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ABSTRACT

Functional brain imaging experiments are widely conducted in many fields for study-

ing the underlying brain activity in response to mental stimuli. For such experiments,

it is crucial to select a good sequence of mental stimuli that allow researchers to col-

lect informative data for making precise and valid statistical inferences at minimum

cost. In contrast to most existing studies, the aim of this study is to obtain optimal

designs for brain mapping technology with an ultra-high temporal resolution with

respect to some common statistical optimality criteria. The first topic of this work is

on finding optimal designs when the primary interest is in estimating the Hemody-

namic Response Function (HRF), a function of time describing the effect of a mental

stimulus to the brain. A major challenge here is that the design matrix of the sta-

tistical model is greatly enlarged. As a result, it is very difficult, if not infeasible, to

compute and compare the statistical efficiencies of competing designs. For tackling

this issue, an efficient approach is built on subsampling the design matrix and the use

of an efficient computer algorithm is proposed. It is demonstrated through the ana-

lytical and simulation results that the proposed approach can outperform the existing

methods in terms of computing time, and the quality of the obtained designs. The

second topic of this work is to find optimal designs when another set of popularly used

basis functions is considered for modeling the HRF, e.g., to detect brain activations.

Although the statistical model for analyzing the data remains linear, the parametric

functions of interest under this setting are often nonlinear. The quality of the de-

sign will then depend on the true value of some unknown parameters. To address

this issue, the maximin approach is considered to identify designs that maximize the

relative efficiencies over the parameter space. As shown in the case studies, these

maximin designs yield high performance for detecting brain activation compared to

the traditional designs that are widely used in practice.
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Chapter 1

INTRODUCTION

Functional brain imaging is commonly used in research fields such as cognitive neuro-

science, medical science, and psychology for studying functions of the brain and hu-

man behavior. Many neuro-imaging experiments have been conducted by researchers

to understand the inner workings of the brain and many pioneering brain mapping

technologies hold great promise for, among others, diagnosing brain disorder such as

Alzheimer disease. Currently, there exists a number of different imaging techniques

that allow researchers to study some physiological reactions in the brain accompany-

ing brain activation. Each of these techniques provides a unique perspective on brain

function, although they differ in what they attempt to measure, as well as in their

temporal and spatial resolutions.

Functional Magnetic Resonance Imaging (fMRI) is one of the leading brain map-

ping techniques that is used for studying brain activity in response to mental stimuli

or during a resting state. In typical fMRI experiments for studying the effects of

some mental stimuli (e.g., images or sounds) to the brain, each experimental sub-

ject is exposed to a sequence of mental stimuli while lying inside an fMRI scanner

which repeatedly scans the subject’s brain to collect thousands of signals over time.

These signals are measured using the different magnetic properties of deoxygenated

and oxygenated blood. Changes in the fMRI signal intensity mainly follows from

the changes in the ratio of concentrations of deoxygenated and oxygenated blood in

activated brain regions (Bandettini and Cox, 2000). This Blood Oxygenation Level

Dependent (BOLD) signal is an indirect measure of underlying neuronal activity (Lo-

gothetis and Wandell, 2004). The BOLD signals are repeatedly collected by an fMRI
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scanner every τTR seconds (e.g., 2) from each brain voxel (three-dimensional imaging

element) to form fMRI time series. At the end of the experiment, the fMRI scanner

may collect a time series from each of the 64 × 64 × 30 brain voxels, each having a

size of approximately 3× 3× 5mm3 (Lazar, 2008, Section 2.1.1).

Recently, there has been interest in using a new technique called Ultra-Fast fMRI

(UF-fMRI). Efromovich and Valdez-Jasso (2010) proposed a data-driven aggregation

method of two wavelet estimators and applied it to analyze data collected from an

UF-fMRI that scans the brain with a much faster speed (e.g., τTR = 50 ms) than tradi-

tional fMRI. Proulx et al. (2014) considered an UF-fMRI called MR-Encephalography,

with τTR = 100 ms. Lin et al. (2014) showed some advantages of an increased fMRI

sampling rate such as having more robust and sensitive Granger causality estimates

compared to conventional fMRI multi-slice acquisitions. It is also known that sev-

eral other brain mapping techniques, such as Functional Near-Infrared Spectroscopy

(fNIRS) to be introduced in the following paragraph, can attain a similar or an even

higher temporal resolution; see also Table 1 of Scholkmann et al. (2014).

Functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive brain imaging

technique for measuring brain activity based on the absorption of near-infrared light

between 650 and 950 nm through the intact skull (Villringer et al., 1993; Villringer and

Dirnagl, 1995). Like fMRI, fNIRS is a neurovascular coupling-based neuro-imaging

technique that relates functional brain activity to the hemodynamic response (Pinti

et al., 2017). fNIRS is able to measure the distinct concentration changes of oxy-

hemoglobin (HbO), deoxy-hemoglobin (HbR) and total hemoglobin (HbT) from dif-

fusely scattered light measurements (Tak and Ye, 2014). The measurements of near

infrared light reflected from the brain follow the Lambert-Beer law which indicates

that HbO and HbR concentration changes can be estimated using optical density

measurements at two wavelengths (Villringer and Dirnagl, 1995; Ye et al., 2009; Tak
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and Ye, 2014). In comparison to other neuro-imaging techniques, fNIRS is favorable

for its high flexibility, portability, low cost, and higher temporal resolution that allows

researchers to study the temporal behavior of the hemodynamic response to neural ac-

tivation. Moreover, it is suitable and less distressing on children, elderly subjects and

patients who cannot stand the confined environment of fMRI experiments (Schroeter

et al., 2004). However, fNIRS has poor spatial resolution and limited penetration

depth due to the high level of light scattering within the tissue (Ye et al., 2009).

For the previously described neuro-imaging studies, the quality of the collected

data depends on the selected design (i.e. sequence of mental stimuli). Due to the com-

plexity of these experiments, obtaining the best design is a challenging task. This de-

sign issue is normally mathematically intractable and computationally difficult. The

large diversity of the experimental settings and protocols greatly contribute to the

difficulty of design selection. Kao et al. (2009) proposed a genetic algorithm approach,

which has been applied in some studies to address some important event-related fMRI

(ER-fMRI) design issues. Genetic algorithms are metaheuristic algorithms which are

widely considered in various optimization problems. However, this algorithm is not

without flaws. It usually tends to require much CPU time, mainly due to a large

degree of randomness is involved, and it may take several minutes to hours just to

achieve one design as reported in Kao et al. (2009). Additionally, a further restriction

of the previous works on the design of functional neuro-imaging studies is that they

focused only on brain mapping technologies that have relatively low temporal reso-

lutions with, e.g., τTR = 2 seconds. With new advances in neuroscience, many recent

studies now use brain mapping techniques that allow a relatively high temporal reso-

lution. But unfortunately, obtaining a good design for these modern experiments can

be more challenging. One of the major challenges is that the dimension of the design

matrix X in the statistical model is greatly enlarged. As to be explained later in this
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dissertation, this makes it very difficult, if not infeasible, to compute and compare the

statistical efficiencies of competing designs. A novel, efficient approach for obtaining

good designs for these functional neuro-imaging studies is called for.

To date, a variety of functional neuro-imaging studies have been conducted for

estimating the amplitude of evoked HRFs across different tasks. There is also a

growing interest in studying the response latency and duration of activation. For

studying these different aspects, choices of HRF models vary from a single canonical

HRF to the nonlinear models. One of the popular basis functions is suggested by

Glover (1999) to model the HRF by a double-gamma function, which is a linear

combination of two Gamma probability density functions; see (2.1). This model

assumes a fixed HRF shape for every brain region (voxel or channel) and for every

subject. This assumption is not always valid as studies showed that the HRF shape

may vary across brain regions and people, and that a misspecified shape can lead to

wrong conclusions. To allow for uncertain HRF shapes, statistical analysis methods

such as the use of nonlinear models have been studied; e.g., Lindquist and Wager

(2007), Lindquist et al. (2009), Maus et al. (2010), and Kao et al. (2013). Another

popular method suggested by Friston et al. (1998) is based on the double-gamma

function and its partial derivative with respect to its delay. The use of the temporal

derivative of the double-gamma function helps to capture differences in the onset times

of the HRFs. To our knowledge, there currently exists no systematic research on the

selection of optimal design for this popularly used model. Some of our findings in

studying this design issues for fast neuro-imaging is also presented in this dissertation.

In this work, we are concerned with the experimental design problems for func-

tional neuro-imaging studies when brain mapping technology with high temporal

resolution is used. We introduce the relevant background information for this study

in Chapter 2. In Chapter 3, we discuss the first topic on the subsampling approach
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of the design matrix and illustrate some case studies to demonstrate the usefulness of

this approach in obtaining optimal designs for estimating the HRF. In Chapter 4, we

introduce the second topic on obtaining optimal designs when the HRF is modeled

by a linear combination of the double-gamma function and its temporal derivative.

A conclusion is provided in Chapter 5.
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Chapter 2

BACKGROUND

2.1 Experimental Design Settings

In a functional brain imaging experiment, there might be tens or hundreds of

stimuli, possibly of different types, presented to the subject at different time points.

Suppose that the experimenter is interested in studying Q different types of stimuli

(e.g., Q different images). Q is normally much smaller than the total number of

stimuli, and the stimulus of each type will be presented at multiple time points during

the experiment. We further assume that, starting at Time 0, a stimulus can possibly

occur every τISI seconds (e.g.,τISI = 3 seconds); each stimulus does not last longer

than τISI , but stimuli of the same type have the same presentation duration (e.g.,

1 seconds). During the time between the presentations of two consecutive stimuli,

there will be a control period; e.g., a rest period or a visual fixation for studies

with visual stimuli. For convenience, we also set the duration of the experiment to

(N−1)τISI for an integer N . With this experimental setting, we use d = {d1, · · · , dN}

to represent a design (stimulus sequence), where dn ∈ {0, 1, ..., Q} determines the type

of the stimulus to be presented at time (n−1)τISI where n = {1, · · · , N}. Specifically,

dn = 0 indicates no stimulus presentation, whereas dn = q > 0 indicates an onset

of the qth-type stimulus at the nth time point. While the stimulus sequence d is

being presented to the subject, an brain mapping instrument (e.g., fMRI or fNIRS)

repeatedly collects the data, y, from each region of the brain every τTR seconds. The

collected data can be used to make an inference about the effect of the stimuli to the

brain. At an activated brain region, there will be a fluctuation in the intensity of the
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BOLD or fNIRS signals following a stimulus onset. This signal change is typically

described by a function of time called the Hemodynamic Response Function (HRF).

Counting from the onset of the stimulus, the HRF may take τdur to completely return

to the baseline; e.g. τdur = 32 seconds for a brief (∼ 1 seconds) stimulus. The HRF is

the primary interest to neuroscientists and studying the HRF helps to understand the

effect of each stimulus type to the brain. With Q stimulus types in the study, a study

objective of interest is to estimate the corresponding Q HRFs; we note that stimuli

of the same type are typically assumed to give rise to the same HRF throughout the

study. Another study objective, which often is referred to as the detection problem, is

to detect the regions of the brain that are activated by the stimuli. For the detection

problem, the HRF is commonly approximated by the product of an assumed shape

of the HRF basis function and an unknown coefficient. One of the popular basis

functions used in fMRI/fNIRS studies (Glover, 1999; Ye et al., 2009; Pinti et al.,

2017; Uga et al., 2014) is the double gamma function which has the following form:

h∗(t) =
t5e−t

5!
− 1

6
· t

15e−t

15!
. (2.1)

This double-gamma function is a linear combination of two Gamma probability den-

sity functions and h∗(t) is nearly zero after 32 seconds.

2.2 General Linear Models

Friston et al. (1995) were among the first to apply the general linear model, which

assumes that data can be represented as a linear combination of several regressors

plus a random error, in the analysis of fMRI time series (see also Worsley and Friston,

1995; Dale, 1999). On the other hand, Schroeter et al. (2004) and some other stud-

ies have applied general linear model in the analysis of fNIRS experiments (Plichta

et al., 2006, 2007; Koh et al., 2007; Ye et al., 2009; Jang et al., 2009). Huppert
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et al. (2009) introduced the first publicly available fNIRS analysis package (HomER),

which uses a linear model and standard statistics to deal with fNIRS time-series and

functional analysis techniques. Tak and Ye (2014) provided an extensive review of

historical developments of fNIRS including both existing signal processing approaches

and existing works of the statistical inference techniques.

