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ABSTRACT

Layered chalcogenides are a diverse class of crystalline materials that consist of

covalently bound building blocks held together by van der Waals forces, including

the transition metal dichalcogenides (TMDCs) and the pnictogen chalcogenides

(PCs) among all. These materials, in particular, MoS2 which is the most widely

studied TMDC material, have attracted significant attention in recent years due

to their unique physical, electronic, optical, and chemical properties that depend

on the number of layers. Due to their high aspect ratios and extreme thinness, 2D

materials are sensitive to modifications via chemistry on their surfaces. For instance,

covalent functionalization can be used to robustly modify the electronic properties

of 2D materials, and can also be used to attach other materials or structures. Metal

adsorption on the surfaces of 2D materials can also tune their electronic structures,

and can be used as a strategy for removing metal contaminants from water. Thus,

there are many opportunities for studying the fundamental surface interactions of

2D materials and in particular the TMDCs and PCs.

The work reported in this dissertation represents detailed fundamental studies

of the covalent functionalization and metal adsorption behavior of layered chalco-

genides, which are two significant aspects of the surface interactions of 2D materials.

First, we demonstrate that both the Freundlich and Temkin isotherm models,

and the pseudo-second-order reaction kinetics model are good descriptors of the

reaction due to the energetically inhomogeneous surface MoS2 and the indirect

adsorbate-adsorbate interactions from previously attached nitrophenyl (NP) groups.

Second, the covalent functionalization using aryl diazonium salts is extended to

nanosheets of other representative TMDC materials MoSe2, WS2, and WSe2, and of

the representative PC materials Bi2S3 and Sb2S3, demonstrated using atomic force
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microscopy (AFM) imaging and Fourier transform infrared spectroscopy (FTIR).

Finally, using AFM and X-ray photoelectron spectroscopy (XPS), it is shown that

Pb, Cd Zn and Co form nanoclusters on the MoS2 surface without affecting the

structure of the MoS2 itself. The metals can also be thermally desorbed from MoS2,

thus suggesting a potential application as a reusable water purification technology.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Surface Interactions of Two-Dimensional Materials

Over the past few decades, dimensionality has been shown to play a crucial

role in determining the properties of materials[1, 2]. Nanostructured materials

feature one or more dimensions that are reduced to nanometer-scale sizes, resulting

in new properties that differ from those of the bulk material. Recently, the most

prominent form of nanomaterials are two-dimensional (2D) materials, which often

have corresponding in bulk forms with atomically thin layers stacked together

with weak interlayer attractions[3]. The rapid development in our understanding

of graphene, the prototypical 2D material composed of atomic layers of carbon,

has led to significant research efforts other 2D materials which can be exfoliated

to ultrathin layers[1, 4, 5], such as transitional metal dichalcogenides (TMDCs)[6,

7], pnictogen chalcogenides (PCs)[8, 9], elemental graphene analogues[10, 11], and

perovskite-based oxides[12, 13].

In particular, 2D TMDCs are more promising in electronic applications than

semi-metallic graphene because some of them are naturally abundant semiconductors

with sizable bandgaps[4, 5]. As shown in Figure 1.1a, TMDCs are a class of mate-

rials with formula MX2, where M represents a transition metal element from groups

IV, V or VI, and X represents a chalcogen (S, Se, and so on). These materials exist as

stacked layers of the form X-M-X, with a hexagonal plane of metal atoms sandwiched

by two hexagonal planes of chalcogen[14]. Each of these sandwich-structured

1



Figure 1.1: Structure of TMDCs and PCs. (a) 3D schematic illustration of
a typical MX2 structure, with X representing chalcogen atoms and M representing
metal atoms[14]. (b)-(c) Crystal structures of Pn2X3 materials inside and top views
(yellow atoms: X; brown atoms: Pc).

layers are covalently bound internally, but there are weak vdW interactions be-

tween adjacent layers, so TMDCs can be relatively easily delaminated to monolayer

thickness, with dramatic changes of electronic properties as summarized in Table 1.1.

The PCs are another class of layered chalcogenides, with the general formula

Pn2X3, where Pn is a group 15 pnictogen (Pn = As, Sb, and Bi). While the broader

group includes semiconductors, topological insulators, and thermoelectrics, here in

this thesis we focus on the semiconductors Sb2S3 and Bi2S3. These materials have

been grown in thin films[8], nanowires and nanorods[9, 20–24], and exfoliated into

1D nanoribbons and 2D nanosheets[25–27]. Examples of applications for Bi2S3 and

Sb2S3 include solar cells, batteries, and catalysts[9, 20, 27–30]. The crystal structure

of the Pn2X3 materials including Sb2S3 (antimony trisulfide or antimonite or stibnite)

and Bi2S3 (bismuth(III) sulfide or bismuthinite), which belong to the Pnma space

group (No. 62), are shown in Figure 1.1b and c.

While the layered chalcogenides have many promising optical, magnetic, and

electronic properties[1, 2, 4, 5], strategies for taking advantage them in a range

of applications requires understanding and controlling their surface interactions.

2



-S2 -Se2 -Te2

Nb Metal; Metal;

Superconducting; Superconducting; Metal[15]

CDW[16] CDW[16]

Ta Metal; Metal;

Superconducting; Superconducting; Metal[15]

CDW[16] CDW[16]

Mo Semiconducting;[4] Semiconducting;[17] Semiconducting;[17]

1L:1.8 eV; 1L:1.5 eV; 1L: 1.1 eV;

Bulk:1.2 eV Bulk:1.1 eV[18] Bulk:1.0 eV

W Semiconducting;[19] Semiconducting;[15]

1L:2.1 eV; 1L:1.7eV; Semiconducting;[15]

1L:1.9 eV;[17] Bulk:1.2 eV[18] 1L:1.1 eV

Bulk:1.4 eV[18]
Table 1.1: Summary of TMDC Materials and Properties. The electronic
properties of TMDC materials are listed as metallic, superconducting, semiconduct-
ing or charge density wave (CDW). For the semiconducting materials, the bandgap
energies for monolayer (1L) and bulk forms are listed.

Because of their atomic thinness, they have very high surface-to-volume ratios so

that their surfaces can greatly affect their behaviors[1, 2, 31–33] In particular, in this

thesis we will focus on the covalent functionalization with organic molecules and the

adsorption of metal ions.

1.2 Motivations

The work in this thesis is motivated by the need for fundamental studies on

understanding the surface interactions of layered chalcogenides. First, the direct
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covalent functionalization of MoS2 using aryl diazonium salts was demonstrated in

our group’s earlier work in Chu et al.[34]. However, the reaction kinetics also plays

a crucial role in the functionalization and needs to be further studied to achieve

a full understanding of the reaction process and to enable more precise control of

the functionalization. Moreover, there exists an unmet need for mild chemistries

that will enable direct covalent functionalization of semiconducting TMDC and PC

surfaces other than MoS2. It is crucial to demonstrate a generalizable and broadly

applicable approach for modifying the surface of more TMDCs and PCs.

Second, the adsorption of metals onto TMDCs has recently been reported for

doping[35] and for the removal of heavy metal ions from water[36–40]. However,

the previous reports have primarily focused on either theoretical simulations or

evaluation of macroscopic performance, rather than microscopic characterization.

Thus, there is a need to study the fundamental interaction between TMDC surfaces

and adsorbed metal ions, in particular the morphology, mechanism, and structure.

1.3 Overview of Thesis

In this thesis, we report three detailed studies of different aspects of the surface

chemistry of 2D metal chalcogenides. First, in Chapter 2, we presented more detailed

background on several important aspects of the synthesis, characterization, and

surface functionalization of TMDCs and PCs. In Chapter 3, we present a detailed

study of the reaction kinetics for the direct covalent functionalization of unmodified

semiconducting 2H-MoS2 by the aryl diazonium salt 4-NBD, which was first shown in

our earlier work (see Chu et al.[34]), and which has been used to probe the chemical

reactivity of graphene[41–43]. Here, we chose 4-NBD as a model compound to
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investigate the reaction kinetics of the functionalization by conducting an adsorption

isotherm with varying concentrations of 4-NBD aqueous solution using different

models to fit the data to describe the reaction. In addition, the reaction kinetics and

spatial distribution of the resulting nitrophenyl (NP) groups covalently attached on

the surface of MoS2 were studied via a series of reactions at different concentrations

and time sequences. We find that the best models to describe the process are the

Temkin and Freundlich adsorption models and pseudo-second-order kinetics model

in which the adsorbate−adsorbate interaction is considered. These findings are also

consistent with our previous DFT simulations (see Chu et al.[34]) Previous literature

on the kinetics of the diazonium functionalization of graphene showed a first-order

reaction[24], which, we find, does not adequately describe the scenario for MoS2.

In Chapter 4, we expand this covalent functionalization with aryl diazonium

salts to several other members of the TMDC and PC families beyond MoS2 to further

extend the applicability and broad utility of this chemistry, namely to functionalize

MoSe2, WS2, WSe2, Bi2S3, and Sb2S3. We prepare and functionalize samples of these

materials using mechanical exfoliation, liquid phase dispersion, and chemical vapor

deposition (CVD) techniques. Using vibrational and absorbance spectroscopies,

we show the formation of chemical bonds and attachment of functional groups to

the TMDC and PC nanosheets. Using atomic force microscopy (AFM), we show

the spatial distribution of NP groups across the TMDC and PC surfaces with

functionalization. This work shows that the covalent functionalization using aryl

diazonium salts can indeed be applied to many related layered chalcogen materials,

thus greatly expanding the scope of utility of the chemical scheme, and that it can

open the door to further modifications of these materials. These surface-modified

nanomaterials have potential applications in biosensing, antimicrobial, therapeutic,
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environmental, energy, and optoelectronic applications. The winder literature on the

diazonium functionalization of 2D materials and carbon nanomaterials, which has

demonstrated changes to properties such as the electronic and transport[44], shifts

in optical emission[34], and the covalent attachment of other materials[34, 41, 43]

like proteins, polymers, and quantum dots, can be brought to inform future work on

TMDCs and PCs.

Finally, in Chapter 5, we report the adsorption of heavy metal ions from

aqueous solutions onto the surface of MoS2 nanosheets and subsequent formation of

nanoclusters. We characterize these adsorbed structures using AFM and XPS to

show the presence of Pb, Cd, Zn and Co. The metal nanoclusters can be desorbed

from the surface of MoS2 by thermal annealing. The MoS2 nanosheets can then be

incorporated into three-dimensional structures polyurethane foam, which can then

be used for removal of heavy metal contamination at trace concentrations from water.
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Chapter 2

BACKGROUND

In this chapter, we introduce more detailed background including synthesis, charac-

terization, and previous work on surface interactions of TMDC and PC materials.

2.1 Synthesis and Characterization of TMDCs and PCs

2.1.1 Mechanical Exfoliation

Mechanical exfoliation was the technique originally developed to prepare

graphene[3–5, 45, 46]. Atomically thin flakes of TMDCs can be acquired from

peeling apart bulk crystals to induce micromechanical cleavage using scotch tape,

then applied to target substrate and identified by using optical microscopy[14, 47]. A

flake of as-exfoliated MoS2 with regions of different layer numbers is shown in Figure

2.1b. The samples of TMDCs prepared using this method are very high-quality crys-

tals with very few defects, so that they are suitable for various types of fundamental

research[48]. However, the size of the flakes is limited to usually a few microns across.

2.1.2 Liquid Phase Exfoliation

As shown in Figure 2.1d, TMDCs can be exfoliated by ultrasonication in liquids

such as aqueous surfactant solutions, organic solvents, or solutions of polymer in

solvents[49, 50]. Typically, the sizes of flakes acquired using this method are a few

hundred nanometers which is also rather small. However, a large amount of material

can be produced by this method in a dispersion that is compatible with solution
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Figure 2.1: Preparation and characterization of TMDCs. (a) A photograph
of bulk crystal of MoS2. (b) Optical microscopy image of mechanically exfoliated
MoS2 monolayer and multilayer from our current experimental work. (c) AFM image
of MoS2 flake shown in b. (d) Liquid phase dispersion of TMDCs prepared by Dr.
Alexander Green’s group. (e) A schematic illustration of two phonon vibration modes
corresponding to typical Raman peaks of MoS2. (f) A series of Raman spectra show
thickness dependence.

phase processing steps, so that it is promising for experiments that require large

quantities of materials[49].

2.1.3 Chemical Vapor Deposition (CVD)

Uniformly, large area of TMDCs are needed for the fabrication of electronic

and optoelectronic devices[46, 51, 52]. Atomically thin films of MoS2 can be grown

on insulating substrates using chemical vapor deposition (CVD) methods[52]. As

shown in Figure 2.2, different precursors have been used to generate MoS2: MoO3

powder and sulfur powder were heated to become vapors and co-deposit on the
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Figure 2.2: Synthesis of MoS2 by CVD with different precursors. (a) The
process of synthesizing MoS2 from a dip-coated chemical precursor on SiO2/Si or sap-
phire substrate. (b) Schematic of CVD synthesis of MoS2 from S and MoO3 powders.
Red dots indicate the heating coil of a tube furnace. (c) Optical microscope image
of CVD grown MoS2, where blue star shapes are MoS2, and the purple background
is SiO2/Si substrate. (d) A schematic illustration of CVD MoS2 synthesized from a
solid layer of Mo. (e) Optical microscope image of MoS2 grown from solid film of
Mo, where dark and light purple regions are MoS2 of different thickness, and brown
background is substrate. a, ref 26, b & c, ref 24, d & e, ref 25.

target substrate[46, 53]; substrates were dip-coated with a solution of (NH4)2MoS4

in dimethylformamide (DMF), and heated in a sulfur vapor[52]; a thin film of Mo

metal was deposited onto target substrate, and heated in a sulfur vapor[51]. In

general, the thickness of the MoS2 film produced depends on the concentration of

precursors or the initial thickness[54], and the areas are on the order of centimeters.

These methods have already resulted in MoS2 films that are large enough for

fabricating devices and for use with characterization tools that requires larger areas,

including Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron

spectroscopy (XPS).

9



2.1.4 Characterization

There are many techniques that are used to characterize 2D TMDCs. Optical

microscopy can be used to identify monolayer and few-layer crystals of 2D materials,

due to the optical interference of the crystals on SiO2 capping layers of precise

thicknesses on Si wafer substrates[55]. Raman spectroscopy can detect the phonon

vibration of the materials[56], and based on the typical Raman peaks of TMDCs,

we can identify the materials, and also estimate their thicknesses due to the layer

number dependence of the positions of particular characteristic peaks[46], shown

in Figure 2.1e and f. With a spatial map of Raman spectra, the uniformity of a

specific flake can be shown[57]. Atomic force microscopy (AFM) is essential and

commonly used for TMDCs since it is usually used to characterize thin films. It

can provide us information about the morphology and roughness of the surface[57],

and layer thicknesses. In addition, techniques that are used for thin films, including

transmission electron microscopy[57] (TEM) and scanning electron microscopy

(SEM), are also used for characterization of 2D TMDCs.

