, or enter the scene for the first time. Thus, the object state

would benefit from a larger number of available clusters to ensure all dependencies

are captured.

In order to also capture time evolution, we introduce a family of dependent

Pitman-Yor (DPY) processes that can be used to model a collection of random distri-
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butions that are related but not identical. As a result, we utilize the DPY to model

the multiple object state prior distributions by directly incorporating learning multi-

ple parameters from correlated information. The resulting DPY state transitioning

prior (DPY-STP) method formulates the state transition such that the object car-

dinality at time step k is dependent on its value at the previous time step (k − 1).

Also, the index assigned to the cluster that contains an object state is dependent on

the cluster indexing of the previously clustered object states at the same time step

k. If a new object enters the scene, its state must be modeled without knowledge on

the expected number of objects. We begin to address the problem of time-varying

multi-object tracking in Section 4.1 by introducing a class of flexible consistent models

through the dependent Pitman-Yor process as prior on the object state parameters.

Section 4.2 describes an inference method to utilize the prior. We construct a flexi-

ble, robust, and accurate tracker by incorporating a learning method with the prior.

In Section 4.3, we study the properties of the introduced methods. We also discuss

conditions under which our model is consistent. Later results in Section 4.4 confirm

that this method can significantly improve the model introduced in Chapter 3 and

outperforms previously introduced methods [13, 30, 99]. The results are presented at

the the 2019 22nd Information Fusion conference [81], and at the IEEE Transaction

on Signal Processing [83].

4.1 DPY-STP Algorithm Construction for State Transitioning

In this section, we introduce an evolutionary time-dependent model for multiple

object tracking based on our proposed dependent Pitman-Yor (DPY) process to learn

object labels. The advantage of this model over the DDP-EMM method introduced

in Chapter 3 is that this approach proposes a dependent Pitman-Yor (DPY) process

that marginally preserves the Pitman-Yor process, and therefore it allocates higher
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probability to unique clusters. This observation makes DPY a better fit for multiple

object tracking. In particular, our approach directly incorporates learning multiple

parameters through related information, including object labeling at the previous time

step or labeling of previously considered objects at the same time step. The choice of

the DPY as a prior on the object state distributions is based on the following dynamic

dependencies in the state transition formulation: (A) the number of objects present

at time step k relies on the number of objects that were present at the previous time

step (k − 1), (B) the clustering index of the parameter state of the ℓth object at

time step k depends on the clustering index of the state parameters of the previous

(ℓ − 1) objects at the same time step k, and (C) new object entering the scene is

modeled without requiring any prior knowledge on the expected number of objects.

We propose the DPY-STP method to model the state transition process, accounting

for multiple dependencies next in detail. This method is summarized in Algorithm 8.

In particular, we provide: (a) the information available at time step (k− 1), (b) how

this information transitions from time step (k − 1) to time step k, and (c) how the

DPY-STP model is constructed at time step k to estimate the object state density.

Available Parameters at Time (k − 1)

The DPY-STP algorithm assumes that the following parameters are available from

previous time steps at time (k − 1):

• Let Xk−1 = {xℓ,k−1 : ℓ = 1, . . . , Nk−1} be the object states at time (k − 1).

• Let CAk−1 = {C1, . . . , Ck−1} be the cluster assignment up to time (k−1), where

CJ = {c1,J , . . . , cNJ ,J} is the cluster assignments at time step J .

• Define Θk−1 = {θℓ,k−1 : ℓ = 1, . . . , Nk−1} to be the set of object state parameters

available at time (k−1) associated with CNk−1
(note that θℓ’s are not necessarily
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unique).

• Let Θ⋆
k−1 = {θ

⋆
ℓ,k−1 : ℓ = 1, . . . , Dk−1} ⊂ Θk−1 be the set of unique parameters,

and Dk−1 be the number of uniques parameters.

• Define V⋆
k−1 to be a vector of size Dk−1 containing the size of non empty clusters

associated with Ck−1. One can include empty clusters and define the size of this

vector to be Nk−1. However, it is computationally more efficient to exclude size

zero clusters.

Parameters Transitioning from Time (k − 1) to Time k

Assume sℓ,k|k−1 associate with the ℓth object at time (k− 1) has a Bernoulli distribu-

tion with parameter Pℓ,k|k−1, sℓ,k|k−1 ∼ Ber(Pℓ,k|k−1). Given sℓ,k|k−1, the object xℓ,k−1

leaves the scene with probability 1 − Pℓ,k|k−1 or remains in the field of view (FOV)

with probability Pℓ,k|k−1 and transitions to a new state using the Markov transition

kernel Qθℓ,k
(xℓ(k − 1), ·). We assume if all the objects in a cluster (all object with

the same parameter) leave the scene the cluster no longer exists. Let Θ⋆
k|k−1 be the

set of unique parameters at time (k − 1) that are transitioned to time step k. We

define V⋆
k|k−1 to be the vector of size of Dk−1 containing the size of each cluster after

transitioning to time k. it is worth mentioning that a cluster with size zero implies

that the cluster no longer exists. To keep track of the survived objects, let CSk|k−1

be the cluster survival indicator defined as

CSk|k−1 = {η1,k|k−1, . . . , ηDk−1,k|k−1}

where ηj,k|k−1 = 0 corresponds to disappearance of the jth cluster and ηj,k|k−1 = 1

implies that there is at least one element in the jth cluster.
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DPY Prior Construction at Time k

Each survived cluster (a cluster with non-zero size after transitioning) is updated

through a transition kernel. Assume that the cardinality of ℓth cluster at time (k−1)

is still non-zero after transitioning, then the ℓth object parameter will evolve according

to the following transition kernel:

θℓ,k ∼ ζ(θ⋆
ℓ,k−1, ·). (4.1)

Let θℓ,k be the transitioned ℓth state object parameter at time k, we construct the

dependent Pitman-Yor prior as follows:

Case1: The ℓth object belongs to one of the survived and transitioned clusters from

time (k − 1) and occupied at least by one of the previous ℓ − 1 objects. The

object selects one of these clusters with probability:

Γ1
j,k(select jth cluster|θℓ−1

1,k ,Θk|k−1) =

Dk−1∑
i=1

[
V⋆

k|k−1

]
i
ηi,k|k−1δi(cj,k) + [Vk]j − d

ℓ−1∑
j=1

Dk−1∑
i=1

[
V⋆

k|k−1

]
i
ηi,k|k−1δi(cj,k) +

ℓ−1∑
j=1

[Vk]j + α

(4.2)

where [Vk]j indicates the jth element of vector Vk at time k, 0 ≤ d < 1 and

α > −d are the discount and strength parameters in the Pitman-Yor process,

respectively.

Case2: The ℓth object belongs to one of the survived and transitioned clusters from

time (k − 1) but this cluster has not yet been occupied by any one the first

ℓ− 1objects. The object selects such a cluster with probability:

Γ2
j,k(Select jth cluster that has not been selected yet|θℓ−1

1,k ,Θk|k−1) =

Dk−1∑
i=1

[
V⋆

k|k−1

]
i
ηi,k|k−1δi(cj,k)− d

ℓ−1∑
j=1

Dk−1∑
i=1

[
V⋆

k|k−1

]
i
ηi,k|k−1δi(cj,k) +

ℓ−1∑
j=1

[Vk]j + α

(4.3)
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Case3: The object does not belong to any of the existing clusters, thus a new cluster

parameter is drawn from some base distribution H, corresponding to the base

distribution in Pitman-Yor process, with probability:

Γ3
k(Create a new cluster|θℓ−1

1,k ,Θk|k−1) =

|Dk|ℓ−1d+ α

ℓ−1∑
j=1

Dk−1∑
i=1

[
V⋆

k|k−1

]
i
ηi,k|k−1δi(cj,k) +

ℓ−1∑
j=1

[Vk]j + α

(4.4)

where |Dk|ℓ−1 is the total number of the clusters at time k created by the first

(ℓ− 1) objects.

In above construction, Γ1
j,k,Γ

2
j,k, and Γ3

k are the probability of selecting an object

cluster or creating a new object cluster. The temporal dependency among the objects

follows a dependent Pitman-Yor process where the marginal distribution is a Pitman-

Yor process. This property makes this process easy to implement since the marginal

distribution becomes a Pitman-Yor process. The following theorem summarizes this

property:

Theorem 13. Suppose that the space of state parameters is separable and complete

metrizable space. The process defined by probabilities Equation (4.2), Equation (4.3),

and Equation (4.4) defines a Pitman-Yor process at each time step given the previous

time configurations, i.e.,

DPY-STPk|DPY-STPk−1 ∼ PY
(
d, α,

∑
Θk

Γ1
j,kδθℓ,k

+
∑

Θ⋆
k|k−1

\Θk

Γ2
j,kζ(θ

⋆
ℓk−1,θℓ,k)δθℓ,k

+Γ3
kH

)
.

(4.5)

where δθ(Θ) = 1 if θ ∈ Θ and δθ(Θ) = 0, if θ /∈ Θ.

Proof. The proof of Theorem 13 is the direct result of cases (1)-(3). We eliminate the

proof since it is analogous to the proof of Theorem 7. ■

Given the conditional distribution Equation (4.5), Theorem 14 provides an object

density estimator.
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Theorem 14. Assume the space of states, X , is separable and complete metrizable

topological space, given (Equation (4.2))-(Equation (4.4)) state distribution

p(xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk)

is estimated as follows:

Qθℓ,k
(xℓ,k−1,xℓ,k)f(xℓ,k|θℓ,k) If case 1 happens

Qθℓ,k
(xℓ,k−1,xℓ,k)ζ(θ

⋆
ℓ,k−1,θ

⋆
ℓ,k)f(xℓ,k|θℓ,k) If case 2 happens∫

θ f(xℓ,k|θ)dH(θ) If case 3 happens

(4.6)

for some density f(·|θ) that describes the physical model, base distribution H on

parameters, and Xk|k−1 the set of survived state objects. Note that elements of Θk

are chosen with probability Γi, i = 1, 2, 3 as in Equation (4.2), Equation (4.3), and

Equation (4.4).

