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ABSTRACT 

 A Fundamental study of bulk, layered, and monolayers bromide lead perovskites 

structural, optical, and electrical properties have been studied as thickness changes. X-

Ray Diffraction (XRD) and Raman spectroscopy measures the structural parameter 

showing how the difference in the thicknesses changes the crystal structures through 

observing changes in average lattice constant, atomic spacing, and lattice vibrations. 

 Optical and electrical properties have also been studied mainly focusing on the 

thickness effect on different properties where the Photoluminescence (PL) and exciton 

binding energies show energy shift as thickness of the material changes. Temperature 

dependent PL has shown different characteristics when comparing methylammonium 

lead bromide (MAPbBr3) to butylammonium lead bromide (BA2PbBr4) and comparing 

the two layered n=1 materials butylammonium lead bromide (BA2PbBr4) to 

butylammonium lead iodide (BA2PbI4). Time-resolved spectroscopy displays different 

lifetimes as thickness of bromide-based perovskite changes. Finally, thickness 

dependence (starting from monolayers) Kelvin Probe Force Microscopy (KPFM) of the 

layered materials BA2PbBr4, Butylammonium(methylammonium)lead bromide 

(BA2MAPb2Br7), and molybdenum sulfide (MoS2) were studied showing an exponential 

relation between the thickness of the materials and their surface potentials. 
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1 INTRODUCTION 

1.1 2D Materials 

 Graphene, mechanically exfoliated by 2010 Nobel Laureates in Physics 

Novoselov and Geim, was the first 2D material studied at a fundamental level leading to 

a scientific breakthrough in 2004. Different properties change when the material reaches 

single layer thickness due to structural and quantum effects making these kinds of 

materials attractive. Graphene shows extraordinary properties including excellent thermal 

conductivity (5000 Wm-1k-1)[21] and extremely high electron mobility (250,000 

cm2/Vs)[22], high Young’s modulus (1 TPa)[23], high transparency (97.5%)[24] , and large 

surface area (2630 m2/g)[25], which can be used in different areas including electronics, 

energy, coatings and sensors nicknaming graphene as the “wander material”.[26] 

 After graphene’s discovery, more 2D semiconductor materials are needed to be 

discovered due to graphene’s lack of having band gap, therefore, more 2d and ultrathin (> 

1 nm) materials are being explored and studied theoretically and experimentally. Many 

2D materials have been theoretically explored including the elemental atomically thin 

layers (Xenes) and transitional metal chalcogenides (TMCs), but the main materials that 

are being excessively studied experimentally are graphene, hexagonal-Boron Nitride (h-

BN), transitional metals dichalcogenides (TMDs), black phosphorous, and recently and 

layered organic-inorganic hybrid perovskites; these atomically thin materials show 

superb electrical, optical, magnetic, chemical and mechanical properties for applications 

in nanoelectronics, optoelectronics, energy, biomedical, and waste management.[6,26,27]. 

Layered perovskites have shown changes in optical and electrical properties even when 

its thickness is not ultrathin, making this material special. 
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1.2 Perovskite 

Organic-Inorganic Hybrid Perovskite plays a major role in optoelectronic devices 

because of its excellent electrical with it being ambipolar material, having long diffusion 

length, and high mobility.[1] It also have a spectacular optical properties with near optimal 

bandgap, bandgap tunability, broad absorption, and high absorption coefficient, which 

makes the material a great optoelectronic device attracting scientists and industries.[1] 

Perovskite Solar Cell (PSC), was the focus of many engineering labs the past ten years; it 

gained its popularity by being the fastest material to achieve a high power conversion 

efficiency (PCE) of about 24.2% in only 10 years.[2]  

What makes PSC really attractive is its properties and its ease of fabricating an 

efficient device at a low cost and time consumption. In fact, different American Chemical 

Society (ACS) journals were published targeting audiences with no/low lab experience 

teaching them to fabricate a 15% and >20% PCE devices with precise and easy to 

understand directions.[3-4] Advancing at a fast pace encourages more teams with different 

backgrounds to join the perovskite project accelerating the advancement of PSC and 

other perovskite-based devices, and moving to manufacturing phase faster. This will 

surely impact the world economy and environment because the price of PSC will be 

encouraging for consumers to switch to renewable energy. 

LED and photodetectors are another list of perovskite list of applications. NIR, 

red, and green Perovskite LEDs have achieved high quantum efficiencies exceeding 20%, 

and scientists are focusing on achieving a high blue LED efficiency.[28-31] As for the 

photodetectors, the technology has advanced to have a micron scale turn on/off with 
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responsivity reaching 104 AW-1 for bulk perovskite and detectivity reaching above 1015 

Jones for 2D perovskite.[32-33]  

 1.2.1 Crystal Structure 

Perovskite is a material with a special crystal structure of ABX3, A being a large 

monovalent cation (Methylammonium [MA] or Formamidinium [FA], Cesium [Cs]), B is 

a small divalent cation like Lead (Pb) or Tin (Sn), and X being a halogen (Iodine [I], 

Bromine [Br], Chlorine [Cl]) with the unit cell consisting of 4 BX6 octahedra structures 

and an A atom in the center. [5] 

 

  

 

 

 

 

 

 

The contribution of the A atom to the crystal structure is mainly formation and 

distortion of crystal structure.[5] these contributions can be estimated using Goldschmidt’s 

Tolerance factor which states that tolerance T is proportional to the ionic radii of ions, 

which describes the distortion and stability of crystal structures, expressed as 𝑇 =

Figure 1. Schematic of MAPbI3 crystal structure[F1] 
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𝑟𝐴+𝑟𝑋

[√2(𝑟𝐵+𝑟𝑋)]
, 𝑟𝐴 being the radius of the monovalent cation A, 𝑟𝐵 is the radius of divalent 

cation B, and 𝑟𝑋 is the radius of halogens X, showing that the larger 𝑟𝐴 or the smaller 𝑟𝐵, 

the higher the tolerance factor until reaching the ideal factor 1 which is the cubic phase.  

The material can change to one of three phases which are orthorhombic [𝛾], 

Tetragonal [β], and cubic [𝛼]. These changes happen when the tolerance factor is not in 

the range of 0.85 – 1, where changing the phases affects the material properties. [5] 

Another factor that affects the phases is temperature which will be discussed in chapter 5. 