2.2 Chemical Functionalization

2.2.1 Functionalization of TMDCs

In order to utilize the various properties of 2D layered chalcogenides, surface

interaction/modification is significant due to the high surface-to-volume ratio and

their relatively weak reactivity[58, 59]. Covalent functionalization of TMDCs, in

particular, MoS2, has been drawing attentions in recent years[58]. The chemical

functionalization of nanomaterials is used to tune their physical properties, control

their interfacial interactions with other materials, and to protect them from dele-
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terious environments. In general, 2D materials like graphene can be functionalized

by both covalent and non-covalent methods[43, 60, 61]. For example, the surface

functionalization of TMDCs can allow them to have improved biosensing capabilities

by introducing biophilic moieties to bind particular biomolecules[62–64], better

antimicrobial activity[65, 66], sorption of contaminants from water[67], and doping

of the semiconducting material[68].

Semiconducting TMDCs, however, due to the lack of dangling bonds on their

basal planes[55, 69], are less reactive than the low-dimensional carbon allotropes.

Previously reported methods of covalent functionalization of semiconducting TMDCs

have required the participation of aggressive chemicals to enhance the formation

of covalent bond or harsh treatments that impair the desirable properties of the

TMDCs. For example, it was reported that using organoiodides (Voiry et al.[70])

and aryl diazonium salts (Knirsch et al.[71]), respectively, MoS2 can be covalently

functionalized only after being conversed from the semiconducting 2H phase to the

electron-rich metallic 1T phase. These previous works require the highly pyrophoric

n-butyllithium to promote the formation of the metallic MoS2 phase. During the

treatment, either the S plane or both S and Mo plane will glide and the crystal

structure of MoS2 transforms from trigonal to octahedral[72]. The Fermi-level shifts

from the d band gap to the d band[73] which is easier to be accessed by electrons and

ions resulting in, abolishing the semiconducting and photoluminescence properties

of the pristine 2H phase as shown in Figure 2.3. Lei et al. applied TiCl4 and

SnCl4 to form coordination bonds with S or Se atoms on the surface of TMDCs via

Lewis acid-base mechanism[74]. However, the metal chlorides are highly volatile

and they either decompose in air or dramatically react with water releasing HCl[75].

In addition, milder chemistries have been reported to be limited to noncovalent
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Figure 2.3: Transformation of MoS2 from 2H phase to 1T phase. (a) Atomic
structure of pristine 2H-MoS2 (b) Atomic structure of 1T-MoS2 after treatment using
n-butyllithium. (c) Photoluminescence (PL) spectra of 2H-MoS2 and 1T-MoS2. The
PL emission nearly disappears after transformation from 2H to 1T.

bonds or defect sites on TMDC surface. Even though various organic[63, 69,

76–79] and inorganic[27] chemicals have been used for noncovalent functionalization

of TMDC[23, 80], these interactions are not as robust as covalent bonds due to

relying on physisorption to the TMDC surface. It was also demonstrated that metal

acetates[81] and ligand[78, 79] conjugated at defect sites on semiconducting TMDCs,

but the maximum coverage is always limited to the initial binding sites.

2.2.2 Functionalized MoS2 in Applications

There has been increasing interest in using MoS2 nanosheets in environmental

applications as sorbents and ion-exchange materials for heavy-metal ions[82, 83]

and organic contaminants[84–86]. However, the 1T phase of MoS2 is susceptible

to corrosion[45] and recent studies have shown that the removal mechanism of

pollutants on MoS2 is likely from redox[40] or precipitation[87] reactions medi-

ated by the solubilized molybdate ions, rather than from adsorption, although

covalent functionalization of the 1T-MoS2 surface can enable high capacity and

multifunctional removal of pollutants[67]. Covalent functionalization of the more

stable 2H-MoS2 phase may offer a route toward using these materials as sorbents
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through the attachment of organic functional groups that can selectively remove

pollutants. In general, covalent functionalization is an important route for tuning the

properties of 2D materials[34, 88–91], for engineering their interactions with external

environments[77, 92], and for potential applications including transistors[14, 77, 92],

flexible electronics[93, 94], and biosensors[95, 96].

2.2.3 Direct Covalent Functionalization of MoS2

Recently, we reported (see Chu et al.[34]) that the basal plane of unmodified

semiconducting 2H-MoS2 can be directly covalently functionalized using aryl

diazonium salts 4- nitrobenzene diazonium tetrafluoroborate (4-NBD) without any

pretreatment and without the conversion to the metallic 1T phase that previous

researchers have used[71, 97]. The schematic is shown in Figure 2.4. When the

4-NBD molecule approaches, the charges at MoS2 surface cause the break between

the diazonium group and the benzene ring resulting in a nitrogen (N2) molecule and

a nitrobenzene radical. From density functional theory (DFT) calculations in our

earlier work[34], we showed a S-vacancy or defect will allow the nitrobenzene radical

to covalently attached to a S atom with a stable binding energy. Moreover, we

developed a reaction mechanism where the functionalization initiates from a single

defect or S-vacancy due to the increased density of states in MoS2 at these locations.

The region immediately surrounding a covalently attached group also has increased

reactivity, so that subsequent covalent attachment will preferentially occur next to

an existing group, resulting in the covalent functionalization propagating across the

surface of MoS2 in a chain-like formation. Thus, a very low initial concentration

of defects is needed to nucleate the covalent surface functionalization across the

entire MoS2 basal plane. However, more information relating to reaction kinetics is
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Figure 2.4: Schematic illustrations of the direct covalent functionalization.
(a)-(c) The diazonium group breaks from 4-NBD as a N2 molecule due to charges at
the MoS2 surface. The nitrobenzene radical covalently attaches to a sulfur atom on
the surface, resulting in a nitrophenyl (NP) functional group[34].

still essential to control the aryl diazonium salts functionalization chemistry more

precisely.

2.2.4 Functionalization of Other TMDCs and PCs

Aryl diazonium functionalization has also previously been applied to other ma-

terials such as graphene[41–43, 61] black phosphorus,[98], and carbon nanotubes[99].

The TMDCs, in particular MoS2, have been the focus of several surface functional-

ization studies[63, 70, 71], and a variety of approaches and chemical schemes have

been used[64, 70, 74, 100–104]. Many of these methods require lithium-based phase

conversion or the formation of defects. There have also been some examples of surface

functionalization for the PCs[97, 105–107]. It is reported that chitosan functionalized

Bi2S3 quantum dot has been studied as a candidate for fluorescent biomarker[105,

106] and the polyvinylpyrrolidone functionalized rGO/Bi2S3 has potential to be ap-

plied for chemo-photothermal therapy of cancer[107]. However, there are fewer such

methods for PCs than for TMDCs to the best of our knowledge.
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2.3 Adsorption Behavior of Metal Ions on MoS2 Surface

Other than covalent functionalization, the metal adsorption is another significant

aspect relating to surface interaction of MoS2[11]. MoS2 is two-dimensional with a

high surface-to-volume ratio, making it attractive for the size reduction of devices[1,

2, 31–33]. In addition, there is a great potential to use transitional metal atoms

to modulate the electronic and magnetic properties of MoS2[35]. Moreover, in

contrast to graphene, MoS2 itself is catalytic[108] without functionalization and

doping. It is reported that MoS2 nanosheets have already been applied to epitaxial

growth of Au, Ag, Pd and Pt and ambient conditions[109]. Based on the research

relative to MoS2 and metals, there is a great opportunity to experimentally study

the adsorption of metals on MoS2 since there is a great deal of first-principles

simulations of the interaction between metals and MoS2[15]. Adsorption energy,

stable geometry, and electronic properties were studied by means of first-principle

computations within density functional theory (DFT)[33] and different metals have

various adsorption energy on MoS2 and it affects the stability of the adsorption[33, 35].

Besides, multiple industrial and household sources induce heavy metal con-

tamination in water supplies[110, 111]. Our health can be threatened by heavy

metal in water, such as organ damage caused by Cd poisoning and developmental

delay in children caused by Pb poisoning[110]. It is reported that the fact that the

adsorption of metals on MoS2 has already been used to removal the heavy metals

from water[36–40]. For instance, Wang et al.[40] reported the removal of Ag from

water using layer-stacked MoS2 membranes and Ai et al.[39] demonstrated the

removal of Hg from natural water samples using widened defect-rich nano MoS2.

Embedded in saw dust, MoS2 nanosheets can also remove Pb selectively from water
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when competitor ions are present[36]. However, some aspects in the adsorption of

metal on MoS2 are still unclear, such as the morphology change after the process.
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Chapter 3

REACTION KINETICS FOR THE COVALENT FUNCTIONALIZATION OF

TWO-DIMENSIONAL MOS2 BY ARYL DIAZONIUM SALTS

3.1 Background

The two-dimensional transition metal dichalcogenide (TMDC) molybdenum

disulfide (MoS2) has been intensely studied in the past several years due to its

exceptional electronic, optical, and chemical properties in a wide range of applica-

tions. The chemical functionalization of MoS2 allows its properties and interfacial

interactions to be tuned and controlled. Recently, we reported the direct covalent

functionalization of semiconducting MoS2 with aryl diazonium salts, without the use

of harsh initial treatments or phase engineering.

In this chapter, we confirm and expand the covalent functionalization reaction

model by performing a detailed study of the reaction kinetics for monolayer

MoS2 functionalized by 4-nitrobenzene tetrafluoroborate (4-NBD). We find that

both the Freundlich and Temkin isotherm models are good descriptors of the

reaction due to the energetically inhomogeneous surface of MoS2 and the indirect

adsorbate-adsorbate interactions from previously attached nitrophenyl (NP) groups,

respectively. The reaction kinetics was then found to be well described using a

pseudo-second-order model, showing that the order of this reaction is two. This

study supports our previous work and gives us a deeper understanding of the nature

of the covalent functionalization of MoS2.
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3.2 Experimental Methods

3.2.1 Sample Preparation

Si substrates with a 300 nm layer of SiO2 were ultrasonically cleaned in sequential

baths of acetone and isopropyl alcohol and then blown dry with ultrahigh purity

nitrogen gas. MoS2 flakes were prepared by the mechanical exfoliation method

from a bulk crystal (SPI Supplies) using scotch tape and deposited on the clean

substrates. Tape residue was removed by annealing the samples in vacuum at 300°C

for 3 hours. Monolayer and multilayer MoS2 flakes were identified on the substrate

by optical microscopy and Raman spectroscopy.

3.2.2 Functionalization Reaction

MoS2 flakes deposited on SiO2/Si were immersed in various concentrations

of 4-nitrobenzenediazonium tetrafluoroborate (4-NBD) (Sigma Aldrich) aqueous

solutions at 35°C with constant stirring at 125 rpm. The reaction was performed in

a parafilm-sealed beaker in the dark. At specific reaction times, the samples were

extracted from the solutions, rinsed with ultrapure water to remove non-covalently

attached molecules, blown dry with ultrahigh purity nitrogen gas, and then charac-

terized.

3.2.3 Atomic Force Microscopy (AFM)

AFM images were taken after each reaction time using a Multimode V system

(Bruker Inc.) in ScanAsyst mode with ScanAsyst-Air tips (tip diameter: 2 nm).
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3.2.4 Image Processing and Calculations

AFM images were processed using the Gwyddion software package.[112] The

coverage calculations were performed using ImageJ.[113] The adsorption isotherm

and reaction kinetics curves were fitted using Matlab.

3.2.5 Raman Spectroscopy

Raman spectroscopy and optical microscopy were conducted on a WITec al-

pha300R system confocal Raman microscope system. Raman spectra were obtained

with a 532 nm excitation laser and 100X objective lens with 1 µm laser spot size.

The laser power was kept to 0.3 mW to minimize damage to the MoS2 samples.

3.2.6 Scanning Tunneling Microscopy

STM imaging was conducted on an ultrahigh vacuum (UHV) ScientaOmicron

VT system with base pressure around 10-10 mbar operating at room temperature.

The MoS2 sample was freshly cleaved immediately prior to introduction to the UHV

chamber, and then degassed overnight at 200-300ºC. Imaging was conducted using

electrochemically etched W tips. STM images were processed using the Gwyddion

software package[112].
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3.3 Results and Discussion

3.3.1 Covalent Functionalization of MoS2 by Aryl Diazonium Salts

The covalent functionalization of pristine semiconducting 2H-MoS2 was previously

demonstrated by our group in Chu et al.[34]. We showed that the pristine MoS2

surface is chemically inert, but with the addition of a single defect such as a sulfur

vacancy we can initiate a chain-like propagating reaction across the surface for aryl

diazonium salts leading to covalently attached chemical groups on the MoS2 basal

plane. The reaction process is illustrated in Figure 3.1: the 4-NBD diazonium salt

approaches the MoS2 surface in solution (Figure 3.1a); charge transfer from the

surface causes the formation of an aryl radical and the release of a nitrogen molecule;

the aryl radical forms a covalent C−S bond forms to produce MoS2 functionalized by

NP groups (Figure 3.1b). The spatial dependence of the reaction is schematically

illustrated in Figure 3.1c. The region immediately surrounding an initial point

defect has a higher charge density, which enables more effective charge transfer

to the diazonium molecule, which then forms a radical that can readily form a

covalent C-S bond with the surface. The region immediately surrounding that newly

attached group also has a higher charge density, and acts as a point of increased

reactivity, so that subsequent molecules attach adjacent to it. Thus, the basal plane

gradually becomes functionalized in a chain-like morphology and only requires a

very low concentration of initial defects as nucleation sites as illustrated in Figure

3.1c. In our earlier work, the covalent functionalization of MoS2 was confirmed by

x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy

(FTIR), and the reaction mechanism was supported by DFT[34].

In the following experiments, the covalent functionalization of mechanically

20



exfoliated flakes of atomically thin MoS2 with 4-NBD was studied in detailed to

determine the reaction kinetics so that further insights on the reaction can be ob-

tained. Scanning probe microscopy is used here as a valuable tool to obtain detailed,

spatially resolved data that relates chemical properties[114]. Figure 3.1d shows an

atomic force microscopy (AFM) image of a bilayer (2L) MoS2 flake exfoliated onto a

300 nm SiO2/Si wafer substrate. This MoS2 flake sample is atomically thin and very

flat. An optical microscope image of the exfoliated MoS2 is shown in Figure 3.2.

Atomically resolved scanning tunneling microscopy (STM) images of a representative

exfoliated MoS2 surface with very few initial defects are shown in Figure 3.3.

The sample was then covalently functionalized by immersing it into an aqueous

solution of 4-NBD followed by thorough rinsing by micropure water. After the

functionalization reaction, small protrusions are observed on the MoS2 flake, as

shown by the AFM image in Figure 3.1e. This is also confirmed by the height

profiles before and after the reaction as shown in Figure 3.1. The height of the

protrusions is about 1-2 nm. This result is consistent with and similar to our

previous data in Chu et al.[34], where we showed that these protrusions can be

interpreted as the covalently attached nitrophenyl (NP) groups on the MoS2 surface

after the 4-NBD reaction. Representative Raman spectra and photoluminescence

(PL) spectra before and after reaction with 4-NBD are shown in Figure 3.2. The

spectra show that the covalently functionalized MoS2 maintains its semiconducting

nature and becomes slightly n-doped[34].

