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ABSTRACT

Artificial general intelligence consists of many components, one of which is Natural

Language Understanding (NLU). One of the applications of NLU is Reading Compre-

hension where it is expected that a system understand all aspects of a text. Further,

understanding natural procedure-describing text that deals with existence of entities

and effects of actions on these entities while doing reasoning and inference at the same

time is a particularly difficult task. A recent natural language dataset by the Allen

Institute of Artificial Intelligence, ProPara, attempted to address the challenges to

determine entity existence and entity tracking in natural text.

As part of this work, an attempt is made to address the ProPara challenge. The

Knowledge Representation and Reasoning (KRR) community has developed effective

techniques for modeling and reasoning about actions and similar techniques are used

in this work. A system consisting of Inductive Logic Programming (ILP) and Answer

Set Programming (ASP) is used to address the challenge and achieves close to state-

of-the-art results and provides an explainable model. An existing semantic role label

parser is modified and used to parse the dataset.

On analysis of the learnt model, it was found that some of the rules were not

generic enough. To overcome the issue, the Proposition Bank dataset is then used to

add knowledge in an attempt to generalize the ILP learnt rules to possibly improve

the results.
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Chapter 1

INTRODUCTION AND MOTIVATION

There has been considerable interest in Artificial General Intelligence (AGI), a field

that tries to mimic Human intelligence through machines, in the past 50 years. One of

the key components in AGI that deals with processing text is that of Natural Language

Processing (NLP). NLP deals with a variety of tasks such as language translation,

speech recognition, etc. Natural Language Understanding (NLU), a key part of Natural

Language Processing, deals with machine comprehension and understanding of a given

text. There is considerable interest in NLU now due to its significant applications

in “automated reasoning, question answering, news-gathering, [. . . ] and large-scale

content analysis” (Natural-language understanding 2019). One similar NLU task is

the task of reading comprehension and its evaluation by question answering. On

these lines, the ProPara dataset has been proposed by the Allen Institute of Artificial

Intelligence to promote research in inference based question answering for a reading

comprehension task (Mishra et al. 2018). Likewise, the main motivation to pursue

this research is to come up with better inference, reasoning and comprehension based

models. Current systems detect answers within paragraphs of question answering but

are still unable to reason or infer well with text. Better results on this dataset can

yield systems that can reason well, make good inferences and better keep track of

entities or intents and their changes across time after multiple actions when performed

on these entities. The developed system can incorporate background knowledge easily,

reason with the constraints and the sentences and also provides an explainable model

which makes it easy to decipher what the model has learnt.

1



Figure 1. Example Paragraph and Corresponding Location Tracking of Multiple
Entities at Each Sentence

Image Source: Mishra et al. (2018)

1.1 About ProPara and Allen AI

The Allen Institute of Artificial Intelligence was founded by Paul Allen, Microsoft

co-founder, to conduct “high impact research and engineering in the field of artificial

intelligence” (ProPara Dataset). The authors have proposed the ProPara dataset

to improve on question answering and reading comprehension. The Propara dataset

“aims to promote research in Natural Language Understanding in the context of

procedural text” (Mission). The dataset contains 488 procedural paragraphs (lending

to its name) and 3300 sentences which describe specific scientific procedures.

As an example, Figure 1 shows a part of a paragraph from the training data. Here,

we have the paragraph on the left and are tracking specific entities/participants in the

dataset on the right. The table on the right attempts to capture the location of the

entities at various points of time (Each new sentence is treated as a new time-step).
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1.2 Value of the Research

The ultimate goal of quite a few Natural Language Processing systems is to be able

to use “natural languages as effectively as humans do”[5]. Paths to this goal involve

coming up with good machine comprehension and machine translation systems besides

other challenges present in the community. Good machine comprehension systems

should be able to understand a given paragraph of text and answer questions relevant

to the text accurately as humans do. The bAbI dataset is a machine generated dataset

that included questions about objects moved through a paragraph. The ProPara

dataset attempts to motivate research in inference based procedural text question

answering via human-authored and annotated paragraphs and question and answers.

The thesis attempts to contribute to the research on Machine Comprehension methods

and trying to improve performance on the ProPara dataset. Currently, the Machine

Learning community is trying to figure out reasoning via statistical approaches. If

accepted by the Machine Learning and NLP community, the approach will add to the

toolbox of learning algorithms by adding an explainable method capable of reasoning,

inference and easily incorporating background and nuanced constraints.

1.3 Research Evaluation

The approach will be evaluated on the ProPara test dataset of 54 paragraphs. The

evaluation will be performed via a script provided by the dataset creators, expecting

the input in a certain format and the script generates Precision, Recall and F1 scores

based on the provided details. The expected format is a paragraph id followed by the

time step and then the entity name, and then have the action and previous location

3



and then the next location. Each result that is obtained will be evaluated through

the evaluator script.

1.4 Contributions

This work makes the following contributions:

1. An approach to address the ProPara challenge using a modified semantic parser

and an Inductive Logic Programming approach.

2. A knowledge base of verb-question pairs with role tags.

1.5 Structuring of the thesis

The thesis is discussed into multiple chapters as follows:

1. Background The chapter discusses some background information that forms

the basis of this work

2. Related Work Some additional details and most of the existing approaches

for the ProPara dataset are discussed.

3. The Translation Layer discusses how the dataset is translated into a formal

representation to process it later using the reasoning and learning system. The

chapter also discusses details about some of the high level predicates used.

4. The Reasoning and ILP Layer discusses some details about the Learning

based system.

5. Addition of Knowledge discusses the addition of knowledge in an attempt

to improve performance.

4



6. Conclusion and Future Direction finally goes over the results and possible

future works.

As mentioned, the next chapter dives into some of the background details to

establish some of the foundational details.

5



Chapter 2

BACKGOUND

The previous chapter provided an introduction and motivation to the work. For

this chapter, quite a few topics need to be covered to make sure that the reader is

up-to-date on the topics connected together here. We need to go back all the way

towards the beginning of Artificial Intelligence community efforts: towards symbolic

learning and reasoning of topics. We need to do this because Artificial Intelligence

was born as a field when ten researchers from multiple fields and colleges met at

Dartmouth for a workshop covering intersecting interests (Russell and Norvig 2009).

Later sections will then cover Answer Set Programming, Inductive Logic Programming,

BERT and Machine Reading Comprehension to provide a firm base for the reader

to understand the rest of the concepts. We now discuss about some of the research

looked at by two of the ten scientists that were present at the Dartmouth Conference.

2.1 Symbolic Logic

Two of the scientists at the Dartmouth Conference, Allen Newell and Herbert A.

Simon, came up with the Physical Symbol System Hypothesis:

“a physical symbol system has the necessary and necessary and sufficient means

for general intelligent action”- (Russell and Norvig 2009) The hypothesis tries to

claim that any intelligent system should be able to manipulate relations and data

structures relating to symbols that stand for real world objects. Some of the parts we

6



discuss next are what were referred to by John Haugeland as “Good Old-Fashioned

AI”(Russell and Norvig 2009)

2.1.1 Propositional Logic

Propsitional logic or Boolean logic, relies on truth values of variables. True and

False always have the fixed boolean meaning. Meanwhile, atomic sentences are

indivisible elements consist of proposition symbols that are defined by rules being

defined. These rules are derived using some of the following operators: ¬, ∨, ∧, ⇒, ⇔

. The result of the operators on atomic inputs are mentioned below in table 1. The

descriptive power of propositional logic increases by using predicates on top of the

mentioned atomic symbols to represent more detailed description.

Table 1. The Results of Various Operators on the Multiple Kinds of Values Taken by
the Atomic Symbols A and B.

A B ¬A A ∧B A ∨B A ⇒ B A ⇔ B
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

For more detailed reading about propositional logic, the reader is suggested to go

through chapter 7 of the (Russell and Norvig 2009) text.

2.2 Answer Set Programming

Initially, Logic Programming was able to cover the requirement of a formal

language being able to represent knowledge and also propagating inferences in the

7



knowledge base (Russell and Norvig 2009). Logic programming languages like ProLog,

however, could not handle negation to discover solutions leading to the development

of Answer Set Programming (ASP). The theoretical basis of handling negation came

from the establishment of Herbrand models and stable model semantics as part of

(Gelfond and Lifschitz 1988). In brief, canonical models are selected among models

that satisfy a set of propositional rules, whereas a minimal and stable model is

required to find solution to stable model semantics based rules. For example, for the

following program from (Gelfond and Lifschitz 1988):

p(1),

q(2),

q(x) ← p(x)

{p(1), q(1), q(2)} is a model but {p(1), p(2), q(1), q(2)} is a minimal model as

well. A Herbrand Model is minimal, and in the example {p(1), q(1), q(2)} would be

considered the minimal model and not the other model. To automate the process

through a Programming language, multiple programming languages were spawned and

Answer Set Programming is the paradigm of these languages. Some details of Answer

Set Programming (hereafter, referred as ASP) have been discussed in (Lifschitz 2008)

and it builds on top of the AI efforts as part of Symbolic AI, specifically on top of the

stable model semantics just discussed and on answer set solving. ASP was introduced

to be able to solve difficult search problems by the Knowledge Representation and

Reasoning community . It generally consists of rules similar to first order logic, defining

atoms, predicates and connecting atoms the operators mentioned in the previous

section. A more advanced example that can help understand ASP better is the Yale

Shooting Problem introduced in 1986 by Hanks and McDermott.

8



The problem consists of Fred the Turkey, who is initially alive and a gun is loaded

at that time. We expect that loading the gun, waiting for a bit and then shooting the

gun at Fred will kill the turkey. However, keeping track of the actions and determining

the cause of that action was difficult at the time. Considering alive and loaded to be

two predicates representing whether the turkey is alive and whether the gun is loaded;

load and shoot to be two predicates that represent whether the gun is loaded and

whether the gun was shot at the turkey, the set of predicates, as sourced from (Lee),

will be represented as :

boolean(t;f).

alive(t,0).

loaded(f,0).

load(0) ⇒ loaded(1)

loaded(2) ∧ shoot(2) ⇒ alive(f,3)

Here, we need to make sure that the actions continue into the next time-step and

is a little difficult to capture. The programming language that is chosen in this work

for Answer Set Programming is Clingo (Gebser et al. 2014). For Clingo,

load(0) ⇒ loaded(1)

loaded(2) ∧ shoot(2) ⇒ alive(f,3)

would instead be written as :

loaded(1):-load(0).

alive(f,3) :- shoot(2).

In Clingo, the solution to the problem is captured as follows:

loaded(t,T+1) :- load(T), T=0..3.

alive(f,T+1) :- shoot(T), T=0..3.

% at any time step, an action is either true or false

1loaded(B,0):boolean(B)1.
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1alive(B,0):boolean(B)1.

% at any time step, an action has to exist

:- not 1loaded(B,T):boolean(B)1, T=1..3.

:- not 1alive(B,T):boolean(B)1, T=1..3.

% action of load and shoot can either be true or false at each time step

load(T) :- T=0..3.

shoot(T) :- T=0..3.

alive(B,T+1) :- alive(B,T), T=0..3.

loaded(B,T+1) :- loaded(B,T), T=0..3.