It is discussed that halogen affects the transition temperature of the three phases of 

perovskites, as halide’s radius decreases the transition temperatures between perovskite 

phases decreases.[15] It is important because it shows that the cubic phase of Iodine-based 

perovskite (better absorption than other halogens) is unstable at room temperature, 

whereas Br-based and Cl-based perovskites are stable, so when creating mixed halide 

with iodine, cubic phase will become more stable opening a new opportunity of stability 

engineering. Another factor that impacts distortion is methylammonium spin, it has been 

mentioned that the dynamic of the bipolar monocation electrically distorts the BX 

octahedra.[16] 
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 1.2.2 Electronic Structure 

The octahedra structures determining the electronic properties of the perovskites. 

according to Yin et al., Density Functional Theory - Perdew–Burke-Ernzerhof (DFT-

PBE) has been used to calculate band structure and density of states (DOS) of MAPbI3, 

the calculation shows that the material is direct bandgap and the conduction band minima 

(CBM) is determined from Pb 6p – I 5p 𝜋 antibonding and Pb 6p – I 5s  𝜎-antibonding 

with Pb 6p contributing the most while the valence band maxima (VBM) is determined 

from Pb 6s – I 5p 𝜎-antibonding with Pb s being a lone pair instead of being empty s 

orbital attributing great electronic properties like high carrier mobility.[5, 14] 

 

 

Figure 2. (a) Schematic of Cubic[F2], Orthorhombic[F3], and Tetragonal[F3] phases of MAPbX3 crystal structures. 
(b) tolerance factors of different mixtures of A, B, and X[F4]. (c) Effect of Halogens on transition temperature 
between MAPbX3 phases. [F5] 
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Hybrid Perovskite is a direct band gap ranging from 2.3 eV – 3.1 eV depending 

on the halide used (increasing band gap when changing from I to Br and from Br to Cl as 

will be discussed in chapter 5). It also has a broad absorption spectrum and a high 

absorption coefficient.[1] 

 

1.3 Layered Perovskite 

 Even though bulk perovskite has superior optical and electrical properties, the 

perovskite instability is a huge challenge, thus, layered perovskite has been seen as a 

good alternative to bulk perovskite because of its crystal structure, electrical and optical 

effects including dielectric separator, excitonic nature, and quantum confinement 

effects.[6]  

 

 

Figure 3. Left shows the DFT calculated Molecular Orbital Diagram of MAPbI3.[F1] Right is the 
band structure and contributions of atoms of MAPbI3.[F6] 
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 1.3.1 Crystal Structure 

 The crystal structure of Ruddlesden-Popper 2D perovskites is (R)2(A)n-

1(B)n(X)3n+1 (n=1,2,3, …,∞),[7] with R being a large aliphatic or aromatic 

alkylammonium organic cation spacer like Butylammonium [BA] or 

Phenylethylammonium [PEA] respectively, and n represents the number of layers before 

crystal is separated with the organic spacer.[8]  

 The nature of Ruddlesden-Popper perovskites crystal structure differs from that 

of the bulk perovskites crystal structure by having a large organic spacer between layers 

of BX6 octahedra leading the force interaction between the layers to be van der Waals 

(vdW) thus the material changes from cubic structure to orthorhombic superlattice 

layered material.[6] One of the superb properties of layered perovskite is the ability to 

place the organic spacer after any number of BX6 layers, for example at n = 1, the organic 

spacer is placed after every semiconducting layer, for n = 2, the spacer is placed after 

each two semiconducting, in fact studies have shown that the manipulation of n can reach 

50, as such the spacer is placed after each n number of layers, which impacts the 

electrical and optical properties of the material.[33] 

Figure 4. From left layered perovskite n=1, n=2, n=3, and n=∞ (bulk).[F7] 
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 1.3.2 Electronic and Optical Properties 

 Electronic properties are determined mostly from the contribution of BX 

octahedra as discussed in section 1.1.3. But when the bulk changes to layered perovskite 

by adding organic spacer, it effects the electronic properties. The spacer causes the 

mobility to decrease since it acts as insulating layer; so, at n=1, even though stability 

greatly increases due to substituting out A atom like methylammonium and 

Formamidinium, insulating layer (BA, PEA) is added after every BX layer of the material 

significantly effecting electron mobility, thus it is not a good application for solar cell.[61] 

On the other hand, some teams suggested that the number of layers can be manipulated to 

increase the electron mobility by increasing n before adding insulating layer, n can 

exceed 10 or 100 like n = 50 greatly reducing the insulating effect of the organic spacer 

and achieving a good PCE (12%).[33] Major optical and electrical properties changes 

when perovskite becomes layered as will be discussed in chapter 5. 
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2 BACKGROUND AND CHALLENGES 

2.1 Background 

Advances of perovskite solar cell was astonishingly fast, encouraging different 

teams to join the perovskite project. Searching the term perovskite in google scholar 

resulted to more than 267,000 papers with 98,500 focusing on LED and 77,600 focusing 

on solar cell. Many teams got excited with perovskite recently, more so in solar cell and 

LED because in 2013 the solar cell device PCE surpassed 15% in just 4 years, and 

exceeded PCE of 24% in only 10 years opening number of new opportunities to expand 

and advance at a fast pace. Advancement in perovskite is quickly increasing with each 

year as new technologies and methods are being discovered and many theoretical 

concepts are being explained both of which lead to new questions and dig to deeper 

discoveries. Other perovskite optoelectronic devices that perovskite show tremendous 

potentials are LED with near infrared and green exceeding quantum efficiencies of 20% 

and photodetectors with a high on/off switch and detectivity.  

 Commercialization of perovskite devices has been the next focus since 

achieving high percentage of power conversion in different devices, but these devices 

face serious stability challenges including environmental (humidity and air), thermal, 

optical, electrical hysteresis, and lead poisoning due to many factors, which is why the 

trend shifted towards studying fundamentals of perovskite material and device stability, 

diverting the attentions to different research sub-areas.[1] The main sub-areas focused for 

research teams are studying and engineering monovalent cations, interface engineering, 

and passivation techniques. Industries will be encouraged to commercialize PSC when 

the device passes the International Electrotechnical Commission (IEC) 61646 for Thin 
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Film Modules standards, where it must survive a list of different types of accelerated 

aging tests including environmental, mechanical, and humidity stress tests for a long time 

(20 years for silicon standards).[13] Several teams broke the 10000 hours of instability 

barrier retaining 80% of the PCE but focusing only on parts of the accelerated aging test 

rather than applying all parameters (to mimic a harsh environment). So, from here on, 

two or more new stability challenges arise for the labs. The first is pushing the 10k hours 

barrier to 15k, 20k, or even 50k (depending on the advancement of stability topic) for 

specific aging tests. Another challenge is retaining >80% of the initial efficiency for 10k 

hours under all aging tests. 

