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ABSTRACT 

This dissertation advances the capability of water infrastructure utilities to 

anticipate and adapt to vulnerabilities in their systems from temperature increase and 

interdependencies with other infrastructure systems. Impact assessment models of 

increased heat and interdependencies were developed which incorporate probability, 

spatial, temporal, and operational information. Key findings from the models are that 

with increased heat the increased likelihood of water quality non-compliances is 

particularly concerning, the anticipated increases in different hardware components 

generate different levels of concern starting with iron pipes, then pumps, and then PVC 

pipes, the effects of temperature increase on hardware components and on service losses 

are non-linear due to spatial criticality of components, and that modeling spatial and 

operational complexity helps to identify potential pathways of failure propagation 

between infrastructure systems. Exploring different parameters of the models allowed for 

comparison of institutional strategies.  Key findings are that either preventative 

maintenance or repair strategies can completely offset additional outages from increased 

temperatures though-- improved repair times reduce overall duration of outages more 

than preventative maintenance, and that coordinated strategies across utilities could be 

effective for mitigating vulnerability.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Extreme weather events anticipated from climate change present major challenges for 

our society in the Anthropocene.1 One challenge is in managing the vulnerability of civil 

infrastructure systems which were originally designed to operate under historical weather 

conditions.2 Designs for historical weather conditions create the potential for climate-

related extreme events to increase damages and loss of life. For example, in the 2010 

earthquake in Haiti, poor building codes were identified to be a main factor for the 

resulting displacement of 1.2 million people and more than 200,000 deaths.3 The World 

Risk Report states generally that “[Haiti’s] vulnerability to disasters and its ability to 

cope with them are down to far more than simple geography. The disaster potential we 

see in Haiti… is not only driven by the strength of the hazard, but also by the real lack of 

coping capacity and very high fragility and susceptibility within society – we’re talking 

very basic infrastructure – sanitation, healthcare centers and evacuation shelters”.4 

Engineers must adapt infrastructure systems to ensure reliability into the future. The 

American Society of Civil Engineers recognizes that “engineers should develop a new 

paradigm for engineering practice in a world in which climate is changing”.2 Part of this 

new paradigm will be to identify and explore vulnerabilities and prevent them from 

causing infrastructure failure or the cascading of failure to service losses. Without 

adaptation, increasing failures and service outages can occur without the means to 

properly respond.5 
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1.2 Climate Change Hazards for Water Infrastructure 

Water distribution systems are one of the most critical infrastructure systems for 

the economic health of cities and they are vulnerable to climate hazards.6 The delivery of 

safe and sufficient water to residents and commercial establishments is vital to almost all 

residential, commercial, industrial, and public operations. Therefore, disruption of this 

service from disasters is a threat to public and economic health. The overall reliability is 

dependent upon both the availability of the resource, the reliability of the infrastructure, 

and the quality of the water 7 and each are threatened by climate change events. Extreme 

temperatures, drought, frequency of freeze and thaw cycles, extreme precipitation, sea 

level rise, and increased frequency and extent of wildfires pose as hazards for water 

infrastructure.6   

The availability of bulk water resources is sensitive to drought and sea level rise. 

Increased levels of drought causes decreased annual snowfall and precipitation, and sea 

level rise causes saltwater intrusion into groundwater aquifers.8 With simultaneous 

increases in population and reduction of water supply, both surface water and 

groundwater could be insufficient to meet demands in some desert regions.8Additionally, 

increased bulk water temperatures can cause increased growth of pathogens in stagnant 

reservoirs that are difficult to treat at treatment plants.9 

Common elements across all water systems are pumps and pipes which facilitate 

transport, treatment plants, and the operators who manage the infrastructure. Heat 

exposure can cause pumps to overheat and increase corrosion of thermoplastic, metal, 

and concrete materials in canal linings and pipes.10–18 The freezing of water in pipes leads 

to blockages and outages, and an increased frequency of freeze and thaw cycles causes 
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increased cracking of pipes.19–21 In places where temperatures will increase in the winter, 

climate change could beneficially decrease freeze-thaw cycles.22 Additionally, increased 

amounts of standing water and infiltration from extreme precipitation events can cause 

stress loads to underground pipes from soil expansion, causing an increase in cracking.23 

Sea level rise threatens to affect both pumps and pipes along with treatment facilities. 

Salt water intrusion into soil causes increased corrosion and degradation of pipes and 

increased fracturing of pipes from land subsidence. Salt water intrusion could also cause 

flooding of pumping stations, sewers, treatment plants, and wastewater sewage backup.24 

From a human physiological perspective, extreme heat is known to increase water 

demand, and cause heat-stroke in water system operators.25,26 

Each water infrastructure system has additional unique physical, chemical, and 

biological sensitivities to climate change events. Increases in frequency and expanse of 

wildfires can cause erosion, contaminating runoff and resulting in flooding.27 Increases in 

the frequency or intensity of precipitation events are a major risk for these systems 

causing the following potential problems.28 The infrastructure used to transport water to 

treatment plants is at risk to extreme precipitation events and heat exposure. The flooding 

of canals from precipitation and sewer infrastructure failure causes high turbidity and low 

pH levels which could exceed treatment capacity due to the lower-turbidity and higher-

pH design of the treatment processes. This could lead to temporary outages of treated 

water to consumers.29–31 Additionally, concrete canals with jointed panels can breach, 

leading to a shutdown of the larger system.31 The chemical and biological treatment 

processes within water and wastewater treatment plants are sensitive to water temperature 

as well as from levels of turbidity from high precipitation events. Water temperature 
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correlates to the speed of chemical reactions and microbial growth. Higher water 

temperatures are generally beneficial for quickening the speed of reactions and growth of 

microbes that consume organic material and convert harmful chemicals into harmless 

ones.22 If water temperatures become colder the treatment efficiency could be reduced. In 

contrast, increased chemical reaction rates in the distribution system are potentially 

problematic, causing an increased decay of the disinfectant residual, formation of 

disinfection byproducts, nitrification rates, and the growth of harmful bacteria like 

Mycobacterium Avium Complex and Legionella.32,33,42,34–41 

 

1.3 Anticipating Impacts and Adapting Water Distribution Infrastructure  

Though water utilities are largely aware of extreme weather hazards, they are 

challenged by how to adapt their specific systems. In a survey of water utilities, 17 out of 

18 responded that they already experience the extremes attributed to climate change.6 

Most of the 17 utilities experiencing extremes are taking some form of action based on 

the extreme events that have already happened 6. Once utilities identify the causal factors 

of failure within their systems during an extreme weather event, they are able to mitigate 

those factors. While they are acting on recent extremes they have faced, they neglect 

preparations for different future events resulting in planning that lacks foresight. Heyn & 

Winsor state that “A majority of the water and wastewater providers interviewed are 

already experiencing extremes, so convincing employees to prepare for a wider range or 

change in those extremes is difficult for a few of the utilities. Furthermore, there may be 

small, growing changes that accrue before substantial impacts take place, and these are 

hard to garner attention around”.6 Additionally, “ several utilities have experienced dual 
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extreme events with different outcomes – for example drought and flooding. These 

events can result in different impacts to assets and infrastructure and certainly make it 

more challenging for utilities to plan for the future”.6 

Utilities that have not yet experienced extremes have the challenge of identifying any 

vulnerabilities in their system. While they can gain awareness of possible effects of 

extreme weather events that occurred at other utilities, they cannot directly infer that their 

systems are vulnerable in the same way, due to their different infrastructural contexts. 

The outcome of the 2010 earthquake in Chile provides some context. The earthquake was 

larger than the one that occurred in Haiti in the same year, however it produced much less 

damage and loss of life because Chile had stricter building codes.3 Another example  -- 

this time related to water infrastructure -- is that while the City of Phoenix and NYCDEP 

water utilities both face the hazard of extreme precipitation, the City of Phoenix 

anticipates possible water treatment plant shut downs from challenges in treating the high 

turbidity in the water, but NYCDEP does not. NYCDEP draws diversions from a 

different source, redirects high turbidity water, and has an interconnection with other bulk 

water providers.6 Therefore, NYCDEP’s network configuration and water flows make the 

anticipated impacts from extreme events different than those of the City of Phoenix. 

Moreover, the infrastructural context makes anticipating impacts for each utility 

challenging without direct historical experience. 

New federal legislation requires considering context when developing adaptation 

strategies. The American Water Infrastructure Act passed in October 2018 requires US 

utilities to conduct resilience assessments for natural hazards.43 As utilities conduct their 

assessments, they need contextual knowledge for the “Consequence Analysis” and the 
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“Risk and Resilience Management” steps as suggested by the Risk Analysis and 

Management for Critical Asset Protection (RAMCAP) Standard for Risk and Resilience 

Management of Water and Wastewater Systems, which serves as guidance for 

compliance with the new law.5 The RAMCAP standard calls for an estimation of the 

duration and severity of service outage that could result from a hazard. They also ask that 

utilities “do not assume that all uncontrollable variables and unpredictable events occur 

simultaneously”. 5  Therefore, a contextual knowledge of time and space is recommended 

for anticipating outages.  

Reliability and climate impact assessments can help utilities anticipate impacts, but 

there is room for improvement in the potential of the assessments to capture the 

individual utility contexts. In the water infrastructure field, reliability assessments use 

quantitative methods for assessing a water system’s ability to deliver service given 

scenarios of component failures. These models do not inherently have vulnerability 

assessments to different hazards, however. Climate impact assessments use selected 

methods from reliability assessments to anticipate the increased risks, costs, and/or 

service losses that could occur from a climate change hazard. A review of the types of 

information that were included in a sample of 46 existing reliability and climate change 

impact assessment studies for water treatment and distribution systems is shown in Figure 

1. 6,44,53–62,45,63–72,46,73–77,47–52 
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Figure 1 Types of Contextual Information Included in Water Reliability and 
Climate Impact Assessments 

The types of information were divided into four categories: hardware, spatial, 

temporal, and information regarding explicit impact. Solid colors in Figure 1 represent 

the types of information that were included and each color represents a different climate 

hazards considered. White spaces in the figure indicate types of information that were not 

included in the studies. Studies are arranged chronologically from left to right. The 

overall takeaway is that while most studies aim to characterize potential service losses, 

they use a fraction of the identified types contextual information. The progression of 

studies through time, is promising, however. As time progressed, reliability studies 

included more contextual information (largely spatial and temporal network information) 

and by 2008, climate hazards were introduced. Not all quantitative information available 

in water reliability models has been utilized in climate change assessments. They largely 
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use qualitative assessments of probability and do not use spatial or temporal information. 

The WNTR model from EPA (2017) is a promising reliability assessment tool that 

considers much of the quantitative hardware, spatial, and temporal information as well as 

the ability to input climate hazard information to evaluate service losses.50 Furthermore, 

only a few studies consider connections with other infrastructure networks, long-term 

cumulative effects, and repair dynamics.  

 

1.4 Anticipating and Adapting Water Infrastructure to Impacts from Increased Heat 

Exposure  

In warm regions like the US Southwest, the threat of heat to water reliability is of 

particular concern. It is especially important that water systems remain reliable as 

temperatures rise because in addition to greater consumption by individuals,25 the 

viability of many services may also require increased consumption. The electricity 

generation and agricultural industries in particular may need increasing amounts of water 

in a hotter future.78–80 For individuals, heat exposure can also cause a variety of health 

issues 81 that would be significantly exacerbated without access to clean water. Heat can 

also cause problems for traditionally cold places, but there may also be benefits from 

reducing periods of freezing.19–21 

Anticipating effects from temperature rise and extreme heat events could be improved 

by considering additional types of information than was included in past reliability 

studies. Temporal dynamics are potentially important to consider because degradation 

from heat can accumulate overtime.10–12,17,32,82–84 The two types of climate impact 

assessments that have addressed heat as a hazard to hardware and operations (shown in 
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Figure 1) are climate impact assessment tools48,49,85 and a narrative crafted about the 

possibilities of effects.47 Climate impact assessment tools contain geographically specific 

temperature projections and allow for input of information about component vulnerability 

to heat. They also allow for ranking of the criticality of components but do not help 

determine the vulnerability of failure and their potential to cause outages through 

mapping the network of components. The narrative written about water infrastructure 

vulnerability to heat also includes geographically explicit projection information and 

description of how the components could be vulnerable to failure from heat and 

connections to other infrastructure systems, but no analysis was performed to explore 

possible futures given hardware, spatial, or temporal context of particular water systems.  

Assessments of heat impacts to other infrastructure systems include similar types of 

information to what is included in assessments of heat impacts to water systems (hazard 

information, criticality of components, qualitative component vulnerabilities). 

Assessments for power and transportation systems include additional types of 

information, however. Assessments of heat impacts to power infrastructure include 

additional information characterizing vulnerability of components quantitatively.86–88 

Assessments of roadway infrastructure include the additional information of expert 

rankings of vulnerability and criticality of components.89–91 Moreover, while we know 

that infrastructure hardware are vulnerable, our ability to explore contextual scenarios 

causing service outages is limited.  
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1.5 Understanding and Managing Interdependencies 

Another source of vulnerability of water systems to climate hazards is through their 

interdependencies with other infrastructure systems. Though managed separately, 

infrastructure systems share common space with each other and require one another to 

operate.92 Thus, the vulnerability of one infrastructure system can propagate to other 

infrastructure systems. A key historical example of this propagation is the Baltimore’s 

Howard Street tunnel event where the fire from a derailed freight train caused traffic 

congestion, fiber optic cable damage and telecommunication outage, along with a water 

main break. The water main break then caused flooding of transformers that resulted in 

power outages to 1,200 people in downtown Baltimore.93 Thus, there has been a 

recognized necessity of also considering interdependencies in reliability and climate 

change impact assessments.78,79,99–108,80,109–113,88,93–98 

Power systems are integral to water systems. The two are connected through water 

pumps, valves, and SCADA need for power,7,114 possible load drops from pump failure, 

possible transformer flooding from pipe break,115 and generator capacity drop from lack 

of treated water for cooling.116 Power components are also vulnerable to heat in a variety 

of ways.86 Therefore, exploring the impacts failures have on the coupled system could 

ultimately help understand the overall vulnerability of the coupled systems to heat.  

Current models of interdependencies are insufficient to answer questions about 

propagation and vulnerabilities, however. Reliability and climate change impact 

assessments include quantitative information about interdependencies to better 

understand the strength of connections.47,78,98–107,79,108–113,80,88,93–97 These studies focus on 

long-term use of resources and topographic connections, which do not provide 
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information to determine vulnerability from failure. Current failure propagation 

interdependency studies typically only use graph topologies without flow 

information.96,103,110 Studies suggesting new model frameworks confirm that 

interdependency models should include more information. They recommend 

considering structure, flow characteristics 106, system operation 109,117, and temporal 

aspects 97. This additional information would facilitate anticipating where, how, and 

under what operational circumstances the interdependencies could manifest given their 

spatial and operational context, and therefore how widespread resulting outages could be.  

In addition to improving communication across utilities, literature suggests 

developing coordination between infrastructure managers, arguing that it could lead to 

more effective vulnerability mitigation. Derrible argues that “A more coordinated and 

better planned integration is highly desirable” because integrated systems can consider 

more of society’s needs (health, equity, overall efficiency) (Derrible, 2017). Chester & 

Allenby (2018) citing Larence and Lorsch (1967) argue “Organic [organizational] 

structures allow for more internal specialization to respond to changing environments, 

thereby increasing responsiveness”118 because “distributing the knowledge and decision-

making at the bottom of the hierarchy becomes more effective when  the environment [in 

which infrastructure operate] becomes unstable and high-level management cannot 

acquire all of the knowledge associated with the changing environment (Sherehiy et al., 

2007)”.119,120 This generates the question for utilities, do coordinated institutional 

strategies between utilities have the potential to reduce vulnerability better than other 

institutional strategies? Models which identify the pathways of failure propagation can 
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serve as a baseline to explore different institutional strategy inputs to see how well they 

can mitigate failures.   

 

1.6 Dissertation Objectives 

The objective of the dissertation is to develop impact assessment models that improve 

water utilities’ capacity to prepare for increased heat exposure and interdependencies by: 

(1) Anticipating the water distribution infrastructure component and system-level 

responses from exposure to heat and exploring adaptation strategies related to 

reducing component probability of failure.  

(2) Anticipating the impact of stochastic hardware failure on the service losses in 

a water network over time and exploring adaptation strategies related to 

reducing water outages.  

(3) Presenting a modeling framework capable of anticipating pathways of failure 

propagation across coupled infrastructure systems and providing a tool to 

explore the benefits of coordination between water and power utilities.  

The studies in the bolded box in Figure 1 highlights how the work of this dissertation 

would contribute to improving the types of information used in climate change 

assessments related to increasing heat for water distribution systems.  
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1.7 Chapter Summaries 

Chapter 2: Water Distribution System Failure Risks with Increasing Temperatures 

Research Questions 

What is the projected increase in risk of component failures 

and service losses within water distribution systems with 

increases in maximum summertime temperatures? Where 

should municipal water utility management strategies be 

focused to mitigate increases in risk? 

Approach 

i) potential temperature-induced sensitivities were identified 

for physical components and aspects of water quality; ii) 

quantitative relationships between failure and temperature 

exposure were identified; iii) ranges and distributions of major 

operating conditions impacting degradation were identified; iv) 

average maximum daily summertime temperature projection 

data were processed for Phoenix, Arizona and Las Vegas, 

Nevada; vi) Monte Carlo simulations were used to perform 

calculations of failure metrics for each temperature scenario 

given operating conditions; vi) probability distribution 

functions were fitted to Monte Carlo outputs; vii) projections 

of failure using failure rates for physical components and 

probabilities of water quality non- compliance were calculated 

from probability distribution functions; and, ix) fault trees were 

created to estimate how individual component failures and 
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quality non-compliances could propagate to service outages 

given different operational scenarios. 

Deliverable 
Peer-reviewed journal article published in Engineering Science 

& Technology 2018. 

Intellectual Merit 

The probability of component failure is quantitatively 

estimated under future temperature scenarios and is compared 

across components. Probabilities are used to estimate the 

possible increase in service outages.  

 

Chapter 3: Anticipating Water Distribution Losses from Climate Change 

Research Questions 

What are the cumulative impacts of heat on water components? 

What are the impacts of increased component failures on 

service losses? What are some effective strategies for reducing 

the additional outages from climate change? 

Approach 

The Perses model is designed to simulate the reliability of 

water distributions systems into the future under long-term 

exposure to different possible temperature projections. 

Multiple temperature scenarios are considered including a 

baseline (where historical temperatures persist, i.e., no climate 

change) and futures with changing temperatures based on the 

Global Circulation Model (GCM) ensembles. A Python 

wrapper is used to stochastically fail components in each time 

step based on their temperature exposure and their individual 
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robustness, and then implement the failed state of components 

in EPANET to track the consequential service outages, 

considering daily demand patterns and hydraulic flows. The 

program tracks the time of failed components and repairs 

according to given repair times. The results show a comparison 

of the increases in pipe and pump failures and how water 

outages increase under different temperature change scenarios. 

Two case studies are used to evaluate the effects of 

temperature on component failures and network service 

outages under extreme heat scenarios similar to those in the 

U.S. Southwest. The model is then used to explore adaptation 

strategies relating to probability of failure and repair times. 

Deliverable Peer-reviewed journal article.  

Intellectual Merit 

The Perses model shows the capability of a dynamic extended 

period simulation to aid decision making about climate 

adaptation by estimating the impacts to consumers. The use of 

Perses for projecting failures from increasing temperatures in 

water distribution systems shows that utilities in the 

Southwestern region of the U.S. that experience high 

temperatures will likely experience increases in component and 

consequential service level outages to consumers. We hope 

that the insight generated will help mitigate services losses into 

the future.  
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Chapter 4: Understanding and Managing Interdependent Power and Water Systems 

Research Questions 

How can utilities model propagation of failure from 

interdependencies and anticipate vulnerability? How can they 

use these models to explore effects of institutional strategies? 

Approach 

Since sufficient modeling frameworks are not yet available, we 

present a modeling framework which uses real-time simulation 

of coupled network models and a case study of a specific 

coupled network. This modeling framework could then be used 

to answer the questions posed in the introduction for other 

coupled networks to answer the questions: Where are the 

locations in the network that are vulnerable to propagation of 

failure from interdependencies? How much vulnerability do 

interdependencies cause? Do coordinated institutional 

strategies between utilities have the potential to reduce 

vulnerability better than other institutional strategies? 

Deliverable Peer-reviewed journal article. 

Intellectual Merit 

This case study shows how failures can propagate across 

infrastructure systems in real time, which improves the 

knowledge we have about how interdependencies can cause 

additional vulnerability for utilities. Instead of only considering 

the resource flows between networks or the number of 

connection points, adding information about whether 

interdependencies cause failures given the resource flows 

within the network configurations, the operational settings of 
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the components, and the operational management strategies, 

allows for anticipation of outages due to interdependencies. 

Anticipating outages from example propagations of failure in 

turn allows for the evaluation of outcomes from different 

institutional strategies both within and across systems. The 

result of the evaluation of strategies of this case study shows 

that there is potential for infrastructure systems managers to 

minimize impacts of interdependencies across systems by 

coordinating with other utilizes. We hope utilities use this 

finding as further motivation to consider coordination 

strategies across utilities.  
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CHAPTER 2 

WATER DISTRIBUTION SYSTEM FAILURE RISKS WTH INCREASING 

TEMPERATURES 

2.1 Introduction  

Civil infrastructure systems are vital for delivering resources, providing protection, 

and facilitating most urban activities. Typically, these systems are designed to last for 

long periods of time, often on the order of decades, and some systems persist for over a 

century.2 Today, infrastructure operational limits are designed based on historical climate 

conditions,2 and global climate models project that these conditions will likely be more 

frequently exceeded in the future.2 Consequently, the predictions of infrastructure 

reliability from historical climate data may over-predict the lifespans and reliability under 

future conditions. One particular climate change-related hazard is global temperature rise, 

and in regions that already have hot climates, further increases in temperature may pose 

serious risks for people and the infrastructure upon which they rely.121 In the US, of 

particular concern is the Southwest region, where limited water supplies coupled with 

further increases in temperature may pose major challenges. For example, the National 

Climate Association reports that the Southwestern US “regional annual average 

temperatures are projected to rise by 1.4-3.0oC by mid-century and by 3.0-5.3oC by end-

of-century with continued growth in global emissions (A2 emissions scenario), and with 

the greatest increases being in the summer and fall”.122 If urban densification occurs, it 

has the potential to cause even greater temperature increases via urban heat island.123 In 

hot climates, it is reported that infrastructure components occasionally fail from high 

summertime temperatures because of overheating and increasing rates of undesirable 
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chemical reactions.6,124 These failures can lead to service outages when there is not 

enough redundancy or emergency response.125 Thus, increased temperatures have the 

potential to increase the probability of outages if design, operation, and management 

practices remain the same. An infrastructure of particular concern is that of potable water 

distribution, where heat may result in failures that lead to disruptions of quantity and 

quality.125 

Water distribution systems are particularly critical to the economic health of cities 

and regions, especially in hot conditions. The delivery of safe and sufficient water to 

residents and commercial establishments is vital to almost all residential, commercial, 

industrial, and public operations, and the overall reliability is dependent upon both the 

availability of the resource, the reliability of the infrastructure, and the quality of the 

water. It is especially important that water systems remain reliable as temperatures rise 

because in addition to greater consumption by individuals,25 the viability of many 

services may also require increased consumption. The electricity generation and 

agricultural industries in particular may need increasing amounts of water in a hotter 

future.78–80 For individuals, heat exposure can also cause a variety of health issues that 

would be significantly exacerbated without access to clean water.81 Additionally, research 

has shown that from increased evaporation and decreased snowmelt, the amount of fresh 

water available to some regions will diminish with increasing global temperatures.122 

When the availability, infrastructural reliability, and quality are all stressed by rising 

temperatures, there could be a significantly greater threat of provisional inadequacies and 

consequential human health and economic losses.  
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The reliability of water systems is already challenging to maintain under current 

temperature conditions. Utilities do not always implement asset management programs to 

track the failure rates of their components and strategically plan for preventative 

maintenance to decrease service outages.126 Instead, components are typically operated to 

failure and utilities rely on their ability to quickly respond and repair, as preventative 

maintenance budgets are usually constrained.7,127 There remains a question as to whether 

this strategy will continue to work under future conditions. Some utilities have identified 

potential threats of increased temperatures, but very few have formally included climate 

change in their design process.6 The American Society of Civil Engineers notes that even 

when scenarios of climate change are explored, there will be “a tradeoff between the cost 

of increasing the system reliability and the potential cost and consequences of potential 

failure”.2 Utilities therefore need information to help them prioritize decisions in 

planning, design, maintenance, and operations.  

Given the potential for increasing temperatures, utilities will need to know how their 

systems may be affected and where efforts should be most focused to prevent and prepare 

for changes in their system.  More specifically, they will need to know how to prepare to 

mitigate failures ahead of time and how to prepare for the effects of failures.128 This study 

strives to answer two questions in the context of seasonally hot cities where temperature 

increases risk of failure: (1) What is the projected increase in risk of potable water service 

loss with increases in maximum summertime temperatures? and (2) Where should 

municipal water utility management strategies be focused to mitigate increases in risk? 

To address these questions, the functionality of water system components and water 

quality are analyzed under temperature conditions characteristic of Phoenix, Arizona and 
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Las Vegas, Nevada, considering climate change. An exploration of the temperature-

related sensitivities and consequential risk is valuable for understanding issues that may 

affect other cities in the future.  

