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ABSTRACT 

As the microelectronics industry continues to decrease the size of solder joints, 

each joint will have to carry a greater current density, making atom diffusion due to 

current flow, electromigration (EM), a problem of ever-increasing severity. The rate of 

EM damage depends on current density, operating temperature, and the original 

microstructure of the solder joint, including void volume, grain orientation, and grain 

size. While numerous studies have investigated the post-mortem effects of EM and have 

tested a range of current densities and temperatures, none have been able to analyze how 

the same joint evolves from its initial to final microstructure. This thesis focuses on the 

study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints 

were either of controlled microstructure and orientation or had trace alloying element 

additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM 

damage, but the precise relationship between orientation and intermetallic (IMC) and 

void growth has not been deduced. In this research x-ray microtomography was used to 

nondestructively scan samples and generate 3D reconstructions of both surface and 

internal features such as interfaces, IMC particles, and voids within a solder joint. 

Combined with controlled fabrication techniques to create comparable samples and 

electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) 

analysis for grain orientation and composition analysis, this work shows how grain 

structure plays a critical role in EM damage and how it differs from damage accrued from 

thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are 

characterized and explained in relation to the solder microstructures that cause their 
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formation and the possible IMC-suppression effects of trace alloying element addition are 

discussed. 
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CHAPTER 1 

INTRODUCTION 

Solder joints are present in all forms of electronics as the metal connections that 

allow for current flow through devices. As the microelectronics industry continues to 

decrease the size of solder joints, each joint will have to carry a greater current density, 

making atom diffusion due to current flow, electromigration (EM), a problem of ever-

increasing severity (Chen & Liang 2007; Chen et al. 2012). EM has been identified as 

one of the most critical reliability problems in the microelectronics industry (Chen & 

Liang 2007; Tu 2003). Damage due to EM is twofold. Interstitial diffusion of Cu through 

Sn grains and along grain boundaries reacts with Sn to form the IMC compounds (IMCs) 

Cu6Sn5 and Cu3Sn. Current flow drives Cu and Sn atoms away from the electron-inflow 

interface, creating a vacancy flux that results in the nucleation and growth of interfacial 

voids (Tu 2003; Chen & Liang 2007; Dyson, Anthony & Turnbull 1967; Lehman et al. 

2010). EM is atomic diffusion driven by current flow and is therefore strongly affected 

by current density. As solder joints continue to decrease in size due to device 

miniaturization, each joint will be subject to increasing current densities and therefore 

experience rapid EM damage (Chen & Liang 2007; Tu 2003). In addition, joints with 

smaller volumes and pad-contact areas will form strength limiting flaws, such as a high 

density of IMCs or interfacial voids that cause open circuit failure, faster.  

The Restriction of Hazardous Substances (RoHS) Directive issued by the 

European Union in 2006 curtailed the use of lead in many consumer electronics, driving 

the microelectronics industry to adopt lead-free solder alternatives which are often Sn-

rich. EM is of particular concern in Sn-rich solders due the anisotropic diffusion 



2 

properties of the tetragonal β-Sn lattice. First described by Dyson and Turnbull in 1967, 

the interstitial diffusion of Cu along the c-axis of a Sn grain was found to be 500 times 

faster than diffusion along a- or b-axes at room temperature (Dyson, Anthony & Turnbull 

1967). Subsequent researchers showed that Sn also exhibits anisotropic elastic modulus, 

thermal expansion, and resistivity (Khosa & Huntington 1975; Telang et al. 2003; Telang 

et al. 2002). Solder joints do not have controlled grain structures and have been shown to 

solidify in single crystals, six grained “beachball” type structures, fine-grained interlaced 

twin structures, and randomly oriented polycrystals (Lehman et al. 2010). This means 

that an individual joints’ susceptibility to EM can vary dramatically due to differences in 

grain structure and prediction of joint lifetime becomes very difficult (Chen et al. 2013; 

Wilde 2014; Kerr & Chawla 2004). In order to study precisely how EM drives IMC and 

void formation, researchers have focused on the fastest diffusion pathways for Cu and Sn 

atoms: the c-axis of the Sn grains and grain boundaries (Tu 2003; Chen & Liang 2007; 

Dyson, Anthony & Turnbull 1967; Lehman et al. 2010). 

Numerous studies have investigated the effect of grain orientation on EM  

lifetimes in various solder geometries and found that grains with the c-axis of the Sn 

grains aligned with the electron flow experience rapid IMC growth, while those with the 

c-axis perpendicular to the electron flow experienced void formation at the electron 

inflow interface (Lu et al. 2008; Chen et al. 2013; Tasooji, Lara & Lee 2014; Huang et al. 

2015; Huang et al. 2016; Shen & Chen 2017; Tian et al. 2018). A parameter was created 

to quantify the degree of alignment between the c-axis and the electron flow, termed the θ 

angle (or α angle, less commonly) and represented the angle between the c-axis and the 

electron flow direction. In general, solder joints containing Sn grains with small θ angles 
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will experience severe EM damage while those containing large θ angles will experience 

little (Chen et al. 2015; Chen et al. 2013; Lu et al. 2008; Chen, Guo, et al 2015). There is 

additional interest in the effect of grain boundaries on EM damage. Grain boundary 

diffusion relies on the energy of the boundary and hence its atomic ordering. High angle 

grain boundaries have low order and support fast diffusion, while low angle and twin 

boundaries are highly ordered and support little to no diffusion (Wilde 2014). As such the 

Cu-driven IMC should vary with grain boundary character. IMC particles have been 

shown to form along high angle grain boundaries (Kerr & Chawla 2004; Deng et al. 

2005; Jiang & Chawla 2010; Shen & Chen 2017; Ma et al. 2018; Maruyama 1960) with 

less attention given to low angle and twin boundaries, although they could present 

significant barriers to diffusion. Grain orientation can also affect surface deformation as 

IMC particles coarsening in the bulk of the solder joint can often be seen protruding from 

the sample surface in hillocks or mounds (Chen et al. 2013; Tian et al. 2018).  

In addition to current-driven diffusion, EM is also inextricably linked with 

thermal effects. Current flow through more conductor will experience some measure of 

resistance, which causes resistive or Joule heating. This means that thermal effects like 

thermal expansion and thermal diffusion are always present in EM tests. The temperature 

of an EM test can be stabilized by providing a heat-sink environment like an oil bath or 

by raising the background temperature slightly above that typically experienced by the 

test set up. Current flow through an experimental set up or sample will also experience 

current crowding effects due to the various cross-sectional areas of conductive material 

through which the current will pass. Typically solder joints consist of a solder ball 

reflowed on a thin layer of Cu attached to a printed circuit board (PCB). The Cu layer is 
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called a pad and can be coated with one or a combination of metallization layers 

composed of a variety of materials including but not limited to Au, Al, Ni, and Ti. The 

metallization layers can serve as diffusion barriers to Cu diffusion. The solder ball may 

be connected on the opposite side by another Cu or Al pad. The solder joints used in this 

research do not have metallization layers, instead the solder is in direct contact with the 

Cu substrate and therefore will experience more rapid Cu diffusion than a joint with 

metallization. A critical issue is that the cross-sectional area of the metallization pads is 

very small compared to that of the solder ball, meaning a ball experiences significant 

current crowding where the ball meets the pad. Current crowding causes Joule heating 

and accelerated atomic diffusion, often causing voids to nucleate at the current crowded 

region (Zhang et al. 2006; Han et al. 2012). Distinguishing between current crowding 

effects and grain orientation effects on void formation is often difficult.  

The wealth of research into EM and the parameters that affect it is extensive, 

however an in-depth study correlating solder structure to both IMC and void growth and 

morphology in a controlled manner is required. Studies have used solder joints in a host 

of geometries and orientations, averaging grain orientation and grain boundary effects 

with those induced by current flow or temperature. The aim of this work is to study the 

effects of grain structure on EM in a controlled, repeatable manner. Precise sample 

fabrication techniques created single and bicrystal samples so that the effects of a specific 

orientation could be isolated and compared to others. Samples were symmetrical and 

continuous in cross-section to avoid current crowding effects. Materials are characterized 

in 3D using x-ray microtomography, allowing for a comprehensive understanding of the 

initial structure of the sample, before it undergoes testing, so that any changes developed 
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during EM can be linked to a microstructural feature. Electron backscatter diffraction 

(EBDS), energy-dispersive spectroscopy (EDS), and scanning electron microscope 

(SEM) analysis were done to determine grain structure and composition. Cu6Sn5 IMC 

growth and morphology were linked with grain orientation and grain boundary structure, 

with implications for future solder joint reliability. Unusual void behaviors were 

discovered and connected to orientation effects. X-ray microtomography scans captured 

the evolution of IMC and void structures over time, showing how they relate to existing 

structures and informing on how structures seen post-testing evolved. An investigation 

into the effects of a trace addition of In on EM behavior of a SnCu solder demonstrates 

the potential benefits of alloying elements for reducing EM damage.  

It was the goal of this research to further the understanding of EM damage in 

solder joints to better designs for EM-prevention in future electronic devices. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 EM in Sn Solder Joints 

EM is a mass transport phenomenon that causes damage in current carrying 

components, leading to the decreased lifetime and open circuit failure of electronic 

systems (Chen & Liang 2007; Chen et al. 2012). Solder joints are metal connections that 

conduct electricity between layers of circuitry and are commonly affected by EM. Solder 

joints typically range in size from 50 µm to 500 µm. They can be formed by screen 

printing or depositing solder paste or by placing solder spheres on a substrate coated with 

flux. As microelectronics continue to shrink, solder joints will decrease in size and 

become increasingly susceptible to EM damage due to the higher current densities the 

joints will have to carry (Chen & Liang 2007; Chen et al. 2012). 

 

 

Figure 1. Schematic diagram showing momentum transfer from electrons to Sn and Cu 

atoms, creating an atom flux in one direction and a vacancy flux in the other, and the 

electrostatic force that opposes the electron flow, adapted from (Chen & Liang 2007). 
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The phenomenon of EM is driven by the presence of an electric field and moving 

charge carriers (Chen & Liang 2007). As electrons flow through the interconnects, they 

scatter inelastically with metal atoms and transfer momentum to them. This momentum 

transfer contributes to the atoms’ overall energy, increasing its likelihood of overcoming 

the activation energy for diffusion, and is termed the “electron wind” force. The electric 

field produced by the moving atoms would cause positive metal ions to diffuse opposite 

to the current flow, but the electric field force is overcome by the electron wind.  

In the case of self-diffusion, the atom will jump into a neighboring vacancy and in 

interstitial diffusion, the atom will jump into the closest empty interstitial site. The type 

of diffusion that occurs will determine the type of damage the joint will undergo. Self-

diffusion of aluminum due to EM is illustrated in Figure 1 (Chen & Liang 2007). Over 

time, EM will create an atom flux along the direction of current flow and a vacancy flux 

in the opposing direction. The vacancy flux leads to the formation of voids at the anode 

and the atom flux accelerates build up of IMC layers and under bump metallization 

consumption at the cathode (Ke et al. 2011).  

2.2 Rate of EM 

Since EM is essentially diffusion enhanced by current flow, it is possible to 

combine a convential equation for diffusion with current flow considerations in order to 

estimate how rapidly EM damage will occur. This combination results in an atom flux 

equation of the form in Equation 1:  

𝐽 = 𝐶𝑒𝑍∗𝜌𝑗 !
!"

                   (1) 
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where C is the concentration of metal ions, eZ* is the effective charge of the ions, ρ is the 

metal resistivity, j is the electrical current density, D is the diffusivity of the atom, k is 

Boltzmann’s constant, and T is the absolute temperature (Ke et al. 2011).  While this 

form of equation is sufficient to describe how EM will affect a solder joint, a more 

informative form of the equation is shown in Equation 2, that shows the average drift 

velocity of an atom, v (Huntington & Grone 1961). By dividing the flux equation by the 

concentration of metal ions and breaking up the diffusivity term, the parameters that 

affect EM are clearly shown.  

𝑣 = !
!
= 𝐵𝑒𝑍∗𝜌𝑗 = !!

!"
𝑒𝑍∗𝜌𝑗𝑒 !!!!"            (2) 

All constants are the same as described in Equation 1 with the addition of the activation 

energy of diffusion, Ea, and the prefactor for the diffusion constant, D0. 

By inspection of the above equation, three parameters lend themselves to 

investigation: current density, joint temperature, and activation energy. Current density 

refers to the number of electrons flowing through a particular cross-sectional area of the 

solder joint. Since electron-atom collisions are what provide the force that causes atoms 

to diffuse, an increase in current density would strongly affect the rate of EM. 

Temperature would not play a large role if it were assumed constant. However, large 

temperature gradients have been shown across solder joints, and therefore local 

temperatures must be taken into account (Chen & Liang 2007; Yamanaka & Ooyoshi 

2010; Yang, Chen & Wu 2007). The activation energy for diffusion is of interest because 

it is the distinguishing feature between the various types of diffusion occurring during 
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EM. Sn self-diffusion, Cu interstitial diffusion, and grain boundary diffusion all play a 

role in the microstructural changes seen in solder joints after current stressing.  

2.3 Effect of Specific Parameters on EM 

2.3.1 Current Density 

The threshold current density for inducing significant EM is commonly held to be 

around 1×104 A/cm2, as this is where many papers have seen damage (Chen & Liang 

2007; Chen et al. 2012; Tu 2003; Ren et al. 2006). Since current density depends on 

cross-sectional area, shrinking the dimensions of traces and solder balls is going to 

rapidly increase the importance of the current density. This is illustrated neatly by 

imaging two solder joints, one 500 µm in diameter and the other 50 µm. Both joints are 

subjected to current stressing of 0.2 Amps, the expected current a joint should be able to 

carry under the design rule of packaging in 2003 (Tu 2003). The 500 µm joint will 

experience a current density of 102A/cm2 whereas the 50 µm joint would experience 

104A/cm2. Dropping the joint size to 1 µm, as is predicted for future integrated circuit 

designs, would increase the current density to 2.5×107 A/cm2, resulting in a drift velocity 

increase of five orders of magnitude, other factors held constant (Chen & Liang 2007). 

2.3.2. Temperature 

 The consideration of temperature follows from current density, as current crowding 

causes regions of local heating (Yeh, Choi & Tu 2002). Increasing current density 

increases the number of electron-atom collisions and scattering events. These collisions 

randomize the motion of particles, which generates thermal energy, increasing 

temperature. Random particle motion also corresponds to an increase in resistivity, which 
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also increases temperature. Figure 2 shows the temperature gradient formed due to the 

simulation of 0.6 Amp current stressing. As expected, the hot spot in the top left corner 

corresponds to the current crowded region. The temperature gradient across the joint is 

approximately 642°C/cm, significant enough to cause thermomigration which is atom 

diffusion due to a temperature gradient and can be investigated separately from EM.  

 

Figure 2. Temperature gradient resulting from an EM simulation in 120 µm Sn-3.5Ag 

solder ball using 0.6 Amps (Chen & Liang 2007) 
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Figure 3. Increasing temperature with growing void due to EM. (a) Ratio of joint 

resistance change as a function of void growth and (b) increase in temperature due to 

increase in the ratio of joint resistance change (Yeh, Choi & Tu 2002). 

 

Since the temperature increase is driven by current crowding, which results in 

void growth, temperature, resistivity and void area can be correlated as shown in Figure 3 

(Basaran et al. 2002). EM results in the formation of voids. These voids decrease the 

contact area between the trace and solder ball, which increases the current density at the 

interface, driving further void growth (Yeh, Choi & Tu 2002). The presence of voids 

increases the overall resistivity of the joint in an exponential fashion. High resistivity and 

small contact areas lead to increasing temperature, both in the joint and associated traces 

as shown in Figure 3(b). Increasing temperature during operational life of the solder joint 

is not only a concern for the materials of the joint itself, but also for the surrounding 

components in the integrated circuit that could be damaged by thermal expansion or 

diffusion.  

It is necessary to evaluate how joint geometry and design will affect current 

density distribution, as it is clear that current density is coupled to resistivity and 

temperature increases that could degrade both the solder joint and nearby electronic units. 

Temperature and EM degradation depend on diffusion of particles, so the various types of 

diffusion must be investigated in order to understand the type of damage a joint will 

undergo. 
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2.3.3. Activation Energy for Diffusion 

The activation energy for diffusion differentiates the types of diffusion occurring 

in a solder joint, including the self-diffusion of Sn atoms, the interstitial diffusion of Cu 

atoms, and grain boundary diffusion. Table 1 shows that Sn self-diffusion has the highest 

activation energy, followed by grain boundary diffusion, and Cu diffusion along the a-

axis and c-axis of the Sn matrix.  

Table 1. Diffusion-related values for Sn, Cu, and grain boundary diffusion for the 

purpose of determining which types of diffusion will dominate at specific temperatures 

and sample morphologies. 1(Singh & Ohring 1984), 2(Meakin & Klokholm 1960), 

3(Dyson, Anthony & Turnbull 1967) 

Element Type of Diffusion Activation 
Energy (kJ/mol) 

Diffusivity 
(cm2/sec) 

D/Dlattice, Sn 

Sn 

Bulk Self-Diffusion 108.51 1.6x10-18 (1) 1 
Self-Diffusion along a-

axis 
123.02 4.6x10-21 (1) 0.003 

Self-Diffusion along c-
axis 

107.12 2.8x10-18 (1) 1.75 

Cu 

Interstitial Diffusion 
along a-axis 33.13 4x10-9 (3) 2.54x109 

Interstitial Diffusion 
along c-axis 16.73 2.0x10-6 (3) 1.25x1012 (3) 

Sn, Cu, 
Ni, Ag 

Grain Boundary Diffusion 48.91 1.3x10-8 (1) 2.13x109 (1) 

 

The differences in activation energy result in wildly varying diffusivities, with Cu 

diffusion along the c-axis being 1012 times faster than Sn self-diffusion and grain 

boundary diffusion being 109 times faster. These values can be explained in part by 

looking at the tetragonal crystal structure of beta tin, shown in Figure 4. Sn self-diffusion 

relies on a vacancy hopping mechanism, whereas Cu diffusion relies on empty interstitial 
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sites that common in pure Sn. By looking at Figure 4(b) and (c), it is evident that 

diffusion along the open structure of the c-axis is preferable to the less spacious a-axis. 