Proof. (Sketch of proof) The proof is immediately resulted from the problem state-

ment. We provide an intuitive proof for this theorem. From case (1): xℓ,k−1 transitions

to time k according to the Markov transition kernel Qθℓ,k
(xℓ,k−1, ·) and then is as-

signed to one of the existing clusters that is already used by one of the objects. From

case (2): xℓ,k−1 and the cluster parameter θ⋆
ℓ,k−1 transition to time k according to

Markov transition kernels Qθℓ,k
(xℓ,k−1, ·) and ζ(θ⋆

ℓ,k−1, ·), respectively, and therefore

the object is assigned to the this new cluster. From case (3): new object does not

belong to any of the previously assigned clusters, i.e., a new object comes into the

FOV. In this case, we generate a new parameter from the base distribution H and

assign the object to the newly created cluster. ■
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Algorithm 8: DPY-STP Model for State Transition Process
At time (k − 1):

• Xk−1 = {xℓ,k−1 . . . xNk−1,k−1}: collection of object states vectors
• CNk−1

= [c1, c2, . . . , cNk−1
], cluster assignment

• Θk−1 = {θℓ,k−1 : ℓ= 1, . . . , Nk−1}, cluster parameters
• Dk−1, number of uniques cluster parameters
• Θ∗

k−1 = {θ∗
ℓ,k−1 : ℓ= 1, . . . , Dk−1}, for unique clusters

Transitioning from time (k − 1) to k:

Input: Xk−1, Θ∗
k−1, transition kernel Qθℓ,k

(xℓ,k−1,xℓ,k) and probability of
object staying in the scene Pk|k−1

if xℓ,k−1 ∈ Xk−1 leaves with probability (1− Pk|k−1) then
return null

end if
if xℓ,k−1 ∈ Xk−1 transitions with probability Pk|k−1 then

xℓ,k−1 ∼ Qθℓ,k
(xℓ,k−1,xℓ,k)

return Dk|k−1: number of unique cluster, V∗
k|k−1 ∈ RDk|k−1 : size vector,

and Θk|k−1: collection of survived parameters

end if

At time k:

for ℓ = 1 to |V∗
k|k−1| do

Draw θℓ,k from ζ(θ∗
ℓ,k−1,θℓ,k) according to Equation (4.5)

Draw xℓ,k|θℓ,k from (Equation (4.6))

end for
return {x1,k,x2,k, . . .} and {θ1,k,θ2,k, . . .}

The graphical model representing the entire process is depicted in Figure 4.1.

In the following section, we discuss how this constructed prior on the states can be

exploited to estimate the trajectory of objects, and then learn the hyperparameters

based on the received measurements.
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Figure 4.1: Graphical Model Capturing the Temporal Dependence, DPY-STP Con-

struction.

4.2 Learning Model

The DPY-STP algorithm, summarized in Algorithm 8, provides the density es-

timation of objects at time step k as in Equation (4.6). Upon receiving the set of

measurements Zk = {z1,k, . . . , zMk,k} at time step k, we updates the estimated den-

sity, and thus the trajectory of objects. Using Theorem 13, we introduce an infinite

mixture model to update our estimates as discussed in Algorithm 8. The learning

model is summarized in Algorithm 9.

To use Algorithm 9, we assume that each measurement is associated only with

one object and also the measurements are independent of one another. We thus

exploit Dirichlet process mixture (DPM) model as an infinite mixture model with

the base distribution drawn from Algorithm 8 to update our belief. Note that he

identity of the object that corresponds to a particular measurement is not known.

However, the DPM model can learn the association between each measurement and

the corresponding object as objects are already labeled from the DPY clustering. The
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Algorithm 9: Infinite Mixture Model Used to Associate Measurements with

Objects.
Input: {z1,k, . . . , zMk,k}, {x1,k,x2,k, . . .}, {θ1,k,θ2,k, . . .}

At time k:

for m = 1 :Mk do

Draw zm,k|xℓ,k,θℓ,k from (Equation (4.7))

return CNk
, cluster assignment at time k

end for

Update: CAk = CAk−1 ∪ CNk

return Number of clusters Nk, CAk and posterior distribution xℓ,k|θℓ,k, zm,k

clustering of the measurements exploit DPY model results for the state distribution

from Theorem 14,

xℓ,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θk ∼ p(x1,k|x1,k, . . . ,xℓ−1,k,Xk|k−1,Θ
⋆
k|k−1,Θk), (4.7)

and then

zl,k|xℓ,k,θℓ,k ∼ R(zl,k|xℓ,k,θℓ,k) (4.8)

for some distribution R that depends on the measurement likelihood function.

Note that the DPY-STP algorithm is closely related to DDP-EEM algorithm in-

troduced in Chapter 3, and thus both algorithms are well-defined. One can derive

DDP-EMM model from the DPY-STP model by setting d = 0. The discount param-

eter d is used to control the number of clusters in the model. Intuitively speaking,

on account of power-law property of Pitman-Yor modeling, the higher the number of

unique (non-empty) clusters is, the higher the probability of having even more unique

clusters is. Furthermore, we aim to have a lower probability of having new objects

for clusters with a small number of objects. Consequently, the DPY-STP is more
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flexible and a better match for the tracking problems with a time-varying number of

objects. With a maximum number of Nk objects at time step k, an object may stay

in the scene from the previous time step, leave the scene, or enter the scene for the

first time. Thus, the object state would benefit from a larger number of available

clusters to ensure all dependencies are captured.

4.2.1 Bayesian Inference: Gibbs Sampler

Exact posterior computation for DPY-STP algorithm is difficult when the number

of parameters and observations are large. Nevertheless, we can make use of Gibbs

sampling for inference in the DPY-STP where the conjugate priors are used. To

provide an efficient sampling method, we introduce an auxiliary random variables to

identify the cluster associations for the measurements. The resulting sampler allows

model and measurement parallelization. Note that inference in DPY-STP model

depends directly on the number of the clusters and number of measurements at each

time step. Under the cluster assignments CAk, we introduce a cluster indicator Ck =

{c1,k, . . . , cNk,k} at time k such that ci,k = cj,k if and only if θi,k = θj,k and ci,k = ℓ if

and only if θi,k = θ⋆
ℓ,k ( Note that θ⋆

·,k’s indicate the unique parameters at time k). The

cluster indicator Ck provides a partition the set of {1, . . . , Nk}. Since realization of the

Pitman-Yor process is almost surely a discrete random measure, we can marginalize

this process and derive the successive conditional Blackwell-MacQueen distribution:

θℓ,k|Θ ∼
∑

Θk−{θℓ,k}

Γ1
j,kδθ(θℓ,k)+

∑
θ∈Θ⋆

k|k−1
\Θ

θ ̸=θℓ,k

Γ2
j,kν(θ

⋆
ℓ,k−1,θℓ,k)δθ(θℓ,k)+Γ3

kH(θℓ,k). (4.9)

Assuming the base measure H is nonatomic, the required conditional distribution
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to do local inference is derived by marginalizing over the mixing measures:

p(ci,k = ℓ|Ck \ {ci,k},Zk, rest) ∝ (4.10)
Γ1,−i
ℓ,k R(zl,k|xℓ,k,θ

⋆
ℓ,k) for cluster ℓ that has been selected

Γ2,−i
ℓ,k R(zl,k|xℓ,k,θ

⋆
ℓ,k) for cluster ℓ that has not yet been selected

Γ3,−i
k

∫
R(zl,k|xℓ,k,θ)dH(θ) new cluster is created

where Γj,−i
ℓ,k is the probability of choosing ct,k = ℓ where t ̸= i and follows

Γ1,−i
ℓ,k =

[
Dk−1∑
j=1

[
V⋆

k|k−1

]
j
ηj,k|k−1δj(cℓ,k) + [Vk]ℓ

]
−i

− d[
ℓ−1∑
t=1

Dk−1∑
j=1

[
V⋆

k|k−1

]
j
ηj,k|k−1δj(ct,k) +

ℓ−1∑
t=1

[Vk]t

]
−i

+ α

(4.11)

Γ2,−i
ℓ,k =

[
Dk−1∑
j=1

[
V⋆

k|k−1

]
j
ηj,k|k−1δj(cℓ,k)

]
−i

− d[
ℓ−1∑
t=1

Dk−1∑
j=1

[
V⋆

k|k−1

]
j
ηj,k|k−1δj(ct,k) +

ℓ−1∑
t=1

[Vk]t

]
−i

+ α

(4.12)

Γ3,−i
k =

|Dk|−id+ α[
ℓ−1∑
t=1

Dk−1∑
j=1

[
V⋆

k|k−1

]
j
ηj,k|k−1δj(ct,k) +

ℓ−1∑
t=1

[Vk]t

]
−i

+ α

(4.13)

where [·]−i indicates the total number of object parameters observed excluding the

ith object, |Dk|−i is the total number of unique clusters created at time k before ith

object is observed, and R is the likelihood function. Equation (4.10) is derived by

multiplying the likelihood function by the conditional prior derived in Equation (4.9).

To fully specify the sampling procedure, we also need to update the parameters,

Θ⋆
k = {θ

⋆
1,k, . . . ,θ

⋆
Dk,k
}. To do so, we only need draw θ⋆

ℓ,k from a distribution propor-

tional to ∏
{zl,k:θl,k=θ⋆

ℓ,k}

R(zl,k|xℓ,k,θ
⋆
ℓ,k)dH(θ⋆

ℓ,k). (4.14)
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4.3 Properties of DPY-STP Model

In this section, we verify properties of proposed DPY-STP model. The DPY-STP

provides an exchangeable partition; thus, it is useful to provide the exchangeable

partition probability function associated with it. However, this model, unlike DDP-

EMM, is not always consistent. In this section. we discuss conditions under which

this model is consistent in detail.

4.3.1 Posterior Distribution

As mentioned in Section 4.2.1, the DPY-STP method induces a partition 1 over

{1, 2, . . . , Nk} which is shown to be exchangeable. Let Ck = {c1,k, . . . , cDk,k} and

|Ck| = {[Vk]1 , . . . , [Vk]Dk
} be the unordered collection of clusters assignment (parti-

tion) and its cardinality. In particular, we have |cj,k| = [Vk]j and
Dk∑
j=1

[Vk]j = Nk, at

time k. Define
(
[Vk]

∗
1 , . . . , [Vk]

∗
Dk

)
to be the size of ordered clusters (partition) such

that [Vk]
∗
1 ≤ . . . ,≤ [Vk]

∗
Dk

. Due to exchangeability of the sequence associated with

the cluster assignments (partitions), it is shown that the EPPF is given in [56] by

p([Vk]
∗
1 , . . . , [Vk]

∗
Dk

) =

Dk∏
j=1

(α + jd)

α[Nk]

Dk∏
i=1

(1− d)[Vk]
∗
i (4.15)

where α[n] = α(α + 1) . . . (α + n− 1). Note that if we set d = 0 the Equation (4.15)

reduces to the EPPF for the Dirichlet process with concentration parameter α in

Equation (3.25). The induced random partition by Ck at each time k is distributed

according to the Equation (4.15).

Furthermore, if the distribution on the cluster parameters is drawn from the con-

ditional distribution DPY-STPk|DPY-STPk−1 as in Equation (4.5) with d > 0, then
1A partition of set A is an unordered collection of nonempty subsets of A such that A is the

disjoint union of its subsets and each element of A belongs to only one subset.

101



posterior distribution given θ⋆
1,k, . . . ,θ

⋆
Dk,k

is the distribution of the random measure

[56]

Bn

Dk∑
i=1

πiδθ⋆
i,k

+ (1−Bn)H̃ (4.16)

whereBn ∼ Beta(Nk−Dkd, α+Dkd), (π1, . . . , πDk
) ∼ Dirichlet([Vk]1−d, . . . , [Vk]Dk

−

d), and H̃ ∼ PY(d, α +Dkd,G
∗) for

G∗ =
∑
Θk

Γ1
j,kδθℓ,k

+
∑

Θ⋆
k|k−1

\Θk

Γ2
j,kζ(θ

⋆
ℓk−1,θℓ,k)δθℓ,k

+ Γ3
kH.

Note that Bn and (π1, . . . , πDk
), and H̃ are mutually independent.