Here, the final two rules are called rules of inertia because they enable states of alive

and loaded to persist into the next time-step. Inertia based rules will later be used

in this work as well to allow persistence of states. We now discuss the method of

Inductive Logic Programming, a learning approach in the symbolic logic community.

2.3 Inductive Logic Programming

In Inductive Logic Programming (ILP), the objective is to be able to generalize

over a given set of rules. As mentioned in (Ray 2009), ILP is “concerned with the

generalisation of positive and negative examples with respect to prior background

knowledge expressed in a logic program formalism” . Their XHAIL system combines

abductive, inductive and deductive learning to learn and generalize rules in three

phases. Here, given a background theory B, examples E, mode declarations M, it finds

models such that

BUH |= E+, BUH 6|= E−

where |= represents the entailment operation.
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The I2XHAIL system (Mitra and Baral 2018), on the other hand, converts each

record in the dataset into a sample of the form (Oi, E+
i , Ei−) where Oi are logical

representation of the records. I2XHAIL takes a sequence of samples S1, S2,...,Sn and

outputs a set of rules such that the following holds:

OiUBUH |= E+
i ,∀i = 1..n

OiUBUH 6|= E−
i ,∀i = 1..n

ILP is later used as a learning framework (similar to how machine learning is used

to learn over the dataset) in this work over a formal representation of the dataset.

2.4 A Short Detailing on BERT

When it comes to artificial neural networks, there has been significant work in

the last two decades. Encoder and decoder based architectures have become very

common in research now, especially attention based models. One such model which is

currently very popular is that of the Transformer that combines multiple encoders and

decoders (Vaswani et al. 2017). (Devlin et al. 2018) recently introduced a Transformer

based model that achieved state of the art performance in eleven language based tasks.

BERT can be used in multiple ways:

1. As a semantic textual similarity scorer between two sentences

2. As a Natural Language Inference model to score the possibility of a next sentence

to occur compared to other sentences

3. As a text question answering model to answer questions for datasets like (Ra-

jpurkar et al. 2016).

4. As a Parts of Speech tagger
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As stated in (Devlin et al. 2018), BERT advanced the state of the art for eleven

NLP tasks. BERT is later used as a natural language inference model to learn the

locations of the dataset and to predict the locations during test time.

2.5 Machine Reading Comprehension

Machine Reading Comprehension (MRC) is currently one of the important tasks

being looked into in Natural Language Understanding research to be able to judge

whether human readable text is understandable by a system. The SQuAD dataset

introduced by Stanford (Rajpurkar et al. 2016) presented questions where answers

could be found as a span within the text. It’s successor, SQuAD 2.0 (Rajpurkar, Jia,

and Liang 2018), extended the dataset by adding distractor sentences and sometimes

unanswerable questions. The MS MARCO (Nguyen et al. 2016) dataset is a non-

artificial MRC dataset which was introduced by Microsoft and is much larger than

SQuAD. It is based on queries sampled from Microsoft Bing’s search logs with relevant

passages annotated by human annotators. Some other notable recent MRC datasets

are NarrativeQA (Kociský et al. 2017) and NewsQA (Trischler et al. 2016). Datasets

by AllenAI are OpenBookQA (Mihaylov et al. 2018) which is a question answering

task where additional knowledge is present but requires to collect and use additional

knowledge to answer questions; AI2 Reasoning Challenge (Clark et al. 2018) which is

the hardest dataset for knowledge and reasoning systems; SciTAIL (Khot, Sabharwal,

and Clark 2018) which is a Science entailment dataset where the top model has

already reached 96% accuracy and TextBook Question Answering (TQA)(Kembhavi

et al. 2017) which is a multimodal (involving both images and text) dataset. The next
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chapter expands on another AllenAI dataset, ProPara, how it was created and some

of the recent work that was done on the dataset.
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Chapter 3

RELATED WORK

In the previous chapter, some background topics were covered to form a foundation

for this work. Towards the end of the chapter, we had discussed some reading

comprehension datasets and some datasets by Allen AI as well. We now discuss one

of the AllenAI datasets and some of the work done on the dataset. The motivation

behind the making of the ProPara dataset was to build a Reading Comprehension

system that can answer questions and may also require inference and reasoning. In

essence, this procedural text dataset, is about tracking the temporal state changes of

entities. It is also an attempt at creating a dataset made of natural text instead of

synthetic text (example: in bAbI (Weston et al. 2015)).

ProPara Creation As mentioned in (Mishra et al. 2018) The dataset was created

with the help of crowdsourcing workers from Mechanical Turk. The writers were first

given a prompt about a process and were asked to write a sequence of sentences about

the process. Each prompt was given to five annotators to produce five paragraphs but

some were removed. Finally, 488 paragraphs describing 183 processes were shortlisted.

These paragraphs were then given to annotators to fill participants first, creation

and destruction annotations and finally, location annotations. The final number of

annotations of the dataset were 81,345.

EntNet Recurrent Entity Networks (Henaff et al. 2016) or EntNet is a model

made by the Facebook AI Research Group which is meant to track world states. It

tracks states by maintaining a dynamic long-term memory allowing it to maintain and

adapt a representation of the state of the world. The dynamic memory is achieved by
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multiple blocks of a gated recurrent network. The modified Gated Recurrent Network

is said to be sharing similarities with models such as the BiLSTM, GRU, DNC/NTM

framework and the a Memory Network and its other variants. The model had acheived

state-of-the-art results in the bAbI dataset during its time. EntNet was implemented

as a baseline model in (Mishra et al. 2018) and the F1 was reported to be 39.40 %.

Query Reduction Networks or QRN is another model implemented as a baseline

in (Mishra et al. 2018) and was introduced in (Seo et al. 2016) as a variant of the

Recurrent Neural Network (RNN) to be able to perform in question-answering tasks.

A unit of the QRN is slightly similar to a GRUl it takes in input and query and

outputs a hidden state. In the unit, α and ρ are update gate and reduce functions

respectively which are similar to gates used in LSTMs and GRUs. On a high level,

the model takes in a vector representation of the question and the story and predicts

an answer for it. For its time, similar to EntNet, QRN was the state-of-the art on the

bAbI dataset as well. On ProPara, the model achieved 41.10 % F1, slightly better

than the EntNet model’s 39.40.

ProLocal and ProGlobal The original paper proposed two models, ProLocal

and ProGlobal, to solve the dataset (Mishra et al. 2018) after talking about the two

baseline models above. ProLocal uses a biLSTM architecture for local state predictions

and algorithmically propagates these predictions to perform commonsense persistence.

The input takes in the vector of each word, concatenates it with a signal indicating

if the word is an entity, and another signal to indicate if it’s a verb. The encodings

from the LSTM are used to create the outputs by using bilnear attention.

Meanwhile, ProGlobal incorporates the persistence of the state information inside

the neural network model. ProGlobal achieves an F1 accuracy of 51.9 % while ProLocal

manages 50.70 %.
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ProStruct Another paper proposed by AllenAI, proposes the model ProStruct,

which uses an encoder-decoder as its core model and incorporates commonsense

knowledge to improve predictions (Tandon et al. 2018). The encoder process is similar

to the process involved ProLocal, where the word vectors are appended by the signals

of the word being an entity or not and being a verb or now. It uses bilinear attention

to generate actions. The commonsense background knowledge is incorporated using

hard (boolean) constraints and soft (statistical) constraints over the dataset. Hard

commonsense constraints consider commonsense facts such as the fact that an entity

must exist before it can be created or destroyed. These constraints are considered

by using a Boolean function. The soft constraints are incorporated through prior

probabilities and are used to rank the action sequences of destroy, move and create.

The decoder outputs the actions in the end. ProStruct manages to improve over

ProGlobal and scores an accuracy of 54.5% on the ProPara test data, slightly better

than ProGlobal’s 51.9.

KG-MRC Meanwhile, a recent paper by researchers from Microsoft Research

Montreal and University of Massachusetts, Amherst, achieved an accuracy of 57.6 %

(Das et al. 2018). In short, they encode the paragraph using a bidirectional LSTM.

They use a bipartite graph to keep track of the entities and locations and keep updating

the graph at each time-step. They query the Machine Reading Comprehension Module

to keep updating the knowledge graph at each time step for each required entity.

NCET A recent paper from University of Texas at Austin achieved state of the

art on the dataset at an F1 of 62.5% (Gupta and Durrett 2019) after the work in this

thesis was implemented. The paper makes use of BiLSTM and Conditional Random

Fields to model the dataset. The BiLSTM is used to “distill” information, i.e. it

encodes the text and participants of the paragraphs in the dataset. In essence, the
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model does well since it is able to mathematically capture the constraints of the

problem and because it models the dataset/problem similar to that of a sequence

labelling task. The significant jump could be due to the use of a CRF, helping the

model learn the sequence of labels better or also because a per entity based model is

used, leading to a bigger jump in accuracy. Besides, using ELMO embeddings (Peters

et al. 2018) in their work contributed to a 4% jump in scores.

AQA or the Analogical Question Answering paper is a cognition theory based

paper from NorthWestern University which is based off of the “Companion Cognititve

Architecture”, consisting of a “large knowledge base and a general-purpose semantic

parser” (Ribeiro et al. 2019). It is a non-neural model uses symbolic language and

ontologies. The model is a combination of Step Semantics and AQA to bridge natural

language semantics and task semantics. The AQA approach generates relational

representations from the input sentences in the form of logical statements and uses

a supervised learning approach. The system seems possibly similar to the system

discussed in this work but both works have been developed independently. AQA

achieves an accuracy of 52.30 %. The paper plans to improve by better handing

questions requiring common-sense knowledge by using a knowledge base called NextKB

.

LaCE LaCE or Label Consistency Explorer is an interesting approach from Allen

AI as the approach better leverages training data and combines it with an unsupervised

training approach (Du et al. 2019). The approach is to leverage the property that some

paragraphs talk about similar process which means that there are some aspects of the

process enabling the model to take advantage of label consistency across paragraphs.

The LaCE framework operates on batches of grouped examples. It then tries to

optimize two kinds of losses: the usual supervised loss for the primary example of the
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group as well as the consistency loss for all the other members of a batch. Optimization

of these two losses leads to a model that is both accurate as well as consistent across

the batches with similar examples.

Similar datasets Some datasets related to ProPara are the bAbI dataset and the

recipes dataset. The bAbI dataset was proposed by Facebook Research and consists of

1000 questions for training and 1000 questions for testing and helped advance methods

of reasoning over text. The recipes dataset (Kiddon et al. 2015), meanwhile, contains

2456 recipes as paragraphs and contains multiple states such as shape, composition

and location and quantity of multiple ingredients (which can be considered as entities)

which have been hand annotated.

To conclude, this chapter discussed how the ProPara dataset was created and also

discussed some of the approaches in solving the dataset. The next chapter dives into

the details of the system used for the work in this Thesis.

18



Chapter 4

THE TRANSLATION LAYER

Having covered some background and relevant work done on the dataset until

now, we begin to dive into the details of the system used to solve the dataset in this

chapter. We first gloss over the high level details of the system. Section 4.1 discusses

the QA-SRL parser, while section 4.2 dives into the different kinds of predicates that

are considered for the system. Section 4.3 discusses the overall high level translation

layer flow and how we can use these predicates to arrive at the answers that are

needed. We now discuss the high level details of the system.

