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ABSTRACT

In many social-ecological systems, shared resources play a critical role in supporting the

livelihoods of rural populations. Physical infrastructure enables resource access and reduces

the variability of resource supply. In order for the infrastructure to remain functional, institu-

tions must incentivize individuals to engage in provision and maintenance. The objective of

my dissertation is to understand key formal and informal institutions that affect provision of

shared infrastructure and the policy tools that may improve infrastructure provision. I examine

these questions in the context of irrigation systems in India because infrastructure maintenance

is a persistent challenge and system function is critical for global food production.

My first study investigates how the presence of private infrastructure, such as groundwater

pumps, affects the provision of shared infrastructure, such as shared tanks or surface reservoirs.

I examine whether formal institutions, such as water pricing instruments, may prevent under-

provision of the shared tanks. My findings suggest that in the absence of rules that coordinate

tank maintenance, the presence of private pumps will have a detrimental effect on system pro-

ductivity and equality. On the other hand, the combination of a fixed groundwater fee and a

location-based maintenance fee for tank users can improve system productivity and equality.

The second study examines the effect of power asymmetries between farmers, caused by

informal institutions such as caste, on the persistence of political institutions that govern infras-

tructure provision. I examined the effect of policy tools, such as non-farm wage employment

and informational interventions, on the persistence of two types of political institutions: self-

governed and nested. Results suggest that critical regime shifts in political institutions can be

generated by either intervening in formal institutions, such as non-farm wage employment, or

informal institutions, such as knowledge transmission or learning mechanisms.

The third study investigates how bureaucratic and political corruption affect public good

provision. I examine how institutional and environmental factors affect the likelihood of cor-
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ruption and infrastructure provision. I demonstrate that cracking down on corruption is only

beneficial when infrastructure provision is poor. I also show that bureaucratic wages play an

important role in curbing extralegal transactions and improving infrastructure provision.
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Chapter 1

INTRODUCTION

In many social-ecological systems, shared resources play a critical role in supporting the

livelihoods of rural populations. Examples of such systems include irrigated agriculture, com-

munity forestry, and coastal fisheries. In these systems, human interactions with the resources

are mediated by physical infrastructure, which is often consciously designed by humans and en-

ables access to the resource (Anderies, 2015). Examples of such physical infrastructure include

irrigation canals, fishing gear, etc.

A fundamental problem faced by human societies concerns the provision and maintenance

of shared physical infrastructure (Cárdenas et al., 2017). Provision decisions may include

whether or not to participate in construction and cleaning of shared irrigation canals, in refor-

estation, or in using appropriate fishing gear that protects fish. Often, individual provision

decisions depend on the proportional equivalence between the benefit of resource appropria-

tion and cost of provision (Ostrom, 1990). Designing institutions that shape these incentives

is, therefore, a critical endeavor.

Numerous empirical cases suggest that institutions can effectively manage provision of

shared infrastructure. A few examples of such cases include irrigation communities in India

and Nepal (Bardhan, 2000; Lam and Ostrom, 2010), small-scale fisheries in Northwest Mex-

ico (Lindkvist et al., 2017), and forests in the middle hills of Nepal (Gautam and Shivakoti,

2005). These cases provide an important foundation for understanding institutional designs

that succeed in mitigating the emergence of dilemmas regarding provision of shared infras-

tructure. However, to apply these lessons more broadly, we need to understand how and why

institutions are crafted and sustained, and what consequences they generate in diverse settings.
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In this dissertation, I will attempt to address these objectives by analyzing small-scale irrigation

systems in India.

Small-scale irrigation systems, which are used by nearly 84% of farms worldwide (Lowder

et al., 2016), contribute to nearly 40% of the world’s food production (Bruinsma, 2017). In

India, a country that holds nearly a quarter of the world’s agricultural land, 44% of the land is

under irrigation (Gleeson and Wada, 2013). Agriculture contributes to nearly 20% of India’s

Gross Domestic Product (Bhattacharya, 2017). In order to improve agricultural productivity,

the Indian government has investedmore than $10 billion since 1990, to repair, rehabilitate, and

build irrigation infrastructure (Shah, 2009; Smilovic et al., 2015). Yield and water productivity,

however, continue to decline due to poor irrigation infrastructure (Shah, 2009) and concern for

food insecurity and inequity is increasing.

Several factors affect the provision of irrigation infrastructure and these may be understood

through a coupled infrastructure systems (CIS) approach. Figure 1 shows the CIS framework,

which has been adapted from Anderies (2015) to understand how the interactions between irri-

gators and irrigation water are mediated by institutions, irrigation infrastructure, and irrigation

agencies. I will explore different components of this framework in my thesis to broadly under-

stand (i) the key political-economic factors that affect the incentives to maintain shared irriga-

tion infrastructure, and (ii) the policy instruments that may improve the provision of irrigation

infrastructure.

Chapter 2 examines how private infrastructure affects provision of shared infrastructure.

It explores how private infrastructure affects individuals’ incentives to engage in provision

of shared infrastructure as well as the corresponding effect on overall resource availability. I

operationalize this broad research question by examining how groundwater pumps affect the

collective maintenance of surface reservoirs in tank irrigation systems in South India (Mosse,

2008). The focus of this chapter is on links 1, 4, and 6 in Figure 1.
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Resource Users:

• Irrigators

Private Groundwater

Pumps

Public Infrastructure:

1) Shared canals, tanks, etc.

2) Water Allocation Rules

3) Maintenance Rules

4) Irrigation Bureau/Bureaucrats, etc.

Public Infrastructure

Providers:

1)Water User Associations

2)Politicians, etc.

Resource:

• Irrigation Water

1 2

6

4 3

5

Figure 1. The Coupled Infrastructure Systems (CIS) Framework. Adapted from (Anderies,
2015) to represent an irrigation system.

For those that are able to invest in private infrastructure, access to private pumps may

reduce reliance on shared infrastructure and, therefore, the importance of its maintenance. This

can negatively impact the groups of irrigators that still rely on the shared infrastructure for their

water (Ostrom, 2003), and reinforce the adoption of groundwater pumps (Palanisami, 2006).

The tension between provision of shared infrastructures and adoption of private infrastructure

is a problem that also persists in other types of systems. One example is the problem of the

utility-death spiral in the electricity industry (Castaneda et al., 2017). As adoption of solar PV

by households (private technology) increases, utility companies increase tariffs to compensate

for reduced revenue in order to be able to maintain the grid (shared infrastructure). This further

prompts solar PV adoption. There has been relatively little work on which types of policy

interventions are required to improve the provision of public goods in these contexts.

I developed a stylized replicator dynamic model to investigate the effects of pricing in-

struments, such as volumetric fees, on the maintenance of the shared tanks in systems where
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users have access to private groundwater pumps. I demonstrate that the combination of a fixed

groundwater fee and a volumetric fee on tank users that is differentiated based on where users

are located in the system can improve system productivity and equality.

Chapter 3 examines how heterogeneity among resource users determines the political in-

stitutions that persist in an irrigation system and the resulting effect on provision of irrigation

infrastructure. Heterogeneity refers to the social stratification of users determined by cultural

norms, such as caste, that may lead to power asymmetries among resource users (Ruttan, 2006).

The focus of this chapter is also on links 1, 4, and 6 in Figure 1.

Much of the literature on institutions recognizes their importance for economic perfor-

mance in a society (North, 1994; Acemoglu and Robinson, 2006). There is limited understand-

ing, however, of what determines the persistence of institutions. Specifically, how does the

presence of power asymmetries in a system affect the persistence of political institutions that

govern public good provision? To answer this question, I developed a stylized compartmental

model that traces the institutional choice of individuals in an irrigation system. Using this men-

tal model of elites and non-elites, I examined the effect of policy tools, such as non-farm wage

employment and informational interventions, on the persistence of two political institutions:

self-governed and nested. I demonstrate that critical regime shifts in political institutions can

be generated by either intervening in formal institutions, such as non-farm wage employment,

or informal institutions, such as knowledge transmission or learning mechanisms in the system.

I also show that in systems where public infrastructure depreciates at a given rate, changes in

the rate of learning in mental models of elites relative to the rate of infrastructure decay can

result in a shift to political institutions that enable better infrastructure provision. This is con-

trary to situations in which elites’ mental models are strongly influenced by non-economic

considerations, such as their cultural beliefs, and the system persists in political institutions

with inferior infrastructure provision (Baker, 2011).
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In Chapter 4, I examine how public infrastructure providers determine the level of infras-

tructure provision in a system facing environmental shocks. I operationalize this research ob-

jective by examining how the presence of extralegal side payments between politicians and

bureaucrats affects the provision of irrigation infrastructure in a government-managed irriga-

tion system. The focus of this chapter is on links 3, 6, and 2 in Figure 1.

Irrigation reform discussions focused on enhancing the role of bureaucrats have previously

dissociated politics from their analysis and assumed benevolence on the part of the bureaucrat

(Moe, 2006). However, research shows that in developing countries like India, infrastructure

provision efforts of bureaucrats can be affected by the demands for extralegal payments by

their superiors (Muneepeerakul and Anderies, 2017). In this case, the superior is the politician

(Wade, 1982). Through these side payments, bureaucrats are guaranteed their jobs even if they

undersupply the public good. Failure to comply with their superior’s demands, however, can

result in the bureaucrat’s removal from office. On the other hand, the politician’s incentives

to demand extralegal side payments are shaped by the electorate, or the irrigators, who require

the irrigation infrastructure to be functional for their livelihoods.

I developed a stylized principal-agent model to examine how institutional and environmen-

tal factors affect (i) the likelihood of corruption, and (ii) the provision of infrastructure. My

model results suggest that a crackdown on extralegal side payments can result in lower provi-

sion of infrastructure when the system experiences high uncertainty in environmental shocks

to the infrastructure. In other words, cracking down on corruption is only beneficial when in-

frastructure provision is bad. I also show that bureaucratic wages play an important role in

curbing extralegal transactions and improving infrastructure provision.

Finally, in Chapter 5, I summarize my findings, and outline the theoretical and practical

implications for irrigation policy in India.
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Chapter 2

EFFECT OF PRIVATE INFRASTRUCTURE ON THE PROVISION OF SHARED

IRRIGATION INFRASTRUCTURE IN SOUTH INDIA

2.1 Introduction

In many social-ecological systems (SES), shared infrastructure mediates interactions between

humans and resources. For example, smallholder agricultural systems, which are important

for food security and economic growth in many developing countries (World Bank, 2008), de-

pend on irrigation infrastructure through which farmers appropriate water. Though tradition-

ally, resource users relied upon shared infrastructure to access resources in a SES, increasing

resource scarcity and changing opportunity costs have made private infrastructure more desir-

able. A core problem in these SESs is that people who still rely on shared infrastructure for

their livelihoods are now faced with the challenge of maintaining livelihoods because the shift

to private infrastructure is often made at the expense of the shared infrastructure. How does

the presence of private infrastructure affect the ability of individuals to solve collective action

problems related to the provision of shared infrastructure and distribution of resources? What

policy instruments are required for improving the provision of shared infrastructure under these

circumstances? This study examines these questions using a stylized model of a small-scale ir-

rigated agricultural system. This is important because half a billion people manage agriculture

systems around the world rely on shared infrastructure (Frenken and Gillet, 2012; Suhardiman

and Giordano, 2014).

In many small-scale irrigation systems, agricultural productivity depends heavily on the

quality of shared irrigation infrastructure, such as tanks (or surface reservoirs), canals, and

weirs. Three empirical findings emerge from a comparative case-study analysis of such sys-
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tems. First, is the social dilemma associated with provision of public goods, such as canals

and related irrigation infrastructure (Olson, 1993; Janssen et al., 2011; Muneepeerakul and An-

deries, 2017; Cárdenas et al., 2017). Second, is the dilemma associated with appropriation of

commons, such as groundwater (Burness and Brill, 2001; Hellegers et al., 2001; Cody et al.,

2015; Smith et al., 2017). Third, is the challenge of efficient distribution of water in irriga-

tion systems with asymmetric access to the resource (Ostrom and Gardner, 1993; David et al.,

2015).

The literature highlights the feedbacks between individuals’ provision and appropriation

decisions given the dependence on shared infrastructure in a system. However, individuals

using private infrastructure to access a resource may also negatively affect the provision of the

shared infrastructure (Ostrom, 2003). For example, adoption of private groundwater pumps

may result in reduced maintenance of shared infrastructure, such as reservoirs and canals. On

the other hand, poor quality of the shared infrastructure may reinforce the adoption of pumps

and over-appropriation of the groundwater resource (Wade, 1989). The institutions required

for addressing negative externalities caused by the interaction between different types of in-

frastructures is not well understood.

In this study, I develop a stylized replicator dynamic model to examine how price-based

interventions may improve the overall productivity and equity between upstream and down-

stream communities in an irrigation system with both shared and private infrastructures and

an asymmetric distribution of irrigation water. I contextualize the model predictions using the

case study of tank irrigation systems in South India. The two primary economic instruments

often used in irrigation management are water markets and water fees (Johansson et al., 2002).

The difference between these two instruments is in their implementation.

Water fees, such as volumetric and non-volumetric pricing, require the presence of a central

agency, such as a water user association, to set the price of water, monitor water use, and collect

7



the fees (Wade, 1989; Tsur and Dinar, 1997). Water markets, on the other hand, provide more

flexibility in setting the price of irrigation water based on scarcity, and have been proven to

eliminate water allocation inefficiencies in systems where there is no central authority or the

central authority fails to respond to changingwater demands (Shah and Zilberman, 1991; Easter

et al., 1999). However, for water markets to work, there needs to be an irrigation agency, such

as the state, which defines tradable water rights, enforces property rights, and resolve potential

disputes among farmers (Zilberman et al., 1997).

I focus on water fee instruments in the study for three reasons. First, it is well-known that

policy instruments, such as volumetric pricing of water, may serve as signals for scarce re-

sources and induce farmers to change their appropriation and provision decisions accordingly

(Ostrom et al., 1994; Dinar and Mody, 2004; Tsur, 2005; Johansson et al., 2002). Second, in

the systems that I examine, there is often a water user association, which makes the implemen-

tation of these instruments feasible. Third, water markets may be less relevant because in the

absence of other fees, they will tend to gravitate towards a single price instrument for water

and ration water scarcity within the catchment. However, they don’t address provisioning of

shared infrastructure, , making them a panacea incapable of handling all the dilemmas in the

system.

In this study, I examine three important challenges: (i) the provision dilemma associated

with tanks, which is exacerbated by the presence of private groundwater pumps, (ii) the over-ap-

propriation of the groundwater, which may be reinforced by the provisioning dilemma, and

(iii) the negative externality caused by the withdrawal of water by upstream communities on

the productive use of tank water by downstream communities.

In systems that face multiple challenges, it is usually not feasible to achieve an efficient

outcome using a single policy instrument (Tinbergen, 1952). I postulate that the overall pro-

ductivity and distributional outcomes at system equilibrium may be improved with the use of
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multiple instruments compared to the use of a single policy instrument. Specifically, I exam-

ine three types of instruments: (i) a volumetric fee on tank users, which may be differentiated

based on their location; (ii) a volumetric fee on groundwater users; and (iii) a fixed fee on

groundwater users.

Three conclusions emerge from the analysis. First, the analysis shows that in the absence

of rules for provision of shared infrastructure, the presence of a private infrastructure, like a

groundwater pump, to access a common-pool resource is an unmitigated bad and can push

farmers into a poverty trap. Second, the model results suggest that by using multiple price

instruments, we may not only improve total system productivity, but also improve equality in

the system. Specifically, the results show that a differentiated fee on tank users and a fixed

fee on groundwater users play a key role in addressing both the provisioning and water alloca-

tion challenges. The differentiated volumetric fees for tank users help mitigate the externality

caused by the upstream users due to their position. The fixed water fee reduces the number

of groundwater users in the system and disincentivizes groundwater pumping on the extensive

margin. This fee also helps mitigate water scarcity through improving the condition of the tank

infrastructure.

2.2 Empirical Background

Tanks, or surface reservoirs, are human-constructed earthen structures that capture rainfall and

surface run-off, and are the most important sources for irrigation in the southern states of India

dating as far back as 300 BC (Rangarajan, 1992; Mosse, 2006). Tank irrigation accounts for

about 55 percent of the total irrigated area in the state of Andhra Pradesh in South India and ap-

proximately 25 percent of the total rice production in India (Meinzen-Dick et al., 2010). They

usually range in sizes from 20 to 1,000 hectares. Water from the tank is distributed to agri-

cultural fields in the command area by gravity flow, through a variable number of sluices and
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canals. Collective maintenance of the shared tank and related physical structures is, therefore,

critical for the infrastructure to remain functional.