4.3.2 Posterior Consistency of DPY-STP model

The DDP-EMM statistical model introduced in Chapter 3 along with the in-

troduced dependent Pitman-Yor model may be used to estimate the densities, and

consequently to accurately and efficiently track the objects. As discussed in Sec-

tion 3.4, DDP-based priors result in consistent posteriors. However, the Pitman-Yor

process priors assume the inconsistency of the Gibbs process priors to estimate dis-

tributions. The conditions under which Gibbs processes are consistent is thoroughly

studied in Section 3, Theorem 1 in [100]. Consistency of Pitman-Yor processes is the

direct result of Gibbs prior consistency. The following proposition summarizes these

conditions:

Propositions 6. Let Gk ∼ PY(d, α,H) be the prior distribution drawn from a

Pitman-Yor Process. The posterior distribution of Gk|Zk is consistent at probability

measure G0 if and only if one the following conditions holds:

A. G is the mixture of at most ⌈|α
d
|⌉ degenerated measures, i.e., G0 is discrete

B. H is proportional to G0,c where G0,c is continuous part of the probability mea-

sure G0
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C. d = 0, which is equivalent to the consistency of the Dirichlet process.

Proof. This Proposition immediately results from the Gibbs prior consistency theo-

rem.

Lemma 4. (Gibbs prior consistency [100]) If Gk is equipped with a Gibbs process

prior with non-negative coefficients WNk,D
⋆
k

which satisfy the backward recurrence

WNk,D
⋆
k
= (Nk − D⋆

kd)WNk+1,D⋆
k
+ WNk+1,D⋆

k+1 for W1,1 = 1 and σ ∈ (−∞, 1) such

that
WNk+1,D⋆

k
+1

WNk,D⋆
k

a.s.−−→ η and
WNk+2,D⋆

k
+2

WNk+1,D⋆
k
+1

a.s.−−→ η for 0 < η ≤ 1 or
WNk+1,D⋆

k
+1

WNk,D⋆
k

a.s.−−→ 0

almost surely, then the posterior distribution Gk|Zk convergence almost surely under

G0 relative to weak topology to κG0,d+γG0,c+ηG for some α and γ (Nk = number of

states at time k, D⋆
k = number of unique clusters (partitions) at time k). In particular,

the posterior is consistent if and only if η = 0, and one of the following holds:

A. σ = 0

B. G0 is discrete

C. G0 is atomless

unless, G0,c is proportional to G.

A Pitman-Yor process is a special case of a Gibbs prior, where
WNk+1,D⋆

k
+1

WNk,D⋆
k

a.s.−−→
α+D⋆

kd

Nk+D⋆
k

and
WNk+2,D⋆

k
+2

WNk+1,D⋆
k
+1

a.s.−−→ α+D⋆
kd+d

Nk+D⋆
k+1

where both converges to γ = σξ where D⋆
k/Nk →

ξ. Note that D⋆
k depends directly on Nk. Using Lemma 4, the proof is complete. ■

Most of the discrete nonparametric priors, except for the Dirichlet process, are

inconsistent when it is used to directly model continuous measurements; however,

when these priors are used towards hierarchical mixture models, they generally lead

to a consistent density estimator [101, 102]. On that account, the density estimators

introduced in this work are all consistent and may be used to robustly and efficiently

track multiple objects with a time-varying number of objects.
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4.4 Simulations

In this section, we examine the empirical performance of the Bayesian nonpara-

metric DPY-STP tracker. Due to the flexibility of DPY-STP method, we expect

the DPY-STP tracker to refine other multiple object tracking trackers. To this end,

we first compare this method to the labeled multi Bernoulli (LMB) [30] and then

compared it to DDP-EMM tracker introduced in Chapter 3. We show through sim-

ulations that this model can successfully estimate the trajectory of objects and learn

the number of time-varying objects. It is also shown that this method outperforms

existing methods. In Section 4.4.1, we compare the performance of the DPY-STP

method to the LMB using the optimal sub-pattern pattern assignment (OSPA) mea-

sure [97]; we demonstrate that our method has a lower error. Section 4.4.2 studies

the comparison between DPY-STP and DDP-EMM. Our results indicate that despite

the outstanding performance of DDP-EMM, DPY-STP is usually superior.

4.4.1 Comparison to Multi-Bernoulli Filtering

The DPY-STP multiple object tracking method is implemented using MCMC

sampling methods, together with Algorithms 8 and 9. To demonstrate the perfor-

mance of this method, we simulated a dynamic linear tracking example using five

objects that enter, leave, and/or stay in the scene at different times, as summarized

in Table 4.1. The performance is compared to that of the LMB tracker.

Assume that the ℓth state vector is xℓ,k = [xℓ,k, yℓ,k, ẋℓ,k, ẏℓ,k, ωℓ,k]
T ,ℓ= 1, . . . , Nk,

where Nk is the time-dependent target cardinality. This vectors consists of [xℓ,k, yℓ,k]T ,

[ẋℓ,k, ẏℓ,k]
T , and ωℓ,k that are the 2-dimensional (2-D) position, velocity, and target

turn rate, respectively. The actual time-dependent trajectories are shown in Fig-

ure 4.2. The transition probability density p(xk|xk−1) for the coordinated turn mo-
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Table 4.1: Time Intervals that Objects Enter/Leave the Scene

Object Time step entering scene Time step leaving the scene

Object 1 k= 0 k= 70

Object 2 k= 5 k= 100

Object 3 k= 10 k= 100

Object 4 k= 20 k= 45

Object 5 k= 30 k= 80

tion model is assumed to be a Gaussian distribution with mean vector µ= [ζT ωk−1]
T

where ζ =Aωk−1
xk−1 and covariance matrix Q= diag([σ2

wBB
T , σ2

u]) where σw = 15

m/s2, σu = π/180 radians/s, and

Aωk−1
=



1 sin(ωk−1)

ωk−1
0 −1−cos(ωk−1)

ωk−1

0 cos(ωk−1) 0 − sin(ωk−1)

0 1−cos(ωk−1)

ωk−1
1 sin(ωk−1)

ωk−1

0 sin(ωk−1) 0 cos(ωk−1)


, B =



1
2

0

1 0

0 1
2

0 1


. (4.17)

The measurement vector zk = [ϕk rk]
T at time k includes bearing ϕk and range rk,

where r∈[0, 2, 000] m and ϕ∈[−π
2
, π
2
]. The measurement noise is assumed zero-mean

Gaussian with variance σ2
r = 25 and σ2

ϕ = ( π
180

)2.

For the simulations, we used 10,000 Monte Carlo runs, K = 100 overall observed

time steps, and −3 dB signal-to-noise-ratio (SNR). For the parameters of the DPY-

STP method, the prior used on the parameters is a normal-inverse-Wishart distribu-

tion, NIW(µ0, λ, ν,Ψ), with values µ0 = 0, λ= 0.001, ν = 50, and an identity matrix

for Ψ. The discount parameter is selected as d ∈ (0, 1), and a Gamma distribution

prior, Γ(α; 1, 0.2), is used over the concentration parameter α. Using the DPY-STP,

the estimated x and y coordinates are shown to match the true coordinates in Fig-
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Figure 4.2: True and Estimated (a) x-coordinate and (b) y-coordinate as A Function

of the Time Step k for Five Objects.

ure 4.2(a) and Figure 4.2(b), respectively. Figure 4.3 demonstrate that DPY-STP

can more accurately estimate the number of object at each time step. In comparison

with the LMB, the DPY-STP shows a higher estimation accuracy for the x and y

coordinates. The OSPA measure to compare the performances of the DPY-STP to

the LMB, as in Figure 4.4, indicates a higher accuracy and consistency for both the

range and the time-varying object cardinality estimate of multiple targets using the

DPY-STP tracker.

4.4.2 Comparison between DPY-STP and DDP-EMM

In this section, we compare the DPY-STP tracker to the DDP-EMM tracker to

demonstrate that object states may benefit from a larger number of available clusters,

given the conditions in Equation (4.5). Therefore, we compare both proposed methods

in Chapter 3 and Chapter 4 to verify that the algorithm based on the dependent
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Figure 4.3: (a) True and Estimated x-coordinate (Top) and y-coordinate (Bottom)

as A Function of Time Step k for Five Objects. (b) OSPA (Order p= 1 and Cut-off

c= 100 for Range (Top).
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Figure 4.4: Cardinality (Bottom) Averaged over 10,000 MC Simulations for the DPY-

STP and the Labeled Multi-Bernoulli (LMB) Based Tracking Approaches.
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Pitman-Yor process may have better results than DDP-EMM tracker. To do this end,

we consider the problem of tracking 10 objects using both methods. We assume the

base distribution to have a normal-inverse-Wishart distribution, NIW(µ0, λ, ν,Ψ)

where m0 = 0, λ = 0, ν = 100, and Ψ = I. We select α and d the same way as

discussed in Section 4.4.1.
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Figure 4.5: (a) Actual and Estimated x and y-coordinates through DPY-STP (b)

Actual and Estimated x and y-coordinates through DDP-EMM.
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Figure 4.6: (a) Actual and Estimated Location through DPY-STP (b) Actual and

Estimated Location through DDP-EMM.

Figure 4.5a and Figure 4.5b display the actual and estimated coordinates through

DPY-STP and DDM-EMM, respectively. We show the location estimation of ob-

jects through the DPY-STP and the DDP-EMM in Figure 4.6a and Figure 4.6b,
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Figure 4.7: OSPA Comparison between DPY-STP (Black) and DDP-EMM (Blue)

for Cut-off c = 100 and Order p = 1.

respectively. The Figure 4.6a shows that DPY-STP has higher accuracy compared to

DDP-EMM model. We also demonstrate the comparison between the DPY-STP and

the DDP-EMM performances using the OSPA metric with cut-off c = 100 and order

p = 1. We observe that DPY-STP has a better performance compared to DDP-EMM

as depicted in Figure 4.7.

4.5 Discussion

The preceding results demonstrated the substantial benefits of proposed depen-

dent Pitman-Yor multi-object tracker over the dependent Dirichlet process multi-

object tracker as having small clusters is now more probable. Our result further

manifested that the proposed dependent nonparametric model leads to a learning

algorithm which can successfully provide object identity and cardinality. We stud-

ied conditions under which our model is consistent. This model is also empirically

compared to the famous labeled multi-Bernoulli filter and outperformed it.
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Chapter 5

BAYESIAN NONPARAMETRICS ON RANDOM INFINITE TREES AND ITS

APPLICATION ON MODELING IN MULTIPLE OBJECT TRACKING

Recent methods for tracking multiple objects have addressed important issues such as

time-varying cardinality, unordered sets of measurements, and object labeling. How-

ever, some of these methods may be computationally expensive. The main challenge

is how to robustly associate objects on a new scene with previously estimated ob-

jects efficiently. In this chapter, We propose a new method based on infinite random

trees to track a dynamically varying number of objects using information from previ-

ously tracked ones. We propose a new approach where links graph theory, Bayesian

nonparametric modeling, and multi-object tracking. Our model exploits Bayesian

nonparametric modeling and introduces a diffusion-based process to construct infi-

nite random trees. This method can robustly track objects and compute the tra-

jectory only by tracing each leaf. In Section 5.1, we discuss the problem at hand

and introduce the tracking model in Section 5.2. A Bayesian nonparametric prior on

infinite random trees are constructed in Section 5.3, and its properties are discussed.