 Methylammonium and Formamidinium were the first monovalent cations used 

in the fabrication of perovskite solar cell which succeeded in passing the 20% efficiency 

barrier, but the main problem is that both ions are organic which degrades perovskite 

material due to many stability factors. Instabilities have been studied individually to 

understand perovskite degradation mechanism. In the case of humidity, perovskite 

decomposes into MAI and BI2 due to hydrolysis reaction.[18] As for the case of MAPbI3 

in the presence of dry O2, the oxygen reacts with photoexcited electron generating 

superoxide (𝑂2
–), superoxide degrades the material to be PbI2, I2, CH3NH2, and H2O.[19] 

Degradation due to thermal stability was studied to be found that the material has 

intrinsic thermal instability, which will degrade if the temperature reached 85 °C 

(environmental temperature is assumed 40 but temperature in device increases due to 

accumulation of heat in device).[20]  
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2.2 Challenges 

 Like every technology, there are many challenges that must be solved for the 

technology to proceed to the manufacturing phase. The main challenges that labs face in 

perovskite technologies are perovskite instabilities including organic instabilities 

(environmental air/humidity, thermal, and optical), electrical problems (hysteresis), and 

lead poisoning.[5] Many labs have succeeded with reducing the effects of the mentioned 

challenges by mixing different organic cations, alloying the cation metals, and mixing the 

halogens within the structure. Mixing organics mainly helps with crystal stability, 

example is a mixture between MA and FA (MAxFA1-x), or even mixing organic with 

inorganic materials like Cesium (Cs) and/or Rubidium (Rb) increasing the stability 

against air and humidity but instability is still a concerning issue even after applied 

mentioned solutions.[1] 

 Other initiatives shifted the focus towards 2D Ruddlesden-Popper hybrid 

perovskites to solve the instability challenge but faced electrical transport challenge due 

to the nature of the dielectric organic separator and absorption challenge. This challenge 

was faced by different solutions like manipulating the number of layers between the 

separator reaching the highest recorded of solar cell PCE of 13.7% and fabricating 2D/3D 

mixture (where n ≥ 20) which reached 17.5%. Many labs focused more on devices and 

less on fundamentals, there are many unexplained and yet to be explored physics and 

chemistry of perovskites, some will be explained in this thesis. 
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3 SYNTHESIS AND CHARACTERIZATION 

 

3.1 Synthesis: 

 Many methods can be used to synthesize perovskite material and generally each 

of the methods are used for specific goals; for example, anti-solvent crystallization is 

used to grow high quality single crystals,[11] sonicator is used to grow nanocrystals,[12] 

blade coating is used for materials roll-to-roll manufacturing, and spin coating is easy, 

cost and time effective. The time that takes the material to synthesize ranges from few 

minutes to several weeks depending on the method. This thesis will mainly focus on 

hybrid perovskite thin film and briefly mention single crystal, nanocrystals, and chemical 

vapor deposition for monolayer exfoliation and growth. It is strongly recommended for 

non-chemical engineers and scientists to get familiarized with molarity conversions for 

perovskites since it is not complex to synthesize, learning molarity conversions will give 

access to manipulating different organic/inorganic concentrations for bulk perovskites 

and different numbers of layers for layered perovskites where these manipulations play 

major roles in engineering different electrical and optical properties. 

 

3.1.1 Spin-Coating 

 As briefly explained in chapter 1, many labs try to introduce a general, easy, and 

cost-effective method to fabricate Perovskite solar cell and LED. The techniques used by 

many teams which achieved a high efficiency of 24.2% for solar cell is spin-coating. 

Spin-coating is considered to be the simplest low-cost and time effective technique to 

grow solution-based materials to thin film.[9] The first step before depositing the material 
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in a spin-coater is to prepare the precursors, which consists of diluting the sample in a 

solvent and treating it, then depositing it on a substrate then spinning it.[9] 

 Thickness (t) of the film is determined based on spin speed (𝜔), viscosity, and 

surface tension, with t∝
1

√𝜔
, with a maximum variation of thin film factor of ~3.2 – If a 

thickness at a  spin speed of 5000 rpm is 10 nm, then its thickness at around 500 rpm is 

32 nm. [10] This technique can be used for organic and inorganic materials, metal 

precursors, metal oxides, photoresists, and many materials. [10] Disadvantages of spin-

coating includes loss due to splash and hard to deposit large wafers. 

 This thesis will mainly focus on thin film fabrication method to measure many 

parameters. The reason that thin film is used as a sample of measurement because many 

hybrid perovskite optoelectronics devices have been fabricated using spin coating 

technique, while until recently, many fundamental studies of perovskite materials focus 

on high quality single crystal.  

 

 

Figure 5. Diagram showing spin-coating steps and image of spin coater.[F8, F12] 
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3.1.2 Antisolvent Crystallization 

 Growing single crystal usually is for focusing on the crystal size and quality. It 

is a great method to better understand nucleation and crystallization of the material hence 

opening new opportunities in synthesis methodologies. Also, high quality single crystal is 

a perfect measurement sample for electrical, optical, mechanical, chemical, and magnetic 

properties to get better signals from different characterization methods. This method uses 

solvent that the solution scarcely dissolves (therefore antisolvent) to reach 

supersaturation, then nucleates and crystallizes if controlled the parameters like heat, 

time, and concentration properly.[35] single crystal can be used for mechanical exfoliation 

to get monolayers and ultrathin layers. 

 

3.1.3 Chemical Vapor Deposition 

 CVD is an economic process that grows high quality crystals and thin films. 