Figure 2. The training perspective of the overall system

There are two phases to the system that are shown in the figures 2 and Figure 3.

Figure 2 refers to the training perspective of the system where the Translation module

modifies the paragraphs into a set of facts to obtain a formal representation of the
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Figure 3. The testing perspective of the overall system

text. The learning algorithm, ideally, learns the right set of rules from the collection

of rules, background knowledge and objectives to learn the high level rules we need.

Figure 3 shows the test time perspective of the system where the learned rules are

used along with the test-time translated paragraphs and background knowledge to

generate the answers needed using the reasoning system.

Figure 4. A simplified view of the training process

The general data flow of the system is represented above in Figure 4. In this chapter,

we discuss the Translation layer module of the system while the Learning module and

the reasoning module is discussed in the next chapter. The translation layer modifies

the ProPara dataset, both for training and testing, to a formal representation that is

consume-able by the Reasoning and the Learning layers.
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There are multiple parsers and datasets that can be used to obtain a formal

representation. Some choose to go with:

1. The Abstract Meaning Representation (AMR) (Banarescu et al. 2013) which has

roles and sentence fragments based on verbs and consists of over 20k sentences.

The AMR Corpus is made of sentence from the Proposition Bank and presents

“rooted, edge-labelled, leaf-labelled graphs”. It makes use of the PropBank frames,

has relations between quantities, relations for date entities and lists and includes

semantic relations between entities as well. It also contains argument-predicate

structures and inverse relations.

2. The semantic Role Labelling (Palmer, Gildea, and Xue 2010) based parsers or

models which are based off the FrameNet database (framenet2.icsi.berkeley.edu)

among other datasets consists of approximately 200k sentences. The FrameNet

database was made to be used for training of Machine Learning models. It

consists of multiple parts: 1. A lexicon of dictionary-type data, formulas, links

to annotated examples and links to other machine readable resources such as

WordNet. 2. Frame database consisting of frame related information such as

names and descriptions of the “Frame Elements”. 3. Multiple annotated example

sentences.

3. The Question Answering Semantic Role Labelling Parser (QA-SRL) (FitzGerald

et al. 2018), which is trained on over 250k sentences. It generates question-answer

pairs for multiple argument-predicate pairs.

The QA-SRL parser is used since the representation represents what is needed and is

trained over most sentences ensuring the best possible generalizability across sentences.

Initially, I make use of a semantic role label parser called QA-SRL (FitzGerald et
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al. 2018) to obtain a formal representation of the dataset in terms of a question -

answer meaning based representation.
For the reader’s reference and convenience, the example used in the introduction

is reintroduced here.

Figure 5. Example Paragraph and Corresponding Location Tracking of Multiple
Entities at Each Sentence

Image Source: Mishra et al. (2018)

4.1 The QA-SRL parser

Semantic role labelling is the process that assigns labels to words or phrases in a

sentence that indicate their semantic role. To represent the text of ProPara, we use

the QA-SRL parser.

The QA-SRL parser, represents a sentence in terms of multiple question-answer

pairs. For a given, sentence, we obtain multiple question-answer pairs for each verb

present in the sentence.

For example, in Figure 6, the QA-SRL output of the sentence input “The roots

absorb water and minerals from the soil” which is similar to the sentence in the

previous figure is shown.

22



Figure 6. QA-SRL output for the sentence “The roots absorb water and minerals
from the soil”

4.1.1 Modification to the QA-SRL Parser

The original QA-SRL parser could not produce questions for be verbs such as

is, was, will do, etc. The original code of the parser was modified to now use the

Stanford-Core Library (Manning et al. 2014) instead of the Spacy library to recognize

“be” verbs by using the dependency parser and the part of speech tagger. The modified

code is available at (Bhattacharjee 2018).

4.2 Addition of Predicates

After obtaining the question-answer representation of the sentences by parsing

through QA-SRL, all the question-answer pairs were programmatically wrapped under

an OberservedAt(verb, question, answer, time) predicate where the time represents

the sentence number in the paragraph. All verbs and questions were lemmatized using

the Stanford CoreNLP lemmatizer to ensure a degree of uniformity for the verbs and

sentences. As an example, the representation of the sentence in the previous example

would be represented as shown in the figure. Here, assuming that the sentence in

Figure 6 is the first sentence of the paragraph, the predicates representing it are shown

in Figure 7.
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Figure 7. Predicates wrapped around the QA-SRL outputs

The answers of the QASRL outputs and the location annotations in the dataset

are used to keep a location(answer, loc) predicate and are added if any of the location

text is a subphrase of the answer text. These location predicates are used to construct

an “Is it a location?” model using BERT’s (Devlin et al. 2018) entailment (inference

actually) model to check if a sub-phrase of an answer is a location during the testing

phase. The BERT model that was used got a validation accuracy of 85.14 % and a test

accuracy of 88.25 %. One example annotation that would get added here would be

location(“the roots”, “roots”) where “the roots” is taken from the question-answer pair

(“what absorbs something?”, “the roots”) obtained from the first sentence. Meanwhile,

“roots” is an annotation for the first sentence for the “water” participant.

Just to make sure that the best entailment model was being used, the locations data

was also run through some other models as well. One model that was run through

the locations data was the decomposable attention model (DeCatt) which was one of

the state of the art models on the SNLI dataset (Parikh et al. 2016). The model has

three major components: attend, compare and aggregate. In attend, a word-to-word

attention mechanism is used to calculate weights. These attention weights are used

to calculate dot product similarity between word vectors of premise and hypothesis.

These attention weights are used to calculate softly aligned sub-phrases. The softly

aligned sub-phrases are used to perform comparisons which are aggregated to create

a final inference vector. The final inference vector is fed to a feed forward neural

network to make the final inference.

The ESIM, or Enhanced Sequential Inference Model (Chen et al. 2016), on the other
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hand, uses bidirectional LSTMS to similarly localize, compose and pool vectors. The

enhancement part refers to concatenating the element-wise difference and products

with the softly aligned vectors in the compse layer. Another enhancement used was

the addition of context via the biLSTM’s used. The results obtained by using ESIM,

DeCatt and BERT models are present below in Table 2.

Table 2. Results of models run on the locations data
Test Accuracy (%)

Decomposable Attention 85.81
ESIM Glove 87.58
ESIM ELMO 86.57

BERT 88.25

Besides, more annotations relevant to the paragraph are added : the groundings of

range of time as time(t1...tn), number of participants participant(p1;..pk), descriptions

of each participant description(pk; pdescription), number of annotators involved with

annotator(a1;...ap) and the location annotations made by the annotators for each

participant for each point of time: annotation(ap, pk, t). For the running example in

Figure 5 (Image sourced from (Mishra et al. 2018)), the facts:

time(1...5).

participant(p1;p2;p3;p4;p5).

description(p1, “water”).

description(p2, “light”).

description(p3, “CO2”).

description(p4, “mixture”).

description(p5, “sugar”).

are added. For each annotator ap, an annotation for the location is added. For

example, if annotator ap indicated that the participant “water” is in “soil” at timepoint
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1, the predicate annotation(ap, p1, 1) is added. One may wonder what happens if

some annotators vote differently for the same participant and the same time-point: in

such cases, a penalty system is maintained and the higher the voting for a location,

the lower the penalty and vice-versa. The paragraph representation also contains a

refers(pi, A,T) predicate if the answer A contains a reference to a participant pi in the

event at time T. Simple word overlap is used to generate the refers predicates. Each

paragraph is represented with each of the predicates mentioned above. Thus, for the

running example, there would be multiple observedAt predicates for each participant

and the QA-SRL outputs.

4.3 The Overall Translation Layer Flow

As represented in Figure 8, a paragraph is first run through QA-SRL and then
represented in predicate form. The predicate form is then fed into the Answer set
programming and ILP module to produce rules generalized over the dataset.

Figure 8. The Translation Layer Data Flow
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To track states of participants, it is needed to know whether the events in a

sentence creates, destroys or moves a participant. The following high level predicates

and their causes need to be discovered:

1. create(P,T): Participant P is created at timepoint T.

2. destroy(P,T): Participant P is destroyed at timepoint T.

3. beforeLocation(P,L,T): Participant P is at location L before timepoint T.

4. afterLocation(P,L,T): Participant P is at location L after timepoint T.

5. terminate(P,T): Participant P at timepoint T changes location but destination

location is unknown.

We want to be able to discover the above mentioned high-level predicates by
reasoning with the facts that were obtained in Section 4.2 above.

Figure 9. Upper Portion of the example from before

4.4 Reasoning

As an example, it can be shown how locations are propagated across participants

for portion of the example from 5 shown in Figure 11. Here, the following observations

will be derived after the QA-SRL parse:

observedAt("enter","what v something ?","light from the sun and co2",3).

observedAt("enter","what does something v ?","the leaf",3).

We also assume the following refers and locations to be true:
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refers(4, “the light , water and co2”, “light”).

refers(4, “the light , water and co2”, “co2”).

refers(4, “the light , water and co2”, “water”).

location(“the leaf”, “leaf”).

For each participant in the above snippet, a generalized reasoning for a time T

would be:

If observedAt(“enter”, “what does something v?”, “leaf”, T) and refers(T,A,P)

then afterLocation(“light”, “leaf”, T)

Figure 10. Portion of the example discussed before

As an example, continuing the example discussed before as shown in Figure 11,

assuming that the location of the “mixture” participant is “leaf” after it’s formation in

time-point 4. If we take the facts and reason with them,the following fact is true:

afterLocation(“mixture”, “leaf”,4).

which leads us to reason the following facts to be true:

If afterLocation(“mixture, ”leaf”, 4) then initiate(locationOf(“mixture”, “leaf”,5).

Additional constraints of destruction of mixture if sugar is formed would instead

override the location propagation from before, for example:

28



If observedAt("form","what does something v ?","sugar",5)

and observedAt("form","what v something ?","mixture",5)

then initiate(locationof("mixture", "-", 5)).

Specific facts would help support deduce the fact that sugar was created:

If observedAt("form","what does something v ?","sugar",5) and refers(“sugar”, “sugar”, 5)

then create(“sugar”, 5).

We will also need to reason out the location of where the sugar was formed:

If observedAt("form","what does something v ?","sugar",5)

and observedAt("form","what v something ?","mixture",5)

and locationOf(“mixture”,”leaf”,4)

then initiate(locationOf(“sugar”,”leaf”,5)).

The translation along with the high level predicates of the paragraph is shown

below. The predicates besides the oberservedAt are excluded just to present the flow.

Figure 11. The QA-SRL based representation and the high level predicates of the
example paragraph
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4.5 Critical points

The ASP system uses the learned event-centered knowledge to first extract a

high level representation from the observedAt predicates. It then uses the high level

representation to predict a state sequence while making use of the notion of a critical

point. For a participant P, a time-point T is a critical time point if any of the following

is true:

1. create(P, T-1)

2. destroy(P, T-1)

3. ∃ L.afterLocation(P, L, T-1)

4. ∃ L.beforeLocation(P, L, T)

5. terminate(P, T-1)

The state at a non-critical time point is then computed with a set of inertia rules

on a case-by-case basis. For any participant P, in a non-critical time point T only one

of this must be true:

Case 1: There exists no critical point for P before or after T.