Section 5.4 discusses the Bayesian nonparametric inference model to infer the trajec-

tory and update the object cardinality. We conclude this chapter by simulations to

demonstrate the performance of the proposed algorithm and compare it to a labeled

multi-Bernoulli (LMB) filter based tracker and DDP-EMM introduced in Chapter 3.

A portion of the results was presented at the 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) [103].
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5.1 Introduction

The multiple object tracking problem could include estimating the objects’ time-

varying cardinality, label and state parameters, among other information, depending

on the application [14, 30, 104–109]. Among various approaches, random finite set

methods were used to solve this problem, together with probability hypothesis density

filtering and multi-Bernoulli or labeled multi-Bernoulli filtering [14, 30, 104, 106].

Nonparametric Bayesian methods were recently used for modeling evolving object

state priors. In [34], the hierarchical Dirichlet process was used as a prior on the

number of unobserved input modes to track maneuvering objects. We recently used

the dependent Dirichlet process to model the object prior and adaptively estimate

both the object label and cardinality at each time step [110].

The Dirichlet diffusion trees (DDT), and its Pitman-Yor diffusion tree generaliza-

tion, nonparametric Bayesian priors over tree structures, are thus useful for estimating

latent parameters with a hierarchical structure [111–113]. They were used, for exam-

ple, in [114], as structure priors to infer different possible scenarios based on trees of

different depth and path lengths. It was demonstrated in [115] that the high compu-

tational cost of Markov chain Monte Carlo (MCMC) inference can be avoided using

efficient approximate inference DDT models. In this chapter, we propose a dependent

Poisson diffusion tree (D-PoDT) that extends the capability of DDTs to model hier-

archies to also capture dependencies among the object states for the multiple object

tracking problem. The dependent Poisson diffusion process (D-PoDP) introduces a

prior on the space of the object state parameters using an infinite random tree. It is

used as a state prior to capture the time-dependency among the states and estimate

the state parameters. A time-dependent process is introduced to infer from the mea-

surements and update the object state parameters, label the objects and estimate the
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object cardinality at each time step. An MCMC sampling method integrates the dis-

tribution over the infinite random tree and the time-dependent process for updating

the states.

5.2 Tracking Model

We consider a multiple object tracking model with time-varying numbers of objects

entering, leaving or remaining in the scene at each time step k. The object cardinal-

ity Nk and the number of measurements Lk are both assumed unknown [106, 110].

This tracking model is used to jointly estimate the object state information and the

cardinality at each time step. We assume that the sample spaces of the ℓth object

state vector xℓ,k, ℓ= 1, . . . , Nk and lth measurement vector zl,k, l= 1, . . . , Lk, at time

step k, are X⊆Rnx and Z⊆Rnz , respectively.

We also assume that the sequence Xk = {xk,1, . . . ,xk,Nk
} corresponds to the con-

figuration of the multiple object state vectors at time step k.

Given the state vector configuration at time (k − 1), we consider three possible

scenarios for the ℓth object and its state vector at time step k: (a) the object leaves

the scene with probability (1 − Pℓ,k|k−1); (b) the object remains in the scene with

probability Pℓ,k|k−1 and its state xℓ,k−1 transitions with probability Pθ(xk|xk−1) and

unknown parameter vector θ; and (c) a new object, with state xℓ,k∈Xk, enters the

scene generating a measurement. We also assume that each measurement is generated

by only one object and that measurements are independent of one another.

5.3 Dependent Diffusion Prior Modeling

We propose a new method for multiple object tracking based on a D-PoDP. These

are similar to the Dirichlet diffusion trees in [111] and Pitman-Yor diffusion trees in

[112] in that, they can be used as priors to latent parameters to capture hierarchical
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structure. The D-PoDTs are different, however, in that the prior can directly incor-

porate time-dependent learned information. For multiple object tracking, the state

prior can include the number of objects at the current time and the object label at

the previous time. Thus, the proposed method can be used to make inference on

the object labels over related information by tracing random tree paths. Following

outlines the proposed D-PoDP model.

5.3.1 Poisson Diffusion Process

We consider a class of priors on trees whose terminal nodes (leaves) are the ob-

ject state parameters, and whose non-terminal nodes (branch nodes) represent the

clustering of the state parameters in a hierarchy. We assume that a tree may have

an infinite number of vertices, and every edge can occur with some probability. The

probability of an edge occurring that violates the tree conditions is assumed zero. We

assume that the first vertex (at time step k= 0) is drawn from Pθ0 with probability 1.

To generate this infinite random tree, the branch nodes and leaves must be specified.

We describe the generative process in terms of a diffusion process on a unit interval;

that is, the leaves correspond to the location of the diffusion process at time step

k= 1. Each point starts at time k= 0 and follows a diffusion process, i.e., a Brownian

motion, until time k= 1, where it is observed. For example, we assume that the first

object state at time step k= 1, θ1,1, is drawn from a diffusion process and fixed. The

second object state, θ1,2, starts at time k= 0 and follows the same path as θ1,1 up

to time δt (time between steps) before it diverges from the first path and takes an

independent path. The generative process for the ith object parameter at time step

k= 1 is as follows. At a branch point, if θ1,i does not diverge off the branch before

reaching to the previous divergence point, then the previous branches are selected
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with probability

Pr(select jth path) = nj − β
m+ η

, Pr(diverge) = η − βK
m+ η

. (5.1)

Here, nj is the number of objects previously in the jth branch, K is the total number of

branches originating from this branch point, m=
∑K

l=1 nl, and β and η are discount

and concentration hyperparameters. It was shown in [112] that, since the specific

diffusion path taken between nodes can be ignored, the probability of generating a

specific tree structure with associated divergence times can be determined by the

accumulative divergence function H(·); this can analytically determine the locations

at each leaf node. Therefore, θ1,i follows the path of the previous points and diverges

in the interval δt, assuming it has not diverged up to time t ∈ [0, 1], with probability

Γ(m− β)
Γ(m+ 1− η)

∫
δt

dH(s) .

Here, Γ is the gamma function, m is the number of points that have previously

traversed this path and β and η are discount and concentration hyperparameters,

respectively. For large m, the probability of diverging from this path is small. As

a result, an infinite random tree can be generated from which there is a probability

measure on each vertex that is dependent on its parent vertex. Note that the ran-

dom tree generated is exchangeable [112]. Therefore, the probability of generating a

specific tree, divergence times, and divergence locations are invariant to the ordering

of the object state parameters.

The proposed algorithm is initialized by drawing N1 from a Poisson distribution,

N1∼Po(α) for some hyperparameter α. Subsequently, we select N1 state parame-

ters (leaves), which, without loss of generality, can be assumed to be the first N1

leaves due to exchangeability. We then set {θ1,1, . . . ,θ1,N1} to be the first N1 param-

eters generated through this process that are associated with the state configuration

{x1,1, . . . ,x1,N1}.
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5.3.2 Transition from Time k−1 to Time k

We define Vk−1 and VB,k−1 to be the set of generated state parameters (leaves)

nodes and branch nodes, respectively, that are connected to the state parameter

(leaf) node at time k−1. Each point θℓ,k−1∈Vk−1 that is generated in the tree has two

options: (i) it can remain in the tree with probability Pℓ,k|k−1 and transition to θℓ,k

according to the transition kernel probability ν(θℓ,k−1,θℓ,k) with the corresponding

state transition is proportional to the transition probability Qθℓ,k
(xℓ,k−1,xℓ,k); (ii)

it can leave the tree with probability (1 − Pℓ,k|k−1). We assume that the following

parameters are available at time k−1:

• Nk−1, number of objects

• Vk−1 = {θk−1,1, . . . ,θk−1,Nk−1
}, generated parameters

• VB,k−1, branch nodes connected to a leaf node

• Vk|k−1 ⊆ Vk−1, survived parameters

• VB,k|k−1 ⊆ VB,k−1, survived branch nodes

• Sa,k−1, siblings with common parent branch node a

• Sa,k|k−1⊆Sa,k−1, survived siblings with common parent branch node a

Note that if all the leaves connected to a branch node disappear, the branch node

is removed from the set of branch nodes. A probability vector pbranch = [pa]a∈VB,k|k−1∪δ

is then assigned to the survived branch nodes as

pa =


|Sa,k−1|+|Sa,k|k−1|−γ

NB,k|k−1−1+
∑

a∈VB,k|k−1
|Va,k−1|+ζ

, a ∈ VB,k|k−1

ζ−|VB,k|k−1|γ
NB,k|k−1−1+

∑
a∈VB,k|k−1

|Va,k−1|+ζ
, a = δ

where |Sa,k−1| is the cardinality of the set Sa,k−1, NB,k|k−1 is the number of points that

survives after transition, δ denotes a new branch, pδ is the probability of generating

a new branch, and ζ and γ are hyperparameters.
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5.3.3 Evolution and Parameter Estimation at Time k

At time k, we utilize the distribution on set Vk|k−1 to find Vk. To this end,

we can assume that θi,k|k−1 ∈ Sa,k|k−1, i= 1, . . . , |Vk|k−1| are transitioned from time

k−1 to k. We draw Ñi,k|k−1∼Po( pa×α
2 |Sa,k|k−1|

) and draw Ñi,k|k−1 points given θi,k|k−1

based on a diffusion process described in Section 5.3.1. At time k, we also draw

Ñδ,k|k−1 ∼ Po(pδ×α
2

) and draw Ñδ,k|k−1 new points from the infinite random graph

from Pθ0 . We set Ñk = ΣiÑi,k|k−1 and Ṽk = {θ1, . . . θÑk
}. The overall algorithm is

summarized in Algorithm 10.

5.4 Inference Model

The D-PoDP in Algorithm 10 provides a joint estimation of the object state

parameters and number of objects, at time step k. At time k, the measurement

vector, zl,k, l= 1, . . . , Lk, becomes available to update the time-dependent cardinality

and infer the posterior distribution. Note that the probability of selecting some of

the generated parameters may be zero; also, some new parameters may also need to

be generated. We introduce an algorithm to dependently cluster these measurements

as follows.

We use the state parameter vector distribution from the output of Algorithm

10 as the mixing distribution to infer measurement distributions to update the ob-

ject cardinality. The probability of choosing a parameter θi,k is proportional to the

popularity of the parameter at time k, in addition to the cardinality of the set of

siblings with the common parent branch node at time k−1. Specifically, if we assume

that θℓ,k is transitioned from θℓ,k−1 (for which it shares the common parent a), then

πℓ = Pr(select θℓ,k) ∝ (nℓ,k + |Sa,k−1|), where nℓ,k is the number of measurements that

have already selected θℓ,k at time k. The probability of selecting a parameter that has
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Algorithm 10: D-PoDP Algorithm
Initialization:

• Draw θ0
0 ∼ Pθ0

• Draw N1 ∼ Po(α)

• Generate {θ1,1, . . . ,θ1,N1} based on a diffusion process with branching

probability of convergence in (Section 5.3.1)

Transitioning from time k−1 to k

for θi,k|k−1 ∈ Vk|k−1 do

Draw Ñi,k|k−1 ∼ Po( pa×α
2 |Sa,k|k−1|

)

Generate Ñi,k|k−1 parameter points given θi,k|k−1 using a diffusion process

end for

• Draw Ñδ,k|k−1 ∼ Po(pδ×α
2

)

• Draw Ñδ,k|k−1 new parameter points from the base distribution Pθ0

following a diffusion process

At time k

Set Ñk =
∑

i Ñi,k|k−1

Set Ṽk = {θk,1, . . . ,θk,Ñk
}.