CVD have several types each of which have different uses and advantages which are 

atmospheric pressure, low pressure, and plasma enhanced. The general process of CVD 

follows five steps starting with transport of the reactant to the substrate surface, 

adsorption of the reactant on the surface, reaction taking place, desorption of byproducts, 

and finally transport of byproduct from surface. CVD have many advantages including 

cost effective production-wise because of material forming together and below the 

melting point, flexibility with substrate shape, programing temperature profiles, and its 

versatility where any compound or element can be deposited.  
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Figure 6. Diagram of CVD process.[F15] 

 

 Another advantage which can be a challenge is the number of parameters that 

should be accounted for the growth. It is an advantage because it gives a huge control 

over the growth environment, whereas it is considered challenging for synthesizing 

sensitive and unknown materials. Another disadvantage is constant cleaning of CVD tube 

and flow tubes to avoid defecting the sample. 

 

 

 

 

 

 

Figure 7. One of the lab’s CVD furnaces.[F8] 
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3.2 Characterization 

3.2.1 Raman Spectroscopy: 

  Raman spectroscopy is a non-destructive technique used to characterize 

the structure fingerprints of materials using monochromatic light – usually ranging from 

near IR to UV – used in wide range of fields including solid states and chemistry. 

 After emitting energy, the detector observes different scatterings from the 

material. Coherent famously known as Rayleigh is a scattering that typically have the 

same wavelength as the incident beam. The second scattering is incoherent or Raman 

scattering (inelastic scattering) with wavelength that differs from the incident beam. 

Majority of the scattering is Rayleigh scattering and very small percentage is Raman, and 

the frequency difference observed between them is due to the vibration of the material. 

When the material gets excited, the absorbed energy is then re-emitted, if the re-emitted 

energy is less than the incident beam the phenomenon is called Stokes, if it re-emits more 

energy it is called Anti-Stokes.  

Figure 8. Raman Spectroscopy with light microscopy, blue laser, and UV laser source. On the right is inside the Raman 
with filters and lenses to increase emitted wavelength accuracy then read Raman scattered data.[F8] 
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 The detector reads the vibration then calculates what wavenumbers the Raman 

peaks occur, the specific Raman peaks which is like fingerprints identifies the material 

and other peaks or shoulders of peaks indicates how defected the materials is. 

 

3.2.2 X-Ray Diffraction 

 XRD is another rapid and nondestructive technique used to study crystal 

structures. Instead of vibrations, this technique specializes in identifying the atomic 

spacing of crystals through emitting energy at a wavelength ranging 10 – 0.01 nm at 

different 2𝜃 angle applying Bragg’s Law. The law relates the atomic spacing with 

wavelength through diffraction angle as follows: 𝜆 = 2𝑑𝑠𝑖𝑛𝜃.  

 The diffraction is caused from the planes of crystal causing the incident X-rays 

to interfere with each other. Along with atomic spacing, XRD can be used to show crystal 

structure, spacing between layers, grain size, and orientation.  

Figure 9. Left is Stoke and right is Anti-Stoke phenomena.[F9] 
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3.2.3 Atomic Force Microscopy 

 AFM is an excellent topography technique that scans the surface of a material 

with a nanoscale and angstrom resolution through a computer connected piezoelectric 

with microprobe tip at the head. The data is collected through passing a small current 

between the tip and the surface and when the tip is scanning the current causes a force 

which changes the oscillation of the cantilever which is sent as data. AFM can be used to 

scan flake thickness, manipulate atom positions, measuring surface potential, and many 

other applications. 

 

 

 

 

 

Figure 10. image of X-Ray Diffractometer and diagram of Bragg’s Law.[F10-F11] 

Figure 11. image, a) schematic of AFM, and b) graph of tip-sample surface 
force as a function of distance.[F8, F13] 
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3.2.3.1 KPFM 

 Kelvin Probe Force Microscopy is a tool used in AFM to image surface 

potential of materials at nano and subnano scale. The tool measures the potential 

difference between AFM tip and sample surface resulting in a map of surface potential. 

Knowing surface potential will directly lead to knowing the workfunction of the material 

– minimum amount of energy to  remove an electron from a material surface to vacuum – 

through the equation 𝑉 =
ΦTip−Φmaterial

−e
  where V is the surface potential between the tip 

and sample, ΦTip and Φmaterial are the workfunctions of the tip and the material 

respectively, and e is electric charge.[38] Workfunction is a significant parameter for 

interface engineering of electronic and optoelectronic devices including Schottky 

Junction and tandem solar cells 

 

3.2.4 Scanning Electron Microscopy 

 SEM is another topography technique which uses electron beam to study 

morphology, orientation of grains, grain size, thickness of the film, and other interesting 

parameters. It has high depth of focus and can achieve extremely high magnification 

(105) achieving nanometer resolution. Highly energized beam of electrons is generated 

from an electron gun under high vacuum scanning the surface using scanning coils. As 

the beam is scanning using pixel like technique, the sample produces secondary electrons 

showing the image of the loaded sample and the more secondary electrons are produced 

the higher the intensity of the pixel in an image.  
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Morphology, grain size, orientation of grains, and film thickness can be studied through 

the image. Chemistry of the material is analyzed using a detector called Energy 

Dispersive X-ray Spectroscopy (EDX/EDS) outputting different maps of elements and 

the elemental ratio in the material. 

 

 

 

 

 

 

 

3.2.5 Photoluminescence 

 PL is a nondestructive technique that excites electrons of the material through light 

source, after picoseconds, electron recombines radiatively which then gets collected and computed, 

hence photo – luminescence. The excited electron is known as photoexcited electron, goes through 

either of the two dynamics, first is called Bimolecular process and second being monomolecular 

process. 

 In the Bimolecular process, ℎ𝑣 (light) gets absorbed in the material – in the case of ℎ𝑣 is 

≥ than the band gap (ℎ𝑣 slightly lower than band gap might get absorbed with the help of phonon) 

– creating electron-hole pair bound by Coulomb force called excitons. The photoexcited electron is 

excited to the conduction band leaving the holes in the valence band. Electrons and holes relax 

thermally almost immediately (10-15 s) to the CBM/VBM respectively through electron-phonon 

Figure 12. images of EDAX detector (left) and SEM (right).[16] 
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(lattice vibration) interaction process called thermalization. The electron then recombines with hole 

radiatively emitting light, and non-radiatively emitting heat. The whole process normally takes 

nanoseconds unless the lifetime of the material is longer or enhanced. 

 Monomolecular process is the same up to the point of thermalization where the 

photoexcited electron and hole thermalize to trap under the CBM called bound state then 

recombines with hole emitting light and heat. The gap between the CBM and bound state is called 

exciton binding energy (Eb).  