Cu diffusivity along the c-axis is radically greater than Sn self-diffusion by virtue of 

having empty Sn interstitial sites and an open structure along the c-axis (Dyson, Anthony 

& Turnbull 1967). The high grain boundary diffusivity relative to Sn diffusivity can be 

explained similarly. Grain boundaries are areas of imperfect bonding, resulting in a 

higher energy than the aligned lattice. Atoms at a high-energy boundary will more easily 

break their bonds to neighboring atoms, allowing them to migrate (Li & Basaran 2009).  

 

Figure 4. Body-centered tetragonal beta-Sn unit cell and atomic bonds shown in tilted 

view, along the a-axis, and along the c-axis. 

 

By looking at which types of diffusion should be active in different joint geometries and 

testing conditions, EM damage can be linked to the diffusion of specific species. 

2.4. Effect of Diffusion Type 

2.4.1. Sn Self-Diffusion 



14 

Sn self-diffusion requires the highest activation energy and therefore should only 

dominate at high temperatures. Sn atoms move by hopping from vacancy to vacancy, and 

as a result, create a vacancy flux in the opposite direction of atom migration (Chen & 

Liang 2007; Ke et al. 2011). Since Cu diffusion is interstitial in nature, to be discussed in 

the following section, only Sn diffusion contributes to vacancy accumulation at the anode 

of the joint. Figure 8 shows a comparison between an as-manufactured solder joint with 

thin Cu traces on either side and a joint that has undergone EM testing at 180°C, well 

above half of the melting temperature of the solder. At this temperature, Sn self-diffusion 

should be active, creating a vacancy concentration at the anode. Due to the current 

crowding effect discussed earlier, the most rapid EM occurs at the corner of the anode 

closest to the electron flow. The white dashed line and arrow in Figure 5(b) indicate the 

electron flow coming into the joint, meaning that the void, also indicated by a white 

arrow, indeed nucleated in that area (Ke et al. 2011). While there doesn’t appear to be a 

significant amount of damage to either of the Cu traces and minimal IMC formation, 

suggesting little Cu diffusion, perpendicular sectioning of the joint revealed large IMC 

particles. Void formation would protect the Cu trace or other under bump metallization 

from consumption, as it would no longer be in contact with the solder. High temperatures 

will enhance tin, copper, and grain boundary diffusion, but the joint will fail due to the 

void formation driven by Sn atom migration instead of excessive under bump 

metallization consumption and IMC formation (Ke et al. 2011). In a joint of roughly 145 

µm and few alloying elements, the Sn grains should be large and grain boundary area 

correspondingly small, meaning the grain boundary diffusion would not play a large role 

in the degradation of this joint. 
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Figure 5. SEM images of cross-sectioned Sn-0.7Cu solder joints in the (a) unstressed 

condition and (b) after current stressing of 1.0×104 A/cm2 at 180°C for 325 hours. A void 

has propagated across the solder-Cu interface in (b), a hallmark of Sn diffusion (Ke et al. 

2011). 

 

2.4.2. Cu Diffusion in Sn 

The nature of Cu diffusion in Sn has been a matter of some debate since the 

1950’s. The β-tetragonal Sn lattice provides two main diffusion pathways for solute 

atoms: substitutional diffusion through vacancy hopping and interstitial diffusion. A 

substitutional solute atom has the option to hop into two vacancy sites; the nearest 

neighbor sites that reside in the basal (a-b plane) or the next nearest neighbor sites along 

the c-axis (Nicholas 1955).  The jump length in the basal plane is 5% shorter than that 
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along the c-axis (Nicholas 1955), which results in substitutional diffusion via vacancy 

hopping being approximately 2 times faster along the a- or b-axis than diffusion along the 

c-axis (Khosla & Huntington 1975). In contrast, an interstitial site located at [x(a/4), 

y(a/4), z(c/8)] where x, y, and z are odd integers would have the fastest movement along 

the c-axis because the interstitial sites would be stacked on top of one another with a 

smaller length separation than along the a- or b-axes (Nicholas 1955, Liu et al. 2016). 

These two diffusion pathways would both display anisotropy, but in opposite directions 

with substitutional diffusion fastest along the a- and b-axes and interstitial diffusion 

fastest along the c-axis (Khosla & Huntington 1975, Nicholas 1955). Electromigration 

studies on Ag, Au (Shi & Huntington 1987), Cu (Dyson, Anthony & Turnbull 1967), and 

Ni (Yeh & Huntington 1984) diffusion in Sn have all found large diffusion anisotropies 

with c-axis diffusivity orders of magnitude greater than a-axis diffusivity, suggesting that 

diffusion of these solutes occurs by interstitial diffusion.  

Typically, the type of diffusion that a solute atom would experience in a solvent 

material is decided by a ratio of their atomic radii. By Hägg’s rule for interstitial solid 

solutions, if the solute to solvent radii ratio is less than or equal to 0.59 then the solute 

atom can occupy an interstitial site, therefore small atoms like C, B, N, and O are often 

interstitial diffusers (Pollock 1993). In the case of Cu diffusion in Sn however, the ratio 

of atomic radii RCu/RSn is approximately 0.9, making Cu an unlikely candidate for 

interstitial site occupancy. That noted, Hägg’s rule was calculated for close-packed 

structures like face-centered cubic and hexagonal closed-packed, and β-Sn is a highly 

distorted tetragonal lattice with no close-packed planes which could allow it to 

accommodate larger interstitial atoms (Pollock 1993, LLoyd, Tu & Jaspal 2004). The 
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large radius ratio between Cu and Sn would then suggest substitutional diffusion as the 

expected diffusion path, but inspection of the Cu-Sn phase diagram provides a counter 

argument. The phase diagram shown in Figure 6 demonstrates the very limited solid 

solubility of Cu in Sn, only 0.7 wt% Cu. This low solid solubility would not be expected 

for a substitutionally diffused atom and instead follows more closely with interstitial 

diffusion (Pollock 1993). The inclusion of interstitial atoms would cause local straining 

in the lattice and as more and more solute atoms occupy interstitial sites the lattice strain 

energy would increase until the formation of a second phase becomes energetically 

favorable. This process is evident in the low solid solubility of Cu in Sn and the 

formation of the IMC Cu6Sn5 immediately upon solidification. This is in contrast with the 

known substitutional system between Sn and Pb where Pb can accommodate up to 19.2 

wt% Sn and no second phases are formed (Saunders & Miodownik 1990). 
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Figure 6. Cu-Sn Phase Diagram (reproduced from NIST Material Measurement, Phase 

Diagrams and Computational Thermodynamics database, accessed at 

https://www.metallurgy.nist.gov/phase/solder/cusn.html) 

 

The following trends summarize diffusion of Cu in Sn: highly anisotropic and 

most rapid along the c-axis, low solid solution solubility, and immediate formation of 

second phase. These three trends support the theory that Cu diffusion in Sn is interstitial. 

The only stumbling block to acceptance of the interstitial diffusion theory is the large 

radius ratio between Cu and Sn. Literature has termed metals like Sn and Pb that exhibit 

anomalously rapid diffusion of large solute atoms (mostly noble or near noble) “fast 

diffusers” or “open” metals (LLoyd, Tu & Jaspal 2004, Mehrer 2007) and suggest that 
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instead of purely interstitial diffusion, a combination of interstitial and substitutional 

diffusion is taking place. The combination of interstitial and substitutional diffusion has 

been called the “dissociative mechanism” and is the ability of an atom to switch between 

an interstitial site and a substitutional site. When the atom jumps from a substitutional 

site into an interstitial site, it creates a vacancy that may help to accommodate the strain 

created by having a large atom in a small interstitial site (LLoyd, Tu & Jaspal 2004, 

Mehrer 2007, Mehrer & Divinski 2009). Alternatively, the interstitial solute atom could 

simply be tied to the vacancy and not hop into it, a phenomenon termed an “interstitial-

vacancy pair” (Decker, Candland & Vanfleet 1975, Nakajima & Huntington 1981).  A 

final potential method for mitigating the strain caused by the large radius ratio is simply 

to note that the atomic radius for an ion in a metal matrix may not be constant and can 

vary with valency. If the ionic radius of a Cu atom is actually smaller than the 1.28 Å 

cited in the periodic table, then the radius ratio between Cu and Sn may decrease to 

acceptable levels for interstitial diffusion. Most recently, the diffusion of Cu, Ag, Au, Zn, 

and Cd in Sn was studied using first principle and ab initio molecular dynamics methods 

by Liu and collaborators (Liu et al. 2016). Simulation of the diffusion of the above listed 

metals found very low energy barriers to interstitial diffusion along the c-axis, supporting 

the interstitial diffusion theory (Liu et al. 2016). A lattice schematic and diffusion 

activation energy plots illustrate these findings neatly and reproduced in Figure 7. 

Interestingly, simulations showed that interstitial Cu atoms would pair with vacancies, as 

suggested in the “interstitial-vacancy pair” mechanism, and slow Sn self-diffusion by 

limiting the number of vacancies (Liu et al. 2016).  
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Figure 7. (a) Schematic of interstitial diffusion pathways (pink balls) in the β-Sn 

lattice (cyan and green balls) along the c-axis and axis. (b and c) Diffusion activation 

energy curves for interstitial diffusion along the c-axis and a-axis. Points marked M 

represent interstitial sites at (x/4, y/4, and z/8) and Ts represents a transitional site 

between interstitial sites (Liu et al. 2016). 

 

The anisotropic diffusion of Cu in Sn has been shown experimentally in a 

multitude of studies and is in line with the expected results of interstitial diffusion. While 

the precise nature of Cu diffusion in Sn requires more research, the interstitial diffusion 

theory of Cu in Sn will be taken as fact for the remainder of the work in this thesis. The 
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following paragraphs describe the physicals effects of interstitial Cu diffusion in Sn 

during electromigration. 

Cu diffusion is responsible for excessive under bump metallization consumption 

and formation of the IMC species Cu6Sn5 and Cu3Sn (Ke et al. 2011). Figure 8 shows the 

same type of joint as in Figure 5, with an undamaged joint in (a) and an EM tested joint 

in (b). Where Figure 5 looked at high temperature degradation, Figure 8 looks at low 

temperature. At 60°C, lower activation energy diffusion types dominate, meaning that Cu 

migration will control the EM damage (Chen & Liang 2007; Huntington & Grone 1961). 

This evident in the fact that even in the current-crowded region in the bottom left corner 

of Figure 8(b) does not show large void formation, as would be characteristic of Sn 

diffusion. Instead the Cu trace has been severely degraded and large amounts of IMC 

have formed throughout the bulk of the solder ball and at the cathode interface. The 

electrons enter the joint through the bottom trace, driving the Cu atoms of the trace into 

the solder matrix through the fast diffusion corridors provided by the c-axis of the Sn 

structure. Cu atoms from the trace and solder react with Sn to form Cu6Sn5 and Cu3Sn, 

which are both more brittle and less conductive than the solder alloy and contribute to 

increasing the overall resistivity of the joint (Huntington & Grone 1961; Lu et al. 2010). 

There is an abrupt decrease in Cu diffusivity at the cathode of the solder joint, where Cu 

atoms would transition from rapid interstitial diffusion in Sn to slower, self-diffusion in 

the Cu trace (Yeh, Choi & Tu 2002). A large concentration of Cu atoms forms at the 

cathode, leading to formation of a thick IMC layer, not seen at the anode where the Cu is 

diffusing from (Gan & Tu 2002). 
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Figure 8. SEM images of cross-sectioned Sn-0.7Cu solder joints in the (a) unstressed 

condition and (b) after current stressing of 4.5×104 A/cm2 at 60°C for 1630 hours. Large 

amounts of IMC compound have formed and the Cu trace at the anode has been degraded 

(Ke et al. 2011). 
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Figure 9. SEM images of cross-sectioned SnAgCu solder joints after tensile testing and 

(a) no EM, (b) 3.3×103 A/cm2 at 100°C and (c) 5.0×103 A/cm2 at 100°C. Variation in EM 

testing resulted a transition from ductile to brittle fracture (Ren et al. 2006). 

 

Cu diffusion and the formation of intermetallics at the joint-trace interfaces cause 

a transition from ductile to brittle failure of solder joints that has been extensively 

researched (Ren et al. 2006; Yeh, Choi & Tu 2002; Lu et al. 2010). An as manufactured 

solder joint will exhibit ductile failure through the center of the solder joint whereas an 

EM tested joint will fail in a brittle manner, along the interface between the IMC layer at 

the copper-solder interface and the solder bulk (Tu 2003; Lu et al. 2010). Figure 9 shows 

the transition from ductile failure in a control joint to the brittle failure of a joint EM 

tested at 5.0×103 A/cm2 at 100°C (Ren et al. 2006). Since the IMC is still attached to the 

Cu interface on the right side of the joint, the bonding between the IMC and Cu is 

stronger than that between the IMC and the solder. This is not a problem when the IMC 
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layer is thin, as in Figure 9(a) or 8(a), but when it grows due to Cu diffusion it becomes a 

weak point and leads to brittle failure at lower stresses (Lu et al. 2010). Joints with voids 

caused by Sn diffusion would also fail at lower stresses, but in a ductile manner that 

absorbs more energy than a brittle failure and therefore last longer before completely 

severing electrical contact (Lu et al. 2010). 

2.4.3. Grain Boundary Diffusion 

Grain boundary diffusivity, while not as rapid as Cu diffusivity, is still 109 times 

faster than Sn self-diffusion and requires investigation (Singh & Ohring 1984). The grain 

boundary area and therefore the grain size in the material determine the degree to which 

grain boundary diffusion will play a role. This is shown in Figure 10 where a Monte 

Carlo simulation-based algorithm was used to calculate the effective diffusivity of the 

SAC405 solder alloy (Li & Basaran 2009). Effective diffusivity takes into account Sn 

lattice diffusivity and grain boundary diffusivity. Increasing temperature accelerates 

lattice diffusivity, which is independent of grain size and therefore should show the same 

curve for various grain sizes. The percentage of effect diffusivity due to grain boundaries 

depends on the grain boundary area available, which increases with decreasing grain size 

as shown in the plot. This is of special interest because of how alloying elements and 

processing affect the microstructure of solder joints.  

The impetus for creating more complex solder alloys comes from the fact that 

additional alloying elements like indium, cerium, zinc, and lanthanum can improve 

mechanical properties of lead-free solders by decreasing melting points, increasing creep 

rupture life and failure strain (Lin & Lin 2009). However, additional elements react with 

the Sn matrix to form intermetallics and these serve as heterogeneous nucleation sites for 
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Sn grain growth, creating a finer grain structure with increased grain boundary area (Lin 

& Lin 2009). In a 2009 study by Hsiu-Jen Lin, Jian-Shian Lin, and Tung-Han Chuang, 

EM lifetimes of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-0.2Zn were compared. 

Although adding cerium and zinc reduced the formation of whiskers on the solder ball 

surface, the grain structure of the joints became exceedingly fine and they showed lower 

EM lifetimes than the regular Sn-Ag-Cu solder. Interestingly they also found that EM 

lifetimes could be increased by plating the Cu traces with nickel, which is more resistant 

to dissolution (Lin et al. 2005), preventing the degradation of the Cu trace and excessive 

IMC formation (Lin & Lin 2009). 

 

 

Figure 10. Effective Diffusivity of 95.5Sn-4.0Ag-0.5Cu, due to vacancy diffusion along 

grain boundaries, as a function of temperature at varying grain sizes. Data derived from a 

Monte Carlo simulation-based algorithm. Diffusivity decreases with increasing grain size 

due to decreasing grain boundary area (Li & Basaran 2009). 
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2.5. Grain Orientation Effects 

The importance of grain orientation has already been highlighted by the 

anisotropy in diffusion characteristics along the a-axis vs. the c-axis for Cu and, to a 

lesser degree, Sn diffusion. The c-axis provides a diffusion highway for Cu atoms 

meaning that joints with a large number of Sn grains with c-axis oriented parallel to the 

electron flow will experience rapid IMC formation and metallization layer consumption 

during EM (Chen et al. 2015; Chen et al. 2013; Lu et al. 2008; Chen, Guo, et al 2015). 

Figure 11 illustrates this concept neatly, using 400 µm sandwich solder joints tested 

under 1.5×104 A/cm2 at 90°C for 250 hours (Chen et al. 2013). Looking at the top set of 

images in Figure 11, it is evident that some solder joints grew thicker IMC layers 

compared to the others and this can be explained by using EBSD to analyze the Sn grain 

orientations in the joints, which is shown in the bottom set of images. When the c-axis is 

parallel to the electron flow, indicated by a red grain like in (a), Cu diffusion is the 

fastest, leading to growth of a thick IMC layer at the cathode. Whereas in a grain with the 

c-axis perpendicular to the electron flow, like the blue grains in (g) and (h), diffusion 

must occur along the a-axis and will be much slower, resulting in a very thin IMC layer. 

The relationship between the misorientation angle, the angle between the c-axis and 

electron flow, and IMC layer thickness was described by J.-Q. Chen et al. to follow a 

cosine-squared relationship (Chen et al. 2013). 
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Figure 11. Eight sandwich solder joint structures after undergoing current stressing of 

1.5×104 A/cm2 at 90°C for 250 hours. The top set are SEM images of joints after EM and 

the bottom set are Sn inverse pole figure orientation maps of the same joints (Chen et al. 

2013). 

 

In the mid 2000’s researchers began to focus on the effect of grain orientation and 

grain boundaries on EM damage. Lu and collaborators (Lu et al. 2008) demonstrated 

IMC buildup along grain boundaries parallel to the electron flow in bicrystal solder joints 

containing grains with very different c-axis orientations. Grains with the c-axis more 

closely aligned with the electron flow experienced rapid IMC growth due to Cu diffusion 

while grains with the c-axis perpendicular to the electron flow experienced void growth 

due to Sn diffusion along the grain boundary. The angle between the c-axis and electron 

flow was defined as the θ angle (also referred to as the α angle, but we will use θ for the 
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sake of clarity). It was determined that a joint would be more resistant to EM when it 

contained grains with larger θ angles and more susceptible with smaller θ angles. Chen et 

al (Chen et al. 2013) EM tested a series of polycrystalline solder joints with a range of θ 

angles and grain sizes. They correlated the average c-axis orientation of the joints with 

the thickness of the interfacial IMC that grew during testing. Samples with smaller θ 

angles had thicker interfacial IMC layers than those with larger θ angles (Chen et al. 