Most analyses of functional neuro-imaging data often assume that the HRFs

evoked by stimuli of the same type have the same shape and amplitude through-

out the experiment. Depending on the selected design (i.e. stimulus sequence), it is

often the case (and is preferred) that some HRFs overlap as a result of stimuli appear-

ing in close succession; i.e., the next stimulus appears when the HRFs of the previous

stimuli have not yet returned to the baseline. In many cases, the overlapping HRFs

can be assumed to accumulate additively to contribute to the overall measured signal;

this is especially true when τISI is not too brief. Most linear models used in neuro-

imaging studies are built upon these assumptions. In these models, a basis function

such as (2.1) is often used to model the shape of the HRF. It is also not uncommon to

model the HRF by using the so-called Finite Impulse Response (FIR) basis functions.

Specifically, the ith FIR basis function has a value of 1 in [(i− 1)(∆T ), i(∆T )] and is

0 otherwise, where ∆T is the greatest value that divides both τTR and τISI . Huppert

et al. (2009) demonstrated the use of the FIR basis functions in HomER to allow re-

searchers to visualize the shape of the HRF, and it allows HRFs of arbitrary shapes.

Moreover, structured physiological noise and motion artifacts can affect fMRI and

fNIRS results if they are not properly accounted for (Huppert, 2016). Furthermore,

the autocorrelation of the collected data should be taken into account when analyzing

functional neuro-imaging experiments. In what follows, we describe some commonly

used general linear models for functional neuro-imaging studies.

The following linear model is commonly considered in many fMRI studies (Dale,
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1999; Liu and Frank, 2004; Kao et al., 2009), and similar models are also applied in

many fNIRS studies (Huppert et al., 2009; Barker et al., 2013; Huppert, 2016).

y = Xh+ Sγ + ε, (2.2)

where y is a T × 1 vector of the signals collected by, e.g., fMRI or fNIRS from brain

region and X is the T × (QK) design matrix for the parameter vector h; the matrix

X is determined by the selected design d. The (QK) × 1 vector h = (h′1, ...,h
′
Q)′

corresponds to the Q HRFs with hq = (hq1, ..., hqK)′ representing the unknown heights

of the HRF for the qth-type stimulus at the stimulus onset (hq1) and the following

K− 1 (regularly spaced) time points. Specifically, the set of K FIR basis functions is

used to model each HRF, and hq consists of the K corresponding coefficients for these

basis functions. It is noteworthy that hqk is the HRF height at (k − 1)∆T seconds

after the stimulus onset; q = 1, ..., Q, k = 1, ..., K, and K = b1 + τdur/∆T c with bac

being the integer part of a. With the previously defined ∆T , the HRF parameters h

will contain all the HRF heights that can possibly contribute to y; see also Kao et al.

(2009). The specified matrix S and the unknown parameter vector γ are included in

Model (2.2) for modeling some nuisance effects such as the physiological noise and

motion artifacts (which often appears as a trend or drift of y). The error ε is Normally

distributed with expectation 0 and variance-covariance matrix Σ. Model (2.2) is often

used for estimating the (shape of) the HRFs, h.

When a set of b basis functions is used to model the shape of the HRF, we may

replace h in Model (2.2) by Hθ. Here, H is (IQ⊗H∗) where H∗ is K× b matrix of

the basis functions and θ consists of the Qb unknown coefficients. For example, H∗

can be a vector (b = 1) formed by h∗(t) in (2.1) or a matrix (b = 3) formed by h∗(t)

and its first and second derivatives. In these cases, the statistical model considered
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for analyzing y becomes:

y = XHθ + Sγ + ε, (2.3)

where a considered θ = [θ′1, . . . ,θ
′
Q]′ represents the coefficients with θq = [θq1, ..., θqb]

′,

q = 1, · · · , Q. All the remaining terms of Model (2.3) are as in Model (2.2). It is

noteworthy that the first term on the right hand side of (2.3) represents the convolu-

tion of the event onsets with the assumed basis functions of the HRF. Additionally,

Model (2.2) can be viewed as a special case of Model (2.3) by setting H∗ to the

identity matrix (IK) of size K; the H matrix corresponds to the FIR basis functions.

2.3 Temporal Autocorrelations in fNIRS and fMRI Time Series

The autocorrelation of the collected BOLD signals is commonly modeled by the

AR(1) process (Bullmore et al., 1996). This is especially true for traditional fMRI

settings when τTR is not very small. Also, the use of the AR(2) process is not

uncommon in the literature (Lindquist et al., 2008). Some traditional fMRI studies

have modeled noise in alternative ways such as using the mth order autoregressive

model, AR(m), (Worsley et al., 2002) or first order autoregressive moving-average,

ARMA(1, 1) model (Purdon et al., 2001).

Some fNIRS studies also have applied AR(1) process for the correlated errors

(Plichta et al., 2006; Hofmann et al., 2008; Jang et al., 2009; Tak et al., 2016). We thus

assumed in our case studies that the error terms follow a stationary AR(1) process,

although some other correlation structure such as AR(m) with m > 1 may also be

considered. It is noteworthy that Barker et al. (2013) proposed a general algorithm for

solving the general linear model in the context of deconvolution (by using FIR basis

functions) and canonical regression models for fNIRS that combines two established

statistical methods: AR(m) models and iteratively re-weighted least squares. Their

results demonstrated that the AR(1) model was insufficient for controlling type I
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errors. With this, an AR(m) model with m > 1 might be recommended for fNIRS

studies or other functional neuro-imaging studies with a high temporal resolution.

While we assume an AR(1) model for simplicity, our proposed method is not restricted

to such a simple process and can be considered when other models are used.

2.4 Optimality Criteria

When the estimations of h in Model (2.2) or θ in Model (2.3) are of interest,

we would like an optimal design yielding the best least squares estimates, ĥ or θ̂;

respectively. Precisely, the Generalized Least Square Estimators (GLSE) are (Seber,

1977): 
ĥ = (X ′WX)−1X ′Wy, for estimation Model (2.2);

θ̂ = (H ′X ′WXH)−1H ′X ′Wy, for detection Model (2.3).

where W = V ′(IT − PV S)V and PV S = V S((V S)′V S)−1(V S)′ is the orthogonal

projection matrix onto the column space of V S, V is a matrix satisfying V ΣV ′ ∝ IT ,

and IT is the T -by-T identity matrix. Following the theorem for the inverse of

partitioned matrices (Harville, 1977; Seber, 1977; Rencher and Schaalje, 2008), the

information matrices M can be written as:
M (h) = X ′WX;

M (θ) = H ′X ′WXH .

(2.4)

We target a design d that makes this information matrix as ’large’ as possible; note

that M (h) and M (θ) both depend on d through the design matrix X.

Dale (1999) and Friston et al. (1999) evaluated the quality of designs by consider-

ing the A-optimality criterion which can be formulated as the reciprocal of the trace of

the inverse information matrix or the variance-covariance matrix. This criterion has

then been applied in many fMRI design studies (Liu et al., 2001; Wager and Nichols,
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2003; Liu and Frank, 2004; Kao et al., 2009; Maus et al., 2010). In addition to the

A-optimality criterion, the D-optimality criterion helps to find designs maximizing

the determinant of M (h) or M (θ). This latter criterion also has been considered

in, e.g., Wager and Nichols (2003). For a non-singular M , the previously mentioned

criteria can be defined as follows:

φ(d) =


R/tr(M−1), for A-optimality;

1
R log det(M ), for D-optimality.

(2.5)

Here R is set to QK for Model (2.2) and Qb for Model (2.3) which corresponds to the

number of the parameters of interest. For the designs which make M singular, we set

φ(d) to 0. It also should be clear that, with the criteria in (2.5), the error variance

Var(εt) = σ2 does not impact the selection of designs. Without loss of generality, we

assume σ2 = 1 throughout this dissertation.

Finding an optimal design that maximizes the A-criterion or D-criterion normally

requires efficient computer search algorithm. In cases where the information matrix

depends on unknown parameters, it is useful to obtain a robust design that performs

relatively well over the possible value of the unknown parameters. One approach

to achieve such a design is the maximin approach. In the next section, we describe

maximin approach and the genetic algorithm of Kao et al. (2009) for finding optimal

designs for fMRI studies.

2.5 Maximin Approach

The main idea is to select an optimal design to efficiently achieve the study objec-

tives (estimation and/or detection) by maximizing specific statistical criteria. How-

ever in some cases, these selected criteria may involve an unknown parameter vector,

say, ϕ whose value is normally uncertain at the design stage. One of the way to

solve this problem is to consider a locally optimal design, which is the best design
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for a given parameter vector value (Chernoff, 1953). Because a good guess for the

parameter vector value is not always available, another possible approach we may

consider is the maximin approach, which has been considered by Maus et al. (2010),

Kao et al. (2013) and Kao and Mittelmann (2014). The aim is at finding a design

that is rather robust to a mis-specification of the ϕ-value. In particular, this is to

obtain a maximin design d∗Mm that maximizes

min
ϕ∈Ω

RE(d;d∗ϕ) = min
ϕ∈Ω

φ(d;ϕ)

φ(d∗ϕ;ϕ)
, (2.6)

where Ω is the parameter space of ϕ, φ(d;ϕ) represents the value of the selected, the

larger-the-better optimality criterion for a candidate design d evaluated at a given ϕ-

value, d∗ϕ is the locally optimal design maximizing φ for the given ϕ. With these d∗ϕs,

we find minϕ∈Ω RE(d;d∗ϕ) for each candidate design d. To obtain minϕ∈Ω RE(d;d∗ϕ),

we typically will need to find locally optimal designs d∗ϕ for all the ϕ-values over

(a finite subset of) Ω. Solving such a maximin design problem can be very time

consuming. An efficient computational approach is often needed.

2.6 A Genetic Algorithm for Obtaining fMRI/fNIRS Designs

To search for a good design over the enormous space of all the candidate designs,

Wager and Nichols (2003) advocated the use of the Genetic Algorithm (GA) tech-

nique. Later, Kao et al. (2009) proposed an improved GA which not only is faster

but also can obtain fMRI designs that outperform those achieved by the algorithm

of Wager and Nichols (2003).

In this study, we adapt Kao et al. (2009)’s GA to our first research topic. A brief

description of the GA is in Algorithm 1.

A MATLAB program implementing this algorithm can be found in Kao (2009).

When using this algorithm, we use the default values for the algorithmic parameters
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Algorithm 1

Step 1. (Initial designs) Generate G (an even integer) initial designs as parents,

which include blocked designs, random designs, m-sequence-based designs, and

mixed designs. Obtain their design efficiencies based on the selected optimality

criterion.

Step 2. (Crossover) With probability proportional to the design efficiency, randomly

draw with replacement G/2 pairs of distinct parent designs to crossover, i.e. to

select a random cut-point and exchange the corresponding fractions before the

cut-point of the paired designs.

Step 3. (Mutation) Randomly select a portion (q%) of the elements of all the G

designs obtained in Step 2, and randomly replace these elements with randomly

generated integers from the discrete uniform distribution over 0, 1, 2, . . . , Q. The

resulting G designs form the offspring designs.

Step 4. (Immigration) Randomly generate I immigrant designs from random de-

signs, blocked designs, and their combinations (i.e. mixed designs).

Step 5. (Fitness) Obtain the design efficiencies of the offspring and immigrant de-

signs obtained in Steps 3 and 4.

Step 6. (Natural selection) Select the best G designs from the pool of the parent,

offspring, and immigrant designs to form the parents of the next generation and

discard the others.

Step 7. (Stop) Repeat Steps 2 through 6 until a stopping rule is met. Then, keep

track of the best design over generations.
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presented in Kao (2009); i.e., G = 20, q% = 1%, and I = 4. The stopping rule that

we use in the numerical result is the second stopping rule described in Kao (2009).

That is, the algorithm will be stopped once there is no significant improvement in

the achieved value of the optimality criterion. During the process, the accumulated

improvement of the design efficiency is calculated every 200 generations of the GA,

and is compared to the improvement achieved in the first 200 GA generations. The

search is terminated once the improvement in the last 200 generations is no more than

10−7 of that of the first 200 generations. In addition, we present below the initial

designs that are included in the GA:

Random designs. Each element of a random design is generated randomly from a

discrete uniform distribution over {0, 1, . . . , Q}.

M-sequences. These designs are known as maximum-length shift register sequences,

and are introduced to fMRI by Buracas and Boynton (2002). Specifically, an m-

sequence is a Linear Recurring Sequence (LRS) over a finite field GF (Q+ 1) of

length N = (Q+1)p−1 for some integer p when Q+1 is a prime power; see Kao

and Stufken (2015) for more details. These designs are known to outperform

many other designs in estimating the HRFs, and can be easily generated by the

MATLAB program of Liu (2004).