The share of tank-irrigated area in Andhra Pradesh declined by around 30 percent between

1990-1991 and 2000-2001, and many tanks are now physically in disrepair (Palanisami, 2006).

The reasons for the decline of tanks are complex and historically specific. These include colo-

nial tax systems, deforestation, land use change, intensified cropping patterns, encroachment

of tank beds, and siltation (Mosse, 1999). Adequate examination of all these reasons is well

beyond the scope of this paper. However, a particularly prominent diagnosis of these systems

has long been that individualized water control through adoption of private infrastructure, such

as groundwater pumps, has impinged upon the functioning of tank systems.

Provision andmaintenance of tanks, in the form of labor or money, often requires collective

action among farmers. On the other hand, farmers may access shared groundwater through

privately installed pumps that do not require collective action. Farmers using groundwater

irrigation, often, do not contribute towards the maintenance of tanks (Meinzen-Dick, 1984).

Reduced maintenance leads to excessive siltation and decline in performance of the shared

infrastructure, thereby incentivizing more farmers to shift to groundwater irrigation.

To make matters worse, access to tank water may be further diminished in systems with

an upstream-downstream asymmetry to water distribution. The size of tanks is often deter-

mined based on the water requirement of crops and the number of farms in their command

area, and they are designed to meet the water requirements of both upstream and downstream

farmers. However, when siltation makes water availability scarce, upstream farmers, by virtue

of their location, may over-appropriate in the absence of effective rules for coordination (Wade,

1989). This results in an inefficient distribution of the tank water to the downstream farmers

and pushing them to adopt groundwater technology.

In such systems, an engineering solution in the form of expanding the size of tanks is not
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feasible due to constraints on land availability and the high fixed costs involved in building

new infrastructure. Moreover, in the absence of rules that prevent upstream farmers from over-

appropriation, simply increasing the size of the tank may not guarantee more water availability

to downstream users (Wade, 1989).

The fact that groundwater can play an important role as a buffer against water scarcity

needs no elaboration. It has been well documented that agriculture productivity in systems

with groundwater irrigation are generally higher than those with surface water irrigation in

India (Shah, 2010). Furthermore, strong arguments have been made that access to groundwater

plays a critical role in poverty alleviation in India (Kerr, 2002; Dubash et al., 2002).

One problem, however, with groundwater is that access is not uniformly distributed. A

major share, about 40 percent, of the tank irrigated area in South India is accounted by small-

holder farmers (less than 2 hectares) (Meinzen-Dick et al., 2010). Since these farmers are

mostly poor, they often cannot afford cost-intensive irrigation technologies, such as groundwa-

ter pumps. Even in cases where farmers are able to access the technology through government

subsidies, the benefits of groundwater tend to disproportionately favor the early adopters, who

are typically wealthy farmers. As aquifer levels decline, the fixed costs of drilling the wells and

the variable pumping costs increase. Early adopters of the technology often accumulate suffi-

cient capital to diversify their incomes or to be able to deepen their wells as the aquifer level

declines. Considering the irreversible nature of the high initial investments made by farmers in

groundwater technology, later adopters are locked into the technology and risk being pushed

into a chronic poverty trap (Barrett and Swallow, 2006; Janakarajan and Moench, 2006).

A large body of work in economics has analyzed the externalities of groundwater extraction

and offers clear prescriptions in the form of optimal policy instruments (Gisser and Sanchez,

1980; Burt, 1967; Smith et al., 2017). Much of this work examines optimal groundwater man-

agement through the lens of appropriation dilemmas caused by competitive patterns of water
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extraction. However, the competition for groundwater may be exacerbated by the provisioning

dilemma and locational asymmetry associated with a shared infrastructure, such as a tank. In

such cases, there may be a need for an integrated set of institutions to coordinate the infrastruc-

ture provision and water distribution processes.

2.3 Model Structure

To explore the interdependencies between the appropriation and provision dilemmas in an ir-

rigation system explicitly, I develop a model of farmers’ choice of infrastructure and their

appropriation decisions conditional on this choice. The model is loosely parameterized based

on data gathered from 40 focus group discussions and 80 interviews conducted in 10 irrigation

communities in the state of Andhra Pradesh in South India. I also draw upon the ethnographic

work of Mosse (2008, 1999), Palanisami (2006), and Meinzen-Dick (1984) on tank irrigation

systems in South India.

In the model, individual farmers have two strategies for irrigation: R andG. Rs rely on the

shared tank infrastructure to receive their irrigation water. Gs use private groundwater pumps

for irrigation. I examine how the strategies of farmers and the resource availability change

over time. For the remainder of the the discussion, I use the notation that subscripts refer to the

village and superscripts refer to the type of infrastructure the farmers rely upon for irrigation

water. For example, πR
1 refers to the profit of tank users in the upstream village and πG

1 refers

to the profit of groundwater users in the upstream village.

Consider N farming households spread across two villages (village 1 and village 2) that

manage a shared irrigation tank and access the groundwater aquifer through private ground-

water pumps (Figure 2). Tank users have an asymmetric access to the tank water, whereas

groundwater users in both villages access a shared aquifer.
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Shared Tank (Reservoir)

Village 1 Village 2

Groundwater Aquifer

Figure 2. Graphical representation of the system layout. Villages 1 and 2 have asymmetric
access to the tank water. Village 1 has an advantage over village 2 in receiving water from the
shared tank. Both villages have a symmetric access to the groundwater through private
pumps.

There are N1 and N2 households in each village, respectively, with N1 + N2 = N .1

Farmers may choose one of two irrigation technologies for water: the fraction of farmers who

rely on tank irrigation in village 1 and village 2 are X1 and X2 respectively. Conversely, the

fraction of farmers who rely on groundwater pumps in each village are (1−X1) and (1−X2).

I assume that farmers are endowed with the same acreage. This assumption is consistent

with my observations in Andhra Pradesh where a majority of farmers own small farms (2-4

acres). I also assume that sufficiently strong monitoring and enforcement mechanisms exist in

the irrigation system, which ensure that all tank users contribute towards maintenance of the

1Lack of human capital, liquidity and other entry barriers to rural non-farm employment prevent migration
in these systems (Meinzen-Dick, 1984).
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shared infrastructure. I assume that the maintenance efforts are coordinated by an irrigation

agency, such as the Panchayat Samiti, or Regional IrrigationMinistry of Andhra Pradesh. This

agency may either be a farmer managed water user association or the state.

I assume that the tank infrastructure and groundwater aquifer are in pristine states initially,

i.e., the tank is at full capacity and the groundwater availability is at 100%. This assumption

mimics the initial conditions of the tank irrigation systems I examine. I also assume that a

small fraction (0.1%) of the populations in upstream and downstream villages are groundwater

users. This assumption is made to overcome the limitation of replicator dynamics in dealing

with strategy innovation in the system (Gintis, 2009).

2.3.1 Shared Infrastructure Dynamics

The function of the tank is to capture a monsoon’s worth of rain that flows into the system

and distribute water availability for the planting season. In the analysis, I assume that the area

of the tank remains fixed. Consequently, the amount of water that is available in the tank for

irrigation is equal to the capacity (or depth) of the tank. As the tank becomes more silted, its

capacity reduces and consequently, the water available for irrigation decreases.

Farmers must maintain the shared infrastructure each year through desilting and repair

works. If too few farmers contribute towards maintenance, the infrastructure is heavily silted

andwater availability is reduced. In themodel, I assume that there is always sufficient monsoon

flows to fill the tank, regardless of its capacity. This assumption allows me to treat the tank

capacity as analogous to the water available in the tank. I denote the capacity of the shared

infrastructure with R. The dynamics of R are assumed to be:

dR

dt
= θ
(M
R

)µ
− σR (2.1)

where R ≤ Rmax, M is the total maintenance revenue collected from farmers in villages 1

and 2, θ scales the marginal productivity of the maintenance investment, and σ is the natural
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rate of siltation of the tank. µ is a scaling parameter between 0 and 1, which relates how the

effect of maintenance and infrastructure capacity change across different levels of maintenance

investment.

The term
(

M
R

)µ
assumes a diminishing effect of maintenance on capacity of the infras-

tructure at the margin. That is, as more silt is removed and the depth of the tank increases,

more effort is required to remove an equal amount of silt because of biophysical factors, such

as water logging and soft sediment.

2.3.2 Resource Dynamics

The equation ofmotion for groundwater stock, derived from simplifiedmass-balance equations,

assumes the “bathtub” aquifer model (Provencher and Burt, 1993). I assume that dynamics of

the tank and aquifer are physically decoupled, i.e., there is no recharge of the aquifer from the

tank. The equation of motion describing the height of water table,G, in an underground aquifer

is:

dG

dt
=ρ− κ(N1(1−X1)g1 +N2(1−X2)g2) (2.2)

whereG ≤ the surface of the farmland, χ, ρ is the recharge to the basin, gi is the groundwater

appropriated by an individual farmer in village i, and κ is a parameter reflecting the influence

of a unit withdrawal on the water table height. This parameter will depend on the size, shape,

and porosity of the aquifer. In the model, I assume κ is equal to 1.

2.3.3 Benefit Components

An individual farmer’s profit flow is the outcome of an instantaneous optimization problem

in which the farmer chooses the amount of water they appropriate. I assume that all inputs,

including capital, are adjusted for a given amount of water or are fixed. Moreover, I assume
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that the prices of inputs and outputs are fixed. Under these assumptions, the quadratic seasonal

benefit accrued by a farmer in village i is:

BR
i = βri − 0.5r2i (2.3)

BG
i = βgi − 0.5g2i (2.4)

where ri is the quantity of tank water appropriated by an individual farmer in village i. The

intercept of the benefit functions, β, represents the monetary value of the additional output

generated by the first unit of irrigation water.

The first derivative of equations 2.3 and 2.4 allows me to solve for the factor demand

for water under all the aforementioned assumptions. This demand curve has a negative slope,

an assumption common in previous studies of irrigation water use (Khan and Young, 1979;

Howe et al., 1990). This assumption implies that the marginal benefit diminishes as a function

of the supply of irrigation water to farmers. The diminishing function occurs because of the

biological response of crops to water (Small and Carruthers, 1991). To simplify the analysis, I

also assume that the connectivity between the soil and groundwater salinization is negligible.

This assumption allows me to define similar benefit functions for tank and groundwater users.

2.3.4 Cost Components

The marginal fee paid by a tank user towards the maintenance of the shared infrastructure in

village i is assumed to be α. I assume that the cost of pumping water out of irrigation canals

for a tank user is negligible. Therefore, the total cost for a tank user in village i is proportional

to their water usage and is given by: αri.

The price instrument I envisioned for groundwater users is a unit fee, γ, which is charged

per unit of groundwater extracted. Therefore, the total cost for a groundwater user in village

i is: γgi. The revenue generated from this fee will go towards the maintenance of the tank. I
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observed that in nine out of the ten study sites, γ is equal to zero. This is also consistent with

the several other irrigation communities in South India (Meinzen-Dick, 1984). However, there

are a few cases, such as the Pani Panchayat system, where groundwater users pay a marginal

fee on groundwater use (Keremane et al., 2006). The revenue generated from this fee is spent

on provision of the shared tank.

Furthermore, the cost of pumping to a groundwater user depends on both the quantity of

water pumped to surface and the height of the water table. Cost is increasing in depth of water

and in total water pumped. The marginal cost of pumping water from the aquifer to the surface

is assumed to be a linear function of the lift of pump, (χ−G). The total cost for a groundwater

user in village i is equivalent to:

ci(G) = τ(χ−G)gi + γgi (2.5)

where χ is the surface of the farmland (inm),G is the height of the water table (inm), and τ is

the cost of pumping a unit of water (1m3) to a unit height ((1m). τ depends on the efficiency

of the pump and energy price.

2.3.5 Profit Functions

Individual farmers choose the amount of water to appropriate that maximizes their profits. The

profits of tank users in both villages may be summarized as:

πR
1 (R,X1) = max

r1
βr1 − 0.5r21 − αr1 (2.6)

s.t. 0 ≤ r1 ≤
R

N1X1

(2.7)

πR
2 (R,X1, X2) = max

r2
βr2 − 0.5r22 − αr2 (2.8)

s.t. 0 ≤ r2 ≤
R−N1X1r1

N2X2

(2.9)
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The constraints in the equations 2.7 and 2.9 demonstrate that during water scarcity, i.e., when

the water available is less than their unconstrained optimum, the upstream farmers consume

the available water in the tank and downstream farmers do not receive any water from the tank.

This reflects the asymmetry in distribution of tank water to downstream farmers. I also assume

that during water scarcity, water is distributed equally among tank users within the upstream

village.

The profits of groundwater users are equivalent to:

πG
i (G,X1, X2) = max

gi
βgi − 0.5g2i − ci(G)gi (2.10)

s.t. 0 ≤ gi ≤
G

κ(N1(1−X1) +N2(1−X2))
(2.11)

The constraint in equation 2.11 implies that when the groundwater available is less than the

unconstrained optimum, the upstream and downstream farmers share the groundwater equally.

This represents the competition over groundwater resources between upstream and downstream

farmers. That is, water pumped by farmers in village 1 affects the availability of groundwater

for farmers in village 1 and vice-versa. I also assume that water is shared equally among

groundwater users within each village.

To maximize the total agricultural income, farmers should choose the amount of water to

appropriate, which may be derived by solving equations 2.6, 2.8, and 2.10:

dπj
i

dxi
= 0 (2.12)
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where j = {R,G}. Solving equation 2.12 results in:

r∗1(R,X1) = min

(
β − α1,

R

N1X1

)
(2.13)

r∗2(R,X1, X2) = min

(
β − α2,

R−N1X1r
∗
1

N2X2

)
(2.14)

g∗1(G,X1, X2) = min
(
β − c1(G),

G

κ(N1(1−X1) +N2(1−X2)

)
(2.15)

g∗2(G,X1, X2) = min
(
β − c2(G),

G

κ(N1(1−X1) +N2(1−X2)

)
(2.16)

Given the choice of water appropriated by individuals, the aggregate maintenance revenue

collected in the system is:

M(X1, X2) = α[N1X1r1(R,X1) +N2X2r2(R,X2)]

+ γ[N1(1−X1)g1(G,X1, X2) +N2(1−X2)g2(G,X1, X2)] (2.17)

2.3.6 Decision Making

I develop a replicator dynamic model in order to understand the conditions under which farm-

ers decide to appropriate water from the tank and contribute to its maintenance versus engage

in groundwater extraction. Replicator dynamics model how individuals change their strate-

gies over time based on comparison of payoffs of tank and groundwater users in both villages

(Cressman and Tao, 2014).

The underlying assumption of replicator equations is that strategies with higher payoffs do

better and therefore, the frequency of a strategy changes at a rate equal to the difference between

its expected payoff and the average payoff of the population. Replicator dynamics also make a

plausible assumption that individualsmake decisions based on limited and localized knowledge

concerning the system (Gintis, 2009). The replicator equations track the fraction of tank users,
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Xi, in each village and may be summarized as:

dX1

dt
= ϕX1(π

R
1 − π1) (2.18)

dX2

dt
= ϕX2(π

R
2 − π2) (2.19)

where ϕ represents factors, such as fixed costs of switching strategies, problems of credit avail-

ability, and learning spillover effect, that may inhibit or enhance individual adoption and ex-

perimentation with profitable technologies (Foster and Rosenzweig, 2010). πR
i is the payoff

to a tank user in village i. πi the average payoff of a farmer in village i and is calculated as

πi = Xiπ
R
i + (1−Xi)π

G
i .

2.4 Analysis and Discussion

Before I turn to the analysis, let me recall that I am analyzing the following system of four

differential equations:

dR

dt
= θ
(M
R

)µ
− σR

dG

dt
= ρ− κ(N1(1−X1)g1 +N2(1−X2)g2)

dX1

dt
= ϕX1(π

R
1 − π1)

dX2

dt
= ϕX2(π

R
2 − π2)

with all terms and functions defined in the Table 1. I focus on three key challenges in the

analysis. To reiterate the earlier discussion, the system faces three challenges: (i) the dilemma

of adequately funding the shared tank, (ii) the dilemma of efficient rationing of water between

upstream and downstream users when upstream users have priority of physical access, and

(iii) the over-appropriation dilemma for the groundwater aquifer.