 Sometimes Eb is very small (couple of meVs) that the Electronic band gap – the gap 

between excitons in bimolecular process – and the optical band gap – the gap between excitons in 

monomolecular process – is considered to be the same, hence PL in this case measures 

nonexcitonic materials’ band gap. If the material is excitonic where the exciton binding energy is 

large, the PL can only measure the optical band gap. Generally, it is preferable to choose 

nonexcitonic materials for photovoltaic devices like solar cells and photodetectors while excitonic 

materials for emitting devices like LED and laser. In addition to band gap, PL can show defects, 

exciton states. 

 

 

 

 

Figure 13. Diagrams of monomolecular and bimolecular processes.[F9] 
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3.2.5.1 Temperature-Dependence PL 

 Measurements at low temperature show many information which cannot be 

found or hard to find at room temperature the reason is some of the material parameters 

change and some phenomena appear while others disappear. Generally, phonon – 

electron interaction and electron – electron interaction decreases exponentially as 

temperature decreases due to losing energy, this results in getting signals easier and 

enhancing PL intensity, showing more accurate defect states, and the dynamics of 

different interactions. As temperature decreases another phenomenon plays a major role 

in shifting the energy, which is thermal expansion interaction, where the lattice constant 

of a material generally shrinks as the temperature decreases effecting the band structure 

of the material resulting in an increase in band gap. An empirical equation is used 

showing the effect of the temperature on a material’s band gap called Varshni’s empirical 

law and the relation is 𝐸𝑔(𝑇) = 𝐸(0) −
𝛼𝑇2

𝛣+𝑇
, where 𝐸(0) is the band gap of the material 

at 0 K and 𝛼 and Β are material constants.  

 Phonons (lattice vibration) gets altered from change of temperature resulting in 

the change of electronic band structure, where energy is inversely proportion to the 

exponential rate of phonon frequency (𝐸 ∝
1

exp(𝜔)
), and frequency is proportion to the 

spring constant K (𝜔2 ∝ 𝐾). Therefore, increase in temperature decreases the spring 

constant resulting to decreasing the frequency of the lattice vibration, hence increases the 

band gap of the material.  
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3.2.5.2 Time-Resolved PL 

 TRPL is a strong technique that measures transport and recombination in 

semiconductors at picosecond scale through pulsing the laser then measuring the time 

difference between absorbance and transmittance. [34] The pulsed light excites the sample 

then the PL gets detected by a photodiode.[34] The main parameter that TRPL measures is 

the lifetime of the electron before it recombines. Lifetime is directly proportional to 

electrical conductivity of the material hence the higher the recombination lifetime the 

higher the conductivity becomes. 

 

 

 

 

 

Figure 14. TDPL Setup.[F9] 
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4 PEROVSKITES 

  

 The main perovskite material characterized in this thesis is methylammonium 

lead bromide (MAPbBr3) because few labs focus on its fundamentals, second reason is 

that iodide-based material is more expensive and need to have storage system from light 

because iodine undergoes photo-decomposition as will explain in section 5.3.3. 

4.1 Synthesis 

 As mentioned in section 4.1, there are many ways to synthesize perovskite materials, but 

this thesis will focus on two methods, thin film and anti-solvent crystallization. To prepare a 

solution, the chemistry must satisfy MAPbBr3 material structure. As for thin films, the 

synthetization method is originated from ACS Chemical Education “Fabrication and 

Characterization of Perovskite Solar Cells- An Integrated Experience” paper.  

 Thin film is prepared using method called 1 step deposition. The 1 step deposition can be 

done by first dissolving 1 mmol of MABr in dimethylformamide (DMF) and mix it with 1 mmol of 

PbBr in DMF. If the materials are not available in the lab then the following reaction is a way to 

synthesize the reactants: 

𝑃𝑏𝐵𝑟2: 1 𝑚𝑚𝑜𝑙 𝑜𝑓 𝑃𝑏𝑂 + 2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐻𝐵𝑟 → 𝑃𝑏𝐵𝑟2 + 𝐻2𝑂 

𝑀𝐴𝐵𝑟: 2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐶𝐻3𝑁𝐻2 (𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑚𝑖𝑛𝑒) + 2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐻𝐵𝑟 → 2𝐶𝐻3𝑁𝐻3𝐵𝑟 (𝑀𝐴𝐵𝑟) 

 

 Before deposition, the substrate must be thoroughly cleaned using Plasma cleaner or 

alcohols like IPA, ethanol, or both Plasma cleaner and alcohol depending on the substrate. For 

substrates like Indium Tin Oxide and Fluorine Tin Oxide, it is recommended to ultrasonicate using 

IPA, ethanol, then DI water for 5 minutes each, further clean it with Plasma Cleaner (Argon) for 15 

minutes.[3] 
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 To deposit the sample, the spin coater must be first programmed as follows: 500 

rpm for 10 seconds, this is for depositing the solution while spinning at low speed; and 

the second program is 3000 rpm for 30 seconds, which spread the solution throughout the 

substrate creating uniformity. Next, transfer the substrate to a preheated hot plate at 100 

150 °C immediately after the second program finishes, and leave for 20 minutes.  

4.2 Raman Spectroscopy 

 Raman shows the fingerprints of the measured materials as discussed in section 

4.2.1.1. The Raman spectroscopy of MAPbBr3 shows three peaks in total, one peak is at 

sub 200 cm-1 and two peaks at 1350 and 1470 cm-1. The peak is wide at low frequency 

with a shoulder probably due to defects, where it is shown in science advances that five 

peaks emerge when measuring low frequency at 80 K.[40] The Raman spectra at high 

frequency shows two peaks, both peaks shows in Xie et al. measurement but are shifted 

by ~ -100 cm-1, where the published measurement show peaks at 1470 and 1545 cm-1 

with a shoulder peak at 1614 cm-1.  
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Figure 15. Raman Spectra at low and high frequency. 
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4.3 X-Ray Diffraction 

 XRD measurement is used to study crystal structure of MAPbBr3. As discussed 

in section 1.2, the crystal structure of MAPbBr3 at room temperature is cubic while the 

space group of MAPbBr3 at room temperature is Pm3m according to Wang et al.[39] The 