Blocked designs. We consider blocked designs having a 16 seconds-on-16 seconds-

off pattern (e.g., rest period). For example, when Q = 1, the first 16 seconds

is the off-period, and no stimulus is presented. During the next 16 seconds,

stimuli of the same type is presented every τISI . This pattern is repeated for

several cycles until the end of the experiment. These designs are known to

perform well in the detection of activated brain regions. However, they do not

perform well when the estimation of the HRF is of the primary interest, and
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may rise the issue of confounding psychological effects (e.g., subject habituation

or anticipation).

Mixed designs. These designs are usually obtained by concatenating a fraction of

a blocked design with a fraction of an m-sequence ( or a random design). These

designs are sometimes considered when both estimating the HRF and detecting

brain activations are of interest.
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Chapter 3

A GENERAL LINEAR MODEL FOR ESTIMATION

One of the study objectives in many functional imaging studies is to estimate the

HRF. By considering a model that is the same or similar to (2.2), some high-quality

designs for yielding a precise estimate of the HRF have been proposed in literature.

For example, Dale (1999) indicated that random designs that have no perceivable

pattern tend to yield a high statistical efficiency for estimating the HRF, h. Buracas

and Boynton (2002) advocated the use of m-sequences, whereas Aguirre et al. (2011)

proposed the consideration of some de Bruijn sequences. Kao (2014, 2015) then

put forward designs that can be generated by some Hadamard sequences and Paley-

difference sets. Discussions on the optimality of the previously mentioned designs

and their variants can be found in Kao (2013), Cheng et al. (2015) and Cheng et al.

(2017). Lin et al. (2017) then extended some of the previous results to obtain optimal

or highly efficient designs by using a certain type of orthogonal arrays, called circulant

(almost-)orthogonal arrays.

However, the previous research has so far been focused only on traditional fMRI

studies with a relatively low temporal resolution (e.g., τTR = 2 seconds). To our

knowledge, there is no guideline on the selection of optimal design for high temporal

resolution neuro-imaging studies. One of our main goals is to address this void. In

what follows, we first describe a major challenge on obtaining optimal designs for

high temporal resolution neuro-imaging studies. We then propose an approach for

tackling this challenge to efficiently obtain good designs for estimating the HRF in

functional neuro-imaging experiments that utilize an ultra-fast or higher temporal

resolution brain imaging technique.
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3.1 Methodology

The linear model (2.2) is considered for modeling the data collected from exper-

iments having high temporal resolution brain imaging. For this type of experiment,

a brain mapping instrument (e.g. fMRI or fNIRS) collects the measured signals with

high sampling rate (i.e. a small τTR). This high sampling rate will greatly enlarge the

length of the HRF parameter vector h and the size of the information matrix. This

makes obtaining the optimal design very challenging. We now describe our proposed

method for tackling this challenging design issue. To describe the main idea of our

proposed method, we consider both cases whether τTR divides τISI or not and rewrite

Model (2.2) as:

y = Xshs +Xrhr + Sγ + ε, (3.1)

for some judiciously selected sub-design matrix Xs. Specifically, possibly after some

column permutations, the design matrix X in (2.2) is partitioned as X = [Xs,Xr],

and correspondingly h = (h′s,h
′
r)
′. All the remaining terms in (3.1) are defined as

in (2.2). Instead of considering this full model, our main idea is to obtain an optimal

design for hs by considering the following reduced model:

y = Xshs + Sγ + ε. (3.2)

An explanation for our selection of Xs and hs will be provided below. With a given

p and j, we obtain hs by sub-sampling each HRF parameter vector, hq. Specifically,

hs = (h′s1, · · · ,h′sQ)′, where hsq = (hq,j, hq,(p+j), · · · , hq,(bK−j
p
cp+j))

′ is a subvector of

hq selected with specific p and j. With j = 1, each hsq consists of the unknown HRF

heights of the qth-type stimuli at (post-stimulus) time points 0, p(∆T ), 2p(∆T ), · · · ,

bK−1
p
cp(∆T ); recall that ∆T is the greatest value that makes both (τTR/∆T ) and

(τISI/∆T ) integers. With such hs, Xs can be formed accordingly. Specifically, we
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may write X = [X1, · · · ,XQ] in Model (3.1) with Xq being the design matrix for

the qth-type stimuli, and write Xs = [Xs1, · · · ,XsQ] in Model (3.2). The matrix

Xsq then consists of Columns j, (p+ j), (2p+ j), · · · , (bK−j
p
cp+ j) of Xq. Note that

Xr in (3.1) is then the collection of all the remaining columns of X. The selection

of Xs is further explained below.

To begin, we describe a general construction of the design matrix X for a given

design d = {d1, . . . , dN}. In order to construct the design matrix for the qth-type

stimulus, we first define δq as the 0-1 indicator vector for the qth-type stimulus; see

also Kao and Stufken (2015); Kao et al. (2012). Specifically, the nth element of δq is

δq,n = 1 if the corresponding dn in the design d = {d1, . . . , dN} is the qth stimulus

type (i.e. dn = q); otherwise, δq,n = 0. Define ωq as the onset times of the qth-type

stimulus in the resolution of ∆T . We have,

ωq = δq ⊗ [1,0
′

mISI−1]
′
.

Here, we assume that the number of observations T is N(τISI/τTR) and mISI =

τISI/∆T . By deleting rows from ωq and keeping only rows 1 + (i − 1)mTR, the

resulting ωq is then used to construct Xq as follows:

Xq = [IT ⊗ (1,0′mTR−1)][ωq,Bωq,B
2ωq, .,B

K−1ωq]; q = 1, · · · , Q,

where mTR = (τTR/∆T ), i = 1, 2, ..., 1+[(T−1)/mTR], IT is T×T , K = bτdur/∆T c+

1, and B =

 0′ 0

IT−1 0

 .
The following three steps are considered for obtaining Xs:

Step X-1. PartitionX asX = [X1, · · · ,XQ] whereXq is the 0-1 design matrix for stimuli

of the qth type.
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Step X-2. Set p = mISI (or one of its divisors) such that p > mTR and keep columns

j, (j + p), (j + 2p), · · · , (j + bK−j
p
cp) of Xq for j = 1, · · · ,mTR and leave out

the other columns to form Xsq for q = 1, · · · , Q.

Step X-3. Set Xs = [Xs1,Xs2, ...,XsQ].

Each design matrix Xsq can be written as Xsq = [Xsq,1,Xsq,2, ...,Xsq,mTR ] and each

design matrix Xsqj can be written as:

Xsq,j = [IT ⊗ (1,0′mTR−1)][Bj−1ωq,B
p+j−1ωq,B

2p+j−1ωq, .,B
bK−j/pcp+j−1ωq],

where j = 1, · · · ,mTR

As a toy example, we consider a design d = {1, 1, 1, 0, 0, 0} with Q = 1, τISI = 2

seconds, τTR = 0.8 seconds, and ∆T = 0.4 seconds. We further assume τdur = 4

seconds for illustration purposes. In this case, K = b4/∆T c+ 1 = 11, mISI = 5, and

Xh =



1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...





h1

h2

h3

h4

h5

...

h11



.

By using the previous approach, Xs can be subsampled from X for, e.g., p = 4 with

cluster of mTR = 2 and Xr contains the remaining columns of X. Specifically, we

20



have

Xshs =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

...
...

...
...

...
...





h1

h2

h5

h6

h9

h10


,Xrhr =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 1 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

...
...

...
...

...





h3

h4

h7

h8

h11


.

But, if we set p = 5 as an example of the divisor of mISI , we have:

Xshs =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 1 0

0 0 0 0 0

1 0 1 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

...
...

...
...

...





h1

h2

h6

h7

h11


,Xrhr =



0 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 1 0 0 1

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

...
...

...
...

...
...





h3

h4

h5

h8

h9

h10


.

We note that the columns ofXs are orthogonal to every column ofXr; i.e. X ′sXr = 0

when we set p = 5 but this is not true when p = 4.

As a special case when τTR = ∆T (i.e. mTR = 1), we consider the same design

d = {1, 1, 1, 0, 0, 0} for simplicity with Q = 1, τISI = 2 seconds, but τTR = ∆T = 0.4

seconds. Again, we further assume τdur = 4 seconds for illustration purposes. In this

case, K = b4/∆T c+ 1 = 11, mISI = 5, and
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Xh =



1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1

...
...

...
...

...
...

...
... · · · . . .

...





h1

h2

h3

h4

h5

...

h11



.

By using the previous approach, Xs can be subsampled from X for, e.g., p = 2

and Xr contains the remaining columns of X. Specifically, we have

Xshs =



1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

...
...

...
...

...
...





h1

h3

h5

h7

h9

h11


,Xrhr =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 1 0 0 0

...
...

...
...

...





h2

h4

h6

h8

h10


.

For this toy example, the ordinary least square estimator (OLSE) of hs = (h1, h3, h5, h7, h9, h11)′

in Model (3.2) is ĥs = (X ′sXs)
−1X ′sy. By first assuming that Sγ = 0 and Σ = σ2IT ,

we see that the expectation of ĥs under the full Model (3.1) is E(ĥs) = hs + Ahr

where A is the alias matrix,

A = (X ′sXs)
−1X ′sXr =



0 0 1
3

0 0

0 0 0 1
3

0

0 0 0 0 1
3

1
3

0 0 0 0

0 1
3

0 0 0

0 0 1
3

0 0


.
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Clearly, ĥs is biased by an amount that depends on the elements of both A and hr,

and here,

E(ĥs) =



ĥ1

ĥ3

ĥ5

ĥ7

ĥ9

ĥ11


=



h1 + 1
3
h6

h3 + 1
3
h8

h5 + 1
3
h10

h7 + 1
3
h2

h9 + 1
3
h4

h11 + 1
3
h6


.

But, if we set p = mISI = 5, we have:

Xshs =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 1 0

0 0 0

0 0 0

...
...

...




h1

h6

h11

 ,Xrhr =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

...
...

...
...

...
...

...
...





h2

h3

h4

h5

h7

h8

h9

h10


.

The OLSE of hs = (h1, h6, h11)′ is ĥs = (X ′sXs)
−1X ′sy, and again by assuming

Sγ = 0, the expectation of ĥs is now E(ĥs) = hs. This follows directly from the fact

that the columns of Xs are orthogonal to every column of Xr; i.e. X ′sXr = 0, and

is generally true due to the following well-known result (the proof is omitted):

Lemma 3.1.1 The OLSE of ĥs of y = Xshs + ε is unbiased for hs under the full

model y = Xshs +Xrhr + ε whenever X
′

sXr = 0.

The key idea of our proposed design approach is to utilize the φ-value (2.5) of

the information matrix, M s = X ′sWXs of hs in Model (3.2) in lieu of that of
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the ‘full’ information matrix M = X ′WX of h of Model (3.1). Here we denote

the former φ-value as φ(d|Xs), and refer the latter one to as φ(d|X); i.e. φ(d|Xs)

serves as a surrogate objective function for φ(d|X). Under certain conditions, we

show that a judiciously selected Xs not only allows an unbiased estimate of hs as

suggested by Lemma 3.1.1, but also can make φ(d|Xs) a good surrogate of φ(d|X).

By moving away from some of these conditions, our simulation results further suggest

that the use of φ(d|Xs) allows us to efficiently identify very good designs for some

realistic situations. To present our results, we first note that most optimality criteria

φ, including those in (2.5), are invariant to a simultaneous permutation of rows and

columns of the information matrix. Consequently, a permutation of the columns of

X will not change the value of φ(d|X). For simplicity, we thus will continue to write

X even at places where XP should be used with a permutation matrix P ; i.e., we

omitted such a P matrix hereinafter.

As in the previous toy example, we continue to consider the following assumptions:

Assumption 1. Σ = σ2IT , is the T -by-T identity matrix.

Assumption 2. The nuisance term Sγ = 0.

Assumption 3. The total scanning time will allow the HRF evoked by the last stim-

ulus of any selected design to return to its baseline. Note that this assumption

is not a strong assumption, and it is often achieved in practice.

Assumption 4. We consider cases with K mod p = 0.