In general, the minimal change in Raman and PL spectra indicate that the MoS2

material generally retains its crystal structure and electronic and optical properties

after functionalization.
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Figure 3.1: Covalent functionalization of MoS2 using aryl diazonium salts.
(a) Schematic of reaction between 4-NBD molecule and the MoS2 sheet. (b) After
the reaction, the NP group is attached to MoS2 surface with C-S bond and N¬2
molecules are released. (c) The reaction starts from a S-vacancy and propagates
across the surface in a chain-like formation due to regions of increased reactivity
surrounding defects and covalently attached groups. (d) AFM image of as-exfoliated
pristine bilayer MoS2 flake on SiO2/Si substrate. (e) The same flake shown in (d)
after 1 min covalent functionalization. (f) Height profiles along the dashed lines in
(d) and (e).

The Raman spectra of MoS2 before and after functionalization were also discussed

in our previous work in Chu et al.[34], which we will briefly summarize here. The

positions and intensities of the characteristic peaks (the E1
2g andA1g peaks) indicate

that the MoS2 material remains semiconducting and in the same 2H phase. The

LA(M) peak at around 225 cm-1 (which is usually associated with structural defects

for MoS2)[115] is not observed in any of our spectra. We attribute the lack of this

peak to the defect concentration below the threshold where it would be strong

enough to be detected. In addition, the C-S bond may not be distorting the MoS2
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Figure 3.2: Raman and photoluminescence (PL) spectra. (a) Representa-
tive optical microscopy image of as-exfoliated MoS2 flake from mechanical exfoliation
supported on SiO2/Si substrate. (b) Raman spectra of pristine monolayer MoS2 and
after 30 min functionalization with 4-NBD at 10 mM. (c)-(d) PL spectra of pristine
monolayer MoS2 and after 30 min functionalization, normalized to the intensities of
the Raman peaks, and showing curve fitting of the A, A- and B excitons.

lattice enough to generate a significant LA(M) peak.

The PL spectrum shows a large peak at about 1.88 eV for the A exciton, and

a smaller peak at about 2.02 eV for the B exciton, and there is also a smaller A-

trion peak. There is a decrease of the A exciton intensity by about 35% upon

functionalization. This decrease is consistent with more detailed PL measurements

from our earlier work in Chu et al.[34] which we interpret as due to primarily

n-doping upon functionalization with 4-NBD because of the electron-donating NO2

group.
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Figure 3.3: Representative scanning tunneling microscopy (STM) images
of as-exfoliated pristine MoS2 at different magnification levels. There are
very few point defects in the MoS2 surface prior to functionalization. STM imaging
conditions: (a) 0.5 nA tunneling current, -1.5V applied bias; (b) 0.8 nA, -0.5 V; (c)
0.5 nA, -0.8V.

3.3.2 Concentration Dependence of Functionalization and Adsorption Isotherms

To study the covalent functionalization process as a function of the initial reactant

concentration, the reaction was carried out using 4-NBD solutions at five different

concentrations acting on five separate mechanically exfoliated monolayer MoS2 sam-

ples supported by SiO2/Si. The concentrations of the aqueous 4-NBD solutions were

1 mM, 5 mM, 10 mM, 15 mM, and 20 mM, and AFM imaging was conducted after 5

s of reaction in each of these solutions to observe the concentration and spatial dis-

tribution of covalently attached NP groups at the initial stage of reaction. As shown

in Figure 3.4a-e protrusions formed by these NP groups were observed on MoS2

flakes for all five concentrations, but different spatial distributions and shapes appear

on each sample. Thus, it is clear that the concentration of 4-NBD in solution has a

significant influence on the formation of covalent functionalization on MoS2. AFM

images of each of the MoS2 samples before functionalization are shown in Figure 3.5.
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Figure 3.4: Concentration dependence of functionalization of MoS2. (a)-
(e) AFM images taken after 5 s reaction in different initial concentrations of 4-NBD
solution: 1 mM, 5 mM, 10 mM, 15 mM, and 20 mM. (f) Height profiles along the
dashed lines on monolayer regions in (a)-(e).

While the surface coverage of NP groups increases with increasing 4-NBD

concentration, we observe also that when the concentration is as low as 1 mM in

Figure 3.4a, the NP groups form much longer chains on the surface of MoS2 flake.

The chain-like features are also quite evident at 5 mM initial 4-NBD concentration.

In Chu et al.[34], it was shown via AFM imaging and DFT simulations that the

reaction preferentially starts from a defect or a sulfur vacancy due to the higher

density of states, and then the newly attached NP group will encourage additional

molecules to be attached around it (see reaction schematic in Figure 3.1c). Thus,

at the lower 4-NBD concentration, the initiation and propagation are more evident,

due to the molecules preferring to attach adjacent to existing covalently attached

groups. This picture of the reaction mechanism is also expanded to include the role

of edges as shown in Figure 3.4a, where there are more attached molecules along
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Figure 3.5: Atomic force microscopy (AFM) images of pristine MoS2.(a)-(e)
AFM images of MoS2 samples used for isotherm study. Samples are shown here before
any functionalization occurs and monolayers are labeled as “1L MoS2”. The samples
are then functionalized for 5 s using 4-NBD solutions with initial concentrations of 1
mM, 5 mM, 10 mM, 15 mM and 20 mM, respectively.

the edges of the MoS2 flake, suggesting that the charge density is higher there than

in the interior of the flake. Furthermore, the inhomogeneous distribution of chains

in the interior of the flake may be caused by the uneven distribution of defects or

S-vacancies[116]. These observations are consistent with our previous DFT results

showing that it is energetically preferable for new molecules to attach adjacent to

existing defects or molecules on the surface of MoS2[34].

With increasing 4-NBD concentration in the reaction solution, as shown in

Figure 3.4b-e, when there are enough 4-NBD molecules to saturate all the defects

in a certain area, the morphology of the attached molecules will become more and

more uniform. However, when the concentration reaches as high as 20 mM, the

uniformity decreases due to the piling up of NP groups, perhaps caused by the
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formation of oligomers protruding from the surface, which has previously been

observed for 4-NBD functionalization of graphene[117, 118]. The change in height

profiles in Figure 3.4a-e are shown in Figure 3.4f and the increase in thickness

due to the attached NP groups is around 2 nm.

To further advance our quantitative understanding of the mechanism of the

functionalization, we performed an adsorption isotherm study by plotting the

concentration of NP groups as a function of initial 4-NBD solution concentration

and fitting them by three empirical adsorption models that each contain different

assumptions. The Langmuir[119, 120], Freundlich[120, 121], and Temkin models[120,

121] are given in equations 3.1, 3.2 and 3.3, respectively:

θ =
KLc

1 +KLc
(3.1)

θ = KF c
1
n (3.2)

θ =

(
RT

b

)
ln (Ac) (3.3)

In these equations, θ is the coverage of NP groups on the monolayer MoS2 flake;

c is the concentration of 4-NBD in aqueous solution; KL and KF are the equilibrium

constants in Langmuir and Freundlich models, respectively. In the Temkin model, R

is the gas constant (8.314 J � mol-1 � K-1) and T is the reaction temperature (310 K);

and A and b are fitting constants. In the Langmuir adsorption model, the surface of

the adsorbent is assumed to be energetically homogenous so that all the adsorption

sites are equivalent[119]. In contrast, the Freundlich isotherm model is a better
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model to describe multi-site adsorption on inhomogeneous surfaces[119]. Since our

DFT simulations in Chu et al.[34] demonstrated the interaction between NP groups

on the MoS2 surface during the attachment reaction, the Temkin adsorption isotherm

was also chosen to fit the data since the effect of the previously attached covalent

groups is considered in the model[121].

The molecular coverage of each MoS2 sample was estimated by processing

AFM images using ImageJ[34, 122]. In each AFM image, an area of covalently

functionalized monolayer MoS2 was isolated (Figure 3.6a) and then converted to

a black and white binary image (Figure 3.6b). The molecular coverage was then

calculated as the percentage of white pixels. We note that this estimate of coverage

only accounts for the covalent surface functionalization, and does not account for

any possible polymerization of the 4-NBD with molecules already on the surface that

has previously been seen for graphene[117, 118]. The effect of polymerization in our

experiments is much less pronounced than the laterally spreading covalent surface

functionalization, as estimated by the increase in height of the AFM features with

reaction time (Figure 3.7).

The fitting curves to the three adsorption models, the Langmuir, Freundlich, and

Temkin models in equations 3.1, 3.2, and 3.3 are shown in Figure 3.6 along with

their correlation coefficients (R2 values) of 0.9610, 0.9765, and 0.9954, respectively.

These fits suggest that the Temkin and Freundlich models are better descriptions

of the reaction. In the Langmuir model, the surface is assumed to be energetically

homogeneous. However, since the adsorption site (i.e. the covalent reaction site)

is more energetically favorable when it is adjacent to either a defect or S-vacancy

or previously attached molecule where there is an increase in reactivity, the surface
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Figure 3.6: Image processing and adsorption isotherms.(a)-(e) AFM images
of MoS2. (a) AFM image of monolayer MoS2 after functionalization. (b) Black and
white image converted from (a). (c) Fitting curves of Langmuir, Freundlich, and
Temkin isotherm models. The coverages were calculated from the monolayer regions
in Figure 3.4 after 5 s functionalization.

Figure 3.7: Change in height of features on MoS2 surface as a function
of reaction time from topographic data in Figure 3.10 of main text.(a)-(e)
AFM images of MoS2. The change in height is attributed to polymerization between
molecules, and is much smaller and saturates at about 3.5 nm by 10 min, compared to
the increase in lateral coverage due to covalent surface attachment, which continues
for longer reaction times.
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energies on the MoS2 surface must change at these sites. This scenario corresponds

better with the Freundlich model, which is more suitable for an inhomogeneous

surface. In addition, the high correlation coefficient in the fit for the Temkin model

indicates that the molecules in the solution tend to arrange themselves next to

previously attached molecules, since indirect adsorbate-adsorbate interactions are

taken into account in the Temkin model. In other words, the effect of previously

attached NP groups are crucial to the attachment of new groups from the aqueous

solution, which is consistent with our previous DFT calculation that shows the

chain-like features will be formed starting from a single defect. Therefore, both the

Freundlich and Temkin models can describe the reaction better than the Langmuir

model, since they have higher R2 values. Finally, we note that the observed

equilibrium coverage is about 50%, which is consistent with our earlier DFT results

showing that saturation occurs at about that level of coverage due to some desorption

of previously attached groups at saturation[34].

3.3.3 Time Dependence of Functionalization and Morphology

The time dependence of the 4-NBD functionalization of the MoS2 surface was

studied using by taking AFM images of a sample of MoS2 at different time points

during the functionalization reaction using a 4-NBD concentration of 1 mM, as

shown in Figure 3.8. We observe that the functionalization reaction starts from

the edges and at some randomly distributed locations in the basal plane where there

may be more defect sites. The molecules form long chains as they grow quickly with

increasing reaction time. The reaction progress is much faster in the first 5 min, but

there is still some increase in coverage with longer reaction time even though it is

slower. In addition, the thin chains form islands of NP groups that grow larger with
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Figure 3.8: Time dependence of functionalization.(a)-(f) AFM images of mono-
layer MoS2 taken after different reaction times in a 4-NBD solution of 1 mM concen-
tration at reaction times of 5 s, 30 s, 1 min, 5 min, 10 min and 30 min. Further
AFM images zooming in on the regions marked by the squares A and B are shown in
Figures 2.9 and 2.10, respectively.

increasing reaction time.

The spatial inhomogeneity of the distribution of initial defects in the MoS2

sample prepared by mechanical exfoliation[116] is also reflected in the differences

in morphology upon functionalization, as illustrated in the two regions marked by

the squares labeled A and B in Figure 3.8. In Figure 3.9, which shows higher

resolution AFM images from region A, we observe many thin, long chains of NP

groups that connect with each other. The density of defects is likely higher at the

corner of the MoS2 flake, and defects at the edges also contribute to the higher

reactivity. In Figure 3.9d and e, the circled chain disappears in Figure 3.9f. This

indicates that during the functionalization, desorption can happen in some areas.
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Figure 3.9: Time dependence of functionalization in the region marked by
square A from Figure 3.8. (a)-(f) AFM images of MoS2 flake shown in Figure 3.8
from the bilayer region in square A, taken after different reaction times in a 4-NBD
solution of 1 mM concentration. The reaction times are 5 s, 30 s, 1 min, 5 min, 10
min and 30 min. (g) Height profiles along the dashed lines in panels (a)-(f). (h)
Enlarged images from the dashed box in (d)-(f) to show the desorption of chains.

Figure 3.10: Time dependence of functionalization in region marked by
square B from Figure 3.8. (a)-(f) AFM images of MoS2 flake shown in Figure
3.8 from the monolayer area marked by the square B, taken after different reaction
times in a 4-NBD solution of 1 mM concentration. The reaction times are 5 s, 30 s,
1 min, 5 min, 10 min and 30 min. (g) Height profiles along the dashed lines in panels
(a)-(f). (h) Enlarged images from the dashed box in (d)-(f) to show the desorption
of chains.
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Figure 3.11: Time dependence of functionalization shown by amplitude /
peak force error images, corresponding to the AFM topography images shown in
Figure 3.10 of the main text. The 4-NBD reaction times are 5 s, 30 s, 1 min, 5 min,
10 min and 30 min.

A possible explanation for this observation is that the functionalization may be a

dynamic process so that some molecules will rearrange themselves on the surface

to minimize the total energy. Before the equilibrium is reached, the molecules can

either move back to the solution or join the molecules attached in the surrounding

area. The desorption of previously attached molecules from the MoS2 surface was

also observed in our earlier DFT simulations in Chu et al.[34]. These regions are

also enlarged in Figure 3.9h. As shown in the height profiles in Figure 3.9g, the

thickness of the attached NP groups eventually increases from 1-2 nm to 6-8 nm at

30 min reaction time, which is consistent with the formation of oligomers that was

previously shown for functionalization of graphene with 4-NBD[117, 118].

Next, higher resolution AFM images from the region marked by square B in

Figure 3.8 are shown in Figure 3.10 and they exhibit a different morphology
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Figure 3.12: Kinetics study of covalent functionalization of monolayer
MoS2. (a) Pseudo-first-order model fit for coverage as a function of reaction time for
4-NBD concentrations of 1 mM, 5 mM and 10 mM. (b) Pseudo-second-order model
fit for the same concentrations. The data sets for the fitting curves of 1 mM, 5 mM
and 10 mM were calculated from monolayer regions in the samples shown in Figure
3.10, Figure 3.13 and Figure 3.14, respectively.
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Figure 3.13: Time dependence of functionalization.(a)-(e) AFM images of
monolayer MoS2 taken after different reaction times in a 4-NBD solution of 5 mM
concentration at reaction times of 5 s, 30 s, 1 min, 5 min, and 30 min.