2.2 Methodology  

To aid water utilities in understanding where their systems will be more 

vulnerable and how they can strategically mitigate temperature-related service 

interruptions, the following approach was used: i) potential temperature-induced 

sensitivities were identified for physical components and aspects of water quality; ii) 

quantitative relationships between failure and temperature exposure were identified; iii) 

ranges and distributions of major operating conditions impacting degradation were 

identified; iv) average maximum daily summertime temperature projection data were 

processed for Phoenix, Arizona and Las Vegas, Nevada; vi) Monte Carlo simulations 

were used to perform calculations of failure metrics for each temperature scenario given 

operating conditions; vi) probability distribution functions were fitted to Monte Carlo 

outputs; vii) projections of failure using failure rates for physical components and 

probabilities of water quality non- compliance were calculated from probability 

distribution functions; and, ix) fault trees were created to estimate how individual 

component failures and quality non-compliances could propagate to service outages 

given different operational scenarios. The resulting component projections of failure, 

percent increases in failure, and expected number of service outages under scenarios of 

the possible temperature exposure in the next 30 years considering best and worst case 

operating conditions are used to make recommendations for focused management 

strategies. A process flow diagram of the methodology is shown in SI Figure S1.  



 22 

2.2.1 Quantifying Temperature-Related Exposure and Degradation 

The physical components and aspects of water quality that have been shown to be 

sensitive to temperature were first identified through literature review to assess how 

operational failures might increase. Temperature sensitivities affect component wear and 

the rate of chemical reactions, the latter leading to the potential for increased pipe 

degradation and corrosion or quality non-compliance. Temperature-sensitivities are found 

in the motors10–12,82 and electronics83,84 used in pumping units, thermoplastic16 and metal 

pipes17, and in the chemical processes in the water from decay of the disinfectant 

residual32 and increase in disinfection byproduct production (DBP)33,34 (SI Table S1). 

While high temperature is known to affect water demand25, soil expansion129, material 

stress in pipes from temperature change130,131, the health of system operators132, 

nitrification rates39–41,133, and the growth of harmful bacteria like Mycobacterium Avium 

Complex37,38 and Legionella,35,36 these effects were excluded from analysis because of 

lack of basic data and quantitative relationships.  

There is ample evidence that summer temperatures contribute to degradation of 

water system components and quality. From experience of operation, the  Las Vegas 

Valley Water District has found that their cooling systems for pumping units may be 

inadequate for higher summer temperatures and that thermoplastic pipes fail more 

frequently in the desert heat.6,134 Observational studies of rates of corrosion and DBP 

production over year-long periods show that rates are higher during summer when the 

water is warmer.17,33,34,135 Additionally, an experimental study of chlorine residual decay 

in water samples also shows that reaction rates increase when samples are subjected to 

warmer water temperatures under periods of about a day.32 
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Studies of environmental and public health hazards have found that the impact of 

a hazard depends on “the concentration, amount or intensity of a particular agent that 

reaches a target system in terms of its duration, frequency, and intensity”.136 It is 

therefore assumed that physical components and aspects of water quality would have 

varying levels of degradation as a function of their durations and magnitudes of exposure. 

While the empirical studies of water quality aspects and corrosion rates show that a 

summertime period or shorter is enough to cause the reported change in reaction rates, 

the exact duration of exposure that it takes for temperatures above rated thresholds to 

cause degradation to the physical components (i.e. PVC pipes, motors, and electronics) at 

the reported rates is unknown. We speculate that because degradation is cumulative for 

physical components, cumulative exposure duration might be important. No empirical 

data or models were identified to establish a useable relationship between cumulative 

exposure and degradation rate for these components, so we propose a theoretical 

relationship that is derived in Appendix A.2. However, we are not able to employ this 

cumulative temperature model in the current paper owing to a lack of empirical data on 

the effects of cumulative exposure. Fortunately, there is some information available on 

the relationship between maximum temperature exposure and component degradation 

rate. One source states that reported motor degradation rates apply “even if the 

overheating was only temporary”.12 We therefore interpret published degradation rates 

for PVC pipes, motors, and electronics as being appropriate to characterize degradation 

from brief but repeated exposure of water systems to peak temperatures over the 

components’ service lives. When water systems are deployed in the field, they are 

exposed to exactly this type of pattern of “temporary”, but repeated, maximum 
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temperatures; this exposure happens almost every summer afternoon. The hottest 

afternoons in U.S. cities tend to occur in June, July, and August, which is when 

temperatures sometimes exceed safe operating temperature ratings of components.  

Since both physical components and aspects of water quality are affected by high 

summertime temperatures, this study models failure due to predicted averages of 

maximum daily summertime temperatures between June and August, during the hottest 

three hours of each summer day. This model has a cumulative-peak-exposure 

interpretation because a component in our model is exposed to this peak temperature for 

roughly 270 hours at least once and at most every year (the average temperature of the 

hottest 3 hours each day137 for 3 months, referred to as “3x3” in this paper). If it is the 

case, however, that degradation rates of physical components increase every time the 

component experiences much smaller durations of exposure (e.g. during a minute, hour, 

or week), then the model underestimates projections of failure. If it is the case that the 

degradation occurs only given years of continuous exposure that are longer in duration 

than the 3x3 window time frame, the model overestimates failures. With empirical daily 

or monthly failure data, future studies could determine the specific duration of exposure 

needed to cause these rates of degradation to physical components. 

 

2.2.2 Urban Water System Case Study  

Given their large populations, hot environments, and modern infrastructure, a 

potable water system with characteristic conditions of the cities of Phoenix, Arizona and 

Las Vegas, Nevada was modeled as a case study. These metro areas are two of the largest 

and fastest growing regions in the Southwestern US, and experience some of the highest 
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temperatures of metro area across the US.138,139,47 They both have populations of around 5 

million people and experience 35 – 40oC average daily summer temperatures.138,139 The 

largest water utilities in each metro region service around 1.5 million customers 

each.140,141 Since studies on temperature affects to operation are sparse, the failure metric 

equations and ranges of operational characteristics from literature were used from 

systems around the world that do not necessarily represent the Las Vegas and Phoenix 

case studies. Therefore, the temperature data and number of components are the aspects 

of the system that are characterized by the case studies.  A comparison of the relevant 

water utility characteristics is shown in SI Table S2.  

Climate projections show significant increases in temperature in Phoenix and Las 

Vegas into the future. Phoenix and Las Vegas projections of the averages of maximum 

daily summer temperatures (3x3) are shown in SI Figure S3. Temperature projections 

were processed from CMIP5 12x12 km gridded data from Global Climate Model (GCM) 

projections of representative concentration pathway (RCP) scenarios 2.6, 6, 4.5, and 

8.5.121 The 3x3 maximum air temperature in Phoenix is projected to increase to at least 

40°C in 2020 and at most 44°C in 2050 (including the GCM’s standard deviation of 

temperature). In Las Vegas it is projected to increase to at least 36°C in 2020 and at most 

41°C in 2050. The temperature range used to force the failure model considers the total 

range of both cities with GCM uncertainty, i.e., 36 – 44oC at 1oC intervals.  

 

2.2.3 Modeling Increases in Component and Water Quality Failure 

Failure can be measured as events where reliability requirements are not met.7 

Motors and electronics within pumping units failing to operate, pipes breaking and not 
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delivering water at required pressures, chlorine residual concentrations below regulation, 

and DBP concentrations above regulation each constitute failures. Estimated-time-to-

failure (ETTF), which represents the lifetime of components in units of years, and 

chemical concentration therefore represent “failure metrics” that indicate the potential for 

failure of components and the aspects of water quality, respectively. With temperature 

sensitivities identified, a review was conducted to identify the quantitative relationships 

between temperature and component failure and chemical reaction rates to characterize 

failure metrics. The ETTF parameter was calculated when the quantitative relationship 

between exposure temperature and lifespan of component was given and was used to 

estimate effects of overheating on motors and electronics, degradation of polyvinyl 

chloride (PVC) pipes, and corrosion of iron pipes. Chemical concentration represents the 

failure metric of chlorine residual decay and the production of DBPs. 

An increase in ambient temperature threatens overheating of motors and 

electronics that are vital to the operation of the pumping units. Motors can overheat from 

the combined dissipated heat from motor windings and the ambient temperature 

surrounding the motor, causing destruction of the insulation which can lead to burnt 

stator windings.10–12,82 It is reported as a rule of thumb in the industry that for every 10°C 

increase in the operating temperature over the capacity of the insulation--155°C for class 

F motors -- the lifespan decreases by one-half (Appendix A.4.1.1).10–12,82 Conversely, the 

lifespan increases by one-half for every 10°C decrease in the operating temperature 

below the capacity of the insulation. 11 The electronic controls that are used for pump 

operation are also sensitive to the combination of dissipated heat and the outside 

temperature within their enclosures, and for every 10°C rise in enclosure temperature 
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above 40oC, the lifespan of the electronics decreases by one-half (Appendix A.4.1.1).83,84 

It was assumed that electronics have the same property as motors when temperatures are 

below their capacity. With these relationships, we estimate the ETTFs that result from 

exposure to average peak summertime temperature scenarios.  

Water temperatures in the distribution system rise in response to increases in 

ambient temperatures. The relationship between water and air temperatures was modeled 

using the empirically derived linear regression equations from a study of temperatures at 

water treatment plant outlets in Japan.142 Coefficients of the regression range from 0.52 – 

0.89 oC in water / oC in air and the constants range from 1.88 – 7.89 oC in water. Despite 

some novel research on the topic, 142,143 predicting water temperature within distribution 

pipes is challenging due to a lack of empirical data. With high water temperatures, 

thermoplastic pipes can experience overbearing pressures, with the greatest effects on 

PVC.16 The derating of the PVC pipe is linear with increasing water temperatures 

(Appendix A.4.1.3). Iron pipes are sensitive to indirect effects of water temperature 

through internal corrosion.17 The relationship between corrosion rate and water 

temperature over a year-long period has been reported in the literature for the cast iron 

pipe material, so this is the type of iron pipe modeled. Temperature may have a similar 

effect on the corrosion rate of ductile iron and steel pipes, though no relationship was 

found in literature. Corrosion rates for cast iron pipes are reported to be empirically 

different for water distribution systems (WDS) and  water treatment plants (WTP) 

(Appendix A.4.1.4). 17 Corrosion rates and pipe age were used to calculate pit depth and 

then to the calculate the ETTF from the remaining life of the pipe according to Randall-

Smith et al.144  
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Water quality is also affected by an increase in water temperature. Summertime 

temperatures increase the reaction rates between the organics and disinfectants in water, 

thereby increasing the formation of the cancerous DBP, total trihalomethane (TTHM), 

according to an empirical study on seasonal drinking water quality in Istanbul City, 

Turkey, where water is supplied through surface water and is treated through “aeration, 

prechlorination, coagulation, flocculation-sedimentation, filtration, and postchlorination” 

(Appendix A.4.1.5).33 The concentration of another DBP, total haloacetic acid (THAA), 

is directly dependent upon the concentration of TTHMs and seasonal temperatures as 

well, according to an empirical study of three drinking water systems in the United 

Kingdom which represent a range of source water conditions – “upland surface water, a 

lowland surface water, and groundwater” with standard treatment mechanisms: aeration, 

filtration, coagulation, sedimentation, and chlorination (Appendix A.4.1.6)34.  

The other type of temperature-related quality concern is that of chlorine residual 

decay as water travels to the consumer. The final chlorine concentration was calculated 

based on the initial concentration of chlorine from dosage at a water treatment plant, the 

minimum allowable concentration of chlorine, and the chlorine decay constant (Appendix 

A.4.1.7). The decay constant’s relationship with temperature experienced over day-long 

periods was taken from an experimental study with samples from two water distribution 

systems in Birmingham, Alabama, by Hua et al.32 Table 1 shows the equations used to 

calculate the failure metrics for each component and aspect of water quality, though a 

more detailed discussion can be found in the Appendix A.4. All equations characterize 

temperature in terms of degrees Celsius because experiments and rules of thumb from the 
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literature measured temperature in Celsius. Equations would need to be modified to allow 

for the use of another unit of temperature.  

 

Table 1 Failure Metric Equations. More detailed equations are shown in Appendix A.4. 
T= temperature rise above component threshold [oC] , Tw = water temperature [oC], ETTF 
(T/Tw) = estimated-time-to-failure after air or water exposure [years], C(Tw) = chemical 
concentration after water temperature exposure, MTTFT1 = historical mean-time-to-
failure [years], rd = lifespan degradation fraction per 10oC above capacity [no units], t = 
age of pipe [years], tw = water age, Pi = internal pit depth [cm], ∂ = pipe wall thickness 
[cm], C0 = initial chlorine concentration [mg/L], TOC = total organic carbon [mg/L], Cl2 
= chlorine dosage [mg/L], SUVA = specific UV absorbance [l/mg*m], Br = bromide 
[mg/L], ResT = water age [h], Season = season of year, numerically expressed as: 1 for 
spring, 1.46 for summer, 1.31 for autumn, and 1.01 for winter. 
 

Component/Aspect of 

Water Quality 

Failure Metrics 

ETTF (T or Tw) = C(Tw) = Source  

Motors and 

Electronics 𝑀𝑇𝑇𝐹$% ∗ (1 − 𝑟+)$/%.  

10–12,82–

84 

PVC Pipes 𝑀𝑇𝑇𝐹$% ∗ (−0.0123𝑇3 + 1.293) 16 

Iron Pipes 𝑡
0.5𝑡(0.0774 ∗ 𝑇3 − 0.1073) + 𝑃;

𝛿 17,144 

Chlorine Residual 

Concentration  𝐶.𝑒
?....@.A

B.BCDEFG
HI

JG 32 

TTHM Concentration                                                   

11.967(TOC)0.398*Tw 0.158*Cl20.702 33 

THAA Concentration                               

0.99(TTHM)0.64*(Cl2)0.15*SUVA0.09*(Br-  +0.005)-

0.12*(ResT+5)0.07*Season 34 
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While temperature contributes to failure, the effects of operating characteristics can 

also be significant. Table 7 shows the characteristics used to calculate the failure metrics. 

Examples include the range in water temperature vs. air temperature regression 

coefficients, MTTFT1 and heat dissipation of motors and electronics, and the age of water 

in pipelines. Estimates of the possible ranges and likely distributions of these 

characteristics were identified through literature review and were modeled as uniform or 

lognormal distributions to account for their uncertainty. Uniform distributions were used 

when there was no information available about the relative likelihood of certain values 

over others within the reported range. Lognormal distributions were used when there was 

evidence for a skewed distribution present in real water distribution systems.  

Monte Carlo simulations were then performed to calculate and characterize 

probability distributions of the failure metrics. When performing the calculation of failure 

metrics for each temperature, the distributions of operational characteristics were 

sampled 5,000 times. To estimate the variation in failure metrics under different regimes 

of operating characteristics, the ranges of operational characteristics were divided into 

lower and upper halves (representing best-a worst- case operating conditions) and Monte 

Carlo simulations were run over both halves separately. The terms best- and worst- cases 

within the reported literature are not determined to be optimal and sub-optimal 

respectively from independent sources.  Distributions of “failure metrics” were created 

for each average maximum summertime temperature and operational scenario by 

performing Monte Carlo simulations for each 1oC increase in the range 36-44oC, 

resulting in similar histogram outputs that are just shifted to higher values of failure 

metrics with increasing temperature. The output failure metric values from the 
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simulations were fit into probability distribution functions using Anderson Darling 

Statistics, probability plots, visualization and judgement about distributions that best fit 

the process underlying the data. 145 Weibull distributions were fitted to the physical 

components in pumping units and pipes because the form most accurately represents 

degradation with age and it also produced reasonable fits, as shown in figures S4-S11 .146 

These distributions characterize the histograms of component failures from a population 

of components overtime, and time represents ages of the components – starting at zero.146 

Motors and PVC pipes were the only components that had outputs that were statistically 

equal to the Weibull at the 10% significance level. The output distributions for chlorine 

residual concentration were fitted as exponential distributions based on best fit and the 

need to be consistent across operating scenarios. The output distributions for DBP 

concentration were fitted as Gamma distributions based on best fit. Output data and their 

fit distributions and probability plots are shown in figures S4-S20. Parameters of the 

distributions and Anderson-Darling Statistics are shown in Tables 9 and 10.  

The projection of each component failure and type of water non-compliance was 

calculated through either hazard functions or integration of the distributions characterized 

by the failure metrics. The ETTF distributions of physical components were used to 

calculate components’ annual failure rates with the hazard function of the Weibull 

distribution (units: % failed/year), which characterizes their failure behavior starting in 

the next instant of their lives, given that they had already lived a certain number of years. 

147 The time period of the rate was then converted to be during the next summertime 

period of its life instead of a full year --as characterized by a period of 270 hours out of 

the total 8760 hours in a year (Appendix A.4.3.1).147 It is necessary to calculate failure 
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rate after the components have operated up until a non-zero age because there would be 

very little likelihood of their failure given any temperature exposure if they were brand 

new. The DBP formation distributions were used to calculate the probability that a 

concentration from the distribution would be above the EPA regulated threshold of 80 

µg/L and 60 µg/L for THMs and THAAs respectively148 for each sampling station in the 

network for any point in time that the water temperature scenario is experienced, as 

shown in Appendix A.4.3.2. Similarly, the chlorine residual distributions were used to 

calculate the probability that a concentration from a sampling station would be 

undetectable and therefore non-compliant with EPA regulation for any point in time that 

the water temperature scenario is experienced.149 A figure of the overall failure metric 

distribution formation and probability calculation methodology is shown in Figure 2.   

 

Figure 2 Methods of Projection of Component-level Failure Calculations. For 
physical components, the ETTF distribution is shifted to the left, which effectively shifts 

to the left through Monte Carlo analysis under increasing temperature scenarios. For 
disinfection byproducts, the failure metric, chemical concentration (C) is shifted to the 
right, and for chlorine residual is shifted to the left. Shaded regions represent integrated 
areas under the curves that are used to calculate failure rate and probability of failure.  

2.2.4 Modeling Failure Cascades to Service Outages 

Component probabilities of failure and failure rates were propagated to 

probabilities of systemic failure using a reliability engineering fault tree analysis to assess 
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the impact of component hierarchies, points of redundancy, and presence of back-up 

systems on the likelihood of systemic failure.147 Water distribution systemic failure is 

defined as the pressure, flow, or quality falling below specified values at one or more 

nodes in the network. The three temperature induced pathways to service outages are 

pumping station outages, pipe breaks, and water quality non-compliance, and are shown 

as individual fault trees in Figure 3. Pipe breaks and pumping station outages can both 

directly cause failures in the water distribution system (WDS) and indirectly cause 

failures in the WDS due to failures of water treatment plants (WTP). The fault trees 

highlight which component failures lead to service outages. To calculate systemic 

probabilities of failure, physical components were assumed to have series behavior 

(meaning that if any one component fails, the sub-system fails), and failure rates were 

propagated from a component level to a system level according to the system reliability 

equations that state that individual component or sub-system failure rates are summed in 

a series system (Appendix A.5).147 The use of the hazard function to calculate component 

failure rate allows for the characterization of failure behavior of all components during 

the same instant in time (when they are all at the certain ages in the scenario). To 

calculate the probability of water quality non-compliance, the probability of either a non-

compliance from TTHM or chlorine residual decay occurring was found through the 

union of their probabilities (Appendix A.5).147 Expected occurrences of service outages 

were calculated from these propagated failure rates and probabilities, along with the 

estimates of the number of components. Scenarios of numbers of available redundancies 

of components were explored in the calculation of pumping unit failure rate leading to 

pumping station failure rate, water treatment or water distribution failure rate, and 
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ultimately to distribution system failure rate (Tables 5 & 6). These values are relative to 

the average number of pipes, pumping stations, and quality sampling sites in Phoenix and 

Las Vegas (Table 6). An important type of redundancy is stored water in tanks 

throughout the network that can offset the pressure and flow lost during a pipe and pump 

station break and provide a location for re-dosing the distribution system with chlorine 

disinfectant. Without estimating water volumes at different times, water distribution tank 

storage was assumed to be 100% likely to be inadequate for stopping a pumping station 

outage or pipe break from causing some magnitude of water outage. A more specific 

representation of the availability of water storage would require knowing temporal and 

spatial information of the system structure and operations over time.  

 

Figure 3 Fault Tree Diagrams showing three trees of systemic failure leading to a 
possible water service outage: 1) pump station outage, 2) pipe break, and 3) water quality 

non-compliance. The boxes represent failure events and their different colors represent 
hierarchies of failure (i.e. sub-component, component, intermediate systemic, ultimate 
systemic). It was assumed that if one out of two pumping units, pumping stations, and 
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water treatment plants failed, demand would not adequately be met and failure would 
propagate as detailed in SI Table S4. 

It is possible that these individual pathways to outages could also happen 

simultaneously—leading to potentially longer and more severe supply and quality 

outages. For example, low pressures in the system from pipe breaks or pumping station 

outages not only independently cause quantity supply outages and seepage of 

contamination, but when coupled with pre-existing quality issues, pose a human health 

threat.150 If both physical components and quality fail in the same time frame, the 

customers could experience longer periods of low pressures and durations of 

contamination because of the potential difficulty of rerouting and flushing water.7,150  The 

probabilities of simultaneous occurrences of different types of water outages were thus 

also calculated, using standard probability law of simultaneous events for the expected 

values of service losses from physical component failure rates and water quality non-

compliance probabilities (Appendix A.5). Simultaneous probability was estimated 

through viewing the conditional probability portion of the physical component failure 

rate as stand-alone under the certain time interval of 270 hours.  

2.3 Results  

2.3.1 Projected Increase in Component Risk  

Over the full range of possible temperatures in all RCPs and including GCM 

uncertainty, the increase in component probability of failure from 2020 to 2050 ranges 

from 10-101% for the Phoenix and Las Vegas-characteristic utility. The average 

probabilities of failure and failure rates (between best- and worst- operating conditions) 

are the highest for chlorine residual and pumping stations, pumping units, motors and 
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electronics (within pumping units). This holds across all temperatures, as shown in Figure 

4. Detailed results are shown in SI Table S10.  

 

 

 

Figure 4 Average Component and Water Quality Projection of Failure: Component 
failure rates and probabilities of failure are shown as a function of temperature. 

Temperature ranges for Phoenix and Las Vegas are plotted on the abscissa. Chlorine 
residual, and pumping units are the components with the highest probability of failure. 
Pumping stations, inadequate chlorine residual, and motors are projected to have the 

greatest percent increases in failure. 

The components that pose the greatest threat to reliability are those that have both 

the highest probability or rate of failure and the greatest percent increase in these values 

between the 2020 and 2050 scenarios. Thus, the most concerning aspect is water quality 

non-compliances due to the decay of chlorine residual and TTHM production.  Chlorine 

residual decay will have the largest probability of failure and will also have a large 

percent increase with increasing temperatures. The relationship between inadequate 

chlorine residual and temperature is exponential, and therefore the percent increase in 

failure rates between 2020 and 2050 will be 53% ± 36% on average depending on 

operating conditions. There is no validation available for the historical frequency of non-

compliances, though there is evidence that non-compliances have been non-zero. Annual 
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water quality reports show that out of the last 5 years in the City of Phoenix, there were 4 

years where concentrations fell below the minimum residual concentration at least once 

sometime during the year.151–155 TTHM production has the second highest probability of 

failure but has a lower percent increase of 17% ± 10% on average. It is unlikely however 

that the non-compliance thresholds of the other form of DBP, THAA, will be exceeded 

under this scenario of operational practices. This is because the calculated concentrations 

of THAA at different temperatures were only around 25% of the regulated levels. Though 

the chance of occurrence is high, it should be noted that there are no reports of DBP 

violations in the past in either city in recent years.140,156    

The failure processes of second-most concern are those of electronics, motors, 

pumping units and pumping stations. Pumping station failure rates are projected to have a 

percent increase of 76% ± 15%, depending on operating conditions. The historical 

average failure rate of motors across a variety of industries in the US is on average 3-12% 

every year under current temperature conditions.10 Extending the 270-hr failure rates to 

yearly values provides a value to check validity with historical data. The estimates of 

annual failure rates under all temperature scenarios from 36oC (8.6% ± 5.6%) to 44oC 

(26% ± 16%) fall within this historical range.  

Pipe failures show a less significant increase in threat to utility reliability in the 

future compared to other component failures. Between the two types of degradation, 

corrosion causes a greater increase in probability of failure than does the degradation of 

thermoplastic pipes, though probability of failure of PVC pipes from degradation will be 

consistently greater than probability of failure of iron pipes from corrosion. The corrosion 

process associated with iron pipes causes the probability of failure to have a percent 
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increase of 52% ± 12% in the average WDS, and of 76% ± 8% in the average WTP. The 

PVC pipe failure rate has a percent increase of 10% ± 0.2% in the average WDS. The 

historical failure rates of polyethylene pipes, pipes with similar degradation rates to PVC 

pipes, in Las Vegas in 2005 was 2.2% (679 breaks out of 25,000 PE pipes) in the summer 

and 6.5% over the year (1623 breaks out of 25,000 PE pipes).6,134,157 The PVC pipe 

failure rate estimate from the model given the average peak summer temperature of 2005 

(44oC)158 in Las Vegas is 0.2% ± 0.13% in the summer and 6.5% ± 4.3% over the year, 

so is consistent with historical data. Current annual iron pipe break rates are reported to 

be 6% on average in the United States.141 For WTP iron pipes, the estimates of annual 

failure rates under all temperature scenarios from 36oC (0.32% ± 0.32%) to 44oC (0.84% 

± 0.84%) fall below this historical range. Additionally, WDS iron pipe failure rates are 

negligible under all temperatures (0.005% ± 0.005% per year at 44 oC).  Underestimates 

in modeled versus observed failure rates are in part due to the fact that there are multiple 

modes of pipe breaks in reality - longitudinal, circumferential, corrosion through hole, 

split bell/bell shear, and joint failure129 - that are not accounted for in the model. In the 

results, the lifetime of the pipe is only modeled from an increase in corrosion and 

degradation. While the Weibull distribution can predict other forms of aging, it cannot 

account for the random breaks due to factors like inadequate bedding support and live 

loads caused by traffic that are independent of climate effects.129 Moreover, results of 

pipe failure rates show that utilities should expect the high rate of PVC pipes to slightly 

increase, but should also anticipate an increase in WTP iron pipe breaks with increases in 

temperature.  
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2.3.2 Projected Increase in Service Outages 

The probability of service outages increases as a result of propagated component 

failures. Individual water outages and water quality non-compliances are projected to 

have a percent increase within the 7-91% range and simultaneous water outages and 

water quality non-compliances are projected to have a percent increase within the 23-

123% range, depending on the type of event and how the system is operated. Figure 5 

shows the resulting expected occurrence of water outage and quality failure when all 

combinations of systemic probability are considered.  