The theory of second best states that if the Pareto optimum in a system cannot be achieved

due to multiple challenges, then addressing only one of the challenges may not result in a
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Table 1. Definitions of State Variables and Parameters
Symbol Definition
Dynamical and decision variables
R Capacity of the shared infrastructure
G Height of water table
Xi Fraction of shared infrastructure users in village i
πR
i Payoff of shared infrastructure user in village i
πG
i Payoff of groundwater user in village i
t Time

Parameters
θ Marginal productivity of the maintenance investment
µ Scaling parameter
σ Natural siltation rate of the tank
ρ Replenishing rate of the groundwater resource
β Marginal benefit of water
αi Marginal fee paid by tank users in village i
γ Marginal fee paid by groundwater users
ψ Fixed fee paid by groundwater users
τ Marginal cost of pumping water
ξ Surface of the farmland
ϕ Responsiveness of individuals to economic payoffs

welfare improvement (Lipsey and Lancaster, 1956). For instance, using a single well-crafted

policy instrument, such as a volumetric fee, may improve the provision of the tank (Meinzen-

Dick, 1984). However, such a fee increase costs and may reduce profitability and drive the

adoption of the non-taxed, private groundwater pumps, resulting in exhaustion of the ground-

water aquifer. In such cases, the interaction effect of these challenges must be considered to

achieve a relatively efficient outcome. Such an outcome, by definition, is a second-best opti-

mum.

While it may still be worthwhile to target the single challenge, understanding the multiple

challenges facing the system is critical for setting the optimum second-best fee for the single

instrument. In a second-best world, multiple policy instruments may be necessary to achieve

an efficient outcome. As it turns out, in general, there must be at least one policy instrument

for each policy target (Tinbergen, 1952).
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I consider three instruments in the analysis and focus on the behavioral responses of farm-

ers to each combination of instruments: (i) volumetric fee on tank users, which is differentiated

based on their location (DP), (ii) the differentiated tank fees plus a volumetric fee on ground-

water users (IM), and (iii) the preexisting instruments plus a fixed fee on groundwater users

at the extensive margin (EM). In the next few sections, I will discuss the relevance of each

instrument and their effect on the decisions of farmers.

Last, I will examine the effect of the price instruments based on the assumption that the rev-

enue generated through fees is fully reinvested in the maintenance of the shared infrastructure.

This assumption is consistent with empirical evidence, which shows that water user associa-

tions that levy the fees do not typically have the authority to use the revenue from fees beyond

the confines of the irrigation district (Meinzen-Dick, 1984).

2.4.1 Grid Search Optimization

I begin the analysis by first calculating the optimum time-invariant values of each instrument

that maximizes the total profit when the system reaches equilibrium.2 For this, I use a grid

search optimization algorithm, which is explained below. Then, using the optimal values, I

examine the effect of the instruments on system productivity and equity.

The grid search method is a “hyper-parameter search algorithm” that utilizes an objective

function to perform a nonlinear optimization (Ruud et al., 2000). It involves setting up a grid

with suitable spacing, evaluating the objective function at all the points in the grid, and identify-

ing the grid point corresponding to the maximum value of the function. In the model, I use this

method to search through a range of possible values for each of the instruments and identified

the values for which the system productivity (total profit) is maximum at equilibrium. I run the

2I do not examine the optimal approach path because in the “real-world”, rigid policies make it excessively
costly to implement feedback-control rules that optimize fees adaptively based on changing infrastructure condi-
tion and resource availability.
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grid search algorithm each time I introduce a new instrument in order to reevaluate the existing

policy instruments and iteratively search for the optimum.

2.4.2 Profit Normalization and Model Calibration

In order to compare the profits across the different instruments, I rescaled the profits in villages

1 and 2 between 0 and 1, using the min-max normalization method, where the minimum profit

that an individual can make in the system is zero. Maximum profit is obtained in the system

when individuals are economically unconstrained, without the volumetric fees. This may be

given by: πmax = 0.5β2. I calculated the total system productivity by summing across the

rescaled individual profits.

I calibrated the model using both interview data and existing literature. I deduced the rate

of depreciation for the tank infrastructure from the interview questionnaire on changes in the

size of the tank over the past 10-15 years. Then, I verified the results with existing literature

on the biophysical properties of tanks in South India (Shah and Raju, 2002; Jayatilaka et al.,

2003). I calibrated the parameter values for groundwater recharge and unit cost of pumping

using existing groundwater research in South India (Anuraga et al., 2006; Reddy et al., 2009;

Reddy, 2005). The parameter value in the production functions, namely the marginal benefit of

water, was derived based on the interview questions on farmers’ income as well as the literature

(Sakurai and Palanisami, 2001; Anbumozhi et al., 2001). The full set of parameter values along

with the model code is provided in the Appendix.

2.4.3 Collapse of Tank Irrigation Systems in South India

In several irrigation systems where tanks are centrally-constructed and shared structures, if the

upstream farmers ignore the scarcity that they generate for those lower in the system, then they

get most of the water. Farmers at the upstream may even maintain the shared infrastructure
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by themselves, such that only they receive sufficient water for irrigation (Palanisami, 2006).

Consequently, those at the downstream have even less reason contribute to the continual main-

tenance of the tank. Indeed, these considerations suggest that downstream farmers have the

greatest incentives to leave the current state and seek out a new system in the form of ground-

water irrigation. In order to replicate these observations frommy field work, themodel includes

a volumetric fee, α, only on the tank users in this part of the analysis.

I first identified the value of α for which the total profit is maximum. For this, I created

a row vector of 1,000 uniformly spaced points in the interval [0,1] and ran the grid-search

algorithm. Figure 3 shows the results of the grid-search algorithm.
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Figure 3. The graph shows the results of the grid search optimization at system equilibrium.
The X-axis represents the type of price intervention and the Y-axis shows the value of price
instrument at system equilibrium. α is the marginal appropriation fee paid by tank users
under No Intervention. α1 and α2 are the marginal fees paid by upstream and downstream
tank users. γ is marginal groundwater pumping fee. ψ is the fixed groundwater fee.
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Figures 4 and 5 show the capacity of the tank and groundwater availability in the system

respectively. When the system is at equilibrium, the capacity of the shared tank is at roughly

65 percent. Since the water available in the tank is less than the unconstrained optimum of

the upstream users (Figure 7), they consume all the available water. Therefore, all the down-

stream farmers shift to groundwater resources (Figure 8), resulting in over-extraction of the

groundwater resources. In the absence of groundwater pumping fees, groundwater availability

is reduced to 1.25% when the system reaches equilibrium (Figure 5).
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Figure 4. The graph show the results for the four price interventions: (i) No Intervention
(solid red line): in this scenario, tank users pay a marginal fee: α; (ii)DP (dashed orange
line): in this scenario, upstream tank users pay a marginal fee, α1 and downstream tank users
pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this scenario, in addition to the
differentiated tank water fees, groundwater users pay a marginal fee, γ; and (iv) EM
(long-dash green line): in this scenario, in addition to the preceding instruments, groundwater
users pay a fixed fee, ψ.. The X-axis is time and the Y-axis shows the capacity of the shared
tank in percentage.
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Figure 5. The graph show the results for the four price interventions: (i) No Intervention
(solid red line): in this scenario, tank users pay a marginal fee: α; (ii)DP (dashed orange
line): in this scenario, upstream tank users pay a marginal fee, α1 and downstream tank users
pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this scenario, in addition to the
differentiated tank water fees, groundwater users pay a marginal fee, γ; and (iv) EM
(long-dash green line): in this scenario, in addition to the preceding instruments, groundwater
users pay a fixed fee, ψ. The X-axis is time and the Y-axis shows the groundwater available
in the aquifer in percentage.

Figure 6 shows the normalized profits in villages 1 and 2, and overall system performance.

In the absence of rules that offset the distributional advantage of the upstream farmers, the

system’s profits are concentrated within upstream farmers (Figure 6). Downstream farmers

receive only 1.4% of the total benefits from irrigation because of the poor condition of shared

infrastructure and depletion of groundwater resources. This is the case even when the level

of the infrastructure fee is optimized to maximize total system profits. The single policy in-

strument of an undifferentiated fee on tank water use cannot secure sufficient tank capacity to
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supply water to downstream users without inducing their exit from the system to groundwater

due to the strategic appropriation advantage of upstream users.
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Figure 6. The graph shows the profits of upstream and downstream profits when the system
reaches equilibrium. The X-axis shows different price interventions: (i) No Intervention
(solid red line): in this scenario, tank users pay a marginal fee: α; (ii)DP (dashed orange
line): in this scenario, upstream tank users pay a marginal fee, α1 and downstream tank users
pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this scenario, in addition to the
differentiated tank water fees, groundwater users pay a marginal fee, γ; and (iv) EM
(long-dash green line): in this scenario, in addition to the preceding instruments, groundwater
users pay a fixed fee, ψ. The Y-axis represents the normalized profits.

This result is consistent with empirical observations that downstream farmers are often

pushed into poverty traps because of poor maintenance of the shared tank and exhaustion of

groundwater resources (Meinzen-Dick, 1984). What is striking about this result is that an

examination of case studies of irrigation systems in India, Nepal, and Indonesia shows that
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Figure 7. The graph shows appropriation decisions of upstream tank users for different price
interventions: (i) No Intervention (solid red line): in this scenario, tank users pay a marginal
fee: α; (ii)DP (dashed orange line): in this scenario, upstream tank users pay a marginal fee,
α1 and downstream tank users pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this
scenario, in addition to the differentiated tank water fees, groundwater users pay a marginal
fee, γ; and (iv) EM (long-dash green line): in this scenario, in addition to the preceding
instruments, groundwater users pay a fixed fee, ψ. The X-axis represents time. The Y-axis
represents the individual tank water intake by upstream farmers.

in the absence of coordination rules for provision of the shared infrastructure, presence of a

private infrastructure may reinforce locational asymmetries in a system (Ostrom and Gardner,

1993; Wade, 1989; Bastakoti et al., 2010).

2.4.4 Differentiated Fee (DP)

The withdrawal of tank water by the upstream farmers creates an externality due to their posi-

tion. Their withdrawal may prevent productive use of the tank water by downstream farmers.

The limitation of using a single instrument for both upstream and downstream users is that if
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Figure 8. The graph shows the fraction of tank users in upstream and downstream villages at
system equilibrium. The X-axis shows different price interventions.: (i) No Intervention
(solid red line): in this scenario, tank users pay a marginal fee: α; (ii)DP (dashed orange
line): in this scenario, upstream tank users pay a marginal fee, α1 and downstream tank users
pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this scenario, in addition to the
differentiated tank water fees, groundwater users pay a marginal fee, γ; and (iv) EM
(long-dash green line): in this scenario, in addition to the preceding instruments, groundwater
users pay a fixed fee, ψ.

the fee is low, the capacity of the tank will be low, resulting in water scarcity. As a result, the

upstream farmers will consume all the tank water. If the fee is too high, the overall system

profitability is reduced in spite of better tank infrastructure, inducing exit to groundwater use.

Therefore, the optimum thing to do is to enforce a higher fee on the upstream users. I specify

differentiated marginal fees on the upstream and downstream tank users, which are given by

α1 and α2 respectively.

By levying two different taxes on the farmers, the profit function of tank users may be

rewritten as: πR
i = βri − 0.5r2i − αiri, where αi is the volumetric tax paid by a shared
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infrastructure user in village i. I ran the grid search algorithm to calculate the optimal values

of the fees for upstream and downstream tank users. For this, I created a 2-D grid with 2,5000

uniformly spaced points in the interval [0,1]. Then, I identified the values of α1 and α2 for

which the system productivity is maximized. The results of the grid search algorithm show

that when upstream shared infrastructure users pay 5.13 percent more than the downstream

users, maximum total profit is attained (Figure 3). When compared to the earlier scenario, the

fees for upstream tank users increase by 15% and downstream tank users are subject to an

increase of 7%.

Figures 4 shows the improvement in tank capacity. Capacity of the shared infrastructure is

at 70 percent, marking a increase of 5 percent compared to the case of single fee on upstream

and downstream tank users. The increase in the tank capacity may be explained by an increase

in the fees for both upstream and downstream tank users. In spite of the increase in availability

of tank water, upstream users are appropriating less water compared to the previous scenario

because of higher fees (Figure 7). Consequently, the profits of upstream users are reduced by

5.8% (Figure 6).

The combination of increased tank water availability and reduced appropriation by up-

stream users ensures that farmers at the downstream village receive more water (Figure 9).

The increase in availability of tank water for downstream farmers may also be observed in the

apparent increase in the fraction of tank users in the downstream village, representing a 91%

increase in downstream farmers who use tank water for irrigation (Figure 8). Fewer down-

stream farmers are adopting groundwater technology and therefore, there is a 25% increase

in the groundwater availability (Figure 5). To the extent that improved water supply from the

tank reaches a greater number of downstream farmers, they experience a 10% increase in their

profits, increasing the system profit by 8.6% (Figure 6).

The analysis illustrates the effectiveness of a higher maintenance tax for upstream farmers.
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Figure 9. The graphs shows the appropriation decisions of downstream tank users for
different price interventions: (i) No Intervention (solid red line): in this scenario, tank users
pay a marginal fee: α; (ii)DP (dashed orange line): in this scenario, upstream tank users pay
a marginal fee, α1 and downstream tank users pay a marginal fee, α2; (iii) IM (purple
dot-dash line): in this scenario, in addition to the differentiated tank water fees, groundwater
users pay a marginal fee, γ; and (iv) EM (long-dash green line): in this scenario, in addition
to the preceding instruments, groundwater users pay a fixed fee, ψ.. The X-axis represents
time. The Y-axis represents the individual tank water intake by downstream farmers.

The interpretation of this result may be that, if farmers are willing to pay more for reliable

water supplies (Bell et al., 2014), and the taxes collected are invested in the maintenance of the

shared irrigation infrastructure, then the higher maintenance taxes on upstream farmers may

produce efficiency gains.

Empirical cases of differentiated fees are few and far between. However, such an instru-

ment would be consistent with extant literature, which concludes that different taxes for up-

stream and downstream farmers, based on both water allocated and appropriated, may lead to

gains in economic efficiency and improve equity in the overall system (Bell et al., 2016). Im-
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plementing such a fee, however, in an actual irrigation system might face opposition because

farmers’ willingness to pay a higher tax is often contingent upon the expected reliability of

water supply (Bell et al., 2014). If their higher contributions do not quickly yield improved

tank infrastructure and economic performance, then farmers are likely to oppose such pricing

interventions. Implementing a higher tax on upstream farmers may also face opposition from

those whose decisions are not guided solely by economic considerations. They may be also be

driven by social norms, moral concerns, and power asymmetries (Bowles, 2008; Smith, 2018).

For instance, a volumetric fee failed to reduce water appropriation in Netherlands because

elite farmers used political power to exempt themselves from paying the fee (Schuerhoff et al.,

2013).

2.4.5 Volumetric Groundwater Pumping Fee (IM)

One way to further improve the productivity of the downstream farmers is through creating

optimal appropriation incentives for groundwater users. This may be achieved through a vol-

umetric fee on the intensive margin of groundwater users,γ, in addition to the preexisting fee

on tank users. The additional revenue collected from this fee is used for maintenance of the

tank. This instrument is motivated by the Pani Pachayat institution in South India (Keremane

et al., 2006), where owners of groundwater pumps also contribute towards maintenance of the

shared irrigation infrastructure.

In order to calculate the optimal value of γ, I used the grid search algorithm. I created a 3-D

grid with 27,000 uniformly spaced points in the interval [0,1]. Then, I identified the values of

γ, α1, and α2 for which the total system profit is maximum (Figure 3). The results of the grid

search algorithm show that in the presence of groundwater pumping, the fee for upstream tank

users decreased by around 3%, whereas the fee for downstream tank users decreased by 20%

(Figure 3). The decrease in the fees results in the upstream tank users appropriating more water
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in the presence of its increased availability (Figure 7), increasing their profits by 3% (Figure

6). As a result of increased appropriation by upstream tank users, the downstream tank users

receive similar quantity of water compared to the DP instrument (Figure 9). However, the

profits of the downstream farmers increase by 9%, which may be attributed to the decrease in

their fees (Figure 6). The total system productivity marginally improves by 2.6% relative to

theDP instrument because of introducing the volumetric groundwater fee.

Figure 8 illustrates the fraction of farmers in both villages who rely on the tank system in

the presence of a volumetric tax on groundwater users. I observe that, once again, all upstream

farmers are tank users and 93% of downstream farmers have switched to groundwater irrigation.

The 2% increase in the fraction of tank users in the downstream village may be explained by

the increased level of tank capacity and a higher groundwater fee.

By introducing a groundwater fee, the total revenue towards the maintenance of the tank

increases, resulting in an increase of 11% increase in the capacity of the tank relative to the

DP instrument (Figure 4). The groundwater fee contributes to nearly 9% of the total revenue

collected for maintenance of the tank (Figure 10).