2013). Sn grain orientation relative to the electron flow clearly had a significant impact 

on IMC growth, however the grain structure of these joints was inconsistent. Each sample 

contained multiple grains with various orientations and grain sizes, complicating the 

relationship between grain orientation and IMC growth. Without pre-testing EBSD 

characterization it is also unclear if the grain structure was constant or evolved during 

testing, as we will show is possible. Grain boundaries are also rapid diffusion pathways 

for Cu and Sn, however the high density of boundaries and variation between samples 

were not taken into account.  

In order to most accurately determine the effect of grain orientation on EM, 

specific c-axis orientations need to be isolated in single crystal joints instead of averaged 

over several grains. Tasooji, Lara, and Lee (Tasooji, Lara & Lee 2014) investigated EM 

in a series of prefabricated C4 solder bumps and found that IMCs grew along high angle 

grain boundaries. They did not draw any clear relationships between grain orientation and 

IMC growth, likely due to the limited variation in orientation their bumps exhibited. In 

contrast Huang et al (Huang et al. 2015) found grain orientation to be the controlling 

feature in IMC growth in their study on flip chip solder bumps, although IMC particles 

grew near grain boundaries instead of along them as reported by Lu et al (Lu et al. 2008) 
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and the samples contained different grain boundary densities. The discrepancies between 

these studies highlight the difficulty of interpreting EM results in polycrystalline samples. 

EM damage will be accelerated in Sn grains with low θ angles and samples with high 

grain boundary densities, but the relationships between microstructure and IMC 

morphology, distribution, and growth rate are still unclear. To focus on grain boundary 

and grain orientation effects, Huang et al (Huang et al. 2016) conducted EM tests on 

solder joints with a single horizontal grain boundary between high and low θ angle 

grains. When electrons flowed from a low θ grain to a high θ grain, an IMC layer built up 

at the grain boundary. When electrons flowed from a high θ grain to a low θ grain, voids 

nucleated at the cathode Cu-solder interface and little IMC growth was observed. In this 

case, grain orientation determined whether voiding or IMC growth occurred rapidly, and 

the horizontal grain boundary affected where IMC particles would grow in the bulk. This 

result suggests that grain orientation determines whether a joint will fail due to crack 

propagation through interfacial voids or due to embrittlement caused by IMC growth. 

The presence of grain boundaries will affect where and how IMC particles coarsen, 

which in turn has been shown to affect the strength of the solder (Lin, Hu et al. 2005; 

Deng et al. 2005). Further study of single and bicrystal solder joints will lead to greater 

understanding of the void and IMC growth that impact solder joint strength and 

reliability. 

Most recently, Shen and Chen (Shen & Chen 2017) discussed variations in 

interfacial IMC growth due to θ angles with the following conclusions: low θ angles 

result in rapid IMC growth, intermediate θ angles result in dissolution of interfacial IMC 

on the anode and regrowth on the cathode, and high θ angles result in no interfacial IMC 
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growth. However, exclusively post-mortem analysis again makes the relationship 

between as-fabricated microstructure and IMC growth unclear and the variation in grain 

size makes individual bumps in this study difficult to compare. Tian et al expanded this 

work in a 2018 study where they analyzed cross-sectioned polycrystalline SnCuNi solder 

joints before and after EM testing (Tian et al. 2018). They showed that when the c-axis of 

the Sn grain was aligned with the electron flow and directed towards the surface of the 

cross section, the growth of bulk IMC particles was visible as they formed hillocks that 

protruded from the sample surface. This study (Tian et al. 2018) and Huang et al’s 2015 

(Huang et al. 2015) and 2016 (Huang et al. 2016) studies are some of the few to discuss 

growth of IMC particles in the solder bulk as opposed to grain boundaries and it is 

consistently correlated with low θ angle grains. Low θ angle β-Sn grains will experience 

slow Cu diffusion that builds up in the grain and causes IMC particles to nucleate in the 

solder bulk. 

To date, the orientation of Sn grains relative to the electron flow has been random, 

as no processing technique has been put into place to control it. There is a tradeoff 

between decreasing the likelihood of getting large c-axis oriented grains by decreasing 

grain size and increasing grain boundary diffusivity due to larger grain boundary area 

(Lin, Lin & Chuang 2009; Chen, Guo, et al 2015). Since lattice diffusion along the a-axis 

of Sn presents the lowest diffusivity values, single crystal joints with the a-axis oriented 

along the electron flow would be most resistant to EM damage (Chen et al. 2015). The 

use of a strong magnetic field during reflow to select for specific grain orientations has 

been suggested, due to the slight variation between the magnetic susceptibilities of Sn 
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single crystals along the a-axis vs. the c-axis (Chen, Guo, et al 2015). Results of this 

technique are inconclusive, as there are very few studies that have been done. 
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CHAPTER 3 

GRAIN ORIENTATION-ACCELERATED INTERMETALLIC GROWTH IN 

SINGLE AND BI-CRYSTAL SN SOLDER JOINTS, INVESTIGATED BY EBSD 

AND X-RAY MICROTOMOGRAPHY 

 

3.1 Introduction 

It is clear from this extensive body of work that both grain orientation and grain 

boundaries of β-Sn have a significant effect on EM damage. Research has shown that the 

θ angle of a Sn grain will affect IMC growth, both interfacial and bulk, as well as the rate 

of Cu dissolution and void growth. Grain boundaries appear to determine where IMC 

particles will nucleate or build up. However, determining consistent relationships 

between microstructure and EM damage has been complicated by the use of a variety of 

testing structures, from pre-fabricated solder bumps to solder bars or lines, which makes 

comparison between studies difficult as each testing geometry may result in different 

current crowding and joule heating effects (Chen & Liang 2007; Tu 2003). The use of 

polycrystalline samples also limits the conclusions that can be drawn because grain 

boundary diffusion and grain orientation will always be confounded. The fabrication of 

multiple solder joints without current crowding and joule heating effects, with identical 

fabrication, and comparable grain orientations and grain sizes would simplify the 

investigation of grain orientation and boundary effects on EM damage. Furthermore, the 

majority of analysis is done on post-EM-tested sample cross sections which is effective at 

determining average changes in microstructure when compared to as-fabricated samples 

but cannot capture the initial state of a particular sample. Without a comprehensive 
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understanding of the samples’ initial state one cannot determine how its grain structure 

evolved into its final state, nor any relationship that the IMC or void growth may have 

had with the initial structure.   

Finally, IMC growth and void growth are usually considered separately from one 

another and are only discussed as a direct result of orientation instead of in a dynamic 

relationship with it. This study will show how IMC growth, void growth, and grain 

structure evolution are interrelated processes that must be analyzed together to fully 

understand the microstructure that results from EM. Understanding these three processes 

in relation to each other will shed light on different IMC morphologies, Sn matrix 

recrystallization, and the phenomena of void faceting and burrowing. A simple and 

symmetric sample geometry ensures that there will be no localized current crowding or 

joule heating effects and a unique fabrication technique creates samples with comparable 

grain orientations and grain sizes. In order to fully capture the initial and final sample 

states SEM, EBSD, and X-ray microtomography analysis will be used in concert. SEM 

imaging will determine differences in surface characteristics such as hillock or IMC 

formation. Grain structure will be analyzed with EBSD to determine θ angles and 

microstructural changes due to testing or IMC growth. Most importantly, the initial and 

final 3D void and IMC morphologies will be quantified using nondestructive X-ray 

microtomography. This allows for the calculation of void and IMC growth rates and their 

relation to grain orientation, as well as 3D visualizations that are critical in understanding 

2D SEM and EBSD analysis. This multimodal approach allows for the understanding of 

IMC growth, matrix transformation, and void evolution in a novel way. 
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3.2 Materials and Experimental Procedure 

In order to isolate large single and bicrystal regions in the Sn solder, the solder joints 

were fabricated in a two-step process. First a larger initial sample was created and then it 

was sectioned into smaller solder bar joints, as seen in Figure 12 (a). The initial sample 

was a sandwich-joint composed of 250 µm thick Sn ribbon (Indium Corporation, 99.99% 

purity), placed between two oxygen-free high conductivity (OFHC) Cu pellets 

(McMaster-Carr, Cu alloy 101). The Sn ribbon was coated in Indalloy Flux #5 RMA 

(Indium Corporation) prior to stacking to remove Cu and Sn surface oxides during 

reflow. The solder stack was reflowed on a standard hot plate in ambient air with a hold 

of 20 seconds above 232°C and then transferred to a pre-chilled Cu surface to cool at a 

rate of 3.4°C/second. The solder stack was then cross-sectioned, mounted in epoxy, and 

mechanically polished finishing to a 0.05 µm colloidal silica finish. The joint 

microstructure was investigated using a polarized light microscope and Zeiss Auriga 

SEM with an EBSD detector to determine the orientation and size of the Sn solder grains 

and an EDS for compositional analysis. TSL OIM Data Collection and Analysis software 

were used to gather the EBSD patterns and create OIM maps.  

Once single and bicrystal regions larger than 500 µm were identified, one half of the 

solder stack was sectioned into rectangular solder bars 500 µm wide, 500 µm thick, and 

4.25 mm long by electrical discharge machining (EDM). The bars were mechanically 

polished to a cross-section area of 300 µm by 300 µm to remove any surface damage 

induced by EDM. EBSD mapping was done on the front surface of the solder bars to 

confirm the grain orientation and size, as shown in Figures 12 (b) and (c). EBSD 
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mapping of the sides of several solder bars confirmed that the horizontal grain boundaries 

extended through the width of the samples. 
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Figure 12. Single and bicrystal solder bar fabrication procedure (a), expected samples (b), 

and preliminary EBSD for sample selection (c). 

 

IMC growth due to thermal aging and EM depends on Cu diffusion. Interstitial 

diffusion of Cu in Sn is highly anisotropic with the fastest diffusion direction along the c-

axis of the Sn grain. The solder bars were ranked from slowest to fastest diffusion by 

comparing the angle between the c-axis of the β-Sn grain and a vector normal to the 

Cu/solder interfacial plane, the θ angle. Six samples were selected for testing, three for 

thermal aging and three for EM testing. Each sample set contains a slower diffusion 

sample with a large θ angle, a faster diffusion sample with a smaller θ angle, and a 

bicrystal sample containing a small θ angle grain and a large θ angle grain, shown in 

Figure 13. Specific θ angles are summarized in Table 2.   
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Figure 13. OIM maps of samples selected for testing. The slower and faster diffusion 

samples are composed of a single grain with a predominant single orientation, while the 

bicrystal samples contain two grains with different orientations. 

 

Table 2. Angles between the c-axis and electron flow direction for samples to be used in 

testing. 

 Single Crystal 
Slower Diffusion 

Single Crystal 
Faster Diffusion Bicrystal 

EM Testing 72° 50° 55°/88° 
Thermal Aging 76° 50° 54°/84°-86° 

 

EM testing was done at a current density of 1 x 104 A/cm2 for 100 hours. The testing 

fixture was placed inside an insulated box furnace and heated to 140°C to avoid 

temperature fluctuations due to resistive heating. If the sample thermocouple indicated a 

temperature increase beyond 140°C, forced-air cooling was applied to restabilize the 

temperature. Lab-scale x-ray microtomography (Zeiss 520 Versa) was done before and 

after EM testing in order to analyze and quantify IMC and void growth. The tomography 

scans were first filtered in ImageJ to increase contrast and remove noise and then 

segmented in Avizo 9 (ThermoFisher Scientific, Waltham, MA, USA) to create 3D 

volume renderings for analysis and visualization. Thermal aging was done at 140°C for 

100 hours in order to compare the microstructural changes driven by current flow and 

those driven by thermal diffusion. Since the thermal aging samples would not experience 

temperature fluctuations that would require application of additional cooling or heating 

methods, these samples could be tested in a vacuum chamber. After testing, samples were 

imaged in the SEM and scanned using x-ray tomography before being mounted in epoxy 
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and mechanically polished to 0.05 µm colloidal silica finish. The mounted samples were 

analyzed in the SEM using EBSD and EDS to determine changes in grain structure and 

composition.  

3.3 Results and Discussion 

3.3.1 Surface and Grain Orientation Evolution 

The six solder joints were imaged in the SEM before and after testing, as shown in 

Figure 14. The faster diffusion and bicrystal EM-tested samples exhibited severe surface 

deformation and consumption of the Cu anode. The slower diffusion EM-tested sample 

and the thermally aged samples maintained planar faces similar to their as-fabricated 

condition. Of the thermally aged samples, only the faster diffusion sample, Figure 14 (k), 

showed surface relief, in the form of fine teardrop protrusions from the sample surface. 

Focused ion beam (FIB) cross sectioning revealed these protrusions to be Cu6Sn5 

particles that coarsened during aging. Each of the EM-tested samples had a different 

characteristic surface morphology after testing, illustrated in Figure 14. The slower 

diffusion sample showed teardrop patterns similar to the faster diffusion sample in the 

thermal aging set, although not as extended from the sample surface, resembling Sn 

hillocks seen by Chen et al (Chen et al. 2013) and Tian et al (Tian et al. 2018) during EM 

testing of solder bumps. The difference in protrusion height is due to the formation of a 

more tenacious surface oxide on the EM sample, as the EM testing was conducted in air 

while the thermal aging was done in vacuum. As with the thermally aged sample, these 

teardrops are caused by IMCs coarsening at and slightly beneath the sample surface. The 

faster diffusion sample in the EM set experienced major degradation with the surface 

rippling and cracking in the vicinity of the ripples. The Cu anode consumption is evident 
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from the SEM images, particularly in the bottom right corner of the joint where it appears 

to have crumpled inward as the Cu diffused away from the anode interface. Inspection of 

the bicrystal sample revealed evidence of Cu6Sn5 hexagonal needles, formed close 

enough to the sample surface to be visible in multiple locations, highlighted by white 

arrows in Figure 15 (d). These needles are unique to the bicrystal EM-tested sample and 

were not seen on any others.  

 

 

Figure 14. SEM images of solder bar samples before and after EM testing (a-f) and 

thermal aging (g-l): Pre-EM (a-c), Post-EM (d-f), Pre-aging (g-i), Post-aging (h-l). 
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Slower diffusion samples (left column), faster diffusion samples (center column) and 

bicrystal samples (right column) are shown. The dashed white arrow shows the electron 

flow direction. 

 

 

Figure 15. SEM images of solder joint surfaces before (a) and after EM testing (b, c, d). 

Variations in IMC growth between the slower diffusion sample (b), faster diffusion 

sample (c), and the bicrystal sample (d) cause a variety of surface deformations, in 

particular the growth of hexagonal Cu6Sn5 IMC needles (indicated with white arrows) 

visible on the surface of (d). 
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Samples were analyzed using EBSD to determine the original orientation of the β-Sn 

grains then repolished and analyzed again after testing. The post-testing EBSD maps 

reveal if and how the β-Sn grains recrystallized in response to thermal aging and EM. As 

shown in Figure 16, the initial grain orientation was retained in all cases for the thermally 

aged samples. In contrast, the EM-tested samples experienced a range of recrystallization, 

seen in Figure 17. The slower diffusion sample showed minor recrystallization in isolated 

patches over the joint surface. The faster diffusion sample transformed almost entirely 

into columnar grains of Cu6Sn5 that spanned the length of the joint. The bicrystal sample 

recrystallized entirely. 
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Figure 16. SEM images and OIM maps of pre- and post-thermal aging samples showing 

the change in grain structure after aging: (a, b, c) pre-aging OIM maps, (d, e, f) SEM 

images of repolished sample surfaces after aging, (g, h, i) post-aging OIM maps. 

 

 

Figure 17. SEM images and OIM maps of pre- and post-EM tested samples showing the 

change in grain structure after testing: (a, b, c) pre-EM OIM maps, (d, e, f) SEM images 

of repolished sample surfaces after testing, (g, h, i) post-EM OIM maps. 
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Although both thermal aging and EM experiments were conducted at the same 

temperature and duration, their effects on solder joint microstructure were significantly 

different. The thermal aging samples showed little surface deformation after testing and 

EBSD mapping showed that initial crystal orientations remained unchanged. The EM-

tested samples experienced rapid IMC and void growth, which had a pronounced effect 

on their final microstructures. While both sets of samples had similar θ angles, the 

driving force for diffusion in the EM case is much higher than the in the thermal aging 

case. In EM, atomic diffusion is driven by both by electron momentum transfer, often 

called the “electron wind force,” and by the chemical potential gradient created by the 

variation in atomic concentrations of Sn and Cu throughout the solder joint (Gan & Tu 

2005). Diffusion in the thermal aging case is only driven by the chemical potential 

gradient and is therefore much less damaging than the EM-driven diffusion. Only the 

thermally aged bicrystal joint experienced appreciable IMC growth. Rounded IMC 

particles coarsened at the grain boundary, as Cu that diffused through the fast diffusion 

grain could not easily diffuse into the slower diffusion grain. Similarly, Cu diffusion in 

the slow diffusion grain was concentrated along subgrain boundaries and formed 

elongated IMC particles. The bicrystal nature of the joint lead to more IMC growth 

during thermal aging than in the single crystal samples where grain orientations were 

isolated. This suggests that in slow diffusion cases like thermal aging, grain boundary 

diffusion might be the controlling feature for IMC growth.  

While thermal aging did not result in Sn grain structure changes or void growth, the 

IMC coarsening is still important to note. Isothermal aging above at 150°C has been 
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shown to reduce the shear strength of lead-free solder joints due to coarsening of bulk 

IMC particles (Lin et al. 2006; Deng et al. 2005). Thermal cycling has proven to be 

significantly more damaging than thermal aging due to the build-up of plastic 

deformation at strained regions in the joint that then become crack nucleation sites (Lin et 

al. 2006). This crack growth was captured in a 2019 study by Regalado and collaborators 

(Regalado et al. 2019) on thermal cycling of nano-sintered silver solder. Tomography 

reconstructions showed the formation of a dense network of microcracks that lead to 

solder delamination from the substrate and substrate cracking. The relatively short 

timescale of these experiments (100 hours), single temperature hold, and slower diffusion 

kinetics are why the thermally aged samples show little damage in comparison to EM-

tested samples. However, comparisons between thermally cycled and power cycled joints 

would be an interesting direction for future work.  