Figure 3.14: Time dependence of functionalization.(a)-(f) AFM images of
monolayer MoS2 taken after different reaction times in a 4-NBD solution of 10 mM
concentration at reaction times of 5 s, 30 s, 1 min, 5 min, 10 min and 30 min.
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of covalently attached NP groups. Instead of mainly thin chains, the attachment

of NP groups also forms small islands that gradually grow larger. Once again, we

see that some of the chains that are present at 5 min (Figure 3.10d) start to

disappear at 10 min (Figure 3.10e) are missing at 30 min (Figure 3.10f) in the

region of white circles, consistent with the simultaneous desorption process noted

above for region A. These regions are also enlarged in Figure 3.10h. The large,

long island formed in the center of the images in Figure 3.10 (indicated by the

arrow) may be due to a higher density of defects along a grain boundary, crack,

or region of strain along the direction of mechanical exfoliation. The small islands

of increased functionalization are also likely due to a higher local concentration

of defects in those locations due to the inhomogeneous distribution of defects in

mechanically exfoliated natural MoS2[116, 123]. Similar to the results in Figure

3.9, here in Figure 3.10 the height profiles show an increase from 1-2 nm to

6-7 nm with the increase of the reaction time. This also indicates that as the

number of the attached NP groups increases, the adsorbate-adsorbate interaction

drives the free NP groups in solution to attach to the NP groups instead of MoS2

surface. We note that the formation of the different directions of the chains are

not related to the rinsing and drying process of the sample at each reaction time

step, since different directions are used for the water and nitrogen flows that are

not consistent with the observed chain directions. Finally, simultaneously obtained

amplitude / peak force error images corresponding to the images in Figure 3.10 and

Figure 3.11, where the topographic changes due to functionalization are also visible.
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3.3.4 Reaction Kinetics of Functionalization

The kinetics of the 4-NBD functionalization of MoS2 was analyzed for three MoS2

samples functionalized in 4-NBD solutions of three different concentrations (1, 5,

and 10 mM) by taking AFM images at different reaction times (5 s, 30 s, 1 min, 5

min, 10 min, and 30 min). We fit the time- and concentration-dependent coverage

data to pseudo-first-order and pseudo-second-order kinetic models, using equations

3.4 and 3.5[120, 124, 125], respectively:

ln (θe − θ) = ln (θe)− k1t (3.4)

t

θ
=

1

k2θe
2 +

1

θe
t (3.5)

In these equations, θ is the coverage of NP groups on the monolayer MoS2 flake,

θe is the coverage at equilibrium, t is the reaction time, and k1 and k2 are the rate

constants that are used as fitting parameters. The same process for obtaining surface

coverage from AFM images that we used for the isotherms was used here. The

coverage as a function of reaction time for the three 4-NBD solution concentrations

(1, 5, and 10 mM) along with the pseudo-first-order and pseudo-second-order

kinetic fits are shown in Figure 3.12. The coverage of molecules on the MoS2

surface increases rapidly in the first 5 mins, and then slows down. With increasing

concentration, there is an increase at the final coverage at 30 min, consistent with

the increase of coverage with increasing concentrations that we first observed from

the adsorption isotherm study.

The pseudo-second-order model results in higher correlation coefficients (R2
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values) than the pseudo-first-order model for all three 4-NBD concentrations,

indicating that the order of this reaction is two. In this model, the 4-NBD molecules

in solution are the reactants in excess, and the molecularity of this reaction is greater

than two. In other words, there is interaction between 4-NBD molecules during

the reaction, which is also consistent with the fitting of the Temkin adsorption

isotherm model. In our earlier DFT simulation results in Chu et al.[34], we showed

that there is a subtle balance between adsorbate-adsorbate and adsorbate-surface

interactions so that there is a limit of coverage at 50% with some fraction of

molecules also desorbing. However, the observed maximum saturation coverage of

10 mM 4-NBD concentration shown in Figure 3.12 is higher than 60% (closer to

68%) which may be attributed a a broadening of features due to the AFM tip radius

so that each molecule may appear larger and thus resulting in a higher apparent

coverage. In addition, the larger clusters appearing at the bottom right corners in

Figure 3.10e and f tend to blunt the AFM tip and increase the tip-broadening effect.

Overall, with the increase of 4-NBD solution concentration, the reaction is accel-

erated. The process is controlled by both adsorbate-surface and adsorbate-adsorbate

interactions. At the beginning of the reaction, the adsorbate-surface interaction is

dominant so that the coverage increases rapidly. With the number of attached NP

groups increasing, the effect of adsorbate-adsorbate interaction increases and the

increase of the coverage slows down. Eventually the balance between adsorbate-

adsorbate and adsorbate-surface interaction is achieved and the coverage is saturated.
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3.4 Summary and Conclusions

In conclusion, we have conducted a detailed study of the reaction kinetics and

reaction mechanism for the covalent functionalization of two-dimensional layers

of semiconducting 2H-MoS2 by the aryl diazonium salt 4-NBD. Our findings here

confirm and expand on the reaction model put forth in our earlier work in Chu

et al.[34]. The adsorption study at different 4-NBD concentrations found that

both the Freundlich and Temkin isotherm models are a better description of the

reaction because the surface of MoS2 is not energetically homogeneous and indirect

adsorbate-adsorbate interactions from the previously attached NP groups are taken

into consideration. Various morphologies and spatial distributions of the covalently

attached molecules are found due to the interaction between 4-NBD molecules and the

inhomogeneous distribution of defects in the MoS2 layer. The reaction kinetics was

better described using a pseudo-second order model, showing that the order of this

reaction is two, thus further confirming the interaction between 4-NBD molecules.

This detailed understanding of the functionalization of MoS2 may have implications

for future applications in electronics, environmental remediation, sensing, and energy.
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Chapter 4

COVALENT CHEMICAL FUNCTIONALIZATION OF SEMICONDUCTING

LAYERED CHALCOGENIDE NANOSHEETS

Layered chalcogenides are a diverse class of crystalline materials that consist

of various covalently bound building blocks held together by van der Waals forces.

Among these materials are the transition metal dichalcogenides (TMDCs) which can

be exfoliated into two-dimensional (2D) nanosheets, and the pnictogen chalcogenides

(PCs) which can be exfoliated into one-dimensional (1D) nanoribbons and 2D

nanosheets. These materials have recently been extensively studied for their intrigu-

ing electronic, optical, and chemical properties. The chemical functionalization of

1D and 2D nanomaterials is an important enabling step for tuning their properties

and forming interfaces with other materials and structures. However, broadly

applicable and versatile chemical tools that can effectively functionalize a wide range

of layered chalcogenide compositions without disruptive pre-treatments need further

advancement.

In this chapter, we show the covalent functionalization of nanosheets of the repre-

sentative TMDC materials MoS2, WS2, MoSe2, and WSe2, and of the representative

PC materials Sb2S3 and Bi2S3 using aryl diazonium salts. Covalent bonds are formed

on the basal planes of both mechanically exfoliated and liquid phase dispersed

nanosheets, and the chemical and morphological changes upon functionalization

are verified using a combination of spectroscopic and microscopic techniques. This

work builds on previous demonstrations of diazonium functionalization of 2D

materials like MoS2, and expands it to five additional compositions. Thus, the aryl
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diazonium chemistry is shown to be a versatile and powerful approach to covalent

functionalization of the 2D nanosheets of a diverse set of semiconducting layered

chalcogenide materials.

4.1 Experimental Methods

4.1.1 Materials

Tungsten (IV) sulfide (WS2, powder, 99%, 2 µm), molybdenum (IV) selenide

(MoSe2, 325 mesh, 99.9% trace metals basis), molybdenum(IV) sulfide (MoS2, pow-

der), bismuth (III) sulfide (Bi2S3, 99%), antimony (III) sulfide (Sb2S3, powder),

4-nitrobenzenediazonium tetrafluoroborate (4-NBD, 97%), sodium dodecyl sulfate

(SDS, BioReagent, suitable for electrophoresis, for molecular biology, �98.5% GC),

molybdenum (VI) oxide (MoO3), and selenium (Se powder) were purchased from

Sigma-Aldrich. Tungsten (IV) selenide (WSe2, 10-20 µm powder, 99.8% metals ba-

sis) and sulfur (S powder) were purchased from Alfa Aesar. Single crystals of MoS2

and WS2 were purchased from SPI Supplies, MoSe2 from MTI Corporation, and WSe2

from Nanosurf.

4.1.2 Mechanical Exfoliation

Si/SiO2 (300 nm) substrates were ultrasonically cleaned in acetone and iso-

propanol baths sequentially and then blown dry with ultrahigh purity nitrogen gas.

The TMDC flakes were prepared by mechanical exfoliation from single crystals, while

the PC flakes were prepared by using the same method from bulk powders.
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4.1.3 Liquid Phase Exfoliation

Liquid exfoliation for TMDCs and PCs used bulk powder source materials mixed

in 1% wt/vol SDS aqueous solutions and subjected to tip sonication (Branson Digital

Sonifier 450D) with a 3 mm tip for 2-4 hours at 30-50% amplitude. The mixtures

were then centrifuged for 5-30 min at 3234 to 5000 RCF and the supernatant con-

taining the dispersed nanosheets were extracted and used for further experiments.

The masses, sonication times and amplitudes, and centrifugation times and speeds

for each material are as follows: MoS2 according to methods in Chu et al.[34]; WS2:

5 g in 110 mL SDS solution, 2 hours at 50% amplitude, 30 minutes at 3234 RCF;

MoSe2 and WSe2: 0.65 g in 20 mL SDS solution, 2 hours at 30% amplitude; Bi2S3

and Sb2S3: 1.3 g each in 20 mL SDS solution, 4 hours at 35% amplitude, 5 minutes

at 5000 RCF.

4.1.4 Functionalization of Mechanically Exfoliated Samples

The mechanically exfoliated flakes of TMDCs and PCs deposited on Si/SiO2

were immersed in 10 mM of 4-nitrobenzenediazonium tetrafluoroborate (4-NBD)

(Sigma Aldrich) aqueous solutions at 35 °C with stirring at 125 rpm. The reaction

was conducted in a beaker sealed by parafilm in the dark. Then the samples were

removed from the solution and thoroughly rinsed with ultrapure water and blown

dry with ultrahigh purity nitrogen gas.

4.1.5 Functionalization of Liquid Phase Exfoliated Samples

Nanosheet dispersions of each material were mixed with 4-NBD powder such

that the concentration of 4-NBD was 0.25% wt/vol with respect to the nanosheet
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dispersion volumes. The mixtures were then subjected to tip sonication at 20%

amplitude for 2 hours for MoS2, WS2, MoSe2, and WSe2 and for 4 hours for Bi2S3

and Sb2S3. Control samples were prepared by subjecting the nanosheet dispersions

to the same sonication treatment but without any 4-NBD.

4.1.6 Raman Spectroscopy

Raman spectroscopy and optical microscopy of mechanically exfoliated nanosheets

of TMDCs and PCs were obtained on a WITec alpha300R system confocal Raman

microscope system with a 532 nm excitation laser and 100X objective lens with 1

µm laser spot size. The laser power was kept below 1 mW to minimize damage to the

samples. Spectra were obtained using the 1800 g/mm grating and 5 s acquisition time.

4.1.7 Atomic Force Microscopy (AFM)

AFM images of mechanically exfoliated nanosheets were taken after different

reaction times using a Multimode V system (Bruker Inc.) in ScanAsyst mode

with ScanAsyst-Air tips (tip diameter 2 nm). AFM images were processed using

Gwyddion[112].

4.1.8 Fourier Transform Infrared Spectroscopy (FTIR)

Nanosheet dispersions of all the TMDCs and PCs in both functionalized and

unfunctionalized states were used to make thin films by vacuum filtration onto

hydrophilic PTFE membranes (0.1 µm pore size, OMNIPORE, from Millipore)

followed by washing with water and vacuum drying between 60 and 90 °C overnight
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in a vacuum oven. Transmittance FTIR measurements were performed on the

vacuum filtered films using a Nicolet 6700 FTIR with 64 scans taken for each sample

and 128 scans taken for a background measurement in air. Within the OMNIC

software used to collect the spectra, transmittance measurements were converted to

absorbance measurements and a baseline correction was applied to each spectrum.

The absorbance spectra were then normalized to a peak corresponding to PTFE

that occurs at around 1150 cm-1 and plotted using MATLAB.

4.1.9 UV-Vis Absorbance Spectroscopy (UV-Vis)

Nanosheet dispersions were added to plastic cuvettes and their absorbance spectra

were measured using a Jasco V-670 Spectrophotometer with 1% SDS solution as

a baseline and reference. All dispersions and solutions were measured in plastic

cuvettes.

4.1.10 Transmission Electron Microscopy (TEM)

Nanosheet dispersions were dropped onto 400 mesh Cu lacey carbon grids (01824

from Ted Pella) and imaged using a Philips CM 12 TEM operating at 80 kV.

4.1.11 Chemical Vapor Deposition (CVD)

The MoS2 and MoSe2 samples for XPS analysis were prepared using chemical

vapor deposition (CVD) growth in a 1-inch quartz tube in a tube furnace (Ther-

moFisher Scientific). The target substrates were SiO2/Si wafers held above the

MoO3 precursors. During the growth of MoS2, 20 mg of MoO3 was heated up to
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650 ºC in 40 min and held for 30 min. 100 mg of S (Alfa Aesar) was separately

heated up to 150ºC at an upstream location. The system was in vacuum with

a 300 sccm of Ar flow. During the growth of MoSe2, the growth was conducted

in atmospheric pressure. The system was purged with a 500 sccm of Ar flow for

30 min before heating. 30 mg of MoO3 was heated up to 150 ºC and held for

30 min followed by heating up to 950 ºC in 15 min and holding for 10 min. 200

mg of Se (Sigma-Aldrich) was separately heated up to 200 ºC at an upstream location.

4.1.12 X-ray Photoelectron Spectroscopy (XPS)

XPS analysis was conducted using a Vacuum Generators 220i-XL system with

monochromated Al Kα radiation (hν = 1486.6 eV). The pressure in the analysis

chamber was 10-9 torr or lower and the X-ray spot size was 400 µm. The spectra

were analyzed using the CasaXPS software package.

4.2 Results and Discussion

4.2.1 Chemical Functionalization by Aryl Diazonium Salts

The 2D nanosheets of TMDCs and PCs were prepared by mechanical exfoliation

onto SiO2/Si wafer substrates, by liquid phase exfoliation in aqueous surfactant

solutions by tip sonication from powders, and by chemical vapor deposition (CVD)

(see section 4.1 for more details). The nanosheets were then covalently function-

alized in aqueous solutions of the aryl diazonium salt 4-nitrobenzenediazonium

tetrafluoroborate (4-NBD). This molecule, along with other similar derivatives,

has been previously used to functionalize graphene[41, 42] and MoS2[34, 126]. By
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choosing a molecule that has been used before, we can more directly compare

the results for different substrate nanomaterials without concern over variables in

reactivity or morphology that may occur in different diazonium derivatives[118].