 

 

 

Figure 5 Isolated and Simultaneous Service Outages. Dashed lines represent Las 
Vegas temperature ranges from 2020 – 2050 while dotted lines represent temperature 
ranges in Phoenix. Venn diagrams in the first column show which type of systemic 

failure was analyzed. The ranges of failures due to changing operating conditions are 
shown in colored bands to characterize opportunities for risk mitigation. All best-case 

operating conditions together contribute to the lower range of expected number of 
failures and all worst-case conditions together contribute to the upper range of expected 

number of failures. The large range shown from the bands suggests that the expected 
number of failures is sensitive to changes in operating conditions.  
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Results show that the components that have the highest probability of failure and 

failure rates and that increase the most in failures - namely water quality non-

compliances and pumping station outages - directly contribute to the greatest increase in 

service outages. The type of isolated water outage that is projected to increase the most is 

that from pump station failures. The expected number of water outages from pump 

station failures has a percent increase of 76% ± 15%. The second highest percent increase 

in water outages is from quality non-compliances of 17% ± 0.4%, and lastly, water 

outage percent increase from pipe breaks is estimated to be 10% ± 3%. Unfortunately, 

there was no identified available historical data for how many simultaneous outages 

currently occur currently for direct comparison.   

Because the individual modes of water outage that increase the most are also 

more likely to happen simultaneously with other types of service outages, the 

simultaneous service outages that will have the greatest percent increase are those that 

include pump station outages and water quality non-compliances. This means that though 

utilities are used to responding to frequent pipe breaks, the increasing simultaneous 

occurrence of pipe breaks with pumping station outages and/or water quality non-

compliances could cause outages that are increasingly difficult to recover from. 

 

2.4 Priority Maintenance Strategies 

Instances of water quality non-compliance and pumping station failures are also the 

failure modes that have the greatest potential for being prevented, and as such should be 

prioritized for failure prevention. The large sensitivity in failures for all events that are 

caused by water quality non-compliances and pumping station failures (as shown in the 
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colored bands in Figure 5) show that changing the operating conditions for these 

components would be the most effective way to reduce failures. The trends in failure shift 

from linear to exponential between operating conditions. Specifically, the results show 

that there is a maximum 79% absolute reduction in probability of inadequate chlorine 

residual failure when operators inject the higher range of dose of chlorine at the entrance 

point to the WDS, and make sure to maintain a low water age throughout the system. It 

should be noted, however, that injecting the maximum chlorine dosage and allowing for 

more organic carbon causes a 64% absolute increase in probability of non-compliances 

from TTHM production. Therefore, both residual chlorine and DBP concentrations 

should be monitored carefully under any chlorine dosing strategy. Pumping station failure 

rates are also sensitive to operating conditions as there is a maximum 15% absolute 

reduction in the pumping station failure rate when motors and electronics dissipate low 

amounts of heat, and there are cooling devices implemented that reduce operating 

temperatures. The expected value of pipe failures from corrosion and degradation is not 

very sensitive to changes in characteristics like pipe diameter and normal operating 

pressure (1% absolute reduction), and thus could not be easily decreased through 

changing these characteristics.  

2.5 Model Uncertainty 

Uncertainties associated with water temperature in underground pipes, the time it 

takes for degradation to occur, availability of water storage, component failures from 

waterhammer, and projections of future trends in model parameters should all be 

considered when assessing applicability of the risk projections to a specific water utility. 

These characteristics were necessarily inserted into the model as assumptions, but their 
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variability would have an effect on the output probabilities of failure. A 10% change to 

degradation rates results in a percent change of 0-22% of motor and electronic failures 

depending on the temperature and operating conditions scenario. Specific values are 

shown in Appendix A.3. The addition of this variance would make pumping stations 

more comparable to all other components in terms of percent increase in failure. 

Assuming that there is a 50% chance (instead of 100% chance) of an inadequate amount 

of water storage decreases the likelihood of outage from pipe break by 50% and an 

outage from pumping station failure by 50%.  Additionally, if quantitative relationships 

to describe the effect of waterhammer from one component failure causing another 

became available, the frequency of pipe and pumping unit failure might increase.  Lastly, 

it is hard to know what the resulting risk will be when normal structural and operational 

characteristics change over time from urban expansion, transformative designs, etc.   

2.6 Discussion  

The study is a critical first step towards helping utilities prepare for climate change 

and extreme events by identifying and characterizing the aspects of the system and chain 

of failure events most sensitive to heat. The results are modeled to show how discrete 

increases in temperature increase chances of failure. As framed, the results provide a 

directionally reliable estimate telling us that component and service failures will increase 

with increasing temperatures. While estimates of risk contain uncertainty, comparisons 

between the estimated increase in risk for each temperature-sensitive aspect of the system 

are nevertheless valuable for prioritizing where strategies should be focused.  

The results also help identify several critical areas for future research and data 

collection. This model can be most directly applied to warm regions around the world 
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with modern centralized water distribution infrastructure, (e.g. the US Sun Belt, Middle 

East, North Africa, and South Asia), where a large and growing fraction of humanity 

lives and where a large fraction of global 21st century water infrastructure investment will 

occur.159 Even in colder regions the model may be useful, with necessary further work 

because an increase in annual and summer temperature may benefit the system operation 

by helping to prevent pipes from freezing and accelerating the rates of beneficial 

chemical reactions needed for water treatment. 22 Additionally, a network model of 

components and iterative simulations through time would be beneficial to capture 

locations of component failures leading to different resulting magnitudes in outages, and 

the accumulation of degradation overtime by exploring the alternative assumption that 

shorter time periods (rather than the 3x3 duration) cause the reported degradation rates. 

More modeling work, combined with city-specific and component-specific engineering 

data quantifying heat-induced failure rates is necessary to more precisely quantify heat-

induced service failure risk in particular WDSs. An analysis of relative costs of different 

suites of preparative actions and their consequences would also be valuable, but this 

requires data on preventative maintenance, repair, response, lost consumer use, and 

capital improvement costs for each type of failure. Furthermore, the methods of 

projecting risks of future external threats could be expanded to include other threats, 

including flooding and wildfires. It could also be used for the projection of risk in other 

infrastructure systems like transportation and electricity, which also have temperature and 

other climate change event sensitivities.124,160 

  Considering the possibility of other increasingly frequent extreme weather 

events, utilities should recognize that improved response times coupled with the capacity 
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for agile and flexible resources use (including money and equipment) will be critical. The 

water community should also work to phase out vulnerabilities by improving system 

design (e.g. increasing pumping unit insulation capacity, reducing water temperature in 

cooling towers, or adopting “smart” booster chlorination and network sensors6,161), and 

by improving training and institutional response capacity. Ultimately, in times when 

maintenance and response actions are severely constrained by budgets, it is of the utmost 

importance to identify and prioritize strategies by utilizing information on likely 

mechanisms of failure.  
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CHAPTER 3 

ANTICIPATING WATER DISTRIBUTION LOSSES FROM CLIMATE CHANGE 

3.1 Introduction 

With increasing evidence of rapid changes in climate and resulting extreme events, 

infrastructure – the physical systems and managing institutions that deliver critical 

resources and protect us from hazards – must continue to perform reliably. Yet the design 

of infrastructure is often made assuming that past climatic and hydrological conditions 

will persist into the long term, 119 and the rules and codes by which they are designed do 

not change quickly.2 The confluence of a rapidly changing climate and slow changing 

infrastructure, designed assuming stationarity of variability, results in a potential 

crisis.119,162 Without strategic investment, increasing hardware failures and resulting 

service outages can occur without the means to properly respond. Serious questions 

remain as to whether our currently deployed infrastructure can remain functional as 

climate changes and during extreme events, the latter when people may need critical 

services the most. 

In arid and semi-arid regions with hot temperatures, potable water delivery is an 

infrastructure system of particular concern. Water is a critical resource, not just for 

drinking, but often for industries that drive economies (such as manufacturing and 

agriculture), and even for power.25,78–81 This is particularly true in the semiarid Southwest 

US where scarce water resources are transported long distances, populations have and are 

forecasted to grow significantly, agriculture remains a major activity, and thermoelectric 

power generation continues to supply a large fraction of energy.163 If there is a 

continuation of the current path of global emissions, it is projected to lead to around 9-
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10oF increase in average temp in the Southwest by the end of the century relative to the 

late part of the last century (RCP 8.5).164 If total radiative forcing is instead stabilized 

shortly after 2100 without overshooting the long-run radiative forcing target level, there 

is projected to be an average 5-6oF increase (RCP 4.5).164  There has been a great deal of 

work to understand how the accessibility of water resources might change as populations 

and climate change.122 However, there remains a dearth of knowledge of how water 

infrastructure – in particular distribution – might perform under increasing local 

temperatures and what that means for water delivery reliability. It was found in a 

previous study that increasing temperatures affect the reliable operation of hardware 

within water infrastructure, and the failure of one or more pieces of hardware could lead 

to cascading effects.46 Temperature affects component wear that results in the potential 

for overheating of motors 10,12,82,165 and electronics 83,84 used in pumping units. 

Temperature also affects chemical reaction rates that lead to the potential for increased 

pipe degradation and corrosion,16,17 and water quality non-compliance. 32–34  

Modeling impacts to water delivery infrastructure systems from temperature change 

is a promising way to help identify and prioritize adaptation strategies. An important 

reliability metric is the loss of service to consumers. The guidelines for federally required 

water utility reliability and resilience assessments call for an estimation of both the 

duration and severity of service outage that could result from a hazard.5 The severity of 

outages, or the number of consumers who experience outage, depend on mechanisms 

causing hardware component failures, the location of hardware failures within the spatial 

topology of the distribution network, and the timing of flows of water into and within the 

network.7 The duration of outage depends on the repair times of the failed hardware.125 
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While models of either climate impacts to water infrastructure or water reliability have 

included a selection of these processes including climate stress to hardware or demand, 

2,6,44,46,166–168 vulnerability of different types of components,46,68,72,74,169–171 relative 

vulnerability of components of the same type, 63,69,172 historical hardware failure rates, 

46,51,73,74,77,169,170,172–174,54,55,57,63,67,69,71,72 the use of flow-based networks,62,63,174,69,72–

74,76,77,170,172 changing demands, 76 and repair rates, 51,67,68,72,74,77,169,171,172,174 these 

elements are not typically incorporated into one model for anticipating service outages 

from the effects of heat, or any other hazard. The US EPA has developed a software tool 

that can be used to bring much of these pieces of information together, named WNTR, 

but the user must input component failure and repair probability information, and it has 

not yet been designed for simulating the cumulative impacts of long-term exposure.50  

Understanding hardware exposure to changing temperatures and resulting dynamic 

hardware and service losses is central to understanding the challenge of reliable water 

delivery under climate change in semi-arid regions like the Southwest. Yet, there remains 

insufficient coordinated methods or models to fully explore these challenges considering 

ultimate outcomes and the following questions remain unaddressed: (1) What are the 

cumulative impacts of heat on water components? (2) What are the resulting impacts of 

increased component failures on service losses? and (3) What are some effective 

strategies for reducing these additional outages from climate change? To answer these 

questions, we develop a methodology and model to assess water infrastructure 

performance and reliability under changing temperatures. We call this model Perses (after 

the Greek god of destruction), with the hope that the insight generated will help mitigate 

services losses into the future.  
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3.2 Methodology 

Perses is designed to simulate the reliability of water distributions systems into 

the future under long-term exposure to different possible temperature projections. 

Multiple temperature scenarios are considered including a baseline (where historical 

temperatures persist, i.e., no climate change) and futures with changing temperatures 

based on the Global Circulation Model (GCM) ensembles. A Python wrapper is used to 

stochastically fail components in each time step based on their temperature exposure and 

their individual robustness, and then implement the failed state of components in 

EPANET to track the consequential service outages, considering daily demand patterns 

and hydraulic flows. The program tracks the time of failed components and repairs 

according to given repair times. The results show a comparison of the increases in pipe 

and pump failures and how water outages increase under different temperature change 

scenarios. Two case studies are used to evaluate the effects of temperature on component 

failures and network service outages under extreme heat scenarios similar to those in the 

U.S. Southwest. The model is then used to explore adaptation strategies relating to 

probability of failure and repair times. An overview of the process is shown in Appendix 

B.1.  

3.2.1 Developing temperature profile inputs 

A set of six daily temperature profiles are used as alternative inputs to the model 

to anticipate possible futures given three types of uncertainty. There is uncertainty about 

the future emissions profile (i.e. different RCP types), the variables and interactions 

included in the climate models, and the initial conditions within the climate models.175 

Due to the uncertainty in the emissions profile, scenarios of possible daily maximum 
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temperature futures are characterized by a continuation of historical temperatures 

(baseline scenario) 121 and ensembles of daily RCP 4.5 and RCP 8.5 scenarios from the 

BCCAv2-CMIP5 projection. RCP 4.5 is used as a reasonable minimum bounding case, 

representing a modest instead of aggressive reduction in emissions by the end of the 

century. RCP 8.5 assumes a continuation of the increases in emissions. Due to the 

uncertainty in the variables, interactions, and initial conditions in the climate models of 

dynamics within each scenario, temperature profiles with minimums, averages, and 

maximum temperatures of all runs in all climate models within each RCP type were also 

used.  

The increment of temperature inputs for all profiles is daily; therefore, the same 

temperature is used for each 2-hour timestep within a day in the simulation. Maximum 

daily temperatures are chosen to represent daily temperature for both baseline and future 

projections. Downscaling and projecting hourly temperature variation within a day could 

be used to get a more realistic characterization of the magnitude of exposure values and 

failures. Using maximum daily temperatures produces a consistent overestimation of 

exposure values and failures across scenarios. It is anticipated that the more realistic 

estimation would lead to the same relative changes between baseline and future 

scenarios.  

 

3.2.2 Modeling Component Probability of Failure  

The characterization of the probability of failure of pumps and pipes is used to 

determine whether components have failed in each time step of the simulation. 

Probability distribution functions (PDFs) of failure are generated using the procedure 
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developed in Bondank et al46 by 1) providing variable inputs into temperature-

degradation-failure equations10,11,84,144,12,16,17,32–34,82,83  and 2) running Monte Carlo 

simulations holding each temperature constant.46 Possible future temperature scenarios 

and ranges of operational parameters were used as inputs to these equations. For the 

analysis of the effects of climate change, mid-level ranges of reported operational 

parameters were used. The complete list of ranges of input parameters characterizing 

operating conditions can be found in Bondank et al 2018.46 (Table 7). A separate PDF 

was generated for each daily temperature within the range of daily temperatures from the 

projections (0-57oC). To evaluate the cumulative probability of failure at each time step, 

the PDFs are converted into cumulative distribution functions (CDFs) by integrating over 

each time step as shown in Figure 6. It can take many years of degradation accumulation 

for there to be one hundred percent chance of failure, especially in iron pipes under low 

temperature exposures.    
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Figure 6 Temperature-Failure CDFs. CDFs are shaded in light orange to dark 
orange as the corresponding temperatures increase.  

Each temperature-failure CDF represents the probability of failure of a component 

overtime given that it has been exposed to one specific temperature. In reality, however, 

components are exposed to multiple temperatures over their lifetimes. Therefore, to 

determine probability of failure of components, the temporal aspect of temperature 

exposure is considered. “Exposure” represents the temperature a component is exposed 

to, weighted by the amount of time the component is exposed. To calculate exposure 

values, duration and magnitude are multiplied to get units of degree-unit time (℃ ∙ Δ𝑡 ) as 

shown in Equation 1.  

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒	[℃ ∙ Δ𝑡] = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒[℃] ∙ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛[Δ𝑡] (1) 

This formulation of exposure assumes that magnitude and duration both have linear 

relationships with exposure. If there are any interactions between duration and 

magnitude, it may be the case that duration and magnitude have a non-linear relationship 
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with exposure, however. For example, the magnitude of exposure might increase as 

duration increases due to a feedback of additional amounts of heat generated from 

component degradation overtime. Without data available to analyze the exact nature of 

the relationship of exposure and its factors, it is uncertain as to which relationship is most 

accurate. Future studies could explore the results of employing an assumption of non-

linear relationships between magnitude and duration of exposure.  

A probability distribution of failure was generated for each component to reflect 

the effects of different exposure values over its lifespan. To generate the exposure-failure 

CDFs, probabilities from the temperature-failure CDFs with different durations and 

magnitudes of temperatures but with the same exposure values, were binned together and 

combined. Probability values from temperature-failure CDFs for the full range of 

historical and projected maximum daily temperatures in the City of Phoenix from 1950-

2099 (0-57℃) were used to generate probabilities within the exposure bins. To obtain a 

probability value for exposure values that did not reflect other forms of aging 

characterized by the Weibull probability distribution, probability values within each 

exposure bin were combined through averaging. The other mechanisms of aging create a 

difference of probability of failure within the same exposure bins. For example, a PVC 

pipe with a 1,000 ℃ ∙ yr exposure value under the combination of 20oC for 50 years has a 

higher probability of failure (0.6) than the combination 50oC for 20 years (0.2). The 

output temperature and exposed CDFs are shown in  Figure 7. They represent probability 

of failure for each type of component given a certain levels of exposure.  
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 Figure 7 Exposure CDFs   

3.2.3 Modeling Component States 

In each time step, the simulation tracks the dynamic state of components relating 

to exposure, probability of failure, individual robustness, and operational state (failed or 

functional). The duration of each time step is set to the lowest increment of time taken to 

repair components, which is 2 hours for pumps. This time step ensures that pumps and 

pipes are replaced in the system when repairs are completed. The failure state of a 

component in any given time step is based on the probability of failure given its current 

exposure state at the component’s age, its level of individual robustness, and whether or 

not the repair time has passed if it had already failed in the previous time step. 

Component ages are tracked overtime by the simulation as they fail and become repaired. 

Once failed, the component will be assigned a duration for that failure, which models the 

time to repair the outage. When they are repaired, their age returns to zero. This assumes 

that repairs restore the component functionality to new.  

The components’ cumulative exposure is tracked in each time step to evaluate its 

probability of failure using the exposure CDF curves. To do this, temperature profiles are 

used to determine the temperature experienced in each time step. The temperature values 
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of the time step are multiplied by the duration of the time step to get the current exposure 

value (Equation 1). The exposure values are iteratively summed together to get a current 

overall exposure value. This follows the mathematical representation of degradation of 

components as a function of the cumulative exposure, Equation 2, that was introduced in 

Bondank et al 201846:  

𝑟+ = ` α ∙ 𝑇Ab 𝑑𝑡
Jc

JE
(2) 

Where rd is rate of degradation from exposure [lifespan/oC], Te is temperature 

experienced by the hardware [oC], and 𝛼 and ß are the linear and exponential parameters 

of degradation. 

The determination of whether a component has failed or not in a certain time step 

is then performed by comparing the probability of failure of the component population 

(i.e. all pumps or all PVC pipes) at the current exposure state to the component’s 

individual “robustness factor”, which is a random value from a uniform distribution 

ranging from 0 to 1 representing the component’s robustness or survivability compared to 

the rest of its population. Heterogeneities in components of the same type could arise 

from manufacturing defects or inconsistent treatment in operation across components. A 

uniform distribution is used because it is assumed that these heterogeneities cause 

random increases in the chance of individual component failure in each time step. The 

process of comparison of population probability of failure and individual robustness 

factors is shown in Figure 8. A component is determined to be in a failed state when its 

probability of failure is higher than its robustness factor. Robust components need more 

exposure to fail and less robust components need less exposure to fail.   
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Figure 8 Rules of Component Failure. Exposure CDF and robustness factors are 
compared to determine whether or not a component has failed in a certain time step. 

Determination for two example time steps, A and B are shown.  

 

3.2.4 Modeling Service Outages  

The component failure analysis is input into the hydraulic solver, EPANET, to 

estimate service outages in each time step. Service outages are defined in this study as 

time steps in which a demand node pressure drops within 20-40 psi (service loss outage) 

or below 20 psi (vacuum pressure outage).7 Multiple service outages can occur in one 

time step if multiple demand nodes are below pressure thresholds. EPANET is used as 

the hydraulic solver because it is authoritative and standard in that it 1) is the model of 

record for the U.S. EPA, and 2) because it is widely used by both academics and industry 

professionals. EPANET’s algorithm is “demand-driven” and therefore outages are 

represented in terms of pressure losses. An EPANET network file is uploaded into Perses 

to generate component attributes automatically.  

When components are failed, they are shut-off by changing their attributes within 

EPANET. Pipe statuses are set to “closed” to represent the response team isolating the 
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break using valves. Emitters are added to one node of the broken pipes to model water 

losses before operators are able to shut off valves to isolate the break. The magnitude of 

loss is modeled to be similar to what is experienced in fire-flow using a coefficient of 

100.7 Pumps are turned off by setting their status to “closed” as well. The change in status 

of components causes consequential pressure outages in nodes. The number of nodes that 

have outages is counted in each time step. Before counting service outages, however, 48 

hours is run in the beginning of the simulation to obtain the correct output once the 

system equilibrates. EPANET allows for demands to vary by the hour according to daily 

demand patterns. Since the demand patterns are in 1-hour increments, the hydraulic time 

steps are also in 1-hour increments. The general simulation approach is shown in SI 

Figure 2.  

 

3.3 Case Studies  

Two case studies are used to evaluate the effects of temperature on component 

failures and network service losses under extreme heat scenarios like those in the U.S. 

Southwest. A full set of network data including spatial topography of components, pump 

and demand curves, nodal elevations, tank sizes, and pipe diameters for a Southwestern 

city would be ideal for this study, but were not available. A system based on the number 

of components in the City of Phoenix, Arizona network without any topological or water 

flow information is first used for a component failure analysis. We call this the Large-

Scale System. The Large-scale System has populations of components representative of 

those in the City of Phoenix: 113 pumps and 61,500 pipes (7,000 total miles of pipe with 

600 foot segments). 176,177 Half of the pipes are modeled as iron and the other half PVC. 
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To perform an analysis of service losses, a widely available network from North Marin 

County in California is used. The network, while small relative to the City of Phoenix, 

provides an opportunity to assess the effects of rising temperatures on a realistic system, 

where service losses can be estimated. We call this network the Realistic Network and 

the layout is shown in Figure 9. The Realistic Network has been widely used for research 

purposes and is provided in the EPANET user manual.178–181 The network consists of 91 

nodes, 115 pipes (of which we estimate 17 are PVC and 98 are iron from the roughness 

factors), 3 storage tanks, 2 reservoirs, and 2 pumps and serves a suburban population of 

around 53,000 people.178 Nodal demands range from 0.87 to 1,856 gallons per minute. 

Details about the model including the pump head curves and controls are shown in 

Appendix B.3.1.  

The case studies are also characterized by the component ages and component repair 

times. The ages of pipes and pumps in Phoenix are unknown, and as such it is assumed 

that the Large-Scale and Realistic systems were built in 1950, corresponding to the start 

of significant population growth and provision of new infrastructure in the City of 

Phoenix. 182 The Perses simulation thus begins with new components in 1950 for both the 

Realistic and Large-scale network. Repair times are set at 88 hours for pipes, 5 hours for 

motors, and 4 hours for electronics, consistent with the mean-time-to-repairs reported in 

literature for US water systems.183 A sensitivity assessment is developed using varying 

repair times. The time associated with waiting for parts is not included in these mean 

repair times, but could be significant.  
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Figure 9 North Marin Water Distribution Network. Network is overlaid on a street 
and parcel map. 

For both case studies, the current and projected future temperature profiles for the 

City of Phoenix, Arizona, are used. Projections have 1/8-degree spatial resolution and 

were averaged spatially within the region bounded by latitudes 33.3125 to 33.8125 and 

longitudes -122.1875 to -111.9375 (2414 km2 that represent the City of Phoenix). There 

are 19 different climate models and 42 total runs in the RCP 4.5 emission scenario and 20 

climate models with 41 total runs in the RCP 8.5 emissions scenario. Figure 10  shows 

plots of the different temperature profiles over time. The range of the historical data (grey 

error band) represents the daily temperature extremes within the year between the 

maximum daily temperatures of the hottest and coolest days within each year. Average 

RCP projections represent the average temperature estimates from all the runs of all the 

climate models for all the days in each year. The range of the future projections (orange 

and red error bands) also represent the maximum daily temperatures of the hottest and 

coolest days of each year, but in addition they are estimated from the runs of climate 
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models which have either the hottest or coolest estimates of all of the runs of climate 

models within each RCP scenario. At the daily scale at which the temperature data are 

dynamically used in the model, there are no extremes in regards to durations of time (i.e. 

years), the only uncertainty involved is in regards to the estimates of runs of climate 

models for each day. The averages of the scenarios show a clear increase in temperatures 

into the future with RCP 4.5 average rising from roughly 30 to 32.5oC and RCP 8.5 

average to 35.5oC by end-of-century. The projections for the City of Phoenix are 

therefore cooler than the overall projections for the entire Southwest.  