3.3.2. IMC Growth 

Cu6Sn5 and Cu3Sn IMCs form when Sn-rich solders in contact with Cu substrates 

undergo reflow, thermal aging, and EM. In order to characterize the morphology and 

distribution of IMC particles in the solder bulk, the solder bars were scanned using x-ray 

microtomography before and after EM testing. The thermally aged bars were only 

scanned after aging. X-ray microtomography nondestructively captures 3D structural 

information based on density, as x-rays will attenuate differently based on the density of 

the materials they pass through. Phases with higher densities appear brighter and lower 

densities darker, allowing for differentiation between Cu, tin, IMCs, and void space. This 

technique enables quantification and visualization of IMC and void volumes that lend 

unique insight into their evolution and relation to the surrounding solder matrix. Pre-
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testing scans revealed that there were no IMC particles in the solder bulk larger than 1 

µm, i.e., the resolution of the tomography scans. SEM imaging of the sample surfaces 

prior to testing showed finely interspersed IMC particles, the majority of which were less 

than 1 µm long and 0.5 µm wide. While these particles could not be captured by pre-test 

tomography scans, SEM analysis confirmed the size and distribution of particles to be 

consistent across all six samples.  

Renderings of the Cu6Sn5 bulk IMC that grew in the EM samples are presented in 

Figure 18. A significant difference in IMC growth is immediately evident from the 

reconstructions. The slower diffusion sample shows rod and plate-like IMC particles, the 

faster diffusion sample transformed almost completely into Cu6Sn5, and the bicrystal 

sample formed a dense network of rod-like IMCs. Quantification of the IMC volumes 

and comparison to the initial scan allowed for the calculation of an IMC growth rate for 

each sample, shown in Figure 19. The faster diffusion sample grew at a rate of 202.5 

µm3/second, approximately 26 times faster than the bicrystal sample and approximately 

500 times faster than the slower diffusion sample.  
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Figure 18. IMC volume after EM for: (a) slower diffusion sample, (b) faster diffusion 

sample, and (c) bicrystal sample. 

 

 

Figure 19. IMC growth rates for each sample, showing drastically rapid IMC growth in 

the faster diffusion sample. 

 

The thermally aged samples experienced much less IMC growth as evidenced in 

Figure 20. In order to resolve the fine IMC particles in the thermal aging samples and 

avoid interference from interfacial voids, only the center volumes of each sample were 

segmented. The slower diffusion and faster diffusion single crystal samples developed an 

even dispersion of fine IMC particles with no difference in particle size or distribution. 

IMC particles in the bicrystal sample coarsened in two regions, forming elongated 

particles in vertical chains in the slower diffusion grain and rounded particles clustered 

along the plane of the horizontal grain boundary. EBSD analysis of the slow diffusion 
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grain of the bicrystal sample shows that it contains vertical subgrain boundaries. Cu 

diffusion would be slightly more rapid along the vertical boundaries than the surrounding 

matrix, causing IMC particles to nucleate and grow along these boundaries preferentially. 

The high angle horizontal grain boundary served as a fast diffusion pathway for Cu to 

migrate laterally within the sample, creating a sheet of rounded, as opposed to elongated, 

particles. 

 

Figure 20. IMC volumes from sample centers after thermal aging for: (a) slower diffusion 

sample, (b) faster diffusion sample, and (c) bicrystal sample. Two distinct IMC 

distributions visible in the bicrystal sample, (d) elongated particles with vertical 

alignment in the slower diffusion grain and (e) rounded particles that coarsened along the 

horizontal grain boundary. Cu diffusion directions are shown by red arrows. 
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3.3.3. IMC Characterization 

3.3.3.1 Morphology and Growth 

The ability to visualize the bulk IMC particles using microtomography was of 

particular interest in these experiments. In 2016 Mertens, Kirubanandham, and Chawla 

used x-ray microtomography to capture rapid IMC growth in a solder joint after close to 

500 hours of EM testing (Mertens, Kirubanandham & Chawla 2016). These experiments 

were done on polycrystalline joints so relationships between the branched IMC 

morphology and matrix orientation were unclear, but they proved that x-ray 

microtomography was a uniquely powerful tool to understand IMC growth. In our work 

reconstructions of the Cu6Sn5 IMC from the EM-tested samples demonstrate two distinct 

types of IMC growth. In the slower diffusion and bicrystal samples, Cu diffuses into the 

solder bulk along the c-axis of the β-Sn grain and along grain boundaries where it reacts 

with the Sn matrix to form Cu6Sn5 particles. These particles gradually coarsen over time 

into rod or plate-like features. The second type of IMC growth is seen in the faster 

diffusion sample, where Cu diffused to the cathode instead of building up in the solder 

bulk. The cathode interfacial Cu6Sn5 layer grew rapidly towards the anode in large 

columns instead of forming IMC particles in the solder bulk.  

These two types of IMC growth can be clearly differentiated when comparing 

their orientations and grain size using EBSD, shown in Figure 13. The IMC in the faster 

diffusion sample is composed of less than 20 columnar grains with similar orientations. 

The IMC in the bicrystal sample is composed of multiple, fine grains less than 200 µm2 

in area. IMC grains close to the cathode interface tend to have an angle of less than 20° 

between the (0001) plane and the Cu interface and grow along the [0001] direction. Bulk 
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IMC particles do not have any consistent orientations. The small angle between the basal 

plane of η-Cu6Sn5 and the Cu interface is consistent across multiple interfacial IMC 

grains, suggesting an orientation relationshipt between the cathode Cu and interfacial 

IMC. Previous work has shown that η-Cu6Sn5 has the following relations with Cu: 

{0001}η-IMC //{011}Cu, {1010}η-IMC //{111}Cu, and {1120}η-IMC//{001}Cu (Suh, Tu & 

Tamara 2007; Wang, Gan & Hsieh 2010; Zhang et al. 2016; Zhang, Li, et al 2016). Our 

Cu substrate has a primarily {111} texture so one would expect to see {1010} planes of 

η-Cu6Sn5 growing parallel to the interface, however we do not see this orientation. This is 

because solder joints with polycrystalline Cu substrates, regardless of grain orientation, 

characteristically show Cu6Sn5 growth along [0001] normal to the Cu (Tasooji, Lara & 

Lee 2014; Jiang & Chawla 2010; Li, Yang & Kim 2012), as seen in our samples. This is 

likely due to crystals with the fastest growth direction, [0001], normal to the interface 

growing more rapidly and eclipsing less favorably oriented grains early on in reflow. 

The grain orientation differences between the interfacial and bulk IMC in the 

bicrystal sample are illustrated in Figure 13(c) where the angle between the (0001) plane 

of the hexagonal Cu6Sn5 lattice and the Cu interface has been plotted as a function of 

distance from the cathode interface. The faster diffusion sample IMC has a consistent 

orientation of less than 30° with reference to the interface throughout the sample, 

meaning the IMC grew from the Cu interface towards the anode. Within 50 µm of the 

cathode interface the bicrystal sample IMC grains pattern off of the polycrystalline Cu 

and display a small angle between the basal hexagonal place and the interface. Further 

into the bulk of the bicrystal sample the angle between the basal plane and Cu interface is 

random, indicating the orientation relationship is no longer present. These bulk particles 
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did not pattern from a Cu interface, instead they nucleated along high and low angle grain 

boundaries and therefore have a random crystallographic orientation. Grain boundary 

coarsening of IMC particles is visible in the thermally aged bicrystal in Figure 16 (c,d,e). 

The EM-tested bicrystal sample experienced much more IMC growth and Sn matrix 

recrystallization, providing a high density of grain boundaries for Cu diffusion and IMC 

growth. Recrystallization caused the initial horizontal boundary, visible in the thermal 

bicrystal, to be lost. The grain orientation comparison, combined with the morphology 

difference seen in the tomography scans, supports the hypothesis that the bicrystal sample 

displays both interface and bulk-nucleated IMC growth. Bulk-nucleated growth results in 

randomly oriented η-Cu6Sn5 particles that are rod or plate-like and interface-nucleated 

growth results in columnar Cu6Sn5 grains with the (0001) plane parallel to the Cu 

interface. Bulk-nucleated IMC particles are difficult to capture in 2D surface analysis of 

solder joints precisely because they are mostly in the bulk of the sample and not visible. 

A few studies have reported IMC growth in the solder bulk, seen as hillocks protruding 

from polished sample cross sections (Huang et al. 2015; Huang et al. 2016; Tian et al. 

2018), but none have shown the 3D structure of the particles or discussed how they might 

differ from interface-nucleated IMCs. 
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Figure 21. Difference Cu6Sn5 IMC growth in the faster diffusion sample (a) and bicrystal 

sample (b) shown both by EBSD maps, IPF’s, and plotting the angle between the basal 

plane and the Cu interface (c). 

 

This variation in morphology and orientation has strong implications for solder 

joint reliability, as Cu6Sn5 has been shown to display anisotropic mechanical properties 

(Jiang & Chawla 2010; Song et al. 2012). Jiang and Chawla demonstrated a 20% 

reduction in strength and a 7% reduction in Young’s modulus when comparing Cu6Sn5 

micropillars indented perpendicular and parallel to the [0001] direction of the hexagonal 

crystal (Jiang & Chawla 2010). If an entire joint transforms into large grains of Cu6Sn5 

with similar orientations a crack would easily propagate through the joint along the 

(0001) planes. This type of fracture occurred during post-EM handling of the faster 

diffusion sample as the fully transformed joint was very brittle. Imaging and EBSD 
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mapping of the fracture surface conducted in the SEM showed a transgranular cleaveage 

fracture that propagated along (0001) planes, parallel and adjacent to the Cu/solder 

interface. In contrast, disconnected IMC particles would slow crack growth. Since the 

particles are randomly orientated, the basal planes will not align, making it difficult for a 

crack to jump into a neighboring particle. If multiple IMC rods fractured, the crack would 

still have to proceed through the ductile Sn matrix before complete failure could occur. In 

this manner, the slower diffusion and bicrystal samples would be more resistant to crack 

propagation than the faster diffusion sample.  

3.3.3.2 Relationship to Sn Matrix Recrystallization 

Bulk-nucleated IMC particle growth was seen in both the slower diffusion and 

bicrystal samples. The bicrystal sample exhibited complete recrystallization of the β-Sn 

matrix and the formation of an interconnected IMC network. The slower diffusion sample 

showed regions of recrystallization and isolated IMC particles. We believe that a cyclical 

process links matrix recrystallization and the tortuous IMC morphology. The slower 

diffusion sample displays an early part of the cycle while the bicrystal sample is a later 

stage. As IMC particles form and coarsen in the solder bulk, they impose stress on the 

surrounding Sn matrix. The Sn matrix will recrystallize in response to that stress and the 

IMC particles provide a heterogeneous nucleation site for new Sn grains to form. This 

recrystallization forms new grain boundaries in the vicinity of the IMC particle. New 

IMC particles nucleate along the recrystallized grain boundaries due to the rapid grain 

boundary diffusion of Cu. Since the recrystallized grain boundaries are connected to the 

initial IMC particle they nucleated from, it is possible that secondary IMC particles may 

grow along the boundaries and eventually reconnect with the original particle. In this 
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manner, originally disconnect particles could become connected, forming the network 

visible in tomography and EBSD analysis of the bicrystal sample. Over time, the cycle of 

IMC growth and matrix recrystallization causes the entire solder joint to recrystallize and 

form a dense interconnected network of IMC particles. The IMC growth/recrystallization 

cycle is shown schematically in Figure 22 (c). 

Early and late stages of this process can be seen in Figure 22 where we compare 

recrystallization in the slower diffusion and bicrystal samples. The slower diffusion 

sample shows the early stages of IMC growth and recrystallization. First, IMC particles 

(outlined in black) coarsen along the low angle subgrain boundaries, shown in blue in 

Figure 22 (b), (i) and (ii). The fastest IMC growth direction, the [0001] direction, is 

aligned with the vertical boundaries. Recrystallized Sn grains, shown numbered 1-5 in 

Figure 22 (b) (i) and (iii), form in response to the IMC growth and surround the IMC 

particles. The bicrystal sample shows the late stage of this process, where the majority of 

the joint has recrystallized. Figure 22 (e) shows an EBSD map color-coded by grain 

maximum Feret diameter with blue grains being the smallest and red the largest. The 

maximum Feret diameter is the longest distance between any two points along the 

boundary of a shape, similar to how one would measure the maximum diameter of a 

shape using calipers. Sn matrix grains surrounding the IMC network are blue or green 

(small), while those farthest away from the network are red and orange (large). This 

supports the idea of a continuous recrystallization process where recrystallized grains 

grow and finer grains nucleate within them where they contact the IMC particles, leading 

to a gradient in grain size. While recrystallization also took place in the faster diffusion 

sample, it was not driven by the same cyclic process, since the EBSD map of that sample 
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indicates the IMC grew as a series of columns that nucleated at cathode interface and 

consumed the matrix Sn between them as the columns coarsened. 

 

Figure 22. IMC PSN Recrystallization in the slower diffusion sample (a,b) and bicrystal 

sample (d,e) with recrystallization schematic shown in (c). Magnified regions (b) of the 

post-EM EBSD map (a) show recrystallized Sn grains (numbered 1-5) and Cu6Sn5 IMC 

particles (outlined in black) along subgrain boundaries (lined in blue). The orientation of 

the IMC particles is shown using the hexagonal lattice insets. Late-stage recrystallization 

of the bicrystal sample is shown in (d), where the EBSD map is recolored to show 
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maximum Feret diameter, smallest grains in blue, largest in red, and grain boundaries in 

white. 

 

It is well known that solder recrystallizes under thermomechancial stresses, like 

those seen in thermal and power cycling of microelectronic packages. This 

recrystallization occurs in localized zones of high strain and temperature due to 

coefficient of thermal expansion (CTE) mismatches between packaging components and 

Joule heating caused by current crowding at the solder-metallization interface (Bieler et 

al. 2006; Ouyang, Tu & Lai 2012; Yin et al. 2012; Matilla & Kivilahti 2012; Bieler et al 

2012; Sundelin, Nurmi & Lepisto 2008). In contrast to most solder studies that use either 

prefabricated packages or solder bumps, the samples in this study have a uniform cross-

sectional area across the length of the joint. They are also not attached to a PCB or silicon 

die that could impose stress on the sample during testing. This means that there are no 

regions of localized stress or joule heating due to sample geometry and the test 

configuration ensures a stable temperature so the recrystallization must occur due to 

stress generated within the sample.  

Recrystallization through particle stimulated nucleation (PSN) of new grains has 

been discussed in the context of grain refinement after cold work and annealing where 

there is a high density of dislocations surrounding a particle which upon annealing 

nucleates new highly misoriented grains (Yin et al. 2012; Doherty et al. 1997). In this 

study, the only source of dislocation pile-up would be the coarsening bulk Cu6Sn5 

particles, making them a logical nucleation site for new grains. However, PSN has not 

been explored as a recrystallization mechanism in solder EM studies, possibly for the 
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following reasons: localized strain or heating zones, difficulty comparing initial and final 

grain orientations, and use of solder alloys with a range of IMC particle sizes. Strains 

generated by CTE mismatch between board components, joule heating, or implied 

mechanical force will affect the entire solder volume and therefore dwarf highly localized 

strains around IMC particles. Logically a sample would recrystallize in the region with 

highest strain, around a solder bump neck for example, and PSN recrystallization can 

only be seen when other strains have been eliminated.  

A large focus of this study was the comparison initial and final grain orientations 

through EBSD and visualization of 3D microstructure using x-ray microtomography. 

EBSD comparison before and after testing is not by itself unique. By comparing EBSD 

maps before and after testing, Chen et al showed Sn grain rotation in a solder bump neck 

due to current crowding and strain during EM (Chen et al. 2015). Telang and Bieler [5,6] 

showed grain coarsening and orientation trends in SnAg solder under isothermal aging, 

creep, and thermomechanical fatigue (Telang et al. 2003; Telang et al. 2002). However, 

the combination of EBSD and tomography is particularly powerful because it connects 

the evolution of the 2D grain structure with the 3D structure of the solder joint, without 

damage that could be induced during serial sectioning. Rendering the IMC network in 3D 

allowed us to see similarities and differences in growth between the three samples, not 

immediately evident through EBSD analysis. While the slower diffusion and bicrystal 

samples had very different final EBSD maps, their rod and plate-like IMC structures seen 

in tomography suggested they showed two stages of the same type of IMC growth. The 

connection between PSN recrystallization and its enhancement of further IMC growth 

was only made possible by using both techniques in tandem. Meanwhile, EBSD and 
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tomography of the faster diffusion sample confirmed that it experienced a distinctly 

different form of IMC growth from the other two samples. Finally, the use of a simple 

Sn-Cu system without Ag3Sn precipitates may have allowed this type of recrystallization 

to proceed more rapidly, as Ag3Sn precipitates have been shown to pin grain boundaries 

and delay recrystallization in creep and thermal fatigue studies (Kerr & Chawla 2004; 

Borgesen et al. 2018; Lee et al. 2010). The combination of a sample geometry without 

stress concentrations, rapid IMC coarsening, comprehensive pre and post-test analysis, 

and a simple two element system may have made it possible to see PSN recrystallization 

in the context of EM where it had not been seen before.  

3.4 Summary 

The purpose of this work was two-fold; first, to compare microstructural evolution due to 

thermal aging and EM done at the same temperature and second, to evaluate those 

microstructural changes using tomography to visualize and quantify IMC growth and 

EBSD to determine changes in crystallography. Two sets of single crystal and bicrystal 

solder joints were fabricated with a range of comparable grain orientations. One set was 

thermally aged for 100 hours at 140°C and the second set was EM tested for 100 hours at 

140°C under a current density of 1x104 A/cm2. SEM and microtomography analysis 

allowed for visualization and quantification of IMC growth and relation to grain 

orientation evolution. We reached the following conclusions. 