With these assumptions, it can be easily seen that X
′
WX = X

′
X whose diago-

nal elements are the same. With mTR = 1 (i.e. τTR divides τISI), we may write Xq =

[xq,1, ...,xq,K ] where xq,k is the kth column. Then, under Assumption 3, Bk−1xq,1 =

Lk−1xq,1, where L is the same as B, except that the (1, T )th element of L is 1 in-
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stead of 0; i.e. xq,k is a cyclic shift of xq,k−1. Therefore, x
′
q,ixq,j = x′q,1L

j−ixq,1. For

mathematical simplicity and under Assumption 4, we write Xs = [Xs,1, ...,Xs,mTR ],

where Xs,j = [Xs,j1, ...,Xs,jQ] and Xs,jq = [xq,j, ..., xq,b qK−jp cp+1]. Thus, we obtain

the following matrices from (subsampling) X:

Xs =

[
Xs,1 · · · Xs,mTR

]
=
[
(x1,1,x1,p+1, · · · ,xQ,bQK−1

p cp+1) ... (x1,mTR ,x1,p+mTR , · · · ,xQ,
⌊
QK−mTR

p

⌋
p+mTR

)

]
,

X(1)
r =

[
(x1,mTR+1, · · · ,xQ,bQK−1

p cp+mTR+1)

]
= LXs,1,

X(2)
r =

[
(x1,mTR+2, · · · ,xQ,bQK−2

p cp+mTR+2)

]
= LXs,2,

...

X(mTR)
r =

[
(x1,2mTR , · · · ,xQ,

⌊
QK−mTR

p

⌋
p+2mTR

)

]
= LXs,mTR ,

X(mTR+1)
r =

[
(x1,2mTR+1, · · · ,xQ,bQK−1

p cp+2mTR+1)

]
= L2Xs,1,

...

X(2mTR)
r =

[
(x1,3mTR , · · · ,xQ,

⌊
QK−mTR

p

⌋
p+3mTR

)

]
= L2Xs,mTR ,

...

X(p−1)
r =

[
(x1,p+mTR−1, · · · ,xQ,bQK−1

p cp+p+mTR−1)

]
= L

d p−mTR
mTR

e
Xs,1,

...

X(p−mTR)
r =

[
x1,p x1,2p x1,3p · · · xQ,

⌊
QK−mTR

p

⌋
p+p

]
=L

d p−mTR
mTR

e
Xs,l.

l =


1 , when p mod mTR = 0;

g , when p mod mTR 6= 0,

(3.3)
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where g ∈ {1, · · · ,mTR − 1} such that p = a×mTR + g for some integer a. For the

first case of (3.3) when p mod mTR = 0, we can obtain the following matrices from

(subsampling) X or it can be derived from the previous matrix when mTR = 1:

Xs =

[
x1,1 x1,p+1 · · · xQ,bQK−1

p
cp+1

]
,

X(1)
r =

[
x1,2 x1,p+2 · · · xQ,bQK−1

p
cp+2

]
= LXs,

X(2)
r =

[
x1,3 x1,p+3 · · · xQ,bQK−1

p
cp+3

]
= L2Xs,

...

X(p−1)
r =

[
x1,p x1,2p · · · xQ,bQK−1

p
cp+p

]
= Lp−1Xs.

The Xr matrix in (3.1) is then defined as Xr = [X(1)
r , · · · ,X(p−1)

r ]. It is noteworthy

that when p is mISI or its divisors, we can have Xs orthogonal to Xr and X(i)
r

orthogonal to X(j)
r for i 6= j.

Proposition 3.1.2 With the previously described assumptions 1-4 and when p is

mISI or one of its divisors, and mTR = 1 s.t. p > mTR, we have: φ(d|X) = φ(d|Xs).

Proof: We write X ∼ Z when X and Z are similar matrices. With Xs, and Xr
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defined above, and p being mISI or its divisor, we have:

X ′X ∼

X ′sXs 0

0 X ′rXr

 =



X ′sXs 0 · · · 0

0 X ′r
(1)
Xr

(1) . . .
...

...
. . . . . . 0

0 · · · 0 X ′r
(p−1)

Xr
(p−1)


(3.4)

=



X ′sXs 0 · · · 0

0 X ′sXs
. . .

...

...
. . . . . . 0

0 · · · 0 X ′sXs


. (3.5)

The last equality follows from the orthogonality ofX(i)
r andX(j)

r and that (X(j)
r )′X(j)

r =

(Lj−1Xs)
′(Lj−1Xs) = X ′sXs. For designs that makes h (and thus hs) estimable, we

have:

tr[(X
′
X)−1] =p tr((X ′sXs)

−1). (3.6)

log det[(X
′
X)] =p log det(X ′sXs). (3.7)

Then, we substitute (3.6) in (2.5) for A-optimality as follows:

φ(d|X) =R/ tr((X
′
X)−1)

=R/(p tr((X ′sXs)
−1))

=Rs/ tr((X ′sXs)
−1)

=φ(d|Xs).

The third equality, R/p = Rs, where Rs corresponds to the number of columns of
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Xs. Also, we substitute (3.7) in (2.5) for D-optimality as follows:

φ(d|X) =
1

R
log det(X

′
X)

=
p

R
log det(X ′sXs)

=
1

Rs

log det(X ′sXs)

=φ(d|Xs).

For the second case when p mod mTR 6= 0, i.e. mTR 6= 1, we have the following

proposition.

Proposition 3.1.3 With the previously described assumptions 1-4 and when p is

mISI or its divisors and mTR 6= 1, we have φ(d|X) < φ(d|Xs) as:

i. for A-optimality:

φ(d|X) ∝Rs/
[
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1) + ∆1

]
.

φ(d|Xs) =Rs/
[
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1)

]
.

Here, ∆1 = tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,lXs,l)
−1), where l = g.

ii. for D-optimality:

φ(d|X) ∝ 1

Rs

[
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR)) + ∆2

]
.

φ(d|Xs) =
1

Rs

[
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR))

]
.

Here, ∆2 = log det((X ′s,1Xs,1) + · · ·+ (X ′s,lXs,l)), where l = g.

Proof: We write X ∼ Z when X and Z are similar matrices. With Xs, and Xr
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defined above, and p being mISI or its divisor, we have:

X ′X ∼

X ′sXs 0

0 X ′rXr

 =



X ′sXs 0 · · · 0

0 X ′r
(1)
Xr

(1) . . .
...

...
. . . . . . 0

0 · · · 0 X ′r
(p−mTR)

Xr
(p−mTR)



=



X ′s,1Xs,1 0 · · · 0

0 X ′s,2Xs,2
. . .

...

...
. . . . . . 0

0 · · · 0 X ′r
(p−mTR)

Xr
(p−mTR)


.

(3.8)

Where X ′sXs =



X ′s,1Xs,1 0 · · · 0

0 X ′s,2Xs,2
. . .

...

...
. . . . . . 0

0 · · · 0 X ′s,mTRXs,mTR


.

For designs that makes h (and thus hs) estimable, we have:

tr[(X
′
X)−1] = tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1)+

tr((X ′r
(1)
Xr

(1))−1) + · · ·+ tr((X ′r
(p−mTR)

Xr
(p−mTR))−1)

=

⌈
p−mTR

mTR

⌉ [
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1)

]
+ ∆1.

(3.9)

log det[(X
′
X)] =

⌈
p−mTR

mTR

⌉
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR)) + ∆2.

(3.10)

where ∆1 = tr((X ′s,1Xs,1)−1)+ · · ·+tr((X ′s,lXs,l)
−1), and ∆2 = log det((X ′s,1Xs,1)+

· · ·+ (X ′s,mTRXs,l)).
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Then, we substitute (3.9) in (2.5) for A-optimality as follows:

φ(d|X) =R/ tr((X
′
X)−1)

=R/
(⌈

p−mTR

mTR

⌉ [
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1)

]
+ ∆1

)
∝Rs/

(⌈
p−mTR

pmTR

⌉
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1) +

1

p
∆1

)
∝Rs/

[
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1) + ∆1

]
.

φ(d|Xs) =Rs/
(
tr((X ′s,1Xs,1)−1) + · · ·+ tr((X ′s,mTRXs,mTR)−1)

)
.

HereR = Rs×p and dp−mTR
pmTR

e ≈ 1. Also, we substitute (3.10) in (2.5) forD-optimality

as follows:

φ(d|X) =
1

R
log det(X

′
X)

=
1

R

[⌈
p−mTR

mTR

⌉
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR)) + ∆2

]
∝ 1

Rs

[
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR)) + ∆2

]
.

φ(d|Xs) =
1

Rs

[
log det((X ′s,1Xs,1) + · · ·+ (X ′s,mTRXs,mTR))

]
.

In what follows, we study φ(d|X) and φ(d|Xs) by considering the same assump-

tions as in Proposition 3.1.2 and replacing assumption 2 with:

Assumption 2∗. S = jT , is the T -by-1 vector of ones.

The follow two results are useful, which can be found in Rencher and Schaalje (2008).

Lemma 3.1.4 If a square matrix of the form U + vv′ is nonsingular, where v is a

vector and U is nonsingular matrix, then

(U + vv′)−1 = U−1 − U
−1vv′U−1

1 + v′U−1v
.
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Lemma 3.1.5 If Z has the form Z =

U v

v′ 1

 , where v is a vector and U is

nonsingular matrix, then

det[U + vv′] = (1 + v′U−1v) det(U).

Proposition 3.1.6 Suppose the assumption 2∗ and the other assumptions are the

same as in Proposition 3.1.2, we have φ(d|X) < φ(d|Xs) as:

i. for the A-optimality criterion: φ(d|X) = Rs/[tr(X
′
sXs)

−1 + B
1−pC ],

φ(d|Xs) = Rs/[tr(X
′
sXs)

−1 + B
1−C ].

ii. for the D-optimality criterion: φ(d|X) = 1
Rs [1− pC] log det(X ′sXs).

φ(d|Xs) = 1
Rs [1− C] log det(X ′sXs).

Here, B = m2T−1[j ′Ks(X
′
sXs)

−2jKs ], C = m2T−1j ′Ks(X
′
sXs)

−1jKs, Rs = Q×

Ks; Ks corresponds to the number of columns of Xsq and m is the frequency of

each stimulus.

Proof: With Xs, and Xr defined previously, and p being mISI or its divisor, we have:

X
′
WX ∼

X ′sWXs X ′sWXr

X ′rWXs X ′rWXr



=



X ′sWXs X ′sWXr
(1) · · · X ′sWXr

(p−1)

X ′r
(1)
WXs X ′r

(1)
WXr

(1) · · · X ′r
(1)
WXr

(p−1)

...
...

. . .
...

X ′r
(p−1)

WXs X ′r
(p−1)

WX ′r
(1) · · · X ′r

(p−1)
WX ′r

(p−1)


(3.11)
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The information matrices of X ′iWXj in (3.11) are as the following:

X ′iWXj =X ′iV
′(I − PV S)V Xj

=X ′iV
′V Xj − (j ′TV

′V jT )−1X ′iV
′V jTj

′
TV

′V Xj

=X ′iXj − (j ′TjT )−1X ′ijTj
′
TXj

=


X ′sXs − (T )−1(Li−1Xs)

′jTj
′
T (Lj−1Xs), if i = j

−(T )−1(Li−1Xs)
′jTj

′
T (Lj−1Xs), if i 6= j

=


X ′sXs − (T )−1m2jQKsj

′
QKs , if i = j

−(T )−1m2jQKsj
′
QKs , if i 6= j

=


X ′sWXs, if i = j;

−(T )−1m2jQKsj
′
QKs , if i 6= j.

The fifth equality based on (Lj−1Xs)
′jT = mjQKs , and X ′sjT = mjQKs , where

Xj = Lj−1Xs and m corresponds to the frequency of each stimulus. Set D =

(T )−1m2jQKsj
′
QKs , the information matrix in (3.11) can be written as:

X ′WX =



X ′sWXs −D · · · −D

−D X ′sWXs
. . .

...

...
. . . . . . −D

−D · · · −D X ′sWXs


=Ip ⊗X ′sXs − Jp ⊗D. (3.12)

Using Lemma 3.1.4 stated above and substitute in (3.12):

(X ′WX)−1 =(Ip ⊗X ′sXs − Jp ⊗m2(T )−1JQKs)
−1

=(Ip ⊗X ′sXs)
−1 − (−m2T−1)(Ip ⊗X ′sXs)

−1(Jp ⊗ JQKs)(Ip ⊗X ′sXs)
−1

1 + (−m2T−1)(j ′p ⊗ j ′QKs)(Ip ⊗X
′
sXs)−1(jp ⊗ jQKs)

=Ip ⊗ (X ′sXs)
−1 +

m2T−1[Jp ⊗ (X ′sXs)
−1JQKs(X

′
sXs)

−1]

1−m2T−1[p⊗ j ′QKs(X
′
sXs)−1jQKs ]

.
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In order to check the structure of (X
′

sWXs)
−1, we have:

(X
′

sWXs)
−1 =(X ′sXs − (T )−1X ′sJTXs)

−1

=(X ′sXs)
−1 +

m2T−1[(X ′sXs)
−1JQKs(X

′
sXs)

−1]

1−m2T−1[j ′QKs(X
′
sXs)−1jQKs ]

.