 

 

Figure 10 Historical and Future Projections of Maximum Daily Temperatures in the 
City of Phoenix. The range of projection scenarios is 0.72 – 56.2oC.  

The averages of the climate models and runs of each emissions scenario (RCP 4.5 

and 8.5) seem to be more representative of climate dynamics than the extreme minimum 

and maximum climate model runs are. The extremes show much more variance of 
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variables, interactions and initial conditions from baseline projections than the averages 

do. Therefore, we anticipate the results from average projections to be realized but also 

present the results from the extremes to show the bounding cases of possibility as 

modeled in the set of GCMs.  

3.4 Results 

3.4.1 Long-term Increases in Failures in the Large-scale System 

In the Large-scale system, future PVC pipe, pump, and iron failures exceed 

estimates for the baseline case. Figure 11 shows the projections of cumulative component 

failure over time under the minimum, average, and maximum climate projection 

scenarios as compared to the baseline. By 2099, the anticipated increase in failures from 

the average temperature profiles of the RCP 4.5 and 8.5 scenarios are 5-8% more pump 

failures, 13-15% more iron pipe failures, and 5-7% more PVC pipe failures above the 

baseline scenario. The bounds of possibility from the extremes of weather pattern 

assumptions within RCP 4.5 -8.5 are at maximum a 16-18% increase in pump failures, 

18-21% increase in PVC pipe failures, and 50% increase in iron pipe failures. The 

minimum bound of possibility of RCP 4.5-8.5 is a 7-9% decrease in pump failures, 8-

10% decrease in PVC pipe failures, and a 20-23% decrease in iron pipe failures.  

Components have different responses to cumulative heat exposure. Pumps and 

PVC pipes have a similar linear profile of yearly failure rates. Iron pipes experience 

exponential failure rates because it increases the rate of corrosion and therefore the rate 

of degradation of lifespan over time and not only the instantaneous percent of 

degradation of lifespan like is the case with pumps and PVC pipes. 17 Thus the impacts of 

temperature accumulate overtime for iron pipes. A result of this difference in behavior of 
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failure is that the first iron pipe to fail after the system is built is in 1977 whereas the first 

pumps and PVC pipes fail right away, in year 1951. Though the trends of yearly failure 

are different between pumps and PVC pipes, and iron pipes, all components reach 100% 

of baseline temperatures at the same time – in the average RCPs its 99.7% through the 

simulation and in maximum RCPs its 98.9% through the simulation. After these times, 

the exceedance of baseline failures of iron pipes increases above that of pumps and PVC 

pipes.  

 

Figure 11 Cumulative Percentage of Baseline Component Failures in Large-scale 
System. 

The exceedance of baseline failures in the average RCP scenarios reveals 

potential challenges for budgeting, management, and maintenance. If emissions and 

climate model scenarios at or above the average are realized and budgets do not adjust to 

include the increased need for preventative or corrective maintenance, either additional 

service losses will be realized or a last minute reshuffling of municipal funds may occur 

that could result in lingering overall deficit.184 Because budgets are generated based on 

the past years’ expenditures and new projects, there is no formal process to include 

projections of increased failure rates.185 If utilities continue with this process of decision 
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making, they will have to see the pattern in the increased failures before they can budget 

in adaptation options. A survey of water utilities reveals that action is taken once 

extremes have been experienced.6 The timing of the occurrence of increased failures 

could be important for whether utilities sense the increased rates of failure and are able to 

incorporate the increase into their future budgets.  In the case of iron pipes, the large 

threshold of exposure needed to cause failure could cause situational surprise186 by the 

end of the century when suddenly iron pipes fail before their expected lifespans. Because 

the cumulative failure curves for pump failures and PVC pipes are linear, if monitoring 

failure rates, utilities will know soon that pumps and PVC are failing more frequently and 

may be able to incorporate it into future budgets. Some utilities in the Southwest already 

report that they experience an increase in PVC and pump failure with extreme heat and 

therefore expect further increases from climate change.6 

Historical data show that the model estimates of component failures under baseline 

temperature conditions are reasonable and thus serve as a source of validation for the 

model. The historical average failure rate of motors across a variety of industries in the 

US is on average 3-12% every year under current temperature conditions.10 The average 

annual pump failure rate from the large-scale model under baseline conditions is 1.69% 

per year, which is near the historical range.  The historical failure rates of polyethylene 

pipes, pipes with similar degradation rates to PVC pipes, in Las Vegas in 2005 was 6.5% 

over the year.6,134,157 The average failure rate of PVC pipe from the large-scale model 

under baseline conditions is 1.72%. Furthermore, current annual iron pipe break rates are 

reported to be 6% on average in the United States.141 The average failure rate of iron pipe 

from the large-scale model under baseline conditions is 0.001%. The discrepancy in 
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historical pipe break data and the modeled annual pipe failure rates shows that 

temperature related mechanisms of failure do not contribute as much to failures relative 

to other mechanisms of pipe failure—like freezing conditions, inadequate bedding 

support, or live loads caused by traffic, which are not modeled in this study. 129  

3.4.2 Long-term Increases in Failures in a Realistic Network  

In the Realistic network, future PVC pipe and pump failures exceed estimates for 

the baseline case, and the criticality of infrastructure components becomes apparent. 

Figure 12 shows the projections of cumulative component failure overtime under the 

minimum, average, and maximum climate projection scenarios as compared to the 

baseline. By 2099, there is projected to be no increase in iron pipe and pump failures but 

5% more PVC pipe failures than the baseline. The bounds of possibility from the 

extremes of weather pattern assumptions within RCP 4.5 -8.5 are at maximum a 25% 

increase in pump failures and a 15-16% increase in PVC pipe failures. The minimum 

bound of possibility of RCP 4.5-8.5 is a 25% decrease in pump failures, and a 10-13% 

decrease in PVC pipe failures.  

In the Realistic Network, there is a smaller population of components than in the 

Large-scale System and therefore, there are fewer overall component failures. Because of 

this, the times between component failures are longer and it produces step-wise instead of 

smooth cumulative failure curves. In the case of iron pipes, the reason there were no 

failures at all was because the low percentages of failure of components relative to the 

total number of iron pipes in the Large-Scale System, 0.1-0.15%, translated to only 0.1 

failure out of 98 iron pipes in the Realistic Network. Smaller utilities may not experience 

the increases in failure because they have fewer assets and therefore chances of failure. 
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Underlying trends of increases in component failure should therefore be interpreted from 

the Large-scale System. Additionally, though there are no projected increases in pump 

failures, the failures happen sooner under average and maximum projections than under 

baseline conditions. This could also be problematic because if failures happen sooner 

than expected under baseline conditions, they might not be covered in the budget in the 

years that the failures occur.  

 

Figure 12 Cumulative Percentage of Baseline Component Failures in Realistic 
Network 

Service outages (20-40 psi) that constitute inadequate pressure for domestic and 

commercial use are projected to increase by 3% above the baseline by 2099. Vacuum 

pressure service outages (below 20 psi) constituting inadequate pressure levels for fire-

flow and vacuum pressure, are projected to also increase by 3% above baseline 

projections, as shown in Figure 13. The bounds of possibility from the extremes of 

weather pattern assumptions within RCP 4.5 - 8.5 are at maximum a 26-27% increase in 

service outages and a 27% increase in vacuum pressure service outages. The minimum 

bound of possibility of RCP 4.5-8.5 is a 4-5% decrease in service losses, and a 3-4% 
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decrease in vacuum pressure service losses. Similar to preventative maintenance and 

capital improvement budgets, if repair/response budgets do not have enough room to 

allow for the increase in service outages and find themselves unable to adequately 

respond, outages could have greater durations, thereby causing greater loss to human 

health and economic opportunity. Furthermore, if budgets neglect proper corrective 

maintenance, it could further increase components’ chances of failure into the future.146 

This could cause the system to move into a state of deterioration that would be 

increasingly challenging to manage.146 Unfortunately, there are no data available on 

historical instances of water outages to validate findings at the service loss level. 

However, since we have validated component failures, the outages should be reasonable 

since they are calculated using a standardly- used hydraulic solver. 

 

Figure 13 Cumulative Percentage of Baseline Service Losses from Component 
Failures in Realistic Network 

Service outages are non-linear and emergent outcomes of the complex 

interactions between the component failures and the topology and flows within the 

network. This is evidenced by the fact that the number of service losses in the network 
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from component failures is not proportional to the number of component failures. For 

example, in year 33 of the simulation, 2 pipes failed and there were a resulting 6,511 

service losses, but in the year 50, 4 pipes failed and there were only 264 resulting service 

losses. The nonlinearity is a driver behind the aspect of components called “criticality” 

that is referenced in network science studies.187 Like other water reliability studies using 

simulation to find outages, we refer to critical components as ones that cause outages 

when failed.63,69 From evaluating where those components are located within the network 

we find results consistent with studies that rely on topology of the network --  the critical 

components are ones which serve as the sole connection between demand nodes and the 

source of water, whether it be the reservoir or from the rest of the network.58,59,61,183,188  

There are levels of criticality of components based on how many demand nodes 

the connecting component serves. Figure 14 shows the levels of criticality of components 

within the network from levels 1-5, with level one being the most critical. Criticality 

levels are characterized by the number of outages which occur when they fail. 

Components that are necessary for the initial conveyance of water out of the reservoir 

sources are most critical, especially those leading directly from reservoir 4 -- pipes 60, 

329, pump 335. When they fail, the greatest number of outages occur (>12,000 outages) 

since much of the network are reliant upon the sources. Pipes and the pump leading from 

reservoir 5 (pump 10 and pipe 101) are less critical, however. A reason for this might be 

that reservoir 5 has a lower elevation and therefore provides less pressure for the network 

than does reservoir 4. The second most critical components are pipes that serve as the 

only connections between sections of the network (Pipe 238, 240, 241, and 243). They 

cause 2,000-12,000 outages when they fail. The third-most critical are the pipes that 
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connect small portions of the network to the rest of the network (Pipes 247, 237, 249, and 

273). They cause 400-2,000 outages when they fail. Pipes that lead away from the 

network in a dendritic fashion to isolated nodes are fourth-most critical for individual 

nodes (Pipes 137, 149, 151, 180, 181, 185, 193, 233, 251, 257, 263, 277, and 291). They 

cause 1-400 outages when they fail. Components in level 5 criticality cause no outages 

when they fail. Overall, pumps are less critical than pipes. A failure of pump 10 has little 

effect (0-6 outages) and pump 335 causes 30-379 outages.. Criticality is the reason that 

the percent increases in outages from the maximum projection are greater that the 

decreases from the minimum projection. There was more opportunity for the critical 

component, pipe 329, to fail and cause many more outages.  

 

Figure 14 Criticality of Components in North Marin 

Components that are individually non-critical can become critical when they fail 

within a day or so of another component. For example, the critical pipe, 329, when failed 
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alone creates 6,427 service loss outages. When failed on the same day as a pipe that does 

not cause any failures by itself, pipe 261, there are 6,429 service loss outages. Another 

example is that when the minimally critical pipe, 137, fails by itself it produces 92 

service loss outages, but when failed within 6 days of an individually non-critical pipe, 

131, there are 96 service losses.  

 

3.5 Evaluating mitigation potential of adaptation strategies 

Contextual variables in the simulation that are temperature-independent represent 

opportunities for exploring how well adaptation strategies could mitigate failures from 

climate change. The two contextual variables which failures and outages are sensitive to 

are the operational parameters used to generate the temperature-failure CDFs, and the 

repair times of components. Ranges of operational parameters that produce relatively low 

probabilities of failure represent the implementation of improved preventative 

maintenance strategies. An example of a preventative maintenance strategy in this 

context is changing the range of internal heating in motors within pumping units. When 

the internal heating from friction of the bearings is kept at 100-105oC via good bearing 

lubrication practice, the motor has a lower probability of failure than if the internal 

heating is kept at 105-110oC via poor lubricating practice.11 

To evaluate how well preventative maintenance and fast repair times could mitigate 

outages, we compare the percent of additional outages from climate change that were 

offset from implementing three independent possible adaptation strategies: (1) improved 

preventative maintenance at 50% above mid-levels, (2) improved repair times at 50% 

above mid-levels (i.e., 88 and 8 hours respectively), and (3) both improved preventative 
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maintenance and repair times 50% above mid-levels. We then explore why those offsets 

occurred and form recommendations from the findings. We explore how strategies would 

offset failures if either the average or maximum projections within each RCP were 

realized. The minimum projections are not included because they produce fewer failures 

than baseline scenarios and therefore would require no offsets from strategies. The 

strategies are compared based on the number of times they offset the additional failures 

from climate change, which we refer to as “factor of offsets”. Figure 15 shows the 

different resulting offsets provided by each strategy under the different temperature 

scenarios.  

 

Figure 15 Offsets of Additional Failures from RCP 4.5 Average Temperature 
Projections 

An exploration of the mitigation potential of adaptation strategies shows that (1) 

strategies are capable of offsetting 100% of the additional failures from climate change, 

(2) improvements in repair times offset the most outages, and (3) strategies have different 
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effects under different climate futures. Improved preventative maintenance offsets 

outages by decreasing component failures. For pumps, improved preventative 

maintenance will provide a 3-5 factor offset under average temperature conditions and a 

1.5 factor offset under maximum temperature conditions.  For iron pipes, improved 

preventative maintenance will provide a 5-6 factor offset under average temperature 

conditions and a 2 factor offset under maximum temperature projections. Offsets of PVC 

failures never reach a factor of 1 in any temperature scenario. Improved preventative 

maintenance will provide a 23% offset of additional PVC failures under average 

temperature conditions and 7% at maximum temperature conditions. These component 

failure offsets translate to a 1.4 factor offset of service outages. Improved repair times 

offset service outages directly without offsetting component failures. Implementing 

improved repair times has a 3.4-3.8 factor offset of all service outages under average 

conditions. Improving repair times is therefore about three times as effective for reducing 

the duration of outages than is improving preventative maintenance. Improved 

preventative maintenance paired with improved repair times produce an even greater 

offset at a factor of 4-4.5 times. An additional insight is that the comparison of offsets 

across average and maximum projections reveals that both repair and preventative 

strategies are less effective in hotter futures, especially for improved repair time 

strategies. This is because there are more failures to offset at higher temperature 

projections, and the strategies only provide a constant decrease in failures. Therefore, 

utilities should expect different levels of offsets from strategies depending on which 

temperatures are realized out to the end of the century.  
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3.6 Discussion 

The Perses model shows the capability of a dynamic extended period simulation to 

aid decision making about climate adaptation by estimating the impacts to consumers. 

The use of Perses for projecting failures from increasing temperatures in water 

distribution systems shows that utilities in the Southwestern region of the U.S. that 

experience high temperatures will likely experience increases in component and 

consequential service level outages to consumers. If allowance is not provided in budgets 

for the increased need for repair, replacement, and response required from increased 

failures, and for maintaining the quality of repairs, outages to consumers could be more 

frequent and could extend even to longer periods. 

The knowledge Perses generates could be especially useful for resilient decision-

making regarding assessing consequences and management strategies since the American 

Water Infrastructure Act passed in October 2018 requires US utilities to conduct 

resilience assessments to natural hazards.43 As utilities in warm regions of the US 

conduct their assessments, they could use the Perses results especially for improving the 

“Consequence Analysis” and the “Risk and Resilience Management” steps in their 

assessments as suggested by the Risk Analysis and Management for Critical Asset 

Protection (RAMCAP) Standard for Risk and Resilience Management of Water and 

Wastewater Systems which serves as guidance for compliance with the new law.5 The 

RAMCAP standard calls for an estimation of the duration and severity of service outage 

that could result from a hazard. This is then used to define resilience as a function of the 

duration and severity of consequence instead of just the estimation of ultimate 

consequence. They ask that utilities “do not assume that all uncontrollable variables and 
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unpredictable events occur simultaneously”.5 Therefore, a more detailed knowledge of 

time and space is needed to estimate this aspect. Additionally, the evaluation of the 

results under different maintenance scenarios using Perses also helps with “assessing the 

options by analyzing the facility or asset under the assumption that the option has been 

implemented—” by “re-estimat[ing] the risk and resilience levels and calculating the 

estimated benefits of the option.” Utilities could improve the context considered by 

inputting utility specific information like the number and topology of components and 

demand profiles.  

There are aspects of resilience dependent upon an understanding of social 

capacity, transformative designs, and system decompensation that are not yet considered. 

Perses does not yet quantify the impacts to the communities from experiencing service 

losses. The low pressures that constitute outages could be translated to loss of demand (in 

gallons per minute) and the consequence of different consumers losing this amount of 

water could be estimated according to their critical need. Including this in future versions 

of Perses could help utility managers better prioritize where they will invest in adaptation 

options for specific locations in their networks so that their most vulnerable populations 

remained served under increasing hardware stress.52 Additionally, system 

decompensation, representing the diminished “capacity to deploy and mobilize responses 

as disturbances grow and cascade” from neglected budgets, 189 could be incorporated into 

Perses by having components repaired to lower levels in response to constrained budgets.  

The applicability of Perses to water systems decision-making is specific to certain 

spatial and temporal contexts. Perses is applicable to a certain type of climate in warm 

regions that does not experience freezing temperatures (e.g. the US Sun Belt, Middle 
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East, North Africa, and South Asia). In cold regions, the effects of temperature include 

additional dynamics regarding changing freeze-and-thaw cycles which have a large 

impact on pipe breaks. 22 Additionally, Perses is most applicable to structure of water 

infrastructure that is currently prevalent in developed countries today. Future designs of 

water systems that for example incorporate decentralization, direct reuse treatment, and 

more robust materials, could transform the nature of the relationship of the hazard to the 

system, thereby changing the form Perses would take to aid decision-making. Perses 

could model the impact of temperature on some of the hardware components of more 

decentralized systems, e.g., pumps and pipes in rainwater treatment systems, but would 

need to consider more internal dynamics of how a hardware failure causes systemic 

failure of the rainwater treatment system. Additionally, if systems that connect 

wastewater treatment to water treatment and water distribution become more common, 

Perses could account for the increased number of connections in the network that could 

cause more widespread cascades of failure and therefore more service losses. 

Additionally, building robustness into the material design of the hardware could be 

included in the model, decreasing the initial impact of temperature exposure. Improving 

the robustness of materials used for motors, electronics, and pipes would reduce the rate 

of temperature-related degradation and the need for any action to counter act the 

temperature rise.  

The analysis of adaptation strategies to temperature effects does not consider costs or 

all of the stressors need to make complete practical recommendations for utilities. 

Including cost in the comparisons of adaptation strategies may produce different 

recommendations of strategies. The functional unit in this analysis is one independent 
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adaptation strategy. If costs of improvements of strategies were quantified, the functional 

unit could be the benefit from strategies provided by an investment dollar amount. The 

repair times which cost as much as preventative maintenance may offset fewer failures 

than the preventative maintenance strategy because they are relatively expensive.127 For 

example, for pipes, it may take a lot more money to reduce repair times to consistently 44 

hours for all failed components than it would be to invest in reducing corrosion. 

Additionally, the analysis of these strategies does not include other mechanisms of 

degradation which contribute to our infrastructure aging crisis. 127 There is evidence that 

in the case where many of the pipes are at the end of their useful life at once, strategies 

like rehabilitation or scheduled replacement are much less costly than relying on 

repair.127 

Ultimately, Perses shows the potential for simulation methods to aid water 

infrastructure decision-making by providing the basis to consider dynamic parameters 

and spatially-explicit aspects of the system. Climate impacts to other infrastructure 

systems that depend upon network connections and operations of the flow of materials 

could be modeled in a similar fashion considering the specific mathematical formulations 

of degradation from the hazard, component operations, and the connections between 

components. We ultimately hope that using spatial and temporally explicit information 

becomes a more common practice for anticipating and preparing for changing conditions 

which underlie successful provision of vital infrastructure services.  
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CHAPTER 4 

UNDERSTANDING AND MANAGING INTERDEPENDENT POWER AND WATER 

SYSTEMS 

4.1 Introduction 

Interdependencies between infrastructure systems present management challenges for 

utilities in maintaining reliable service. Though infrastructure systems are managed 

separately, they share common space and can require inputs from one another to 

operate.92 Thus, the vulnerability of failure of one infrastructure system can propagate to 

other connected infrastructure systems. One historical example of an occurrence of 

vulnerability propagation is Baltimore’s Howard Street tunnel event where the fire from a 

derailed freight train caused traffic congestion, fiber optic cable damage and a 

telecommunication outage, along with a water main break. The water main break then 

caused flooding of transformers that resulted in power outages to 1,200 people in 

downtown Baltimore.93 The vulnerability of infrastructure systems given their 

interdependencies is only predicted to become more of a challenge as the connectivity 

with information and communications infrastructure increases 109,117,119 and as climate 

change increases the reliance on services of other infrastructure systems. 47,99,116 The 

ability to manage interdependencies is becoming a more complex task.190 

Though appropriate in the past, literature suggests that separate management of 

infrastructure systems may limit the capacity to prepare systems for disturbances. The 

“dichotomy of responsibility” was developed due to “the global push toward safety, 

accountability, and higher efficiency”.191  “The mechanistic approach has been shown to 

be…effective in environments that require routine operation and little change. In these 
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environments high-level management possesses the appropriate amount of knowledge to 

make decisions and organize work”.119 This type of structure was desirable in the 20th 

century “since it was the first time they reached such as large scale and level of 

complexity”.191 However, “This separation of responsibility inhibit[s] communication 

and coordination between departments”, and leads to “solutions that are oriented around a 

short-term, stable system perspective”.191 Under these conditions, “in some instances, 

incremental adaptation can actually lead to the degradation of a safety-control structure 

over time due to asynchronous evolution, where one careful change is made, but fails to 

relate with changes in connected parts.190 In such cases, flawed expectations about the 

behavior of the change may lead to undesired consequences”.128,192 

There is evidence that infrastructure utilities are limited by lack of communication. 

The use of incomplete information about the state of other utilities’ infrastructure and 

their plans for improvement produces sub-optimal vulnerability mitigation strategies. For 

example, after the 2003 Northeast blackout, the water utilities which had outages of their 

power supply expressed the desire to communicate with power utilities to “learn about 

isolating failures and creating redundancy”.114 Unfortunately, power utilities did not want 

to share information because of the competitive nature of the information. One water 

utility ultimately resorted to hiring an outside consultant in order to assess the reliability 

of their infrastructure because of the challenge of information sharing from the power 

utility.114 Additionally, a lack of communication breeds false expectations between 

utilities. A study on decision-making within interdependent infrastructure systems shows 

that utilities try to anticipate what other utilities are doing to try to benefit from their 

decisions and reduce their own costs, especially regarding adaptation strategies that affect 
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all of the utilities in the geographic region.193 However, because they do not 

communicate, (1) the utilities incorrectly anticipate benefits, and (2) the acting utilities do 

not factor the perceived benefits to the other utilities into their decision making.193  

 The incomplete information about other infrastructure systems leave the 

following questions unanswered for utilities:  Where are the locations in the network that 

are vulnerable to propagation of failure from interdependencies? How much 

vulnerability do interdependencies cause? Considering the lack of direct information, 

modeling the causes of the propagation of failure between utilities can help answer these 

questions. Utilities can gain insights about possible failure events from past failures of 

different utilities, but this information is also insufficient because utilities cannot expect 

the same exact impacts to occur due to their different contexts. For example, the water 

utilities affected by the 2003 Northeast Blackout were all affected differently due to their 

differing network configurations.194  Therefore, to anticipate pathways of failure 

propagation and vulnerability impacts for specific utilities, a predictive or exploratory 

model of interdependencies, contextual information about the utility, and the 

consequential outcomes would help utilities explore impacts for their specific systems. 

There are not enough case study data available to generate a statistical predictive model, 

so a model exploring the effects of the underlying dynamics would be useful. Current 

models of interdependencies are insufficient to answer questions about propagation and 

vulnerabilities, however. Reliability and climate change impact assessments include 

quantitative information about interdependencies to better understand the strength of 

connections.47,78,98–107,79,108–113,80,88,93–97 These studies focus on long-term use of resources 

and topographic connections, which do not provide information to determine 
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vulnerability from failure. Current failure propagation interdependency studies typically 

only use graph topologies without flow information.96,103,110 Studies suggesting new 

model frameworks confirm that interdependency models should include more 

information. They recommend considering structure, flow characteristics 106, system 

operation 109,117, and temporal aspects 97. This additional information would facilitate 

anticipating where, how, and under what operational circumstances the interdependencies 

could manifest given their spatial and operational context, and therefore how widespread 

resulting outages could be.  

In addition to improving communication across utilities, literature suggests 

developing coordination between infrastructure managers, arguing that it could lead to 

more effective vulnerability mitigation. Derrible argues that “A more coordinated and 

better planned integration is highly desirable” because integrated systems can consider 

more of society’s needs (health, equity, overall efficiency) (Derrible, 2017). Chester & 

Allenby (2018) citing Larence and Lorsch (1967) argue “Organic [organizational] 

structures allow for more internal specialization to respond to changing environments, 

thereby increasing responsiveness”118 because “distributing the knowledge and decision-

making at the bottom of the hierarchy becomes more effective when  the environment [in 

which infrastructure operate] becomes unstable and high-level management cannot 

acquire all of the knowledge associated with the changing environment (Sherehiy et al., 

2007)”.119,120 This generates the question for utilities, do coordinated institutional 

strategies between utilities have the potential to reduce vulnerability better than other 

institutional strategies? Models which identify the pathways of failure propagation can 
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serve as a baseline to explore different institutional strategy inputs to see how well they 

can mitigate failures.   