1. Thermally aged samples did not exhibit grain recrystallization or significant IMC 

particle growth after aging for 100 hours. EM-tested solder joint evolution varied 

significantly between slower diffusion, faster diffusion, and bicrystal samples. 
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2. Two IMC growth processes were discussed: cathode-nucleated columnar Cu6Sn5 

growth and bulk-nucleated rod-like Cu6Sn5 growth.  

3. Bulk-nucleated growth of IMC particles was related to β-Sn matrix 

recrystallization by PSN recrystallization theory, not previously addressed in the 

context of EM. 

This research shows that solder joint evolution under EM is a complex problem that 

requires a multidimensional analysis approach to understand. The most obvious solution 

to reduce EM-driven damage is a single crystal solder joint with the c-axis perpendicular 

to the electron flow, but as we’ve shown, that might only be a short-term cure. PSN 

recrystallization at subgrain boundaries will cause an increase in grain boundary density 

and loss of the original orientation. IMC growth and matrix orientation evolution are 

interrelated phenomena that should be considered together when trying to determine a 

future solution for EM-driven damage. 
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CHAPTER 4 

ORIENTATION-DRIVEN VOID EVOLUTION DURING 

ELECTROMIGRATION, INVESTIGATED BY X-RAY MICROTOMOGRAPHY 

 

4.1 Introduction 

Voids are a consistent concern in solder joint reliability since void growth can cause 

open circuit failure and joint embrittlement (Chen & Liang 2007; Tu 2003). Voids 

formed due to EM have been described as pancake-like voids (Yeh et al. 2002; Chang, 

Liang & Chen 2006; Zhang et al. 2006; Chang, Chiang & Chen 2007; Chang et al. 2017; 

Ho et al. 2016; Han et al. 2012; Lin et al. 2005; Xie et al. 2014), finger or slit-like voids 

(Tian et al. 2011; Fridline & Bower 1999; Wang, Yao & Keer 2017), or discrete spherical 

voids (Chang et al. 2017). Pancake-like voids nucleate at current-crowding locations in 

the solder joint and propagate across the solder-metallization interface, while finger or 

slit-like voids are formed due to void growth along the current flow direction or collapse 

of spherical voids (Tian et al. 2018; Fridline & Bower 1999; Wang, Yao & Keer 2017). 

The type of void that develops is dependent on current-crowding, joint geometry, and, as 

we will show, local grain orientation.  

Voids can be present in as-fabricated samples due to imperfect contact between the 

solder and metallization layer or due to reacting flux that becomes gaseous during reflow 

and cannot escape the liquid solder (Li et al. 2012; Qu et al. 2014). Since these voids are 

bubbles in the liquid solder all voids are initially spherical and typically in contact with a 

solder/metallization interface, as visible in Figure 12 (a, c, e). Since void growth during 

EM is driven by vacancy diffusion it will be affected by current crowding, joule heating, 
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and local grain orientation. The most commonly described void type is pancake voiding, 

where a single void nucleates at the corner of a solder joint due to current crowding and 

joule heating and propagates along the solder/metallization interface, eventually causing 

failure. As discussed above, our sample geometry does not display current crowding or 

joule heating effects due to a constant cross-sectional area throughout the sample, and as 

a result, the void growth seen in the solder bars is significantly different from pancake 

voiding. It more closely follows the nucleation, growth, and coalescence of discrete 

spherical voids described by Chang et al. who analyzed EM voids using 3D 

laminography (Chang et al. 2017). Xie et al. also visualized void growth due to EM using 

x-ray microtomography and reported rapid void growth at the anode within 100 hours of 

testing (Xie et al. 2014). However, we see two additional void behaviors not previously 

shown in EM literature: void faceting and burrowing, as described in the following two 

sections.  

4.2 Materials and Experimental Procedure 

 This chapter details the analysis of voids found in the EM-tested samples described in 

Section 3.2 of Chapter 3. The materials and experimental procedure are therefore the 

same as that presented in Section 3.2 and will not be repeated here. The thermally aged 

samples were not tomography-scanned prior to testing so it was not possible to comment 

on their void growth. They did not experience the faceting or burrowing behaviors seen 

in the EM-tested joints because the rate of diffusion is significantly lower.  
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4.3 Results and Discussion 

4.3.1 Void Faceting 

The phenomenon of void faceting has been described in a series of simulation 

papers as the formation of flat faces driven by variations in adatom diffusivity on various 

crystallographic planes present on the void surface (Kraft & Artz 1997; Sun, Suo & Yang 

1997). To the best of the authors’ knowledge experimental verification of this phenomena 

has yet to be reported. It is known from basic crystallographic thermodynamics that 

surface diffusion will vary with crystallographic orientation due to the difference in 

atomic arrangement, and therefore binding energy, along different crystallographic planes 

(Blakely 1973). A material with anisotropic diffusion properties undergoing significant 

atomic diffusion would be expected to show preferential diffusion along certain 

directions not only in the bulk of the material, but also along the surfaces of voids present 

within it. Variations in surface diffusion along different crystallographic planes in β-Sn 

have been shown by several studies (Qian et al. 2005; Sellers et al. 2010; Eckhold et al. 

2015) [59-61]. However, many papers simulating void evolution under current and 

temperature stressing have ignored crystallographic effects and therefore have discussed 

void coalescence, fracture, and migration only in the context of spherical, elliptical or 

cardioid voids (Chang, Chiang & Chen 2007; Chang et al. 2017; Ho et al. 2016; Wang, 

Yao & Keer 2017; Li et al. 2012; Qu et al. 2014; Pete et al. 2012; Orgutani & Oren 

2004). 

The combination of high current density and the anisotropic diffusion properties 

of β-Sn, isolated in single crystal joints in our study, drove certain spherical voids to 

develop flat, faceted surfaces. The degree of faceting was analyzed by quantifying the 
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initial and final void sphericities. Sphericity is the ratio between the surface area of a 

perfect sphere with the same volume as a specific void to the surface area of the actual 

void. If the void is perfectly spherical, its sphericity will be 1, while a cuboidal void has a 

sphericity of approximately 0.806, a deviation of 0.19 from a sphere. Deviations from 

sphericity for voids before and after EM testing are shown in Figure 23, together with 

reconstructions of representative voids before and after testing. Three trends are clearly 

visible: (i) voids in the slower diffusion sample show the greatest deviation from 

sphericity because they have become faceted, (ii) most voids in the faster diffusion 

sample have remained spherical, and (iii) the bicrystal sample shows both faceting and 

spherical growth at cathode and anode respectively. The mixed-mode void growth in the 

bicrystal sample is due to the orientation of the grain surrounding the voids at each 

interface. The anode voids are surrounded by a faster diffusion grain with a lower θ 

angle, similar to the faster diffusion sample (55° and 50° respectively). Therefore, the 

anode voids preserve their spherical shape, while the cathode void is surrounded by a 

high θ angle grain similar to the slower diffusion sample (88° and 72° respectively) and 

exhibits void faceting.  

While it is unclear how rapidly the bicrystal sample recrystallized, it can be 

presumed that the PSN-recrystallization began in the bulk of the sample and spread 

towards the edges over time, leaving the interfacial voids unaffected in the initial stages 

of the EM test. Recrystallization would have destroyed the original orientation 

relationships and θ angles. Since the void morphologies match the original orientations, 

they must have evolved before recrystallization reached the interfaces. This suggests a 

sequential microstructure evolution where voids change shape early in EM stressing, 
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followed by recrystallization of the surrounding matrix and IMC growth. Voids initially 

present at both interfaces disappeared after testing, but their disappearance did not follow 

clear trends with void size, spacing, or interfacial density. Investigation into how 

surrounding voids behave after a void disappears will determine if the void collapsed due 

to backfill by Sn (Hu et al. 2003) or IMC or if the voids coalesced. If the voids coalesced 

a neighboring void should increase in volume, while if a void collapsed the neighboring 

voids would remain at a constant volume.  

Simulations suggest that the deciding factor that controls whether a void will 

remain spherical or form facets is the relationship between EM-driven surface diffusion 

and crystallographically-driven anisotropic surface diffusion (Fridline & Bower 1999; 

Kraft & Artz 1997; Subramanian, Sofronis & Ponte Castaneda 2005). When EM-driven 

diffusion is rapid, as in the case of the faster diffusion sample with a small θ angle, a void 

will maintain a spherical equilibrium shape. When EM-driven diffusion is slower, due to 

a large θ angle, anisotropic surface diffusion dominates causing voids to facet along low 

surface energy crystallographic planes. In β-Sn the (100) and (211) surfaces have the 

lowest surface energy, making growth along those planes energetically favorable (Sellers 

et al. 2010; Eckhold et al. 2015). Therefore, it is likely that the voids in the slower 

diffusion sample and at the cathode of the bicrystal sample formed facets along those 

planes. Belyakov et al. reported crystallographically faceted void formation in several 

lead-free solder alloys subjected to thermal aging (Belyakov & Atkinson 2010). These 

void facets appear to have a relationship to the β-Sn matrix orientation and grew in a 

layered fashion, but further relationships with crystallography were not expanded upon. 

The voids were faceted in both the as-soldered and post aging conditions and appeared 
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related to bulk Ag3Sn and Cu6Sn5 IMC particles. In contrast, our samples show a 

transition from spherical to faceted based on clearly defined differences in diffusion due 

to EM and anisotropic surface energy effects and are not related to IMC particles, as 

confirmed by tomography and SEM analysis. Voids in the thermal aging cases did not 

exhibit faceting within 100 hours, likely due to the slower diffusion kinetics, but might 

exhibit the phenomenon with longer testing. Further analysis of the relationships between 

local crystallography and void faceting are in progress. 

 

Figure 23. Histograms showing deviation of sphericity in anode and cathode voids before 

and after EM testing. Deviation from sphericity is determined by the following: 

Ψ!"#$"%& !"!!"! −Ψ!"#$. Reconstructions of a representative void before and after testing 
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are shown in the insets. Void faceting is evident in the slower diffusion sample and 

cathode of the bicrystal sample, while voids remain spherical in the faster diffusion 

sample and anode of the bicrystal sample. 

 

4.3.2 Void Burrowing 

The second unique void behavior seen in our samples is void burrowing. Void 

burrowing refers to the rapid consumption of Cu surrounding a void causing it to migrate 

or “burrow” into the Cu interface at an unusually rapid rate compared to the rest of the 

sample interface. The result is massive localized Cu consumption and void migration 

opposite the electron flow direction. This behavior only occurred in the faster diffusion 

sample where interstitial Cu diffusion was expected to be rapid and at the anode interface 

with the fewest initial voids, visible in Figure 24 (a). Current density in the vicinity of a 

void is higher than the average cross-sectional current density of the solder joint due to a 

local reduction in cross-sectional area (Chang et al. 2017; Han et al. 2012; Xie et al. 

2014). This causes current crowding around voids and increased atomic diffusion. Figure 

24 (d) and (e) show the early stages of this type of void growth at the bicrystal anode 

which was surrounded by a fast diffusion grain. Rapid Cu diffusion around the void edge 

causes the void to develop a ridge around the bottom, with a dimple in the middle. The 

dimple is the result of the void preventing Cu diffusion directly along the electron flow, 

instead Cu atoms beneath the void must diffuse around it before being able to travel into 

the solder bulk. This causes a reduction in Cu dissolution right beneath pores and creates 

small Cu peaks, visible in blue in Figure 24 (e). These Cu peaks correspond to the 

dimples seen at the base of the void in Figure 24 (d). The faster diffusion sample likely 
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experienced a similar type of void growth initially, with the difference that the burrowing 

void nucleated at the interface instead of being present in the as-reflowed condition.  

Several features appear to have caused the burrowing behavior. The low θ angle 

of the grain ensured rapid Cu diffusion and the single crystal nature of the joint ensured 

that there were no barriers present to hinder diffusion in the sample bulk. While the initial 

anode surface being nearly void-free might suggest that the interface would experience 

planar consumption, we see instead that a distribution of voids across the interface 

ensures a uniform increase in current density across the anode interface (Xie et al. 2014) 

and therefore more planar Cu consumption. Nucleation of an isolated void lead to current 

crowding in the center of the interface and rapid diffusion close to the void. It is 

interesting to note that the single preexisting anode void in the faster diffusion sample did 

not burrow into the interface and instead expanded and remained at the same position in 

the solder matrix. The final detail that may have encouraged void burrowing is the excess 

of Cu provided by the Cu bars attached to the solder. Had the Cu interface instead been a 

thin metallization layer, the void would have propagated along the Cu interface in a 

pancake-voiding fashion as it progressively consumed the Cu layer (Hu et al. 2003). With 

an unlimited Cu supply and lack of current crowding due to sample geometry, the void 

was free to propagate directly into the Cu bar.  
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Figure 24. Void burrowing shown by void reconstructions of the faster diffusion sample 

before and after EM testing (a and b), SEM image of polished sample cross-section 

showing burrowed void (c), and dimpled bicrystal anode voids showing rapid Cu 

dissolution around void edge and Cu peak beneath the voids (d and e). 

 

4.4 Summary 

The goal of this analysis was to determine how the crystallography of solder affects the 

evolution of voids present in it upon fabrication. Spherical voids created by entrapped air 

or outgassing flux are common in as-manufactured solder joints, but their effects on EM 

deformation and relationship with grain orientation have not been well understood. 

Characterization of samples before and after testing using x-ray microtomography 
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provided 3D reconstructions of the void space. In-depth analysis of the surface 

reconstructions in conjunction with EBSD mapping on surface cross sections before and 

after testing revealed how and why voids evolved the way they did. We reached the 

following conclusions. 

1. EM-tested solder joint evolution varied significantly between slower diffusion, 

faster diffusion, and bicrystal samples. 

2. Void faceting occurred in the slower diffusion sample and bicrystal cathode due 

to large θ angles of the grains surrounding the voids which resulted in slow EM-

driven diffusion. Faceting is controlled by anisotropic atomic surface diffusion 

and has not been reported in literature investigating void growth during EM 

testing. 

3. Void burrowing occurred in faster diffusion sample due to rapid EM-driven 

diffusion, current-crowding at void edges, and unlimited Cu at the anode 

interface. 

This research shows that void evolution is highly affected by the c-axis orientation of 

the grain surrounding the void as opposed to the overall orientation of the joint, as 

evidenced by the difference in void behavior at the cathode and anode of the bicrystal 

sample. Visualization and quantification of void growth and faceting would not have 

been possible without x-ray microtomography to capture the initial and final 3D structure 

of the entire joint. Faceting and burrowing behaviors both have implications for the 

reliability and lifetime of solder joints. Single crystal joints with small θ angles will 

experience rapid void growth and burrowing, leading to open circuit failure. Single 

crystal joints with large θ angles could exhibit void faceting. The sharp edges and pointed 
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corners of the faceted voids would be stress localization sites. As the joint experiences 

thermomechanical stresses during service, the stress localization sites would be sites for 

crack initiation. The results of this experiment suggest that bicrystal structures would be 

best suited for joint stability under EM because the joint would avoid the degree of 

damage shown by either a slow of fast diffusion grain. This work also reinforces the 

importance of understanding EM effects as a result of sample geometry, crystallography, 

and pre-existing structure in concert.  
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CHAPTER 5 

3D EVOLUTION OF INTERMETALLIC AND VOID STRUCTURE UNDER 

INTERRUPTED ELECTROMIGRATION IN BI-CRYSTAL PURE SN SOLDER 

JOINT 

 

5.1 Introduction 

EM is of particular concern in Sn-rich solders due the anisotropic diffusion properties 

of the tetragonal β-Sn lattice and rapid diffusion along grain boundaries. Solder joints do 

not have controlled grain structures and have been shown to solidify in single crystals, six 

grained “beachball” type structures, and fine-grained interlaced twin structures (Lehman 

et al. 2010). This means that an individual joints’ susceptibility to EM can vary 

dramatically due to differences in grain structure and prediction of joint lifetime becomes 

very difficult (Chen et al. 2013; Wilde 2014; Deng et al. 2005). In order to study 

precisely how EM drives IMC and void formation, researchers have focused on the 

fastest diffusion pathways for Cu and Sn atoms: the c-axis of the Sn grains and grain 

boundaries (Tu 2003; Chen & Liang 2007; Dyson, Anthony & Turnbull 1967; Lehman et 

al. 2010). Research has shown that c-axis orientation affects interfacial IMC growth (Tian 

et al. 2018, Chen et al. 2013), bulk IMC growth (Deng et al. 2005; Shen & Chen 2017; 

Lu et al. 2008), void growth (Chen et al. 2013; Deng et al. 2005; Ma et al. 2018) and 

surface deformation (Kerr & Chawla 2004; Jiang & Chawla 2010). However, 

investigation into the effect of grain boundaries has been more complex as boundaries 

vary in atomic structure, which affects the energy barriers for diffusion, and therefore 

grain boundary diffusivity. Grain boundaries with high misorientation angles are more 
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disordered, have higher grain boundary energies and therefore faster diffusion. Low angle 

and twin boundaries have higher order and very low grain boundary diffusivities (Wilde 

2014). Grain boundaries also vary in orientation relative to the electron flow and single 

joint may contain a high density of a large variety of boundaries.  

This makes determining the effect of grain boundary type and orientation difficult. 

One common trend is IMC accumulation along high boundaries regardless of orientation 

relative to the electron flow (Kerr & Chawla 2004; Jiang & Chawla 2010; Deng et al. 

2005; Shen & Chen 2017; Ma et al. 2018; Maruyama 1960), particularly in the case of 

atoms moving form a fast diffusion grain to a slow diffusion grain (Kerr & Chawla 2004; 

Deng et al. 2005). Fine IMC particles could act as dislocation and boundary pinning sites 

like in dispersion strengthened materials (Kerr & Chawla 2004), however particle 

coarsening over time would result in decreased strength (Deng et al. 2005). Large 

networks of similarly oriented Cu6Sn5 IMC would also be problematic because Cu6Sn5 is 

brittle (Jiang & Chawla 2010) and cleavage along the basal planes of the hexagonal 

crystals could propagate easily from grain to grain (Jiang, Jiang & Chawla 2012). There 

is disagreement about the effect of twin boundaries on EM as well. Shen and Chen stated 

that since Sn solder joints often have a high density of twins and they are not rapid grain 

boundary diffusion pathways, grain boundary diffusion of Cu was less important than 

bulk diffusion (Jiang, Jiang & Chawla 2012). While they saw little effect of twin 

structures, Chen et al. reported IMC buildup along a twin boundary in one case and a 

significant decrease in EM damage due to a heavily twinned structure in a second case. 