X-Ray Diffraction spectrum of MAPbBr3 shows peaks at 2𝜃= 15.07°, 29.2°, 30.07°, 

46.02°, 47.28°, 48.1°, and 62.74 °which agrees with Wang et al. measurements. atomic 

spacings analysed through Jade ranges from 1.066 𝐴̇ – 1.537 𝐴̇ and the average lattice 

constant has been calculated to be 6 𝐴̇. 
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Figure 16. XRD Spectra of MAPbBr3 with calculated atomic spacings and average lattice constant 

 

4.4 Scanning Electron Microscopy 

 SEM was used to analyze the topography of MAPbBr3 thin film. The film shows 

charged grains in the surface. The largest grains (5 – 10 𝜇m) are shown as doughnut 

shaped and flower shaped and are outgrown out of the film as shown in the Figure 10 and 

film thickness is around 3.7 𝑢𝑚 and it shows that it is not layered. Also, grains show high 

electron charge around the edge while the middle is less electronically charged. It might 

be because it is because of the edge thickness being higher than the center thickness.  
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 EDS Show the elements of the material except for hydrogen and nitrogen, Al is 

sapphire which mistakenly computed instead of bromine, Au is gold sputtering. The ratio 

between Pb and Br is approximately 1:3 which is the correct ratio of MAPbBr3. 

 

 

 

Figure 17. Top left and right images are top view and 40° angle view of MAPbBr3 thin film on copper tape. 
Bottom middle is EDS chemistry analysis showing elements and weight% of elements in material. 
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4.5 Photoluminescence 

 The PL of MAPbBr3 shows an optical band gap at ~2.308 eV. This shows that 

after absorption of energy, MAPbBr3 emits energy at this level after nanoseconds, and 

this is due to the recombination effect, where after the material absorbs energy (ℎ𝑣), 

electron gets excited with enough energy to the conduction band, and after an amount of 

lifetime being free carrier, electron and hole recombine and emit energies in the form of 

heat and light, and such, the PL shows the radiated energy of the material. 

 

 

 4.5.1 Temperature-Dependent PL 

 TDPL is used to measure MAPbBr3 band gap dependance on temperature. As 

mentioned in section 3.2.5.1, the band gap gets determined by the dominant parameter 

between thermal expansion interactiona and the phonon – electron interaction. TDPL has 

been taken with intervals of 10 K using green laser as excitation source for MAPbBr3 

microcrystals. The plot shows some PL peaks change from trend the which might be due 

to phase transition of the material. 

1.9 2.0 2.1 2.2 2.3 2.4 2.5

0

2000

4000

6000

8000

10000

12000

P
L
 I
n
te

n
s
it
y

energy (eV)

 BulkMAPbBr3 PL

Figure 18. PL of MAPbBr3. 
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 MAPbBr3 shows a red shift of approximetly 25 meV meaning that the electron-

phonon interaction is the dominant for MAPbBr3, where the energy red shifts as 

temperature decreases due to increase in lattice vibration frequency.  

 

 

 

 

 

Figure 19. Top is TDPL of MAPbBr3 with intervals of 10 K, bottom left is emission peaks with 
respect to temperature, and bottom right FWHM. 
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5 LAYERED PEROVSKITES 

 Layered Perovskite or originally known as 2D Ruddlesden-Popper (RP) 

perovskite have a general formula of A’2An-1BnX3n+1. The material transforms to layered 

material through adding organic separator between the layers of BX6 octahedra with van 

der Waals force as the interlayer bond, resulting to the material being exfoliable to 

ultrathin layer. 

5.1 Synthesis 

 Several methods can be used to synthesize layered perovskite as mentioned in 

section 4.1. To synthesize BA2PbBr4 (n=1) thin film, 2D RP perovskite formula  must be 

satisfied, thus the molarity ratio of BA, MA, Pb, Br should be 2:0:1:4, as for n=2 and 

n=3, MA is included in both formulas making it BA2MAPb2Br7 and BA2MA2Pb3Br10 

therefore changing the molarity ratios.  

 Synthesizing thin film can be as straightforward as adding the ratios to solvent 

(DMF), then depositing the solution on the substrate on spin-coater as mentioned in 

section 4.1.1. But if the materials are not available in the lab, then the materials should be 

prepared using the following reactions: 

𝑃𝑏𝐵𝑟2: 1 𝑚𝑚𝑜𝑙 𝑜𝑓 𝑃𝑏𝑂 +  2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐻𝐵𝑟 → 𝑃𝑏𝐵𝑟2 +  𝐻2𝑂 

𝐵𝐴𝐵𝑟: 2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐶4𝐻9𝑁𝐻2 (𝑏𝑢𝑡𝑦𝑙𝑎𝑚𝑖𝑛𝑒)

+  2 𝑚𝑚𝑜𝑙 𝑜𝑓 𝐻𝐵𝑟 → 2𝐶4𝐻9𝑁𝐻3𝐵𝑟 (𝐵𝐴𝐵𝑅) 

 The reaction leading to BABr is exothermic so it is recommended to prepare on 

ice bath to increase the rate of the reaction by slowing it down. Finally, slowly add PbBr2 

to 2BABr to get BA2PbBr4  
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5.2 Raman Spectra 

 

 

 

 

 

  

 Two Measurements have been taken for layered perovskite, the first 

measurement is high frequency (greater than 200 cm-1) which shows the material 

fingerprint and other cases like defect and crystallinity. The second measurement is the 

low frequency which is sub 200 cm-1, this measurement is taken when the material is 

layered, which shows the interatomic band between the layers. For perovskite, many 

peaks have been observed showing how complex the material is.  

 

 

 

 

 

 

Small Raman shift have been observed when numbers of layers change, which shows that 

the interlayer bond have change at different layers numbers. 
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Figure 20. Left is low frequency Raman spectra with identified peaks. Right is High frequency Raman 
spectra. Taken with green laser at laser power of 200μW with 10 seconds of laser exposure. 
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Figure 21. Left is Raman spectra of BA2MAPB2Br7 and right is BA2MA2Pb3Br10 both with 
identified peaks. BA2MAPB2Br7 Raman spectra is taken with green laser at laser power of 
(12) with 10 seconds of laser exposure and BA2MAPB2Br7 is taken with green laser at laser 
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 Changing the halogens (Cl, Br, I) changes the crystal structure due to halogens 

difference in bohr radius leading to a change in phonon dispersion thus changing the band 

structure. High frequency Raman shows a huge shift from ~2000 cm-1 to ~800 cm-1 when 

changing the halogens for bromine to iodine; this is evidence that phonon dispersion of 

the material has changed leading to a major change in the band structure (red shift in 

optical band gap from 3.1 eV to 2.4 eV as we will see in photoluminescence section 