The functionalization reaction proceeds as illustrated in the steps in Figure 4.1e-g,

resulting in covalent C-S and C-Se bonds on the basal planes with nitrophenyl

(NP) groups protruding from the surface. This reaction for MoS2 alone was studied

in greater detail in our previous work in Chu et al.[34] and Li et al.[126], which

confirmed the reaction mechanism and kinetics. Briefly, the reaction involves the

transfer of charge from the target substrate material (MoS2 in the case of the earlier

work, and other TMDCs and PCs in the present work) to the aryl diazonium group,

which forms an aryl radical upon loss of a nitrogen molecule, which then forms

a covalent bond with the basal plane. Our earlier work showed that the reaction

mechanism relies on the presence of a very small concentration of sulfur vacancies in

MoS2 at which the local charge density is increased in order to initiate the reaction,

which then progresses across the surface in a chain-like morphology due to the

increased reactivity surrounding covalently functionalized sites[34]. Thus, only a very

low number of initial defects was needed for the entire basal plane to be functionalized.

The mechanically exfoliated samples in the current study enabled careful imaging

by AFM to observe the formation of covalently attached chemical groups on the

nanosheets’ surfaces with high spatial resolution, while the liquid phase exfoliated

materials provided larger quantities of nanosheets that were suitable for ensemble

measurements. Both types of samples and measurements are important for char-

acterizing the overall functionalization of this collection of TMDC and PC layered

materials.
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Figure 4.1: Layered chalcogenide materials and diazonium functionaliza-
tion scheme. (a)-(b) Crystal structure of MX2 materials in side and top views
(yellow atoms: X; purple atoms: M). (c)-(d) Crystal structures of Pn2X3 materials
in side and top views (yellow atoms: X; brown atoms: Pc). (e)-(g) Reaction scheme
for covalent functionalization with aryl diazonium salts: (e) the functionalization is
done using 4-nitrobenzenediazonium tetrafluoroborate (4-NBD), which forms a radi-
cal upon charge transfer from the substrate; the radical forms a covalent bond with
the S or Se atom at the surface; and (f)-(g) there is a covalently bonded nitrophenyl
(NP) group on the surface as a result.
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4.2.2 Spectral Evidence of Chemical Functionalization

Optical spectroscopy was used to characterize the functionalized and unfunc-

tionalized TMDC and PC materials. For Fourier transform infrared spectroscopy

(FTIR), films of nanosheets dispersed by liquid phase exfoliation were formed by

vacuum filtration onto PTFE membranes (see Experimental section for more details).

For and UV-visible absorbance spectroscopy, the nanosheet dispersions were directly

measured in their liquid state. For Raman spectroscopy, mechanically exfoliated

flakes were used.

The FTIR results for the TMDCs are shown in Figure 4.2a. The spectra for

all the functionalized nanosheets show features around 1344 cm-1 and 1514 cm-1

corresponding to the N-O stretching modes, which indicates the presence of the NO2

group from 4-NBD. There is also a peak at 1600 cm-1 which can be associated

with the C=C stretch within the benzene group of an attached nitrophenyl group

resulting from the 4-NBD molecule. There is also a peak at 697 cm-1 corresponding

to the C-S bond, although it is less prominent in some of the materials, possibly due

to variations in film thickness. The C-Se bond is expected to occur at about 640

cm-1[103, 104], but that is a busy part of the spectrum for MoSe2, and is too weak

to be clear for WSe2 (although the N-O peaks are also weak in WSe2). The FTIR

spectra for the PCs are shown in Figure 4.2b. The same peaks for N-O stretching

modes and the C=C stretch can clearly be seen in the 4-NBD treated PC samples,

which also suggests the successful functionalization of PC materials. The presence

of the C-S peak also indicates formation of covalent bonds on the PC surfaces. All

these relevant peaks indicating successful functionalization are indicated by arrows.
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Figure 4.2: Vibrational spectroscopy for functionalized TMDCs and PCs
from Fourier transform infrared spectroscopy (FTIR). Spectra for untreated
and 4-NBD treated materials show a primary difference in the presence of an N-O
stretch and C=C stretch in the treated samples, suggesting the presence of NO2 and
benzene groups and therefore a successful functionalization. The C-S and C-Se peaks
associated with forming bonds at the surfaces of TMDCs and PCs are also present.
The important peaks are indicated with arrows in the spectra for all the functionalized
materials. The peaks from the PTFE support are indicated by asterisks (*).

Figure 4.3: Representative Raman spectra of TMDCs as-exfoliated (lower
blue traces) and after diazonium functionalization (upper red traces) for (a) MoS2,
(b) MoSe2, (c) WS2, and (d) WSe2.
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Raman spectroscopy was conducted to verify that no significant structural

change or damage occurs due to the 4-NBD functionalization reaction. Nanoflakes

of TMDCs and PCs were prepared by mechanical exfoliation from bulk crystals

and bulk powders, respectively, and deposited onto SiO2/Si wafers, and identified

with the optical microscope in the Raman system. As shown in Figure 4.3 of the

Electronic Supporting Information, the E1
2g in-plane and A1g intra-plane vibrations

are detected both before and after functionalization, with no significant changes.

The PC materials behave similarly, as shown in Figure 4.4, with the characteristic

vibrations indicated. This finding is important because it shows that the covalent

attachment enables chemical modification to be conducted on the outer basal plane

without significant disruption of the basic crystal structure of these materials.

Optical absorbance spectroscopy (UV-Vis) was conducted to characterize the

changes to the excitonic structure of the TMDC and PC materials. Samples were

prepared by diluting dispersions of the nanosheets with 1% SDS solution so that their

absorbance values were within the instrument’s detection range (see Experimental

section for more details). The UV-Vis spectra for the TMDCs in Figure 4.5a

show the characteristic excitonic peaks for MoS2, WS2, MoSe2 and WSe2 marked

with asterisks. After 4-NBD functionalization, there is a slight red shift in these

peaks, similar to our observations for MoS2 in our previous work[34]. We attributed

these shifts to the electronic coupling of excitons to the aromatic groups that

are attached to the TMDC surfaces, which is similar to the excitonic redshift in

functionalized CdSe quantum dots[118], rather than due to an increase in layer

thickness[57], because the surface functionalization prevents proper restacking. The

UV-Vis spectra for PCs in Figure 4.5b are essentially featureless before and after

functionalization, as there are no excitonic peaks in this range, but there is some
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Figure 4.4: Representative Raman spectra for as-exfoliated (lower blue
traces) and after diazonium functionalization (upper red traces) for (a)
Bi2S3 and (b) Sb2S3. Optical microscope images for the as-exfoliated flakes on SiO2/Si
wafers are shown below the spectra.

increase in the background below 500 nm due to absorbance of the 4-NBD for the

functionalized materials.

X-ray photoelectron spectroscopy (XPS) was conducted for MoSe2 and MoS2 to

characterize the surface chemistry, as shown in Figure 4.6 of the Electronic Support-

ing Information. After treating the samples with 4-NBD, clear N-O and N-C peaks

due to the NO2 groups appear and the intensities of the C peaks due to the benzene

ring also increase, all indicative of successful functionalization with nitrophenyl

groups. These changes in peaks are only known to appear when there is successful

covalent functionalization with a molecule containing the diazonium-group, and

are not seen for physisorption with the non-diazonium nitrobenzene molecule[34, 127].
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Figure 4.5: Absorbance spectroscopy for functionalized TMDCs and PCs.
UV-Vis spectra are shown vertically offset for (a) TMDCs and (b) PCs as-dispersed
in SDS and with 4-NBD functionalization. The reference spectrum for 4-NBD is
also shown in each panel. Asterisks (*) denote exciton peaks for TMDCs, which
are slightly red-shifted after 4-NBD functionalization. The PC spectra are relatively
featureless.

X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical

bonding on large area samples of MoS2 and MoSe2 grown on SiO2/Si substrates

using chemical vapor deposition (CVD), both before and after the diazonium

functionalization. Large-area CVD samples are needed for XPS to accommodate

the large x-ray spot size, so mechanically exfoliated flakes were not suitable. MoS2

and MoSe2 were chosen as representative sulfide and selenide materials for which we

could reliably produce high quality large-area CVD samples.

The XPS spectra are shown in Figure 4.6. The wide scans are shown in Figure

4.6a and b. In the N 1s region in panel (c), there was no clear N peak in the spectra

of as-grown MoS2 and MoSe2. After the functionalization with 4-NBD for 30 min,
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Figure 4.6: XPS spectra for CVD-grown MoS2 and MoSe2, before and
after diazonium functionalization. a) Wide scan spectra for MoS2. (b) Wide
scan spectra for MoSe2. (c)-(g) Detailed scans for the (c) N 1s region, (d) C 1 s
region, (e) Mo 3d region, (f) S 2p region, and (g) Se 3d region. Important peak
changes after functionalization in the N and C regions are indicated by stars.
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sharp and clear peaks from N-O and N-C appear between the two Mo 3p peaks

due to the attachment of nitrophenyl (NP) groups on both the MoS2 and MoSe2

surfaces. These peaks are indicated by stars. In the C 1s region in Figure 4.6d, the

intensities of the C peaks on both MoS2 and MoSe2 increase after functionalization,

indicating that there is an increase in the amount of carbon-containing bonds on

the surface, primarily from the covalently attached groups. The spectra also suggest

that in addition to the C-O and C-C/C=C peaks, there are also contributions from

C-S bonds[128, 129] and C-N bonds[130] after functionalization. The C peaks with

increased intensity are also marked by stars. In the Mo 3d region in Figure S4.6e,

the typical peaks for MoS2 and MoSe2 are present. There are also peaks from Mo6+

3d and Mo4+ 3d likely due to residues of the MoO3 CVD growth precursor, which

is a common impurity in these types of samples[131, 132]. Since the reaction time

was only 30 min, the peak from the C-S bond in the S 2p region in panel f is too

small to be seen (in our earlier work in Chu et al.[34] the C-S peak is most clear at 6

h of functionalization time). However, Se 3d peak in Figure 4.6g is broader after

functionalization, which may be due to a contribution from the C-Se peak at about

54-55 eV[104], and further demonstrates the covalent attachment of NP groups on

MoSe2 surface.

4.2.3 Morphology of Functionalized Layered Chalcogenide Materials

The morphologies of the TMDCs and PCs upon functionalization were char-

acterized by AFM and TEM imaging on mechanically exfoliated and liquid phase

exfoliated samples, respectively. AFM imaging is particularly valuable here to

directly show the attachment of organic groups on the surfaces of the TMDCs and

PCs, and was previously used in our earlier work to elucidate reaction mechanisms
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and kinetics by analyzing the change in surface coverage on MoS2[34, 126]. The

AFM images of as-exfoliated and functionalized TMDCs are shown in Figure 4.7.

The thickness of the flakes ranges from 1 to 2 nm and corresponds to atomically thin

monolayers and bilayers as shown in Figure 4.7a-d. After 5 s reaction in 4-NBD

aqueous solution, small protrusions are observed on all the MoS2, MoSe2, WS2 and

WSe2 flakes as shown in Figure 4.7e-h. The protrusions can be more clearly seen

in the zoomed-in images in Figure 4.7i-l, which are from the areas highlighted by

squares in Figure 4.7e-h. The heights of the protrusions range from 1 to 2 nm

which is observed from height profiles shown in Figure 4.7m-p. The protrusions

can be attributed to the nitrophenyl groups covalently attached onto the surfaces

of the TMDCs nanosheets after reaction in 4-NBD aqueous solution. In addition,

many of the protrusions are arranged in chain-like features are also observed on all

the TMDCs because the attachment of 4-NBD molecules tend to propagate near

the previously attached molecules, as found in our previous work on MoS2 in Chu

et al.[34] and Li et al.[126] which are also included in Figure 4.7. Physisorption

is not expected to be a significant contribution because the samples were rinsed

thoroughly with ultrapure water, and we previously showed in Chu et al.[34] via a

control reaction with a molecule that lacks the diazonium group to form the covalent

reaction that very little physisorption occurs[34].

AFM images of Bi2S3 and Sb2S3 flakes mechanically exfoliated from bulk powders

are shown in Figure 4.8. The initial unreacted surfaces are shown in Figure 4.8a-b,

where there are numerous atomic step edges visible, which tend to form ribbon-like

features due to the presence of 1D chains in the crystal structure (see Figure

4.1c-d). The same regions of the samples are then shown after functionalization

in Figure 4.8c-f (the asterisks indicate features that appear both before and after
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Figure 4.7: Surface functionalization of TMDCs imaged by atomic force
microscopy (AFM). (a)-(d) As-exfoliated flakes of MoS2, MoSe2, WS2 and WSe2.
(e)-(h) The flakes shown in (a)-(d) after 5 s functionalization with 10 mM of 4-NBD
aqueous solution. (i)-(l) Zoom-in images of areas highlighted with dashed squares
shown in (e)-(h). (m)-(p) Height profiles of the lines drawn across the flakes before
and after functionalization. (Panels (a), (e), and (i) reprinted with permission from
Chu et al[34]. Copyright 2018 American Chemical Society.)
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functionalization to help guide the eye), where there are many protrusions uniformly

covering the surfaces. The appearance of these protrusions is very similar to those

that appear on TMDCs in Figure 4.7. There are some clusters observed in Figure

4.8f and the height ranges from 1-4 nm which is similar to our earlier results in Li et

al.[126]. Thus, the PC materials and TMDC materials possess similar morphology

after functionalization, suggesting consistent attachment of organic groups to the

surfaces are 4-NBD treatment.

The morphologies of liquid exfoliated samples before and after 4-NBD func-

tionalization were characterized by TEM imaging. Dispersions of nanosheets

of TMDCs and PCs were prepared by dropping them onto lacey carbon grids.

The samples that were studied were as-dispersed, treated with 4-NBD solution

by sonication, and treated without 4-NBD solution by sonication as controls.

Representative TEM images of these nanosheets are shown in Figure 4.9. There

is relatively little visible change between the functionalized and non-functionalized

WS2 nanosheets as seen in Figure 4.9a-c. The nanosheets are still clearly visible as

being quite thin, having different layer thicknesses, and being about 50-100 nm across.

For the PCs, a few distinct changes can be seen between functionalized and

unfunctionalized samples. For Bi2S3, the as-dispersed nanosheets in Figure 4.9d

have a distribution of large (a few hundred nanometers across) and small flakes, as do

the control nanosheets with additional sonication but no 4-NBD exposure (Figure

4.9e). When the as-dispersed samples are functionalized with 4-NBD, as shown in

Figure 4.9f, there are small particles on the surface of the flakes that are observed.