Findings by Lu et al. support the possibly that highly interlaced twin structures, as 

sometimes form in Sn-rich solder joints, could slow Cu diffusion by effectively averaging 
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out any grain orientation effects (Lu et al. 2008). Twins are an inevitable part of Sn-rich 

solder structures as Sn tends to solidify in a twinned structure (Lehman et al. 2010; Ma et 

al. 2018) and readily forms twins during mechanical loading (Ishii 1959; Maruyama 

1960) and thermomechanical fatigue (Chen, Wang et al. 2012). As such a common yet 

little understood feature in Sn solders, twins merit investigation as a separate subset of 

grain boundaries within EM experiments. 

Although complex and manifold, understanding the relationships between grain 

structure and IMC and void growth is key in attempting to mitigate EM damage. To this 

aim we designed an EM experiment to shed light on these relationships using a bicrystal 

solder joint composed of a low θ angle grain and a high θ grain, with a clearly 

identifiable twin network and separate high angle grain boundary. The sample was 

analyzed using x-ray microtomography at multiple time steps during the experiment in 

order to capture its microstructural evolution in 3D. Most EM studies focus on post-

mortem or 2D surface analysis, however how features formed and how they relate to each 

other is difficult to trace using those techniques alone. It is important to fully characterize 

the initial structure of sample in order to understand the structures that develop from it. 

Chawla and collaborators applied x-ray microtomography analysis to the study of solder 

joints and demonstrated its ability to capture rapid void and IMC growth (Xie et al. 2014; 

Bieler et al 2012; Kim & Lu 2006) and crack growth from thermal cycling (Regalado et 

al. 2019). The best solution for complete characterization is a combination of x-ray 

microtomography for 3D phase analysis, SEM imaging for surface damage, and EBSD 

analysis for grain boundary and orientation information. The solder joint structure could 

be probed at multiple time steps only because x-ray microtomography is nondestructive 
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and the wealth of quantitative information it yields is unparalleled. The interrupted 

testing process also added a thermal cycling element that mimics what a joint could 

experience in service. Using these techniques, surface deformation in the combined 

context of EM and thermally cycling will be discussed. Multiple types IMC growth will 

be correlated with both grain orientation and grain boundary structure, and anomalous 

void growth behavior explained.  

5.2 Materials and Experimental Procedure 

This experiment was conducted on a sample fabricated in the same fashion as the 

joints discussed in Chapters 3 and 4. Please refer to Section 3.2 for the complete 

fabrication procedure, as it is discussed here in brief. Solder joints were fabricated from a 

larger sandwich-style joint composed of a Sn ribbon 250 µm thick (Indium Corporation, 

99.99% purity), placed between two oxygen-free high conductivity (OFHC) Cu pellets 

(McMaster-Carr, Cu alloy 101), 2 mm thick and 9.5 mm in diameter. The solder stack 

was reflowed on a standard hot plate in ambient air with a hold of 20 seconds above 

232°C and then transferred to a pre-chilled Cu surface to cool at a rate of 3.4°C/second. 

The solder stack was then cross sectioned, mounted in epoxy, and mechanically polished 

to an 0.05 µm colloidal silica finish. The fabrication procedure is shown schematically in 

Figure 25 (a). Polarized light microscope images and EBSD analysis done in a Zeiss 

Auriga SEM confirmed the presence of large single crystal and bicrystal regions in the 

solder stack cross section. TSL OIM Data Collection and Analysis software were used to 

gather the EBSD patterns and create OIM maps. 

The solder stack was sectioned into bars that were mechanically polished to their final 

300 µm wide by 300 µm thick dimensions to remove surface damage caused by the EDM 
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sectioning. The front surfaces of the bars were polished to a 0.05 µm colloidal silica 

finish for SEM and EBSD analysis. EBSD mapping confirmed that several joints 

contained single crystal and bicrystals and a bicrystal sample was selected. The bicrystal 

sample chosen for this experiment contained a large fast diffusion grain with a θ angle of 

46° and a smaller slow diffusion grain with a θ angle of 71°, with a high angle horizontal 

grain boundary spanning the width of the joint between them, shown in Figure 25 (b). 

The large fast diffusion grain also contained several lens-shaped subgrains, slanted at 

26°±1° from the length of the bar. The subgrain boundaries had a misorientation of 

62°±1° and were identified as {101) twin grain boundaries rotated 62.8° about a common 

<100] axis, one of two commonly observed twin types in Sn (Chalmers 1935; Tu & 

Turnbull 1970). In order to highlight the expected difference in diffusion throughout the 

bicrystal sample, the EBSD map shown in Figure 25 (b) was recolored to show the angle 

between the c-axis and electron flow, with yellow and green representing smaller θ 

angles and orange and red representing larger θ angles, shown in Figure 25 (c).  
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Figure 25. (a) Sample fabrication process from solder stack to individual solder bars. (b) 

OIM map of the selected bicrystal sample. The sample is composed of a fast diffusion 

grain (θ angle = 46°) and a slow diffusion grain (θ angle = 71°) with a high angle grain 

boundary between them (dashed black line). (c) OIM map recolored to show the angle 

between the c-axis and electron flow (θ angle). Green and yellow indicate small θ angles 

and fast diffusion and red and orange indicate larger θ angles and slower diffusion. The 

slanted orange subgrains are twins. 

 

The sample was EM tested at a current density of 1 x 104 A/cm2 for a total of 100 

hours with interruptions for lab-scale x-ray microtomography scans (Zeiss 520 Versa). 
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The test fixture was placed inside a box furnace and kept at 140°C in air to eliminate 

temperature fluctuations caused by resistive heating. X-ray microtomography scans and 

SEM imaging were performed at the following timesteps: 0, 12, 25, 50, 75 and 100 hours. 

The scans were processed in ImageJ (U.S. National Institutes of Health, Bethesda, 

Maryland, USA) using a combination of nonlocal means, bandpass, and anisotropic 2D 

diffusion filters to reduce noise (Schneider, Rasband & Eliceiri 2012) and then 

segmented in Avizo 9 (ThermoFisher Scientific, Waltham, MA, USA) to create 3D 

volume renderings for analysis and visualization. After the EM test was complete, the 

sample was mounted in epoxy and polished to a 0.05 µm colloidal silica finish for SEM 

and EBSD characterization.  

5.3 Results and Discussion 

5.3.1 Surface Deformation 

Significant surface deformation is immediately evident from the SEM surface images 

shown in Figure 26. The solder section of the joint was originally almost square with a 

smooth front surface. Over time the sample decreased in height, bulged outwards on its 

free surfaces, and appeared to slant slightly towards the right. The sample decreased in 

height by a total of 40 µm by the completion of the EM test. This change in dimension 

was due to compression of the solder region by the Cu bars on either side. The EM 

fixture fixed the position of the Cu bars at room temperature and upon being brought to 

140°C for testing, the Cu bars expanded and compressed the Sn. The Sn likely work 

hardened as a result of the compression as it did not return to its original dimensions upon 

cooling. The sample was then removed from the fixture, scanned for tomography, and 

replaced in the fixtured in its compressed state. Upon heating the solder would again be 
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compressed by the Cu bars. The sample experienced a total of 5 heating cycles during the 

experiment. The linear expansion of the Cu bars due to heating was calculated using the 

following equation: 

𝑑𝑙 = 𝑙!𝛼!"(∆𝑇), 

where dl is the change in length, l0 is the original length of the bars, αCu is the linear 

coefficient of thermal expansion (CTE) of Cu (17 x 10-6/K), and ΔT is the increase in 

temperature. For each thermal cycle, the Cu bars would have expanded approximately 8 

µm inwards. Over the course of 5 thermal cycles, the total compression would be 40 µm 

which matched the total decrease in solder height.  

 

Figure 26. SEM images of sample surface at 0, 12, 25, 50, 75, and 100 hours of EM 

testing. Compression from thermal expansion caused the sample to bulge and slant to the 

right. 
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In addition to the changes in sample dimension, Figures 26 and 27 show grain 

boundary sliding along the high angle horizontal grain boundary, ledge formation, and 

IMC particle coarsening in the vicinity of the slow diffusion grain. Grain boundary 

sliding in a variety of solder alloys as a result of thermomechanical fatigue or thermal 

cycling has been well documented along both high (Sidhu & Chawla 2008; Ho et al. 

2016; Lin et al. 2005; Arzt et al 1994; Telang et al. 2002; Telang et al. 2003; Rosenberg 

& Ohring 1971) and low angle (Telang, Bieler & Crimp 2006) boundaries. Sliding and 

decohesion along grain boundaries is caused by the anisotropic CTE properties of β-Sn, 

where CTE along the c-axis is approximately double that along the a- or b-axes (Ho et al. 

2016; Telang et al. 2003). The c-axis orientations of the two grains that compose this 

solder joint are significantly different, as shown in the initial EBSD analysis in Figure 25 

(b) and (c), so it is expected that grain boundary sliding or delamination would occur 

along this boundary. This type of deformation is a reliability concern as regions that have 

undergone grain boundary sliding may serve as crack initiation sites (Sidhu & Chawla 

2008; Matin & Coenen 2005). Figure 27 (c) clearly shows the formation of a crack on the 

sample surface that began as grain boundary decohesion. Due to the uneven surface it 

was difficult to tell how far along the grain boundary length the crack penetrated and it 

was not resolvable in tomography. No grain boundary sliding or decohesion occurred 

along the slanted 62.8° twin boundaries, a phenomenon also noted by Telang et al. during 

their thermomechanical fatigue studies (Telang, Bieler & Crimp 2006).  

Surface IMC coarsening, visible in Figure 27 (b), occurred both within the slow 

diffusion grain and along the grain boundary. High angle grain boundaries like the 

horizontal boundary in this joint are rapid diffusion pathways and often become 
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decorated with Cu6Sn5 IMC particles during EM testing (Shen & Chen 2017; Maruyama 

1960; Bieler et al. 2012). In addition it has been shown that when the electron flow passes 

through a fast diffusion grain into a slow diffusion grain the grain boundary acts like a 

wall to Cu diffusion and the entire boundary becomes saturated with IMC (Huang et al. 

2016). Once in the slow diffusion grain, Cu atoms will aggregate along subgrain 

boundaries and form IMC particles as well. The IMC particles visible along the 

horizontal boundary appeared sunken into the sample surface as opposed to protruding, a 

phenomena Tian et al (Tian et al. 2018) have suggested is caused a relationship between 

the c-axis, electron flow direction, and sample surface. If a grain is oriented such that an 

atom traveling along the c-axis in electron flow direction is deflected inwards towards the 

sample bulk, then surface IMC particles will appear sunken. If instead the atom gets 

deflected towards the sample surface, the IMC particles will appear raised. In the slow 

diffusion grain the diffusing Cu atoms were deflected inwards while in the fast diffusion 

grain the Cu atoms were deflected outwards. Particles on the slow diffusion grain side of 

the boundary appeared sunken and particles on the fast diffusion side appeared to be 

protruding. 

While several surface deformations can be attributed to the thermal cycling 

component of the experiment, one feature of note is clearly caused by EM: the visible 

consumption of the electron-inflow solder/Cu interface. The interface began planar, as 

shown in the 12 h section of Figure 28, but over time several scoop-shaped hollows 

formed as the Cu atoms diffused away from the interface into the solder bulk. The uneven 

consumption of the interface was caused by interfacial voids within the sample that are 

very close to the sample surface. Interfacial voids reduced the local cross-sectional area 



80 

through which Cu atoms could diffuse which caused a spike in current density in the 

regions next to the voids. This spike caused Cu atoms to diffuse more rapidly in that 

region which created the uneven consumption of the Cu interface (Bieler et al. 2012; Han 

et al. 2012; Mertens, Kirubanandham & Chawla 2015; Subramanian & Lee 2006). The 

true extent of hollow formation was slightly obscured by bulging of the solder bulk which 

shadowed the interface.  

 

Figure 27. (a) SEM images of the horizontal grain boundary between the fast and slow 

diffusion grains. (b) Higher resolution SEM images of a section of the grain boundary, 
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indicated by the yellow box in (a), showing grain boundary sliding, surface ledge 

formation (white arrows), and surface evidence of IMC particle growth (black solid and 

dashed lines). (c) Evidence of fatigue crack (black arrow) growth along grain boundary 

with the slow diffusion Sn lattice shown in green and the fast diffusion Sn lattice shown 

in pink.  

 

Figure 28. SEM images of a section of the Sn solder/Cu electron-inflow interface 

showing irregular consumption of the Cu substrate and solder surface bulging over the 

course of 100 hours of EM testing. 

 

5.3.2 IMC Growth along High Angle and Twin Grain Boundaries 

The combination of x-ray microtomography, SEM imaging, and EBSD analysis is 

uniquely powerful in the investigation of bulk IMC growth. In recent years Chawla and 

collaborators demonstrated how effective microtomography can be when characterizing 
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IMC growth (Xie et al. 2014; Kim & Lu 2006), void growth (Xie et al. 2014), and crack 

propagation (Regalado et al. 2019) in solder joints. In order to capture the evolution of 

the bulk IMC and elucidate its relationship to the solder grain structure, six tomography 

scans were conducted, one before testing and the rest over the course for the EM test. 

Surface reconstructions of the tomography scans are shown in Figure 29 with Sn solder 

matrix shown in transparent green, voids in blue, and IMC in pink and purple.  

Initially the sample did not contain any IMC in the solder bulk and the only visible 

features were the interfacial voids. At the 12-hour timestep, IMC formed along the 

horizontal grain boundary and in slanted plates along the twin boundaries initially shown 

in Figure 25 (d). Figure 29 (a) shows the continued growth of IMC along the grain 

boundary and in the bulk. We visualized the IMC growth by plotting the total IMC, grain 

boundary IMC, and bulk IMC over time, shown in Figure 30 (left). The IMC growth at 

the grain boundary was rapid at first at ~ 2 µm3/sec, not far behind the ~3.9 µm3/sec 

growth rate of the bulk of the joint where the majority of IMC was developing. After 25 

hours the grain boundary IMC growth decreased to ~0.4 µm3/sec while the bulk IMC 

growth continued at ~3 µm3/sec. Over the course of 100 hours IMC in the bulk grew 5.5 

times faster than IMC along the high angle grain boundary. It is possible that Cu atoms 

were reacting in the bulk to form IMC before they reached the grain boundary and as 

more IMC developed in the bulk, the more barriers there were to Cu diffusion to the grain 

boundary, slowing its growth even further. In essence, the IMC network in the low θ 

angle grain was shadowing the boundary, making Cu diffusion to the horizontal grain 

boundary very difficult. 
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The rapid bulk IMC growth was particularly interesting as it appeared to change 

orientation over time. In order to investigate this further, the bulk IMC surface was 

rendered in two colors, pink for the initial orientation and purple for the secondary 

orientation that develops from the first. Figure 29 (b) and (c) show that while the initial 

IMC growth aligned with the slanted twins, a second set of plate-like IMC began to form 

at 25 hours with a different alignment. By plotting the growth of the primary and 

secondary IMCs in Figure 30 (right) it is clear that not only did the secondary IMC grow 

out of the primary IMC, it grew at the expense of the primary IMC. While the twins in 

the low θ angle grain were not high energy, disordered boundaries one would expect to 

become saturated with IMC, they did represent a significant deviation in diffusion from 

the rest of the grain. Instead of diffusing along a grain boundary, Cu atom flux from the 

low θ angle grain hit the slanted twin boundaries like walls. The c-axis orientation of the 

twin subgrains was 76° off from the electron flow, making the subgrains even slower 

diffusion than the slow diffusion grain at the top of the joint, with a θ angle of 71°. The 

twin boundaries were the only significant barrier to Cu diffusion in the low θ angle grain 

so IMC built up along them, which was why the IMC structures seen in tomography 

precisely match the twin structures. Around 25 hours into the EM testing, IMC along the 

twins visible in the initial sample EBSD map began to decay and the secondary IMC 

visible starting in the 25-hour tomography scan began to coarsen. The initial growth rate 

of each IMC was taken and compared, 0-hour to 12-hour growth for the primary IMC and 

25-hour to 50-hour growth for the secondary IMC. Their initial growth rates were nearly 

identical, at ~7 µm3/sec. In the second half of the EM test, the secondary IMC growth 

rate slowed to ~3.5 µm3/sec, while the primary IMC began to shrink. The secondary IMC 
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also appeared to be forming on a specific orientation, similar to the primary IMC, but at a 

different angle. The similarity in initial growth rate and structure suggested that the 

secondary IMC was associated with a second twin orientation.  
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Figure 29. (a) X-ray microtomography surface reconstructions of sample at 0, 12, 25, 50, 

75, and 100-hour timesteps, with Sn solder in transparent green, voids in blue, and IMC 

in pink. (b) Surface reconstructions of IMC not associated with the horizontal boundary, 

showing primary formation of IMC along slanted twin boundaries (pink), followed by 

secondary IMC growth (purple) and reduction of the primary IMC. (c) IMC from (b) 

viewed at a diagonal angle to show the difference in alignment between the primary and 

secondary IMC growth. 

 

 

Figure 30. (left) Cu6Sn5 IMC growth over 100 hours of EM testing, with total IMC 

growth in green, IMC associated with horizontal grain boundary in blue, and twin/bulk 

IMC in red. The majority of IMC growth occurred in the twin/bulk region of the sample. 