5.2.4. As for the low frequency Raman, the peaks in Iodine based layered perovskite are 

available in the Bromine based layered perovskite indicating that both have same layer 

numbers (n=1). 
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Figure 22. Left is PL of BA2PbBr4 showing a peak at 3.043 eV. Right is 
Comparison between different layers blue (n=1), green (n=2), red(n=3), 
black(n=∞). First three measurements were taken with UV laser power of 
20mW with UV Filter embedded in the system. 
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5.3 X-Ray Diffraction 

 

 

 

 

 

 

 

 

 

 

 X-Ray Diffraction of layered perovskite at n=1 shows a parallel pattern which 

indicates that it is a layered material. As mentioned in section 1.3, the crystal structure of 

BA2PbBr4 at room temperature is orthorhombic while the space group at room 

temperature is Cmc2I according to Lekina’s review article.[37] The X-Ray Diffraction 

spectrum shows high intensity peaks at 2𝜃= 6.56, 13.05, 19.54, 26.08 32.71 and 39.65. 

Atomic spacings analysed through Jade ranges from 1.34𝐴̇ − 13𝐴̇ and the average lattice 

constant has been calculated for b and c to be ~8.77 𝐴̇ and a being 13 𝐴̇ hence it is an 

orthorhombic phase. XRD also shows sharp peaks with small width, which according to 

Scherrer’s equation, means that the grain sizes are large. 

 

 

 

 

Figure 23. XRD spectrum of BA2PbBr4 measured using a wavelength of 0.2 nm. Right shows the 
average XRD peaks. 
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5.4 Photoluminescence  

 Photoluminescence has been done to check the optical band gap of BA2PbBr4, 

BA2MAPb2Br7, and BA2MA2Pb3Br10 showing optical band gaps of 3.037 eV, 2.81 eV 

and 2.697 eV respectively with at least 0.73 eV, 0.5 eV, and 0.39 eV differences from the 

bulk form of bromide perovskite (2.32 eV). It is observed that as n decreases, band gap 

increases, this means that the band gap can be easily tuned in the material giving a huge 

advantage for band gap engineering.  

 Band gap changing due to nanometer thickness variation is a quantum 

phenomenon called quantum confinement, where n – the number of ultrathin layers 

before adding a spacer – represents the thickness of the material. Both electron and hole 

energies increase as the thickness decrease due to the confinement of their waves at low 

nano scale hence their energies becomes quantized and changes with the relationship of E 

∝
1

𝑡2, therefore  𝐸𝑄𝐶 = 𝐸𝑔𝑎𝑝 + 𝐸𝑒 + 𝐸ℎ, hence as the thickness decreases the band gap 

increases. Another phenomenon that appears strongly is the exciton binding energy as the 

perovskite changed from bulk to layered. The electronic band gap of BA2PbBr4 was 

proven to be 3.42 eV, hence the binding energy is ~383 meV.[41] 
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 Changing halogens also shifts the energy of the material because the band 

structure of the perovskite originates from the metal-halogen hybridization. The PL in 

Figure 15. shows energy change from 2.41 eV to 3.04 eV when changing iodine to 

bromine. The huge shift in energy is from the bohr radius of halogens decreasing when 

switching from iodine lighter halogens therefore decreasing the interatomic spacing 

between metal and halogen as a result the band gap increases. As for the binding energy 

of iodide-perovskite n=1, the band gap measured by Hong et. al. is 2.58 eV while the PL 

measurement shows a peak at 2.423 eV resulting in an exciton binding energy of ~147 

meV.[42] 

 

5.4.1 Temperature-Dependent PL 

 TDPL of Br-based and I-based layered perovskites (n=1) are measured and 

shown in Figure 26 and 27. Br-based layered perovskite shows the opposite effect of bulk 

perovskite (5.1.4.1), BA2PbBr4 shows red shift by 7 meV as temperature decreases that 

means that the effect of phonon frequency is larger than the thermal expansion 

interaction. TDPL also showed two phase transitions at ~240 C and ~150 C which are 

changes in crystal structure from orthorhombic I to orthorhombic II and orthorhombic II 

to tetragonal respectively. 
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  Peaks have been analyzed at low-temperature (77 K) to find excitonic states, at 

the measured temperature there have been no indication of trions or biexcitons. A study 

has found biexciton photoluminescence of BA2PbBr4 at 3.015 eV when measured optical 

absorption spectra at 5K.[60] 
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Figure 26. PL of BA2PbBr4 and MAPbBr3 at 77 K. 
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5.4.2 Time-Resolved PL 

 TRPL measurement has been taken to compare between the different 

thicknesses n=1, 2, 3 and ∞ thin films which resulted in lifetimes of 50 ns, 0.375 𝜇s, and 

> 0.4 𝜇s respectively. This shows that lifetime shows a strong thickness dependence for 

hybrid perovskite and that lifetime shortens as thickness decreases, in fact the thickness 

effect the material so much that n=2 has ten times lifetime of n=1.  

 The superlattice structure of n=1 of having a dielectric layer after every 

semiconducting layer increasing the recombination rate making it a great radiating 

device. On the other hand, as the number of semiconducting layers increases before 

adding the spacer greatly increases the conductivity, making it a suitable photovoltaic 

device. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Figure 27. TRPL of different numbers of layers bromide perovskite. 
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5.5 Ultrathin: Perovskites and MoS2 

5.5.1 Synthesis: 

5.5.1.1 Perovskites Monolayer (n=1 and 2) 

 Both layered perovskite crystals are prepared with the help of Tongay’s team 

member Ying Qin who is specialized in chemistry. For n=1 crystal, 280 mg of PbO is 

mixed in 2.15 mL HBr and 0.425 mL H3PO2 in the first sample glass, resulting in PbBr2, 

2H2O, and PO. On another sample glass, an exothermic reaction between butylamine 

(BA) and HBR will take place so it is recommended to put the sample glass on ice bath 

then add 124 𝜇L BA and 1.075 mL HBr ending with BABr and H2. Then slowly add 

BABr to the PbBr2 to instantly get BA2PbBr4 crystal. Layered perovskite with n=2 

follows similar procedure accept with changing the concentration of PbO to 279 mg and 

adding 70 mg of MABr then mixing it with 2.15 mL of HBr in the first beaker, on the 

second beaker again prepare ice bath and mix 87 𝜇L with 1.075 mL of HBr resulting in 

BA2MAPb2Br7 crystal. 