Case 2: There is no time point before T which is a critical point for P but there is

one after it.

Case 3: There is no time point after T which is a critical point for P there is one

before it.

Case 4: There is a critical point for P both before and after T.

In the previous section, it took quite some effort to discover the high level rules.

However, using the information about critical points to come up with inertia rules
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defined in Appendix F which are similar but more complicated than inertia rules

discussed in 2.2 will help learn high level details of a paragraph better.

However, it won’t help to generalize and learn patterns from the paragraphs. We

want to be able to generalize and learn across multiple paragraphs in order to be able

to discover generic high level predicates rather than reason to the high level predicates

specific to each paragraph, leading us to our next chapter.

The next chapter discusses how we can automatically learn generalized rules over

multiple paragraphs instead of trying to manually figure out predicates to reason to

the results.
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Chapter 5

THE LEARNING LAYER

As discussed in the last chapter, the system created uses Answer Set Programming

to reason between the multiple predicates that are created from the dataset along with

some background knowledge and generate the answers during testing time. However,

it still needs to be able to learn to generalize across multiple paragraphs. Thus, during

the training time, Inductive Logic Programming (ILP) is used to discover the causes

for the higher level predicates. The ILP system, I2XHAIL, is an improvement over

(Ray 2009) used and discussed in (Mitra and Baral 2018) Another example that will

be referred to in this chapter is shown below in Figure 12. The chapter is structured as

follows: Section 5.1 briefly goes ovre the ILP process, Section 5.2 discusses prediction

during the test-phase of the system. Section 5.3 discusses the results obtained while

Section 5.4 discusses a high level error analysis. We not dive into some of ILP process.

5.1 A Brief Overview of ILP Rules

We need rules for create, destroy and for location changes as part of ProPara. ILP

learns this in three phases of abduction, deduction and induction for the create and

destroy rules. It learns the create-related rules in the following manner:
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Figure 12. A second example from the ProPara dataset

5.1.1 Learning Create Rules

Abduction In the abductive step, it finds out several minimal collection of

grounded create or destroy atoms. These sets are abducibles. For the example in

Figure 12, one such abducible would be create(p3; 4).

Deduction In the deductive step, it considers the possible causes of each ground

predicate in Δand creates the most specific rule for each of them by adding the possible

causes into the body of a rule. For the example regarding rocks, the deduced causes

will look like the following:

IF observedAt("come","what v off something ?",

"tiny parts of the rocks",4), observedAt

("come","what does something v off?","the

larger rocks",4), refers(p3,"tiny parts of
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the rocks",4), refers(p2,"the larger rocks",4)

,describe(P2,"rocks"), describe(p3,"tiny

parts of the rocks")

THEN create(p3,4)

Induction In the third stage, it tries to generalize the rule as much as possible

by replacing the constants by variables. For the rocks based example, it learns the

following in the Inductive step.

IF observedAt("come","what v off something ?",X,T),

refers(E,X,T)

THEN create(E,T)

Next, it takes a similar sample S2 and comes up with a similar rule. After that, it

tries to come up with a better hypothesis that can satisfy both the samples. Figure

13 shows a few other examples of create rules that are learnt. In the figure, the first

three rules just describe a create event while the next few rules describe the creation

of a specific participant. A bigger sample of create rules that were learnt is present in

Appendix A

5.1.2 Learning Destroy Rules

The process of learning destroy rules is similar to that of learning create rules

but instead of just having just destroy rules, it is split into two parts: learning two

predicates “normallyDestroys” and “exception”, which are learnt together. A generic

example rule:

IF normallyDestroy(P,T),not exception(P,T)

THEN destroy(P,T)
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Figure 13. Example of create event rules

In the above rule, if an event normally destroys a participant P, it is assumed to

be destroyed unless it is an exceptional case. For an example from Figure 14, if an

item is eaten, then it is normally destroyed. To expand further on the figure, the first

three rules describe how verbs like “eat”, “decompose” and “form” normally describe

events where some kind of destruction takes place. The fourth and fifth rules capture

exceptions like when a caterpillar forms a cocoon, it does not destroy the caterpillar.

Similarly, when caterpillar uses saliva, it does not always destroy thins unlike how

saliva normally destroys food. The next two rules capture the events like“pupa is

destroyed when the pupa hatches” and “magma is destroyed when it flows and becomes

lava”. Rules like the first three that were just discussed (rules for verbs like “eat”,

“decompose”) are small in number and can be learned properly from a dataset like

ProPara. A bigger background knowledge can help learn about exception rules better.

A sample of more destroy rules is present in Appendix B.
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Figure 14. Example of destroy event rules

5.1.3 Learning Location Change Rules

Figure 15. Example of move event rules

The location change events do not depend on the participants in the domain of

ProPara unlike how the create and destroy rules do. The gold create and destroy events;

the background knowledge and state description are used to identify locationAfter,

terminate and locationBefore events. Some of the location change or move event rules

are presented above in Figure 15. There are two kinds of move events: the first type

is present in the first five rules in the figure and are normally used to describe events

that involve a change in location. The second kind of rule is where a participant and
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the event together determine the location of a participant in the next time-point and

as an example is present in the final rule in the figure where water is the participant

and the event involved is water turning into vapor which determines that the vapor

would be present in the atmosphere, the location of the new participant. A sample of

more location based rules is present in Appendix C.

5.2 Test-time prediction

During the test phase of running the system, each text paragraph is first run through

the Translation layer described in the previous chapter to represent the paragraph in

terms of a formal representation. The formal representation combined with the domain

knowledge and inertia rules is run through the Answer Set Programming system to

produce location predictions. These predictions are programmatically modified to

be runnable by the ProPara evaluator. The high level test system is shown below in

Figure 16.

Figure 16. The testing perspective of the overall system
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5.3 Results

The system was evaluated on the test dataset of 54 paragraphs using the creators’

evaluation script which takes location predictions of multiple entities across timepoints

over the paragraphs and evaluates results based on the input objects, output objects,

location changes, creation and destruction of participants. A comparison of the

various systems is presented below in Table 3.

Table 3. Results of Various Systems on the ProPara Dataset
Precision Recall F1

ProLocal 77.4 22.9 35.3
QRN 55.5 31.3 40.0
EntNet 50.2 33.5 40.2

ProGlobal 46.7 52.4 49.4
ProStruct 74.2 42.1 53.7
KG-MRC 64.52 50.68 56.77

ProKR (This work) 76.00 45.10 56.60
NCET (later) 67.10 58.50 62.50
LACE (later) 75.30 45.40 56.60

The detailed results obtained through the evaluator (available at

https://github.com/allenai/aristo-leaderboard/tree/master/propara) for the outputs

generated by the system are visible below in Figure 17. Here, the results truly needed

are the overall precision, recall and F1. Inputs, in the figure, refers to entities that

were already present from the beginning and checks whether the system tracks them

well. Similarly, outputs represent entities that were not stay and are not destroyed by

the end of the process. Conversions represent entities that were converted from one

form to another. Moves track only location changes along the way. All solvers should

essentially be able to answer the following questions:
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(Q1) What are the inputs to the process?

(Q2) What are the outputs of the process?

(Q3) What conversions occur, when and where?

(Q4) What movements occur, when and where?

From the results breakdown, it can be seen that moves and conversions recall and

F1 scores are lower than 0.5 implying significant scope for improvement there.

Figure 17. The detailed results for ProKR obtained using ProPara evaluator

5.4 Error Analysis

A General Error Analysis is discussed here. A per paragraph analysis of the test

dataset results is attached in the Appendix D.

Imperfectly formed sentences There are examples in the dataset where a verb

is not well defined and a sentence may be improperly framed. For example, “The air

travels through your windpipe. Into your lungs.” Here, the second sentence, is an

incomplete sentence and should ideally be part of the first sentence but because of

the way the dataset was created, some of the imperfections have come through but

causes error as the system cannot understand the setence.
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Symbolic Interpretation of Questions In the current system, each question

is treated to be different but some of the questions such as “What formed?”, “What

is formed?”, “What has been formed?” should be treated to be similar question but

aren’t treated as such.

Coreference Resolution The dataset has multiple instances which require simple

to complex coreference resolution of phrases or words. For example, when an entity

such as air masses gets converted to wind in paragraph 582 of propara: the system

does not detect the similarity between the entities “air masses” and “the masses”,

where, when referring to “air masses” as the masses, it cannot resolve “the masses”

to mean “air masses” leading to incorrect predictions. Improvements in coreference

resolution could possibly improve performance with paragraphs having imperfectly

formed sentences as well such as the example: “Trash is removed from everything else.

Goes to a landfill”.

QA-SRL related errors While QA-SRL is a great parser, it is not without its

faults. There are multiple times where it cannot coreference resolve details within a

sentence. It also replaces item names or person names with “someone” or “something”

which can sometimes lead to losing information about a participant for the dataset.

Impact of the locations model Though, the BERT model that was used to

learn the locations annotations was the best among the models used, one can speculate

if the model caused any errors in the locations predicted since the bert model has an

accuracy of 88.25 % (accuracy mentioned in previous chapter). The ProPara evaluator

seemed to be immune to minor changes in location text. A major analysis of the

impact of this model on the results remains pending during the time of submission of

this work.

Until now, we have discussed the translation and, learning and the reasoning
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process. This chapter then discussed the results and some error analysis. As part of

the next chapter, we make an attempt to improve over one of the issues discussed

here in the error analysis.
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Chapter 6

ADDITION OF KNOWLEDGE

As discussed at the end of the last chapter, after generation of the learned ILP rules,

it was necessary to be able to generalize over the rules, to get over issues caused by

some questions that were similar. Based on the analysis of the results, generalization

would have a slightly improved performance on the test side since there were some

rules that were expected to trigger that just did not. The rest of the chapter goes

into the effort of how the generalization of the rules is achieved.

6.1 The Propbank Dataset

(Marcus, Santorini, and Marcinkiewicz 1993) originally introduced the Penn

Treebank corpus, which consisted of close to 4.5 million words and multiple sentences

that have been tagged by part of speech and the syntax trees of the sentences. The

Proposition bank (Palmer, Gildea, and Kingsbury 2005) adds an additional layer

of annotation to a portion of the Penn Treebank project with predicate-argument

relations consisting of semantic roles of the words. Semlink (Palmer, Bonial, and

McCarthy 2014) is a project which combined FrameNet, VerbNet and OntoNote sense

groupings. There are multiple verbs in the Propbank dataset and each verb has a

xml file associated with it which includes multiple roles of the verb used and example

sentences which use the verb in that role. An example xml snippet is shown below in

Figure 18
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Figure 18. A Snippet of the Absorb Frame XML File From Propbank

Figure 19. The roles mentioned in the absorb frame file

The roles that are extracted from the frame file of absorb are shown in Figure 19.