(right) Separation of twin/bulk IMC growth into primary and secondary IMC types, 

shown in inset. 
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In order to determine the grain structure the secondary IMC was related to, the 

sample was repolished to reveal a cross section which contained the second IMC and 

EBSD mapped to characterize the surrounding grain structure. Figure 31 (a) shows the 

plane the sample was repolished to, confirming that it contains the secondary IMC 

network, and Figure 31 (b) shows the large IMC regions in the solder bulk as well as 

evidence of the uneven Cu interface consumption suggested in Figure 28. The initial IMC 

formed along the 62.8° twin boundaries, marked in black on the EBSD maps in Figure 31 

(c), which gave the IMC its distinctive slanted-plate character. The EBSD map of the 

repolished section revealed that the sample recrystallized, maintaining only a few regions 

with grain orientations similar to the starting orientations. There was no evidence that the 

original twin structure had been preserved, however a new network of twins with the 

same 62.8° misorientation was discovered. This new twin network appeared to be at an 

angle, slanting through the sample cross section much like the secondary IMC. No other 

set of grains in the repolished cross section appeared to be connected or have a grain 

boundary structure that extended across the joint, as would be required for boundaries 

associated with the secondary IMC. It was hypothesized that the grain structure of the 

joint was maintained for the first 12-hour timestep of EM testing, but the joint 

recrystallized in later timesteps. Multiple thermal cycles deformed the bulk of the joint 

which caused it to recrystallize and form randomly oriented grains and a second set of 

twins. This type of 62.8° twinning is common in Sn and forms both during solidification 

(Lehman et al. 2010; Ma et al. 2018; Bieler et al. 2012) and thermomechanical fatigue 

(Sidhu & Chawla 2008; Chen et al. 2015; Terashima et al. 2009; Lee & Stone 1994; 

Matin, Vellinga & Geers 2006) so it is not unexpected. However, because the secondary 
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IMC formed with a distinct orientation it was suspected that the secondary twin network 

formed before the majority of the randomly oriented recrystallized grains formed, 

otherwise the other recrystallized grains would have disrupted the twin network and the 

secondary IMC would have formed more randomly. 
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Figure 31. (a) Surface reconstructions of 0-hour and 100-hour timesteps with Sn 

(transparent green), voids (blue) and IMC (pink and purple). Grey rectangle on 100-hour 

reconstruction shows the location of post-testing polished sample surface. (b) SEM 

images of sample at (left) 0 hours and (right) after 100 hours of testing. 100-hour sample 

was repolished to show internal structure. (c) OIM maps of surfaces shown in (b) with 

{101) twin grain boundaries (misorientation of 62.8° about a common <100] axis) 

marked in black and β-Sn tetragonal crystal lattices of major orientations overlaid. The 0-

hour map shows twins extending into sample depth while the 100-hour map shows a 

second set of {101) twin grain boundaries on a different orientation. (d) Inverse pole 

figures (IPFs) of OIM maps in (c). 

 

5.3.3. Void Evolution 

As mentioned in Section 4.3.2, x-ray microtomography has also been used to 

investigate void formation and growth during EM testing of various solder alloys (Xie et 

al. 2014; Bieler et al. 2012; Han et al. 2012; Matin, Vellinga & Geers 2007). Figure 32 

(a) shows the surface reconstructions of the voids and sections (b) and (c) plot the total 

void volume and number of voids at each interface over time. The largest void was left 

out of the volume and number plots as it would drown out all the other voids and make 

trends difficult to visualize. Typically, a sample undergoing EM would experience an 

increase in void growth at the electron-inflow interface due to the migration of Sn and Cu 

atoms away from the interface and no voiding or void shrinkage at the electron-outflow 

interface. Our sample deviated from this expected behavior in that both interfaces 

experienced void shrinkage. One possible explanation for this was that thermal cycling 
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compressed the voids, collapsing voids that would otherwise have contributed to the total 

volume and void growth calculations. In order to test this theory, the largest and therefore 

easiest to visualize void was isolated and its height was measured over time, as shown in 

Figure 32 (d). The largest electron-outflow void decreased approximately 40 µm in 

height, matching the 40 µm compression of the solder bulk from section 4.3.1, and the 

largest electron-inflow void decrease approximately 20 µm in height. Another supporting 

feature was that neither void changed in width or depth, indicating that the force 

compressing the voids was uniaxial and acted along the length of the solder joint. This 

result suggested that thermal cycling effects may have obscured or limited void growth 

typically expected of EM tested samples.  

In contrast to many papers discussing EM voiding, the voids in this sample did not 

propagate in a pancake-void (Bieler et al. 2012; Mertens, Kirubanandham & Chawla 

2015; Borgesen et al. 2018; Chang et al. 2017; Lee et al. 2011) fashion, instead they 

remained mostly spherical or broke into smaller subvoids. The phenomena of a single 

void breaking into subvoids has been little discussed in EM literature, likely because 

without 3D nondestructive analysis techniques it is impossible to know how voids in the 

final structure related to the initial structure. Void splitting has been suggested in 

simulation literature with little experimental validation (Kim & Lu 2006; Averbuch, 

Israeli & Ravve 2003). With x-ray microtomography it was possible to track the 

evolution of a single void and therefore capture a void breaking into subvoids, as 

occurred at the electron-inflow interface. The following physical description of the void 

splitting process was suggested by the analysis of the void surface renderings and the 

repolished cross section of the sample after testing. First, a spherical void was present at 
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the planar Sn/Cu interface. Due to the current-crowding zone around the edge of the void, 

Cu diffusion occurred rapidly, consuming the Cu interface around the perimeter of the 

void. The void increased in size due to the accumulation of vacancies that resulted from 

the Sn and Cu diffusion, but it did not remain spherical due to the uneven consumption of 

the Cu interface. Instead, the base of the void grew into the divots left behind by the 

diffusing Cu. Viewed in cross section the void was now a hemisphere with lobes on each 

side. If this void were compressed along its vertical axis the main hemisphere would 

disappear and the void regions in the divots of the Cu interface would be pinched off 

from one another. This is evolution is shown schematically in Figure 33. The net result of 

this process would be a decrease in total void volume, but a dramatic increase in void 

number. This trend is shown in the plot in Figure 32 (c) where the number of voids 

doubled between the 75-hour and 100-hour timesteps and the total void volume 

decreased. In contrast, the opposite Sn/Cu interface remained planar and saw a linear 

decrease in void volume and void number as voids were filled in by interfacial IMC 

growth or collapsed by thermal cycling-induced compression.  
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Figure 32. (a) Surface reconstructions of voids at 0, 12, 25, 50, 75, and 100-hour 

timesteps. (b) Void growth and void number change for voids along the electron-outflow 

interface, excluding the largest void. (c) Void growth and void number change for voids 

along the electron-inflow interface. (d) Surface reconstructions of the largest void at the 

interface, showing compression in the vertical dimension over time. 
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Figure 33. Schematic representation of void splitting over time as a result of uneven 

consumption of the electron outflow Cu interface and solder compression due to thermal 

expansion of Cu substrate bars. Electron flow is indicated with a dashed arrow and 

thermal compression along the length of the solder joint is indicated with solid black 

arrows. 

 

5.4 Summary 

In this study, the evolution of surface damage, IMC growth, and void growth driven 

by EM was characterized in the context of a bicrystal solder joint composed of a large 

fast diffusion grain with a preexisting twin network and a smaller slow diffusion grain. 

Interrupted testing created a second experimental component, thermal cycling, the effects 

of which were discussed. 3D x-ray microtomography was used to quantify and visualize 

the Sn solder matrix, grain boundary and bulk IMC, and voids. SEM and EBSD 

characterization linked grain orientation and structure to the evolution of surface damage, 

IMC growth, and void growth. The following conclusions were drawn. 

1. The thermal cycling caused grain boundary sliding along the high angle 

horizontal grain boundary between the fast and slow diffusion grains due to 

the mismatch in c-axis orientation between the two grains. Evidence of fatigue 

crack formation resulting from grain boundary decohesion was found and a 
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compression of 40 µm was determined due to the repeated CTE of Cu bars 

connected to the solder.  

2. Visible surface features resulting from EM included protrusion and sink-in of 

surface IMC particles in the slow diffusion grain and in the vicinity of the 

high angle grain boundary. 

3. X-ray microtomography revealed IMC growth in two distinct regions in the 

solder joint: along the twin boundaries in the bulk of the fast diffusion grain 

and along the horizontal grain boundary. IMC growth along the horizontal 

grain boundary was initially close to that in the bulk region of the solder, ~2 

µm3/sec and ~3.9 µm3/sec respectively, but after 25 hours the grain boundary 

IMC growth decreased to ~0.4 µm3/sec while the bulk IMC growth continued 

at ~3 µm3/sec. It is possible that as the IMC network forming in the bulk 

coarsened, it prevented Cu atoms from reaching the horizontal grain 

boundary, therefore limiting the growth of IMC in that location. 

4. IMC growth in the bulk of the fast diffusion grain was shown to develop in 

two distinct orientations. The primary orientation resulted from IMC pile up at 

the slanted twin boundaries due to a large increase in the angle between the c-

axis and electron flow. The IMC grew along the twins, but that structure 

began to decay and at 25 hours a secondary IMC structure was forming with a 

different orientation. The two IMC networks both initially grew at a rate of ~7 

µm3/sec with clearly defined linear orientations. EBSD analysis of a cross 

section within the solder revealed recrystallization and the formation of a 

second twin network in the same region as the secondary IMC. It is suspected 
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that both IMC structures took their orientations from the twin networks 

present in the joint.  

5. Unlike most EM studies, voids at both electron-inflow and electron-outflow 

interfaces shrank. Void growth was likely suppressed and overshadowed by 

the compression resulting from thermal cycling of the joint, as the largest 

pores at both interfaces showed signs of compression along the length of the 

joint. 

6. Uneven consumption of the electron-inflow Cu interface due to current-

crowding around interfacial voids created divots in the interface that caused 

interfacial voids to develop irregular structures. Upon compression from 

thermal cycling the voids broke into many smaller subvoids, characterized by 

an overall decrease in void volume at an interface in conjunction with an 

increase in void number.  

Although the sample selected for testing had a simple, bicrystal structure with two 

major grain orientations and two major types of grain boundaries, the IMC evolution 

revealed in this study is complex, with growth and decay of various orientations in the 

short testing time of 100 hours. Without x-ray microtomography, it would have been 

impossible to observe and track the microstructural changes this joint underwent. This 

work highlights the importance of 3D characterization in conjunction with 2D analysis 

techniques and its ability to link phase morphology with grain structure. Both grain 

orientation and grain boundary character were important in understanding how and where 

IMC growth occurred, in particular the unique plate-like patterning of IMC formed along 

the twin networks. The formation of large, regular IMC structures as opposed to random 
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IMC particles or needles will impact how solder joints deform and should be investigated 

further. The unusual void shrinkage noted at both interfaces could shed light on how 

compressive stresses could reduce void growth normally accelerated by EM. 
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CHAPTER 6 

THERMAL AGING AND ELECTROMIGRATION EFFECTS IN INDIUM-

CONTAINING TIN-RICH SOLDERS 

6.1 Introduction 

In-containing alloys have gained popularity as a possible replacement for 

conventional Sn-Ag-Cu solders because of their low melting temperatures (Shalaby 2015; 

Kanlayasiri, Mongkolwongrojn & Ariga 2009; Sommadossi & Fernandez Guillermet 

2007; Tian et al. 2018; Li et al. 2014), high shear and bending strengths (Wang, Yuan & 

Luo 2012; Tian et al. 2017), greater hardness (Shalaby 2015; Kanlayasiri, 

Mongkolwongrojn & Ariga 2009), greater creep resistance (Shalaby 2015; Vianco et al. 

2007), and interfacial IMC suppression (Tian et al. 2017; Kanlayasiri & Sukpimai 2016). 

Additions of In to Sn-Cu, Sn-Ag, and Sn-Ag-Bi solders showed the improved behaviors 

listed above, but the precise mechanism behind how In causes these changes is not well 

understood. It has been shown that in eutectic Sn-In, In segregates to the electron inflow 

interface under EM due to the back stress created by the Sn atoms migrating in the 

direction of the electron flow (Daghfal & Shang 2007; Li et al. 2016). However, at lower 

concentrations In no longer segregates, but instead forms IMC compounds such as 

Cu6(Sn, In)5 and Cu3(Sn, In) that are both at the solder/pad interfaces and throughout the 

bulk of the joint (Shalaby 2015; Wang, Yuan & Luo 2012; Tian et al. 2017; Lee, Kim & 

Suganuma 2011; Daghfal & Shang 2007). At the interfaces, In additions have been 

shown to suppress the formation of Cu3Sn (Tian et al. 2017; Kanlayasiri & Sukpimai 

2016) during thermal aging, while bulk IMC particles may impede Cu diffusion along 

grain boundaries (Lee, Kim & Suganuma 2011). In additions have also been seen to 
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cause grain refinement, which slows interstitial Cu diffusion because a randomized grain 

texture ensures that no large grains will dominate the diffusion behavior of the joint (Lee, 

Kim & Suganuma 2011). In additions have even been investigated as a possible solution 

to Sn whiskering by reducing the strength of the surface Sn oxide, reducing the 

hydrostatic pressure that drives whisker extrusion (Mahapatra et al. 2017). SnCuIn solder 

alloys are evidently attractive candidates for use in microelectronic devices, but their 

microstructure is not well understood. Simulations of SnCuIn alloys have presented the 

possibility of many binary phases and a ternary phase making characterization a complex 

task (Kao 1997; Liu et al. 2001; Bahari et al. 2003; Lin et al. 2009). A variety of 

fabrication techniques has also made In trends difficult to identify. For example, a 2015 

study by Shalaby reported a refined IMC structure and high hardness and Youngs 

modulus values for a SnCu alloy modified with In, processed by melt spinning. The 

extremely rapid cooling rate of the fabrication procedure could also have produced a fine 

IMC structure and the effect of In is unclear. Studies vary in reflow time from 60 seconds 

(Lee, Kim & Suganuma 2011) to ten minutes (Tian et al. 2018), making comparisons in 

IMC formation impossible as a long reflow time will saturate Sn solder with Cu6Sn5 IMC 

particles. To further complicate matters, In is soluble in Cu3Sn and Cu6Sn5 but difficult to 

detect using EDS due to the energy overlap between Sn and In so reports showing EDS 

results cannot be trusted. Finally, most In-containing solder studies focus on thermal 

aging or EM, not a combination although EM does have a thermal component. An in-

depth understanding of how In impacts IMC formation and microstructure under both 

EM and thermal aging would be critical in refining these alloys for commercial 

application. 
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6.2 Materials and Experimental Procedures 

 Solder joints were fabricated by reflowing solder paste deposited between two Cu wires 

(5N purity, ESPI Metals) 250 µm in diameter. Joints were reflowed in pairs, one joint 

containing Sn-0.7wt%Cu solder paste (provided by collaborators from Intel Corporation) 

and the other containing Sn-0.7wt%Cu-<1.0wt%In (provided by collaborators from Intel 

Corporation), on a hot plate according to the profile shown in Figure 34.  

 

Figure 34. Reflow profile for SnCu and SnCuIn solder joint pairs. 

 

Nine sets of solder joints were fabricated, three for each of the following experimental 

conditions: EM, thermal aging at 160°C, and thermal aging at 200°C. Each test was 

conducted for three time increments: 24, 96, and 200 hours. EM testing was done at a 

current density of 1x104 A/cm2 and both thermal aging conditions had a variation of 2°C. 

All three tests were conducted in an insulated box furnace to reduce temperature 
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fluctuations. The EM test temperature varied between 160°C and 200°C without 

application of a background temperature from the furnace, likely due to resistive heating 

from the testing set up.  

After testing for 24, 96, and 200 hours the solder joints were removed from the 

testing fixture, mounted in epoxy and polished to an 0.05 µm colloidal silica finish for 

SEM analysis (Zeiss Auriga FIB-SEM). Interfacial IMC thickness was determined by 

selecting a 45 µm long section of IMC from the center of the Cu interface, calculating the 

area of IMC and dividing the area by the length of the region. Image analysis for IMC 

calculation was done in ImageJ (U.S. National Institutes of Health, Bethesda, Maryland, 

USA). Interfacial IMC thickness developed from EM and thermal aging of both solder 

alloys was quantified and compared. EDS was done to identify In-containing regions for 

further analysis, however the characteristic x-ray emission lines of Sn and In are very 

similar making a small concentration of In difficult to detect in a Sn matrix. A possible 

In-cluster was located in the 200-hour EM-tested joint and subjected to wave-dispersive 

x-ray spectroscopy (WDS) to confirm the presence of In. Once the region was confirmed 

to contain In, a transmission electron microscope (TEM) lamella was prepared from the 

site. The lamella was analyzed in TEM to determine the structure of the In-containing 

region and how it related to the solder matrix.  

6.3 Results and Discussion 

 Polished cross sections of the nine SnCu and nine SnCuIn solder joints were compared 

after testing to determine if and how the In addition had affected the solder 

microstructure. Figure 35 shows the SnCu set and Figure 36 shows the SnCuIn set. Upon 

inspection the following trends become clear: the electron inflow interface or left side of 
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the joint has a thinner IMC layer, the electron outflow interface or right side of the joint 

has a thicker IMC layer with a very irregular scalloped surface, and finally the joint width 

varies between 150 µm and 90 µm. The thinner and thicker interfacial IMC layers at the 

left and right sides of the joint, respectively, are formed during reflow as evidenced by as 

fabricated joints and are not a result of testing. The method of preparation relied on 

alignment of two 250 µm Cu wires by hand and this led to the variability in joint width 

visible in the SEM images. The cross sections were analyzed using EBSD to determine 

grain size, grain orientation, and grain boundary density. There was no detectable 

difference in grain structure between the SnCu and SnCuIn joints, or across testing 

conditions. This is contrast to Lee et al’s 2011 findings that In addition resulted in 

refinement in grain structure. However, at the low concentration used in this experiment 

(<1wt% In) it is possible that grain refinement would not occur, as Lee et al used alloys 

with 4wt% In and greater. Studies using solder alloys with lower In concentrations have 

not commented on grain size (Shalaby 2015; Kanlayasiri, Mongkolwongrojn & Ariga 

2009; Kanlayasiri & Sukpimai 2016). 
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Figure 35. SEM images of SnCu solder joint cross sections, polished after testing. 
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Figure 36. SEM images of SnCuIn solder joint cross sections, polished after testing. 