 

4.2 Case Study Approach 

Since sufficient modeling frameworks are not yet available, we present a modeling 

framework which uses real-time simulation of coupled network models and a case study 

of a specific coupled network to answer the questions: How can utilities model 

propagation of failure from interdependencies and anticipate vulnerability? and How can 

they use these models to explore effects of institutional strategies? This modeling 

framework could then be used to answer the questions posed in the introduction for other 

specific coupled networks. The case study includes (1) a description of the pathways of 

failure propagation and outages, which characterize vulnerability, that result from an 

initial hardware failure and an example set of dependencies in the coupled networks, and 

(2) a comparison of the avoided outages from implementation of institutional strategies 

within and across the infrastructure systems. We use flow-based infrastructure networks 

that incorporate temporal and spatial information and are connected to each other through 

operational resource needs and geographic location. The individual connections are 

unidirectional dependencies which together form interdependencies between the 

networks since “the state of each infrastructure influences or is correlated to the state of 

the other”.92 We hope that this case study will provide motivation for utilities and 

researchers to further explore resulting failure propagations and outages and coordinated 

institutional strategies for different coupled networks with different configurations and 

dependencies. 
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We use a case study of the interdependencies between water and power distribution 

networks because they are critical lifeline infrastructure systems, there are a variety of 

types of interdependencies between them, their interdependencies are expected to grow 

stronger in the future, and their interdependencies are largely unexplored at the 

operational level. The disruption of water or power systems poses a significant threat to 

human health and economic activity. For example, in the 2003 Northeast blackout, 50 

million people were without power for around 4 days195 and parts of Detroit and 

Cleveland experienced temporary water outages that resulted in boil water advisories and 

in one case, the National Guard was called in to distribute water to the elderly and the 

frail.196 The blackout was also estimated to have caused $6.4 billion dollars of economic 

loss due to productivity impacts, costs to governments and utilities, and lost or spoiled 

commodities.197  In this example, the failure was due to the physical interdependency 

between water pumps and electricity. There are other physical and geographic 

interdependencies between the water and power systems according to Rinaldi et al.’s 

classifications.198 The physical interdependencies between the systems are through water 

pumps, valves, and SCADA’s need for power,7,114 and in the drop in power generator 

capacity from lack of treated water for cooling.116 Geographic interdependencies include 

possible transformer flooding from pipe break 115 and the transient overvoltage effect of a 

unexpected failure of a large water pump.199 Future conditions such as climate change, 

population growth, and increasing complexity threaten to make these connections 

stronger, therefore increasing the vulnerability of propagation. For example both power 

and water hardware are expected to fail more frequently from increased heat exposure, 
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46,47 and increased residential and generator demand from heat and increase in population 

served for the same amount of infrastructure is expected to further stress the systems.114  

Existing efforts at identifying water-power interdependencies reveal what the 

physical interdependencies are that could potentially cause a cascade of failures under the 

right circumstances. They are beneficial for showing how much the production of one 

resource requires of the other resource and vice versa.78,79,98–100,200–202 Studies with 

projections into the future include actionable suggestions about conservation measures to 

sustainably decrease demands 78 or predictions of how much new infrastructure might be 

built to accommodate coupled rising demands.79 Optimization models even help utilities 

decide how much output to produce to sustain interdependent systems. 200,201 Water-

power interdependency studies that address how failure events could cascade into the 

other infrastructure systems consider temporal flows of water and power within spatially 

contextual networks, but focus on contingency scenarios of component failure and only 

include physical interdependencies.113,203 

 

4.3 Case Study Description 

We build and simulate a realistic coupled water-power network using the 

hydraulic solver, EPANET, the power flow simulator, OpenDSS, and a coupled network 

solver we helped develop called the Resilient Infrastructure Simulation Environment 

(RISE). To identify the pathways of failure propagation, we establish dependency 

connections between components within the networks and a set of rules that cause 

propagation of failure through the dependency during the simulation (e.g. if real power at 

a load is zero, then connected water pumps fail). We then simulate the coupled network 
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over a short period of time until all resulting failures have occurred under the single-

hardware scenario (a few minutes) and see which dependencies had failures propagate 

through them given the initial failure. To estimate how much of a threat 

interdependencies can pose to reliable service, we count the resulting outages at demand 

nodes. For water systems, an outage is considered to occur when the pressure at the node 

goes below 40 psi.7 For power systems, an outage is considered to occur when real power 

drops to zero. We calculate the percentage of the demand nodes that have outages within 

the interdependent network and compare to the percentage of demand nodes that have 

outages within the uncoupled independent networks from the same initial hardware 

failure. To answer whether coordinated institutional strategies between utilities have the 

potential to reduce vulnerability better than other institutional strategies, we compare the 

number of avoided outages from the implementation of individual institutional strategies.  

4.3.1 Network Configuration 

Example power and water networks are modeled separately and then connected 

through their dependencies. The example electric power network is modeled using the 

IEEE 14-bus system for a single distributed generation network.204 The 14-bus system 

operates at 12 and 120 line-to-line kV and consists of 2 generating units, 9 loads, 9 

distribution line branches, 4 transformers, and 2 capacitors. The input data are shown in 

the respective data sheets.204 OpenDSS models assume a constant power model  wye-

grounded connection, minimum per-unit (PU) voltage of 0.9, and maximum PU voltage 

of 1.1 for the generating units and loads according to NERC example voltage deviation 

standards.205 
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There is no existing water network that is complementary to the IEEE 14-bus 

system so we generated one using the power loads and network layout. A water distribution 

network was generated based on the text network provided in the EPANET manual that 

spatially (i.e., location) and functionally (i.e., rated capacity) complements the IEEE 14-

bus electric power system.206 The water network contains one source of water modeled as 

a reservoir in EPANET, 2 tanks throughout the network that store and cycle water, 2 

pumps, and 14 junctions or nodes with water demands. Appendix B includes all input data 

for the water network. 

The base average annual water demand of the junctions was modeled by calculating 

the population served by the power load and then calculating what the water demand would 

be for that same population. We calculated the number of power customers at each node 

by converting the peak single-phase power of load into three-phase power and dividing by 

the per customer electric load value of 5.8 kW per customer.207 Electric power customer 

demand at each node was used to estimate the water demand at each node. It was assumed 

that each electric customer is a domestic unit, and that a domestic unit in Phoenix consists 

of 2.85 people.208 The number of people at each junction was then multiplied by the per 

capita water demand value of 0.792 gallons per minute.209  

4.3.2 Network Solvers 

Water and power flows between the sources of the resources and the nodes that 

require resources (demand nodes) were calculated using topological and temporal 

information about rate of supply. The software program, EPANET was used to solve the 

hydraulics of the water distribution network 206. EPANET calculates pressures at demand 

nodes given rates of inputs from reservoirs and tanks, considering elevation, and the 
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increases in pressure provided by pumping units. OpenDSS was used to solve the power 

flow of the power distribution system 210. OpenDSS “captures both the time- and 

location-dependent value of distributed generation by modeling distributed generation in 

its actual location on the circuit and by having extraordinary loadshape modeling 

capability to support sequential time simulations” 210. To connect the networks through 

their dependencies in real time, we use RISE 211. RISE allows users to (1) generate water 

and power networks and place them on the same map, (2) place different types of 

dependency connections between individual components across the networks, (3) change 

operational settings of components to explore causing failure or bringing service back 

after failure, and (4) run a solver that considers dependency connections for a chosen 

time step. When a hardware component fails and is connected to a component in the other 

network, the logic from the interdependency connection will cause that component to 

also fail (geographic interdependency). When a demand node loses service and is 

connected to a component in another system, the logic from the interdependency 

connection will cause the component to lose capacity to operate relative to the amount of 

flow lost (physical interdependency). Therefore, although the possible dependency 

connections are input into the model from case studies, the real time occurrence of failure 

propagation and the resulting outages are emergent from the initiating failure, the 

network topology, and flows overtime. 

 

4.3.3 Dependencies  

The dependencies modeled in the case study are those connecting water pumps 

and power loads. One dependency is the physical connection from power loads to water 
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pumps due to the water pumps’ need for power. The other dependency is the geographic 

connection from water pumps to power loads from the possible transient overvoltage 

effect of an unexpected failure of a large water pump. Together these dependencies form 

a case study of the interdependencies between the networks.  

4.3.4 Coupled Network 

An overview of the coupled network modeled in RISE is shown in Figure 16. The 

water network is displayed in blue, the power network is displayed in orange, and the 

interdependency connections are displayed in green. The networks were overlaid onto an 

example map showing that power lines and water pipes roughly follow the street 

network. The data of the networks has no direct tie to the geographic location of the map.  

 

 

Figure 16 Water and Power Coupled Network Case Study in RISE 
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4.4 Emergent Failure Propagation Pathways and Resulting Vulnerability  

The emergent propagation of failure through dependencies and the resulting 

vulnerability from interdependencies for the case study coupled network is illustrated 

with an initiating single-hardware failure. The consequential emergent failure events are 

described in detail below. The failure events in the case study are categorized using 

terminology from Rinaldi et al 200192 and the distinction between direct and indirect 

from Markolf et al 2019212 to demonstrate examples of the theoretical types of failures. In 

Rinaldi et al 2001 “orders” represent the number of times failures have propagated across 

systems, “cascading” failures specifically refer to outages that occur in one system 

because of a propagated failure from the other system, and “escalating” failures are ones 

that happened without interdependencies but were exacerbated by interdependencies.92 In 

Markolf et al 2019, direct physical failures are those which are characterized as “impact 

to physical infrastructure” while indirect physical failures are characterized as “disruption 

resulting from other interconnected or co-located infrastructure”.212 It should be noted 

that in different configurations of coupled networks with different types of dependencies 

at different locations and under different initial failure conditions, different failure events 

and vulnerabilities from interdependencies would emerge. 

To initiate the events, a pump in the water system (Pump 2) is failed (set to closed 

in the EPANET model). Example stressors that cause pumps to fail are age, heat stress, or 

flooding.6 The lack of pressure produced by the failed  pump then causes a decrease in 

pressure within the network, and consequentially water junction 18 drops below the 

reliability threshold of 40 psi. Junction 18 has a high elevation relative to other junctions 

and needs Pump 2 to be operational in order to receive adequate pressure. A close up 
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view of the connection between Pump 2 and Load 675 and the graphical representation of 

the water junction 18 service outage is shown in Figure 17. The dotted lines represent the 

pressure thresholds of safe operation. The area below the 40-psi threshold in the graph is 

shown in red. Red arrows point to the time step of interest for each failure event.  

 

Figure 17 Direct Physical Failure and Service Outage Outcomes. The pressure at 
Junction 18 drops to below the 40-psi threshold. Junctions 16 and 17 have the same 

pressure. 

Since Pump 2 and power Load 675 are connected and pump 2 has a large power 

load of 225 kW, the sudden failure of the pump causes a transient spike (downward) in 

the power network at Load 675 because power is no longer being used for the operation. 

This effect characterizes a first-order cascading effect from the interdependency with the 

water network. Figure 18 shows the location and effects of the drop in Load 675. 

 

Figure 18 First Order Indirect Physical Failure. Pump 2 failure causes Load 675 to 
drop. 
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The transient spike at Load 675 causes an imbalance of voltage in the power grid 

assuming that the synchronous generator’s output is not adjusted in time. The spike in 

voltage causes lines 1 and 2 to exceed their continuous ampacity of 250 amperes. The 

assumption is made that when lines exceed continuous ampacity the lines trip. Figure 19 

shows the locations of the tripped lines within the network and shows the graph of the 

current magnitudes with a highlight of when the current exceeded the continuous 

ampacity.  

 

 

Figure 19: Secondary and Tertiary Indirect Physical Failures. Currents rise in power 
lines and cause trips in lines 1 and 2. 

 

The tripping of the aforementioned power lines then causes a blackout where 

Open DSS calculates that all power loads drop to zero. Figure 20 shows a graph of the 

real power of three example loads from the network dropping to zero after the lines trip.  
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Figure 20 Cascading Service Outage Outcome. All power loads drop to zero. 

The drops in Load 646 and 611 trigger a second order cascading failure, this time 

from the power network to the water network. It is assumed that Pumps 1 and 3 require 

power from the grid to operate. Therefore, when Loads 646 and 611 drop to zero, Pumps 

1 and 3 fail from lack of power. Figure 21 shows a close up of the connections between 

the loads and the pumps.  

 

 

Figure 21 Second Order Indirect Physical Failures. Pump 1 and pump 3 fail from loss 
of power at loads 646 and 611 respectively. 
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The second order cascading failure causes further service outage outcomes for the 

water network. The outages of Pumps 1 and 3 further decrease the pressures in the water 

network and EPANET calculates that the pressures at water junctions 16 and 17 drop 

below the reliability threshold of 40 psi. The pump failures also cause an escalating 

failure of junction 18 which drops even farther below the reliability threshold.  Figure 22 

shows a graph of the drop in pressure of junctions 16, 17, and 18.  

 

 

 

Figure 22 Cascading Service Outage Outcome. Water outages at junctions 16, 17, and 
3 and escalating failure from interdependency causes an increased outage at Junction 18. 

 

To evaluate the vulnerability interdependencies cause in terms of how many 

outages occur from the failure propagation, the number of outages that occurred in 

independent networks and the interdependent networks are compared. Figure 8 shows a 

comparison of the failure events and outages that are anticipated. Without considering 

interdependencies in this scenario, water utilities would assume that only one water 
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demand node is vulnerable from a failure of Pump 2. From considering the cascading 

effects through the power system and back to the water system, they would know that 

three more demand nodes are vulnerable to failure and the node that initially failed, fails 

to an even larger degree due to the interdependencies. This translates to water outages of 

an additional 22% of demand nodes. Without exploring the interdependencies, all power 

outages are unanticipated (100% of all demand nodes). Figure 23 also shows the 

categories of failures based off Rinaldi et al 2001 and Markolf et al 2019 

terminology.92,212 

 

Figure 23 Comparison of Sequence of Events and Outages within Interdependent 
and Independent Networks 

 

4.5 Potential of Coordinated Strategies Between Utilities 

At each stage of propagation of failure, there are institutional strategies (including 

planning and operational) which could be implemented to either prevent hardware failure 

or prevent the cascade of failure. The RISE simulation of the single-hardware scenario 
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assumed no institutional actions were taken and therefore modeled a worst-case scenario 

cascade. Example actions which could prevent failures in the single-hardware scenario 

are listed below and categorized according to those which prevent hardware failure and 

which prevent cascades.  

(1) Water utilities preventing hardware failure through either: 

a. Improved preventative maintenance (e.g. improved bearing lubrication 

and motor cooling10)  

b. Rehabilitation (e.g. scheduled replacement of pumps125) 

c. Robustness (e.g. improving pump insulation capacity10) 

(2) Water utilities preventing cascade of failure through either: 

a. Redundancy (e.g. water utilities installing redundant pumps125) 

b. Operational response (e.g. increasing the levels of the water tanks to 

provide pressure7) Either handbook or EPANET manual.  

c. Repair response (e.g.  repair Pump 2 in time to prevent load imbalance and 

junction outages125)  

(3) Power utilities preventing cascade of failure through: 

a. Operational response (e.g. using a congestion management 

procedure213,214) 

Figure 24 shows when in the progression of failure these institutional strategies could 

help prevent failure.  
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Figure 24 Institutional Failures Causing Physical Failures in Single-hardware 
Failure Scenario 

We compare reductions of outages of each strategy to identify which have the 

most failure mitigation potential. The effect of the implementation of strategies estimated 

through the use of the fault progression generated by the single-hardware simulation in 

RISE. We assume that wherever a strategy would be implemented within the progression, 

it would prevent the next failure from happening and therefore all of the resulting 

cascades of that failure as well. We compare individual strategies independently, but in 

future studies multiple combined strategies could be considered. Figure 25 shows the 

percent of water, power, and total number of outages avoided under different institutional 

strategies as compared to the number of outages which occurred in the single-hardware 

scenario where no strategies were applied. The strategies which water utilities could use 
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to prevent cascades of failures were further separated into groups of strategies which 

produced the same outcomes (i.e. redundancy and operational response, and fast 

hardware repair). In contrast, power utilities only have one type of strategy that could 

prevent cascades, in this case -- operational response.   

  

Figure 25 Percent of Outages Avoided from Institutional Strategies in Single-
hardware Failure Scenario. (-W) signals that the strategy would be implemented by the 
water utility and (-P) signals that the strategy would be implemented by the power utility.  

The outcomes of institutional strategies in this example coupled network show 

that when comparing institutional strategies, coordination between utilities has the 

potential to produce strategies that are most effective at reducing overall vulnerability 

from outages. The strategy which avoids the largest percentage of outages for both water 

and power utilities in this case study is preventing Pump 2 failure via preventative 

maintenance, rehabilitation, and/or robustness in the water system. This strategy was the 

only one to mitigate all power, water, and total outages. Power utility operational 

response would avoid the same amount of power outages, however, it is not as effective 

of a strategy for water utilities and the overall consumer base. Thus, when planning to 

prevent this pathway of failure propagation, if both power and water utilities channeled 
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resources toward preventing pump 2 hardware failure, this could be a more effective 

strategy than both utilities using resources on separate strategies for each system. When 

using this modeling framework to aid decision making, multiple initiating failure events 

should be explored to identify a variety of pathways of failure propagation and the 

different institutional strategies that best prevent outages from them.  

It seems obvious that the prevention of the initiating failure would be the most 

effective strategy, but in a coupled network with different characteristics, other strategies 

maybe just as effective. The best strategy was a result of the characteristics of the pump 

that failed and its location within the coupled network. The size of the pump dictated the 

amount of power it demanded and therefore the amount of power load drop, and the 

water outages that occurred from the pump failure were an emergent outcome of the 

criticality of the pump within the network and the water flow calculations. If pump 2 did 

not have a load large enough to cause power imbalance, no cascades of failure would 

have happened. If pump 2 was in a less critical position in the network, Junction 18 may 

not have failed. If this was the case, the operational response from the power utilities 

would have the same percent of water outage reduction as preventing the hardware 

failure does.  

 

4.6 Discussion and Future Research 

This case study shows a framework for modeling how failures can propagate 

across infrastructure systems in real time, which improves the knowledge we have about 

how interdependencies can cause additional vulnerability for utilities. Instead of only 

considering the resource flows between networks or the number of connection points, 
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adding information about whether interdependencies cause failures given the resource 

flows within the network configurations, the operational settings of the components, and 

the operational management strategies, allows for anticipation of outages due to 

interdependencies. Anticipating outages from example propagations of failure in turn 

allows for the evaluation of outcomes from different institutional strategies both within 

and across systems. The result of the evaluation of strategies of this case study shows that 

there is potential for infrastructure systems managers to minimize impacts of 

interdependencies across systems by coordinating with other utilizes. We hope utilities 

use this finding as motivation to explore the possible benefits of coordinated strategies 

across utilities in their systems considering their specific network configurations and 

dependencies. 

There are multiple avenues of future work that could enhance the modeling 

framework’s capacity to aid decision making. We suggest exploring the impacts of 

simulating multiple networks, dependencies, and initial failures to gain general insights 

on how propagation of failures occur and how strategies reduce outages. We also suggest 

improving the characterization of institutional strategies, projecting impacts and benefits 

over longer periods of time, and modeling the response of coupled systems under future 

hazards. Institutional strategies could be better characterized in terms of types, levels, and 

cost. There are more types of planning and operational actions available to utilities 

besides preventative maintenance, corrective repair, and real time operational response. 

For example, utilities could redesign the structure of the networks or preventatively 

replace components. A model that includes all possible institutional actions would help 

utilities compare and prioritize actions for practical decision making. This would require 
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consulting utility managers to learn all of the actions available and developing ways to 

model those actions. Additionally, in reality, strategies provide levels of failure 

mitigation potential according to how many resources are invested in them. To model the 

avoided outages from different levels of strategies, aspects of the system should be 

dependent on quantities of strategies. For example, levels of preventative maintenance 

could be characterized by quantitative parameters in the probability distributions of 

hardware failure, and repair strategies could be characterized by the time it takes to repair 

like was done in the study about water distribution failure in Chapter 3 of this 

dissertation. Utilities could then also compare implementing levels of different strategies 

simultaneously, which more closely resembles reality than choosing only individual 

strategies to explore. Exploring levels of strategies according to the allocation of 

resources would shed light on the cost-effectiveness of strategies, which is a more 

realistic decision-making metric than failure mitigation effectiveness. Another 

improvement would be to simulate the cumulative impacts of strategies overtime. This 

would help explore whether choosing strategies for short term objectives provides a 

disadvantage for long-term goals. Additionally, if hardware failures were modeled 

probabilistically and their probability distributions were dependent on future hazards as 

well as institutional strategies, like was the case in the study about just water systems in 

Chapter 3, the future vulnerabilities from interdependencies and benefits from strategies 

could be assessed.  
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CHAPTER 5 

SYNTHESIS 

5.1 Summary 

This dissertation advances the capability of water infrastructure utilities to 

anticipate and adapt to vulnerabilities in their systems from temperature increases and 

interdependencies with other infrastructure systems. Impact assessment models of 

increased heat and interdependencies were developed which incorporate probability, 

spatial, temporal, and operational information. Key findings from the work are that with 

increased heat the increased probability of water quality non-compliances is the greatest 

amongst a selection of water quality indicators and component failures (chapter 2), the 

anticipated increases in probability of hardware failures components is the greatest for 

iron pipes, then pumps, and then PVC pipes (chapter 3), the effects of temperature 

increase on hardware components and on service losses are non-linear due to spatial 

criticality of components (chapter 3), and vulnerabilities from interdependencies are 

dependent on spatial and operational complexity (chapter 4). Exploring different 

parameters of the models allowed for comparison of institutional strategies.  Key findings 

are that either preventative maintenance or repair strategies can completely offset 

additional outages from increased temperatures (chapter 3), though improved repair times 

reduce overall duration of outages more than preventative maintenance (chapter 3), and 

that coordinated strategies across utilities could be effective for mitigating vulnerability 

(chapter 4).  

A comparison of results across the two chapters which model the impacts of 

temperature increase (chapters 2 and 3), reveal different outcomes for component failures 
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and service losses, highlighting the importance of including spatial and temporal 

information in assessment models. The inputs of cumulative realistic temperature 

exposures in chapter 3 show different magnitudes and relative increases in failures across 

components than was estimated in chapter 2 using inputs of scenarios of average 

temperature exposures. The reason for the difference is that exposure-failure CDFs 

characterize probability of failure using the average of the entire range of daily 

temperatures over a year. The temperature-failure CDFs are averaged from only a range 

of summertime temperatures. The wider range of temperatures decreases the magnitude 

of increase in probabilities across all hardware components. Additionally, the relative 

sensitivities of components to temperature change became more apparent with the wider 

range of temperature inputs in chapter 3.  The temperature-failure CDF curves developed 

in chapter 2 show that iron pipes have the greatest variance of curves for different 

temperatures, then pumps, then PVC pipes. This ended up characterizing the result given 

the full range of temperatures experienced in chapter 3. In chapter 2, under the limited 

range of temperatures the sensitivity of iron pipes to changes in temperature was not fully 

characterized. The ranking of the rest of the components in terms of their percent increase 

in failures remains the same as in chapter 2, however. Pumps have the second largest 

increase and then PVC pipes have the least increase. Additionally, the estimated increases 

in outages in chapter 3 is much fewer than those estimated in chapter 2 because chapter 2 

assumes a direct relationship between component failures and service losses, but due to 

the various component criticalities, chapter 3 discovers that the relationship is non-direct.    
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5.2 Application 

We suggest that water utilities incorporate the findings and insights from the 

dissertation into their decision-making processes when considering and preparing for 

impacts of additional heat and interdependencies. Anticipating the patterns of failure of 

their components and service losses can help generate effective institutional strategies 

regarding  design of operations and hardware. Findings and recommendations from the 

dissertation should also be considered along with other challenges utilities anticipate 

facing to develop a comprehensive plan for the future. We also hope to broadly inspire 

utilities to start using impact assessment models to explore future changes within their 

systems. 

The decision-making framework of water utilities may need to adapt to encourage 

anticipation and sensing of the increases in failures. The current budgeting structure has 

no formal process to incorporate future estimations of component reliability from either 

historical failure data or future climate models. According to the AWWA manual on 

utility management, budgets include the expenditures of the past year and the funds 

needed for new projects.185 Because only the expenditures of the past year are considered, 

utilities are not encouraged to identify increases in failures that may be occurring over 

time and that may occur in the future. Therefore, adaptations typically are made when 

utilities recognize that an extreme event occurred during the year and decide to fund a 

new project to update the system for that extreme.6 For  stressors like heat which cause 

accumulated degradation overtime, and not dramatic events with many failures at once, 

utilities are less prepared to sense the threat and adapt. This necessary change to their 

decision making process could either come from within individual utilities or from a 
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regulatory body.215 A program that could improve their ability to sense increased risk 

would be a conditions-based maintenance program, where utilities would monitor the 

temperature exposure to their hardware and water quality and plan maintenance based on 

the exposure values in addition to age.   

In addition to operations, anticipation of risk to components could better inform 

design of hardware. More accurate estimates of probability of failure could improve the 

cost-benefit analyses of the sizing, number, and type of materials of components. 

Regarding sizing and numbers, smaller components (for example, pumps) running in 

parallel are less expensive than larger pumps, however having more pumps creates more 

chance for failure. Alternatively, larger pumps may give more chance of failure through 

their dependency with the power system (as demonstrated in the example in Chapter 4). 

The better understanding of risk of failures from heat and interdependencies can therefore 

help utilities determine the right balance of size and numbers of components. 

Additionally, better anticipation of risk could inform the cost benefit analysis of the use 

of more robust materials. For example, the knowledge of increases in risk of motor 

failure could justify the spending of funds to improve their insulation classes which 

would decrease the probability of failure. 