 The crystals prepared should be recrystallized to get higher crystal quality 

therefore it is recommended to regrow using a profile temperature. After the preparation, 

directly seal the sample from temperature induced pressure to change the vapor pressure 

of the H2O hence prevent vaporization at 110 °C and put the sealed sample glass in a 

programmable furnace with adding the following temperature profile: 4 hours increase to 

110 °C constant at 110°C for 2 hours, 4 hours of cooling to 50 °C 16 hours of further 

cooling to 25 °C and finally 4 hours constant at 25 °C For the mechanical exfoliation, 

carefully dry the crystal with kim wipe then use the scotch tape. Place a bit of the bulk on 

folded ends tape then exfoliate several times on different regions of the tape trying to 
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cover as much area as possible, then cut another piece of the tape and place it on first 

tape, and same thing with the exfoliation trying to cover as much as possible.  

 After exfoliation, take a clean silicon/silicon dioxide substrate and place it on 

the exfoliated region of the tape and place your finger on the substrate for several seconds 

to increase adhesion between the monolayer and the substrate. Check for monolayers 

using light microscopy, it should be seen in Si/SiO2 substrate, but nearly invisible when 

using silicon substrate due to poor contrast of the silicon. When the presence of 

monolayer is confirmed, place a clean silicon substrate on the same tape but different 

place using your finger for heat assistive adhesion.  

 

 

 

 

 

 

 

 

 

Figure 28. Image of MA2PbBr4 on silicon substrate under Light 
Microscopy, circled is monolayer. 
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 5.5.1.2 MoS2 Monolayer 

 TMD is one of the 2D families that bares semiconducting characteristics. Being 

a layered material with van der Waals interlayer bonding and great electrical and 

mechanical properties, TMD family has been excessively research. One of the most 

researched material in TMDs is MoS2 due to great robustness and electrical properties 

making it a great candidate for transistors 

 Mos2 monolayer can be extracted via mechanical exfoliation or grown using 

chemical vapor deposition. For mechanical exfoliation the same method has been used as 

done for layered perovskites. As for the CVD, the setup must be clean to grow 

monolayers. MoS2 monolayers was grown with the help of Tongay’s team members 

Dipesh Trivadi and Guven Turgut who are specialized in CVD growth.  

 

Figure 29. MoS2 monolayer under light microscopy at 100x magnification. 
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5.3.2 AFM/KPFM 

 Thickness dependent Kelvin Probe Force Microscopy have been measured for 

BA2PbBr4, BA2MAPb2Br7, and MoS2 for several thicknesses. There has been a clear 

thickness dependence with surface potential for all measured materials. This 

characteristic will open a new opportunity of workfunction tuning using thickness in 

addition to doping. 

 

 

 

Figure 30. Top and bottom left are KPFM and bottom is AFM of BA2MAPb2Br7 

 

 MoS2 shows a huge surface potential difference for each additional layer, 

difference between n=1 and n=2 is 0.119 V and from n=1 and n=3 is 0.267 V while the 

surface potential difference between thicknesses 20 nm and 36 nm is a mere 0.022 V 

suggests that the relation between thickness of both MoS2 and n=2 materials and surface 

potential is exponential as for n=1, the relation shown is linear. 

 

 

 

 

 

 Figure 31. Thickness dependence KPFM of BA2PbBr4(squares), 
BA2MAPb2Br7(circles), and MoS2(triangles) monolayers 
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6 CONCLUSION AND FUTURE OPPORTUNITES 

 Organic-Inorganic Hybrid Perovskite is a direct band gap semiconductor that 

has been excessively studied for its strong application on optoelectronic devices 

including solar cells and LED. The structure of the material is cubic in room temperature 

with ABX3 structure where A represents a large monocation, B is a small dication, and X 

is a halide. A layered form of perovskite was discovered which changed many properties 

of the material, the structure changes by adding an organic spacer between n numbers of 

layers. What makes layered perovskites interesting is the possibility of controlling the 

number of layers n before adding the spacer, which effects different perovskites 

properties. 

 A Fundamental study of bulk, layered, and monolayers bromide lead perovskites 

structural, optical, and electrical properties have been studied. As thickness changes, 

crystal structure changes from cubic to orthorhombic from bulk to layered, XRD and 

Raman spectrum show how the difference in the thicknesses change the crystal structures 

through observing changes in average lattice constant, atomic spacing, and lattice 

vibrations of the materials. XRD shows that perovskite has changed from its cubic phase, 

to orthorhombic phase when change the material to superlattice. It also shows that 

layered material has patterned peaks meaning that for each layer there is a spacer hence 

the layer number of the material is n=1.  

 Optical properties also have been studied mainly focusing on the thickness 

effect of different properties where the PL of n=1,2,3 and ∞ show emission energy shift 

from 2.33 eV to 3.04 eV and exciton binding energies increased to 360 meV as thickness 

of the material decreases due to the dielectric effect. Temperature dependent PL has 
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shown different characteristics when comparing MAPbBr3 to BA2PbBr4, and when 

comparing the two different halides at a layer thickness of n=1 (BA2PbBr4 and BA2PbI4). 

TRPL displays different recombination lifetimes as thickness of bromide-based 

perovskite changes, it shows that lifetime significantly increases with increasing layer 

thicknesses resulting to a direct increase in the conductivity of the material, thicker layers 

are more suitable for photovoltaic device. Finally, this thesis introduced the thickness 

dependence KPFM of BA2PbBr4, BA2MAPb2Br7, and MoS2. The thicknesses started 

from monolayers ranging to tens of nms. It has been shown that the relation between 

thickness and surface potential has exponential relation, where the surface potential starts 

increasing exponentially as thickness reaches 20 nm for MoS2 and 40 nm for perovskite, 

and increases more at sub-ten nm. 

 More Fundamental studies must be done to further examine these great 

materials, including more thoroughly study on different excitons for different materials, 

more investigation on instabilities in lead and tin halide perovskites, understanding more 

quantum effects including quantum dots and high-temperature superconductivity. Also, 

new perovskite families should be studied more extensively including new small metal 

cations, new organic cations and all inorganic perovskites. 
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