We attribute these small particles to similar protrusions that are observed in AFM

in Figure 4.8e, suggesting the successful attachment of NP groups onto the surface
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Figure 4.8: Surface functionalization of PCs imaged by atomic force mi-
croscopy (AFM). (a)-(b) As-exfoliated multilayer flakes of Bi2S3 and Sb2S3. Images
are taken in the interiors of multilayer flakes, so the SiO2/Si substrate is not shown.
(c)-(d) The flakes shown in (a)-(b) after 30 min functionalization with 10 mM of
4-NBD aqueous solution. (e)-(f) Zoomed-in images of areas highlighted with dashed
squares in (c)-(d). (g)-(h) Height profiles of the dashed lines drawn across the flakes
before and after functionalization.
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Figure 4.9: Transmission electron microscopy (TEM) of functionalized
nanosheets. (a), (d) and (g) show nanosheets after exfoliation in SDS for WS2,
Bi2S3, and Sb2S3. (b), (e) and (h) show exfoliated flakes after additional sonication
treatment with no 4-NBD to serve as a control. (c), (f) and (i) show exfoliated flakes
after additional sonication treatment in the presence of 4-NBD to functionalize them.
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of Bi2S3. In the case of Sb2S3, the as-dispersed control in Figure 4.9g and treated

samples without 4-NBD (Figure 4.9h) showed similar morphologies, but the 4-NBD

treated samples (Figure 4.9i) seem to have a coating around them, which may be

due to a higher degree of functionalization extending into an oligomer formation or

surface polymerization regime for these samples since the functionalization time for

these materials was 4 h to ensure strong signals in FTIR, while the AFM samples

were reacted for 30 min to maintain visibility of the underlying PC nanosheet surface.

The combination of spectroscopic and microscopic characterization methods here

show the successful covalent functionalization of layered chalcogenide materials.

FTIR spectroscopy reveals the successful attachment of nitrophenyl groups on

TMDCs and PCs, particularly from the presence of the vibrations from the N-O,

C=C, C-S, and C-Se bonds. Similarly from XPS data on MoS2 and MoSe2,

we observe peaks consistent with successful covalent functionalization with the

nitrophenyl groups. The TMDC and PC materials do not undergo any significant

changes to their intrinsic crystal structures as elucidated by Raman spectroscopy.

AFM and TEM imaging show the changes in morphology of the TMDCs and PCs

upon functionalization. AFM imaging in particular clearly reveals the formation

of small protrusions on the surfaces of all the mechanically exfoliated TMDCs and

PCs, consistent with our previous observations for the functionalization of MoS2[34,

126]. These protrusions have a similar height, and are attributed to the nitrophenyl

groups attached to the basal planes of the layered chalcogenides. TEM imaging

shows the nanosheets from liquid phase dispersion remain well-dispersed and stable

upon functionalization, and with some low density features such as particles and

overlayers that may correspond to the organic material covalently attached to the

PCs. The functionalized materials also remain stable in aqueous dispersions, without
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noticeable clumping or precipitation.

The proposed reaction mechanism for these materials is briefly discussed here.

In our earlier work in Chu et al.[34] we showed for MoS2 via DFT calculations and

experiments using Ar+ ions to introduce point defects imaged by STM that the

functionalization reaction does depend on the presence of existing defects to initiate

the reaction. Thus, an otherwise perfect crystal can be fully functionalized with just

one initial defect, with the reaction propagating across the surface in a chain-like

morphology. Our evidence from Raman, FTIR and AFM imaging suggests that a

similar effect may be occurring for the new materials compositions in the current

study. That is, the initial layered chalcogenide materials are nearly perfect based

on their Raman spectra and the functionalization reaction proceeds by initiating at

defects and edges and progresses in chain-like formations which can be seen in AFM

images.

This functionalization scheme with diazonium salts is thus compatible with

both wafer-scale and solution-based processing of TMDCs and PCs, and can be

extended to other chemistries that have been previously used with graphene and

MoS2 to build from the aryl diazonium salts to form composite structures with

quantum dots[133], polymers[134], and proteins[34, 41], and to induces changes to

the electronic properties[43, 44]. We anticipate similar changes and applications will

be possible for the TMDCd and PCs. That is, we will be able to exploit the known

chemistries that were developed for the earlier materials like graphene and apply

them to the TMDCs and PCs.
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4.3 Conclusions

In conclusion, the functionalization of several compositions of 2D layered

chalcogens from the TMDC and PC families has been demonstrated using aryl

diazonium chemistry. While our earlier work studied the functionalization of only

MoS2 in detail, the present work demonstrates that this chemistry can readily be

expanded to many other 2D layered chalcogens, in both mechanically exfoliated

flakes and liquid phase dispersions. Thus, we have established that the aryl

diazonium chemistry is a generalizable, effective, and broadly applicable approach

to covalent functionalization of a diverse range of several compositions of 2D layered

chalcogenides. The functionalized materials are characterized by a combination of

spectroscopic and microscopic methods to show the presence of nitrophenyl groups

attached to the surfaces of the TMDC materials MoS2, MoSe2, WS2, and WSe2,

and the PC materials Bi2S3 and Sb2S3. This work provides a valuable chemical tool

for the modification and application of layered chalcogenides, and opens the door

to further chemistries that will expand the functionalities of these low-dimensional

materials.
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Chapter 5

ADSORPTION OF HEAVL METAL IONS ON MOS2

Heavy metals contaminating water even at trace concentrations are very harmful

for human health, and more effective technologies for removing them are needed.

Two-dimensional (2D) materials have high specific surface areas that enable new

surface phenomena and are promising new active components in water purification.

Here, we demonstrate the adsorption of the heavy metals Pb, Cd, Zn and Co

from aqueous solution on the surface of 2D molybdenum disulfide (MoS2). Using

atomic force microscopy (AFM), scanning electron microscopy (SEM), and elemental

analysis by X-ray photoelectron spectroscopy (XPS), we show that the metals form

nanoclusters on the MoS2 surface without affecting the structure of the MoS2 itself.

We then show the metals can be readily desorbed from the MoS2 surface by thermal

annealing. The ability to adsorb metals from aqueous solution at low concentrations

and then to thermally desorb them suggests a potential future application for MoS2

as a regenerable water purification material. To make a practical adsorbent, we

synthesize a composite foam from MoS2 and polyurethane that demonstrates effective

removal of Pb from water, with up to 89% removal efficiency at concentrations below

200 ppb. This strategy is a promising route for the synthesis of effective adsorbents

from composites of polymers and 2D materials to remove heavy metal ions from water.
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5.1 Experimental Methods

5.1.1 Preparation of As-Exfoliated MoS2

Atomically thin MoS2 samples were obtained by mechanical exfoliation from a

bulk crystal of MoS2 (SPI Supplies) by using scotch tape, and deposited onto a Si

substrate coated with a 300 nm SiO2 layer. The substrate was initially cleaned in

sequential baths of acetone and 2-propanol, and blown dry with ultrahigh purity

nitrogen before MoS2 exfoliation. Single layer and multilayer MoS2 flakes were

identified by optical microscopy and Raman spectroscopy.

5.1.2 Adsorption of Metal Ions on MoS2

As-exfoliated MoS2 samples were immersed in aqueous solutions of heavy metal

nitrates for 30 min. The solutions were made from Pb(NO3)2 (Sigma-Aldrich,

ACS reagent, �99.0%), Cd(NO3)2 (Sigma-Aldrich, purum p.a., �99.0%), Zn(NO3)2

(Sigma-Aldrich, reagent grade, 98%), and Co(NO3)2 (Sigma-Aldrich, ACS reagent,

98%) in micropure water (18 MΩ). After rinsing thoroughly with micropure water,

samples were blown dry with ultrahigh purity nitrogen. Atomic force microscope

(AFM) images were taken before and after the metal ion exposure to detect the

adsorption of metals forming into particles and islands.

5.1.3 Preparation of CVD-Grown MoS2 for XPS

The SiO2/Si growth substrate was sonicated in sequential baths of acetone and

2-propanol for 5 min each, followed by oxygen plasma cleaning (Harrick Plasma,

PDC-32G) at high RF power (18 W). The growth was conducted in a horizontal tube
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Figure 5.1: CVD growth of polycrystalline MoS2. The growth substrate was
sonicated in sequential baths of acetone and 2-propanol for 5 min each, followed by
oxygen plasma cleaning at high RF power. 100 mg of S powder was held at the end
of the heating coils at upstream, while 15 mg of MoO3 was held in a curved Mo foil
boat at the center of the heating zone as the precursors. The polished surface of
the SiO2/Si growth substrate was placed facing down across the Mo foil boat. The
furnace was heated at 650°C for 30 min in vacuum with 300 sccm flow of ultrapure
Ar.

furnace (ThermoFisher Lindberg) with 1-inch diameter quartz tube. The precursors

were 100 mg of S powder (Alfa Aesar, precipitated, 99.5%) placed at the end of the

heating coils at an upstream position, and 15 mg of MoO3 (Sigma-Aldrich, ACS

reagent, �99.5%) placed in a boat bent from Mo foil at the center of the heating zone.

The polished surface of the SiO2/Si growth substrate was placed face down across

the Mo boat. The furnace was heated at 650°C for 30 min in vacuum with 300 sccm

flow of ultrahigh purity Ar, followed by opening the furnace lid and cooling by an

external fan. A schematic of the growth setup is shown in Figure 5.1.

5.1.4 Thermal Desorption of Metal Ions

The MoS2 samples exposed to metal nitrate solutions were annealed in a tube

furnace with a 1-inch diameter quartz tube at 300 °C for 2 hrs with a flow of 200

sccm of ultrahigh purity Ar as a carrier gas followed by AFM imaging.
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5.1.5 Preparation of 3D Structures of 2D MoS2

Based on a previously reported method, 60 13.1 g of

4,4’methylenebis(phenylisocyanate) (Sigma-Aldrich, MDI, 98%) flakes were crushed

into powder in a weigh boat. Then, 0.4 g of silicone oil (Sigma-Aldrich, Dow

Corning 200® fluid, viscosity 60,000 cSt @ 25 °C) and 20 mL glycerol propoxylate-

block-ethoxylate (Sigma-Aldrich, average Mw 4000) were mixed into an HDPE

beaker. Next, 0.7 mL of water and 0.188 mL of dibutyltin dilaurate (Sigma-Aldrich,

95%) were added to the HDPE beaker and the mixture was stirred. The MDI was

added to the mixture, which was then rapidly mixed and left undisturbed. After

about 1 hour, the foam was taken out and put in an oven set at 60 °C to dry overnight.

The same procedure as above was used, except that in place of 0.7 mL of

water, 0.7 mL of a solution phase dispersion of MoS2 in 1% w/v sodium dodecyl

benzenesulfonate (SDBS technical grade) was used. To prepare the dispersion, 1.0 g

MoS2 powder (Sigma-Aldrich, <2 µm, 99%) was mixed with 6 mL of 1% w/v SDBS

and tip sonicated in a Branson Sonifier 450 (tip diameter 3 mm) for 1 hour at 20%

amplitude. The resulting sonicated dispersion was centrifuged at 5000 RCF for 4

minutes and the supernatant dispersion was extracted.

5.1.6 Removal of Metal Ions from Water

Pb, Cd, Zn, and Co nitrate solutions were prepared at 1000 ppb, 200 ppb

and 50 ppb concentrations to test the performance of the polymer composite at

different levels of contamination. In each experiment, 0.5 g of the MoS2-polyurethane

composite was immersed in 7 mL of metal nitrate aqueous solutions in metal-free
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centrifuge tubes for 12 hours. The solutions were shaken thoroughly before and after

the adsorption. Aliquots of the aqueous solutions were taken with plastic pipettes

and diluted to proper concentrations with 0.32 M HNO3 (BDH Aristar Plus, trace

metal analysis, 67-70%) aqueous solution for acidification and measured by ICP-MS

(ThermoFisher ELEMENT 2). The unmodified polyurethane foam was tested with

the same protocol.

5.2 Results and Discussion

5.2.1 Adsorption of Metals on MoS2 from Solution

The adsorption of Pb, Cd, Zn and Co on MoS2 monolayers from aqueous solution

was investigated by atomic force microscopy (AFM) using the steps shown in Figure

5.2a-c. Mechanically exfoliated MoS2 flakes supported on SiO2/Si substrates were

immersed in aqueous solutions of metal nitrates at a concentration of 0.1 mM. The

valency of all metal ions used in this study is +2. After exposure to the metal ion

solutions, the MoS2 samples were rinsed thoroughly with micropure water (18.2 MΩ)

and blown dry with ultrahigh purity nitrogen, followed by AFM imaging. Pb, Co,

Zn and Cd all appear to have good adsorption on MoS2 based on AFM imaging as

shown in Figure 5.2 and Figure 5.3.

The pristine as-exfoliated MoS2 surface is shown in the AFM image of Figure

5.2d. This sample includes monolayer, bilayer and trilayer regions of MoS2. After

being immersed in a lead nitrate (Pb(NO3)2) solution at 0.1 mM concentration and

then rinsed and dried, AFM imaging reveals small nanometer-tall protrusions clearly

visible on the MoS2 surface, and not on the surrounding SiO2 substrate as shown in
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Figure 5.2: Adsorption of metal ions on MoS2. (a) Schematic illustration of a
mechanically exfoliated 2D MoS2 flake on SiO2/Si substrate. (b) MoS2 samples are
immersed in aqueous solutions of metal nitrates. (c) MoS2 samples are then rinsed
with purified water and blown dry with nitrogen before atomic force microscope
(AFM) imaging. (d) AFM image of pristine as-exfoliated MoS2. (e) AFM image in
the same region as (d) after adsorption of Pb from aqueous solution. The arrows in
(d) and (e) indicate the same spot on the sample. Small protrusions appear on MoS2
but not on SiO2 substrate. (f) Enlarged AFM image in the region marked by the
dashed square in (e). (g)-(h) AFM images after adsorption of Co, with (h) showing
the area in the dashed square in (g). (i) SEM image after adsorption of Co from
aqueous solution. Panels (g) and (i) are approximately in the same position on the
sample, with the circles indicating the same protrusions on the sample in both images.
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Figure 5.2e-f. Similarly, after Cd and Zn deposition from Cd(NO3)2 and Zn(NO3)2

aqueous solutions at the same 0.1 mM concentration, small protrusions (1-2 nm

tall) are found on MoS2 surface as shown in Figure 5.3. In addition, some larger

protrusions (8-10 nm tall), which we attribute to be Pb and Zn clusters, are visible

after MoS2 was immersed in Pb and Zn solutions. After exposure in Co, there are also

some much larger clusters of about 25-30 nm in height and 50-100 nm in diameter

as shown in Figure 5.2g-h. These protrusions were also confirmed by scanning

electron microscopy (SEM) as shown in Figure 5.2i. The clusters we observe are not

due to supersaturation of the solution, because the concentration of the Co(NO3)2

solution we used is several magnitudes lower than the solubility of Co (5.408

M at 18 °C)[135]. In addition, the samples were thoroughly rinsed with microp-

ure water, and we do not observe any protrusions or clusters on the surrounding SiO2.

5.2.2 Mechanism of Metal Adsorption on MoS2 and Formation of the Clusters

Elemental analysis by X-ray photoelectron spectroscopy (XPS) was conducted

after the metal adsorption from aqueous solutions to confirm the presence of metal

ions on MoS2, and to determine that the nitrate ions are not adsorbed (Figure 5.4).