Climate impacts to other infrastructure systems that depend upon network 

connections and operations of the flow of materials can also learn from this framework of 

modeling -- using specific mathematical formulations of degradation from the hazard, 

component operations, and the connections between components. We ultimately hope 

that using spatial and temporally explicit information becomes a more common practice 
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for anticipating and preparing for changing conditions which underlie successful 

provision of vital infrastructure services.  

 

5.3 Future Work 

There are many avenues for future work that would enhance the capacity of the 

models presented in this dissertation to facilitate decision making within water utilities. 

The characterization of institutional strategies could be improved in types, levels, and 

cost-effectiveness, and additional hazards and types of failures could be incorporated.  

More types and levels of institutional strategies could be modeled to improve the 

ability for utilities to use the model to compare and prioritize strategies. There are more 

types of design, planning, and operational actions available to utilities besides 

preventative maintenance, corrective repair, and real time operational response. For 

example, utilities could redesign the structure of the networks, add redundancies, or 

preventatively replace components. A model that includes all possible institutional 

actions would help utilities compare and prioritize actions for practical decision making. 

This would require consulting utility managers to learn all of the actions available and 

developing ways to model those actions. Additionally, in reality, strategies provide levels 

of failure mitigation potential according to how many resources are invested in them. For 

example, corrective maintenance could be modeled at different levels according to 

different types of component replacement options. Water utilities have to manage the 

trade-offs between cost and reliability of new equipment when choosing replacement 

components. They have the option to buy full new equipment which provide low 

probabilities of failure or to buy inexpensive parts to replace only the damaged 
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components within the hardware which are associated with higher probabilities of 

failure.216 For example, when motors and electronics overheat, either the burnt windings 

of the motor or the entire motor could to be replaced.216 Including different options 

available to utilities for each of the strategies would expand the realistic decision-

variables within the models.  

The modeling efforts in this dissertation build towards the capability of utilities to 

do cost-benefit analyses of adaptation strategies to prioritize investments. Cost-

effectiveness would be a better metric than outage reduction effectiveness for decision-

making because it would help to compare outages on more realistic terms. For example, it 

is anticipated that though repair strategies are the most effective at reducing outages 

overall, a level of repair that costs the same amount as a level of preventative 

maintenance may not be more effective at reducing outages and therefore preventative 

maintenance would be a more attractive strategy. In order to allow for this comparison, 

costs of the strategies of repair and preventative maintenance and their ability to reduce 

outages at different levels of investment should be estimated. The social and economic 

costs of outages should also be estimated to fully characterize the cost of not preventing 

outages.  

The cost of repair is dependent on the labor required to do the repair and the cost 

of replacement parts. There are at least three different types of labor forces that can be 

involved in the repair of failed components: (1) by operations staff during normal 

operating hours; (2) by operations staff during overtime hours; or (3) by outside 

contractors.141,217 Throughout the year, water utilities may end up using a combination of 

these three approaches for repairs and replacements. When repairs or replacements are 
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done during normal hours, there is no extra cost to the utility in terms of man-hours. The 

overall cost of the labor time within a given time period could be estimated by 

multiplying the number of failures in a time period by the cost of the labor in that time 

period. The cost of the labor in the time period could be a weighted average of the 

different types of labor used by the utility with the weights being specific to each utility 

according to what percentage of the failures they use each type of labor. Furthermore, to 

estimate the cost of replacement of equipment after failure, the percentage of repairs 

where full replacements were used versus parts replacements should be considered. When 

estimating future costs, it would be a good idea to use a projection of the cost of labor 

and parts instead of the current costs.  

Estimating the cost-effectiveness of different levels of preventative maintenance 

would require characterizing the non-direct relationship between investment levels and 

improvements to reliability. Investments into preventative maintenance improve 

reliability of components up to a point, but after all parts are functioning good-as-new, 

the phenomenon of diminishing marginal returns occurs where an additional unit of 

investment (e.g. installing a new part) generates much less improvement in reliability. 

The marginal return of the investment depends on the accuracy of reliability predictions. 

As utilities are better able to understand and predict the state of reliability of their 

components, they are better able to avoid wasteful investments and strategically invest in 

needy components. Therefore, as accuracy of prediction improves, there is more marginal 

return of investment. In order to calculate what the marginal return is for different levels 

of accuracy, a statistical regression could be generated using the following utility data for 

different components: their predictions of component failure times and the actual 
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component failure times -- the difference of which characterizes accuracy, and the 

amount invested in each component for preventative maintenance, along with the 

resulting reliability of the components. 

The social and economic impacts resulting from the service outages should also be 

estimated and included in a future cost-benefit analysis. This would provide an 

understanding of the true costs of outages and could help utilities prioritize adaption 

strategies in different neighborhoods. There are different social and economic impacts in 

different neighborhoods of the distribution system based on the critical need of resources 

at those locations.218 Therefore, weights could be assigned to each demand node in the 

network model and the outages which occur at the demand nodes could be weighted in 

order to calculate an overall impact. The component failures and institutional strategies 

that caused the most impact could be then prioritized for improvement.  

In addition to realistically modeling strategies and their costs, there are additional 

elements that could be added to the models to improve their capacity to facilitate 

decision-making. Other climate and future hazards and components could be 

incorporated into the model in chapter 3. Temperature effects could be modeled in 

coincidence with other hazards which utilities are facing in semi-arid regions. One hazard 

that could be modeled simultaneously would be wildfires sparked from the increased 

temperature, which would decrease the quality of the incoming water into the water 

treatment plants. Additional dynamics could be added to the model in chapter 3 to 

incorporate the interactions between the difference hazards. For example, it could help 

answer the question: what happens when there are water quality problems and increased 

hardware failure at the same time? A survey of water utilities shows that  “several 
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utilities have experienced dual extreme events with different outcomes – for example 

drought and flooding. These events can result in different impacts to assets and 

infrastructure and certainly make it more challenging for utilities to plan for the future”.6 

Therefore, there is a need for exploration of the impacts of multiple hazards. 

Additionally, while water quality effects were modeled in chapter 2, they could also be 

incorporated into the network model in chapter 3 through the water quality modeling 

function of EPANET. This would allow for the estimation of the spatially-explicit 

impacts of water quality degradation. For example, it could help answer the question: 

which demand nodes within the network are most susceptible to water quality issues from 

increasing temperatures? It would also support the exploration of the interactions 

between water quality problems and hardware failures.  

 

5.4 Adaptation Framework Landscape 

This dissertation is part of a large and methodologically diverse effort to expand 

the decision-making metrics and frameworks which utilities use to adapt infrastructure to 

future conditions. ASCE states that “engineers should develop a new paradigm for 

engineering practice in a world in which climate is changing, but cannot be projected 

with a high degree of certainty”.2 This will require multiple different adaptation 

frameworks for different levels of uncertainty. “When it is not possible to fully define 

and estimate the risks and potential costs of a project and reduce the uncertainty in the 

timeframe in which action should be taken, engineers should use low-regret, adaptive 

strategies… to make the project more resilient to future climate and weather extremes. 

Engineers should seek alternatives that do well across a range of possible future 
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conditions”.2 The work of this dissertation modeling impacts therefore is an approach that 

is useful given the bounded uncertainty of climate models, but it is not sufficient for 

helping to prepare for future hazards that are not so well projected. Resilience and safe-

to-fail are better overall decision-making frameworks to operate under for these 

conditions. However, the models presented in this dissertation can inform parts of these 

efforts.  

Resilience frameworks focus on improving a utility’s “ability to adapt to changing 

conditions and prepare for, withstand, and rapidly recover from disruption”.219  “This 

process can be modeled as a cycle encompassing at least four components that are often 

missing from the use phase of many engineering projects: (1) sensing, (2) anticipation, 

(3) adaptation, and (4) learning”.128 Modeling helps anticipate impacts in possible futures 

and preventatively adapt. Adaptation can also come from many different types of 

information, however.128,220,221 “Adaptation can be either autonomous (e.g. reducing 

physical activity during a heatwave) or purposefully planned (e.g. adopting new building 

codes). Planned adaptation can be either reactive (i.e. after some impacts have been 

experienced) or proactive/ anticipatory (i.e. before major damage has occurred)”.222 

Resilience can also mean adapting institutional and organizational structures when 

necessary to meet the entities truly important objectives.189 

 The safe-to-fail framework suggests that infrastructure managers should assume 

components will fail for some reason or another and that they should prioritize 

minimizing failure of delivery of critical services to society that can occur from those 

failures.223 Therefore, estimating frequency of component failures is not a useful 

modeling exercise under this framework. The modeling of interdependencies, as was 
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done in chapter 4, could be useful, however. Since infrastructure systems are 

interdependent, there are all involved in providing the critical services. Therefore, utilities 

could use operational models of interdependency propagation to identify which pathways 

of vulnerability propagation between infrastructures threaten the provision of critical 

services and thus which pathways of failure they should minimize through institutional 

strategies.    
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A.1 Overall methodology process flow 

The sequential steps of the risk projection and suggestion of prioritization of operational 

strategies is shown in Figure 26.  

 

 

Figure 26 Methodology Process Flow 
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A.2 Identifying Temperature-Related Sensitivity and Exposure 

A literature review was conducted to identify which infrastructure components within 

water treatment and distribution systems are sensitive to temperatures. These 

components, including their mechanisms of temperature-sensitivity, are shown in Table 

2.  

 

Table 2 Temperature Sensitive Components Identified through Literature Review 

 

Infrastructure 

Component 

 

Temperature-

Sensitivity 

Type of Temperature 

Stress over summertime 

period 

 

Source(s) 

Motor Overheating Ambient temperature 

surrounding motor  

10–12,82 

Electronics Overheating Ambient temperature 

surrounding electrical 

cabinet 

83,84 

Plastic pipe Degradation Water temperature  16 

Metal pipe Corrosion Water temperature  17 

Pipe Fracture from soil 

expansion 

Soil temperature 129 

Water quality Chlorine residual 

decay 

Water temperature 32 

Water quality Total trihalomethane 

(TTHM) growth 

Water temperature 33 
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Water quality Trihaloactic acid 

(THAA) growth 

Water temperature 34 

Water quality Legionella growth Water temperature 35,36 

Water quality Mycobacterium 

avium complex 

(MAC) growth 

Water temperature 37,38 

Water quality Nitrification increase Water temperature 39–41,133 

Water 

demand 

Increase Ambient air temperature 25 

Operators Heat fatigue Ambient air temperature 132 

 

The degradation rate of the motors and electronics is theoretically related to the 

cumulative difference between the operating temperature (ambient temperature plus 

temperature from dissipated heat) and the design temperature during the summer. The 

studies of other environmental and public health hazards have found that the impact of a 

hazard depends on “the concentration, amount or intensity of a particular agent that 

reaches a target system in terms of its duration, frequency, and intensity”.136 It is 

therefore assumed that physical components experiencing degradation would have 

varying levels of degradation for different durations of exposure along with magnitudes 

of temperature exposure. A proposed equation for the rate of component degradation of 

motors and electronics over a time for period as a function of exposure temperature, has 

been formulated as shown in Equations 3 – 5.  
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𝑟+ = ` α ∙ maxi0,𝑇(𝑡)k
b
𝑑𝑡

Jc

JE
(3) 

𝑇(𝑡) = 𝑇l(𝑡) − 𝑇+ (4) 

𝑇l	(𝑡) = 𝑇m(𝑡) + 𝑇n(𝑡) (5) 

 

rd is rate of degradation [lifespan/oC], T is the ambient of temperature of exposure [oC], 𝛼 

and ß are the linear and exponential parameters of degradation, TO is the operating 

temperature of the component [oC], Td is the designed maximum allowable temperature 

of a component [oC], Ta is the ambient temperature [oC], and Th is the change in 

temperature surrounding the component as a result of the heat dissipation from friction of 

operation [oC]. The temperature from dissipated heat, Th, is modeled as an average range, 

and the ambient temperature is assumed to be Ta,max, the 3-month average of maximum 

daily ambient temperatures. Th is 105- 115 oC for motors and 5.5-55.5 oC for electronics 

as described in SI Table S6. To and consequentially are rd averages as well. The 

modifications to the degradation rate made for the purposes of modeling are shown in 

Equations 6 - 8. The bounds of integration are defined as the summertime period, t1 = 

June 1st and t2 = August 31st. 

𝑟+ = α ∙ maxi0, 𝑇k
b (6) 

𝑇 = 𝑇l − 𝑇+ (7) 

𝑇l	 = 𝑇m,pmq + 𝑇n (8) 

 

Similarly, little is known about how long it takes for chemical reactions to change given a 

change in water temperature.  
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A.3 Urban Water System Case Study 

The potable water distribution and treatment systems within the overall water system 

were chosen for the analysis as highlighted in Figure 27. The temperature projections for 

Phoenix, Arizona and Las Vegas, Nevada from global climate models are shown in 

Figure 28.  

 

 
Figure 27 Urban Water Infrastructure Systems. The potable water treatment and 
distribution infrastructure systems (bolded text) are analyzed because the failure of 
components could most logically be linked to the failure of municipal residents not 
receiving sufficient amounts and quality of water. 
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Figure 28 Average of Maximum Daily Summer Air Temperature (3x3) Projections 
from Global Climate Models for Phoenix, Arizona and Las Vegas, Nevada. Air 

temperatures in Phoenix and Las Vegas are projected to significantly increase by 2050 in 
all RCP scenarios. 

 

A potable water treatment and distribution system with representative Phoenix and Las 

Vegas characteristics was selected for the analysis. Characteristics of the Phoenix and 

Las Vegas are shown in Table 3.  

 

Table 3 Potable Water Treatment and Distribution System Characteristic 
Comparison in Phoenix, Arizona and Las Vegas, Nevada. 

 

Characteristic 

City of Phoenix, 

Arizona 

Las Vegas Water 

District, Nevada 

 

Source 

Projected temperature 

range from 2020 - 

2050 

39.9 – 43.7oC 35.9 – 40.5oC 121 
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Projected temperature 

increase from 2020 - 

2050 

0.4 – 1.7oC  0.6 – 2.0oC  121 

Treatment Capacity 

(MGD) 

700 MGD 900 MGD 155,157 

Number of pumping 

stations in distribution 

system 

110 100 140,224  

Miles of pipe in whole 

system 

7,000 7,000 140,224 

Number of WTPs  6 2 157,225 

Number of Quality 

Sampling Stations 

70 No record 226,227 
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In many ways, the Phoenix and Las Vegas water infrastructure are similar, thus a water 

system with combined characteristics between the two places was modeled. The number 

of components in the combined system is shown in Table 4. The redundancies of 

components modeled are shown in Table 5. The number of opportunities for water 

outages are shown in Table 6, and the modeled operating characteristics are shown in 

Table 7. Inputs into the model listed in Tables S3-S6 represent scenarios. Some of the 

scenarios are representative of Phoenix/Las Vegas specifically, some are generic to all 

modern water infrastructure systems, and some are reasonable scenarios based on 

engineering judgement as guided by textbooks and interviews with utility engineers.  The 

scenario type was chosen based on the amount of data available. All scenarios were 

specific to Phoenix and Las Vegas where possible.  

 

Table 4 Case Study Water System Components 

 

Modeled Component 

Phoenix 

and Las 

Vegas – 

type 

system 

 

Type of 

Scenario 

 

 

Explanation of Scenario 

Total number of 

pumping stations in 

overall water system 

100  

specific 

Data from Las Vegas and 

Phoenix city documents and 

conversations with engineers. 

140,224 
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Number of WTPs 4 specific Data found from Las Vegas and 

Phoenix city documents.157,225 

Number of pumping 

stations in each WTP 

2 reasonable The situation for pumping units is 

applied to pumping stations. 183 

Number of pumping 

units per pumping 

station 

2 (1 

standby) 

reasonable This is stated as a minimal case 

for most water systems. This 

series system behavior allows for 

propagation of failure rates. 183 

Number of motors 

per pumping unit 

1 reasonable Motor is referred to singularly as 

housed in a pump casing.12 

Number of electronic 

controls per pumping 

unit 

1 reasonable Controls are needed to operate 

each motor. 183 

Treatment Capacity 

(MGD) 

800 realistic Average value between Las 

Vegas and Phoenix. 140,224 

Miles of pipe in WDS 7,000 reasonable Data from Las Vegas and 

Phoenix city documents and 

engineers. 140,224 

Miles of pipe in WTP 540 reasonable A pipe manufacturer’s website 

disclosed how many miles of pipe 

were used in an expansion of a 

water treatment plant for a certain 

number of counties.228 The 
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counties per MGD fraction for 

that water utility229 was used to 

translate the mileage to a Las 

Vegas and Phoenix type system.  

Percentage PVC 

pipes in WDS 

30% 

 

realistic This is the average percentage 

reported for AZ, NM, TX, OK, 

AR, & LA.230 

Percentage cast iron 

pipe in WDS 

20% 

 

realistic This is the average percentage 

reported for AZ, NM, TX, OK, 

AR, & LA.230 

Percentage PVC 

pipes in WTP 

0% reasonable “PVC is only used for low 

pressure applications and 

transportation of coarse solids” in 

WTPs.231 

Percentage cast iron 

pipe in WTP 

100% reasonable “Metal is one of the principle 

materials” used for piping in 

WTPs. 231 

Sampling Stations 70 specific Data found from City of Phoenix 

non-compliance reporting 

website. 226 
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Redundancies prevent component failures from cascading to system failures 125. Table 5 

shows the number of redundancies of various processes within the system that are 

available when other components fail. The number of components and amounts of 

backup resources in Table 5 are inputs to estimating systemic failures. These values are 

scenarios either pulled from examples from an engineering text, or are from discussions 

with water treatment and distribution engineers.  

 

Table 5 Redundancy Scenarios 

 

Characteristic 

Number 

for 

modeled 

scenario 

 

Type of 

Scenario 

 

Explanation of Scenario 

Number of pumping 

units needed to be in 

operation for 

pumping station to 

deliver water 

2 reasonable This is stated as the typical case 

for most water systems. 183 

Number of WTPs 

that can supply a 

pressure zone 

2 reasonable City of Tempe engineer told 

authors a story of how a 

lightning storm caused the two 

WTPs in the city to fail which 

caused a pressure decrease in a 

pressure zone.  232  
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Number of WTPs 

needed to be 

operational for all 

water to be delivered 

2 reasonable City of Tempe engineer told 

authors a story of how a 

lightning storm caused the two 

WTPs in the city to fail which 

caused a pressure decrease in a 

pressure zone. When only one 

WTP was down, the pressure 

was adequate.  232 

Amount of emergency 

storage of treated 

water at WTP 

Insufficient 

Amount 

 

reasonable 

Depending on the outage time of 

components, the backup storage 

water could eventually become 

insufficient. 194 
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Table 6 shows the annual systemic failure opportunities by process. These are the count 

of possible events where if components failed, they would cause some level of outage in 

a water distribution pressure zone (PZ). The values are estimated from the number of 

components in the system in Table 4. All scenarios are “reasonable” because predicting 

whether or not a pressure zone is more accurately dependent upon relational spatial and 

temporal information about components and demands.125 

 

Table 6 Number of Modeled Opportunities for Systemic Failures. 

 

Type of Systemic 

Failure 

Phoenix and 

Las Vegas – 

type system 

value 

 

Type of 

Scenario 

 

Explanation 

of Scenarios 

Pressure zone (PZ) 

from pumping station 

(PS) outage in WDS 

82 reasonable same as 

pumping 

stations 

Pressure zone from PS 

outage in WTP 

6 reasonable same as 

number of 

WTPs 

Pressure Zone from 

any PS outage 

88 reasonable PZ from PS 

outage in 

WDS + PZ 

from PS 



 144 

outage in 

WTP 

Pressure zone from 

WTP pipe break 

540 reasonable miles of pipe 

in WTP that 

are cast iron 

or PVC 

Pressure zone from 

WDS pipe break 

3,500 reasonable miles of pipe 

that are cast 

iron or PVC 

Pressure zone failure 

opportunities from any 

pipe break 

4,040 reasonable Miles of 

pipe in WDS 

and WTP 

that are cast 

iron or PVC 

Pressure zone outage 

from chlorine residual 

decay below threshold 

70 reasonable Number of 

sampling 

stations 

Pressure zone outage 

from TTHM above 

threshold 

70 reasonable Number of 

sampling 

stations 

Pressure zone outage 

from water quality 

non-compliance 

70 reasonable Number of 

sampling 

stations 
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Operating characteristics are shown in Table 7. The values were possible ranges or means 

found from literature. The ranges of operating characteristics are used as parameters in 

the failure metric equations used to create probability distributions that characterize 

physical component failure or water quality non-compliance. 

 

Table 7 Modeled Operating Characteristics  

Operating 

Characteristic 

Distributio

n 

Parameters 

Assumed 

Distributio

n type 

Type of 

Scenario 

Explanation of Scenario  

Water temp. 

regression 

coefficient  

range: 0.52 

– 0.89 

Uniform generic From empirical data from 9 

Japanese WTPs.142 

Water temp. 

regression 

constant (oC 

water/ oC air) 

mean: 

3.8113, 

std. dev.: 

1.890 

Normal  generic From empirical data from 9 

Japanese WTPs.142 

Age of PVC 

pipes (yr) 

min: 20, 

max: 80 

Points generic From US and Canadian 

empirical data.230 

Age of Iron 

pipes (yr) 

min: 30, 

max: 70  

Normal generic From US and Canadian 

empirical data.230 

Pipe diameter 

(in) 

range: 12-

24 

Uniform generic Range reported in text 

book.7 
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Pipe thickness 

(mm) 

min: mean: 

9.4615, 

std. dev.: 

1.5875, 

max: 

mean: 

12.6365, 

std. dev.: 

1.5875 

Lognormal generic Range from a pipe 

manufacturer.233 

Insulation 

Class of 

Motors 

F Point specific Class of insulation used in 

hot climates234 

Maximum 

rated motor 

temperature 

(oC)  

155  Point specific Maximum rated temperature 

for class F insulation 11 

Temperature 

rise of motor 

(dependent 

upon use) (oC) 

range: 105-

115 

Uniform specific Possible temperature rise 

range for class F insulation11 

Age of Motor 

(years) 

min: 5  

max: 10 

Points reasonab

le 

Low and high points 

equidistant from MTTF  
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Temperature 

rise in 

electronic 

cabinets (oC) 

range: 5.5-

55.5 

Uniform generic Range reported for 

unfinished aluminum and 

stainless steel, and painted 

metallic and non-metallic 

enclosures with an 2-16 

W/ft2 input power83 

Electronic 

Cabinet % 

temperature 

reduction from 

shielding 

range: 25% 

- 46% 

Uniform reasonab

le 

This is the range reported, 

assuming there is some 

amount of shielding83 

Electronic 

cabinet % 

temperature 

reduction from 

circulating 

fans 

10% Point reasonab

le 

Assumption that even in 

worst case conditions, there 

is still a circulating fan. 83 

Electronic 

cabinet % 

temperature 

reduction from 

air 

50% - 

100% 

Uniform reasonab

le 

Reasonable considering it is 

reported that AC can reduce 

temperature by up to 30oC83 
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conditioning 

(AC) 

Age of 

electronic 

component 

(years) 

min: 7 

max: 12 

Points reasonab

le 

 Low and high points 

equidistant from MTTF 

Water age (h) range: 32-

72 

Uniform generic Range found in EPA 

report.235  

Specific UV 

absorbance 

(SUVA) 

(l/mg*m) 

range: 

1.04-1.21 

Uniform generic Empirical range from journal 

article.236 

TOC (mg/L) range: 1.3 -

5.6 

Uniform generic Range from white paper on 

water quality.237 

pH range: 6.5-

8.5 

Uniform specific Reported range from city 

water quality reports152 

Initial chlorine 

concentration 

(mg/L) 

range: 0.4-

3 

Uniform generic Reported range from white 

paper on water treatment.238 

Bromide 

concentration 

(mg/L) 

range: 0-

0.5 

Uniform 

 
 

generic Reported range from EPA 

report.239 
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MTTFT1 of 

Pipes (yr) 

scale 

(characteri

stic life): 

47, shape: 

2 

Weibull reasonab

le 

The mean of 47 is reported. 

The shape parameter is 

chosen to be greater than 

one. 125,230 

MTTFT1 of 

Motor (yr) 

scale 

(characteri

stic life): 

7.5, shape: 

2 

Weibull reasonab

le 

The mean of 7.5 is reported. 

The shape parameter is 

chosen to be greater than 

one. 125 

MTTFT1 of 

Electronics 

(yr) 

scale 

(characteri

stic life): 

9.5, shape: 

2 

Weibull reasonab

le 

The mean of 9.5 is reported. 

The shape parameter is 

chosen to be greater than 

one. 125 

 

A.4 Modeling increases in component and water quality failure 

A.4.1 Failure Metric Calculation 

The equations used for each component are described in the following subsections.  

A.4.1.1 Motor Degradation 

An increase in ambient temperature poses a threat of overheating to the operation of 

motors and electronics that are vital to the operation of the pumping units. Motors can 

overheat from the combined dissipated heat from motor windings and the ambient 
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temperature surrounding the motor, causing destruction of the insulation which can lead 

to burnt stator windings 10–12,82. For every 10°C increase in the operating temperature 

over the capacity of the insulation, the lifespan decreases by one-half 10–12,82. The lifespan 

from this relationship was assumed to be the ETTF. All equations used for calculating 

motor ETTF are shown in Equations 9 - 11.  

𝑟+ = 0.5	 (9) 

 

𝑟+ = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑝𝑒𝑟	10℃	𝑎𝑏𝑜𝑣𝑒	𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝐿𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑠 = 𝐸𝑇𝑇𝐹 = lifespan or mean-time-to-failure of component 

 

To calculate new ETTFs with temperature change, the following exponential decay 

model was created from the degradation rate information.  