Set Xk = {xk,1, . . .xk,Ñk
}.

not been used up to time k is proportional to some hyperparameter λ. In particular,

p(zl,k | xℓ,k,θℓ,k, πℓ) can be inferred as

πℓ ∝


nℓ,k + |Sa,k−1|, θℓ,k−1 ∈ Sa,k−1, θℓ,k ∈ Ṽk

λ, New θℓ,k

(2)

xℓ,k | θℓ,k,Xk|k−1 ∼ G(θℓ,k) (3)

zℓ,k | xℓ,k,θℓ,k, πℓ ∼ F (xℓ,k,θℓ,k) (4)
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where Xk|k−1 is the set of states whose objects survive from time step (k−1) to k and

G and F are two appropriately selected distributions that come from the physical

model. Algorithm 11 summarizes the implementation of the dependent mixtures to

cluster the measurements and track the objects. Note that since the D-PoDP is used

to find the object trajectories, one needs to trace the random tree. Algorithms 10

and 11, together with MCMC sampling methods, constitute the proposed D-PoDP

multiple object tracking algorithm. Sampling in both algorithms is performed using

MCMC methods; in particular, we use Gibbs sampling for models based on conjugate

prior distributions.

Algorithm 11: Dependent Mixture Model to Cluster Measurements and

Track Objects
Input: Measurements: {z1,k, . . . , zk,Lk

}

Output: Nk, cluster configurations, and posterior

At time k

Sample {θ1,k, . . . ,θk,Ñk
} and {xk,1, . . . ,xk,Ñk

} according to Algorithm 10

Draw {πi} according to (Equation (2))

for l = 1 to Lk do

Sample zl,k|xℓ,k,θℓ,k, πℓ using (Equation (4))

end for

Nk ← Ñk

Vk = {θ1,k, . . . ,θNk,k}

return Nk and posterior of zl,k|xℓ,k,θℓ,k, πℓ
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5.5 Simulations

In this section, we demonstrate through simulations the performance of the D-

PoPD algorithms. We first compare this tracker to that of labeled multi-Bernoulli

(LMB). We show this method is efficient and can outperform the LMB tracker. A

comparison between the D-PoDP tracker and DPY-STP is manifested. This compar-

ison shows that the performance of the D-PoDP tracking method is approximately

the same as the DPY-STP. However, the D-PoDP algorithm is easier to implement

and can more efficiently track the objects.

5.5.1 Comparison to Labeled Multi-Bernoulli Tracker

In order to demonstrate the performance of our proposed D-PoPD method, we

simulated a dynamic nonlinear tracking example using five objects that enter and

leave a scene at different times. The overall observed time is K = 100 times steps and

the signal-to-noise ratio (SNR) was -3 dB. The time steps over which each object is

present in the scene is summarized in Table 5.1. The time steps are also depicted in

Figure 5.1(a) and (b) that show that x and y-coordinates of the true trajectory of each

object. The D-PoPD estimated x and y-coordinates of the trajectory of each object

are also shown in Figure 5.1(a) and (b). The D-PoPD algorithm was compared with

the labeled multi-Bernoulli (LMB) based tracker; both algorithms used 10,000 Monte

Carlo (MC) simulations. As shown in Figure 5.2a and Figure 5.2b, the proposed

tracker is more accurate in estimating the time-dependent object cardinality than the

LMB. This is also demonstrated using the optimal sub-pattern assignment (OSPA)

metric (of order p= 1 and cut-off c= 100) for range an cardinality in Figure 5.3(a)

and Figure 5.3(b), respectively. As it can be seen for the D-PoPD, for example, for

the cardinality OSPA measure, the highest error is observed at time step k= 0, when
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Figure 5.1: True and Estimated (a) x- and (b) y-coordinates as A Function of the

Time Step k of Five Objects.
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Figure 5.2: Comparison of estimated cardinality using proposed D-PoDP method

(top) and LMB (bottom) when tracking 5 objects.
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Table 5.1: Time Step at Which Object Enters and Leaves the Scene.

Object Time Enters Time Leaves

Object 1 k = 0 k = 100

Object 2 k = 10 k = 100

Object 3 k = 10 k = 100

Object 4 k = 10 k = 60

Object 5 k = 20 k = 80
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Figure 5.3: OSPA of Order p= 1 and Cut-off c= 100 for (a) Range and (b) Cardinality

Averaged over 10,000 MC Simulations for the Proposed D-PoPD and the Labeled

Multi-Bernoulli (LMB) Based Tracker.

the first object enters the scene and then at time step k= 10, when three new objects

enter the scene. The method performs very well for a long time, tracking all four

objects in the scene, with only a small error that soon decreases object 5 enters the

scene. It continues to track the correct number of objects even when object 4 leaves

the scene.
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5.5.2 Comparison to DPY-STP Tracking Model

In this section, we compare the D-PoDP tracker to DPY-STP tracker for ten

objects at SNR = -3 dB. Figure 5.4 depicts this comparison. The OSPA comparison

is the order of p = 1 and performed at cut-off c = 100. Figure 5.4 is obtained by

averaging over 10,000 Monte Carlo runs. The performance for both trackers seem to

approximately be the same on average. However, the D-PoDP tracking method on

the infinite random tree is simpler to implement. The order of complexity for search

on this tree it the worst case is order of O(Nk). Hence, the D-PoDP is shown to be

much faster algorithm.
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Figure 5.4: OSPA of Order p= 1 and Cut-off c= 100 for (a) Location and (b) Car-

dinality Averaged over 10,000 MC Simulations for the Proposed D-PoPD and the

DPY-STP.
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5.6 Discussion

In this chapter, we presented a novel class of infinite random trees to address

the multiple object tracking via diffusion processes. We generated infinite random

trees where tracing each path on the tree allows for tracking object trajectories. We

demonstrated that integrating the proposed dependent Bayesian nonparametric mod-

eling through Poisson diffusion process with multiple object tracking can efficiently

obtain object tracks, labels, and time-varying cardinality. Moreover, the Markov

chain Monte Carlo implementation of the proposed tracking framework verifies the

accuracy and simplicity of this algorithm.
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Chapter 6

DEPENDENT OBSERVATIONS FROM MULTIPLE SENSORS FOR MULTIPLE

OBJECT TRACKING

A multimodal sensing system can facilitate the development of algorithms by incor-

porating and learning new information using observations collected from multiple but

disparate sensors. In particular, the integration of multiple modalities can lead to

significant performance improvement for tracking objects in diverse operational and

environmental conditions [104, 116]. However, incorporating the dependent mea-

surements can be troublesome since pooling all measurements can cause loss of the

information collected by the sensors [117, 118]. In this chapter, we consider the prob-

lem of state estimation for a dynamic system with dependent measurements where

multiple sensors measure the dependent observations. Since sensors observe the same

scene, the received measurements from the sensors are correlated. The goal is not

only to distinguish whether these observed measurements are from the object but

also to estimate the object trajectory using measurement models that match the ob-

servations. We first address the problem of tracking a single object with multiple

correlated measurements from multiple sensors and then extend this problem to mul-

tiple object tracking. The Bayesian nonparametric paradigm is an elegant and flexible

approach for modeling complex and dependent observations with unknown latent di-

mensionality. Hence, we exploit a Bayesian nonparametric approach to address the

problem of tracking with multiple correlated sensors measurements. In Section 6.1,

we study how to incorporate dependent measurements to achieve the best results

through grouping the multimodal dependent measurements via a Bayesian hierarchi-

cal model and then estimate the tracks using the grouped measurements. We then
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extend this problem to the multimodal multi-object tracking in Section 6.2. We il-

lustrate this nonparametric model in Section 6.3. Our results were presented at the

2019 53rd Asilomar Conference on Signals, Systems, and Computers [82] and 2019

22nd Information Fusion conference [119].

6.1 Multi Sensor Dependent Observations: Single Object Tracking

In this section, we introduce a hierarchical modeling to utilize the dependency

among the collected measurements. We propose a prior that can robustly model

the dependent measurements. To accurately estimate the object trajectory, we form

the optimal hypothesis test to discard the noise measurements. We then employ a

Bayesian tracker to track a single object.

6.1.1 Measurement Model for Dependent Observations

We consider a single object tracking problem where the measurements are as-

sumed to receive from multiple sensors scanning the same scene without having any

knowledge of observation to sensor associations. It is worth mention that the number

of observations collected by each sensor may vary with time. Hence, the multimodal

system observations are statistically dependent. As the dependent observations in the

object tracking model are collected from M disparate sensors, they can correspond

to different measurement models. The state-space model from the system dynamics

and measurements for estimating the object state parameter vector xk is thus given

by

xk = f(xk−1) + uk (6.1)

Zm,k = hm(xk) +wm,k . (6.2)
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where uk is a transition error random process, wm,k is the additive measurement

noise process from the mth sensor, and Zm,k =
{
z
(1)
m,k, . . . , z

(Lm)
m,k

}
, is the collection of

Lm measurements received by the mth sensor. The function hm(xk) is a time-varying

and possibly nonlinear function that describes the relation between the object state

and the measurement set Zm,k from the mth sensor.

We assume that the mth sensor generates the measurement set Zm,k according to

the likelihood function p(Zm,k|xk). In Equation (6.1), the object state xk is assumed to

evolve from time (k− 1) following the possibly nonlinear transition function f(xk−1),

and thus according to a transition probability kernel Qθk
(xk−1,xk). We assume the

observations are dependent; meaning it is assumed that both Zm,k and Zn,k, m ̸= n

as well as z
(i)
m,k and z

(j)
m,k, i ̸= j, for a fixed sensor m, are both correlated.

6.1.2 Measurement Associations and Prior

As discussed in Chapter 2, hierarchical Bayesian models can be utilized to cap-

ture the dependency among measurements that may have originated from different

sensors [54]. In particular, the hierarchical Dirichlet process (HDP) framework can

be exploited to model dependency among measurements that are related to clusters

which are shared among all groups (sensors). The object trajectory can be more

accurately estimated once the sensor measurement association is determined while

accounting for statistical dependency. To this end, we place a prior on the collec-

tion of measurements to capture the dependency among them and provide a prior

measurement distribution. Following the HDP model, each sensor parameter is drawn

from a discrete random probability measure with probability one to ensure the depen-

dency among measurements. A graphical representation of the HDP mixture model,

as described next, is depicted in Figure 6.1.