Continuous polycrystalline MoS2 films were prepared by chemical vapor deposition

(CVD) growth to accommodate the X-ray spotsize (see Methods for more details).

The resulting 2-4 nm thin film of MoS2 grown on SiO2/Si is shown in Figure

5.5. Separate samples of MoS2 were each dipped in metal nitrate solutions of Cd,

Zn, and Pb for 30 min, followed by thorough rinsing before characterization with XPS.

In Figure 5.4, the rows show the XPS spectra of (from top to bottom) as-grown

MoS2, after adsorption of Cd, after adsorption of Zn and after adsorption of Pb,
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Figure 5.3: Adsorption of Cd and Zn on mechanically exfoliated MoS2. (a)
AFM image after adsorption of Cd from 0.1 mM aqueous solution of Cd(NO3)2. Small
protrusions appear on MoS2 but not on SiO2 substrate. (b) Enlarged AFM image in
the region marked by the dashed square in (a). (c) AFM image after adsorption of
Zn from 0.1 mM aqueous solution of Zn(NO3)2. Small protrusions appear on MoS2
but not on SiO2 substrate. (d) Enlarged AFM image in the region marked by the
dashed square in (c).

respectively. The energy ranges for N, Mo and S peaks are shown in columns a, b,

and c, respectively. These results show that the MoS2 material is largely unaffected

by the metal nitrate solutions based on the similar intensities, positions, and shapes

of the Mo4+ 3d3/2 peak, Mo4+ 3d5/2 peak[136, 137], and S peaks[136, 138, 139] as

indicated by the results in Figure 5.4b-c. In addition, Mo6+ was also detected since

the precursors for CVD growth of MoS2 included MoO3[140, 141]. In Figure 5.4c,

the S 2p3/2 peak comes from MoS2[136], whereas the S 2p1/2 peak may partially

come from the S powder precursor[139]. In Figure 5.4a, compared to as-grown

MoS2, there are no N peaks emerging around 408.3 eV, which is reported to be the
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typical position of the nitrooxy ( O NO2) peak[142]. This finding indicates that all

nitrates were not adsorbed to the MoS2 surface.

There is a more complicated situation in the second row of Figure 5.4a, since the

binding energy ranges of Mo 3p, N, and Cd 3d partially overlap. Two components of

Cd2+ were identified in the second row of Figure 5.4a, demonstrating the presence

of Cd on the MoS2 surface. The smaller component around 405 eV most likely

originates from Cd 3d5/2[143]. The asymmetric peak at 412 eV is clearly different

from that of the as-grown MoS2, with another component that is likely from Cd

3d3/2[143].

In addition, clear Pb 4f peaks[144, 145] and Zn 2p peaks[146, 147] are respectively

shown in Figure 5.4d-e, indicating the presence of Pb and Zn on MoS2 surfaces

of the samples immersed in those metal solutions. The absence of peaks due to

covalent chemical bonds suggests that Zn is physisorbed to MoS2 without strong

bonding. According to reported DFT calculations, the adsorption energy of Zn is

small and may be related to the fully filled 3d orbitals[35]. This observation is also

supported by the weak intensity of Zn 2p peaks compared to the background. The

intensity of Cd 3d5/2 is also weak and may be related to Cd having a similar electron

configuration as Zn. However, it is reported that the Cd–S bonding peak is around

405.3 eV[143], and the Pb–S bonding peak is around 137.8 eV[144], which are both

observed in our XPS results in Figure 5.44.4c and f. It is likely that there are more

3d electrons from Cd and 4f electrons from Pb transferred to MoS2 compared to 2p

electrons transferred from Zn. Therefore, these observations indicate Pb and Cd are

more likely to be chemisorbed on MoS2.
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Figure 5.4: Chemical analysis of metal adsorption. X-ray photoelectron spec-
troscopy (XPS) spectra of MoS2 grown by chemical vapor deposition are shown from
top to bottom: as-grown, and after immersion in aqueous solutions of Cd, Zn and Pb
nitrates, respectively, at 10 mM concentrations for 30 min. The spectra are vertically
offset for clarity. (a) Mo 3p, N 1s, and Cd 3d peaks. (b) Mo 3d peaks. (c) S 2p
peaks. The intensities of columns (a), (b), and (c) are normalized to the Mo4+ 3p3/2,
Mo4+ 3d5/2, and S 2p3/2 peaks, respectively. Mo 3d and S 2p peaks do not change
much in (a)-(c). (d) Zn 2p peaks. (e) Pb 4f peaks. The intensities of (d) and (e) are
adjusted to show the peaks more clearly. Cd, Zn and Pb peaks are detected after
adsorption of the respective metal ions, whereas N peaks are absent, indicating the
nitrates have not adsorbed.

Figure 5.5: CVD-grown polycrystalline MoS2 thin film. Photograph of MoS2
grown on SiO2/Si. The purple region on the left is the bare wafer and the blue region
on the right shows a 2-4 nm thick polycrystalline film of MoS2.
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Usually the surface of MoS2 is negatively charged due to the defects or reduction

during its synthesis containing H+ or Li+ as counterions[39, 63, 83]. The primary

mechanism could be ion exchange which happens between heavy metal ions and the

cations on MoS2 surface[148, 149]. Due to the stronger electrostatic attraction, heavy

metal ions, for instance, Pb +
2 , could first approach to MoS2 surface and replace H+,

and then form a Pb-S complexation with one or two S atoms, depending on the

abundance of Pb +
2 ions[150]. The formation of Pb-S complexation is supported by

the reaction between Lewis acids and 2D materials[74]. At the top layer of MoS2, each

S atom possesses a tetrahedral electron configuration because of sp3 hybridization.

Three of the sp3 orbitals form Mo–S bonds while the fourth is occupied by a lone pair

of electrons to form a Lewis base[74, 151]. Therefore, heavy metal ions, as typical

Lewis acids which can accept donated unshared electron pair[151], will react with 2D

MoS2. In this theory, Pb2+ as a Lewis acid can accept the lone pair electrons on MoS2

surface due to its empty 6p orbitals and form stable coordinate covalent bonds[74].

Similarly, both electrostatic attraction and metal-sulfur complexation contribute

to the adsorption of metal ions on MoS2 surface[148, 149]. The clear Pb-S and

Cd-S peaks indicate the complexation is dominant for Pb and Cd adsorption. The

electrostatic attraction contributes more to the outer layer of adsorbed Pb. However,

in the adsorption of Co, electrostatic is more crucial[152]. The weaker peaks in the

adsorption of Zn compared to Pb and Cd, also demonstrate the complexation is not

dominant and even physisorption could exist.

Another mechanism involving redox reaction could contribute to the interaction

between metal ions and MoS2 surface[40]. Ag+ or other heavy metal ions could

behave as a mild oxidant and may reduce itself to metallic state and deposit on MoS2

when oxidizing MoS2 to soluble molybdate and sulfate[153]. Hypothetically a similar
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redox reaction may happen with the presence of other heavy metal ions which we are

focusing on in this thesis. To further confirm the dominance of this redox reaction

mechanism, we may need to determine the concentration of Mo in the solution after

the removal of heavy metal ions using ICP-MS.

Other than the metal-MoS2 adsorption, there has also been interaction between

the metal ions. As a result, the formation and growth of the clusters are determined

by the energy of both interactions[33]. We state the adsorption energy as Ead and

the correlation energy between the metal ions as Eco. Ead and Eco energies of each

elements are different due to the difference between the electron configurations and

these parameters were investigated before[83, 154–156]. In their theoretical results,

if Ead >> Eco, it would prefer to form uniformly distributed small protrusions to

minimize the total energy, while it would form more 3D islands or clusters due to

the stronger metal-metal interaction when Ead << Eco. With our findings in AFM

results as shown in Figure 5.2f and Figure 5.3b, we hypothesize that in the case

of Pb and Cd adsorption, it agrees with the Ead >> Eco situation. AFM results in

Figure 5.3c shows more cluster indicating that Ead may be much smaller than Eco

in Zn adsorption. However, even if Ead/Eco is reasonably large as 0.8, it still would

form large clusters because the diffusion barrier of 0.8-0.9 eV to separate Co2+ ions

is much harder to overcome[33].

5.2.3 Thermal Desorption of Metals

The adsorption of metal ions as nanoparticles on MoS2 nanoflakes described

in the AFM and XPS results above demonstrate that MoS2 has potential to be

an active agent in removing heavy metal pollutants from aqueous solution. The
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Figure 5.6: Schematic illustration of thermal desorption of metals from the
MoS2 surface via heating in a tube furnace. A sample of MoS2 with adsorbed
metal clusters was heated in a tube furnace under a 200 sccm flow of ultrahigh purity
Ar gas in vacuum at 300 °C for 2 hours.

ability to regenerate and reuse the adsorbent material would be more efficient and

economical as a water purification technology. Thus, the desorption of metals from

the MoS2 surface was studied to examine the possibility of employing MoS2 as a

reusable adsorbent. The method and experimental setup are illustrated in Figure

5.6. A sample of MoS2 with adsorbed metal clusters was heated in a tube furnace

under ultrahigh purity Ar gas flow at 300 °C for 2 hours, followed by AFM imaging.

The sample with Pb clusters adsorbed shown above in Figure 5.7c-d was annealed,

which resulted in the previously adsorbed Pb clusters being completely removed

without damaging the MoS2 surface. The Raman spectra of pristine as-exfoliated

MoS2 and after thermal desorption shown in Figure 5.8 are not significant changed,

indicating that any structural changes have a very low concentration.

The same sample was then immersed in aqueous solutions of Pb(NO3)2 at a

concentration of 0.1 mM to test its ability to readsorb Pb. As shown in Figure

5.7g-h, even more Pb protrusions are observed on MoS2 surface demonstrating the

reusability of MoS2, suggesting its potential to be used as a regenerable adsorbent.

The same protocol of desorption was applied to exfoliated MoS2 after exposure to

Zn and Cd nitrate aqueous solutions; we observe that almost all of the previously

adsorbed Cd and Zn are removed as shown in Figure 5.9 and Figure 5.10. A
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Figure 5.7: Thermal desorption of Pb from the MoS2 surface. (a) AFM
image of pristine as-exfoliated MoS2 flake. (b) AFM image in area marked by dashed
square in (a). (c) AFM image of MoS2 after Pb adsorption from aqueous solution in
the same area as (a) showing protrusions on the surface due to Pb adsorption. (d)
AFM image in area marked by dashed square in (c). (e) AFM image of same sample
after annealing at 300°C for 2 hours in vacuum with ultrahigh purity Ar as the carrier
gas in the same area as (c) showing removal of the Pb clusters. (f) AFM image in
area marked by dashed square in (e). (g) AFM image of same sample after Pb re-
adsorption from aqueous solution in the same area as (e) showing higher coverage
than in (c). (h) AFM image in area marked by dashed square in (g). The height
scale for all images is the same as for (g) and (h).

Figure 5.8: Raman spectra of as-exfoliated MoS2 monolayer and MoS2
monolayer after thermal desorption. Raman spectra taken from pristine as-
exfoliated MoS2 (green curve) and Pb adsorbed MoS2 after thermal desorption (blue
curve). The characteristic E1

2g and A1g peaks of MoS2 are marked.
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control experiment of Pb desorption at 180 °C was conducted without changes in

all other parameters and the results are as shown in Figure 5.11. We observe that

even though complete removal is not achieved, a considerable amount of Pb is still

removed from the MoS2 surface. This lower adsorption temperature will help to

reduce the cost of desorption in potential future applications and expand the variety

of the materials which can be combined with MoS2.

Annealing in vacuum environment could help to induce more defects to MoS2

surface[157] and we hypothesize the mechanism of metal desorption could be similar.

In the case of Pb, with the temperature increasing, adsorbed Pb could detach

from MoS2 surface together with one or two sulfur atom to form PbS/PbS2 and

leave sulfur vacancies. With more sulfur vacancies, the reactivity of MoS2 surface

increases due to the higher density of states. It also helps to explain that more Pb

ions get adsorbed on MoS2. The mechanism could also apply to other metal ions.

We hypothesize that there may be increasing concentrations of S-vacancies if the

thermal desorption process and Pb adsorption are repeated for multiple cycles. One

possible method to further restore the MoS2 surface is to introduce thiol-containing

molecules[158] after each thermal desorption step to either compensate the vacancies.

Control experiments with mechanically exfoliated monolayer graphene were con-

ducted using the same protocol as described above, as an analogue to carbon-based

water purification technologies such as activated carbon and other graphene-based

adsorbents[159–161]. The adsorption and desorption of Zn and Cd on graphene are

shown in Figure 5.12. While both Zn and Cd are readily adsorbed on graphene,

thermal annealing was ineffective for removing the metals. Compared to MoS2,

metals adsorbed on graphene cannot be easily removed, indicating that it is difficult
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Figure 5.9: Thermal desorption of Cd from the MoS2 surface. (a) AFM image
of pristine as-exfoliated MoS2 flake. (b) AFM image of MoS2 after Cd adsorption
from 0.1 mM aqueous solution of Cd(NO3)2 on the same MoS2 sample as (a) showing
protrusions on the surface due to Cd adsorption. (c) AFM image in area marked by
dashed square in (b). (d) AFM image of same sample after annealing at 300 °C for
2 hours in vacuum with ultrapure Ar as carrier gas in the same area as (b) showing
most of the Cd clusters have been removed. (e) AFM image in area marked by dashed
square in (d).

to regenerate a graphene-based adsorbent for the removal of heavy metals. Based on

this convenient thermal desorption procedure, MoS2 has the potential to be applied

in water purification as a reusable adsorbent material that can be regenerated by

heating, making it a sustainable and cost-effective solution. Throughout these

various processes in both liquid phase and gas phase, the MoS2 material remains

stable and is not significantly changed.
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Figure 5.10: Thermal desorption of Zn from the MoS2 surface. (a) AFM
image of pristine as-exfoliated MoS2 flake. (b) AFM image of MoS2 after Zn adsorp-
tion from 0.1 mM aqueous solution of Zn(NO3)2 in the same area as (a) showing
protrusions on the surface due to Zn adsorption. (c) AFM image in area marked
by dashed square in (b). (d) AFM image of the same sample after annealing at 300
°C for 2 hours in vacuum with ultrapure Ar as carrier gas in the same area as (b)
showing most of the Zn clusters have been removed. (e) AFM image in area marked
by dashed square in (d).