 

 The irregular Cu6Sn5 IMC layers formed upon reflow and testing of the majority of the 

joints were not present in the SnCuIn EM-tested samples, as shown by the interfacial 

SEM images in Figure 37. Visual inspection shows that after 200 hours, the In-containing 

sample had planar IMC layers at both electron inflow and outflow interfaces, while the 

SnCu sample still exhibited a scalloped morphology at both interfaces. The SnCuIn 

sample had a very thin electron inflow interface IMC compared to the SnCu sample, 

where significant Cu3Sn growth was seen. In order to investigate the effect of the In 

addition on IMC growth, the total IMC thickness, Cu6Sn5 IMC thickness, and Cu3Sn IMC 

thickness over time were plotted for each composition. The electron inflow IMC interface 
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growth is shown in Figure 38 and the outflow interface growth is shown in Figure 39. At 

the electron inflow interface, Sn and Cu atoms are driven away and initial interfacial IMC 

layers dissolve. If an interfacial IMC layer is present after EM-testing it is typically very 

thin. The SnCu sample had a thin IMC layer at the inflow interface, but the SnCuIn 

sample had a thinner IMC layer consistently across the three testing time steps. Figure 38 

shows that both IMC phases decreased in thickness in the SnCuIn sample, while the 

SnCu sample exhibited consistent growth of both. This is in contrast with the electron 

outflow interface, where both solder alloys exhibited overall growth although the SnCuIn 

samples grew more slowly. Instead of the parallel Cu6Sn5 and Cu3Sn growth seen in the 

electron inflow interface for both solder alloys, the IMC growth at the outflow interface 

differed between the two IMC compounds. In the SnCu solder, the Cu6Sn5 IMC grew 

more rapidly than the Cu3Sn layer while in the SnCuIn the opposite occured. The Cu3Sn 

growth in both alloys was similar at the outflow interface. 
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Figure 37. Higher magnification SEM images of the 200-hour EM-tested SnCuIn and 

SnCu solder joint interfaces, with phases and current flow direction marked. 

 

 

Figure 38. Electron-inflow interfacial IMC growth trends for total IMC thickness (solid 

lines), Cu3Sn thickness (large dashed lines), and Cu6Sn5 IMC thickness (fine dashed 

lines). SnCu IMC growth is in light green and SnCuIn IMC growth is in dark green. 
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Figure 39. Electron-outflow interfacial IMC growth trends for total IMC thickness (solid 

lines), Cu3Sn IMC thickness (large dashed lines), and Cu6Sn5 IMC thickness (fine dashed 

lines). SnCu IMC growth is in light green and SnCuIn IMC growth is in dark green. 

 

In a 2016 study Kanlayasiri and Sukpimai suggested that addition of In to a low 

Ag SAC alloy reduced the growth of Cu3Sn due to the incorporation of In into the 

interfacial IMC layers, stabilizing them and making the transformation from Cu6Sn5 to 

Cu3Sn difficult (Kanlayasiri & Sukpimai 2016). This result was based on SEM and EDS 

analysis of solder samples aged for 1000 hours at 135°C and 170°C and SAC alloys with 

0.5 – 3 wt% In. Our study does not show suppression of the Cu3Sn layer, instead the most 

notable difference between the SnCu and SnCuIn alloys is the suppression of Cu6Sn5 

visible in Figure 39.  The argument that In could thermodynamically stabilize IMC 
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phases in the Sn-Cu system is plausible, as researchers have shown that In is highly 

soluble in multiple Sn-Cu IMCs (Ramos de Debiaggi et al. 2012; Liu et al. 2001; Lin et 

al. 2009), however detection of accurate In concentrations in Cu3Sn and Cu6Sn5 phases 

via conventional EDS techniques is doubtful. The Sn Lα peak is separated from the In Lα 

peak by 0.157 keV or 157 eV (Jeol, EDS analysis energy table), very close to the 

approximate 130 eV energy resolution of EDS (Schwandt 2014). Therefore it would be 

very difficult to separate In signals from Sn and in most cases the EDS results for In in 

solder appear to simply mimic the Sn distribution with a lower intensity (Kanlayasiri & 

Sukpimai 2016; Tian et al. 2018). That noted, studies have reported In segregation at the 

electron inflow interface due to a back stress created by diffusing Sn (Sommadossi & 

Fernandez Guillermet 2007; Li et al. 2016) so EDS mapping of the electron inflow 

interface was done to investigate this effect. EDS mapping did not reveal a concentration 

of In near the electron inflow interface, although it is possible at the low concentration 

such segregation would not occur as this effect was only seen in In - 48wt% Sn alloys.  

The IMC growth analysis suggested that the In addition effected Cu6Sn5 growth at 

the electron outflow interface so this region was selected for wavelength-dispersive x-ray 

spectroscopy (WDS) analysis as WDS has an energy resolution of 10 eV and would be 

able to distinguish between Sn and In (Schwandt 2014). The results of the WDS analysis 

are summarized in Figure 40 with Cu, Sn, and In maps in an interfacial region containing 

a grain boundary, Sn matrix, Cu substrate, and both IMC phases. A pure In standard was 

not available so the WDS results are qualitative and not quantitative. There was no 

detectable In concentration along the grain boundary, although Lee et al (Lee, Kim & 

Suganuma 2011) suggests this could be possible at higher In concentrations. A small dark 
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cluster in the Sn matrix adjacent to the Cu6Sn5 layer showed the only In concentration in 

the sample. Once the cluster was identified, the 24, 96, and 200-hour EM-tested SnCuIn 

samples were reanalyzed used EDS and a total of 15 In-containing clusters were 

identified. The cluster location within the sample was plotted versus EM-testing time as 

shown in Figure 41. The clusters formed or migrated closer to the electron outflow 

interface with increasing EM-testing time, suggesting that In diffusion occurred in the 

electron flow direction, the same as Cu and Sn diffusion. No clusters were seen in the 

thermally aged samples at either temperature. 

 

 

Figure 40. (a) WDS elemental maps for Cu, Sn, and In, showing In concentration in one 

region in Sn matrix. (b) SEM image of 200-hour EM-tested SnCuIn sample with In-

containing region marked in yellow. Area for TEM lamella extraction is boxed in red and 

indicated. 
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Figure 41. In-containing cluster location within the SnCuIn solder joints, showing cluster 

concentration at the electron outflow interface with increasing EM-testing time. 

 

 Once an In-containing cluster had been identified, a TEM lamella was prepared by 

focused ion beam (FIB) milling and lift out from the region indicated in red in Figure 40 

(b). The lamella was meant to contain a grain boundary and the In cluster visible on the 

sample surface, however SEM and TEM analysis, shown in Figure 42, show that the 

surface cluster was not visible. It could have been destroyed in the process of sample 

thinning or simply not be visible using the tilt angles available in the TEM sample stage. 

Ion-thinning also posed an issue at the grain boundary, as a void was present at the 

boundary and rapidly grew during sample preparation. The uneven thinning around the 

boundary caused by the void made TEM analysis of the grain boundary difficult, but no 

second phase particles were seen. However, a spherical phase particle approximately 50 

nm in diameter was detected, shown in Figure 42 (c-e). The particle was distinct in that it 

displayed two darker edges indicating strain caused by incoherency with the Sn matrix 
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and two lighter edges indicating coherency with the matrix. Fast fourier transform (FFT) 

analysis of the particle and surrounding material revealed that it was a triclinic Cu7In3 

particle in pure Sn matrix, shown in Figure 43. To investigate its coherency relationship 

with the matrix, FFTs were taken in a line from the center of the particle, across the 

particle-matrix boundary, and into the bulk. The progression of FFTs shown in Figure 44 

(b) demonstrate the transition from the (-122) plane of the Cu7In3 particle to the (001) 

plane of the Sn matrix. The atomic spacing of the planes was calculated to be 3.21Å and 

3.18Å, respectively, a 0.3Å difference that was easily accommodated. This analysis 

confirmed the semicoherent nature of the Cu7In3 particle with the Sn matrix, a 

relationship that has not been described before. No other In-containing IMCs were 

identified. It is possible that the trace amount of In migrated to the electron outflow 

interface and then reacted with Cu in the solder bulk to form Cu7In3. A high density of 

semicoherent secondary IMC particles could form a strain field adjacent to the electron 

outflow interface, limiting Cu diffusion to the interface and therefore slowing the growth 

of Cu6Sn5. The growth of Cu3Sn would not be affected, as it forms by consuming the 

Cu6Sn5 layer already present at the interface in the as-fabricated condition.  
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Figure 42. (a) SEM image of TEM lamella at intermediate thinning stage, with a hole that 

has formed along the grain boundary. (b) TEM image of lamella, with grain boundary 

marked. (c-e) TEM images of large spherical particle in the Sn matrix. 
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Figure 43. (a) TEM image of spherical particle in the Sn matrix. (b-c) Higher resolution 

TEM images of regions indicated in (a). (d-e) FFT analysis of marked regions the particle 

to be Cu7In3 and the matrix to be pure Sn.  
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Figure 44. (a) TEM image of spherical Cu7In3 particle in the Sn matrix, with particle 

boundary indicated. (b) FFT’s taken along the red line indicated in (a), progressing from 

1, inside the particle to 8, in the Sn matrix. FTT’s show coherency between the (-122) 

plane of Cu7In3 and the (001) plane Sn. 

6.4 Summary 

 The goal of this study was to determine how the addition of a trace amount of In (<1 

wt%) would affect the microstructure and evolution of solder joints subjected to EM and 

thermal aging. EM testing was done at a current density of 1x104 A/cm2 and thermal 

aging was done at 160°C and 200°C. The tests were run for 24, 96, and 200 hours with a 

sample fabricated at each condition for both a SnCu and SnCuIn alloy, resulting in a total 

of 18 solder joints. The polished joint cross sections were analyzed using SEM, EBSD, 

and EDS. The 200-hour EM-tested SnCuIn joint also underwent WDS characterization 

and a TEM lamella was prepared from an interfacial region shown to contain In. The 

following results were discovered. 

1. There was no microstructural difference between the SnCu and SnCuIn 

samples that underwent thermal aging. 

2. No grain refinement or In segregation to grain boundaries was seen in any 

testing condition. 

3. In the EM-tested samples, the SnCuIn solder experienced suppression of 

Cu6Sn5 growth at the electron outflow interface, instead of Cu3Sn 

suppression reported by other researchers (Kanlayasiri & Sukpimai 2016). 

4. WDS analysis of an interfacial region of the 200-hour EM-testing SnCuIn 

sample revealed a cluster of In adjacent to the electron outflow interface. 
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Further EDS analysis of In-containing clusters in showed progressive 

movement of the clusters toward the electron outflow interface with 

increasing EM-time. This suggests that at low concentrations In diffuses in 

the same direction as other alloy elements, instead of the back diffusion 

seen in solders with high In concentrations (Li et al. 2016). 

5. TEM analysis confirmed that In was present in the form of a Cu7In3 

particle. FFT analysis demonstrated that the particle had a semicoherent 

relationship with the Sn matrix. 

This study confirmed that In addition to a SnCu alloy might help reduce EM-

induced damage by suppressing the formation of Cu6Sn5. It also highlights the difficulty 

in characterizing samples with trace additions of alloying elements, especially if they are 

close to the majority constituent on the periodic table. In-containing solder alloys exhibit 

a wide variety of behaviors, highly influenced by sample fabrication technique and In-

concentration, making comparison between studies difficult. While In has been reported 

to be soluble in interfacial Sn-Cu IMC layers (Ramos de Debiaggi et al. 2012; Liu et al. 

2001; Lin et al. 2009), this is believed to be the first reporting of a semicoherent 

relationship between a Cu7In3 particle and Sn matrix. The effect of a high density of 

semicoherent particles on EM-driven diffusion is interesting and should be studied 

further.  
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary of Research Findings 

• Single crystal and bicrystal pure Sn solder joints were isolated from a larger 

sample through a two-step fabrication technique. Multiple joints with a variety of 

grain orientations and structures were created with nearly identical void and IMC 

distributions. Samples were selected for EM-testing and thermal aging based on 

their θ angle orientations and grain boundary character so grain orientation and 

grain boundary effects on EM damage could be studied and compared. Lab-based 

x-ray microtomography allowed for the quantification and visualization of 

microstructural phases in 3D and the calculation of bulk IMC and void growth 

rates that were previously not possible. 

• Single crystal and bicrystal samples with similar θ angles were thermally aged 

and compared to EM-tested samples. Thermally aged samples experienced little 

surface deformation and showed IMC growth in the form of particle coarsening 

along grain boundaries. EM-tested samples displayed an enormous difference in 

IMC growth between low θ angle, high θ angle, and bicrystal samples composed 

of both high and low θ angle grains, highlighting the importance of grain 

orientation in EM-damage.  

• Solder grain orientation and structure were found to strongly influence the 

structure and orientation of Cu6Sn5 IMC grown during EM in the low θ angle and 

bicrystal samples. Rapid diffusion of Cu to the electron outflow interface, without 

impedance in the solder bulk, resulted in the growth of coarse columnar Cu6Sn5 
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grains with a basal plane alignment parallel to the solder-Cu interface. The IMC 

columns consumed nearly the entire solder matrix. The bicrystal sample displayed 

a complex network of rod-like Cu6Sn5 IMC particles that nucleated at grain 

boundaries in the sample bulk and therefore had random orientations.  

• The formation of Cu6Sn5 IMC particles at grain boundaries was linked to 

extensive sample recrystallization by PSN recrystallization where particle growth 

at grain boundaries causes recrystallization of the matrix surrounding the particle 

and therefore increased grain boundary density for particle formation. The 

combination of 3D IMC structure provided by x-ray microtomography, 

orientation and structure provided by EBSD analysis, and cross section 

characterization in the SEM was critical for this discovery. 

• Void growth in EM tested samples was shown to take two distinct forms: void 

faceting, previously unreported in solders, and void burrowing. Void faceting 

formed as a result of anisotropic atomic diffusivity on void surfaces, characteristic 

of Sn. Void burrowing occurred due to rapid diffusion of Cu into the solder bulk 

and a local increase in current density surrounding interfacial voids. In high θ 

angle grains, spherical voids developed flat facets and pointed corners, while in 

low θ angle grains voids remained spherical while the Cu interface evolved 

around them.  

•  The relationship between grain boundaries and Cu6Sn5 IMC structure was further 

probed with interrupted EM testing of a bicrystal solder joint containing a high 

angle boundary perpendicular to the electron flow and a series of parallel 62.8° 

twins. X-ray microtomography revealed that while IMC growth along the twin 



117 

boundaries and horizontal boundary were both rapid initially, the coarsening of 

IMC in the solder bulk created a shadowing effect and slowed growth of IMC 

along the horizontal grain boundary. The bulk IMC initially formed in parallel 

plates, aligned with the twin boundaries, but upon further testing a secondary bulk 

IMC formed. The secondary IMC also formed in plates, but on a different 

orientation, and consumed the primary IMC. Through EBSD and SEM analysis of 

post-testing cross sections, a secondary network of twins was identified and 

related to the secondary IMC network. Cyclic removal of the solder joint for 

tomography resulted in cyclic thermal expansion and compression of the solder 

bulk, which formed the secondary twin network.  

• Thermal cycling appeared to mitigate void growth in the interrupted EM bicrystal 

sample. Voids at both interfaces showed shrinkage in line with the compression 

experienced by the solder region as a whole. Cu diffusion along the electron flow 

direction created an uneven Cu interface due to current crowding around 

interfacial voids. Upon compression the voids were collapsed against the uneven 

Cu interface and broke into many small voids in a process termed void splitting. 

• The effect of trace addition of In (<1 wt%) on the behavior of SnCu solder 

undergoing thermal aging and EM was studied at three time steps. Interfacial IMC 

characterization detected no microstructural difference between thermally aged 

samples of SnCu or SnCuIn. EM-tested SnCuIn samples displayed lower IMC 

growth at the electron inflow interface and suppressed Cu6Sn5 growth at the 

outflow interface when compared to SnCu counterparts. This finding contrasts 
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with the reported Cu3Sn suppression found during thermal aging of In-containing 

solders. 

• In-containing clusters, identified through WDS and EDS, were found to migrate 

in the direction of the electron flow and accumulate at the electron outflow 

interface. TEM analysis of a lamella prepared from an In-containing region found 

a triclinic Cu7In3 particle in the Sn matrix. The particle had a semicoherent 

relationship with the Sn matrix, suggesting that a high density of such particles 

could affect the lattice strain adjacent to the electron outflow boundary and the 

diffusion of Cu atoms to the interface, causing the suppression of interfacial 

Cu6Sn5 growth. 

7.2 Future Work  

 This work has demonstrated the complex, interconnect nature of grain structure, alloy 

composition, and EM-damage concerns of IMC and void growth, but much remains to be 

done. An avenue of future research could be the relationship between IMC formed at 

various grain boundary types and joint failure through mechanical loading. Hexagonal 

Cu6Sn5 is weakest along its basal plane, making transgranular fracture through particles 

aligned in the same direction easy. Conversely, disconnected, randomly oriented IMC 

particles would fracture at a variety of stresses and require a crack to progress through the 

Sn matrix before connecting to another particle, leading to the slowing of crack growth. 

Void faceting is another potential reliability concern, due to the formation of corners that 

could become stress concentration sites. As single crystal, slow diffusion solder joints are 

attractive for mitigating IMC growth, the degree of faceting and its relationship with 

mechanical loading and joint fracture should be characterized to better understand their 
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reliability. The finding that thermally induced compression halted void growth could be 

carried further as an investigation into the reduction of EM-caused void growth by 

inducing compressive stress in the solder matrix through the addition of second phase 

particles or alloying elements. To the same aim, further studies into the effect of In on 

solders should probe a variety of compositions and study EM in the context of single 

crystal and bicrystal joints in order to isolate structural effects. Instead of constant 

temperature holds, as were done for the thermal aging studies, the effect of thermal 

cycling on electromigration damage should also be further explored. Samples could be 

thermally cycled from a selected low temperature to a selected high temperature, based 

on the application desired for that solder composition, for example -55°C to 95°C for 

solder in an automotive context. Thermal cycling should be done with and without 

current application to elucidate the differences between pure electromigration and the 

combination of thermal and electromigration effects. Finally, this research could be 

further expanded upon by modifying sample geometry to better mimic solder joints 

created in industry by adding silicon dies, PCB connections, and underfill. All of these 

components experience thermal expansion and resistive heating. Their inclusion would 

add an additional layer of complexity and realism to thermal and electromigration 

studies.  
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