The groundwater fee also reduces the pumping (Figure 11) and increases the groundwater

availability to 81%, representing a 57% increase compared to the groundwater availability in

the previous scenario with the DP instrument (Figure 5). The reduction in groundwater ex-

traction along the intensive margin is also observed empirically in extant literature, which con-

cludes that policy interventions in the form of Pigouvian-type taxes may internalize pumping

externalities and promote sustainable extraction (Gleick, 2010; Edwards, 2016; Smith, 2018).
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Figure 10. The graph shows the contribution of each instrument towards maintenance when
the system reaches equilibrium. The Y-axis shows the percentage contribution of each
instrument towards maintenance. The X-axis shows the four price interventions. (i) No
Intervention (solid red line): in this scenario, tank users pay a marginal fee: α; (ii)DP
(dashed orange line): in this scenario, upstream tank users pay a marginal fee, α1 and
downstream tank users pay a marginal fee, α2; (iii) IM (purple dot-dash line): in this
scenario, in addition to the differentiated tank water fees, groundwater users pay a marginal
fee, γ; and (iv) EM (long-dash green line): in this scenario, in addition to the preceding
instruments, groundwater users pay a fixed fee, ψ.

2.4.6 Fixed Groundwater Fee (EM)

The volumetric fees that create efficient appropriation incentives for tank and groundwater

systems may not sufficiently fund the infrastructure, leading to degradation of the tank and

the aquifer. This creates a need for additional funds to improve the capacity of the tank in-

frastructure. However, raising volumetric fees on tank users will force too many users to exit

to groundwater and raising groundwater pumping fees may price groundwater too dearly for

appropriation purposes. Moreover, raising groundwater fees may work against raising revenue
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Figure 11. The graph shows the pumping decisions of groundwater users over time for
different price interventions: (i) No Intervention (solid red line): in this scenario, tank users
pay a marginal fee: α; (ii)DP (dashed orange line): in this scenario, upstream tank users pay
a marginal fee, α1 and downstream tank users pay a marginal fee, α2; (iii) IM (purple
dot-dash line): in this scenario, in addition to the differentiated tank water fees, groundwater
users pay a marginal fee, γ; and (iv) EM (long-dash green line): in this scenario, in addition
to the preceding instruments, groundwater users pay a fixed fee, ψ. The X-axis represents
time. The Y-axis represents the individual groundwater intake by farmers.

for tank maintenance by reducing pumping demand. Therefore, I envision an additional instru-

ment, a fixed fee on groundwater users. This fee does not affect the marginal decision-making

regarding appropriation for both tank and groundwater users. It can, however, raise additional

funds along the extensive margin. Therefore, when combined with the IM price instrument,

I expect the fixed fee instrument (EM ) to reduce the number of groundwater pumps, while

simultaneously increasing the revenue for tank maintenance. The additional revenue collected

in the system is, again, invested in maintenance of the tank.

By levying a fixed fee on groundwater users, the profit function of a groundwater user
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in village i may be rewritten as: πG
i = βgi − 0.5g2i − cigi − ψ, where ψ is the fixed fee.

Once again, I ran the grid search algorithm to recalculate the optimal values of all the price

instruments. I created a 4-D grid with 390,625 uniformly spaced points in the interval [0,1].

Then, I identified the values of α1, α2, γ, and ψ for which the total profit is maximized.

The results of the grid search show that the optimal value of the fixed fee is nearly 22% of

the total system profits after deducting the fees (Figures 3 and 6). A 7% increase is observed in

the fees for upstream tank users, 28% reduction in fees for downstream tank users, and nearly

54% reduction in groundwater pumping fee. The combination of the EM instrument and a

higher fee on upstream tank users increases the tank capacity by nearly 7.5% (Figure 4). The

increase in the tank capacity means that the upstream tank users can meet their unconstrained

optimum, which is now lower compared to the previous scenario due to the higher fee on

upstream tank users (Figure 7). The higher fee on upstream tank users ensures there is more

water available for the downstream tank users (Figure 9). The fixed fee partially blocks exit

to the groundwater system and makes it possible to raise upstream fees to these levels, thus

addressing the upstream-downstream externality. Consequently, the number of tank users in the

downstream village increased by 3% compared to the previous treatment (Figure 8). Moreover,

the reduction in the groundwater fee results in higher rates of pumping (Figure 11), but the fixed

fee results in fewer groundwater users (Figure 8), resulting in an overall improvement in the

groundwater aquifer (Figure 5).

The economic performance increases significantly by nearly 18% and equality among both

villages improves as well (Figure 6). This result suggests that that the groundwater fixed fee

is an important part of improving the overall economic performance as well as equality. Re-

solving the water allocation problem among upstream and downstream users is usually viewed

entirely as a matter of water pricing (David et al., 2015). However, the fees that disincen-

tivize high water use by upstream users may also drive them out of the system, especially
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when groundwater is under-priced, which further exacerbates the water scarcity. On the other

hand, the volumetric fees that disincentivize high groundwater pumping may reduce the pump-

ing demand, and consequently the provision of the tank infrastructure. This tension between

addressing provisioning and appropriation dilemmas through the same instrument limits the

performance of volumetric fees alone. The fixed charge takes the pressure off the volumetric

fees to address the provisioning dilemma. The improved equality of upstream and downstream

users in Figure 6 shows that differentiated water pricing on tank users is now largely playing

an allocative role, and the fixed fee is addressing the provisioning challenge. Figure 10 shows

that the fixed fee contributes to nearly 3% of the maintenance revenue collected in the system.

A price instrument on the extensive margin of groundwater users may be relevant in the

South Indian context. Between 2002-2012, groundwater declined at an average rate of 1.4

meters per year in the southern states of Tamil Nadu and Andhra Pradesh in India (Chinnasamy

and Agoramoorthy, 2015). It was found that groundwater usage was nearly 8 percent more

than the annual recharge rates in both these states. A key characteristic of the two states is

that groundwater technology is subsidized by the state governments through provision of low-

interest loans and subsidized electricity. Low adoption and operational costs resulted in a rapid

expansion of groundwater irrigation and excessive pumping rates (Dubash, 2007). Therefore,

one way to reduce groundwater use is to increase the adoption costs of groundwater technology

so that fewer pumps are installed.

Designing a price instrument that reduces the number of groundwater pumps in the system

may also have positive consequences on collective-choice arrangements in the system. Given

the high, indivisible fixed costs associated with adopting groundwater technology, farmers

may organize collective action for low risk and regular activities, such as allocation of water

and maintenance of pumps (Aggarwal, 2007). However, such arrangements may frequently
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dissolve when confronted with pressures such as electricity shortages and the desire to shift

cropping patterns (Ghate, 1980).

2.4.7 Effect of Diminishing Returns of Maintenance on System Productivity

In the final part of the analysis, I examine the effect of diminishing returns of infrastructure

provision on the system productivity. There are two ways of redistributing the benefits of

maintenance revenue in a system. The first is to utilize the revenue solely for maintenance of

the shared infrastructure. Such revenue redistribution may offset the marginal cost of resource

appropriation and also, lower the overall cost of public good provision (Oates and Schwab,

1988). The second mechanism is to spend only a fraction of the tax revenue for maintenance

of the shared tank. The remaining amount may be redistributed in the system through other

mechanisms, such as dividends to farmers (Tsur and Dinar, 1997). Given the assumption of

diminishing returns of maintenance investments, there is a risk of over allocating resources for

provisioning of the tank infrastructure. Hence, it is important to consider how to redistribute

the benefits of the revenue generated from the price instruments.

This possibility is investigated by comparing the system productivity under different levels

of the revenue from fees (60%,70%,80%, 90%, and 100%) spent for maintenance of the shared

infrastructure. I used the optimal instrument values of the EM intervention for this analysis

because it yielded the highest productivity in the preceding analysis. For the cases where only

a fraction of the tax revenue (60%,70%,80%, 90%) is spent on maintenance, the remainder

maintenance revenue is added to the total profit as a lump-sum benefit. Then, the total profit

is normalized using the min-max normalization method described earlier.

Figure 12 shows the profits under different levels of revenue spent on maintenance of the

shared infrastructure. As the fraction of maintenance revenue spent on the tank infrastructure

is increased, the total profits increase at a decreasing rate. Moreover, when only 90% of the
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maintenance revenue is spent on maintenance of the shared infrastructure, system productivity

is similar to the scenario where the full revenue is spent for maintenance of the tank (Figure

12). This result suggests that due to diminishing returns of investments on tank maintenance,

more investments cease to provide any significant benefits in system productivity after a certain

point, and is likely to result in “over-provision” of the shared infrastructure. Instead, it may

be more efficient to consider alternative mechanisms, such as water dividends to farmers, to

redistribute some of the benefits of the fees, while still providing the marginal incentive effects

of water pricing and the groundwater fixed charge. A key consideration here is that these lump-

sum benefits must be designed such that they are behaviorally neutral and are likely to increase

the household income, but do not skew appropriation incentives at the margin.
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Figure 12. The graph shows the normalized profits of upstream and downstream villages at
system equilibrium for different fractions of maintenance revenue investment. The results
reported here are for the EM instrument, in which tank users pay a differentiated water fee
and groundwater users pay a fixed fee in addition to the marginal pumping fee.
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2.5 Conclusion

The use of human-constructed, shared infrastructure to access natural resources has been a

central feature of modern societies for centuries. Provision of shared infrastructure for contin-

ual delivery of resources is one of the key sustainability challenges we face currently. There

are several factors that affect the provision of shared infrastructures. One key factor that has

received relatively little attention in existing literature is the role of private infrastructure.

The relationship between private goods and provision of public goods has been widely ex-

amined in the economics literature. It has been suggested that private goods will likely improve

the provision of public goods, which are supplied by a monopolistic state agency (Pecorino,

2008; Cornes and Sandler, 1989; Vicary, 2004). On the other hand, presence of private infras-

tructure is also likely to worsen the provision of public goods in the context of scarce resources

(Cárdenas et al., 2017). Though much has been written about the relationship between pub-

lic and private goods in different social-ecological systems (irrigation, transportation, energy,

knowledge commons), there has been relatively little work on what types of policy interven-

tions are required to improve the provision of public goods. I examined this problem in the

context of tank irrigation systems in South India.

I developed a stylized replicator dynamic model to demonstrate that in the absence of ap-

propriate institutions, access to groundwater resources through private groundwater pumps is

an unmitigated bad because it not only contributes to the decline of shared irrigation infrastruc-

ture, but also contributes to the chronic poverty of downstream farmers. The results suggest

that we require multiple price instruments to not only improve the economic efficiency of the

system, but achieve this without compromising on the equity within the system.

The effectiveness of price-based interventions depends on the institutional context of the

irrigation system. For instance, volumetric pricing methods typically require information on

the quantity of water used by an individual farmer. Collecting such information entails high
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transaction costs because it requires water meters, periodic water usage readings, and regular

maintenance of the meters. Also, in the absence of water markets, a central authority, such

as the state or a water user association, is required to set the pumping fee (Tsur and Dinar,

1997). In irrigation systems that lack the institutional capacity to enforce and monitor, efforts

to implement a volumetric pricing mechanism to conserve water may be unsuccessful (Yang

et al., 2003).

The key result of the model is regarding the importance of the fixed groundwater fee in ad-

dressing the provisioning dilemma concerning the shared infrastructure. Given the challenges

with monitoring the volumetric fee for groundwater pumping, We may envision an institution,

where we retain the differentiated volumetric fees for tank water and enforce the fixed ground-

water fee. Under such an institution, over-extraction of groundwater is discouraged on the

extensive margin, and doesn’t affect marginal decision-making with respect to appropriation

for both tank and well users. However, it helps mitigate the problem of water scarcity by im-

proving the infrastructure condition, thereby reducing the importance of volumetric pumping

fee.

I must note that the model’s simplified features render it only illustrative of the more com-

plex set of choices that farmers actually confront and is not intended to replicate any particular

geographic region. For example, I treat farmers’ infrastructure choices as binary, whereas a

more realistic rendering would be to treat them as continuous and allow for conjunctive use

of the two infrastructures. It is, however, worth noting that the model permits an intuitive pic-

ture of the central provisioning and appropriation dilemmas that farmers face, and the results

are consistent with some notable cases of irrigation systems in the extant literature. I extend

the literature by considering how different price instruments can create different incentives

for farmers using heterogeneous irrigation infrastructures. The results can help policymakers

assess the relative gains to different user groups under different instruments.
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Chapter 3

WATER AND ELITES: THE ROLE OF CULTURAL POLITICS IN IRRIGATION

DEVELOPMENT

3.1 Introduction

Maintaining a consistent supply of water is a key challenge faced by irrigation systems around

theworld. Empirical observations of social organization patterns demonstrate themanyways in

which societies have responded to this problem. Irrigators can invest in physical infrastructure

(storage facilities, etc.) to normalize resource variability (Anderies, 2015). Alternatively, they

might use a portfolio of water allocation rules that vary based on water availability (Cifdaloz

et al., 2010). Either approach requires political institutions to enforce the water allocation

and infrastructure provision rules. These political institutions, which are often an outcome

of the endogenous preferences of a society (Muneepeerakul and Anderies, 2017), are a key

determinant of economic performance in a society. (North, 1994; Acemoglu et al., 2001; Greif

et al., 1994; Greif, 2006; Wade, 1989).

To further understand the role of political institutions in the economic performance of ir-

rigation systems, this study addresses how the presence of power asymmetries perpetuated by

cultural norms, such as caste, affect the persistence of political institutions to provide shared in-

frastructure in an irrigation system. More specifically, I examine the effect of policy tools, such

as non-farm wage employment and informational interventions, on the persistence of these two

political institutions: self-governed and nested.

Two key perspectives concerning political institutions and economic performance of irri-

gation systems have developed in the literature. One suggests that community-managed in-

stitutions enable irrigation communities to foster local collective action and manage shared
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resources sustainably (Ostrom, 1990; Agrawal and Ostrom, 2001; McKean, 1992). Another

alternate institution that has received substantial focus in the literature is a nested institution,

in which the state partakes in creating local organizations (such as water user associations) to

allocate water and maintain the infrastructure (Ostrom, 1990; Baker, 2011).

Scholars within the CPR literature argue in favor of nesting local organizations within the

state over community-managed institutions because organizing multiple governing authorities

at different scales improves provisioning of public goods (Ostrom et al., 1961; Ostrom, 1990).

However, empirical work in India (Mosse, 2008; Baker, 2011) shows that in several irrigation

communities with substantial differences in social status and landholding size, high-caste farm-

ers (elites) have opposed state intervention through de facto political power, such as bribery

and violence.

In such systems, the person responsible for activities such water allocation, collection of

maintenance fees, and monitoring water thefts, typically, belongs a lower caste (Baker, 2011).

This prevents them from sanctioning high-caste farmers when they either over-appropriate irri-

gation water or do not contribute towards maintenance of the irrigation infrastructure. Due to

greater expected returns in such self-governed regimes, elite farmers may oppose state interven-

tion (Baker, 2011; Kashwan, 2016). This is detrimental to poorer sections of the communities

(non-elites) because they do not have the resources required to petition for state intervention

and enforcement of legal rights.

I develop a compartmental model that tracks the institutional preferences of farmers in a

community-managed irrigation system with caste-based inequalities. The model results sug-

gest that critical regime shifts in political institutions can be generated by intervening in labor

market institutions. Such institutions reflect changes in payoffs from non-farm wage employ-

ment because of either exogenous market forces or government policy (minimum wage in-

creases).
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I found that by increasing non-farm wages to elite farmers, the system can flip from a

self-governance regime to a nested institution. However, this might not result in significant

improvements in the infrastructure efficiency. That is, even if the political institution even-

tually changes, because of the depreciation of irrigation infrastructure, the regime shift may

occur too late. Therefore, the approach path to the steady state, or the speed of the institu-

tional change, matters and must synchronize with the infrastructure dynamics. This result

complements North’s (1994) discussion on the importance of learning in changing individuals’

perceptions about their payoffs and institutional change in the long-run.

3.2 Model Structure

To explore the interdependencies between informal institutions, such as caste, the stability of

political institutions, and the state of provisioning of shared infrastructure, I develop a com-

partmental model of farmers’ institutional choice, which is conditional on their payoffs under

the formal institutions. The model is loosely parameterized based on the case-study work by

Baker (2011) in the community-managed Kuhl irrigation systems in North India.

In the model, farmers may choose between two political institutions: S and J . S is the

self-governance regime and J is the nested institution. The difference between these two po-

litical institutions is in their water allocation mechanism and maintenance fees, which will be

discussed below.

Consider N farming households are spread across one village that co-manage a single

canal irrigation system. There are two groups of farmers in the village,E and P , which satisfy

NE + NP = N . Es represent the elites (high-caste farmers) and P represent the poor (low-

caste farmers).

I assume that farmers have different “mental models” of which political institution is better.

Also, their choice of the political institution does not necessarily does not coincide with the
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institution that they actually lives under. It’s just a voting preference. I define the total number

of farmers who prefer Ss as NS = NE,S + NP,S . Consequently, the number of farmers who

prefer Js in the village are: NJ = NE,J + NP,J . For the remainder of my discussion, I use

the notation that the first term in the subscript refers to the farmer’s group and the second term

refers to their institutional choice.