𝐸𝑇𝑇𝐹$z = 𝑀𝑇𝑇𝐹$% ∗ (1 − 𝑟+)$ %.⁄ (10) 

 

Where  

𝑇 = |𝑇m,pmq}}}}}}}} + 𝑇n}}}~ − 𝑇+ (11) 

𝑇+ = 155°𝐶 

𝑀𝑇𝑇𝐹$% = 𝑡ℎ𝑒	𝐸𝑇𝑇𝐹	𝑎𝑡	𝑎𝑛	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝐸𝑇𝑇𝐹$z = 𝑡ℎ𝑒	𝐸𝑇𝑇𝐹	𝑎𝑡	𝑎	𝑛𝑒𝑤	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑚𝑜𝑡𝑜𝑟	𝑎𝑏𝑜𝑣𝑒	𝑡ℎ𝑒	𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦	[℃] 

𝑇	n
= 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑜𝑓	𝑚𝑜𝑡𝑜𝑟	𝑑𝑢𝑒	𝑡𝑜	𝑑𝑖𝑠𝑠𝑎𝑝𝑎𝑡𝑒𝑑	ℎ𝑒𝑎𝑡	𝑓𝑟𝑜𝑚	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑤𝑖𝑛𝑑𝑖𝑛𝑔𝑠	[℃] 

𝑇m,pmq = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑜𝑓	𝑚𝑜𝑡𝑜𝑟	𝑑𝑢𝑒	𝑡𝑜	𝑎𝑚𝑏𝑖𝑒𝑛𝑡	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠	[℃] 

𝑇+ = max 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑏𝑎𝑠𝑒𝑑	𝑜𝑛		𝑐𝑙𝑎𝑠𝑠	𝐹	𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦		[°𝐶] 
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A.4.1.2 Electronic ETTF Degradation 

Similar to motors, the electronic controls that are used for pump operation are typically 

stored in electrical cabinets, and for every 10°C rise in enclosure temperature above 

40oC, the lifespan of the electronics decreases by one-half 83,84. The enclosure 

temperature is the combination of dissipated heat from the electric load inside the 

enclosure and the outside ambient temperature minus the temperature reduction from 

cooling devices. The equation used for calculating the electronic’s ETTF are shown in 

Equation 12.  

𝑇 = |𝑇m,pmq}}}}}}}} + 𝑅𝑇n}}}~ − 𝑇+																																																				(12) 

𝑇+ = 40°𝐶 

𝑇n = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑖𝑛𝑠𝑖𝑑𝑒	𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒	𝑑𝑢𝑒	𝑡𝑜	𝑑𝑖𝑠𝑠𝑎𝑝𝑎𝑡𝑒𝑑	ℎ𝑒𝑎𝑡	𝑓𝑟𝑜𝑚	𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐	𝑙𝑜𝑎𝑑	[℃] 

𝑇m,pmq = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑖𝑛𝑠𝑖𝑑𝑒	𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒	𝑑𝑢𝑒	𝑡𝑜	𝑎𝑚𝑏𝑖𝑒𝑛𝑡	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[℃] 

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑖𝑠𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒	𝑎𝑏𝑜𝑣𝑒	𝑡ℎ𝑒	𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	[℃] 

𝑅 = 𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑠ℎ𝑖𝑒𝑙𝑑𝑖𝑛𝑔, 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔	𝑓𝑎𝑛𝑠, 𝑎𝑛𝑑	𝐴𝐶	[%] 

 

A.4.1.3 PVC Pipe ETTF Degradation 

With high water temperatures, thermoplastic pipes can experience overbearing 

pressures, and PVC experiences the greatest degradation of all types of thermoplastic 

pipes 16. The derating of the pipe is linear with increasing water temperatures. The Rate 

of Lifespan degradation for every 1o C above insulation exceedance threshold is shown in 

Table 8. 16 The Plastics Industry Pipes Association of Australia Limited states that linear 

interpolation can be used to estimate derating factors in between the temperatures listed. 

Thus, a linear regression is applied to the data points to estimate derating for the different 

temperature scenarios.  
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Table 8 PVC Pressure Derating Factors 16 

Temperature (ºC) Pressure Derating 

Factor 

20 1 

30 0.87 

40 0.7 

50 0.58 

 

The linear equation for derating factor obtained from these data is: 

𝐷 = −0.0123𝑇3 + 1.293 (13) 
𝐷 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑑𝑒𝑟𝑎𝑡𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟 

𝑇3 = 𝑤𝑎𝑡𝑒𝑟	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	(°𝐶) 

We assume that pressure degradation is not corrected in operations so that it directly correlates 

with lifespan degradation: 

𝑟+ = 𝐷 (14) 
 

𝑟+ = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑝𝑒𝑟	°𝐶	𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒  

ETTF decay model: 

𝐸𝑇𝑇𝐹$z = 𝐸𝑇𝑇𝐹$% ∗ 𝑟+ (15) 

𝐸𝑇𝑇𝐹$z = 𝐸𝑇𝑇𝐹$% ∗ (−0.0123𝑇3 + 1.293) (16) 
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A.4.1.4 Iron Pipe ETTF Corrosion 

For iron pipes, the temperature-related mechanism of failure is internal corrosion17. 

The relationship between corrosion rate and temperature has been reported in the 

literature for only the cast iron type of pipe. Temperature may have a similar effect on the 

corrosion rate of ductile iron and steel pipes though no relationship was found in 

literature. Corrosion rates for cast iron pipes are reported to be empirically different for 

water treatment plants (WTPs) and the water distribution system (WDS) (Equations 17 & 

18). External and internal pit corrosion are relative to the original pipe thickness and were 

calculated from empirical corrosion rates where external pit depth was assumed to be 

one-half of the internal pit depth17.  Corrosion rates and pipe age were used to calculate 

pit depth. The average age of pipes in the Southwest US is about 50 years230.The pit 

depth was then used to calculate the remaining life of the pipe according to Randall-

Smith et al.144 Then the ETTF was assumed to be the current age of the pipe plus its 

remaining life as shown in the Equations 19-25.  

 

External and internal pit corrosion were relative to the original pipe thickness and were 

calculated with empirical corrosion rates 17.  

 

For iron pipes in a water distribution system: 

𝑟� = 0.0272 ∗ 𝑇3 + 0.0915 (17) 

For iron pipes in a water treatment plant: 

𝑟� = 0.0774 ∗ 𝑇3 − 0.1073 (18) 

Corrosion rates and pipe age were used to calculate the internal pit depth: 

𝑃; = 𝑟� ∗ 𝑡 (19) 

It was assumed that the external pit depth, Pe, would be half of the internal pit depth due 

to lack of information.  
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𝑃A = 0.5𝑃; (20) 

𝑃A = 0.5𝑡(0.0774 ∗ 𝑇3 − 0.1073) (21) 

 

 

The pit depth is the depth of the hole that appears in the pipe from the corrosion. The size 

of the hole determines how much life is left in the pipe 144.  

 

𝜌 = �
𝑡

𝑃A + 𝑃;
𝛿� − 𝑡 (22) 

 

𝜌 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔	𝑙𝑖𝑓𝑒	[𝑦𝑒𝑎𝑟𝑠]	 

𝑡 = 𝑎𝑔𝑒	𝑜𝑓	𝑤𝑎𝑡𝑒𝑟	𝑚𝑎𝑖𝑛	[𝑦𝑒𝑎𝑟𝑠] 

𝛿 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠	𝑜𝑓	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑝𝑖𝑝𝑒	𝑤𝑎𝑙𝑙	[𝑖𝑛. ] 

𝑃; = 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑝𝑖𝑡	𝑑𝑒𝑝𝑡ℎ	[𝑖𝑛. ] 

𝑃A = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙	𝑝𝑖𝑡	𝑑𝑒𝑝𝑡ℎ	[𝑖𝑛. ] 

 

Remaining life (in time) equation including values of external and internal pit corrosion 

was translated into mean time to failure calculation using the assumption that ETTF 

equaled the sum of current age of the pipe and the remaining life of the pipe.  

𝐸𝑇𝑇𝐹 = 𝑡 + 𝜌 (23) 

 

𝐸𝑇𝑇𝐹 =
𝑡

𝑃A + 𝑃;
𝛿 (24) 

 

𝐸𝑇𝑇𝐹 =
𝑡

0.5𝑡(0.0774 ∗ 𝑇3 − 0.1073) + 𝑃;
𝛿 (25) 

 



 155 

A.4.1.5 TTHM Formation 

Water quality is also affected by an increase in water temperature. The water temperature 

change increases the rates of production of cancerous chemical compounds. Total 

Trihalomethanes (TTHMs) are disinfection byproducts formed from organic reactions 

with chlorine and can cause cancer in consumers.240 Temperature is one of the factors 

influencing TTHM formation because temperature increases the reaction rates between 

the organics and disinfectants (Equation 26).33 Equation 26 was generated from empirical 

data from within the water distribution system of Istanbul City, Turkey which is supplied 

by surface water and goes through the following treatment steps: “aeration, 

prechlorination, coagulation, flocculation-sedimentation, filtration, and postchlorination.” 

The parameters of the THM formation distribution were used to calculate the cumulative 

probability that a concentration from the distribution would be above the EPA regulated 

threshold of 80 µg/L for THMs.148 

 

𝑇𝑇𝐻𝑀 = 11.967 ∗ (𝑇𝑂𝐶)..��� ∗ 𝑇3..%@� ∗ 𝐶𝑙z..�.z
(26)

 

𝑇𝑂𝐶 = 𝑇𝑜𝑡𝑎𝑙	𝑜𝑟𝑔𝑎𝑛𝑖𝑐	𝑐𝑎𝑟𝑏𝑜𝑛	 �
𝑚𝑔
𝐿
� 

𝐶𝑙z = 𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒	𝑑𝑜𝑠𝑎𝑔𝑒	 �
𝑚𝑔
𝐿
� 

𝑇3 = 𝑊𝑎𝑡𝑒𝑟	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	[℃] 

 

A.4.1.6 THAA Formation 

Total Haloacetic Acids (THAAs) are another temperature-sensitive disinfection 

byproduct and carcinogen. The concentration of THAAs is dependent upon the 
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concentration of TTHMs and temperature  where temperature was represented by the 

seasonality factor (Equation 27).34 Equation 27 was generated from an empirical study of 

three drinking water systems in the United Kingdom which represent a range of source 

water conditions – “upland surface water, a lowland surface water, and groundwater” 

with standard treatment mechanisms: aeration, filtration, coagulation, sedimentation, and 

chlorination.  

 

𝑇𝐻𝐴𝐴	 = 	0.99	(𝑇𝑇𝐻𝑀)..�� ∗ 	 	(𝐶𝑙)..%@ ∗ 	 	(𝑆𝑈𝑉𝐴)...� ∗		
(𝐵𝑟? 		+ 	0.005)?..%z ∗ (𝑅𝑒𝑠𝑇	 + 	5)...� ∗ (𝑆𝑒𝑎𝑠𝑜𝑛) (27)

 

 

THAA = Total haloacetic acid [µ g/l] 

TTHM = Total trihalomethanes [µ g/l] 

Cl = Total chlorine [mg/l] 

SUVA = Specific UV absorbance [l/mg.m] 

Br = Bromide [mg/l] 

ResT = Water age (residence time) [h] 

Season = Season, expressed numerically as: 1 for spring, 1.46 for summer, 1.31 for 

autumn, 1.01 for winter 

 

A.4.1.7 Chlorine residual concentration 

Another type of quality concern is that of chlorine residual decay as water travels to the 

consumer. “The residual disinfectant concentration in the distribution system, measured 

as total chlorine, combined chlorine, or chlorine dioxide, as specified in § 141.74 (a)(2) 

and (b)(6), cannot be undetectable in more than 5 percent of the samples each month, for 
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any two consecutive months that the system serves water to the public”.149 An average 

detectable limit found from reviewing details of monitoring equipment is 0.0175 

mg/L.241,242   

The decay constant’s relationship with temperature was taken from the empirical study of 

two water distribution systems in Birmingham, Alabama, by Hua et al. 32 (Equation 28). 

Water quality non-compliance counts are for individual sampling stations. This study 

shows the counts of non-compliant stations. This could lead to an increased likelihood in 

2 months being non-compliant in a row.  

 

𝑘� =
0.0050𝑒...��%$G

𝐶�
(28) 

 

 

𝑘� = 𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒	𝑑𝑒𝑐𝑎𝑦	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑇3 = 𝑤𝑎𝑡𝑒𝑟	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	[℃] 

𝐶. = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	[
𝑚𝑔
𝐿 ] 

 

The concentration of remaining chlorine residual was calculated using Equation 29 & 

30.32 

 

𝐶 = 𝐶�𝑒?��J (29) 

 

𝐶 = 𝐶�𝑒
?....@.A

B.BCDEFG
HI

J (30) 
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𝐶 = 𝑓𝑖𝑛𝑎𝑙	𝑐ℎ𝑙𝑜𝑟𝑖𝑛𝑒	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	[
𝑚𝑔
𝐿 ] 

𝑡 = 𝑎𝑔𝑒	𝑜𝑓	𝑤𝑎𝑡𝑒𝑟	[ℎ𝑟]	 

 

A.4.2 Probability Distribution Creation Method 

The outputs were used to characterize the distributions by performing 5,000 iterations of 

Monte Carlo simulations on the degradation equations and sampling from the lower and 

upper halves of the ranges of operational characteristics, representing best case (lowest 

consequential probability of failure) and worst case (highest consequential probability of 

failure) of normal operating conditions (Table 9 & 10 respectively). Palisade© @Risk 

software was used to fit the output data from the simulations into probability distributions 

using the Anderson Darling (AD) Statistics, probability plots, visualization and 

judgement about the process underlying the data.145 Figures 29-45 show fit comparisons 

for all components and water quality aspects under worst-case operating conditions and 

40oC temperature scenario (although any other scenario would show similar results for all 

components and aspects of water quality except for chlorine residual—for which we 

show both scenarios). Figures show possible fits listed in order of AD Statistics and 

probability plots with fits listed in order of AIC rankings. For physical components, the 

Weibull distribution was chosen because it is typically used to characterize the general 

forms of degradation components experience with age, and it also had reasonable fits in 

terms of AD statistic and linear probability plots as shown in figures 29-36.146,243 

Parameters of the distributions and AD Statistics for one Monte Carlo simulation are 

shown in Table 9 and 10 (values vary slightly for every run of the simulation--due to 
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random nature of sampling in Monte Carlo). Generally, the better the distribution fits the 

data, the smaller the AD Statistic is. Table S10 shows the critical AD Statistics from the 

theoretical Weibull distribution for comparison with the AD statistics for the components 

fitted with Weibull to help evaluate the reasonableness of fit.244 When the AD Statistic 

from the fit is less than the critical statistic, the null hypothesis that the data fit a Weibull 

distribution is not rejected.245 Motors and PVC pipes were the only components that had 

outputs that were statistically equal to the Weibull to the 10% significance level. The 

physical components with non-statistical Weibull fits have other poor fits shown on the 

figures as a point of comparison with Weibull.  The output distributions for chlorine 

residual concentration were fitted as exponential distributions based on best fit and the 

need to be consistent across operating scenarios as shown in Figures 37-41. The 

exponential distribution was visually the best fit for the output for the worst-case 

operating conditions scenario, though the AD statistics suggested the gamma distribution 

was the better fit. Additionally, though the type of distribution of inputs were constant, 

the output of chlorine residual was so sensitive to the different ranges of inputs for 

different operating scenarios that it changed the output shape of the output. The worst-

case scenario could only fit an exponential whereas the best-case scenario looked much 

more of a bell shape characteristic of a normal or Weibull distribution. Exponential fits 

were used for both scenarios, however, so that the difference in probability of failure 

between scenarios would not be characterized by the difference in fitted distributions but 

rather only the increase in temperature. The exponential distribution was the only 

distribution that was in common between scenarios, so it was the one that was used. The 
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fits for DBP production were selected based on best fit as shown in figures 42-45. The 

best statistical fits for both TTHM and THAA was the Gamma distribution. 

 
Table 9 Output Distribution Parameters and Anderson-Darling Statistic of Failure 

Metrics from Monte Carlo Simulation for Low Failure Probability (Best-case 
Operational Characteristics). 

Compon

ent/ 

Chemical 

Distributi

on Type 

Distrib

ution  

Parame

ter 

Type 

Ambient Temperature Scenario (oC) 

36 37 38 39 40 41 42 43 44 

Motors Weibull 

scale 18.9 17.4 16.1 14.9 13.7 12.7 11.7 10.8 10.0 

shape 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

AD 

statistic 
0.84 

Electroni

cs 
Weibull 

scale 22.3 20.9 19.3 18.1 16.9 15.8 14.7 13.8 12.8 

shape 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

AD 

statistic 
8.50 

PVC 

pipe 
Weibull 

scale 45.8 45.5 45.1 44.8 44.4 44.1 43.7 43.3 43.0 

shape 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

AD 

statistic 
0.07 

Iron Pipe 

in WDS 
Weibull 

scale 447 438 429 420 412 405 397 389 383 

shape 6.4 6.4 6.4 6.5 6.5 6.4 6.5 6.7 6.5 

AD 

statistic 
-- 

Iron Pipe 

in WTP 
Weibull 

scale 190 185 180 177 173 169  165 162 158 

shape 5.9 5.9 5.9 6.0 5.9 5.9 5.9 6.0 6.1 

AD 

statistic 
60.35 

Chlorine 

Residual  

Exponentia

l 

failure 

rate 
1.69 1.64 1.59 1.53 1.48 1.43 1.37 1.32 1.26 
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AD 

statistic 
920.53 

THM 

producti

on 

Gamma 

scale 4.1 4.1 4.1 4.2 4.2 4.1 4.2 4.3 4.2 

shape 7.7 7.6 7.7 7.7 7.7 7.8 7.6 7.6 7.7 

AD 

statistic 
39.76 

THAA 

producti

on 

Gamma 

scale 13.8 13.8 13.8 13.8 14.1 13.8 14.0 13.7 14.0 

shape 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 

AD 

statistic  
9.34 

 

Table 10 Output Distribution Parameters and Anderson-Darling Statistic of Failure 
Metrics from Monte Carlo Simulation for High Failure Probability (Worst-case 

Operational Characteristics) 

Component/ 

Chemical 

Distribution 

Type 

Distribution  

Parameter 

Type 

Ambient Temperature Scenario (oC) 

36 37 38 39 40 41 42 43 44 

Motors Weibull 

scale 12.7 11.7 10.7 10.0 9.2 8.5 7.9 7.3 6.8 

shape 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 

AD statistic 0.45 

Electronics Weibull 

scale 13.5 12.6 11.8 11.0 10.2 9.5 8.9 8.3 7.7 

shape 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 

AD statistic 4.15 

PVC pipe Weibull 

scale 42 41.5 41.0 40.6 40.1 40.0 39.2 38.7 38.3 

shape 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

AD statistic 0.08 

Iron Pipe in 

WDS 
Weibull 

scale 275 269 263 257 252 247 242 237 233 

shape 5.4 5.4 5.5 5.5 5.4 5.4 5.5 5.5 5.5 

AD statistic 2.29 

Iron Pipe in 

WTP 
Weibull 

scale 112 109 107 104 102 99 97 95 93 

shape 5.2 5.4 5.3 5.3 5.3 5.4 5.4 5.3 5.4 

AD statistic 65.0 

Exponential failure rate 0.077 0.067 0.057 0.047 0.039 0.033 0.022 0.018 0.014 
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Chlorine 

Residual  
AD statistic 3180 

TTHM 

production 
Gamma 

scale 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.6 1.6 

shape 53.6 54.5 53.9 54.0 54.4 54.5 53.9 53.2 54.3 

AD statistic 19.1 

THAA 

production 
Gamma 

scale 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

shape 113 112 111 113 114 111 112 113 113 

AD statistic 10.1 

 

 

Table 11 Critical AD Statistics of Theoretical Weibull Distribution for Different 
Significance Levels, a. 244 

a 0.1 0.05 0.025 0.01 

AD critical statistic 0.637 0.757 0.877 1.038 

 

 

 

Figure 29 Fit Comparison for Motors 
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Figure 30 Probability Plot for Motors 

 

 

Figure 31 Fit Comparison for PVC Pipes 
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Figure 32 Probability Plot for PVC Pipes 

 

 

Figure 33 Fit Comparison for Electronics 
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Figure 34 Probability Plot for Electronics. The probability plot of the Triangular fit is 
plotted to show an example of a non-linear and therefore poor fit. 

 

 

Figure 35 Fit Comparison for Iron Pipes 
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Figure 36 Probability Plot for Iron Pipes. The probability plot of the Triangular fit is plotted to 
show an example of a non-linear and therefore poor fit. 

 

 

Figure 37 Fit Comparison for Chlorine Residual Under Best-Case Operating Conditions 
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Figure 38 Probability Plot for Chlorine Residual Under Best-Case Operating Conditions 

 

Figure 39 Fit Comparison for Chlorine Residual Under Worst-Case Operating 
Conditions—Gamma 
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Figure 40 Fit Comparison for Chlorine Residual Under Worst-Case Operating Conditions -
- Exponential 

 

Figure 41 Probability Plot for Chlorine Residual Under Worst-Case Operating Conditions 
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Figure 42 Fit Comparison for THM Production 

 

 

Figure 43 Probability Plot for TTHM Production 
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Figure 44 Fit Comparison for THAA Production 

 

Figure 45 Probability Plot for THAA Production 
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A.4.3 Projection of Failure Calculation Method 

A.4.3.1 Physical Component Failure: Failure Rate Method 

The failure distributions were integrated to attain rate of failure. The component failure 

rates are calculated using the failure rate method, which is the rate of instantaneous 

failure immediately after its current age, given that the component has survived to its 

current age 146,147 as shown in equations 31 - 33. This method was used to calculate 

failure rates of motors, electronics, and pipes.  

 

lim
∆J→.

Pr	(𝑇 < 𝑡 + ∆𝑡| 𝑇 > 𝑡)/∆𝑡 =
𝑙𝑖𝑚∆J→.[𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)]/∆𝑡

1 − 𝐹(𝑡)
(31) 

 

 

ℎ(𝑡) =
𝑓(𝑡)
𝑅(𝑡)

(32) 

 

𝐹𝑜𝑟	𝑊𝑒𝑖𝑏𝑢𝑙𝑙: ℎ(𝑡) = 	
𝛼
𝛽 �

𝑡
𝛽�

¨?%
(33) 

 

 

where h(t) is the instantaneous failure rate, t is the current age of the component, Dt is an 

incremental time period, f(t) is the probability of failure of a component within the time 

period, and R(t) is the reliability or chance of component survival up until its current age, 

a is the shape parameter of the Weibull distribution, and b is the scale parameter of the 

Weibull distribution.  
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A.4.3.2 Probability of Water Quality Non-Compliance Method 

Parameters of probability distribution functions from output Monte Carlo simulation were 

used in Excel to calculate failure as either exceeding the EPA maximum threshold 

regulation or being below an EPA minimum threshold regulation. The TTHM formation 

distribution were used to calculate the cumulative probability that a concentration from 

the distribution would be above the EPA regulated threshold of 80 µg/L for TTHMs.148 

Therefore, P(x> 80 µg/L) was calculated. The EPA regulation for THAAs is 60 µg/L148 

so the probability that P(x> 60 µg/L ) was calculated. The chlorine residual distributions 

were used to calculate the probability that a concentration from a sampling station would 

be undetectable according to the EPA regulation. 149  Therefore, the P(x<0.0175 mg/L) 

was calculated based on the average detectable limit of monitoring equipment. 241,242    

 

The cumulative distribution functions of the Weibull distribution used to calculate 

probabilities are shown in Equation 34.  

 

𝑃(𝑥) = ©1 − 𝑒
?ª«¬, 	𝑖𝑓	𝑃(𝑥 < 𝑋)
𝑒?ª«¬, 𝑖𝑓	𝑃(𝑥 > 𝑋)

(34) 

 

 

A.5 Modeling Failure Cascades to Service Outages: System Failure Laws 

To model component failures leading to systemic failures stochastically, “AND” and 

“OR” logic gates were used to denote the parallel and series behavior within the system, 



 173 

based on standard reliability engineering methods.147 The laws of probability translate 

this logic into quantitative probabilities.  

 

As shown in equation 35, a system failure rate “can be calculated by summing up the 

failure rates of all individual components” assuming a series behavior of the system146.  

This equation was used to calculate pumping unit, pumping station, water outage from 

pumping station outage in WDS, water outage from pumping station outage in WTP, 

overall water outage from pumping station, water outage from iron pipe break in WTP, 

water outage from iron pipe break in WDS, water outage from PVC pipe break in WTP, 

water outage from PVC pipe break in WDS, and overall water outage from pipe break.  

ℎ®(𝑡) =¯ℎ;
°

;±%

(𝑡) (35) 

 

The probability that A and B occur simultaneously (corresponding to AND gates or joint 

probabilities) is shown in Equation 36.147 This equation was used to estimate the 

probability of simultaneous types of water outages.  

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵) (36) 

The probability of either A or B occurring (corresponding to OR gates and the union of 

probabilities) is shown in Equation 37.147 This equation was used to estimate the 

probability of water quality non-compliance from either TTHM production or chlorine 

residual decay.  

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) (37) 
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A.6 Projected Increases in Service Outages: Failure Percent Increases 

 

Table 12 shows the resulting increase in failure rates in the period of 2020-2050 for all 

components and outage events in Phoenix, Las Vegas, and the case study system. 

 

Table 12  Failure Percent Increases 

Component/

Event 
Phoenix-Las Vegas Average over Maximum Temperature Ranges 

 

Mean 

Percent 

Increase 

Mean Std. 