5.2.4 Water Purification Using MoS2-Polymer Composite Foam

In order to make a practical adsorbent material, it is necessary to engineer

the 2D MoS2 into a more robust, porous 3D macroscopic structure[162]. Unlike

atomically thin membranes with nanopores[163], the composites which we fabricated

have interconnected microscopic hollow spaces to form a 3D microporous structure

that is structurally and mechanically robust. We synthesized polyurethane foam

composites by combining solution phase dispersions of MoS2 with a polyol precursor

solution as schematically illustrated in Figure 5.13a. A typical polyurethane foam

synthesis involves a polycondensation reaction between a trifunctional polyol and a
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Figure 5.11: Thermal desorption of Pb from the MoS2 surface at 180°C.
(a) AFM image of pristine as-exfoliated MoS2 flake. (b) AFM image in area marked
by dashed square in (a). (c) AFM image of MoS2 after Pb adsorption from 0.1 mM
aqueous solution of Pb(NO3)2 in the same area as (a) showing protrusions on the
surface due to Pb adsorption. (d) AFM image in area marked by dashed square in
(c). (e) AFM image of same sample after annealing at 180 °C for 2 hours in vacuum
with ultrahigh purity Ar as the carrier gas in the same area as (c) showing removal of
the Pb clusters. (f) AFM image in area marked by dashed square in (e). The height
scale for all images is the same as for (e) and (f).

diisocyanate in the presence of a surfactant, catalyst and blowing agent[164]. Here we

added an aqueous MoS2 dispersion as a blowing agent to a polyol solution containing

a surfactant and catalyst, then added a diisocyanate to induce room temperature

polymerization and foaming. We chose polyurethane as the polymer matrix because

it is a commonly used and chemically inert foam material[165], with no exposure

limits as established by the Occupational Safety and Health Administration (OSHA)

or the American Conference of Governmental Industrial Hygienists (ACGIH), and

because it is mechanically robust.

A solution phase dispersion of MoS2 flakes in sodium dodecyl benzenesulfonate
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Figure 5.12: Adsorption and lack of thermal desorption of Zn and Cd on
graphene. (a) AFM image of pristine as-exfoliated monolayer graphene. (b) AFM
image of graphene after Zn adsorption. (c) AFM image of Zn adsorbed graphene after
annealing at 300 °C for 2 hours in vacuum with ultrapure Ar as carrier gas in the
same area as (b) showing negligible removal of the Zn. (d) AFM image of pristine as-
exfoliated monolayer graphene. (e) AFM image of graphene after Cd adsorption. (f)
AFM image of Cd-adsorbed graphene after annealing at the same condition showing
negligible removal of Cd.

(SDBS) is shown in Figure 5.13b. The dispersion is dark green due to the high con-

centration of MoS2 flakes. An AFM image of some MoS2 nanoflakes in this dispersion

spin-coated on a graphite substrate is shown in Figure 5.14a, and the height profile

of one MoS2 nanoflake is shown in Figure 5.14b. The sizes of the flakes range from

50 nm to a few hundred nanometers across. A plain polyurethane foam and one with

MoS2 embedded throughout were prepared (see Methods for more details), and are

shown in Figure 5.13c and d, respectively. The polyurethane foam is white while

MoS2-polyurethane foam is green due to the presence of MoS2. The change in color

indicates that MoS2 flakes have been uniformly distributed and embedded. Raman

spectra of the unmodified foam and the composite with embedded MoS2 flakes are
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Figure 5.13: Forming 3D structures with 2D MoS2. (a) Schematic illustration
of synthesis process for polymer composites. Flakes of 2D materials dispersed in aque-
ous surfactant solution are mixed with polymer precursors. The mixture is foaming
and drying to form a polymer foam with embedded 2D flakes. (b) Photograph of
MoS2 dispersed in SDBS aqueous solution. (c) Photograph of a polyurethane foam.
(d) Photograph of a MoS2-polyurethane composite foam. (e)-(f) SEM images of the
polyurethane foam. (g)-(h) SEM images of the MoS2-polyurethane composite foam.
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Figure 5.14: MoS2 flakes from solution phase dispersion. (a) AFM image
of MoS2 nanoflakes from solution phase dispersion spin-coated on graphite substrate.
(b) Line profile of the MoS2 flake crossed by white line in (a). (c) Raman spectra taken
from MoS2-polyurethane composite foam (blue curve) and unmodified polyurethane
foam (green curve). The characteristic E1

2g and A1g peaks of MoS2 are marked.

shown in Figure 5.14c and clear peaks characteristic of MoS2 are only observed

from the MoS2-polyurethane composite indicating the successful embedding of MoS2.

SEM images of polyurethane foam are shown in Figure 5.13e and f, and of the

MoS2-polyurethane foam are shown in Figure 5.13g and h. Both types of foams

have microporous structures, which provides high surface areas that are favorable in

an adsorbent material. We note that the resolution of the SEM is not high enough to

resolve the individual MoS2 flakes. Batch adsorption experiments were conducted to

study the performance of the MoS2-polyurethane foam for removing metal ions from

water. In all experiments, 0.5 g of adsorbent samples were immersed in metal-free

centrifuge tubes with 7 mL of metal nitrate aqueous solutions to reach equilibrium

at three initial concentrations. Figure 5.15 shows the removal efficiency of Pb and

Zn at 1000, 200 and 50 ppb concentrations. The removal efficiencies were calcu-

lated as the ratio of the metal ion concentrations before and after adsorption, which

were measured by inductively coupled plasma mass spectrometry (ICP-MS). Control
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experiments with polyurethane foam alone shows that it also has some adsorptive

affinity for the metal ions. In the case of Pb, the embedded MoS2 improved the

adsorptive properties since the removal efficiency is much higher at all tested con-

centration levels. The removal efficiency of MoS2-polyurethane foam at 1000 ppb is

61% which is nearly twice the efficiency of the polyurethane-only foam, and it also

increases by 26.2 and 15.4 percentage points at 200 ppb and 50 ppb as shown in

Figure 5.15a, respectively. At the 200 ppb and 50 ppb concentrations, we are able

to remove 88.9% and 84.8% of the Pb, respectively. For Zn, the MoS2-polyurethane

foam also has higher removal efficiency, especially at 200 ppb and 50 ppb, where the

polyurethane-only foam was not able to remove any Zn, as shown in Figure 5.15c. In

additional experiments with Co, and Cd, we did not observe significant improvements

in removal efficiency by adding MoS2 to the polyurethane (see Figure 5.16), despite

evidence of adsorption of metal clusters on MoS2 from AFM measurements. Because

of the wide variety of 2D materials available, future work will focus on engineering

other 2D materials into 3D structures for use as adsorbent materials for removing

these and other harmful metal ions from aqueous solutions.

From these ICP-MS results, both types of foam have selectivity for Pb and Zn,

with the addition of MoS2 improving the adsorption efficiency. The EPA limit for

Pb in drinking water is 15 ppb[111], and the foam composite we synthesized has

a potential to be applied as an adsorbent for removing Pb at concentrations lower

than trace levels (concentrations below 100 ppm)[166], which is an improvement over

many conventional adsorbents for removing Pb which are usually more effective at

concentrations in the ppm range[135, 167]. MoS2 can also be attached to 3D support

structures beyond polyurethane which have better thermal performance for regener-

ating the material by thermal desorption, so detailed temperature dependent desorp-

tion will be addressed in future work. The diversity of available 2D materials and
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Figure 5.15: Removal of Pb and Zn from water. Inductively coupled plasma
mass spectrometry (ICP-MS) was used to measure the metal ion concentrations
of aqueous solutions before and after adsorption with polyurethane and MoS2-
polyurethane foams. Orange bars represent the removal efficiency of polyurethane
foam alone and blue bars represent the removal efficiency of MoS2-polyurethane com-
posite foam. Adsorption efficiencies are calculated as ion concentration after adsorp-
tion divided by initial concentration. (a) Adsorption efficiencies for Pb solutions. (b)
Adsorption efficiencies for Zn solutions. The initial concentrations are 1000, 200 and
50 ppb.

polymers to form a variety of composites suggests possibilities for removing different

pollutants from water supplies. The thermal desorption of metals for regenerating

the adsorbent can be also pursued via joule heating of the entire foam structure, as

was demonstrated for the graphene foam composite cited earlier[168].

5.3 Conclusions

In conclusion, the adsorption of Pb, Cd, Zn and Co on MoS2 from nitrate

solutions has been demonstrated with AFM, SEM, and XPS. Both metal-sulfur

complexation and the electrostatic attraction contribute to the adsorption of metal

ions on MoS2 surface. Pb and Cd ions were adsorbed onto the surface of MoS2

as small 2D protrusions, while Co and Zn were adsorbed as larger clusters. We

hypothesize that the metal complexation could desorb from MoS2 as metal sulfide

compounds by thermal annealing, indicating that MoS2 has the potential to be
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Figure 5.16: Removal of Cd and Co from water. Inductively coupled plasma
mass spectrometry (ICP-MS) was used to measure the metal ion concentrations of
aqueous solutions before and after adsorption with MoS2-polyurethane foams. Orange
bars represent the removal efficiency of polyurethane foam alone and blue bars repre-
sent the removal efficiency of MoS2-polyurethane composite. Adsorption efficiencies
are calculated as ion concentration after adsorption divided by initial concentration.
(a) Adsorption efficiencies for Cd solutions. (b) Adsorption efficiencies for Co solu-
tions. The initial concentrations are 1000, 200 and 50 ppb.

applied as a regenerable adsorbent. We synthesized a MoS2-polyurethane composite

foam that showed effective removal of Pb from water, especially at concentrations

below 200 ppb where we achieve 85-89% removal of Pb. This work opens the

door to studying the use of other 2D materials engineered into composites to be

used as adsorbents for removing other pollutants from water. Further studies of

detailed mechanisms of adsorption and desorption will provide deeper fundamental

understanding.

5.4 Future Work

In order to confirm the mechanism and explore the potential of other applications

for metal ions adsorbed on MoS2, we plan to perform more characterization for the

protrusions and clusters. The metal ions adsorption will be conducted with either
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CVD-grown MoS2 or solution phase dispersion of MoS2 and characterized using TEM

to analyze the crystal structure of the clusters. Besides heavy metals, the adsorption

of other metal ions on MoS2 will be investigated to confirm and expand our theory

for the formation of different morphologies with different metal ions. DFT will be

applied to simulate the adsorption of ions on MoS2, to investigate the interactions,

stable geometry and magnetic and electronic properties. We plan to work with our

collaborator, Prof. Elton Santos at Queen’s University Belfast who is an expert

in DFT studies, to conduct these investigations. We will test the regenerability

by performing multiple adsorption-desorption cycles and investigate the thermal

desorption of metal ions from MoS2 with the presence of molecules containing thiol

group to extend the reusability.
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Chapter 6

CONCLUSIONS

In this thesis, we have conducted thorough research on two crucial aspects of

surface modification of MoS2 and layered chalcogenides. First, our detailed study

of the reaction kinetics and reaction mechanism confirmed and expanded on the

reaction model put forth in our earlier work for the direct covalent functionalization

of two-dimensional layers of semiconducting 2H-MoS2 by the aryl diazonium salt

4-NBD in Chu et al.[34]. The adsorption study at different 4-NBD concentrations

found that due to the energetically inhomogeneous surface of MoS2 and indirect

adsorbate-adsorbate interactions from the previously attached NP groups, both the

Freundlich and Temkin isotherm models are a better description of the reaction. The

reaction kinetics was better described using a pseudo-second order model, showing

that the order of this reaction is two, and it further confirms the interaction between

4-NBD molecules.

Second, using a combination of optical, vibrational, and mechanical charac-

terization techniques, we demonstrates that the functionalization chemistry for

MoS2 with aryl diazonium salts can readily be expanded to many other 2D layered

TMDCs, such as MoSe2, WS2, and WSe2, and the PCs, such as Bi2S3 and Sb2S3,

in both mechanically exfoliated flakes and liquid phase dispersions. Thus, we have

established that the aryl diazonium chemistry is a generalizable, effective, and

broadly applicable approach to covalent functionalization of a diverse range of

several compositions of 2D layered chalcogenides.
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Finally, we confirmed the adsorption of Pb, Cd, Zn and Co on MoS2 from

nitrate solutions with AFM, SEM, and XPS. The metal ions were adsorbed onto

the surface of MoS2 as small nanoclusters, while the nitrates were rinsed away. The

thermal desorption of metals from MoS2 surface further demonstrates its potential

in heavy metal removal from water due to its regenerability. We synthesized a

MoS2-polyurethane composite foam that showed effective removal of Pb from water.

Our work provides more fundamental understanding for the application of MoS2 in

water purification.

Overall, the work in this thesis helps to build the fundamental understanding of

the surface modification of MoS2, which may have implications for future applications

in electronics, chemical sensing, biosensing and water purification. The broadened

covalent functionalization chemistry also provides a valuable chemical tool for the

modification and application of layered chalcogenides, and opens the door to further

chemistries that will expand the functionalities of these low-dimensional materials.
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Chapter 7

FUTURE WORK

In this thesis, we have conducted a fundamental investigation of surface interactions

in layered chalcogenides undergoing covalent functionalization and metal adsorption.

In this chapter, we will describe some potential future work to build on the results

presented here.

The covalent functionalization of TMDCs and PCs has been demonstrated for a

wide range of layered chalcogenide compositions, and can be used to enable future

applications such as electronic devices and biosensors. Future work should be done

to characterize the full extent of changes to the electronic and optical properties

of all these materials. The diazonium chemistry can then be used to attach other

structures such as proteins, DNA, and quantum dots to the chalcogenide surfaces

to make hybrid materials that combine features and properties of different classes

of materials. The presence of the organic groups may also be used to enhance the

adsorption of heavy metals[169–172].

We will perform Pb adsorption together with competing species, such as Zn,

Co and Cd, on both 4-NBD functionalized MoS2 prepared by both mechanical

exfoliation and liquid phase exfoliation. AFM will be used to characterize the

morphology of Pb adsorbed on MoS2 surface. We will perform SEM and TEM to

investigate the crystal structure of Pb adsorbed on liquid phase exfoliated MoS2.

XPS will be applied to verify the metal-sulfur complexation and the selectivity

to Pb. EDS mapping will also be used to identify the distribution of the ions to
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demonstrate the selectivity to Pb. The control experiments will be completed by

replacing the 4-NBD functionalized MoS2 with as-exfoliated or as-dispersed MoS2.

In addition, we plan to perform more characterization for the protrusions and

clusters formed during metal adsorption on MoS2 to further confirm the mechanism.

We will use TEM to analyze the structure of the clusters adsorbed on MoS2. The

samples will be prepared using either CVD-grown or liquid phase exfoliated MoS2

transferred onto lacey carbon grid. Other metal ions adsorption on MoS2 will also

be investigated to confirm and expand our theory for the formation of different

morphologies with different metal ions. We plan to work with our collaborator,

Prof. Elton Santos at Queen’s University Belfast who is an expert in DFT studies,

to conduct DFT simulation of the metal ion adsorption on MoS2, to investigate the

stable structure and mechanism. We will perform the stability test for adsorption-

desorption and examine the thermal desorption of metal ions from MoS2 with the

presence of molecules containing thiol group to extend the reusability.

Finally, the metal nanoclusters adsorbed on MoS2 can be characterized for

potential optical, plasmonic, and magnetic properties. Nanoclusters of metals like

gold and silver may have exhibit plasmonic enhancement and may serve as substrates

for surface enhanced Raman spectroscopy (SERS). Nanoclusters of metals like

cobalt, nickel, or iron may have magnetic properties.
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