For designs that make h estimable, we have:

tr((X
′
WX)−1) = tr(Ip) tr(X ′sXs)

−1 +
m2T−1 tr(Jp) tr((X ′sXs)

−1JQKs(X
′
sXs)

−1)

1−m2T−1[pj ′QKs(X
′
sXs)−1jQKs ]

=p tr(X ′sXs)
−1 +

m2T−1[pj ′QKs(X
′
sXs)

−2jQKs ]

1−m2T−1[pj ′QKs(X
′
sXs)−1jQKs ]

. (3.13)

And similarly for designs that make h1, we have:

tr((X
′

sWXs)
−1) = tr(X ′sXs)

−1 +
m2T−1[j ′QKs(X

′
sXs)

−2jQKs ]

1−m2T−1[j ′QKs(X
′
sXs)−1jQKs ]

. (3.14)

For D-optimality, we substitute Lemma 3.1.5 in (3.12):

det(X
′
WX) = det(Ip ⊗X ′sXs − Jp ⊗m2(T )−1JQKs)

=[1 + (−m2T−1)(j ′s ⊗ j ′QKs)(Ip ⊗ (X ′sXs)
−1)(js ⊗ jQKs)] det(Ip ⊗ (X ′sXs)]

=[1−m2T−1pj ′QKs(X
′
sXs)

−1jQKs)[det(X ′sXs)]
p

=[1− pm2T−1j ′QKs(X
′
sXs)

−1jQKs ][det(X ′sXs)]
p.

log det(X
′
WX) =p log([1− pm2T−1j ′QKs(X

′
sXs)

−1jQKs ] det(X ′sXs)). (3.15)

And similarly for det(X
′

sWXs):

det(X
′

sWXs) = det(X ′sXs − (T )−1X ′sJTXs)
−1)

log det(X
′

sWXs) = log det(X ′sXs − (T )−1X ′sJTXs)
−1)

=[1−m2T−1j ′QKs(X
′
sXs)

−1jQKs ] log det(X ′sXs). (3.16)
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We simultaneously substitute (3.13) and (3.14) in (2.5) for A-optimality:

φ(d|X) =R/ tr(X
′
WX)−1

=R/p(tr(X ′sXs)
−1 +

m2T−1[j ′QKs(X
′
sXs)

−2jQKs ]

1−m2T−1[pj ′QKs(X
′
sXs)−1jQKs ]

)

=Rs/(tr(X
′
sXs)

−1 +
m2T−1[j ′QKs(X

′
sXs)

−2jQKs ]

1−m2T−1[pj ′QKs(X
′
sXs)−1jQKs ]

).

φ(d|Xs) = Rs/(tr(X
′
sXs)

−1 +
m2T−1[j ′QKs(X

′
sXs)

−2jQKs ]

1−m2T−1[j ′QKs(X
′
sXs)−1jQKs ]

).

Also, we simultaneously substitute (3.15) and (3.16) in (2.5) for D-optimality:

φ(d|X) =
1

R
log det(X

′
WX)

=
p

R
[1− pm2T−1j ′QKs(X

′
sXs)

−1jQKs ] log det(X ′sXs)

=
1

Rs

[1− pm2T−1j ′QKs(X
′
sXs)

−1jQKs ] log det(X ′sXs).

φ(d|Xs) =
1

Rs

[1−m2T−1j ′QKs(X
′
sXs)

−1jQKs ] log det(X ′sXs).
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3.2 Stimulation Results with ∆T = τTR

In this section, we apply our proposed approach described previously in Step X-1

to X-3 to optimize the surrogate criterion φ(d|Xs) of φ(d|X) by considering some

realistic situations. Note that directly optimizing the latter criterion is normally time

consuming. As demonstrated in the previous section, φ(d|Xs) is a good surrogate for

φ(d|X) under simplified models. Moving away from these models, we demonstrate

the usefulness of the surrogate criterion by some numerical studies.

In this section, we focus on the estimation of the HRFs with τTR = ∆T . In the

first case study, we consider two (Q,N) combinations: (1, 255), and (2, 242) with τISI

= 2, 3, 4, and 5 seconds. We study the effect of different subsampling rates p. In

particular, the value of p will be set to the positive divisors ofmISI ; in addition, we will

also consider the uniform subsampling of the columns of X. In the second case study,

we consider the (Q,N) combinations studied by Kao et al. (2009): (Q,N) = (3, 255),

(4, 624), and (6, 342) with τISI = 2, 3, 4, and 5 seconds and we set p to mISI . For

both cases, we set τTR = ∆T = 0.1 seconds; this means that the response sampling

rate is 10 Hz. At an activated brain region, each stimulus is assumed to evoke an

HRF of τdur = 32 seconds. With ∆T = 0.1 seoncds, the HRF parameter vector hq

for the qth-type stimulus has a length of 321(= bτdur/∆T c+ 1), and h = (h′1, ...,h
′
Q)′

of Model (2.2) has 321Q elements. The drift of the time series, i.e. Sγ is assumed to

be a second-order Legendre polynomial (Liu and Frank, 2004) and, for simplicity, the

error term is assumed to follow a stationary AR(1) process with an autocorrelation

coefficient of 0.3. We now present the simulation results under A-optimality in the

next subsection. All the computations in the following subsection are conducted on a

desktop computer of a 4.00 GHz Intel Core i7-4790k quad-core processor with 16GB

RAM.
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3.2.1 Estimation of the HRF Under the A-optimality Criterion

Table 3.1 presents the results for the first case with one stimulus type with different

τISI = 2, 3, 4, and 5 seconds under the A-optimality criterion. It also provides the

CPU times for obtaining the designs with and without the subsampling approach. For

Method I when p = 1, we adopt the genetic algorithm of Kao et al. (2009) to obtain an

optimal design d∗ that maximizes the A-optimality criterion φ(d∗|X) = R/tr(M−1),

where M is the information matrix of h defined in (2.4) using the full matrix X and

R is set to 321Q for Model (2.2). For Method II when p is the divisors of mISI , we

again adopt the genetic algorithm of Kao et al. (2009) to obtain optimal designs d∗s

that maximize the A-optimality criterion φ(d∗s|Xs) = Rs/tr(M
−1
s ), where M s is the

information matrix defined in (2.4) using the subsampled matrix Xs and Rs is set

to KsQ = (bK−1
p
c + 1)Q for Model (3.2). Then, we evaluate the obtained d∗s using

φ(d∗s|X). The good performance of d∗s under φ(d∗s|X) is consistently demonstrated

when p is mISI or its divisors. As presented in the last two columns of Table 3.1, all

the d∗s’s achieve at least 99.5% efficiency of that d∗ under φ(d∗|X). The CPU time

needed for obtaining d∗s under φ(d∗s|Xs) is significantly less than obtaining d∗ under

φ(d∗|X). In addition, Figure 3.1 shows that all the optimal designs that we obtained

have high relative efficiencies since the ratios φ(d∗s|X)/φ(d∗|X) are all close to 1 for

any design d∗s. Furthermore, the reductions in the CPU times are almost 50% when

p = 2 and about 80% when p = 20, 30, or 40.

Table 3.2 presents the results for the first case with two stimulus types with

different τISI = 2, 3, 4, and 5 seconds under the A-optimality criterion. The designs

d∗’s and d∗s’s are obtained by optimizing φ(d∗|X) and φ(d∗s|Xs) respectively and we

re-evaluate the performance of d∗s using φ(d∗s|X). For Q = 2, the size of the full

information matrix becomes quite large with R = 642. Using Method I for which

36



Table 3.1: A-optimality for estimation when Q = 1 and p= positive divisors of mISI .

τISI Method p Ks φ(d∗s|Xs) CPU (mins) # Iteration φ(d∗|X) φ(d∗s|X)

I 1 321 - 31.37 601 62.9524 -

2 161 77.0052 28.12 1001 - 62.7911

2 4 81 76.9677 10.16 601 - 62.8413

II 5 65 76.8982 14.64 1001 - 62.8991

10 33 76.6638 6.70 601 - 62.8126

20 17 76.5416 9.80 1001 - 62.8662

I 1 321 - 43.41 401 66.3760 -

2 161 81.7802 82.61 1401 - 66.0930

3 107 81.5915 35.81 801 - 66.3710

3 5 65 81.6226 31.52 1001 - 66.4020

II 6 54 81.7675 17.13 601 - 66.3345

10 33 81.3937 13.43 601 - 66.3727

15 22 81.4009 24.80 1201 - 66.2364

30 11 81.4616 15.38 801 - 66.3737

I 1 321 - 111.76 601 70.0395 -

2 161 86.5834 40.62 401 - 69.8069

4 81 86.4405 49.25 801 - 69.7370

4 5 65 86.1111 21.70 601 - 69.9362

II 8 41 86.0752 60.38 1401 - 69.9214

10 33 86.0041 23.79 601 - 69.9608

20 17 85.5231 26.62 801 - 69.9277

40 9 84.6738 24.66 801 - 69.9970

I 1 321 - 169.55 601 73.7280 -

2 161 90.8793 124.24 801 - 73.6164

5 5 65 90.5200 48.72 601 - 73.6687

II 10 33 90.4331 35.29 601 - 73.6009

25 13 90.7760 37.60 801 - 73.5775

50 7 89.7312 28.39 601 - 73.7613
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Figure 3.1: Relative design efficiencies and relative CPU times with the A-optimality

criterion for estimation when τISI = 2, 3, 4, and 5 seconds: this plot provides the

relative efficiency of d∗s to d∗ under φ(d∗|X) and relative CPU times of different

subsampling rates p with Q = 1.

the full information matrix (or equivalently, the full design matrix X) is used, it

becomes computationally very difficult as indicated in the table when p = 1. With

Method II when the subsampled design matrixXs(p = mISI or its divisors), obtaining

optimal design d∗s requires about half of the computing time needed for achieving the

optimal design d∗ by Method I. Nevertheless, all the obtained d∗s’s still attain very

high efficiencies under φ(d∗s|X) and the good performance of d∗s under φ(d∗s|X) is

consistently demonstrated when p is mISI or its divisors in all scenarios (τISI= 2, 3,

4, and 5 seconds). As presented in the last two columns, all the d∗s’s achieve at least
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99.6% efficiency of that of d∗ under φ(d∗|X). These results suggest that obtaining

designs optimizing φ(d|Xs) requires less computing time than optimizing φ(d|X).

Designs obtained by maximizing the former criterion have a similar performance to

those obtained with the latter criterion. Additionally, Figure 3.2 shows that all the

optimal designs that were obtained in Table 3.2 have high relative efficiencies since the

ratios φ(d∗s|X)/φ(d∗|X) are all close to 1 for any design d∗s. Moreover, the CPU times

are greatly reduced when the number of stimulus types, Q, increases. In particular,

the reductions in the CPU times are greater than that when Q = 1, i.e. it’s more

than 50% when p = 2 and more than 80% when p = 20, 30, or 40.
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Figure 3.2: Relative design efficiencies and relative CPU times with the A-optimality

criterion for estimation when τISI = 2, 3, 4, and 5 seconds: this plot provides the

relative efficiency under φ = φ(d∗s|X)/φ(d∗|X) and relative CPU times of different

subsampling rates p with Q = 2.
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Table 3.2: A-optimality for estimation when Q = 2 and p= positive divisors of mISI .