The measurement parameters are drawn from a shared Dirichlet process DP(γ,G0)

126



H G0 Gm

η γ

ϕ
(i)
m,k z

(i)
m,k

Lm

M

Figure 6.1: Graphical Representation of the HDP Mixture Model.

with concentration hyperparameter γ and base distribution G0; this base distribution

is drawn from another Dirichlet process with concentration parameter η and base dis-

tribution H. We assign a random probability measure Gm, drawn from a discrete ran-

dom probability measure G0, for the measurements of the mth sensor, m= 1, . . . ,M .

We assume that the parameters ϕ(i)
m,k of the ith measurements from the mth sensor

at time k are drawn from Gm, that is, ϕ(i)
m,k|Gm ∼ Gm, i= 1, . . . , Lm. This is needed

in order to place a prior on the dependent measurements that originated from the

same sensor such that the same structure is inherited within sensor measurements.

The resulting model needs to both capture the dependency among the measurement

sets and the identity of the sensor measurement model as in Equation (6.2). This

would not have been achieved if a Dirichlet process prior was placed on all the mea-

surements or if independent random probability measures Gm were drawn for each

measurement set. As shown in [54], if a measure Gm, given the distribution G0, is

drawn independently from G0, then dependency within each measurement set and

among sensor measurements are captured as they share the same parameters. We

assume that the distribution G0 is a global random probability measure that cannot

be continuous and that Gm, m = 1, . . . ,M are conditionally independent given G0;

Gm, m = 1, . . . ,M are drawn from a Dirichlet process with base measure G0 and

concentration parameter η. Therefore, the parameters associated with each sensor,
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Figure 6.2: Graphical Model Capturing the Temporal Dependence among the Mea-

surements. Note That θj,k Correspond to Parameters at Time k Which Are Shared

among All The Groups of Measurements Received from The Sensors.

measurement are drawn from a Dirichlet process.

By placing the HDP prior on the measurement parameters collected from the mth

sensor, the distribution of the measurements can be modeled as

G0 ∼ DP(η,H)

Gm | G0 ∼ DP(γ,G0), m = 1, . . .Mk

ϕ
(i)
m,k | Gm ∼ Gm, i = 1, . . . , Lm,k

z
(i)
m,k | ϕ

(i)
m,k ∼ F

(
ϕ
(i)
m,k

)
(6.3)

for some distribution F (·) that captures the physical model. This method clusters

the measurements that are collected by each sensor and estimates the joint density of

the dependent measurements. As shown next, this density is used to infer the object

trajectory. Note that although we assume that the total number of sensors is fixed,

our approach can be generalized to a time-varying number of sensors.
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6.1.3 Bayesian Inference

Once the HDP mixture model provides an estimate of the measurement density

and clusters the measurements, we use Bayesian tracking methods to infer the object

trajectory. We refer to the overall approach as HDP-DM (HDP for dependent mea-

surements). The graphical representation of the HDP-DM is provided in Figure 6.2;

the approach is summarized in Algorithm 12.

Hypothesis Testing for Object Detection

We assume that Zk = {Z1,k, . . . , ZM,k} is the set of measurements from all M sensors

at time step k. It is also assumed that the measurements at time step k depend only

on the object state at the same time step. Specifically,

P
(
Z1, . . . ,Zk|x1, . . . xk

)
=

k∏
j=1

P (Zj|xj). (6.4)

The received observations may not always include object information. As a result,

before estimating the object state parameter vector xk using the mth sensor obser-

vations Zm,k, m= 1, . . . ,M , a detection test statistic must be formed based on the

binary hypothesis

H0 : Zm,k = wm,k

H1 : Zm,k = hm(xk) +wm,k .

where, wm,k is the noise vector at time k and hm(·) is the measurement model cor-

responding to the mth sensor in Equation (6.2). The Neyman-Pearson detection test

statistic Tm(·) is selected to maximize the probability of detection for a given probabil-

ity of false alarm. Thus, we decide that the object is detected using the measurements

from the mth sensor if the test statistic exceeds a threshold value obtained from the
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given probability of false alarm. The test statistic is given by

Tm
(
Zm,k,ϕm,k;xk

)
=
p
(
Zm,k | xk;H1

)
p
(
Zm,k;H0

) , (6.5)

where ϕm,k =
{
ϕ
(i)
m,k, . . . , ϕ

(Lm)
m,k

}
. Note that we assume that all sensor measurements

are dependent, including measurements from the same sensor. As a special case, if the

measurements from the same sensor were to be assumed independent, the likelihood

ratio in Section 6.1.3 would simplify to

Tm
(
Zm,k,ϕm,k;xk

)
=

∏Lm

i=1 p
(
z
(i)
m,k | xk;H1

)
∏Lm

i=1 p
(
z
(i)
m,k;H0

) . (6.6)

Note that the formulation in Section 6.1.3 for this special case does not contradict

the dependency among measurements from different sensor as Zm,k and Zn,k, m ̸= n

are still correlated.

Bayesian Object Tracking Method

We assume that Zm,k ⊂ Zk is the set of measurements from the mth sensor that orig-

inated from the object, and that Zk = {Z1,k, . . . ,ZM,k} is the set of all measurements

that originated from the object. Then, the object state density p(xk|Zk) summarizes

all information about the history of the object up to time k. The estimated state is

obtained as the posterior mean given by

x̂k = E
[
p(xk|Zk)

]
. (6.7)

The posterior density can be computed recursively for all k ≥ 1. Assuming an

initial probability, the state probability at time k must be predicted using all the

sensor measurements up to time (k−1). The tail recursive function for the prediction

is given by

p
(
xk|Z1, . . . ,Zk−1

)
=

∫
Qθk

(
xk−1,xk

)
p
(
xk−1|Z1, . . . ,Zk−1

)
dxk−1, (6.8)

130



where Qθk

(
xk−1,xk

)
is the transition probability kernel and θk = {ϕ1,k, ϕ2,k, . . . }. We

use forwards recursion to obtain the filtering distribution, which is the distribution of

the state at time k conditioned on the measurements history up to time k. Specifically,

at time step k, the Bayesian recursion is given by

p(xk|Z1, . . . , Zk) ∝ p(Zk|xk) p(xk|Z1, . . . ,Zk−1). (6.9)

To compute this probability, we use the tail recursive Equation (Equation (6.8)) and

the density of Zk estimated using the HDP mixture in Section 6.1.2. That is, the

distribution of Zm,k, for any m, conditioned on xk, is obtained as

P (Zm,k|xk) =
∞∑
j=1

πm,j F (θj,k), (6.10)

for some distribution F that is chosen to describe the physical model. Here, θj,k∼H

for a base distribution H and for hyperparameters η and γ. The parameters πm,j

follow from πm = (πm,1, πm,2, . . .), where πm ∼ DP(η,GEM(γ)), GEM(γ) is defined as

π′
m,j ∼ Beta(1, γ)

πm,j = π′
m,j

j−1∏
ℓ=1

(1− π′
m,ℓ)

(6.11)

and Beta(1, γ) is the Beta distribution. Note that the dependency among sensor

measurements comes from the fact that ϕm,ℓ|Gm ∼ Gm are shared among all the

sensors (groups) [120, 121].

6.2 Multi Sensor Dependent Observations: Multi-Object Tracking

In this section, we generalize the problem discussed in Section 6.1 to track multiple

objects with unknown cardinality from measurements collected by multiple sensors.

We develop robust algorithms that fully capture the dependency among the measure-

ments as well as being capable of dealing with unknown time-dependent objects and
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Algorithm 12: HDP-DM Approach for Computing the HDP Prior via De-

pendent Measurements and Estimating the Object State.
Input: η, γ, H and Z1,k, . . . , ZM,k

Draw a G0 from a DP(η,H)

for m = 1 to M do

Draw Gm | G0 ∼ DP(γ,G0)

end for

for m= 1 to M do

for i= 1 to Lm do

Draw ϕ
(i)
m,k | Gm ∼ Gm

end for

end for

Draw each measurement z
(i)
m,k from the probability distribution F

(
ϕ
(i)
m,k

)
for m= 1 to M do

Compute the likelihood T (Zm,k,ϕm,k;xk) as in Equation (6.4)

end for

Return: Object generated measurements

Zk = {Z1,k, . . . ,ZM,k}

Sample from p(Zm,k|xk) using an MCMC method

Prediction: Compute p(xk|Z1, . . . ,Zk−1) from Equation (6.8)

Update: Draw xk from p(xk|Z1, . . . ,Zk) from Equation (6.9)

Return: x̂k using Equation (6.7)

their identity. Additionally, given the dependent observations received from multiple

sensors, our model takes advantage of the additional information provided by depen-

dency among the measurements to improve the tracking performance. We integrate a
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dependent Dirichlet process as a prior on the time-varying object state distributions

with a hierarchical Dirichlet process mixture as a model to capture the dependency

among the measurements to accurately and robustly estimate the evolving object

cardinality and their trajectory. We demonstrate through simulations that providing

multimodal dependent measurements the proposed method can improve the accuracy

of the object trajectory estimation and can robustly determine the time-dependent

cardinality.

6.2.1 Problem Formulation

We consider multiple object tracking where a time-varying number of sensors

collect measurements. Assume that Xk = {x1,k, . . . ,xNk,k} is the collection of the

object states at time k for an unknown variable Nk. Each object at time (k − 1),

xℓ,k−1, may leave the scene with probability 1 − Pk|k−1 or may stay in the field of

view with probability Pk|k−1 and transition to state xℓ,k at time k according to the

transition kernel probability Qθℓ,k
(xℓ,k−1,xℓ,k), given unknown parameters θℓ,k. At

each time step, a time-dependent number of new objects may also enter scene. We aim

to jointly estimate the number of objects as well as the trajectory of each object using

measurements. Suppose Lk sensors collect information of the scene at time k. Each

sensor collects an unordered measurement set Zm,k = {z1m,k, . . . , z
Mk
m,k}, m = 1, . . . , Lk.

We define Zk = {Z1,k, . . . ,ZLk,k} to be the set of all measurements collected by Lk

sensors such that Zm,k and Zn,k are highly correlated for n ̸= m. We employ Bayesian

nonparametric modeling to use the dependency among measurements to improve the

tracking a time-varying number of objects. To this end, we place a DDP-based

prior on the object state parameters and a hierarchical Dirichlet process prior on

the measurements. This modeling not only takes the time-dependency among the

objects but also takes advantage of dependency among the measurements received
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by multiple sensors. In the next section, we provide the prior model as well as the

inference model in detail.

6.2.2 Prior Construction

Assume that Θk is the collection of all parameters associated with tracking at time

k and θℓ,k ∈ Θk is the ℓth parameter at time k. Let Dk|k−1 and Dk be the number

of parameters transitioning from time (k − 1) to k using transition kernel ν(θℓ,k−1, ·)

and the number of parameters at time k, respectively. We define Vk to be (1×Dk)-

vector where the ℓth element, [Vk]ℓ, represents the number of states associated with

the ℓth parameter. One can similarly define Vk|k−1 to be the vector consisting of

the number of survived and then transitioned objects from time (k − 1) to k. Note

that entires of these vectors may be zero because some objects may leave, and thus

no state is associated with the corresponding parameter. We similarly define vector

V ∗
k|k−1 ∈ RD∗

k|k−1 from Vk|k−1 by eliminating zero entires. We construct the DDP prior

on the object state parameters as follows:

Case 1: The ℓth object belongs to one of the survived and already transitioned clusters

where has not yet been assigned to any object at time (k−1) The object selects

such a cluster with probability:

Π1(Select jth unassigned cluster|θℓ−1
1,k ,Θk|k−1) =

[
V ∗
k|k−1

]
j∑

j

[
V ∗
k|k−1

]
j
+
∑
j
[Vk]j + α

(6.12)

for hyperparameter α.