3.2.1 Shared Infrastructure Dynamics

Irrigation infrastructure, such as canals and weirs, concentrates the availability of the irrigation

water for use. It requires an investment of time and effort to maintain its functionality. In my

model, I assume that under a self-governance institution, collection of fees and maintenance

efforts are coordinated by an individual, who is officially appointed by the farmers. This as-

sumption is based on examples of several irrigation systems in India, in which farmers elect a

person within their community to carry out maintenance works (Mollinga, 2001; Mosse, 1999;

Baker, 2011). I assume that under a nested regime, these activities are carried out by the state

through a local organization, such as a water user association. These assumptions are consistent

with the empirical observations of Baker (2011).

I denote the efficiency of the infrastructure with I . The dynamics of I is assumed to be:

dI

dt
= ν

(M(.)

I

)σ
− µI (3.1)

where M(.) is the maintenance function, which depends on the political institution of the

system as defined below. ν is the marginal productivity of the maintenance investment, and µ

is the natural rate of siltation of the tank. M(.)

The term
(

M(.)
I

)σ
in assumes a diminishing effect of maintenance on capacity of the irri-

gation infrastructure at the margin. That is, as more silt is removed, more effort is required to

remove an equal amount of silt because of biophysical factors, such as water logging and soft
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sediment. σ is a scaling parameter between 0 and 1, which relates how the effect of mainte-

nance on infrastructure capacity changes across different levels of maintenance investment.

I assume that there is constant source of irrigation water, Q, from which farmers can ap-

propriate. Therefore, the total irrigation water in the system is then given by R(I) = QI .

3.2.2 Payoffs

I assume that each individual is endowedwith a unit of household labor. An individual farmer’s

profit flow is the outcome of an instantaneous static optimization problem in which the indi-

vidual farmer allocates their household labor among two activities: farming (l) and non-farm

employment (1− l). I assume that both elites and poor farmers have the same production func-

tion, a Cobb-Douglas function with constant returns to scale, which depends on production

inputs: acreage (ai), farm labor (li) and water (ri).

I assume that the total available acreage in the command area is distributed between P and

E in the ratio λ
1+λ

and 1
1+λ

. So, the total acreage ofP ,AP , can be expressed in terms of acreage

of E, AE , as AP = λAE . Therefore, the individual-level acreage is given by: ai = Ai/Ni.

The individual shares in the available water supply are defined through the solution of a

bargaining game between elite and poor farmers. There is an asymmetry in the bargaining

position that is shaped by the political institution. I assume that the other privately supplied

production inputs and capital are optimized for a given amount of water. Under these assump-

tions, a farmer in group i will maximize their net incomes under either political institution,

given by:

πi,S(r(I)) = max
li,S

ρia
α
i l

β
i,S

(
ri,S(I)

)γ
+ wi(1− li,S)− ψri,S(I) (3.2)

πi,J(r(I)) = max
li,J

ρia
α
i l

β
i,J

(
ri,J(I)

)γ
+ wi(1− li,J)− θri,J(I) (3.3)

where i = {E,P}, ρi is the price per unit of production input, wi is the wage rate for non-

farm employment, ri,S(I) is the individual water share for a farmer in group i under the self-
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governance regime, and ri,J(I) is the individual water share of a farmer in group i under the

nested institution. ψ and θ are the marginal maintenance fees on water used under the self-

governance and nested institution respectively. α, β, and γ are the output elasticities of acreage,

labor, and water respectively, and α + β + γ = 1.

3.2.3 Water Allocation Mechanisms

Under the nested regime, I assume that the state assumes the role of a social planner and wants

to maximize system profits with a linear cost of supplying water. Therefore, they fully allocate

all the available water and split it evenly across all the farmers. This assumption is consistent

with several examples of public water allocation procedures (Dinar and Subramanian, 1997).

The individual water share of elite and poor farmers is then given as:

rE,J(I) = rP,J(I) =
R(I)

N
(3.4)

Under the self-governance regime, I assume a proportional water distribution model. That

is, water is distributed among farmers in the irrigation system on a per-acre basis. This assump-

tion is consistent with empirical observations by Baker (2011). In my model, I assume that the

total agricultural land in the command area is distributed between elite and poor farmers as 1
1+λ

and λ
1+λ

. Therefore, their respective individual shares of the irrigation water will be:

rE,S(I) =
R(I)

NE(1 + λ)
(3.5)

rP,S(I) =
λR(I)

NP (1 + λ)
(3.6)

3.2.4 Institutional Choice

I assume that the irrigation system reflects a democratic society where if there is sufficient

dissatisfaction with the current water allocation and management of the infrastructure, there

can be a referendum to switch the political institution. In order to track the institutional choice
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of individuals, I develop a compartmental model (Pulliam, 1988), which assumes that every

individual has a discrete preferred institutional choice or “mental model”. To recall, the two

political institutions are: self-governance (S) and nested (J). I, then, track how the elites and

poor farmers change their institutional choice over time.

Let XE and XP represent the fraction of elite and poor farmers, respectively, whose pref-

erence over governance is J . Then, the fraction of individuals whose preference is S may be

given by: (1 − Xi). I assume that farmers have bounded rationality, which refers to the fact

that they can make their decision based on limited information, in this case the infrastructure

efficiency and their payoffs under the two institutions. The dynamics ofXi may be given by:

dXi

dt
=


ϕi(1−Xi)

(
πi,J − πi,S

)
if πi,J > πi,S

ϕiXi

(
πi,J − πi,S

)
if πi,J < πi,S

The interpretation of the above equations is that if the profits from nested institution are

higher than the self-governance regime, then farmers will switch there preference over gov-

ernance to the nested institution. On the other hand, if the profits under the self-governance

regime are higher, then farmers will change their preference to self-governance.

ϕi represents the responsiveness of a farmer in group i to economic payoffs. This adjust-

ment parameter captures the notion that farmers’ mental models about their institutional choice

may also be influenced by non-pecuniary considerations, such as their cultural beliefs, lack of

education, control of information by elites, etc. (Akerlof and Kranton, 2000).

3.2.5 Institutional Change

The dynamical equations in section 3.2.4 represent the mental models of individual farmers. In

order for the political institution to actually change, a threshold majority condition, Γ, must be
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met. This represents institutional inertia in the system and is given by:

k(V (XE, XP )) =


1 if V (XE, XP ) ≥ Γ

0 otherwise

where k(.) = 1 indicates that the system has shifted to the nested regime and k(.) = 0 indi-

cates that the system persists in the self-governance regime. V (.) is the voting function that

determines the outcome of the voting process and is given by:

V (XE, XP ) = ΩEXE + ΩPXP (3.7)

where ΩE and ΩP are the voting weights of elite and poor farmers respectively, such that

ΩE + ΩP = 1. Baker (2011) illustrates that elite farmers possess de facto political power of

elites, which emerges from cultural norms, such as caste, and other channels such as lobbying

or bribery. In order to capture this, I assume that elites and poor farmers have differential voting

weights, such that ΩE > ΩP .

3.2.6 Maintenance Function

Themaintenance fee in the self-governance regime, θ, is assumed to be lower than the fee in the

nested regime, ψ. This assumption is based on empirical evidence that under nested regimes,

the maintenance fees are typically calibrated to acreage and higher than the fees under self-

governance regimes (Baker, 2011). The infrastructure maintenance function depends on the

political institution governing the system and is given by

M(.) =


Nθ if k(V (XE, XP )) = 1

Nψ if k(V (XE, XP )) = 0
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3.3 Discussion

The political institutions in my model affect the maintenance of the irrigation infrastructure,

which subsequently affects the payoffs of the farmers through the provisioning of water, which

increases profits monotonically, but with diminishing returns. Therefore, I focus my analysis

on the condition of the infrastructure in my analysis and treat this as an indicator of the perfor-

mance for a given political institution. I examine the effect of voting weights, non-farm labor

wages, and the rate of adjustment of the mental model on the regime shift and infrastructure

provision. Table 6 summarizes the definitions all the model parameters.

I assume that the system is under the self-governance regime initially. This assumption

mimics the initial conditions of several irrigation systems in India (Ostrom, 1990). I also as-

sume a simple majority rule for the voting threshold condition under which the political insti-

tution changes, i.e., Γ = 0.51.

In order to understand the institutional preferences of farmers, I conduct the analysis in

three parts. First, I examined how different voting weights, Ωi may lead to different steady

states represented by the two state variables, public infrastructure condition (I) and voting

outcome (V ). Second, I examined the role of non-farm wage employment of elites, wE , on

the condition of irrigation infrastructure, and the payoffs and voting preferences of elite and

poor farmers. Last, I examine the role of informational interventions on the payoffs and voting

preferences of elite and poor farmers. For this purpose, I focus on the rate of adjustment of the

mental model of poor farmers, ϕP .

3.3.1 Analysis I: Effect of Voting Weights

I characterized two voting rules (elitist and egalitarian) that affect the voting outcomes through

which the political institutions and the relative payoffs of farmers are determined. Using the
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parameters for voting weights in equation 3.7, I characterize elitist as ΩE = 0.6, ΩP = 0.4

and egalitarian as ΩE = 0.5, ΩP = 0.5.

At the outset, the payoffs to the elite farmers are greater under the self-governance institu-

tion than the nested institution. This is because elites receive more water and the maintenance

fee is lower under the self-governance regime. On the other hand, the payoffs to the poor

farmers are greater under the nested institution because of greater water allocation by the state.

Moreover, the provision of infrastructure is better under the nested regime due to higher main-

tenance fees, resulting in higher infrastructure efficiency (Figure 13). The model also predicts

that the poor farmers are more likely to choose the nested regime, while the elite farmers choose

the self-governance regime (Figure 14).

The actual change in the institution, however, occurs only when the majority threshold, Γ,

is met. When the voting weights of poor farmers are lower than the elite farmers, the threshold

is not met because the elites’ preference for the self-governance regime (Figure 14). On the

other hand, when the voting weights are equal, the threshold condition is met and the institution

changes to a nested regime. This result suggests that contrary to popular belief, self-governance

does not necessarily result in better infrastructure provision, especially in societies with high

power asymmetries among farmers.

The role of elites in determining the persistence of political institutions has also been ob-

served by Acemoglu and Robinson (2008). This work, however, is at a macro level and focuses

on the role of elites in democratic and autocratic societies. The focus of my model is at a local

level, specifically on systems where livelihoods of people are tied to a shared resource. The

voting weights in my model represent the de facto political power of elites, which may be used

to shape the outcomes of a democratic voting process within a community. Such power may

be an outcome of a cultural norm, such as caste.
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Figure 13. This figure represents the dynamics of infrastructure depreciation over time for
two states of the world. The X-axis represents time and Y-axis shows infrastructure efficiency
in %. The blue line represents an elitist society (ΩE = 0.6, ΩP = 0.4) and the green line
represents an egalitarian society (ΩE = 0.5, ΩP = 0.5). The solid line indicates
self-governance regime and the dotted line indicates the nested regime.

For instance, farmers in the Ranjya Kuhl irrigation system in North India voted for the state

to take over management of the irrigation system. This would have been achieved by forming

a water user association to (i) facilitate the acquisition of government funds for infrastructure

repair and maintenance, and (ii) guarantee fair allocation of water to farmers. However, the

involvement of the state meant that the high-caste farmers could no longer maintain their au-

thority over water control, which was the main reason for elites to the state intervention and

overturn the results of the voting process through bribery and violence (Baker, 2011). On the
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Figure 14. This figure represents the institutional preferences of farmers at system
equilibrium for two states of the world. The X-axis represents the state of the world: elitist
society (ΩE = 0.6, ΩP = 0.4), and an egalitarian society (ΩE = 0.5, ΩP = 0.5). The Y-axis
shows the fraction of population that chooses the nested institution. The voting majority
threshold for the institution to change is Γ = 0.51.

other hand, in more egalitarian communities, such as the Bhagotla Kuhl irrigation system, vot-

ing outcomes directly reflect the institutional choices of individuals and state intervention can

be successful (Baker, 2011).

3.3.2 Analysis II: Effect of Non-Farm Wages

In Analysis I, we observed that the presence of de facto political power may result in the per-

sistence of an inferior political institution, represented by a lower efficiency of public infras-

tructure. Empowering poor farmers politically, through their voting weights, may be one way

for the system to shift to a nested institution and improving the infrastructure efficiency.

On the other hand, policy makers may suggest formal economic institutions to incentivize
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the elites to choose the nested institution. For example, the state may improve the non-farm

opportunities for the elite farmers. Such a reform can reduce their reliance on farm income,

thereby reduce their need for water control. To generate some useful knowledge about such

a reform, this section investigates the effect of non-farm wages to elites on infrastructure ef-

ficiency and institutional change. The results shown here are for an elitist state of the world.

Except for the focal parameter, wE , the parameter values used in this section are the same as

the preceding section. I characterize low wage as wE = 0.2 and high wage as wE = 0.8.

Similar to the earlier case, the payoffs to the elite farmers are higher in the self-governance

institution when non-farm wages are low. The reason for this is a higher water share and lower

maintenance fee under the self-governance institution. Therefore, the elite farmers choose the

self-governance institution. On the other hand, when non-farm wages to the elite farmers are

high, their labor allocation to non-farm employment increases. This reduces their farm labor

and profit share from farming. The combination of higher profits from non-farm labor and

better infrastructure provision under the nested regime results in a higher fraction of the elite

farmers choosing the nested institution (Figures 15 and 16). As a higher fraction elite farmers

choose nested institution, the majority threshold, Γ, is met (Figure 16) and the system shifts to

the nested regime (Figure 15).

The importance of rural non-farm employment has been extensively discussed in the devel-

opment economics literature (Barrett et al., 2001; Reardon et al., 2007). The general conclu-

sion from this literature is that not all households have equal access to non-farm employment

(Barrett et al., 2001). The differential access to non-farm employment can change the pattern

of dependence on irrigation water. That is, households with new economic opportunities are

less willing to engage in infrastructure maintenance, especially when the opportunity costs of

their labor are foregone cash wages (Cárdenas et al., 2017). On the other hand, households

with greater constraints to non-farm employments, typically poor households, face increased
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Figure 15. This figure represents the dynamics of infrastructure depreciation over time for for
two levels of non-farm wages to the elite farmers: low wage society (wE = 0.2), and high
wages (wE = 0.8). The X-axis represents time and Y-axis shows infrastructure efficiency in
%. The solid line indicates self-governance regime and the dotted line indicates the nested
regime.

burden to maintain the infrastructure. In such cases, state intervention can augment the infras-

tructure provision (Baker, 2011). Increasing non-farm opportunities can, however, increase

the risk of conflicts arising from caste-based inequalities because of reduced dependence on

the benefits of the shared infrastructure (Jodha, 1990; Polanyi, 1944).
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Figure 16. This figure represents the institutional choice of farmers and the voting outcome at
system equilibrium for two levels of non-farm wages to the elite farmers: low wage society
(wE = 0.2), and high wages (wE = 0.8). The Y-axis shows the fraction of population that
chooses the nested institution. The voting majority threshold for the institution to change is
Γ = 0.51.

3.3.3 Analysis III: Effect of Learning

In my model, there is rate of depreciation of the infrastructure. The maintenance effort applied

under either political institution offsets this depreciation. In the preceding section, we saw that

the interventions through formal economic institutions, such as non-farm wage employment,

can flip the system to a nested institution. However, such a flip may not necessarily result in

significant improvements in the infrastructure efficiency. So, it is important to examine the

approach to the steady state, i.e., the rate at which the change in the political institution occurs,

or the steady state is achieved. For this purpose, I examine the parameter ϕi, which is the

rate of adjustment of the individuals’ mental model. ϕi may be interpreted as a function of
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knowledge transmission or rate of learning in the system. Depending on the depreciation rate

of the infrastructure and relative adjustment rate of the mental model of the individual, the

approach to steady state can be different (Smith, 1969).

Specifically, I focus on the responsiveness of the poor farmers, ϕP . I characterize ϕP

as low learning (ϕP = 0.3) and high learning (ϕP = 0.8). Except for the focal parameter,

the remaining parameter values in this section are the same as the high wage scenario in the

preceding section.

Figure 17 illustrates change in infrastructure efficiency as a function of time for high and

low learning states. Regardless of the value of learning rate of the poor farmers,ϕP , the system

eventually shifts to the nested regime and the infrastructure efficiency is at around 45%. How-

ever, ϕP affects the transient dynamics of the shift from one political institution to another. A

high value of ϕP increases the speed of institutional change. That is, at high learning rate, the

system shifts to the nested regime at t = 15, whereas at low learning rate, the regime shift

occurs at t = 73. Even though the regime shift occurs eventually in both cases, the quality of

infrastructure is degraded for an additional 59 years before it is is improved (Figure 17). This

result highlights the relationship between the quality of the physical infrastructure and the rate

of adjustment of the mental model of the elite farmers.