6.2 Sentence and Argument Extraction from Propbank

Two kinds of information were extracted for usage from the propbank frame xml

files. The below information can later be used to obtain a generalization over the ILP

generated rules from before.
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6.2.1 Sentences

All sentences from all the verb frame files were extracted and cleaned of the

Treebank annotations to be used later. The number of sentences extracted were

22,443. An example sentence from the absorb frame file is “The habit is very bad

because salt absorbs water from the meat.”

6.2.2 Arguments and Roles

The arguments and semantic roles were extracted from the frame files to later be

used. All the extracted verbs, arguments and roles were represented in tuples as (verb,

phrase, semantic role). The phrases and respective roles extracted for the running

example are shown below in Figure 20. The corresponding tuples would then be

(“absorb”, “salt”, “absorber, cause or agent”), (“absorb”, “water”, “absorbed, us. liquid”)

and (“absorb”, “from the meat”, “Source of liquid, absorbed from what?”).

Figure 20. The roles and the corresponding phrases extracted for “The habit is very
bad because salt absorbs water from the meat.”

6.3 QA-SRL Parsing of Extracted Sentences

The extracted sentences as part of Section 6.2.1 were then run through the QA-SRL

parser (FitzGerald et al. 2018) (details of the parser were covered in Section 4.1). For

the running example, the qasrl parse is shown below in Figure 21. The extracted
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QA-SRL output was then represented as a tuple of (verb, question, answer). The

tuples for the example would accordingly be: (“absorb”, “what absorbs something?”,

“salt”), (“absorb”, “what does something absorb?”, “water”), (“absorb”, “where does

something absorb something from?”, “from the meat”) and (“absorb”, “what does

something absorb something from?”, “the meat”).

Figure 21. The QASRL parse of “The habit is very bad because salt absorbs water
from the meat.”

Figure 22. The Test Side Changes

6.4 Obtaining Role Tagging of Questions

The argument phrase tuples of Section 6.2.2 and the questions-answer tuples

of Section 6.3 were combined to form new tuples of (verb, question, semantic role)

to enable us to now tag the questions with specific semantic roles. The overall

changes of the process is shown above in Figure 22. The new tuples formed for the

running example by combining the tuples in Figure 20 and Figure 21 are (“absorb”,

“what v something?”, “absorber, cause or agent”),(“absorb”, “what does something v?”,
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“absorbed, us. Liquid”) and (“absorb”, “where does something v something from?”,

“Source of liquid, absorbed from what?”). To have an approximate match between

the argument texts and the QA-SRL answers while combining the QA-SRL tuples

and the propbank tuples, the fuzzywuzzy library’s fuzz.ratio function is used. A 75%

or above match for the ratio was allowed for matching between the questions. The

questions were then lemmatized using the StanfordCore NLP parser and Figure 23

shows a sample of the facts generated. The number of facts created is 25662.

Figure 23. Sample of PropBank based facts

The role tagged question tuples were then used to modify the ILP generated rules

that were generated in Section 5.1. The rules that had questions that can be replaced

were either replaced by the PropBank roles or appended to the original rules and the

results were re-evaluated.

Figure 24. Results obtained on modifying the learned ILP rules with 90% similarity
replacement of questions
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In Figure 24, the results for the following process are presented: the PropFacts

from above are used to replace the rules based on a 90% similarity between the

question in the rules and the questions present in the ProPosition Bank facts and

a matching of the verb being used. The rule is modified such that the question is

replaced with the corresponding role in the ProPosition fact. Figure 25 represents the

same process above but for an 85% similarity of questions. For the test time paragraph,

new predicates are generated in run-time using ASP such that observedAt(V,Q,A,T):-

observedAt(V,R,A,T) where R is the corresponding role to replace (Questions are

matched exactly and not approximately here) when V and Q are present in the

ProPosition facts.

Figure 25. Results obtained on modifying the learned ILP rules with 85% similarity
replacement of questions

6.5 Results and Analysis

When comparing the results in Figure 24 compared to the original results of

Chapter 5 present above in Figure 26, we see that the precision increases from 0.756
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Figure 26. Original Result without adding Propbank Knowledge

to 0.795 while the recall decreases from 0.451 to 0.385. The F1 decreases from 0.566

to 0.519. The decrease in the F1 is possibly because of the multiple rule changes that

occur leading to the formation of more false positives and false negatives. An increase

in precision would imply that false positives decreased or true positives increase or

both. A decrease in recall implies that false negatives have increased for sure. Thus,

it is highly likely that the decreased F1 is more due to an increasing occurrence of

false negatives than an increasing occurrence of false positives. The results obtained

on using

Figure 27. Results obtained on appending to the learned ILP rules with 90%
similarity replacement

Meanwhile, instead of modifying the learned rules , if the rules are appended to,

48



the results do not change a lot because very few paragraph predictions are significantly

modified (paragraph numbers 37 and 99) while others only change very little (249,

502, 533, 660, 725, 927). The precision, recall and F1 are slightly worse than the

original results and are shown above in Figure 27. Similarly, the results obtained

when an 85% similarity of questions is used is present below in Figure 28. We can see

that the 85% question similarity’s results lie in between the 90% similarity and the

original results from Chapter 5.

Figure 28. Results obtained on appending the learned ILP rules with 85% similarity
replacement of questions

Why use fuzzywuzzy? One might argue the validity of using the fuzzywuzzy

library for string matching. The fuzzywuzzy library bases the ratio calculation off

of the Levenshtein distance used in Information Theory which is calculated by the

algorithm of the same name. The Levenshtein distance is a string edit distance metric

whose algorithm was presented in (Levenshtein 1966) and is a well known and well

cited paper.

Why adding knowledge didn’t work well It was expected that the addition

of knowledge should have improved the results.

Finally, The cleaned Propbank dataset, the QA-SRL resulting tuples , the
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propbank tuples and the final set of tuples are available for download at

https://github.com/aurghob/ThesisMaterial .
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Chapter 7

CONCLUSION AND FUTURE DIRECTION

Chapter 4 set up the translation of the ProPara dataset to make it usable in the

method briefly explained in Chapter 5. A brief summary of the work is present in

Section 7.1 while Section 7.2 discusses the Results obtained. Finally, Section 7.3

discusses possible future directions.

7.1 Summary

Artificial Intelligence, in the last two decades has become a rapidly developing

field, especially due to the availability of powerful hardware and the consequent

rise of popularity in Neural Network Architectures. Multiple innovations in Neural

Architectures has led to rising interest within the Machine Learning, Computer Vision

and Natural Language Processing Communities in the past decade. The AllenAI

Institiute of Artificial Intelligence has come up with multiple datasets. The dataset,

ProPara, targeted to improve reading comprehension was introduced in the beginning

of the thesis. The details of the method used are discussed in Chapter 5. A test-side

modification of the rules obtained from Inductive Logic Programming were discussed in

Chapter 6 in an attempt to add knowledge to improve performance but unexpectedly,

did not lead to better results.
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7.2 Results and Discussion

The results obtained from the initial translation and use of Inductive Logic
Programming and ASP are mentioned in Table 4. On Analysis, it was found that
coreference resolution, formation of rules with similar questions but different high
level rule assignments and some inference errors cause errors with a per-paragraph
detail presented in Appendix D.

Table 4. Results of Various Systems on the ProPara Dataset
Precision Recall F1

ProLocal 77.4 22.9 35.3
QRN 55.5 31.3 40.0
EntNet 50.2 33.5 40.2

ProGlobal 46.7 52.4 49.4
ProStruct 74.2 42.1 53.7
KG-MRC 64.52 50.68 56.77

ProKR (This work) 76.00 45.10 56.60
NCET (later) 67.10 58.50 62.50
LACE (later) 75.30 45.40 56.60

The original ILP generated rules with the reasoning system gives an accuracy

of 56.60% The modification of the ILP generated rules gives a maximum accuracy

of 56.40 % as discussed in the previous chapter. Thus, we take the accuracy to be

considered as 56.60 %. It can be seen from Table 4 that the model performs on-par or

better than other deep learning based models, reasoning and ILP based approaches

can yield great results as well.

A criticism of ILP based approaches would generally be that the high-level rules

and inertia and background have to be defined manually before proceeding. The flip

side is that more specific rules can be defined.
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7.3 Future Directions

The first step to improvement that needs to be considered is to overcome coreference

resolution related errors that were faced as mentioned at the end of Chapter 5. This

can be done in adding additional inertia or domain based ASP rules to be able to

handle the resolution.

Another improvement that can be tried is to be able to fuzzily compare questions

in the clingo side predicate that was added in Chapter 6.

Figure 29. A Framenet Annotation for the word absorb

Also, in Chapter 6, PropBank was used to add role based knowledge to the dataset.

FrameNet can also be used to add knowledge as it is also a role based knowledge of

more than 200,000 sentences linked with more than 1200 semantic frames. Each frame

can be used to describe a type of event, relation or entity in a sentence. The words

that evoke the frame are known as lexical units. For example, in Figure 29 (Image

sourced as a screenshot from FrameNet’s website at (framenet2.icsi.berkeley.edu)), the

absorb frame file is shown from framenet’s website and the frame elements are the

multiple roles that can be considered. Two sentences are annotated with the roles

highlighted by color and these sentences are not present in the PropBank absorb frame

file.
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Another step to confirm the generalizability of the work is to try it out on similar

process or procedure based datasets such as the Recipes dataset (Kiddon et al. 2015).

Meanwhile, two other approaches came to mind while working on this dataset.

One approach that stands out due to the presence of actions and state changes is that

of Reinforcement Learning where actions need to be learnt. A Deep Reinforcement

Learning approach which incorporates word encodings and constraints of the problem

would probably work.

The other approach comes from the recent state of the art results with the

Transformer and the BERT architectures. BERT has achieved better results than

BiLSTM-CRF, as experimented in (Peters et al. 2017) at Parts of Speech Tagging, in

the CoNLL 2013 dataset, which can be considered a sequence labelling problem. One

of the reasons that BERT performs so well is possibly because the model is trained on

a huge dataset. On similar lines, XL-NET (Yang et al. 2019) was a recent state of the

art language model released by Google Brain and is built on top of the TransformerXL

(Dai et al. 2019) architecture. It is considered to be an improvement over BERT.