Case 2: The ℓth object selects one the survived clusters which has already been occu-

pied by the previous objects. The object belongs to one of these clusters with
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probability:

Π2(Select jth assigned cluster|θℓ−1
1,k ,Θk|k−1) =

[
V ∗
k|k−1

]
j
+ [Vk]j∑

j

[
V ∗
k|k−1

]
j
+
∑
j
[Vk]j + α

(6.13)

Case 3: The ℓth object does not belong to any of the transitioned clusters. We initiate

such a cluster with probability:

Π3(Create new cluster|θℓ−1
1,k ,Θk|k−1) =

α∑
j

[
V ∗
k|k−1

]
j
+
∑
j
[Vk]j + α

(6.14)

Given the cases (1)-(3), the state distribution p(xℓ,k|Xℓ−1
k ,X⋆

k|k−1,Θ
⋆
k|k−1,Θk) is given

by: 
Qθk

(xℓ,k|xℓ,k−1)f(xℓ,k|θℓ,k) If case 1 happens

Qθk
(xℓ,k|xℓ,k−1)ν(θ

∗
ℓ,k−1,θℓ,k)f(xℓ,k|θℓ,k) If case 2 happens∫

θ
f(xℓ,k|θ)dH(θ) If case 3 happens

(6.15)

for some density f and a Dirichlet process with concentration parameter α, and

base distribution H, DP(α,H). Note that Θ∗
k−1 = {θ∗

ℓ,k−1}
D∗

k|k−1

ℓ ⊂ Θk−1 and Xℓ−1
k

represent the set of unique parameters at time k and the configuration at time k up

to the ℓth object.

6.2.3 Inference Model

Upon receiving the measurements from the sensors, it is crucial to capture the

dependency among the unordered sensor measurements. We need to partition the

received measurements to use the dependency among them to robustly track the ob-

jects. We employ a HDP prior on the measurements parameters. The HDP mixture

model allows us to model the measurements corresponding to various objects and also

the dependency among the multiple sensor measurements. Each group of measure-

ments in such a formulation corresponds to a sensor and multiple clusters within each
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group is associated with multiple objects. We utilize the proposed HDP as prior on

the measurements to track the objects. What follows briefly describes this procedure.

Assume the base measurement G0 is a discrete random measure that is drawn from

DP(η,H0), then

G0 ∼ DP(η,H),

Gm|G0 ∼ DP(γ,G0), m = 1, · · · , L

ϕ
(j)
m,k|Gm ∼ Gm, j = 1, . . . , Lm,k

z
(j)
m,k|ϕ

(j)
m,k,Xk ∼ R(·|ϕ(j)

m,k,xℓ,k)

(6.16)

for some distribution R. Given Equation Equation (6.16) and the proposed DDP

prior, one can compute the posterior distribution and thus track the multiple objects.

6.3 Simulations

6.3.1 HDP-DM Single Object Tracking: Synthetic Gaussian Data

The performance of the proposed HDP-DM algorithm is demonstrated using sim-

ulations to track a single object given two dependent (and different) measurements.

The object state vector is given by xk = [xk yk ẋk ẏk]
T , where (xk, yk) and (ẋk, ẏk) are

the two-dimensional Cartesian coordinates of the position and velocity of the object,

respectively, at time step k. For this example, the state transition in Equation (6.1)

is given by the linear model

xk = Fxk−1 + uk (6.17)
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where

F =



1 ∆t 0 −2∆t

0 1 0 −(∆t)3/3

0 2∆t 1 (∆t)2/2

0 0 0 1


, (6.18)

where ∆t is the time between time steps, and uk is a (4×1) zero-mean Gaussian

random vector with covariance Cu. The two measurement vectors Zm,k, m= 1, 2 are

given by

Z1,k = h1(xk) +w1,k (6.19)

Z2,k = h2(xk) +w2,k (6.20)

where

h1(xk) =


√

(x2k + y2k)

xk

0

 , h2(xk) =


√

(x2k + y2k)

0

yk

 (6.21)

and wk = [wT
1,k wT

2,k]
T is a (6×1) zero-mean Gaussian random vector with covariance

matrix Cw. Note that uk and wk are assumed to be mutually independent.

For this simulation, we set ∆t= 1, Cu = 50 I4, and

Cw = 105

2 I3 3 I3

3 I3 5 I3

 , (6.22)

where IN is the (N×N) identity matrix.

For the HDP prior, the base distribution H in Section 6.1.2 was selected to be a

normal-inverse-Wishart distribution, NIW(µ0, λ, ν,Ψ), with values µ0 = 0, λ= 0.05,

ν = 100, and Ψ equal to the identify matrix. The concentration parameters η and

137



0 5 10 15 20 25 30 35 40 45 50
-2000

-1500

-1000

-500

0

500

1000

1500

2000

x
-c

o
o
rd

in
a
te

 (
m

)

Estimates
True tracks
Measurements

0 5 10 15 20 25 30 35 40 45 50
Time step,  k

0

500

1000

1500

2000

y
-c

o
o
rd

in
a
te

 (
m

)

Figure 6.3: Actual and Estimated x-coordinate (Top) and y-coordinate (Bottom) of

the Target Position Using Bayesian Tracking with HDP-DM.

γ is drawn as independent and identically distributed from the Gamma distribution

Γ(· ; 1, 0.2).

For comparison, we simulate the HDP-DM-based Bayesian tracker and a Bayesian

tracker that assumes that the two measurements are independent (BT-IM). The sim-

ulation results are obtained using 10,000 Monte Carlo runs. Figure 6.3 shows the

estimated x and y coordinates obtained using the HDP-DM. Figure 6.4 (top) and

Figure 6.4 (bottom) show the estimated range of the object obtained using the HDP-

DM and the BT-IM, respectively. The corresponding mean-squared error (MSE) for

each of the two approaches, obtained by averaging 100 measurement realizations, is

shown in Figure 6.5. As it can be observed, even for this simple example of only two

measurements, the dependency among the measurements results in the performance

improvement. Figure 6.5 depicts that the MSE is reduced when the dependency of
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Figure 6.4: Range Estimation Using Bayesian Tracking with HDP-DM (Top) and

Only Bayesian Tracking (Bottom).

the measurements is taken into consideration by the HDP-DM. The cardinality of the

measurements is shown in Figure 6.6. For this example, there were two measurements

at each time step.

6.3.2 HDP-DM Single Object Tracking: Waveform-Agile Multi Modal Data

In this section, we apply the HDP-DM algorithm to waveform-agile multi modal

data introduced in [122]. In this model, we apply the HDP algorithm on more realistic

data models such as for radio frequency (RF) and electro optical (EO) sensors. We use

the following nearly constant velocity motion model with state xk = [xk ẋk yk ẏk]
T

at time k where (x, y) and (ẋ, ẏ) are the location and the velocity, respectively. The

state space representation xk is given by

xk = Fxk−1 + uk (6.23)
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Figure 6.6: Time-varying Cardinality of the Measurements at Each Time Step.

where uk is the transition error (noise) and F is given by

F =



1 0 ∆t 0

0 0 1 0

0 1 0 ∆t

0 0 0 1


. (6.24)
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The noise vector has a Gaussian distribution N (0, Qk) where the covariance matrix

Qk is

Qk =



∆t3/3 0 ∆t2/2 0

∆t2/2 0 ∆t 0

0 ∆t3/3 0 ∆t2/2

0 ∆t2/2 0 ∆t


(6.25)

where ∆t = 1. For an RF-EO sensor measurements, the received RF and EO sensor

signals are preprocessed to determine the presence of the target. The resulting range

and range-rate estimates are used as a single measurement for tracking. Under low

SNR environments, however, the probability of detection is low and a single such

measurement cannot be accurately obtained. The sensor measurements model is

based on the model in [122] involve two types of measurements:

(i) Radio Frequency Sensor Measurement Model For the Signal

For the radar measurement, divide a range-Doppler plane into A × B resolution

cells and assume that each cell provides a matched filter output amplitude. The target

contribution to the intensity is the ambiguity function, AFs(τ, ν), of the transmitted

signal s(t) as a function of the range, r, and range-rate, ṙ, of the target. Assuming

s(t) = ( 1
π∆t2

)1/4e−
t2

2∆t2 eibt
2 , the ambiguity function is

AFs(τ, ν) = exp (
−τ 2

4∆t2
+ π∆t2(ν +

bτ

π
)2) exp (iπτν). (6.26)

Assuming a Gaussian measurement noise with mean zero and variance σ2
RF , the

radar measurements for cell (a, b) corresponding to a rectangle centered at (ra, ṙa) for

a = 1, 2, . . . , A and b = 1, 2, . . . , B is

z1k,(a,b) = gk,(a,b)(xk) +w1,k,(a,b) (6.27)

where gk,(a,b) follows

gk,(a,b)(xk) = IRFAFs(
ra − rk

2c
,
2fcṙb − ṙk

c
) (6.28)
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Figure 6.7: (a) RF Measurements with Gaussian Noise. (b) EO Measurements with

Gaussian Noise.

for rk =
√
x2k + y2k, ṙk = xkẋk+ykẏk

rk
defining the range and range-rate at time k,

respectively. A realization of RF measurement is depicted in Figure 6.7a.

(ii) EO Sensor Measurement Model

The EO sensor 1 − D angle bearing measurement plane is divided into C cells

with center ϕc for c = 1, . . . , C at time k. The measurement obtained at the center

of cell c is given by

z2k,c = hk,c(xk) +w2,k,c (6.29)

where the measurement noise is a Gaussian with mean zero and variance σ2
EO. The

target contribution to the intensity level at cell c equals to

hk,c(xk) = IEO
2√

2πσ2
EO

exp−(ϕc − ϕk)
2

2σ2
EO

(6.30)

with ϕk = tan−1( yk
xk
). A realization of the collected EO sensor measurement is de-

picted in Figure 6.7b. For this model, we simulated the HDP-DM-based Bayesian

tracker and a Bayesian tracker (The Bayesian tracker assumes that the two mea-

surements are independent.). Using the aforementioned model as Section 6.3.1, we
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estimated the target trajectory using both the HDP-DM and the BT-IM methods.

Figure 6.8 shows the estimated x and y coordinates obtained using the HDP-DM.

The corresponding location estimate is depicted in Figure 6.9.
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Figure 6.8: x and y Location True and Estimated Using HDP-DM Algorithm.
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Figure 6.9: Location Estimated by HDP-DM Algorithm.