The use of evolutionary dynamics has brought attention to the importance of the norms of

behavior that guide individuals’ decisions. For example, “traditional codes of behavior” can

lead individuals to support social norms even though those norms might be disadvantageous

to the society (Akerlof, 1984, pg.72). The mental models of individuals, and thereby the per-

ceptions about payoffs, is often based on belief-systems that promote the capture of resources

(or wealth) of poor farmers. However, the model predicts that the elite farmers find it in their

own economic interests to abandon the old institution.

The parameter ϕi speaks to the durability of mental models of individuals. It controls the
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Figure 17. This figure represents the dynamics of infrastructure depreciation over time for
two rates of learning in the mental model of the elites. The X-axis represents time and the
Y-axis represents infrastructure efficiency in %. The two rates of learning are characterized as
low learning (ϕP = 0.3) and high learning (ϕP = 0.8). The voting majority threshold for the
institution to change is Γ = 0.51.

information available to individuals, which may be a function of poor human infrastructure

and can be improved through informational interventions, such as access to education. This

result highlights the importance of knowledge transmission through learning, which is an most

important source of change in the long-run (North, 1994).
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3.4 Conclusion

There is a great deal of consensus that economic institutions are a key determinant of economic

performance in a society. (North, 1994; Acemoglu et al., 2001; Greif et al., 1994; Greif, 2006;

Wade, 1989). These discussions assume that the political institutions required for specifying

and enforcing these constraints are present. However, there are several documented examples

in developing countries, which lack such political institutions (Bardhan, 2000; Ostrom, 1990).

This assumption about the presence of political institutions leads to many important questions,

perhaps the most interesting of which is why do political institutions differ across societies?

Can a better understanding of the determinants of political institutions enhance my ability to

respond to power asymmetries in a society? This chapter is an effort to address these questions

through an examination of community-managed irrigation systems in North India.

Research on institutional change has examined key questions such as why inferior institu-

tions persist (Greif et al., 1994; Greif, 2006), and why societies fail to adopt the institutional

design of successful ones (Greif, 1998). The work reported here aims to contribute to this

body of scholarship through examining, explicitly, the role of political power as a determinant

of political institutions in societies.

Given power asymmetries, are there patterns in the way societies organize around environ-

mental variability? Is it possible to characterize individuals’ mental models through a more

“realistic” comparison of infrastructure efficiency across different political institutions? Is it

possible to characterize robustness-vulnerability trade-offs of different political institutions?

Further research in this area involves extending my model to address the questions discussed

herein. Through an iterative process of model and data refinement, it may be possible to char-

acterize some basic principles concerning the determinants of political institutions in social-

ecological systems. These principles can help guide policy development regarding long-term

environmental change.
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Chapter 4

INSTITUTIONS WITHOUT ROMANCE: CORRUPTION AND PROVISIONING OF

PUBLIC INFRASTRUCTURE IN CANAL IRRIGATION SYSTEMS

4.1 Introduction

The performance of government-managed irrigation systems, which cover about 60% of the

global irrigated area (Burton, 2010), continues to be at the center of irrigation development

debates. Regardless of whether performance is defined based on technical efficiency (Molden

et al., 1998), or equity in water distribution (Malano and van Hofwegen, 1999), the literature

suggests that performance of such systems in several developing countries continues to decline

(Suhardiman and Giordano, 2014; Mukherji et al., 2009; Malano and van Hofwegen, 1999).

There is a general agreement that poor performance may be caused by poor maintenance of

the irrigation infrastructure, itself a consequence of the existing institutional arrangements for

infrastructure management (Groenfeldt et al., 2000). One way to improve the provision of irri-

gation infrastructure is to build on the role of bureaucrats who may shape irrigation outcomes

through their direct interactions with farmers (Senanayake et al., 2015; Suhardiman and Gior-

dano, 2014). Examples of such bureaucrats include canal engineers and other appointed field

staff who repair canals and distribute water.

Irrigation reform discussions that focused on enhancing the role of bureaucrats have pre-

viously dissociated politics from their analysis and assume benevolence on the part of the bu-

reaucrat (Moe, 2006). Among the most consistent themes in the literature on bureaucracies is

the conclusion that a budget-maximizing bureaucrat will oversupply public goods, relative to

the level of provision preferred by the typical politician, because of the monopolistic power of

the bureaucrat over public resources (Niskanen, 1971, 1975; Breton and Wintrobe, 1975; Tul-
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lock, 1965). The objective of the bureaucrats in these models is to maximize their individual

utility (wages, benefits, power, etc.) by maximizing the budget of their office. These models,

however, do not include corruption as a way to satisfy these objectives.

In contrast to the over-provision hypothesis, empirical evidence indicates that much of the

under-investment in canal irrigation systems in the Indian subcontinent has been attributed

to corruption in the irrigation bureaus that maintain the irrigation infrastructure (Wade, 1982;

Mollinga, 2001, 2003; Rinaudo, 2002). This suggests that bureaucrats may not simply be ‘pub-

lic servants’ as assumed by previous studies, andmay threaten provision of public infrastructure

by their exercise of monopolistic power over public resources.

Existing theories of bureaucratic oversight use the principal-agent framework to propose

ways in which politicians may counter the bureaucrat’s capacity to manipulate information

and limit their monopolistic power over public resources (Wade, 1979; Shepsle and Weingast,

1984). For instance, in the context of budgeting, politicians may restrain bureaucratic manip-

ulation through monitoring (McCubbins et al., 1987; Weingast and Moran, 1983). However,

this literature has four limitations.

The first limitation is that most of the existing models that examine corruption focus ex-

plicitly on the U.S. system (Becker, 1983; Rose-Ackerman, 1975; Lui, 1986; Klitgaard, 1988),

which has relatively lower levels of outright bribery (extralegal cash transfers) in the bureau-

cracy compared to many developing nations that are characterized by poor infrastructure pro-

vision (Corruption Perceptions Index, 2018).

The second limitation is that none of the existing studies on corruption extend the principal-

agent framework to study the provision of public infrastructure. So, it is not well understood

how monitoring may affect infrastructure provision.

The third limitation is that the studies that take the principal-agent approach to examine

corruption are biased towards bureaucratic (agent) corruption and do not consider the potential
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complicity of the politician (principal). In countries like India, a dishonest politicianmay, often,

misuse their power to pressure the irrigation bureau to rakemoney off the public funds allocated

for provision of public irrigation infrastructure (Wade, 1982; Thompson, 2000). In such cases,

corruption among politicians and bureaucrats prevails as an informal norm, and they both act to

maximize their own selfish interests rather than being compliant agents maximizing the social

welfare of farmers.

Last, due to information asymmetry in principal-agent interactions, monitoring can be an

imperfect instrument and impose significant costs for detecting shirking behavior of bureau-

crats (McCubbins et al., 1987). The reason for this is that due to irreducible uncertainty, no

matter how carefully the consequences of principal-agent interactions are monitored, there can

be indeterminacy about the extent to which a bureaucrat applied their best efforts to maintain

the infrastructure. In the context of irrigation systems, climate uncertainty may exacerbate the

problem of information asymmetry regarding the bureaucrat’s provision efforts. The effect of

natural stochasticity on the likelihood of corruption and infrastructure provision is not well

understood.

To address the gap left by studies on corruption, I developed a stylized principal-agent

model that characterizes infrastructure provision under a discrete monitoring technology to

examine how institutional and environmental factors affect (i) the likelihood of corruption, and

(ii) the infrastructure provision efforts. I focus specifically on the politician’s incentive to be

corrupt and the infrastructure provision efforts by the bureaucrat under corrupt and non-corrupt

regimes.

4.2 The Model

I consider a government-managed agricultural system that is irrigated through gravity flow

canal systems. I assume that the central authority is the politician, who appoints the public
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official or bureaucrat.3 This assumption is consistent with empirical evidence from irrigation

systems in South India (Wade, 1982). The irrigated command area is fed from infrastructure

constructed, operated and maintained by the bureaucrat. There is a third population of citizens

(farmers), that I do not directly consider in this model. In the model, I assume that the politi-

cian’s preferences about infrastructure provision capture the importance of infrastructure to the

electorate and for being reelected.

The bureaucrat has an appropriated budget that is used to pay for maintenance. This budget

is approved by the politician’s office. The politician, however, can only observe the quality

of infrastructure, which is a noisy signal of the bureaucrat’s effort. Therefore, the problem

is whether compensation to the bureaucrat can only be adjusted at the margin based on their

performance. I examine two institutional responses to this problem.

The first institution defines a output-based contract between the politician and the bureau-

crat, where the latter may be removed from office for non-performance. That is, if the bureau-

crat’s effort (input) falls below a certain level of infrastructure provision (output), they may be

fired. This characterizes many bureaus that don’t allow for performance-based compensation

structures and operate only at the extensive margin of the bureaucrat (Heckman et al., 1997;

Heinrich, 1999; Wade, 1982). I characterize this interaction as non-corrupt and treat this as the

baseline institutional structure.

The second institutional structure is one where the politician receives a bribe from the

bureaucrat that is proportional to the latter’s provision efforts. Therefore, the bureaucrat’s

compensation is variable in the bribe. Under this institutional structure, both the bureaucrat and

the politician are subject to governmental oversight, and they might get caught (McCubbins

3The principal-agent model presented here represents hierarchy within a bureaucracy or a politician-
bureaucrat relationship. For simple exposition, I assume a politician-bureaucrat interaction.
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et al., 1987). Since the complicity of politicians with bureaucrats allows them to utilize public

funds for personal gain, I characterize this interaction as corrupt.

The overall decision process on infrastructure provisioning is a two-stage game. In the

first stage, the politician chooses between corrupt (C) and non-corrupt (NC) strategies. In the

second stage, the bureaucrat chooses their level of effort (M ) based on the politician’s strategy.

I assume that the politician and bureaucrat are risk-neutral. For the remainder of the discussion,

I use the following notation to denote the utilities and strategies of the bureaucrat and politician:

Ui(ΓB,ΓP ), where i denotes the players: bureaucrat (B) and politician (P ), and Γi denotes

the strategy of player i..

4.2.1 Non-corrupt Bureaucrat and Non-corrupt Politician

I start with the interaction of a non-corrupt politician and a non-corrupt bureaucrat. The per-

formance of the bureaucrat, q, is assumed to be equal to their effort in maintenance of the

infrastructure,M , plus a shock, ϵ: q = M + ϵ. By shock, I refer to extreme weather events,

such as floods, that may result in deterioration of the irrigation infrastructure. I assume that

the shock is revealed to the players after the contract is chosen. ϵ is the realization of a weather

event.

I characterize the players’ beliefs over possible shocks as a diffuse prior with a uniform

distribution with zero mean between the limits [−β/2,β/2]. That is, the players’ beliefs assign

a positive probability to the true state of the world before the shock is revealed. β describes the

range of possible weather events. An increase in the value of β reflects uncertainty about the

range of possible weather events, which may reflect a more uncertain climate regime (Milly

et al., 2002).

The bureaucrat chooses a level of effort,MNC , that maximizes their net earnings and their
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utility function is represented by

UB(NC,NC) = max
MNC

[wPr(q > T )− ψ(MNC)] (4.1)

where w is the wage earned by the bureaucrat, which is conditional on the infrastructure

provision being above the threshold, T . wPr(q > T ) reflects an all-or-nothing contract

with no performance-based payment. That is, the bureaucrat gets paid if the threshold con-

dition is met and conditional on getting paid, the bureaucrat’s compensation does not depend

on their performance. For simplicity, the cost-of-effort function is assumed to be quadratic:

ψ(MNC) =
θM2

NC

2
, where θ is the marginal cost of effort.

The politician’s benefit, on the other hand, is tied to the bureaucrat’s performance and they

incur a cost equal to the compensation paid to the bureaucrat. The politician’s expected utility

function is given by

UP (NC,NC) = E[q − wPr(q > T )] =MNC + E[ϵ]− wPr(q > T ) (4.2)

The bureaucrat’s utility function in expression 4.1 may be rewritten as below. Refer to B.1

for the derivation.

UB(NC,NC) = wPr(MNC + ϵ > T )− θM2
NC

2

=
w

2
− wT

β
+
wMNC

β
− θM2

NC

2

The bureaucrat balances the increased expected marginal benefit from increasing the prob-

ability of receiving their wage versus the marginal cost of their effort:

UB(NC,NC) = max
MNC

w

2
− wT

β
+
wMNC

β
− θM2

NC

2
(4.3)

FOC :
w

β
− θMNC = 0

=⇒M∗
NC(w, θ, β) =

w

θβ
(4.4)
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Substituting expression 4.4 into expression 4.3, the non-corrupt bureaucrat’s maximized utility

may then be derived as below. Refer to B.1 for the derivation.

UB(NC,NC) = w
[1
2
− T

β
+

w

2θβ2

]
Knowing thatM∗

NC =
w

θβ
, the non-corrupt politician’s maximized utility may be derived

as below. Refer to B.1 for the derivation.

UP (NC,NC) = w
[ 1

θβ
− 1

2
+
T

β

]
− w2

θβ2

4.2.2 Corrupt Bureaucrat and Corrupt Politician

I now consider the interaction between a corrupt bureaucrat and corrupt politician. Here, I as-

sume that the politician demands a bribe from the bureaucrat based on the latter’s performance.

This assumption is an accurate description of many regimes observed in the developing world

(Rose-Ackerman and Palifka, 2016).

Given the well-institutionalized system of corruption that surrounds irrigation in India

(Quah, 2008), positions in the irrigation bureau are valuable assets. Not only do bureaucrats

have to pay for transfer to desirable positions, but also a bureaucrat who does not perform

well or who threatens to enforce the law against those who engage in corruption may simply

be transferred somewhere else by the politician. Therefore, given the structure of power and

norms, we may visualize a transaction, in which the bureaucrat pays a bribe to the politician.

Unlike the formal compensation in the non-corrupt contract, bribery can be proportional

to bureaucrat’s performance. That is, the bribes can be adjusted at the intensive margin of the

bureaucrat’s effort, similar to the linear contracts in the agency literature. I assume that the

politician and bureaucrat devise a linear contract of the form:

s = w − (b−Hq)
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where, w is the fixed wage earned by the bureaucrat, b is the maximum feasible bribe that is a

constraint set by norms. I assume that the politician chooses the marginal reduction in the net

bribe, H , that is contingent upon on the performance of the bureaucrat, making the effective

bribe paid by the bureaucrat to the politician equal to: b − Hq. I assume that the maximum

feasible bribe is less than the bureaucrat’s wage, i.e., b < w.

Last, I assume that the the probability of being caught and punished when engaging in

corruption is (1− σ). When this probability is equal to one, both the bureaucrat and politician

get fired and they earn a zero payoff. Hence, σ is the probability of successful corrupt activity.4

Considering σ ∈ [0, 1], the benefit from corruption is given by, σs.

The bribe includes an implicit promise of protection for the bureaucrat here since there is

no longer a threshold of system quality that gets them turned out of their jobs. Presumably, this

is part of why a bureaucrat can be corrupt.

The corrupt bureaucrat balances the increased expected marginal benefit from decreasing

the probability of being caught and the marginal reduction in the net bribe paid to the politi-

cian versus the marginal cost of their effort. Refer to B.2 for the derivation of the first-order

condition:

UB(C,C) = max
MC

E
[
σ
(
w − b+Hq

)
− θM2

C

2

]
FOC : σHC − θMC = 0 =⇒ MC =

σH

θ
(4.5)

The bureaucrat’s performance affects the politician’s payoffs in two ways. First, the main-

tenance effort of the bureaucrat improves the condition of infrastructure, and thereby the im-

proves the possibility of the politician’s reelection. Second, the bribe that the politician re-

ceives from the bureaucrat is proportional to the latter’s effort. The politician’s problem is then

4I assume that the probability of being caught and punished is exogenous to the game. A more general
structure might make this probability an increasing function of the bribe. This assumption simplifies the formal
statement of the model and the exposition that follows.

67



to choose a bribe, H , taking as given the bureaucrat’s optimal choice of MC for a given H .

Refer to B.2 for the derivation ofH∗:

UP (C,C) = max
H

E
[
σ
(
q + (b−Hq)− w

)]
FOC :

σ2

θ
− 2Hσ2

θ
= 0

H∗ =
1

2
=⇒ M∗

C(σ, θ) =
σ

2θ
(4.6)

Knowing the values of H∗ andM∗
C , the maximized utility functions of the corrupt bureaucrat

and politician may be derived as below. Refer to B.2 for the derivation of the maximized

utilities.