Combining BERT or XL-NET (Yang et al. 2019) or a bidirectional Transformer

approach with natural language abduction and some commonsense knowledge and

also incorporating coreference resolution will probably lead to a good solution for

the ProPara dataset. BERT and coreference resolution would have to be trained

in a multitask manner or perhaps learn coreference resolution as an auxilary task

(Ruder 2017).Until human accuracies are beaten for NLP datasets (83.9% for ProPara),

research into models trying to beat these datasets will continue since the Artificial

General Intelligence will want to be able to replicate human performance on multiple

tasks before integrating everything together to help humanity.
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APPENDIX A

SAMPLE CREATE RULES LEARNED BY ILP ON PROPARA
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create(V1, V2):-eobservedAt(“provide”, “what does something v ?”, V1, V2),
entity(V1), time(V2).

create(V1, V2):-eobservedAt(“turn”, “what v something ?”, V1, V2), doesNotexists(V1,
V2), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“support”, “what is v ?”, V1, V2), eobservedAt(“be”,
“what v something ?”, V1, V2), entity(V1), time(V2).

create(V1, V2):-entityObservation(“incubate”, “what v ?”, “the eggs”, V2), does-
Notexists(V1, V2), entity(V1), time(V2).

create(V1, V2):-entityObservation(“filter”, “what does something v ?”, “the blood”,
V2), doesNotexists(V1, V2), description(V1, “waste”), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“gain”, “what does something v ?”, V1, V2), does-
Notexists(V1, V2), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“rise”, “what v ?”, V1, V2), doesNotexists(V1, V2),
entity(V1), time(V2).

create(V1, V2):-eobservedAt(“go”, “how does something v somewhere ?”, V1, V2),
entity(V1), time(V2).

create(V1, V2):-eobservedAt(“consider”, “what is something v ?”, V1, V2), doesNotex-
ists(V1, V2), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“be”, “what does something v ?”, V1, V2), does-
Notexists(V1, V2), description(V1, “oil”), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“drip”, “how is something v somewhere ?”, V1, V2),
entity(V1), time(V2).

create(V1, V2):-eobservedAt(“break”, “what v ?”, V1, V2), doesNotexists(V1,
V2), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“break”, “how does something v ?”, V1, V2), does-
Notexists(V1, V2), entity(V1), time(V2).

create(V1, V2):-doesNotexists(V1, V2), eobservedAt(“release”, “what is being v
?”, V1, V2), entity(V1), time(V2).
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create(V1, V2):-eobservedAt(“develop”, “what v with something ?”, V1, V2), en-
tity(V1), time(V2).

create(V1, V2):-eobservedAt(“have”, “what does something v ?”, V1, V2), does-
Notexists(V1, V2), entity(V1), time(V2).

create(V1, V2):-groundObservation(“water”, “what does something v to ?”, “evapora-
tion”, V2), description(V1, “water vapor”), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“copy”, “where is something v ?”, V1, V2), entity(V1),
time(V2).

create(V1, V2):-groundObservation(“grow”, “what is being v into ?”, “new trees”, V2),
doesNotexists(V1, V2), entity(V1), time(V2).

create(V1, V2):-doesNotexists(V1, V2), description(V1, “Seeds”), entity(V1), time(V2).

create(V1, V2):-description(V1, “thicker coat”), eobservedAt(“grow”, “what does
something v ?”, V1, V2), entity(V1), time(V2).

create(V1, V2):-eobservedAt(“compose”, “how is something v ?”, V1, V2), en-
tity(V1), time(V2).
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APPENDIX B

SAMPLE DESTROY RULES LEARNED BY ILP ON PROPARA
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mayDestroy(V1, V2):-observedAt(“form”, “what v somewhere ?”, “the butterfly”,
V2), description(V1, “pupa”), entity(V1), time(V2).

mayDestroy(V1, V2):-observedAt(“hatch”, “what v ?”, “the cocoon”, V2), descrip-
tion(V1, “pupa”), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“complete”, “what does something v
?”, “its metamorphosis”, V2), description(V1, “pupa”), entity(V1), time(V2).

mayDestroy(V1, V2):-somethingGotCreated(V2), observedAt(“form”, “what is v
?”, “crystals”, V2), description(V1, “magma”), entity(V1), time(V2).

mayDestroy(V1, V2):-somethingGotCreated(V2), observedAt(“flow”, “what v from
something ?”, “magma”, V2), description(V1, “magma”), observedAt(“flow”, “how does
something v from something ?”, “in the form of lava”, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“go”, “what v into something ?”, “some
water”, V2), description(V1, “rain”), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“dissolve”, “what does something v ?”, V1, V2),
groundObservation(“dissolve”, “what does something v ?”, “calcite”, V2), entity(V1),
time(V2).

mayDestroy(V1, V2):-eobservedAt(“energize”, “what is v ?”, V1, V2), entity(V1),
time(V2).

mayDestroy(V1, V2):-eobservedAt(“die”, “who v ?”, V1, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“convert”, “what does something v ?”, V1, V2),
somethingGotCreated(V2), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“build”, “where does something v up
?”, “behind the dam”, V2), description(V1, “rain”), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“enter”, “what v something ?”, V1, V2), de-
scription(V1,“sugars”), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“enter”, “what v something ?”, “the larva”,
V2), eobservedAt(“enter”, “what v something ?”, V1, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“break”, “what is v ?”, V1, V2), description(V1,
“coal”), entity(V1), time(V2).
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mayDestroy(V1, V2):-eobservedAt(“combine”, “what is v with something ?”, V1, V2),
entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“incorporate”, “what is v into something ?”,
“the recycled materials”, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“become”, “what is being v ?”, “urine”,
V2), description(V1, “water”), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“give”, “what v something ?”, V1, V2), eob-
servedAt(“cause”, “what does something v ?”, V1, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-description(V1, “metamorphic rock”), entity(V1), time(V2).

mayDestroy(V1, V2):-groundObservation(“break”, “what is v ?”, “the food”, V2),
eobservedAt(“break”, “what is v ?”, V1, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“die”, “what v ?”, V1, V2), entity(V1), time(V2).

mayDestroy(V1, V2):-eobservedAt(“split”, “what does something v ?”, V1, V2),
entity(V1), time(V2).
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SAMPLE LOCATION RULES LEARNED BY ILP ON PROPARA
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initiate(locationOf(V1, V2), V3):-eobservedAt(“replace”, “what is being v ?”, V1,
V3), lobservedAt(“replace”, “what is something being v on ?”, V2, V3), entity(V1),
location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-groundObservation(“lit”, “what is v ?”, “the
oil”, V3), value(V2, “stove”), description(V1, “warm air”), entity(V1), location(V2),
time(V3).

initiate(locationOf(V1, V2), V3):-eobservedAt(“put”, “what is v ?”, V1, V3), lobserve-
dAt(“put”, “what is something v in ?”, V2, V3), entity(V1), location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-eobservedAt(“call”, “what is something v ?”,
V1, V3), lobservedAt(“make”, “what v something ?”, V2, V3), entity(V1), location(V2),
time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“combine”, “what v with something ?”,
V2, V3), description(V1, “sulfur”), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“react”, “what does something v
with ?”, V2, V3), eobservedAt(“react”, “what does something v with ?”, V1, V3),
entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“move”, “what does something v from ?”,
V2, V3), eobservedAt(“move”, “what v ?”, V1, V3), entity(V1), location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-value(V2, “cloud”), eobservedAt(“call”, “what
is something v ?”, V1, V3), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“bump”, “what v something ?”, V2, V3),
description(V1, “ice”), entity(V1), location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-eobservedAt(“know”, “what is v as something
?”, V1, V3), value(V2, “bottom of ocean , riverbed or swamp”), entity(V1), loca-
tion(V2), time(V3).

initiate(locationOf(V1, V2), V3):-eobservedAt(“rise”, “what v ?”, V1, V3), value(V2,
“bloodstream”), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“burn”, “what v somewhere ?”, V2, V3),
description(V1, “hydrogen”), entity(V1), location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-value(V2, “air”), eobservedAt(“release”, “what
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is v ?”, V1, V3), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“be”, “where does something v ?”,
V2, V3), eobservedAt(“be”, “what v somewhere ?”, V1, V3), entity(V1), location(V2),
time(V3).

initiate(locationOf(V1, V2), V3):-description(V1, “water vapors”), lobservedAt(“form”,
“how is something being v ?”, V2, V3), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“form”, “what v with something ?”,
V2, V3), eobservedAt(“translate”, “where is something v ?”, V1, V3), entity(V1),
location(V2), time(V3).

initiate(locationOf(V1, V2), V3):-lobservedAt(“hide”, “where does something v
something ?”, V2, V3), description(V1, “food stores”), entity(V1), location(V2),
time(V3).

initiate(locationOf(V1, V2), V3):-lobservedAt(“start”, “what v ?”, V2, V3), de-
scription(V1, “forest fire”), entity(V1), location(V2), time(V3).

before(locationOf(V1, V2), V3):-lobservedAt(“push”, “what v into something ?”,
V2, V3), eobservedAt(“push”, “what v into something ?”, V1, V3), entity(V1),
location(V2), time(V3).

terminate(locationOf(V1), V2):-groundObservation(“start”, “what does something v
doing ?”, “growing”, V2), entity(V1), time(V2).

terminate(locationOf(V1), V2):-eobservedAt(“make”, “what v something ?”, V1,
V2), groundObservation(“call”, “what is something v ?”, “honey”, V2), entity(V1),
time(V2).

terminate(locationOf(V1), V2):-groundObservation(“put”, “when is something being v
?”, “when you are finished”, V2), description(V1, “food”), entity(V1), time(V2).

terminate(locationOf(V1), V2):-eobservedAt(“exchange”, “what is v ?”, V1, V2),
entity(V1), time(V2).

terminate(locationOf(V1), V2):-groundObservation(“put”, “where is something
being v ?”, “away”, V2), eobservedAt(“put”, “what is being v ?”, V1, V2), entity(V1),
time(V2).

terminate(locationOf(V1), V2):-groundObservation(“split”, “what is v ?”, “the
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atoms”, V2), description(V1, “neutron”), entity(V1), time(V2).

terminate(locationOf(V1), V2):-eobservedAt(“surprise”, “who v someone ?”, V1,
V2), entity(V1), time(V2).

terminate(locationOf(V1), V2):-groundObservation(“reuse”, “what v something
?”, “the plant”, V2), description(V1, “oxygen”), entity(V1), time(V2).

terminate(locationOf(V1), V2):-eobservedAt(“remove”, “what is being v ?”, V1,
V2), entity(V1), time(V2).

terminate(locationOf(V1), V2):-groundObservation(“launch”, “what is being v
?”, “rocket”, V2), description(V1, “satellite”), entity(V1), time(V2).

terminate(locationOf(V1), V2):-groundObservation(“ignite”, “where is something v ?”,
“in the combustion chamber”, V2), description(V1, “heating oil”), entity(V1), time(V2).

terminate(locationOf(V1), V2):-groundObservation(“start”, “what does something v
doing ?”, “growing”, V2), entity(V1), time(V2).
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qasrl errors: 7,
includes incorrect question-answer pair: 1146
answers not containing entity/location : 1 - ex: 903
no rule present with verb:10 - ex: 460, 1188, 70
coreference resolution: 16 - also, topic needs to be included for coreference resolution
(ex: 400)
more inference/commonsense needed: 7 - 401, 896, 927, 1031, 1190
maydestroy but not destroyed:6 - ex: 1146
terminate but not destroyed: 1
creation verb not present: 1 - ex: 410
generalization may help - 3 - ex: 465
initate but not create rule - 1 - ex: 660
destroy rule not present for verb - 2 - ex : 1146
destroy rule not trigerred - 1 - ex: 661
create rule not trigerred - 2 - ex : 695, 697
create rule not present for verb - 2 - ex: 1031, 38
annotation problem - 1 - ex: 1145
no phrase based rules present - 1 - ex : 1147
verb not learnt properly - 1 - ex: 67

interesting test to look at : 697, 791, 896, 1032, 1033

37 - qasrl, input/output; plant/animal null and match; soft tissues destroy matched;
bones: missed destroy in step 5; fossil: got create in step 6;

38 - missed 2 inputs; missed 1 output; both conversions missed and got some-
thing else; animal/body: missed destroy in step 6 because form has maydestroy but
destroy not triggered; soil: missed destroy in step 5 because assumption is that rocks
develop from the soil and got extra create in step 4 but seems fine; rock: missed
create in step 5 because no create rule present for form; fossil: matched create in step 6;

67 - inputs missed-plants or dead animals, mistake in destroy and create, cre-
ate for coal correct time but incorrect location, destroy and then create recognized,
area is a wierd location, coreference resolution required for same area to be bottom of
the swamps, join not learnt properly probably;

68 - water:location not found leading to incorrect input,destroy of coal not de-
tected as coal replaced by something in qasrl - qasrl problem

69 - inputs are alright, pressure not detected as output but detected peat in-
stead, coreference resolution should have detected destroy of peat, cause indicates
location sometimes:alright to miss
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70 - no inputs,outputs and creations or destroys detected here, rain destroy not
detected due to no rule for stop, unsure what should be happening with water:location
detected as water but should be stream or vanish because of evaporation:difficult.
Why is precision for creation and destroy coming to 1?