Deviation 

Greatest 

Difference in 

Expected 

Failures 

Between Best 

and Worst 

Operating 

Conditions 

Greatest 

Difference 

in Failure 

Rate 

Percent 

Increase 

Under Good 

Operations 

Percent 

Increase 

Under Bad 

Operations 

Motors 92% 9% 2 1% 102% 83% 

Electronics 76% 4% 2 1% 71% 80% 

Pumping 

Units 
72% 12% 5 2% 62% 82% 

Pumping 

Stations 
76% 15% 3 3% 62% 91% 

PVC pipe 10% 0.2% 0 0.0% 10% 10% 



 175 

Iron pipe 

WDS 
52% 12% 0 0.0% 40% 65% 

Iron pipe 

WTP 
76% 8% 0 0.0% 68% 83% 

TTHM 

Production 
17% 10% 45 64.3% 27% 7% 

Chlorine 

decay at 

station 

53% 36% 41 59% 17% 90% 

Water 

Outage from 

Pipe Break 

10% 3% 22 1% 7% 13% 

Water 

Outage from 

Pump 

Station 

Outage 

76% 15% 14 15% 62% 91% 

Water 

Quality 

Non-

Compliance 

17% 0.40% 55 79% 17% 17% 

Any 

Pumping 

Station 

Outage - 

25% 2% 89 2% 25% 25% 
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Water Main 

Break - 

Water 

Quality 

Non-

Compliance 

Simultaneou

s Pumping 

Station 

Outage - 

Water Main 

Break - 

Water 

Quality 

Non-

Compliance 

105% 5% 6 0% 103% 107% 

Simultaneou

s Pumping 

Station 

Outage - 

Water Main 

Break 

95% 21% 6 0% 74% 116% 

Simultaneou

s Pumping 

Station 

106% 17% 32 20% 89% 123% 
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Outage - 

Water 

Quality 

Non-

Compliance 

Simultaneou

s Water 

Main Break 

- Water 

Quality 

Non-

Compliance 

29% 3% 23 1% 26% 32% 

 

 

A.7 Model Uncertainty  

An exploration of the model’s sensitivity to the important model assumptions 

(that were not characterized as parameters with ranges and probability distributions) is 

described in this section. If the information for soil and pipe parameters were made 

available to model the water temperature inside underground pipes, the modeled water 

temperature might decrease,142,143 causing fewer failures in pipes and water quality. If the 

relationship between degradation of motors and electronics per duration of temperature 

exposure were made available, the current degradation modeled might slightly over-

predict the degradation rate from not considering variations in daily and seasonal 

temperature. When the degradation rate is decreased in the model by 10%, the motor and 
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electronic probabilities of failure have a percent decrease of 0-22%, where the highest 

percent change is associated with the failure rates at the lowest temperatures under the 

worst- case operating conditions, and there is 0% change for all temperatures in the best-

case operating conditions. When the rate of degradation of motors decreases by 10%, the 

probability of motor failure has a percent decrease of 0-13%. When the rate of 

degradation of electronics decreases by 10%, the probability of electronic failure has a 

percent decrease of 0-22%.  Additionally, hind-casted probabilities of motor failure are 

validated by historical failure rates, so current results are reasonable. If component 

redundancy data and spatial and temporal information about the WDS network were to be 

made available for specific utilities, a better estimate of probability of systemic failure 

could be made. Assuming that there is a 50% chance (instead of 100% chance) of an 

inadequate amount of water storage decreases the likelihood of outage from pipe break 

by 50% and an outage from pumping station failure by 50%.  If quantitative relationships 

to describe the effect of water hammer from one component failure causing another 

became available, the frequency of component systemic failure might increase. Lastly, it 

is hard to know what the resulting risk will be when normal structural and operational 

characteristics change overtime from urban expansion, transformative designs, etc.  
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APPENDIX B 

SUPPLIMENTARY INFORMATION FOR CHAPTER 3 
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B.1 Introduction  

 
 

Figure 46 Perses Modeling Overview 
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Figure 47 Simulation Overview 

 

B.2 Methodology 

B.2.1 Modeling Component Probability of Failure 

The method used to estimate the mean time to failure of various components in this 

system is based off of fixed Weibull curves generated from the model given by [Emily’s 

Paper]. Programmatically this is done by accessing the temperature at surface max at the 

given day from the previously loaded list of temperatures. Once the temperature at a 

certain time step is estimated the corresponding Weibull curve is retrieved from the list of 

Weibull curves previously loaded in. On these curves we match the age of the component 

in years to the age in years on the x-axis, and due to these being cumulative failure 

Weibull curves, are able to estimate a likelihood of failure at this time step with accuracy.  
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B.2.2 Modeling Component States  

Since we estimate the mean time to failure for each component before we estimate the 

failure state, we are able to as accurately as possible determine each components failure 

state at each discrete time step, with some level of “random-ness” factored in. The 

estimation of failure is done by comparing the percent of components that we have 

estimated to be failed under the given conditions versus a random value from a uniform 

distribution ranging from 0 to 1. If the value for the percent of components failing is 

greater than the value obtained from the normal distribution, the given component is 

disabled, and the necessary changes made to the model. 

 

Component repair is handled in a similar fashion as component failure. Once failed, the 

component will be assigned a standard duration for that failure, which models the time to 

repair the outage in the real world. One important aspect to note is that when the 

components return to the functioning state they do so at 100% capacity, meaning that 

there is no period in which they function at a fraction of their total capacity.  

 

B.3 Case Study  

B.3.1 North Marin Input File  

[TITLE] 

North Marin Water District Zone I 

 

[JUNCTIONS] 

;ID               Elev         Demand       Pattern 

 10              147           0.00                        ; 

 15              32           620.00         3             ; 

 20              129           0.00                        ; 
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 35              12.5           1856         4            ; 

 40          131.9     0                         ; 

 50          116.5  0                         ; 

 60              0         0                         ; 

 61              0         0                         ; 

 101              42         189.95         1               ; 

 103             43          133.2         1               ; 

 105             28.5          135.37         1               ; 

 107             22          54.64         1                ; 

 109             20.3          231.4         1               ; 

 111             10         141.94         1               ; 

 113             2         20.01         1               ; 

 115             14          52.1         1               ; 

 117             13.6          117.71         1               ; 

 119             2   176.13   1               ; 

 120             0          0                         ; 

 121             -2          41.63          1               ; 

 123             11          1859         2               ; 

 125             11         45.6         1               ; 

 127             56           17.66         1               ; 

 129             51         0                         ; 

 131             6         42.75         1               ; 

 139             31          5.89         1               ; 

 141             4          9.85         1                ; 

 143             -4.5          6.2          1               ; 

 145             1          27.63         1               ; 

 147             18.5          8.55         1               ; 

 149             16          27.07         1               ; 

 151             33.5          144.48         1               ; 

 153             66.2          44.17         1               ; 

 157             13.1          51.79         1               ; 



 184 

 159             6          41.32         1               ; 

 161             4          15.8          1               ; 

 163             5          9.42         1              ; 

 164             5          0                         ; 

 166             -2         2.6          1                ; 

 167             -5       14.56         1               ; 

 169             -5          0                         ; 

 171             -4          39.34         1               ; 

 173             -4         0                         ; 

 177             8          58.17         1               ; 

 179             8          0                          ; 

 181             8          0                         ; 

 183             11          0                         ; 

 184             16          0                        ; 

 185             16        25.65        1               ; 

 187             12.5          0                          ; 

 189             4          107.92         1               ; 

 191             25          81.9         1               ; 

 193             18           71.31         1               ; 

 195             15.5          0                        ; 

 197             23         17.04         1              ; 

 199             -2          119.32         1               ; 

 201             0.1          44.61         1               ; 

 203             2          4643         5               ; 

 204             21         0                         ; 

 205             21          65.36         1               ; 

 206             1          0                         ; 

 207             9           69.39         1               ; 

 208              16          0                         ; 

 209             -2        0.87         1               ; 

 211             7          8.67         1               ; 
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 213             7          13.94         1               ; 

 215             7          92.19         1               ; 

 217             6          24.22         1               ; 

 219             4          4.32         1              ; 

 225             8          22.8         1               ; 

 229             10.5          64.18         1               ; 

 231             5          16.48         1               ; 

 237             14           15.61        1               ; 

 239             13          44.61         1               ; 

 241             13          0                         ; 

 243             14          4.34         1               ; 

 247             18          70.38         1               ; 

 249             18          0                         ; 

 251             30         24.16         1               ; 

 253             36          54.52         1               ; 

 255             27          40.39         1               ; 

 257             17          0                         ; 

 259             25          0                         ; 

 261             0         0                         ; 

 263             0        0                         ; 

 265             0           0                         ; 

 267             21        0                         ; 

 269             0         0                        ; 

 271             6               0                         ; 

 273             8         0                          ; 

 275             10           0                          ; 

 

 

[RESERVOIRS] 

;ID               Head         Pattern 

 4               220.0                           ; 
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 5               167.0                           ; 

 

[TANKS] 

;ID               Elevation    InitLevel    MinLevel     MaxLevel     Diameter    

 MinVol       VolCurve 

 1               131.9        13.1         0.1   

 32.1         85          0.1                           ; 

 2               116.5        23.5           6.5            40.3           50          

 0.1                           ; 

 3               129.0        29.0         4.0   

 35.5        164           0.1                           ; 

 

[PIPES] 

;ID               Node1            Node2            Length       Diameter     Roughness   

 MinorLoss    Status 

 20              3               20               99    

 24            199          0            Open   ; 

 40              1               40               99    

 24            199          0            Open   ; 

 50              2               50               99    

 24           199          0            Open   ; 

 60              4              60               1231   

 24           140          0            Open   ; 

 101              10              101              14200   

 18           110          0            Open   ; 

 103              101              103              1350    16           

 130          0            Open   ; 

 105               101              105              2540   

 12           130          0            Open   ; 

 107             105              107              1470    12           

 130          0            Open   ; 
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 109             103              109              3940   

 16            130          0            Open   ; 

 111             109              111              2000    12          

 130          0            Open   ; 

 112             115              111              1160    12          

 130          0            Open   ; 

 113             111              113              1680   

 12           130          0            Open   ; 

 114             115              113              2000   

 8            130          0            Open   ; 

 115             107              115              1950    8           

 130          0            Open   ; 

 116             113              193              1660    12           

 130          0            Open   ; 

 117             263              105              2725    12          

 130          0            Open   ; 

 119             115              117              2180    12           

 130          0            Open   ; 

 120             119              120              730    

 12            130          0            Open   ; 

 121             120              117              1870    12          

 130          0            Open   ; 

 122             121              120              2050   

 8            130          0            Open   ; 

 123             121              119              2000    30           

 141          0            Open   ; 

 125             123              121              1500    30           

 141          0            Open   ; 

 129             121              125              930    

 24           130          0            Open   ; 
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 131             125              127              3240    24          

 130          0            Open   ; 

 133             20              127              785    

 20           130          0            Open   ; 

 135             127              129              900    

 24           130          0            Open   ; 

 137             129              131              6480    16           

 130          0            Open   ; 

 145             129              139              2750    8           

 130          0            Open   ; 

 147             139              141              2050    8           

 130          0            Open   ; 

 149             143              141              1400   

 8            130          0            Open   ; 

 151             15              143              1650   

 8            130          0            Open   ; 

 153             145              141              3510    12           

 130          0            Open   ; 

 155             147              145              2200    12          

 130          0            Open   ; 

 159             147               149              880    

 12           130          0            Open   ; 

 161             149              151              1020    8          

  130          0            Open   ; 

 163             151              153              1170    12           

 130          0            Open   ; 

 169             125              153              4560   

 8            130          0            Open   ; 

 171             119              151              3460    12           

 130          0            Open   ; 
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 173             119              157              2080   

 30            141          0            Open   ; 

 175             157              159              2910   

 30            141          0            Open   ; 

 177             159              161              2000   

 30           141          0            Open   ; 

 179             161              163              430    

 30            141          0            Open   ; 

 180             163              164              150    

 14           130          0            Open   ; 

 181             164              166              490    

 14            130          0            Open   ; 

 183             265              169              590    

 30           141          0            Open   ; 

 185             167              169              60    

 8            130          0            Open   ; 

 186             187              204              99.9   

 8            130          0            Open   ; 

 187             169              171              1270   

 30            141          0            Open   ; 

 189             171              173              50     

 30            141          0            Open   ; 

 191             271              171              760    

 24           130          0            Open   ; 

 193             35              181              30    

 24            130          0            Open   ; 

 195             181              177              30    

 12            130          0            Open   ; 

 197             177              179              30    

 12           130          0            Open   ; 
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 199             179              183              210    

 12            130          0            Open   ; 

 201             40              179              1190   

 12           130          0            Open   ; 

 202             185              184              99.9    8           

 130          0            Open   ; 

 203             183              185              510    

 8            130          0            Open   ; 

 204             184              205             4530   

 12            130          0            Open   ; 

 205             204              185              1325   

 12            130          0            Open   ; 

 207             189              183              1350    12           

 130          0            Open   ; 

 209             189              187              500    

 8            130          0            Open   ; 

 211             169              269              646    

 12            130          0            Open   ; 

 213             191              187             2560    12          

 130          0            Open   ; 

 215             267              189              1230   

 12           130          0            Open   ; 

 217             191              193              520    

 12           130          0            Open   ; 

 219             193              195              360    

 12           130          0            Open   ; 

 221             161              195              2300   

 8            130          0            Open   ; 

 223             197              191              1150   

 12            130          0            Open   ; 
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 225             111              197              2790    12           

 130          0            Open   ; 

 229             173              199              4000    24           

 141          0            Open   ; 

 231             199              201              630    

 24            141          0            Open   ; 

 233             201              203              120     24           

 130          0            Open   ; 

 235             199              273              725    

 12            130          0            Open   ; 

 237             205              207              1200   

 12            130          0            Open   ; 

 238             207              206              450    

 12            130          0            Open   ; 

 239             275              207              1430    12           

 130          0            Open   ; 

 240             206              208              510    

 12            130          0            Open   ; 

 241             208              209              885    

 12            130          0            Open   ; 

 243             209              211              1210   

 16            130          0            Open   ; 

 245             211              213              990    

 16            130          0            Open   ; 

 247             213              215              4285   

 16            130          0            Open   ; 

 249             215              217              1660   

 16            130          0            Open   ; 

 251             217              219              2050    14           

 130          0            Open   ; 
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 257             217              225              1560   

 12           130          0            Open   ; 

 261             213              229              2200   

 8            130          0            Open   ; 

 263             229              231              1960   

 12            130          0            Open   ; 

 269             211              237              2080   

 12            130          0            Open   ; 

 271             237              229              790    

 8            130          0            Open   ; 

 273             237              239              510    

 12            130          0            Open   ; 

 275             239              241              35    

 12            130          0            Open   ; 

 277             241              243              2200   

 12            130          0            Open   ; 

 281             241              247              445    

 12            130          0            Open   ; 

 283             239              249              430    

 12            130          0            Open   ; 

 285             247              249              10    

 12            130          0            Open   ; 

 287             247              255              1390   

 10            130          0            Open   ; 

 289             50             255             925    

 10            130          0            Open   ; 

 291             255             253             1100   

 10            130          0            Open   ; 

 293             255              251             1100   

 8            130          0            Open   ; 
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 295             249             251             1450   

 12            130          0            Open   ; 

 297             120             257             645   

  8            130          0            Open   ; 

 299             257             259             350    

 8            130          0            Open   ; 

 301             259              263             1400   

 8            130          0            Open   ; 

 303             257             261             1400    8           

 130          0            Open   ; 

 305             117             261             645    

 12            130          0            Open   ; 

 307             261             263             350    

 12            130          0            Open   ; 

 309             265             267              1580    8           

 130          0            Open   ; 

 311             193              267              1170   

 12            130          0            Open   ; 

 313             269              189              646    

 12            130          0            Open   ; 

 315             181             271              260    

 24            130          0            Open   ; 

 317             273              275              2230   

 8            130          0            Open   ; 

 319             273              205              645    

 12            130          0            Open   ; 

 321             163              265              1200   

 30            141          0            Open   ; 

 323             201              275              300    

 12            130          0            Open   ; 
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 325             269              271              1290   

 8            130          0            Open   ; 

 329             61              123             45500   

 30            140          0            Open   ; 

 

 

 

[PUMPS] 

;ID               Node1            Node2            Parameters 

 10             5             10            HEAD 10

 SPEED 1 ; 

 335             60            61             HEAD 335

 SPEED 1 ; 

 

 

[VALVES] 

;ID               Node1            Node2            Diameter     Type Setting     

 MinorLoss 

 

[TAGS] 

 

[DEMANDS] 

;Junction         Demand       Pattern          Category 

 

[STATUS] 

;ID               Status/Setting 

 10             Closed 

 335             Closed 

 

[PATTERNS] 

;ID               Multipliers 
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; 

 1 1.34 1.94 1.46 1.44 0.76 0.92 0.85 1.07 0.96 

 1 1.10 1.08  1.19 1.16 1.08 0.96 0.83 0.79 0.74 

 1 0.64 0.64 0.85 0.96 1.24 1.67 

 

 2 0  0  0  0  0  0.656

 0  0  0 

 2 1.0037 0.988 0.978 0.978 0.98 0.980 0.977 0.981 0.976 

 2 0.986 0.984 0.984 0.975 0.989 1.00 

 

 3 1  1  1  1  1  0.580

 0.580 0  0 

 3 0  0  0.580 0.580 0.580 0.580  0.580  0 

 0 

 3 0  0  0  0  0.580 0.580 

 

 4 0.882 0.919 0.926 0.926 0.964 0.980 0.957 0.992 0.977 

 4 0.983 1.00 0.970 0.980 0.934 0.896 0.872 0.869 0.872 

 4 0.870 0.887 0.876 0.876 0.900 0.898 

 

 

 5 0.956 0.975 0.971 0.986 0.975 0.986 0.984 0.993 1.00 

 5 1.00 0.989 0.993 0.975 0.973 0.958 0.956 0.958 0.960 

 5 0.956 0.951 0.940 0.947 0.962 0.964 

 

 

[CURVES] 

;ID               X-Value      Y-Value 

;PUMP: PUMP: 

 10            0            104 

 10            3000         92 
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 10            6000         63 

;PUMP: PUMP: 

 335            0            200 

 335            8000         138 

 335            14000         86 

 

 

[CONTROLS] 

pump 10 open at time 0 

pump 335 open at time 0 

pump 10 open at time 1 

pump 335 open at time 1 

pump 10 open at time 2 

pump 335 open at time 2 

pump 10 open at time 3 

pump 335 open at time 3 

pump 10 open at time 4 

pump 335 open at time 4 

pump 10 open at time 5 

pump 335 open at time 5 

pump 10 open at time 6 

pump 335 open at time 6 

pump 10 open at time 7 

pump 335 open at time 7 

pump 10 open at time 8 

pump 335 open at time 8 

pump 10 open at time 9 

pump 335 open at time 9 

pump 10 open at time 10 

pump 335 open at time 10 

pump 10 open at time 11 
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pump 335 open at time 11 

pump 10 open at time 12 

pump 335 open at time 12 

pump 10 open at time 13 

pump 335 open at time 13 

pump 10 open at time 14 

pump 335 open at time 14 

pump 10 open at time 15 

pump 335 open at time 15 

pump 10 open at time 16 

pump 335 open at time 16 

pump 10 open at time 17 

pump 335 open at time 17 

pump 10 open at time 18 

pump 335 open at time 18 

pump 10 open at time 19 

pump 335 open at time 19 

pump 10 open at time 20 

pump 335 open at time 20 

pump 10 open at time 21 

pump 335 open at time 21 

pump 10 open at time 22 

pump 335 open at time 22 

pump 10 open at time 23 

pump 335 open at time 23 

pump 10 open at time 24 

pump 335 open at time 24 

pump 10 open at time 25 

pump 335 open at time 25 

pump 10 open at time 26 

pump 335 open at time 26 
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pump 10 open at time 27 

pump 335 open at time 27 

pump 10 open at time 28 

pump 335 open at time 28 

pump 10 open at time 29 

pump 335 open at time 29 

pump 10 open at time 30 

pump 335 open at time 30 

pump 10 open at time 31 

pump 335 open at time 31 

pump 10 open at time 32 

pump 335 open at time 32 

pump 10 open at time 33 

pump 335 open at time 33 

pump 10 open at time 34 

pump 335 open at time 34 

pump 10 open at time 35 

pump 335 open at time 35 

pump 10 open at time 36 

pump 335 open at time 36 

pump 10 open at time 37 

pump 335 open at time 37 

pump 10 open at time 38 

pump 335 open at time 38 

pump 10 open at time 39 

pump 335 open at time 39 

pump 10 open at time 40 

pump 335 open at time 40 

pump 10 open at time 41 

pump 335 open at time 41 

pump 10 open at time 42 
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pump 335 open at time 42 

pump 10 open at time 43 

pump 335 open at time 43 

pump 10 open at time 44 

pump 335 open at time 44 

pump 10 open at time 45 

pump 335 open at time 45 

pump 10 open at time 46 

pump 335 open at time 46 

pump 10 open at time 47 

pump 335 open at time 47 

pump 10 open at time 48 

pump 335 open at time 48 

;link 335 OPEN IF Node 1 BELOW 17.1 

;Link 335 CLOSED IF Node 1 ABOVE 19.1 

;Link 10 CLOSED IF Node 1 BELOW 17.1 

;Link 10 OPEN IF Node 1 ABOVE 19.1 

[RULES] 

RULE 1 

IF TANK 1 LEVEL ABOVE 19.1 

THEN PUMP 335 STATUS IS CLOSED 

AND LINK 10 STATUS IS OPEN 

 

RULE 2 

IF TANK 1 LEVEL BELOW 17.1 

THEN PUMP 335 STATUS IS OPEN 

AND LINK 10 STATUS IS CLOSED 

 

[ENERGY] 

 Global Efficiency   75 

 Global Price        0 
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 Demand Charge       0 

 

[EMITTERS] 

;Junction         Coefficient 

 

[QUALITY] 

;Node             InitQual 

 

[SOURCES] 

;Node             Type         Quality      Pattern 

 

[REACTIONS] 

;Type      Pipe/Tank        Coefficient 

 

 

[REACTIONS] 

 Order Bulk             1 

 Order Tank             1 

 Order Wall             1 

 Global Bulk            0 

 Global Wall            0 

 Limiting Potential     0 

 Roughness Correlation  0 

 

[MIXING] 

;Tank             Model 

 

[TIMES] 

 Duration            48 

 Hydraulic Timestep  1:00 

 Quality Timestep    0:06 
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 Pattern Timestep    1:00 

 Pattern Start       0:00 

 Report Timestep     1:00 

 Report Start        0:00 

 Start ClockTime     12 am 

 Statistic           None 

 

[REPORT] 

 Status              No 

 Summary             No 

 Page                0 

 

[OPTIONS] 

 Units               GPM 

 Headloss            H-W 

 Specific Gravity    0.998 

 Viscosity           1 

 

 

[COORDINATES] 

;Node X-Coord Y-Coord 

10 9.00 27.85 

15 38.68 23.76 

20 29.44 26.91 

35 25.46 10.52 

40 27.02 9.81 

50 33.01 3.01 

60 23.90 29.94 

61 23.71 29.03 

101 13.81 22.94 

103 12.96 21.31 



 202 

105 16.97 21.28 

107 18.45 20.46 

109 17.64 18.92 

111 20.21 17.53 

113 22.04 16.61 

115 20.98 19.18 

117 21.69 21.28 

119 23.70 22.76 

120 22.08 23.10 

121 23.54 25.50 

123 23.37 27.31 

125 24.59 25.64 

127 29.29 26.40 

129 30.32 26.39 

131 37.89 29.55 

139 33.28 24.54 

141 35.68 23.08 

143 37.47 21.97 

145 33.02 19.29 

147 30.24 20.38 

149 29.62 20.74 

151 28.29 21.39 

153 28.13 22.63 

157 24.85 20.16 

159 23.12 17.50 

161 25.10 15.28 

163 25.39 14.98 

164 25.98 15.14 

166 26.48 15.13 

167 25.88 12.98 

169 25.68 12.74 
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171 26.65 11.80 

173 26.87 11.59 

179 25.71 10.40 

181 25.72 10.74 

183 25.45 10.18 

184 25.15 9.52 

185 25.01 9.67 

187 23.64 11.04 

189 24.15 11.37 

191 22.10 14.07 

193 22.88 14.35 

195 23.18 14.72 

197 20.97 15.18 

199 29.42 8.44 

201 30.89 8.57 

203 31.14 8.89 

204 23.80 10.90 

205 29.20 6.46 

206 31.66 6.64 

207 31.00 6.61 

208 32.54 6.81 

209 33.76 6.59 

211 34.20 5.54 

213 35.26 6.16 

215 39.95 8.73 

217 42.11 8.67 

219 44.86 9.32 

225 43.53 7.38 

229 36.16 3.49 

231 38.38 2.54 

237 35.37 3.08 
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239 35.76 2.31 

241 35.87 2.11 

243 37.04 .00 

247 35.02 2.05 

249 35.02 1.81 

251 34.15 1.10 

253 32.17 1.88 

255 33.51 2.45 

257 21.17 23.32 

259 20.80 23.40 

261 20.79 21.45 

263 20.32 21.57 

265 25.39 13.60 

267 23.38 12.95 

269 25.03 12.14 

271 25.97 11.00 

273 29.16 7.38 

275 31.07 8.29 

4 24.15 31.06 

5 8.00 27.53 

1 27.46 9.84 

2 32.99 3.45 

3 29.41 27.27 

 

 

[VERTICES] 

;Link             X-Coord          Y-Coord 

 

 

[LABELS] 

;X-Coord           Y-Coord          Label & Anchor Node 
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[END] 

 

B. 4 Results  

B.4.1 Long-term Increase in Failures in Large-Scale System  

 

Figure 48 Projection Probability Distribution Functions 
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