UB(C,C) = σ
[
w − b

]
+
σ2

8θ

UP (C,C) =
σ2

4θ
+ σ[b− w]

4.3 Results

Before I turn to the analysis, let us recall the structure of the two contracts and utilities of the

politician and the bureaucrat. The overall decision process on infrastructure provisioning is

a two-stage game. In the first stage, the politician makes a strategy based on the effort the

bureaucrat is applying. In the second stage, the bureaucrat chooses an effort based on the

contract they are facing.

I assume that the bureaucrat will play the game only if it gives them a positive utility. That

is,

UB(NC,NC) ≥ 0 and,

UB(C,C) ≥ 0

This assumption represents the individual rationality constraint for the bureaucrat. That is, if

the utility is negative, the bureaucrat can break their contract with the politician for an outside
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opportunity. Therefore, the politician chooses a contract that maximizes their expected utility,

subject to the bureaucrat’s participation constraint.

The sequential structure of the game results in a Stackelberg leader-follower equilibrium.

That is, there are two possible pooling equilibria: one is they choose corrupt (C) and the other

is they choose non-corrupt (NC). This is represented in the game tree in Figure 18.

If the politician chooses non-corruption (NC), they write an extensive margin contract

with the bureaucrat. That is, the bureaucrat is removed from the office if they do not meet

the threshold condition for infrastructure provision. Consequently, the bureaucrat chooses a

corresponding level of effort. On the other hand, if the politician chooses to be corrupt (C), they

withhold a portion of the bureaucrat’s pay and then either punish them if the system performs

poorly or “cut them slack” if the system performs well. That is, they devise a contract on the

intensive margin of the bureaucrat’s effort. The maximized utilities of the bureaucrat and the

politician under these possible equilibria are given by:

1. Non-corrupt Bureaucrat and Non-Corrupt Politician: Using backward induction, the bu-

reaucrat chooses the level of effort in the second stage of the game:

UB(NC,NC) = w
[1
2
− T

β
+

w

2θβ2

]
(4.7)

UP (NC,NC) = w
[ 1

θβ
− 1

2
+
T

β

]
− w2

θβ2
(4.8)

2. Corrupt Bureaucrat and Corrupt Politician: Using backward induction, the politician

chooses the bribe in the first stage, based on the bureaucrat’s performance that is deter-

mined in the second stage.

UB(C,C) = σ
[
w − b

]
+
σ2

8θ
(4.9)

UP (C,C) =
σ2

4θ
+ σ[b− w] (4.10)
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Figure 18. Extensive form of the game.

Table 2 summarizes the definitions all the model parameters. In order to examine the con-

ditions under which the politician chooses corruption, I define IC as the politician’s incentive

to be corrupt. This is simply the difference between the utility of being corrupt and the utility

obtained by being non-corrupt, and is given by:

IC = UP (C,C)− UP (NC,NC)

= σ
[ σ
4θ

+ b− w
]
− w

[ 1

θβ
− 1

2
+
T

β
− w

θβ2

]
(4.11)

Table 2. Definitions of model parameters
Symbol Definition
w Wage of the bureaucrat
T Infrastructure threshold
β Climate uncertainty
θ Marginal cost of effort to the bureaucrat
σ Probability of corruption not being detected
b Maximum feasible bribe
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4.3.1 Comparative Statics on the Incentive to be Corrupt

I conduct the comparative statics over three parameters: climate uncertainty (β), probability

of detection (1− σ), and fixed bureaucratic wages (w).

4.3.1.1 Climate Uncertainty

The change in incentive to be corrupt with respect to the climate uncertainty, β, may be shown

by:

∂IC
∂β

=
w

θβ2
+
wT

β2
− 2w2

θβ3
> 0 (4.12)

Expression 4.12 shows that an increase in the climate uncertainty increases the incentive

to be corrupt at the margin. However, the regime shift to corrupt equilibrium depends on the

degree of climate uncertainty.

At low climate uncertainty, the infrastructure provision is higher in the non-corrupt com-

pared to the corrupt contract because the bureaucrat must apply more effort to achieve the

threshold condition with greater certainty (eq 4.4 and 4.6). Contrarily, as climate uncertainty

increases, the bureaucrat’s effort is higher under the corrupt regime (eq 4.6). Since the politi-

cian derives a benefit from infrastructure provision (eq 4.11), the level of bureaucrat’s provision

effort influences the politician’s incentive to be corrupt.

IC is negative at low climate uncertainty because of higher provision efforts under the

non-corrupt regime (eq 4.11). As the climate uncertainty increases, infrastructure provision is

higher in the corrupt regime, the incentive to be corrupt increases (IC > 0), and the system

reaches a corrupt equilibrium.
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4.3.1.2 Probability of Detection

The change in incentive to be corrupt with respect to the probability of being detected may be

shown by5:

∂IC
∂σ

=
σ

2θ
+ b− w (4.13)

Equation 4.13 shows that the politician’s incentive to be corrupt depends on the value of the

fixed bureaucratic wage,w, relative to the probability of detection, (1−σ), and the bureaucrat’s

cost of effort, θ. If σ < 2θ(w − b) 6 the incentive to be corrupt decreases at the margin as

the probability of detection increases. This result follows directly from the assumption about

the probability of detection reducing the politician’s net earnings in the corrupt contract. If

σ > 2θ(w − b), then the incentive to be corrupt increases at the margin and the system shifts

to a corrupt equilibrium.

4.3.1.3 Bureaucratic Wage

The change in incentive to be corrupt with respect to the fixed bureaucratic wage, w, may be

shown by:

∂IC
∂w

=
2w

θβ2
+

1

2
−
[
σ +

1

θβ
+
T

β

]
(4.14)

The role of bureaucratic wage in the likelihood of corruption is ambiguous and depends on the

degree of climate uncertainty and probability of detection relative to the wage. That is, the

incentive to be corrupt increases at the margin if w > β
2

[
σβ + 1

θ
+ T − β

2

]
. Alternatively, if

this condition fails, the incentive to be corrupt decreases at the margin and the system shifts to

the non-corrupt equilibrium.

5The probability of being caught and punished in the model is assumed to be (1 − σ). Therefore, σ is the
probability of not being detected.

6I assume that the bureaucrat’s fixed wage is greater than the maximum bribe paid to the politician, i.e.,w > b
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4.3.2 Comparative Statics on Infrastructure Provision Effort

4.3.2.1 Corrupt Contract

In the sequential game, the bureaucrat is responding with infrastructure provision. So, in order

to understand the conditions under which infrastructure provision is higher or lower, I examine

the bureaucrat’s performance under the two contracts. The bureaucrat’s effort levels in the

corrupt contract is given by:

M∗
C(σ, θ) =

σ

2θ
(4.15)

Expression 4.15 shows that the infrastructure provision under the corrupt regime increases as

the probability of detection, (1 − σ), and the unit cost-of-effort, (θ), decrease. This result

follows directly from the assumptions in the model specification: the gains from corruption

decrease as the probability of detection increases. Therefore, the bureaucrat’s effort under the

corrupt regime declines as the probability of detection increases.

Expression 4.15 also shows that the infrastructure provision under the corrupt contract is

unaffected by climate uncertainty. This is because, due to the linear form of the corrupt contract

and the risk neutrality assumption, the bureaucrat experiences only themean uncertainty, which

is assumed to be zero.

4.3.2.2 Non-Corrupt Contract

On the other hand, the infrastructure provision effort under the non-corrupt equilibrium is given

by:

M∗
NC(w, θ, β) =

w

θβ
(4.16)

Expression 4.16 shows that the infrastructure provision effort under the non-corrupt regime

increases with wage of the bureaucrat. This may be explained by the fact that under the non-
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corrupt contract, the bureaucrat’s wage is tied to their performance. Therefore, an increase in

wage results in an increase in their effort level.

Expression 4.16 also shows that the infrastructure provision under the non-corrupt equi-

librium is strictly decreasing in climate uncertainty (β). To recall, the infrastructure provision

threshold condition is given by: M + ϵ > T . For low values of β (low ϵ), the bureaucrat must

apply more effort (M ) in order to meet the provision threshold (T ) with greater certainty. Con-

versely, under high climate uncertainty (high β), the non-corrupt bureaucrat applies smaller

effort to achieve the infrastructure threshold.

4.3.3 Infrastructure Provision and System Outcomes

From the discussion so far, I demonstrate that the key parameters – probability of detection, bu-

reaucratic wages, and climate uncertainty – determine whether the system shifts to the corrupt

or non-corrupt regime. The discussion also highlights that these parameters affect the incen-

tives for infrastructure provision within an equilibrium. However, the effect of corruption on

infrastructure provision effort is ambiguous.

In order to compare the infrastructure provision effort under the corrupt and non-corrupt

regimes, I define ∆M , which is given by the difference between the levels of infrastructure

provision by the bureaucrat under the corrupt and non-corrupt regimes:

∆M =M∗
C(σ, θ)−M∗

NC(w, θ, β)

=
σ

2θ
− w

θβ
(4.17)

The provision of infrastructure is greater under the corrupt regime if ∆M > 0 and greater

under the non-corrupt regime if∆M < 0.

Based on expressions for IC in eq 4.11 and∆M in eq 4.17, there are four possible outcomes

for corruption and infrastructure provision:
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1. Infrastructure Improving Corrupt Equilibrium: This equilibrium means that the system

in a corrupt regime and the infrastructure provision is greater under the corrupt regime

(∆M > 0, IC > 0).

2. Infrastructure Degrading Corrupt Equilibrium: This equilibrium means that the system

in a corrupt regime and the infrastructure provision is greater under the non-corrupt

regime (∆M < 0, IC > 0).

3. Infrastructure Improving Non-Corrupt Equilibrium: This equilibrium means that the

system in a non-corrupt regime and the infrastructure provision is greater under the non-

corrupt regime (∆M < 0, IC < 0).

4. Infrastructure Degrading Non-Corrupt Equilibrium: This equilibriummeans that the sys-

tem in a non-corrupt regime and the infrastructure provision is greater under the corrupt

regime (∆M > 0, IC < 0).

Table 3 summarizes the possible outcomes for corruption and infrastructure provision effort.

In the remainder of the discussion, I will focus on the conditions under which each of these

four outcomes are possible. The discussion above highlights that the gains to corruption and

the infrastructure provision depend on the policy controls (probability of detection and wage),

and state of the world (climate uncertainty). Therefore, going forward, I will focus on these

three parameters to understandwhen theywill succeed or fail in providing greater infrastructure

provision effort.

Table 3. Possible Outcomes for Corruption and Infrastructure Provision. IC is the incentive
to be corrupt. ∆M > 0 implies the infrastructure provision effort is greater in the corrupt
regime than the non-corrupt regime.

Non-Corrupt Corrupt

Infrastructure Improving IC < 0
∆M > 0

IC > 0
∆M > 0

Infrastructure Degrading IC < 0
∆M < 0

IC > 0
∆M < 0
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4.3.4 Probability of Detection

I derive the following condition for corruption equilibrium from the expression for IC in eq

4.11:

σ
[ σ
4θ

+ b− w
]
> w

[ 1

θβ
− 1

2
+
T

β
− w

θβ2

]
(4.18)

I also derive a condition for when the infrastructure provision effort is greater under the

corrupt regime (∆M > 0):

σ

2θ
− w

θβ
> 0

=⇒ σ >
2w

β
(4.19)

To examine whether the conditions in expressions 4.18 and 4.19 can be satisfied, the model

mimics different climate scenarios. A high value of β reflects a state of high uncertainty and a

reasonably low value of β indicates low climate uncertainty 7

4.3.4.1 High Climate Uncertainty

Figure 19 illustrates the infrastructure provision effort, as a function of the probability of de-

tection for high and low values of wages, in a state of high climate uncertainty. The figure also

shows the shift from corrupt to non-corrupt regimes andwhether that shift results in an improve-

ment or worsening of infrastructure provision. The graph demonstrates a very intuitive point:

when the climate uncertainty is high, allowing for corruption may yield greater provision of in-

frastructure provision (solid line). This result follows the discussion on the comparative statics

ofM∗
C (expression 4.15) andM∗

NC (expression 4.16): under high climate uncertainty, infras-

tructure provision effort under the corrupt regime can be greater compared to the non-corrupt

regime.

7I determined the high-low values based on the range of feasible values of parameters.
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Figure 19 shows that at low probability of detection, conditions in expressions 4.18 and

4.19 are both satisfied, and the system is in an infrastructure improving corrupt equilibrium

(∆M > 0 and IC > 0). As the probability of detection increases, the gains from corruption

decrease and the system shifts to the non-corrupt regime (expression 4.13). However, this may

yield a worse provision of infrastructure, resulting in an infrastructure degrading non-corrupt

equilibrium (∆M > 0 and IC < 0). The graph also shows that low wages necessitate a higher

probability of detection to push the system into the non-corrupt regime (blue line). Table 4

summarizes these results (cells I and II).

0

Low Wage

High Wage

Non-Corrupt

Corrupt

Regime

Policy Control

Regime Shift

Figure 19. The infrastructure provision effort as a function of probability of detection in a
state of high climate uncertainty. The solid and dotted lines represent the corrupt and
non-corrupt regimes respectively. The blue line indicates low fixed bureaucratic wages and
green line indicates high fixed wages.
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Table 4. Conditions for the corrupt equilibrium and infrastructure provision effort in a state of
high climate uncertainty. MC is the bureaucrat’s infrastructure provision effort in the corrupt
regime andMNC is their effort in the non-corrupt regime.

Non-Corrupt Corrupt
MC > MNC I. Strong monitoring II. Weak Monitoring

MC < MNC
III. Strong monitoring

High wage
IV. Weak monitoring

High wage

4.3.4.2 Low Climate Uncertainty

I examine the outcomes for ∆M and IC in a state of low climate uncertainty. Figure 20 illus-

trates the infrastructure provision effort, as a function of the probability of detection for high

and low wages, in a state of low climate uncertainty. A key takeaway from this graph is that

increasing the probability of detection pushes the system into the non-corrupt equilibrium, but

infrastructure provision effort depends on the wage.

As the probability of detection increases, a high fixed wage to the bureaucrat yields greater

infrastructure provision under the non-corrupt regime compared to the corrupt regime (Figure

20 - dashed green line). This result follows the discussion on the comparative statics onMNC

(expression 4.16): under low uncertainty, infrastructure provision in the non-corrupt regime is

higher than the corrupt regime. Also,MC decreases as the probability of detection increases

(expression 4.15).

Figure 20 shows that when the fixed wages are high, the conditions in expressions 4.18

and 4.19 are not satisfied. As the probability of detection increases, the system shifts to an

infrastructure improving non-corrupt equilibrium (∆M < 0 and IC < 0). Alternatively,

when the fixed wages are low, increasing the probability of detection shifts the system to the

non-corrupt regime (expression 4.13). However, the infrastructure provision in this state can be

worse than the corrupt regime, resulting in an infrastructure degrading non-corrupt equilibrium

(∆M > 0 and IC < 0) (Figure 20). This result is summarized in Table 5 (cells II and III).
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Figure 20. The provision of infrastructure as a function of probability of detection in a state
of low climate uncertainty (low β). The solid and dotted lines represent the corrupt and
non-corrupt regimes respectively. The blue line indicates low bureaucratic wages and green
line indicates high wages.

Table 5. Conditions for the corrupt equilibrium and infrastructure provision effort in a state of
low climate uncertainty. MC is the bureaucrat’s infrastructure provision effort in the corrupt
regime andMNC is their effort in the non-corrupt regime.

Non-Corrupt Corrupt

MC > MNC
I. Strong monitoring

Low wage
II. Weak monitoring

Low wage

MC < MNC
III. Strong monitoring

High wage
IV. Weak monitoring

High wage

4.3.5 Bureaucratic Wage

Recalling the condition for corruption equilibrium from the expression for IC in eq 4.11:

σ
[ σ
4θ

+ b− w
]
> w

[ 1

θβ
− 1

2
+
T

β
− w

θβ2

]
(4.20)
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Rewriting the condition for when the infrastructure provision effort is greater under the

corrupt regime (∆M > 0) as:

σ

2θ
− w

θβ
> 0

=⇒ w <
βσ

2
(4.21)

We know from expression 4.16 that as wages increase, the infrastructure provision is strictly

increasing under the non-corrupt regime. However, expression 4.14 shows that the regime shift

to non-corrupt equilibrium (IC < 0) depends on the state of climate uncertainty.

Figure 21 illustrates the infrastructure provision effort, as a function of the fixed wage for

high and low probability of detection, in a state of high climate uncertainty. The key takeaway

of this graph is that the politician’s incentive to be corrupt decreases as wage increases (dotted

line). This is because the politician’s benefit from infrastructure provision in the non-corrupt

contract exceeds their benefit in the corrupt contract (expression 4.11). Once the system shifts

to the non-corrupt equilibrium, the infrastructure provision is strictly increasing in wages (ex-

pression 4.16). Table 4 summarizes these results (cells III and IV).