τISI Method p Ks φ(d∗s|Xs) CPU (mins) # Iteration φ(d∗|X) φ(d∗s|X)

I 1 321 - 100.75 1001 39.7195 -

2 161 47.9008 41.01 801 - 39.5845

2 4 81 48.0507 23.61 801 - 39.7022

II 5 65 47.8828 20.37 801 - 39.5852

10 33 47.8193 17.02 1001 - 39.6115

20 17 47.7517 14.37 1001 - 39.6808

I 1 321 - 161.36 801 41.3618 -

2 161 50.2944 62.71 601 - 41.4221

3 107 50.1728 43.63 601 - 41.3561

3 5 65 50.1845 30.43 601 - 41.4332

II 6 54 50.2227 42.82 1001 - 41.4309

10 33 50.1782 27.05 801 - 41.3439

15 22 50.2161 16.07 601 - 41.4362

30 11 50.1510 19.09 801 - 41.4351

I 1 321 - 274.60 801 43.0156 -

2 161 52.5907 175.15 1001 - 42.9608

4 81 52.5386 78.98 801 - 43.0462

4 5 65 52.3913 118.81 1401 - 43.0931

II 8 41 52.3451 50.61 801 - 43.0463

10 33 52.2746 68.02 1201 - 43.0578

20 17 51.9440 42.61 1001 - 43.0486

40 9 51.6380 22.40 601 - 43.0479

I 1 321 - 413.35 801 44.6604 -

2 161 54.4765 315.63 1201 - 44.7003

5 5 65 54.5324 178.35 1401 - 44.7519

II 10 33 54.3475 101.01 1201 - 44.6942

25 13 54.2885 57.16 1001 - 44.6511

50 7 53.9324 51.37 1001 - 44.7206
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Table 3.3 provides the results of the relative efficiency under φ= φ(d∗s|X)/φ(d∗|X)

and relative CPU time for the second case with Q = 1, 2, 3, 4, and 6 and τISI

= 2, 3, 4, and 5 seconds under the A-optimality criterion. For Q = 3, 4, and 6,

the size of the full information matrix M become quite large with R = 963, 1284,

and 1926, respectively. With Method I for which the full design matrix X is used,

it becomes computationally very difficult. With Method II when the subsampled

design matrix Xs(p = mISI), obtaining optimal designs d∗s require no more than 20%

of the computing time needed for achieving the d∗ in Method I. Furthermore, all the

obtained d∗s’s consistently demonstrate very high efficiencies under φ(d∗s|X) when p

is mISI in all cases (τISI = 2, 3, 4, and 5 seconds). Our experience suggests that

some other subsampling rates when replacing p with its divisor can also lead to a

good surrogate criterion for φ(d∗|X). However, the aforementioned procedure when

p = mISI gives a greater reduction in the size of the information matrix and is thus

recommended. As presented in the table, all the d∗s’s achieve at least 99.7% efficiency

of that of d∗ under φ(d∗|X). Also, these results suggest that the computing time

needed for obtaining designs with φ(d∗s|X) are significantly less than that of φ(d∗|X).

In Table 3.4, we compare the performance of the two methods on obtaining optimal

designs, d∗s’s for (Q,N) = (1, 255) and (2, 242) when τISI = 2, 3, 4, and 5 seconds.

When comparing our proposed approach (Method II) versus the uniform subsampling

(Method III), our proposed approach is more efficient. For evaluating the performance

of the obtained d∗s’s from Method II and III, the number of the parameters of interest

QKs is set to the same and the uniform subsampling is randomly generated five times.

We note that the total time needed for obtaining the optimal designs for Method III

is nearly similar to Method II presented in Table 3.1, so it’s not reported again here.

As presented in Table 3.4, the optimal designs d∗s’s in Method III compared to d∗s’s

obtained from Method II attain a relative high efficiency when Ks = 161, 107 or 81
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Table 3.3: Relative efficiency and CPU for estimation when Q = 1, 2, 3, 4, and 6 and

p = mISI : the designs are obtained by optimizing φ(d∗|X) to obtain d∗ and φ(d∗s|X)

to obtain d∗s, and re-evaluate d∗s using X where φ= φ(d∗s|X)/φ(d∗|X).

τISI = 2 τISI = 3 τISI = 4 τISI = 5

Q φ CPU φ CPU φ CPU φ CPU

11 0.9986 0.1876 1.0000 0.1774 0.9994 0.1656 1.0005 0.1675

22 0.9990 0.1426 1.0018 0.1183 1.0007 0.1087 1.0013 0.0994

3 1.0001 0.1160 1.0047 0.0913 1.0022 0.0868 0.9997 0.0778

4 1.0004 0.0931 1.0022 0.0716 0.9984 0.0645 0.9998 0.0585

6 1.0016 0.0820 0.9995 0.0690 1.001 0.0618 1.0041 0.0547

1 The result is obtained from Table 3.1 when p = mISI .

2 The result is obtained from Table 3.2 when p = mISI .

which corresponds to 1/2, 1/3 or 1/4 of K, respectively and do not outperform the

optimal designs obtained from Method II when Ks is less than 81.

Table 3.5 presents the results for cases with three stimulus types under the A-

optimality criterion. In particular, we compare the optimal design of our proposed

method with some traditional designs that are widely used in functional brain imaging

studies when τISI = 2, 3, 4, and 5 seconds. These traditional designs include those

obtained by Kao et al. (2009) with (τISI , τTR) = (2, 2), (3, 3), (4, 4), and (5, 5), an m-

sequence-based design, and ten randomly generated designs. To generate m-sequence-

based designs, see Kao and Stufken (2015) for external review and more details. The

efficiency ratio φ(d∗|X)/φ(d∗s|X) of these traditional fMRI designs to our d∗s are

shown in Table 3.5. Kao’s optimal designs and m-sequence-based designs yield a

relative high efficiency in very few cases. However, they do not perform as well as
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Table 3.4: A-optimality for estimation for the two methods when Q = 1 and 2, τISI

= 2, 3, 4, and 5 seconds, and p= positive divisors of mISI .

Q = 1 Q = 2

τISI Ks Method II Method III RE-φ Method II Method III RE-φ

161 62.7911 62.6548-62.8683 0.9978-1.0012 39.5845 39.6143-39.6667 1.0008-1.0021

81 62.8413 60.9113-62.1017 0.9693-0.9882 39.7022 38.7930-39.2498 0.9771-0.9886

2 65 62.8991 58.2924-61.0203 0.9268-0.9701 39.5852 37.0867-39.1572 0.9369-0.9892

33 62.8126 47.1060-49.2941 0.7499-0.7848 39.6115 22.7042-36.4829 0.5732-0.9210

17 62.8662 17.8622-29.8622 0.2841-0.4750 39.6808 18.7155-25.0344 0.4717-0.6309

161 66.0930 65.7819-66.3306 0.9953-1.0036 41.4221 41.1582-41.4021 0.9936-0.9995

107 66.3710 64.3253-65.5023 0.9692-0.9869 41.3561 40.8846-41.2906 0.9886-0.9984

3 65 66.4020 59.8574-64.1348 0.9014-0.9659 41.4332 37.6830-40.3402 0.9095-0.9736

54 66.3345 43.4007-60.3234 0.6543-0.9094 41.4309 26.7554-38.6573 0.6458-0.9331

33 66.3727 25.6785-46.2155 0.3869-0.6963 41.3439 24.5349-35.7459 0.5934-0.8646

22 66.2364 21.3279-39.6732 0.3220-0.5990 41.4362 18.0055-30.3853 0.4345-0.7333

11 66.3737 23.8907-35.2724 0.3599-0.5314 41.4351 24.7551-29.0121 0.5974-0.7002

161 69.8069 69.1700-69.5758 0.9909-0.9967 42.9608 42.8195-42.9743 0.9967-1.0003

81 69.7370 66.0326-67.8153 0.9469-0.9724 43.0462 39.8435-42.3704 0.9256-0.9843

4 65 69.9362 58.1888-65.9958 0.8320-0.9437 43.0931 38.3214-41.9116 0.8893-0.9726

41 69.9214 33.7177-59.2346 0.4822-0.8472 43.0463 32.9234-38.8192 0.7648-0.9018

33 69.9608 49.3798-62.2369 0.7058-0.8896 43.0578 21.1133-37.3173 0.4903-0.8667

17 69.9277 15.1377-40.8665 0.2165-0.5844 43.0486 24.3041-31.5537 0.5646-0.7330

9 69.9970 0-46.3227 0-0.6618 43.0479 0-30.0134 0-0.6972

161 73.6164 72.2788-72.9827 0.9818-0.9914 44.7003 44.1978-44.5887 0.9888-0.9975

65 73.6687 63.2600-69.9918 0.8587-0.9501 44.7519 40.9784-42.3776 0.9157-0.9469

5 33 73.6009 53.3151-64.5504 0.7244-0.8770 44.6942 31.6534-41.1509 0.7082-0.9207

13 73.5775 0-41.8363 0-0.5686 44.6511 0-35.42594 0-0.7934

7 73.7613 0-43.4324 0-0.5888 44.7206 0-0.5745 0-0.0128
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the d∗s’s obtained from our proposed method. We randomly generate ten design

sequences for each of the three scenarios that we consider. The range of the relative

efficiency of these random designs are also reported in Table 3.5. As a result, the good

performance of d∗s’s are consistently demonstrated in all the cases that we studied.

It is noteworthy that no design d∗ has a higher φ(d∗|X) than φ(d∗s|X) among the

designs d∗s we considered since the relative efficiencies are all less than 1.

Table 3.5: The optimal designs d∗s’s by Method II versus traditional designs when Q

= 1, 2, and 3: these traditional designs are evaluated by φ(d∗|X).

Q τISI d∗s Kao’s 2009 RE-φ m-sequence RE-φ ten-random RE-φ

2 62.8662 57.7170 0.9181 61.0835 0.9716 54.7318-59.3504 0.8706-0.9441

1 3 66.3737 59.8481 0.9017 63.2743 0.9533 56.0296-62.9419 0.8442-0.9483

4 69.9970 61.5093 0.8787 65.1409 0.9306 61.7131-64.1944 0.8817-0.9171

5 73.7613 62.7391 0.8506 66.8517 0.9063 63.2341-66.4731 0.8573-0.9012

2 39.6808 37.1531 0.9363 36.5342 0.9207 31.0420-34.1798 0.7823-0.8614

2 3 41.4351 38.4164 0.9271 37.9727 0.9164 32.4428-37.7605 0.7830-0.9113

4 43.0479 39.1643 0.9098 39.1621 0.9097 34.8907-39.5613 0.8105-0.9190

5 44.7206 39.7066 0.8879 40.2614 0.9003 37.2482-40.7129 0.8329-0.9104

2 31.8883 29.8278 0.9354 29.8491 0.9361 21.9519-25.8041 0.6884-0.8092

3 3 33.3286 30.7399 0.8906 30.7619 0.9230 25.8754-28.6065 0.7764-0.8583

4 34.5154 31.7774 0.9207 31.4990 0.9126 26.1701-29.9911 0.7582-0.8689

5 35.5721 32.2323 0.9061 32.2191 0.9057 28.5772-32.1269 0.8034-0.9031

Table 3.6 compares the optimal design of our proposed method with Kao et al.

(2009) and an m-sequence-based design designs under the setting when (τISI , τTR) =

(2, 2), (3, 3), (4, 4), and (5, 5). The reason for making this comparison is that we

know that Kao’s designs and an m-sequence-based designs perform very well when

τISI = τTR. The efficiency ratio φ(d∗s|X/φ(d∗|X)) of our d∗s compared to these
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traditional fMRI designs are shown in Table 3.6. The first relative efficiency is for our

design compared to Kao et al. (2009). The second relative efficiency is for our design

compared to m-sequence-based designs. Even though there are few cases where the

relative efficiency are high, the d∗s’s obtained from our proposed method mostly do

not perform these designs under the traditional setting when τISI = τTR.

Table 3.6: The optimal designs d∗s’s by Method II evaluated at (τISI , τTR) =

(2, 2), (3, 3), (4, 4), and (5, 5) versus traditional designs when Q = 1, 2, and 3.

Q τISI d∗s Kao’s 2009 RE-φ m-sequence RE-φ

2 48.0511 60.6687 0.7920 58.6349 0.8195

1 3 42.9352 61.1009 0.7027 58.9738 0.7280

4 39.3274 61.2904 0.6417 59.2056 0.6643

5 36.1891 61.4694 0.5887 59.6180 0.6070

2 34.9701 39.2256 0.8915 35.4570 0.9863

2 3 33.1534 39.6783 0.8356 36.4108 0.9105

4 30.9641 39.8243 0.7775 36.7738 0.8420

5 27.3491 39.9828 0.6840 37.2080 0.7350

2 28.9458 31.7754 0.9109 29.1179 0.9941

3 3 27.4155 32.4720 0.8443 29.5276 0.9285

4 26.4010 32.6280 0.8092 29.6551 0.8903

5 25.7343 32.8082 0.7844 29.8194 0.8630

Figures 3.3 and 3.4 present these designs for Q = 1 and Q = 2, respectively

with τISI = 2, 3, 4, and 5 seconds. Different colors indicate different stimulus types

and white represents the control. These designs also show the stimulus frequency

for estimation(≈ 1/(Q +
√
Q)) similar to Liu and Frank (2004). These designs look
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random in appearance and do not seem to have perceivable patterns. However, none

of these traditional designs that look random perform as well as d∗s.
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Figure 3.3: The optimal d∗s obtained from Method II when Q = 1 and τISI = 2, 3, 4,

and 5 seconds.
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Figure 3.4: The optimal d∗s obtained from Method II when Q = 2 and τISI = 2, 3, 4,

and 5 seconds.
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3.3 Stimulation Results with ∆T 6= τTR

In the previous section we studied cases where ∆T = τTR. Here, we apply the

proposed approach again with ∆T 6= τTR.