99 - inputs are accurate, outputs: two correct but missed rain, create worked
well

152 - input,output,create and destroy works fine

249 - got one input but missed “rocks OR smaller pieces”, outputs:correct, destroyed:
got one and missed one, creation fine. formation leading to destruction:slightly difficult

310 - inputs:missed carbon dioxide, outputs:fine, conversions:fine, destroy did not work
for carbon dioxide - terminate not treated similar to destroy? Why did destroy not fire?

400 - inputs and outputs match, creation and destroy seems fine, problem with location.
Dataset problem and coreference resolution here.Topic needs to be considered for
coreference resolution.

401 - both inputs and outputs are incorrect here, alternating current could’ve
faced problems because of unsanitized quotes, also need commonsense that some
sunlight comes from sun shining.

409 - inputs and outputs are good.create and destroys are good too.

410 - inputs and outputs are both wrong. creating for one case should not
have been there and destroy for other. dataset assumes when something is being
talked about, the process is starting but ILP expects a creation related verb - light
seems fine.

411 - inputs and outputs good, light destroy with incorrect timestamp but seems
better in our case.

429 - inputs: got one and missed one, outputs: incorrect, possibly missed one
due to not satisation of quotes, not able to distinguish between nitrogen and fixable
or used nitrogen, destroy incorrect for plants and nitrogen.

460 - inputs: correct, outputs: incorrect, carbon predictions are wierd as there
are multiple create and destroys, unable to detect creation of fossil fuel at right time -
possibly because rule not present without verbs but requires one here - discovered
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may be considered

463 - inputs, outputs and conversions all missed but why? Raindrops is usu-
ally missed. No create and destroy found.

465 - inputs, outputs and conversions missed again, did not properly learn that freeze
can end and create something - generalization here probably can help. commonsense
could help too.

502 - inputs and outputs appropriate, destroy works fine but create missed for
one, piston motion creation missed.

503 - inputs are alright, more outputs generated than true values, spark-incorrect
time created, locations incorrect.

533 - inputs, outputs and conversions don’t match. creates being detected -
missed one, but destroys being missed - why? sprout is a maydestroy but not detected
as a destroy, not sure what rule detected for becoming. sprouts is wierdly a participant.
Reaching maturity could be a problem - does not directly specify a creation. Besides,
there seems to be incorrect coreference resolution happening.

534 - inputs, outputs dont match but conversions match. create majority be-
ing missed. destroy working. text incorrect here - so flowers missed. coreference
resolution problem mostly. become and maydestroy again due to definition of become.
QASRL made wrong coreference resolution.

582 - input don’t match. outputs: got two out of three. conversions don’t
match. 1-2 creates out of 3 detected. destroys not tracked well - why?. Air masses
does not have a creation verb - meet. no destruction verb present as well. wind
creation went wrong. coreference resolution for masses, air masses, warm wind and
cold wind not detected well.

583 - inputs match, outputs - 2 out of 3 match, conversions none and match.
Creation assumed but not for warm humid air. updraft creation correct. tornado
funnel creation missed.

600 - all inputs predicted and 1 extra. all 2 outputs missed. conversion missed. energy
creation missed and incorrectly destroyed. creation can be accounted for here using
a generalized rule...create(V1,V2):-eobservedAt(“convert”,“what is something v into
?”,V1,V2),entity(V1),time(V2). for observedAt(“convert”,“what is something v to
?”,“to energy”,1). understandable why hot gas creation is not detected.
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653 - input wrong, output: 1 extra, other 3 right. conversions: one conversion
captured other extra. seed destroy missed due to missed coreference resolution, fruit
and flower tracked well.

654 - inputs match, outputs match, conversions: creation match while destroy
dont, seedling multiple times created and destroyed,other entities tracked well.

659 - missed 1 out of 2 inputs, outputs: predicted one extra than none, missed
multiple conversions, missed one nitrogen create, ammonium destroy and creation
missed. missed because incorrect question asked by qasrl : observedAt(“turn”,“where
does something v something ?”,“back into ammonium”,4).

Not sure about whether maydestroy to be triggered or not. similar for create.

660 - got all 3 inputs, missed 1 out of 2 outputs, missed 1 out of 5 conver-
sions, plants destroy off by one step, wastes creation missed. Here, expel is probably
missed because expel has initiate but no create rule. what is difference between create
and initiate?

661 - got 1 out of 2 inputs, outputs none and matched, got 2 out of 4 conver-
sions, only one destroy matches but 3 extra creates and destroys present, step 2
nitrates creation missed and step 5 nitrates destruction missed, for plant : one destroy
is correct, otherwise: create destroy create destroy create is wrong, for nitrates destroy:
no absorb destroy rule present, create rule was probably not trigerred for nitrates -
generalization may help here.

695 - inputs 1 and didn’t match, outputs got 4 out of 5, got 1 out of 2 con-
versions. water: destroy missed. vapor: create missed. clouds: create missed by 1
step and extra destroy present, coreference resolution failed for water and did not
recognize that water had turned leading to miss in destroy, vapor: create rule does
not seem to have triggerred but why? not sure: maybe wrong thing was looked into.

696 - inputs 1 and didn’t match, outputs: missed all 2, conversions none and
match. water droplets: missed create, rain: missed step 6 create and labelled destroy
instead. water droplets creation missed due to qasrl answer miss, not sure why rain
labelled as destroy even if create rule present.

697 - inputs none and match, outputs: got 1 out of 2, conversions none and
match, rain: missed step 5 create because , not sure why rain is not being detected as
created.

725 - inputs: missed all 4, outputs: got 1 out of 2, conversions missed the only 1
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mentioned, plant: missed step 2 destroy, soft tissues: predicted 2 extra create and
destroy, sediment: predicted create instead of destroy, rock: missed create, bones:
predicted extra create and missed required destroy. why bones missed ? minerals:
predicted destroy extra. stone replica: missed final step create and predicted in the
beginning: why?

726 - inputs: got 1 out of 3, outputs: got 1 out of 2, conversions: got 1 out
of 2. animal skeleton: has extra create and missed destroy in step 9, mudsand: have 2
extra creates and misplaced destroy by 1 step, hole: missed step 9 create

727 - inputs: got 2 out of 4, outputs: got 1 out of 2, conversions: missed the
only 1, animal: destroy off by 2 steps, bones: have extra create but missed destroy,
mudsilt - missed destroy in step 6, rock: missed create in step 6

791 - inputs: none and match, outputs: missed the only 1, conversions: missed the
only 1, DC electricity: missed destroy in step 4 because maydestroy exists but destroy
not trigerred and speculate that coreference resolution did not work, AC electricity:
missed create in step 4 because create rule does not seem to have trigerred.

896 - inputs: missed the only 1, outputs: missed the only 1, conversions: missed the
only 1, oxygen-depleted blood: missed destroy in step 7 because common-sense and
coreference resolution failed and because no rules present for oxygenate, oxygenated
blood: missed create in step 7 because of similar reasons

903 - inputs: missed the only 1, outputs: got 1 out of 2, conversions: missed
the only 1, visible light: missed destroy in step 4 because sentence is incomplete
leading to no coreference resolution possibility, image: missed create in step 5 because
interpret does not have a rule and answers do not contain image though it seems like
it should in some way, oxygenated blood create is fine.

904 - inputs: missed the only 1, outputs: got the only 1, conversions: missed
all the 2, electrical impulses: create is fine, light: missed destroy in step 1 be-
cause refract does not have a rule and doesnt really destroy something, small
image: missed create in step 1 because refract does not have a rule and destroy in
step 3 because coreference resolution missed for small image, retinas: none and matches

927 - inputs: missed all 4, outputs: missed the only 1, conversions: missed
the only 1, rain: missed destroy in step 2 because inference/commonsense is needed
that rain becomes rainwater, rain water: none and matches, land: missed destroy in
step 5 because qasrl question and answer slightly wrong - should be based on phrase
instead of verb, plants: missed destroy in step 5 because question and answer slightly
wrong, trees: missed destroy in step 5 because question and answer slightly wrong.
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932 - inputs: none and matched, outputs: none and matched, conversions: none and
matched, water: matches, rocks: none and matches, chemicals: none and matches,
oxygen: none and matches

933 - inputs: none but predicted 1 instead, outputs: none and matched, con-
versions: none and matched, water: extra destroy present, carbon dioxide: none and
matches, mineral based material: none and matched, rock: none and matched

1031 - inputs: got the only 1 but also predicted 1 extra, outputs: got 1 and
matched, conversions: got 2 out of 4, plant or animal: got the one detroy, bones: cre-
ate missed in step 1 because inference/abduction and backtracking from step 2 needed
and destroy missed in step 3 because cover rule had maydestroy but was not trigerred
and seems fair, sediment: create missed in step 3 because cover does not have asso-
ciated create rule but got destroy, rock: got create and destroy, fossil: got the one create

1032 - inputs: got 2 inputs and matched, outputs: missed the only 1, conver-
sions: missed all 3, animals: destroy off by two steps, plants: off by two steps, bones
and hard tissues: missed create in step 3 because some abduction is needed from next
step regarding bones and hard tissues remaining and missed destroy in step 5 because
inference or coreference resolution needed as it isn’t directly indicated that bones
and hard tissues become part of sediment, sediment: got create but missed destroy
because harden has no rule, rock: missed create on step 5

1033 - inputs: predicted something else that the 1 actual input, output: got
all 2 i.e. matched, conversions: got 1 out of 2, animal: destroy missed in step 3
because coreference resolution missed and becasause die maydestroy rule not trigerred
and rot has no rule, skeleton: missed create because inference from future steps
needed and destroy off by one step, rock: got create, mold: missed create by one step

1145 - inputs: got both 2 and matched, outputs: got 1 out of 2, conversions:
got the only 1, hydrogen fuel: matched destroy, hydrogen atoms: matched destroy,
helium atoms: matched create, red giant star: missed create in step 5 because no
proper evidence present for creation - annotation not the best.