The mean-squared error (MSE) for each of the estimated target location obtained

for both the HDP-DM and BT-IM methods, acquired by averaging over 1000 mea-

surement realizations, is shown in Figure 6.10. It is observed that the MSE is reduced

when the dependency of the measurements is taken into consideration by the HDP-

DM.
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Figure 6.11: True and Estimated Sensor Cardinality.

The cardinality of the measurements is shown in Figure 6.11. For this example,

there are RF and EO sensor measurements at each time step. To illustrate the

performance of this nonparametric approach, we also compare this method for var-

ious SNRs and display it in Figure 6.12. Note that in this example we assume the

correlation coefficient between the RF and EO to be ρ = 0.5.

6.3.3 Multi Object Tracking: Multi Sensor Dependent Measurements

In this section we use the same state model as Section 3.5.1 for five objects. In

addition to the generated measurements in Section 3.5.1, we also generate z2l,k =

144



0 10 20 30 40 50 60 70 80 90 100

Time, k

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

M
SE

 (d
B)

SNR = -3 dB

SNR = -5 dB

SNR = -10 dB

Figure 6.12: MSE Error under Different SNRs When Using HDP-DM Algorithm for

RF and EO Measurements.

10 20 30 40 50 60 70 80 90 100
-2000

-1000

0

1000

2000

x
-c

o
o

rd
in

a
te

 (
m

)

10 20 30 40 50 60 70 80 90 100

Time

500

1000

1500

2000

y
-c

o
o

rd
in

a
te

 (
m

)

Estimates

True tracks

Measurements

10 20 30 40 50 60 70 80 90 100
-2000

-1000

0

1000

2000

x
-c

o
o
rd

in
a
te

 (
m

)

10 20 30 40 50 60 70 80 90 100

Time

500

1000

1500

2000

y
-c

o
o
rd

in
a
te

 (
m

)

Estimates

True tracks

Measurements

Figure 6.13: (a) Actual and Estimated x and y Positions Incorporating Dependent

Measurements Using HDP with DDP-EMM(b) Actual and Estimated x and y Posi-

tions through DDP-EMM.

1√
2πσ2

l

exp
ϕ2
l,k

2σ2
l
, where ϕl,k = tan−1(yl,k/xl,k). This model is compared to that of

assuming independent measurements through DDP-EMM. The compassion results

indicate, under the same circumstances, that dependent measurement assumption

improves the performance of the DDP-EMM tracker. Our results are obtained using

10,000 Monte Carlo runs, SNR = -5 dB, and OSPA measure parameters of order
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p = 1 and cut-off c = 100.
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Figure 6.13 shows the estimated x and y coordinates obtained using the depen-

dent measurements to track multiple objects and its comparison to DDP-EMM. The

corresponding location estimate is depicted in Figure 6.14. The OSPA comparison

depicted in Figure 6.15 also manifests the advantage of incorporating multiple mea-

surement with DDP-EMM tracker. The provided cardinality graphs in Figure 6.16 is
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a proof that dependent measurements not only improve the tracker performance but

also provide a more robust and accurate object cardinality estimation.
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6.4 Discussion

Chapter 6 tackled a more challenging problem of tracking in multimodal depen-

dent measurements. In this chapter, we developed a class of nonparametric models

to estimate the dependent measurement density. We used a Bayesian hierarchical

model to incorporate the dependency among the measurements. Our hierarchical

model took advantage of additional information provided through the dependency of

measurements to improve the tracking performance. We extended this model to track

multiple objects using measurements received from multiple dependent sensors. A de-

pendent Dirichlet process as a prior on the time-varying object state distributions was

integrated with and a hierarchical Dirichlet process mixture to model the evolving ob-

jects as well as the measurement dependency. We demonstrated through simulations

that considering dependency among the collected measurements by multiple sensors

may improve the tracker.
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Chapter 7

CONTRIBUTIONS AND RECOMMENDATIONS

Proceeding chapters detail statistical models for multi-object and multi-sensor track-

ing. We outline the primary contributions of this thesis and propose several research

problems that can further this thesis.

7.1 Summary of Methods and Contributions

Tracking a time-varying number of moving objects using measurements received

from multiple dependent sources under adverse operational and environmental condi-

tions has become a principal and highly-involved problem. This problem is prominent

in diverse applications, including defense, medical, and surveillance. For instance, this

problem arises in tracking multiple moving targets using different types of radar on a

multimodal system under high clutter and high noise conditions; or in locating spe-

cific cognitive and behavioral information in different regions in the brain by tracking

multiple neural dipole sources using patient-dependent eletroencephalography (EEG)

recordings which include interference from physiologic and extraphysiologic artifacts.

This thesis primarily integrates the nonparametric Bayesian statistical models as

priors with multiple object tracking to perform learning tasks and adapt to poor en-

vironmental conditions. These statistical methods are required to robustly and accu-

rately track the trajectory of time-varying objects. We examine the general theme in

the context of object tracking and develop nonparametric models to follow this theme.

We have developed a class of nonparametric processes to model object evolution and

robustly and accurately determine the object identity. These methods robustly esti-

mate the trajectory of each object as well as object cardinality at each time step. We
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also exploit a hierarchical nonparametric model to make use of the extra information

provided by the multiple sensors to robustly track time-dependent objects. Neverthe-

less, we demonstrate that nonparametric methods can flexibly characterize problems

arise in multi-object tracking. We also show these statistical models are both weakly

and strongly consistent and the contraction rate matches the minimax rate.

Tracking time-varying object cardinality and identity is a crutial task. Chapter 3

leverages a dependent process based on the Dirichlet process in which the complete

dependency among the objects are considered. This model is shown to be an optimal

model and can robustly estimate the trajectory of objects as well as the cardinality of

the objects in the scene. MCMC methods are also provided to do inference. We show

that the introduced MCMC method converges to the true posterior distribution. In

addition, the consistency of this process is examined. We show that the proposed

process is weakly and strongly consistent. The contraction of posterior distribution

coincides with the optimal frequentist rate.

A more flexible model to obtain a robust tracking model is offered by the Pitman-

Yor process. The Pitman-Yor process provides a model in which the expected number

of clusters follows the power law property. the Pitman-Yor tends to generate more

clusters with smaller size; therefore, it can better capture the dependency among

objects. Chapter 4 develops a dependent model where the marginal distribution fol-

lows a Pitman-Yor process. In addition, by integrating an infinite mixture model,

we develop a learning model to infer the object identity and cardinality at each time

step. We introduce an efficient MCMC method to do sample from the posterior

distribution. Conditions under which this process is consistent is also studied. Simu-

lation results show that these nonparametric models increase the performance of the

tracking model compared to existing models such as the DDP-EMM and the labeled

multi-Bernoulli trackers.
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Generalizing these object tracking models, Chapter 5 proposes a novel class of

distributions over infinite trees. We first construct a dependent prior over infinite

trees by employing diffusion processes. By utilizing the prior distribution, a learning

model to track multiple objects is then introduced. This model efficiently estimates

the object identity and cardinality at each time step. The trajectory of each object

can be obtained only by searching paths on the infinite random tree which makes this

model computationally inexpensive. Empirical results demonstrate the advantages of

this nonparametric tracking method over other tracking methods.

Multiple dependent measurements with unknown origin, high noise, time-varying

object cardinality, and identity, unknown stochastic state transition models, etc.,

make object tracking a challenging task. However, it is shown that the information

provided due to the dependency of measurements can be utilized towards a more

accurate tracking procedure. The challenge is not only to extract the most information

but to find a solution for the problem of association. A hierarchical Dirichlet process

delivers a promising framework such that the received data can be grouped. Chapter 6

studies this model in detail and provides methods to robustly and accurately track in

both single and multiple objects fashions. In particular, we define hierarchical models

which describe several dependent and related measurements received by multiple

sensors through a common set of shared parts.

7.2 Suggestions for Future Research

Approaches discussed in this thesis can potentially be expanded to other fields of

study. We conclude this chapter by providing a variety of research directions that

can benefit from Bayesian nonparametric modeling, specifically our statistical models.

In addition, we briefly discuss the implication of our statistical and computational

approach for other tracking problems.
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7.2.1 Nonparametric Models for Clutter and Spawning

Bayesian nonparametric approaches can address several tracking problems. Con-

sider the problem of object tracking in the presence of clutter. Tracking in the presence

of clutter is a challenging task, wherein the identification of true measurements from

a large number of noisy measurements becomes crucial for optimal tracking results.

Also, high noise conditions in addition to clutter makes tracking even more diffi-

cult. Nevertheless, a generative Bayesian nonparametric approach can be employed

to model the measurements. In particular, a joint Dirichlet distribution prior over true

measurements and the clutter can be employed to address this issue. This generative

model enables us to distinguish the measurements originated from the objects from

the clutter or noise. The estimated object measurement distribution may be used

in a classical Bayesian single object tracking or an advanced Bayesian multi-object

tracking setup. Furthermore, dependent Bayesian nonparametric models can offer a

solution to the problem of spawning. Spawning occurs when each measurement is

originated from more than one object, and hence the classical clustering cannot pro-

vide a solution to the measurement association. However, the Beta-Bernoulli process

can provide a Bayesian nonparametric solution for the spawning. This model entails

a collection of binary-valued features which can provide information on whether a

measurement is originated from a specific target.

7.2.2 Nonparametric Models and Causation

Causality is a relationship between cause (source) and effect (consequence). In

object tracking, causal relationships can often be found between the motions of the

sensors and that of the tracked object. For example, in a visual object tracking,

an abrupt movement of the camera can cause the tracker to fail, even in simple
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tracking scenarios. Hence, causal relationships are employed to ensure robust predic-

tion/estimation, for example, of the object location, which is crucial to any tracking

algorithm. These causal relationships are amalgamated with Bayesian nonparametric

models to estimate the object locations accurately. For this reason, the joint distri-

bution of the observed data (outcome, treatment, and confounders) may be modeled

through a general Bayesian nonparametric model, such as a Dirichlet process. The

combination of the observed data model and causal assumptions allows us to identify

any type of causal effect-differences, ratios, or quantile effects, either marginally or for

subpopulations of interest. The Bayesian nonparametric model is well-suited for the

multi-object tracking and causal inference problems, as it can estimate the location

of each object and does not require parametric assumptions about the distribution of

confounders and naturally leads to computationally efficient MCMC methods.

7.2.3 Dependent Nonparametric Models in Pattern Recognition and its

Application to DNA Structure

Exploring the use of Bayesian nonparametrics to pattern recognition problems

may provide interesting results in this field of study. In particular, the problem of

tracking patterns in biosequences via Bayesian nonparametric modeling. Patterns in

biosequences, such as sequences from peptides microarrays obtained from biological

samples, can potentially provide, for example, presymptomatic diagnosis for infec-

tious diseases. Current methods of pattern recognition in peptide sequences rely

on long searches using the amino acid one-letter notation representation, as used in

presenting alignments of homologous sequences. Using Bayesian nonparametric and

advanced processing techniques to perform the search has the potential to improve

the classification and identification of the patterns. The use of Bayesian nonpara-

metric adaptive learning techniques allows for further clustering if additional data
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is received. Pattern discovery is interdisciplinary and can be used in multiple se-

quence alignments, protein structure, function prediction, characterization of protein

families, signal detection, and other areas.
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