For sufficiently high wages, it is possible that the conditions for IC > 0 (expression 4.20)

and ∆M > 0 (expression 4.21) are not satisfied and the system is in an infrastructure im-

proving non-corrupt equilibrium (Figure 21). The figure also shows an inverse relationship

between the probability of detection and wage. That is, a high probability of detection requires

a small increase in wage to shift the system into the non-corrupt regime (green line).

Figure 22 illustrates the infrastructure provision effort, as a function of the wage for high

and low probability of detection, in a state of low climate uncertainty. The graph shows two

regime shifts in the system. We know from expression 4.16 that the infrastructure provision

effort in the non-corrupt regime strictly increases in wage. At low wages, the system shifts

from corrupt to a non-corrupt regime (dotted line). This is because the politician’s benefit
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Figure 21. The provision of infrastructure as a function of wages in a state of high climate
uncertainty. The solid and dotted lines represent the corrupt and non-corrupt regimes
respectively. The blue line indicates weak monitoring mechanisms and green line indicates
strong monitoring mechanisms.

from infrastructure provision effort in the non-corrupt regime is higher than the corrupt regime

(expression 4.11). However, as the wages increase, the system shifts back to the corrupt regime

with a lower level of infrastructure provision (solid line). This is because the politician’s cost

of paying wages to the bureaucrat far exceed their benefit from infrastructure provision in the

non-corrupt regime (expression 4.11). Figure 22 shows that as wages increase, the condition in

expression 4.19 fails and the system shifts to an infrastructure degrading corrupt equilibrium

(∆M < 0 and IC > 0). These results are summarized in Table 5 (cells III and IV).

4.3.6 Climate Uncertainty

In the final part of the analysis, I examine the effect of climate uncertainty on the corruption

equilibrium and infrastructure provision effort. Rewriting the condition for when the provision
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Figure 22. The provision of infrastructure as a function of wages in a state of low climate
uncertainty. The solid and dotted lines represent the corrupt and non-corrupt regimes
respectively. The blue line indicates weak monitoring mechanisms and green line indicates
strong monitoring mechanisms.

of infrastructure is greater under the corrupt regime (∆M > 0) as:

∆M > 0 =⇒ σ

2
>
w

β

=⇒ β >
2w

σ
(4.22)

Figure 23 illustrates the infrastructure provision effort, as a function of the climate uncer-

tainty for high and low probability of detection. The key takeaway from this figure is that

corruption is more likely as the climate uncertainty increases. This result follows the discus-

sion in the comparative statics for IC (expression 4.12) andMNC (expression 4.16). We know

from expression 4.12 that at low climate uncertainty, IC is negative even though it is increasing

at the margin. This result is represented by the first regime shift in figure 23. As the climate

uncertainty increases, the provision of the infrastructure is degrading under the non-corrupt

regime (expression 4.16) and at relatively high uncertainty, IC is positive. This is represented
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by the second regime shift in Figure 23, which shows that as climate uncertainty increases, the

condition in expressions 4.22 and 4.20 are satisfied, and the system can reach an infrastructure

improving corrupt equilibrium (∆M > 0 and IC > 0).

0

Low Probability of Detection

High Probability of Detection

Non-Corrupt

Corrupt

Regime

Policy Control

Regime Shift

Figure 23. The provision of infrastructure as a function of climate uncertainty. The solid and
dotted lines represent the corrupt and non-corrupt regimes respectively. The blue line
indicates weak monitoring mechanisms and green line indicates strong monitoring
mechanisms.

4.4 Discussion

Improving the efficiency of irrigation infrastructure is arguably a high priority for several de-

veloping countries. Yet, empirical evidence shows that the condition of irrigation infrastructure

continues to decline in countries like India due to political and bureaucratic corruption. Casual

empiricism indicates that corruption distorts the allocation of resources and reduces provision

of public goods (De Soto, 1989). Wade and Chambers (1980) and Wade (1984) indicated

that nearly 50 percent of the funds allocated by the government for maintenance of irrigation
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infrastructure was wasted in corruption. In spite of research showing the negative effects of cor-

ruption on irrigation performance in government-managed irrigation systems (Rinaudo, 2002),

few studies have examined this issue.

To make matters worse, there is little to no understanding of the role of corruption in the

context of climate uncertainty. In a world of increasing threats from climate uncertainty, this

is an important relationship to understand. The model provides a framework for analyzing

the equilibrium behavior of the politician and public good provision by the bureaucrat under

different scenarios of climate uncertainty. The key predictions may be summarized as:

1. When the climate uncertainty is high, allowing for corruption may yield greater provi-

sion of infrastructure provision (Figure 19). This suggests that cracking down on cor-

ruption is beneficial only when infrastructure provision is degrading.

2. In a state of low climate uncertainty, the model predicts that cracking down on corruption

pushes the system into a non-corrupt equilibrium. However, the state of infrastructure

provision depends on the wages of the bureaucrat (Figure 20). This suggests a comple-

mentary role of wage increases and corruption eradication efforts.

3. As we continue to face an increased uncertainty in the climate, wages play an important

role in determining if corruption may be curbed and infrastructure provision may be

improved.

The first key result of the model is that in the context of government-managed irrigation

systems, cracking down on corruption is beneficial only when the provision of infrastructure in

the corrupt regime is worse than in the non-corrupt regime. The important policy implication of

this result is that under high climate uncertainty, allowing for corruption, or a low probability

of its detection, can yield greater infrastructure provision efforts (Figures 19 and 23). It is

important to understand the counterfactual of this result, i.e., the effect of curbing corruption

on infrastructure provision efforts in a state of high climate uncertainty.
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Themodel predicts that while increasing the probability of detection pushes the system into

a non-corrupt equilibrium, the state of infrastructure may be degrading under the non-corrupt

scenario. While the notion of climate uncertainty in corruption studies is yet to be explored, the

idea of allowing for corruption is not novel. This result is consistent with the extant literature,

which suggests that allowing for bureaucratic corruption may, sometimes, be the optimal thing

to do, particularly in the context of developing countries (Shleifer and Vishny, 1993; Acemoglu

and Verdier, 1998).

The second key result of themodel is the importance of bureaucratic wages. In a state of low

climate uncertainty, themodel shows that while cracking down on corruption pushes the system

into a non-corrupt equilibrium, the state of infrastructure provision depends on the wages of

the bureaucrat (Figure 20). I find that the under low climate uncertainty, in systems with high

bureaucratic wages, there is a need for stronger monitoring mechanisms to curb corruption. In

such cases, increasing the probability of detection in scenarios where bureaucrats have high

wages may result in a higher provision of infrastructure in the non-corrupt regime (Figure 20).

The importance of adequate wages in relation to curbing corruption has been widely

discussed in the corruption literature (Becker and Stigler, 1974; Shapiro and Stiglitz, 1984;

Myrdal, 1972), and the conclusions are ambiguous. The model also predicts that in a state of

low climate uncertainty, if the fixed wages are high, the system can be in a corrupt equilibrium

with a lower state of infrastructure provision (Figure 22).

On the other hand, “shirking models” of Shapiro and Stiglitz (1984) and Becker and Stigler

(1974) predict that in the presence of low probability of detection, higher wage is necessary to

eliminate corruption. Interestingly, the model predicts this result in the state of high climate

uncertainty (Figure 21). In such cases, infrastructure provision may improve in the non-corrupt

regime only if the wages are very high.

Last, in a state of low climate uncertainty, the model predicts that even in the presence
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of strong monitoring and enforcement mechanisms, corruption may prevail when wages of

bureaucrats are high (Figure 22). The model predicts that in such cases, the provision of infras-

tructure is degrading under the corrupt regime. This result is consistent with the observations

of Wade (1982), which concludes that in spite of strong monitoring procedures, executive engi-

neers, who are among the high-ranked bureaucrats in the irrigation bureau, continue to conceal

their receipt and passing on of illicit funds. The fact that the exchange of illicit funds is encour-

aged, and is often demanded, by the politician reduces the effectiveness of these monitoring

mechanisms (Wade, 1982, pg.309). Furthermore, Wade (1982) and Mollinga (2003) empha-

size that in South Indian canal irrigation systems, corruption among high-ranked bureaucrats

and politicians functions an informal institution and plays a major role in the poor maintenance

of irrigation infrastructure.

The non-monotonic nature of the tradeoffs between corruption and infrastructure provision

in the model shows that there is not a “panacea”, one-size-fits-all policy approach. Anticipat-

ing institutional responses to climate change is especially critical for managers of irrigation

infrastructure. However, it is important to understand the nexus of climate uncertainty, the

remuneration in non-corrupt systems, and monitoring effectiveness before making policy rec-

ommendations.
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Chapter 5

CONCLUSION

The objective of this research was to better understand how institutions for provision of

shared infrastructure are crafted and sustained, and the consequences they generate for resource

use in diverse settings. I addressed these questions by studying irrigation systems in India. I

used a combination of stylized mathematical models to examine human-environment interac-

tions and, specifically, the incentives that motivate actors to engage in the provision of shared

infrastructure. My findings demonstrate the importance of formal interventions, such as water

pricing instruments, rural non-farm wage employment, and bureaucratic wages, to improve the

provision of irrigation infrastructure. I also show the important role that informal institutions,

such as informational interventions, may play in inducing better infrastructure provision.

In Chapter 2, I examined how the presence of shared and private infrastructure may affect

the provision of shared infrastructure and system productivity. Using a stylized replicator dy-

namic model, I demonstrated that an integrated set of institutions, such as a fixed groundwater

fee and a volumetric fee on tank users that is differentiated based on where users are located in

the system, can improve system productivity and equality. I calibrated the model parameters

to replicate and predict outcomes in tank irrigation systems in South India.

The next extension of my inquiry was to examine the effect of social factors on institutions.

In Chapter 3, I examine the role of power asymmetries between resource users as a determinant

for the political institutions that govern infrastructure provision. I developed a stylized com-

partmental model to track the institutional preference of elites and non-elites in an irrigation

system. I use this mental model to examine the effect of policy tools, such as non-farm wage

employment and informational interventions, on the persistence of two different types of politi-
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cal institutions in a canal irrigation system: self-governed and nested governance. My findings

show that improving non-farm wage employment opportunities can shift the system to a nested

institution, which typically has higher infrastructure provision. However, in order to accelerate

the rate of change such that it is not too late to improve infrastructure provisions, changes to

informal institutions, such as informational interventions and learning, may be required.

Last, I examine the role of political factors as determinants of infrastructure provision in

Chapter 4. Using a stylized principal-agent model, I examine the effect of political and ad-

ministrative corruption on infrastructure provision in a canal irrigation system. Specifically,

I examined how institutional and environmental factors affect (i) the likelihood of corruption,

and (ii) the provision of infrastructure. My model results suggest that in the face of increas-

ing uncertainty in environmental shocks, a crackdown on extralegal side payments through

monitoring mechanisms may result in inferior infrastructure provision. I also demonstrate that

by focusing on bureaucratic wages, we can curb corruption as well as improve infrastructure

provision.

Agriculture contributes to nearly 20% of India’s GDP. In spite of enormous investments

by the Indian government in its management, poor irrigation infrastructure remains a critical

factor for low yields and water productivity (Shah, 2009). This raises serious concerns for

food security. My research is a step towards understanding the determinants of infrastructure

provision and crafting policies to improve its management. Though that models I developed in

this thesis are stylized, they capture key human-environment interactions that are representative

of several irrigation systems in India. Moreover, the models allow us to assess the potential

gains to individuals for different policy interventions. In the future, through an iterative process

of model and data refinement, the models developed in this thesis can offer valuable insights

to policymakers about crafting effective institutions for improving infrastructure quality and
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agricultural productivity. I contend that this work is in the spirit of extending Ostrom’s (2007)

call for moving beyond panaceas to produce actionable solutions for policymakers.

The implications of my work also extend beyond the specific case study contexts. The

challenge of public infrastructure provision in human societies in not unique to irrigation sys-

tems. As world populations continue to rise, the demand for scarce resources is increasing,

resulting in greater demand for the provision of existing physical infrastructures. For instance,

we observe this trend in the need for better maintenance of the public electric grid as soci-

eties shift to decentralized energy systems (Castaneda et al., 2017). There is also a need for

building more road infrastructure as traffic congestion continues to rise (Joanis, 2011). What

unifies these systems is the similarity of the political-economic factors that drive or impede the

infrastructure provision. I contend that my research demonstrates how to operationalize the

CIS framework and develop theory-rich models that can characterize policy recommendations

for infrastructure provision in social-ecological systems.
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Table 6. Definitions of State Variables and Parameters
Symbol Definition
Dynamical and decision variables
I Efficiency of the shared infrastructure
XE Fraction of elite farmers whose preference over governance is nested regime
XP Fraction of poor farmers whose preference over governance is nested regime
V Voting outcome
πi,S Payoff of farmer in group i under self-governance regime
πi,J Payoff of farmer in group i under nested regime
t Time

Parameters
ν Marginal productivity of the maintenance investment
σ Scaling parameter
µ Natural siltation rate of the tank
ai Acreage of farmer in group i
li Farm labor of farmer in group i

α, β, γ Output elasticities of acreage, labor, and water
ψ Marginal maintenance fee under self-governance regime
θ Marginal maintenance fee under nested regime
ρi Price per unit of production input of farmer in group i
wi Non-farm wage to farmer in group i
ξ Surface of the farmland
ϕ Responsiveness of individuals to economic payoffs
Ωi Voting weights of farmer in group i
Γ Voting threshold condition
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This section shows the derivations of the first-order conditions and the maximized utility
functions of the bureaucrat and politician for the corrupt and non-corrupt contracts.

B.1 Non-corrupt Bureaucrat and Non-corrupt Politician

The non-corrupt bureaucrat’s utility function may be derived as:

UB(NC,NC) = wPr(MNC + ϵ > T )− θM2
NC

2

= wPr(ϵ > T −MNC)−
θM2

NC

2

= w(1− Pr(ϵ < T −MNC))−
θM2

NC

2

= w(1− f(T −MNC))−
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NC

2

ϵ ∼ U [
−β
2
,
β

2
]

= w
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2

β

)
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2

= w
( β

2
− T +MNC

β

)
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NC

2

=
w

2
− wT

β
+
wMNC

β
− θM2
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2

Knowing thatM∗
NC =

w

θβ
, the non-corrupt politician’s maximized utility may be derived
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as

UP (NC,NC) =MNC + E[ϵ]− wPr(MNC + ϵ > T )

=MNC + E[ϵ]− wPr(ϵ > T −MNC)

=MNC − w(1− Pr(ϵ < T −MNC))

=MNC − w(1− f(T −MNC))

ϵ ∼ U [
−β
2
,
β

2
]

=MNC − w
(
1−

T −MNC + β
2

β

)
=MNC − w

( β
2
− T +MNC

β

)
=MNC − w

2
− wT

β
+
wMNC

β

SubstitutingM∗
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B.2 Corrupt Bureaucrat and Corrupt Politician

The corrupt bureaucrat balances the increased expected marginal benefit from decreasing the
probability of being caught and the marginal reduction in the net bribe paid to the politician
versus the marginal cost of their effort:

UB(C,C) = max
MC

E
[
σ
(
w − b+Hq

)
− θM2

C

2

]
= σ

(
w − b+HMC

)
+ σH E(ϵ)− θM2

C

2

= σ
(
w − b+HMC

)
− θM2

C

2
FOC : σHC − θMC = 0

=⇒ MC =
σH

θ
(B.1)

The politician’s problem is to choose a bribe, H , taking as given the bureaucrat’s optimal
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choice ofMC for a givenH:

UP (C,C) = max
H

E
[
σ
(
q + (b−Hq)− w

)]
= σ

(
MC + b−HMC − w

)
+ E[ϵ]−H E[ϵ]

= σ
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)
SubstitutingMC =
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σ2H

θ
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− 2Hσ2
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= 0
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2
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C(σ, θ) =
σ

2θ

Knowing the values ofH∗ andM∗
C , the maximized utility functions of the corrupt bureau-

crat and politician may be rewritten as

UB(C,C) = σ
[
w − b+

1

2
.
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2θ
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− θ

2
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4θ
+ σ[b− w] (B.3)

105


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Effect of Private Infrastructure on the Provision of Shared Irrigation Infrastructure in South India
	3 Water and Elites: The Role of Cultural Politics in Irrigation Development
	4 Institutions Without Romance: Corruption and Provisioning of Public Infrastructure in Canal Irrigation Systems
	5 Conclusion
	Works Cited
	A Chapter-3 Appendix
	B Chapter-4 Appendix