1146 - inputs: got 2 out of 4, outputs: missed both 2 and predicted some other 1,
conversions: got 1 out of 2, star: destroy missed in step 1 as burn has no associated
destroy rule, hydrogen fuel: got destroy in step 2, hydrogen: got destroy in step 3,
helium: got create but missed destroy in step 7 has maydestroy but not destroy rule
meaning destroy was probably not trigerred, energy: missed destroy in step 4 because
qasrl generated incorrect question answer pair, carbon atoms: missed create in step 7
because no create rule present for combine, red giant star: missed create in step 10
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because no proper evidence for creation present,

1147 - inputs: got 1 out of 2, outputs: got 1.5 out of 3, conversions: got 2.5
out of 3, hydrogen atoms: got step 1 destroy, helium atoms: got create but predicted
extra destroy in step 4 because combine with does not have an associated rule -
generalization might help here as there are other rules for combine, hydrogen: destroy
off by one step and predicted extra create and destroy

1188 - inputs: missed the only 1, outputs: got the only 1, conversions: none
and matched, coment: missed destroy in step 4 because no rule present with crash,
crater: got create

1189 - inputs: none and match, outputs: missed the only 1, conversions: missed the
only 1, chunks of rock: missed create in step 1 because there are no create rules with
break and missed destroy in step 4 because chunks probably not related to chunks of
rock - complex coreference resolution, crater: missed create in step 5 because seems
like no verb present to indicate creation.

1190 - inputs: missed the only 1, outputs: none and match, conversions: missed the
only 1, deoxygenated blood: missed destroy and create, oxygen: missed destroy in
step 6, oxygenated blood: missed create and destroy, pick does not help recognize
that an entity is converted leading miss of oxygenated blood creation, for destroy of
oxygenated blood: it needs to be deduced that the oxygenated blood got destroyed -
hard to deduce. deoxygenated blood: similarly destroy and creation of oxygenated
blood missed.

1240 - inputs: missed 2 and predicted none, outputs: matched the only 1, conversions:
missed all 2, Air: no problem with create or destroy, refrigerant liquid: destroy missed
in step 3, liquid: create off by one step, refrigerant gas: create and destroy missed, for
refrigerant liquid: creation missed, for refrigerant gas: gas probably not recognized as
refrigerant gas (missed coreference resolution or entity recognition?) so creation and
destroy missed.
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APPENDIX E

DOMAIN KNOWLEDGE
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time(T):-observedAt(V,Q,A,T).
time(T+1):-observedAt(V,Q,A,T).

entity(E):-participant(E).
location(L):-lvalue(P,L).
location("?").
location("-").
answer(L):-observedAt(V,Q,L,T).
event(V):-observedAt(V,Q,L,T).
question(Q):-observedAt(V,Q,L,T).
groundObservation(V,Q,L,T):-observedAt(V,Q,L,T).
entityObservation(V,Q,L,T):-observedAt(V,Q,L,T), refers(T,P,L).

name(X):-description(N,X).
value(L,L):-location(L).
value(L,L):-answer(L).

%% observedAt
eobservedAt(V,Q,P,T):-observedAt(V,Q,L,T), refers(T,P,L).
lobservedAt(V,Q,L,T):-observedAt(V,Q,P,T), lvalue(P,L).

%colocation
%%cosituation(E,P,T):- create(E,T), eobservedAt(V,Q,P,T), E!=P, not create(P,T),exists(P,T).
cosituation(E,P,T):- create(E,T), mayDestroy(P,T), eobservedAt(V,Q,P,T), E!=P,
not create(P,T),holdsAt(locationOf(P,L),T),L!="-".
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APPENDIX F

INERTIA RULES
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input predicates:
% 1. time(1..n).
% 2. entity(1..m): the set of entities.
% 3. description(I,V) : string description of i-th entity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% you observe the location at certain timepoints which are critical points
% for the points that are not critical points you decide the location based
% on the neighbour critical points

criticalPoint(E,T) :- before(locationOf(E,L),T).
criticalPoint(E,T+1):- initiate(locationOf(E,L),T).
criticalPoint(E,T+1):- terminate(locationOf(E),T).
criticalPoint(E,T+1):- destroy(E,T).
criticalPoint(E,T+1):- create(E,T).

% assume the leftmost point is a critical point
criticalPoint(E,0) :- entity(E).

% define non critical point
nonCriticalPoint(E,T):- entity(E), time(T), not criticalPoint(E,T).

% define the left endpoint of a non critical point
leftCriticalPoint(E,T,T1):- nonCriticalPoint(E,T), criticalPoint(E,T1), T1<T,

not nleftCriticalPoint(E,T,T1).
nleftCriticalPoint(E,T,T1):- nonCriticalPoint(E,T),

criticalPoint(E,T1), T1<T, criticalPoint(E,T2),
T1<T2, T2<T.

% define the right endpoint of a entity at each point
rightCriticalPoint(E,T,T1):- entity(E), time(T), T1>T, before(locationOf(E,L),T1),

not nRightCriticalPoint(E,T,T1).
nRightCriticalPoint(E,T,T1):- entity(E), time(T), before(locationOf(E,L),T1), T1>T,

criticalPoint(E,T2), T1>T2, T2>T.
nRightCriticalPoint(E,T,T1):- entity(E), time(T), initiate(locationOf(E,L),T1-1), T1>T, time(T1).

% define has a right critical point
hasARightCriticalPoint(E,T):- rightCriticalPoint(E,T,T1).
hasNoRightCriticalPoint(E,T):- not hasARightCriticalPoint(E,T), entity(E), time(T).

% define first critical point is not created type
firstCriticalPoint(E,T):- criticalPoint(E,T), time(T), not nFirstCriticalPoint(E,T).
nFirstCriticalPoint(E,T):- criticalPoint(E,T), criticalPoint(E,T1), T1<T, time(T1), time(T).
nUsedBeforeCreation(E):- firstCriticalPoint(E,T), create(E,T-1).
isUsedBeforeCreation(E):- entity(E), not nUsedBeforeCreation(E).
firstCriticalPointTypeBefore(E):- firstCriticalPoint(E,T), before(locationOf(E,L),T),

not initiate(locationOf(E,L1),T-1):location(L1).

% initialization (we can do this better with checking if it has a before)
holdsAt(locationOf(E,"?"),0):- isUsedBeforeCreation(E), not firstCriticalPointTypeBefore(E).
holdsAt(locationOf(E,L),1):- isUsedBeforeCreation(E),

firstCriticalPointTypeBefore(E),before(locationOf(E,L),T).
holdsAt(locationOf(E,"-"),0):- entity(E), not isUsedBeforeCreation(E).

% define location at critical point
holdsAt(locationOf(E,L),T):- criticalPoint(E,T), before(locationOf(E,L),T).
%what about does not exist?
holdsAt(locationOf(E,L),T):-

criticalPoint(E,T), initiate(locationOf(E,L),T-1),
not before(locationOf(E,L1),T):location(L1):L1!=L.
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holdsAt(locationOf(E,"-"),T):-criticalPoint(E,T), destroy(E,T-1), time(T-1).
holdsAt(locationOf(E,"?"),T):-criticalPoint(E,T), terminate(locationOf(E),T-1), time(T-1), time(T),

not initiate(locationOf(E,L) ,T-1):location(L), hasNoRightCriticalPoint(E,T-1).
holdsAt(locationOf(E,"?"),T):-criticalPoint(E,T), create(E,T-1), time(T-1), time(T),

not initiate(locationOf(E,L),T-1):location(L), hasNoRightCriticalPoint(E,T-1).
% fix this : the value when terminate || create followed by before
holdsAt(locationOf(E,L),T):-criticalPoint(E,T), terminate(locationOf(E),T-1), time(T-1),

not initiate(locationOf(E,L1),T-1):location(L1),
rightCriticalPoint(E,T,T1), holdsAt(locationOf(E,L),T1).

holdsAt(locationOf(E,L),T):-criticalPoint(E,T), create(E,T-1), time(T-1),
not initiate(locationOf(E,L1),T-1):location(L1),
rightCriticalPoint(E,T,T1), holdsAt(locationOf(E,L),T1).

% define propagation
% If the right critical point is not backward type
% propagate the value from left (i.e. also why left must exist)
holdsAt(locationOf(E,L),T+1):- nonCriticalPoint(E,T+1), hasNoRightCriticalPoint(E,T+1),

holdsAt(locationOf(E,L),T).

% If the right is backward type
% if the left type is termination || creation with no initiation Then propagate back

holdsAt(locationOf(E,L),T):- nonCriticalPoint(E,T), rightCriticalPoint(E,T,T1),
holdsAt(locationOf(E,L),T1),leftCriticalPoint(E,T,T2), T2>0, create(E,T2-1),
not initiate(locationOf(E,L1),T2-1):location(L1).

holdsAt(locationOf(E,L),T):- nonCriticalPoint(E,T), rightCriticalPoint(E,T,T1),
holdsAt(locationOf(E,L),T1),leftCriticalPoint(E,T,T2), T2>0, terminate(locationOf(E),T2-1),
not initiate(locationOf(E,L1),T2-1):location(L1).

% If the left has a known value then there are possibilities
% case 3: conflicting propagation
% base case (the point before the right critical can take any value of left/right)
holdsAt(locationOf(E,L),T-1):- nonCriticalPoint(E,T-1), rightCriticalPoint(E,T-1,T),

holdsAt(locationOf(E,L),T), not holdsAt(locationOf(E,L1),T-1):location(L1):L1!=L.

holdsAt(locationOf(E,L),T-1):- nonCriticalPoint(E,T-1), rightCriticalPoint(E,T-1,T),
holdsAt(locationOf(E,L),T1),
not holdsAt(locationOf(E,L1),T-1):location(L1):L1!=L, leftCriticalPoint(E,T-1,T1).

holdsAt(locationOf(E,L),T):- nonCriticalPoint(E,T), rightCriticalPoint(E,T,T1), T<T1-1,
holdsAt(locationOf(E,L),T+1), holdsAt(locationOf(E,L),T1),
not holdsAt(locationOf(E,L1),T):location(L1):L1!=L.

holdsAt(locationOf(E,L),T):- nonCriticalPoint(E,T), rightCriticalPoint(E,T,T1), T<T1-1,
leftCriticalPoint(E,T,T2), holdsAt(locationOf(E,L),T2),
not holdsAt(locationOf(E,L1),T):location(L1):L1!=L.

%%%% constraints %%%%%
:- initiate(locationOf(E,L),T), destroy(E,T), time(T), entity(E).
:- before(locationOf(E,L),T+1), destroy(E,T), time(T), entity(E).
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APPENDIX G

CODE REPOSITORY

The Code and intermediate data is available at
https://github.com/aurghob/ThesisMaterial .

83


	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction and motivation
	2 Backgound
	3 Related Work
	4 The Translation Layer
	5 The Learning Layer
	6 Addition of Knowledge
	7 Conclusion and Future Direction
	References

	Appendix
	A Sample Create Rules learned by ILP on propara
	B Sample Destroy Rules learned by ILP on propara
	C Sample Location rules learned by ILP on propara
	D Analysis of results on the test set of ProPara
	E Domain Knowledge
	F Inertia rules
	G Code Repository