In the first case study, we consider the same two (Q,N) combinations considered in

the previous simulation results: (1, 255), and (2, 242) but τISI = 2, 4, and 5 seconds. In

the last results, we studied the effect of different subsampling rates p when p was set to

the positive divisors ofmISI . Similarly, the value of p will be set to the positive divisors

of mISI , but p > mTR; in addition, we will consider the second case of subsampling

of the columns of X in (3.3) because ∆T 6= τTR. We will also consider the uniform

subsampling of the columns of X. In the second case study, we consider the (Q,N)

combinations studied previously: (Q,N) = (3, 255), (4, 624), and (6, 342) but τISI =

2, 4, and 5 seconds and we set p to mISI . For both cases, we set τTR = 0.3 seconds

and ∆T = 0.1 seconds; this means that the response sampling rate is 3.3 Hz. At an

activated brain region, each stimulus is assumed to evoke an HRF of τdur = 32 seconds.

With ∆T = 0.1 seconds, the HRF parameter vector hq for the qth-type stimulus has

a length of 321, and h = (h′1, ...,h
′
Q)′ of Model (2.2) has 321Q elements. The drift of

the time series, i.e. Sγ is assumed to be a second-order Legendre polynomial and the

error term is assumed to follow a stationary AR(1) process with an autocorrelation

coefficient of 0.3. We now present the simulation results under A-optimality in the

next subsection. All the computations in the following subsection are conducted on a

desktop computer of a 4.00 GHz Intel Core i7-4790k quad-core processor with 16GB

RAM.
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3.3.1 Estimation of the HRF Under the A-optimality Criterion

Table 3.7 presents the results for the first case with one stimulus type with different

τISI = 2, 4, and 5 seconds under the A-optimality criterion. It also provides the CPU

times for obtaining the designs with and without the subsampling approach. For

Method I when p = 1, we will do the same as last simulation when we start to

adopt the genetic algorithm to obtain an optimal design d∗ that maximizes the A-

optimality criterion φ(d∗|X) = R/tr(M−1), where M is the information matrix of

h defined in (2.4) using the full matrix X and R is set to 321Q for Model (2.2).

For Method II when p is the divisors of mISI and mTR = 3; this means that we

keep columns j, (j + p), (j + 2p), · · · , (j + bK−j
p
cp) of Xq for j = 1, 2, 3 and leave

out the other columns to form Xsq for q = 1, · · · , Q. Also T in both X and Xs

are 1700, 3400, 4250 for τISI = 2, 4, and 5, respectively. Again, we adopt the genetic

algorithm of Kao et al. (2009) to obtain optimal designs d∗s that maximize the A-

optimality criterion φ(d∗s|Xs) = Rs/tr(M
−1
s ), where M s is the information matrix

defined in (2.4) using the subsampled matrix Xs and Rs is set to KsQ = ((bK−1
p
c+

1) + (bK−2
p
c+ 1) + (bK−3

p
c+ 1))Q for Model (3.2). The good performance of d∗s under

φ(d∗s|X) is consistently demonstrated when p is mISI or its divisors when evaluating

the obtained d∗s using φ(d∗s|X). As presented in the last two columns of Table 3.7, all

the d∗s’s achieve at least 99.4% efficiency of that d∗ under φ(d∗|X). The CPU time

needed for obtaining d∗s under φ(d∗s|Xs) is significantly less than obtaining d∗ under

φ(d∗|X).

Figure 3.5 verifies that all the obtained optimal designs have high relative efficien-

cies as the ratios φ(d∗s|X)/φ(d∗|X) are all close to 1 for any design d∗s. Additionally,

the reductions in the CPU times are almost 50% when p = 2 and about 80% when

p = 20, 30, or 40.
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Table 3.7: A-optimality for estimation when Q = 1, τISI = 2, 4 and 5 seconds and

p= positive divisors of mISI with cluster every mTR = 3.

τISI Method p Ks CPU (mins) # Iteration φ(d∗|X) φ(d∗s|X) RE-eff RE-time

I 1 321 3.79 601 20.6952 -

2 4 241 3.16 601 - 20.7209 1.0012 0.8324

II 5 193 1.87 401 - 20.7153 1.0010 0.7381

10 97 2.17 601 - 20.7218 1.0013 0.5729

20 49 2.56 801 - 20.6209 0.9964 0.5060

I 1 321 10.35 601 23.3181 -

4 241 10.97 801 - 23.1681 0.9936 0.7952

4 5 193 7.15 601 - 23.2704 0.9980 0.6906

II 8 121 7.65 801 - 23.3023 0.9993 0.5545

10 97 8.80 1001 - 23.2749 0.9981 0.5104

20 49 4.48 601 - 23.2435 0.9968 0.4323

40 25 4.13 601 - 23.2534 0.9972 0.3989

I 1 321 19.69 801 24.5620 -

5 5 193 6.65 401 - 24.4266 0.9945 0.6741

II 10 97 9.55 801 - 24.4707 0.9963 0.4850

25 39 5.85 601 - 24.4883 0.9970 0.3963

50 21 5.45 601 - 24.4953 0.9973 0.3685

‘

Table 3.8 presents the results for the first case with two stimulus types with

different τISI = 2, 4, and 5 seconds under the A-optimality criterion. The designs

d∗’s and d∗s’s in Method I and Method II are obtained by optimizing φ(d∗|X) and

φ(d∗s|Xs); respectively. We re-evaluate the performance of d∗s using φ(d∗s|X). For

Q = 2, the size of the full information matrix becomes quite large with R = 642.

Using Method I for which the full design matrixX is used, it becomes computationally

slight difficult as indicated in the table when p = 1. Compared with the result of
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Figure 3.5: Relative design efficiencies and Relative CPU times with the A-optimality

criterion for estimation when Q = 1 with τISI = 2, 4, and 5 seconds: this plot

provides the relative efficiency under φ = φ(d∗s|X)/φ(d∗|X) and relative CPU times

of different subsampling rates p with mTR = 3.

Table 3.2, the CPU time is less because the length of the response vector T with

∆T 6= τTR here is 1/3 of T with ∆T = τTR in the previous section. With Method II

when the subsampled design matrix Xs (p = mISI or one of its divisors), obtaining

optimal design d∗s requires 29%- 81% of the computing time needed for achieving the

optimal design d∗ by Method I. Nevertheless, all the obtained d∗s’s still attain very

high efficiencies under φ(d∗s|X) as demonstrated when p is mISI or its divisors in all

scenarios (τISI= 2, 4, and 5 seconds). As shown in the last two columns, all the d∗s’s

achieve at least 99.81% efficiency of that of d∗ under φ(d∗|X).
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Table 3.8: A-optimality for estimation when Q = 2, τISI = 2, 4 and 5 seconds and

p= positive divisors of mISI with cluster every mTR = 3.

τISI Method p Ks CPU (mins) # Iteration φ(d∗|X) φ(d∗s|X) RE-eff RE-time

I 1 321 22.33 1601 12.4675 -

2 4 241 10.73 1001 - 12.4681 1.0000 0.7686

II 5 193 9.14 1001 - 12.5032 1.0029 0.6545

10 97 6.38 1001 - 12.5393 1.0058 0.4567

20 49 5.40 1001 - 12.5688 1.0081 0.3864

I 1 321 38.74 1001 14.1872 -

4 241 50.48 1601 - 14.2077 1.0014 0.8146

4 5 193 33.32 1201 - 14.1600 0.9981 0.7168

II 8 121 36.51 1801 - 14.1904 1.0002 0.5238

10 97 37.45 2001 - 14.1994 1.0009 0.4836

20 49 15.82 1001 - 14.1986 1.0008 0.4082

40 25 11.66 801 - 14.2023 1.0011 0.3760

I 1 321 69.45 1401 14.6978 -

5 5 193 47.47 1401 - 14.7547 1.0039 0.6836

II 10 97 28.81 1401 - 14.7680 1.0048 0.4148

25 39 12.47 801 - 14.7465 1.0033 0.3141

50 21 8.52 601 - 14.7040 1.0004 0.2859

‘

Additionally, Figure 3.6 demonstrates that all the optimal designs that were ob-

tained in Table 3.8 have high relative efficiencies since the ratios φ(d∗s|X)/φ(d∗|X)

are all close to 1 for any design d∗s. Furthermore, the CPU times are greatly reduced

when p = mISI and the number of stimulus types, Q, increases. In particular, the

reductions in the CPU times are greater than that when Q = 1, i.e. it’s more than

60% when p = 20, 40, or 50.

Table 3.9 provides the results of the relative efficiency φ= φ(d∗s|X)/φ(d∗|X) and
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Figure 3.6: Relative design efficiencies and relative CPU times with the A-optimality

criterion for estimation when Q = 2 with τISI = 2, 4, and 5 seconds: this plot

provides the relative efficiency under φ = φ(d∗s|X)/φ(d∗|X) and relative CPU times

of different subsampling rates p with mTR = 3.

relative CPU time for the second case with Q = 1, 2, 3, 4, and 6 and τISI = 2, 4, and

5 seconds under the A-optimality criterion. The size of the full information matrix

M become quite large for Q = 3, 4, and 6 with R = 963, 1284, and 1926, respectively

which make the computation very difficult. With Method II when the subsampled

design matrix Xs(p = mISI), obtaining optimal designs d∗s require no more than 50%

of the computing time needed for achieving the d∗ in Method I. In contrast to the

result of ∆T = τTR, the reduction of CPU time previously is larger and this is expected

because mTR = 3 when ∆T 6= τTR versus mTR = 1 when ∆T = τTR. Furthermore,
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all the obtained d∗s’s consistently attain very high efficiencies at least 99% efficiency

of that of d∗ under φ(d∗|X) when p is mISI in all cases (τISI = 2, 4, and 5 seconds).

Our experience suggests that some other subsampling rates when replacing p with its

divisor can also lead to a good surrogate criterion for φ(d∗|X). However, we focus

in p = mISI as it gives a greater reduction in the size of the information matrix and

is thus recommended. Also, these results suggest that obtaining designs optimizing

φ(d|Xs) requires less computing time than optimizing φ(d|X). Designs obtained by

maximizing the former criterion have a similar performance to those obtained with

the latter criterion.

Table 3.9: Relative efficiency and CPU for estimation when Q = 1, 2, 3, 4, and

6 and p = mISI with cluster of mTR = 3: the designs are obtained by optimizing

φ(d∗|X) to obtain d∗ and φ(d∗s|X) to obtain d∗s, and re-evaluate d∗s using X where

φ= φ(d∗s|X)/φ(d∗|X).

τISI = 2 τISI = 4 τISI = 5

Q φ CPU φ CPU φ CPU

11 0.9964 0.5060 0.9972 0.3989 0.9973 0.3685

22 1.0081 0.3864 1.0011 0.3760 1.0004 0.2859

3 1.0167 0.3262 0.9908 0.2936 0.9998 0.2769

4 1.0039 0.3056 1.0003 0.2836 1.0001 0.2689

6 1.0056 0.2910 0.9906 0.2797 0.9947 0.2500

1 The result is obtained from Table 3.7 when p = mISI .

2 The result is obtained from Table 3.8 when p = mISI .

Figures 3.7 and 3.8 show different shades of colors that represent different stimulus

types and a white bar corresponds to a zero. These designs also present the stimulus
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frequency for estimation (≈ 1/(Q+
√
Q)). These designs look random in appearance

and do not seem to have perceivable patterns.

Table 3.10 compares the performance of the proposed approach (Method II) and

the uniform subsampling (Method III) on obtaining optimal designs, d∗s’s for (Q,N) =

(1, 255) and (2, 242) when τISI = 2, 4, and 5 seconds. Similar to the result of Table 3.4

when ∆T = τTR, our proposed approach is still more efficient. We note that the

number of the parameters of interest QKs is set to the same as Method II and the

uniform subsampling is randomly generated five times. Also, the total time needed for

obtaining the optimal designs for Method III is nearly similar to Method II presented

in Table 3.7, so it’s not reported again here. As presented in Table 3.10, the optimal

designs d∗s’s in Method III compared to d∗s’s obtained from Method II achieve a

relative high efficiency when Ks is large and close to the original K but they do not

outperform the optimal designs obtained from Method II when Ks is small (e.g., less

than 97).

Table 3.11 compares the optimal design of our proposed method with m-sequence-

based design and ten randomly generated designs when τISI = 2, 4, and 5 seconds.

The efficiency ratio φ(d∗|X)/φ(d∗s|X) of these traditional fMRI designs to our d∗s

are shown in Table 3.11. The range of the relative efficiency of these random designs

are also reported. These designs do not perform as well as the d∗s’s obtained from

our proposed method. It is noteworthy that no design d∗ has a higher φ(d∗|X) than

φ(d∗s|X) among the designs d∗s we considered.
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Table 3.10: A-optimality for estimation for the two methods when Q = 1 and 2,

τISI = 2, 4, and 5 seconds, and p= positive divisors of mISI .

Q = 1 Q = 2

τISI Ks Method II Method III RE-φ Method II Method III RE-φ

241 20.7209 20.7097-20.8328 0.9995-1.0054 12.4681 12.4076-12.5724 0.9952-1.0084

2 193 20.7153 20.6325-20.7715 0.9960-1.0027 12.5032 12.3100-12.5705 0.9846-1.0054

97 20.7218 19.6981-20.2955 0.9506-0.9794 12.5393 11.9260-12.3112 0.9511-0.9818

49 20.6209 12.8379-14.0283 0.6226-0.6803 12.5688 7.3169-8.5959 0.5822-0.6839

241 23.1681 23.1651-23.3027 0.9999-1.0058 14.2077 14.0988-14.1948 0.9923-0.9991

4 193 23.2704 23.1185-23.1871 0.9935-0.9964 14.1600 13.9592-14.1319 0.9858-0.9980

121 23.3023 22.5482-22.9624 0.9676-0.9854 14.1904 13.5327-13.9350 0.9537-0.9820

97 23.2749 21.8266-22.6340 0.9378-0.9725 14.1994 12.5929-13.8268 0.8869-0.9738

49 23.2435 13.2986-15.2454 0.5721-0.6559 14.1986 8.0438-11.0293 0.5665-0.7768

25 23.2534 8.5456-14.0673 0.3675-0.6050 14.2023 7.2364-9.2106 0.5096-0.6485

193 24.4266 24.1885-24.4066 0.9903-0.9992 14.7547 14.6042-14.7427 0.9898-0.9992

97 24.4707 22.4473-23.5042 0.9173-0.9605 14.7680 13.7540-14.2069 0.9313-0.9620

5 39 24.4883 7.8927-16.0912 0.3223-0.6571 14.7465 8.7185-10.5465 0.5912-0.7152

21 24.4953 0-15.5380 0-0.6343 14.7040 1.4686-11.0190 0.0999-0.7494
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Figure 3.7: The optimal d∗s obtained from Method II when Q = 1 and τISI = 2, 4,

and 5 seconds.
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Figure 3.8: The optimal d∗s obtained from Method II when Q = 2 and τISI = 2, 4,

and 5 seconds.
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Table 3.11: The optimal designs d∗s’s by Method II versus traditional designs when

Q = 1, 2, and 3.

Q τISI d∗s m-sequence RE-φ ten-random RE-φ

2 20.6209 17.7382 0.8602 15.2161-16.7100 0.7379-0.8103

1 4 23.2534 20.6756 0.8891 18.2696-20.7990 0.7857-0.8945

5 24.4953 21.4345 0.8751 20.1571-21.6528 0.8229-0.8840

2 12.5688 8.0774 0.6427 6.5931-8.2077 0.5247-0.6530

2 4 14.2023 11.1442 0.7847 10.3382-11.5046 0.7279-0.8101

5 14.7040 11.8807 0.8080 10.4219-12.1136 0.7088-0.8238

2 9.2056 5.3098 0.5768 3.7459-4.7732 0.4069-0.51851

3 4 11.0670 0.7656 0.8443 5.9939-7.8567 0.5416-0.7099

5 11.5630 9.1914 0.7949 7.3875-9.4560 0.6389 -0.8178
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Chapter 4

A GENERAL LINEAR MODEL FOR DETECTION

4.1 Temporal Derivative

Another study objective in many functional imaging experiments is identification

of the brain region, e.g.voxel/channel that are activated by the stimuli, called de-

tection problem. For this study objective, the HRF is commonly approximated by

the product of an assumed shape of the HRF, e.g. h∗(t) in (2.1) and an unknown

magnitude/amplitude, θ. In order to allow some variations in the HRF shape, the

partial derivatives of the canonical HRF (2.1) with respect to its delay and dispersion

can be added as further basis functions. The choice of basis functions depends on the

acquired data and more robust results are obtained when the basis set is small and

temporally compact (Friston et al., 1998). Furthermore, including many parameters

would increase the estimation error, decrease the statistical power and the degrees

of freedom especially when multicollinearity occurs. The most commonly considered

basis set for fMRI and fNIRS studies is canonical HRF plus its derivatives approach

developed by Friston et al. (1998). For example, Uga et al. (2014), Pinti et al. (2017),

Tak et al. (2016) used the convolution model with a basis set consisting of the canoni-

cal HRF and its temporal derivative. The reason for including the temporal derivative

is that it can capture the small offsets or latency in the time to the onset/peak of

the HRF (Henson and Friston, 2007; Henson et al., 2002; Liao et al., 2000). Another

reason is that the precise HRF shape appears to vary considerably across people and

across the brain regions in most existing fMRI/fNIRS studies when performing group

analysis.
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Given hq(t) = θqh
∗(t), where h∗(t) is an assumed common HRF shape such as

the double-gamma function in (2.1), and θq is an unknown coefficient for the HRF

of the qth-type stimulus, q = 1, · · · , Q. A time-shifted version τ of the HRF can

be described by hq(t + τ), where τ allows a time shift for the HRF. The first-order

Taylor expansion of hq(t + τ) can give a linear approximation of the shifted HRF,

i.e. hq(t + τ) ≈ θqh
∗(t) + τqθq

d
dt
h∗(t). Thus, if h∗(t) and d

dt
h∗(t) are used as two

basis functions in the general linear model to estimate the parameters θcq and θtq

respectively of hq(t+ τ) ≈ θcqh
∗(t) + θtq

d
dt
h∗(t), then small changes in the latency of

the HRF can be captured by the parameter estimate of the temporal derivative (more

precisely, τq ≈ θtq
θcq

). Henson et al. (2002) identified responses that are earlier than the

canonical HRF when the ratio, θtq
θcq

, is positive, and responses that are later than the

canonical HRF when the ratio parameter, θtq
θcq

, is negative. A similar logic applies to

the use of dispersion derivative to capture the very small differences in the duration

of the peak response. However, we focus here on the temporal derivative.

4.2 Methodology

The linear model (2.3) is considered for modeling the data collected from exper-

iments having high temporal resolution brain imaging. Incorporating the temporal

derivative, the model for detection can thus be written as:

y = Xh∗θc +Xdh∗θt + Sγ + ε. (4.1)

where θc = [θc1, θc2, θc3, . . . , θcQ]
′
, and θt = [θt1, θt2, θt3, . . . , θtQ]

′
, the vector h∗ corre-

sponds to the canonical HRF of (2.1), and the vector dh∗ corresponds to its temporal

derivative. All the remaining terms are defined as in (2.3). The Model 4.1 can be

rewritten in the following form:

y = XHθ + Sγ + ε. (4.2)
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Here HQ[K,2] = IQ ⊗ [h∗ dh∗] and θ = [θ
′

c,θ
′

t]
′
. Note, the basis functions are

orthogonalized via Gram-Schmidt orthogonalization as in the SPM software package

(Henson and Friston, 2007; Wager et al., 2005).

4.2.1 Estimation of the Amplitude

When model (4.2) is considered for detection, it is common in some studies to

only use the non-derivative term as an estimate of the HRF amplitude. However,

this solution could be biased and the more accurate way for amplitude estimation

is the use of the parametric function αq, proposed by Calhoun et al. (2004) with

αq = sgn(θcq)
√
θ2
cq + θ2

tq (Worsley and Taylor, 2006; Lindquist and Wager, 2007;

Lindquist et al., 2009). We note that a drawback of this parametric function, αq, is

that it does not fully accommodate the case where there is an activation with θtq 6= 0

but θcq = 0. This is especially the case when the signum function of a real number

x is defined as:

sgn(x) =


−1 if x < 0;

0 if x = 0;

+1 if x > 0,

(4.3)

which it is not differentiable at 0 in the ordinary sense and note that

x = sgn(x) | x | . (4.4)

Therefore, we proposed a new parametric function with slight modification as:

62



αq =


sgn(θcq)

√
θ2
cq + θ2

tq , if θcq 6= 0;

θtq , if θcq = 0.

(4.5)

=


sgn(θcq) | θcq |

√
1 + (θtq/θcq)2 , if θcq 6= 0;

θtq , if θcq = 0.

(4.6)

=


θcq
√

1 + (θtq/θcq)2 , if θcq 6= 0;

θtq , if θcq = 0.

(4.7)

The third equality (4.7) is based on (4.4). This formulation would allow us to

take into account the activation of θtq even when θcq = 0 for obtaining the optimal

designs.

By Delta method, the approximated covariance matrix of a parametric function

α = g(θ) under a given design d that ensures estimability is:

Cov(α) = (∂α/∂θ′)(M )−(∂α/∂θ′)′, (4.8)

where the information matrix of θ is:

M = H ′X ′V ′(IT − PV S)V XH ,

and ∂αq

∂θ′q
of (4.7) for the first case with θcq 6= 0 can be written as:

∂αq
∂θ′q

∣∣∣∣
θcq 6=0

=

 1√
1 +

(
θtq
θcq

)2
,

θtq

θcq

√
1 +

(
θtq
θcq

)2

 (4.9)

but the second case with θcq = 0 is as following:

∂αq
∂θ′q

∣∣∣∣
θcq=0

= [0, 1] (4.10)
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For q = 1, · · · , Q, (4.9) can written in matrix form as:

∂α

∂θ′

∣∣∣∣
θc 6=0

=



1√
1+
(
θt1
θc1

)2

θt1

θc1

√
1+
(
θt1
θc1

)2
0 0 · · · · · · 0

0 0 1√
1+
(
θt2
θc2

)2

θt2

θc2

√
1+
(
θt2
θc2

)2

. . . · · · 0

...
...

. . . · · ·
. . . 0 0

0 0 · · · 0 0 1√
1+
(
θtQ
θcQ

)2

θtQ

θcQ

√
1+
(
θtQ
θcQ

)2



=



1√
1+
(
θt1
θc1

)2
0 · · · 0

0 1√
1+
(
θt2
θc2

)2

. . .
...

...
. . .

. . . 0

0 · · · 0 1√
1+
(
θtQ
θcQ

)2


×



1 θt1
θc1

0 0 · · · 0 0

0 0 1 θt2
θc2

. . .
...

...
. . .

. . . 0 0

0 0 · · · 0 0 1
θtQ
θcQ



LetN =



1√
1+
(
θt1
θc1

)2 0 · · · 0

0 1√
1+
(
θt2
θc2

)2 . . .
...

...
. . . . . . 0

0 · · · 0 1√
1+

(
θtQ
θcQ

)2


,G =



1 θt1
θc1

0 0 · · · 0 0

0 0 1 θt2
θc2

. . .
...

...
. . . . . . 0 0

0 0 · · · 0 0 1
θtQ
θcQ


,

and then ∂α
∂θ′

= N ×G.
Denote θc as θ0 when at least one θcq = 0 for q = 1, · · · , Q. For example, when

θck = 0, then θ0 = [θc1, · · · , θc,k−1, 0, θc,k+1, · · · , θcQ], then ∂α
∂θ′

∣∣∣∣
θck=0

can be written as

following:

∂α

∂θ′

∣∣∣∣
θck=0

=



1√
1+

(
θt1
θc1

)2 θt1

θc1

√
1+

(
θt1
θc1

)2 0 0 ··· ··· ··· ··· ··· 0 0

0 0

.
.
.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
. ···

0 0 ··· 0 0 1√
1+

(
θt,k−1
θc,k−1

)2 θt2

θc,k−1

√
1+

(
θt,k−1
θc,k−1

)2 ··· ··· 0 0

0 0 ··· ··· ··· ··· ··· 0 1 0 0

0 0 ··· 0 0 1√
1+

(
θt,k+1
θc,k+1

)2 θt,k+1

θc,k+1

√
1+

(
θt,k+1
θc,k+1

)2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


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Also as another argument, αq in (4.5) can be written as:

αq =


[2H(θcq)− 1]

√
θ2
cq + θ2

tq , if θcq 6= 0;

θtq , if θcq = 0.

(4.11)

where sgn(x) = 2H(x)− 1, and H(x) is the Heaviside step function as

H(x) =


0 if x < 0;

1/2 if x = 0;

1 if x > 0.

Then, ∂αq

∂θ′q

∣∣∣∣
θcq 6=0

is as following:

∂αq
∂θ′q

∣∣∣∣
θcq 6=0

=

2δ(θcq)
√
θ2
cq + θ2

tq + [2H(θcq)− 1]
θcq√

θ2
cq + θ2

tq

, [2H(θcq)− 1]
θtq√

θ2
cq + θ2

tq


(4.12)

where δ(x) is the Dirac delta, and ∂H(x)
∂x

= δ(x)

δ(x) =


+∞ if x = 0;

0 if x 6= 0.

Then,

∂αq
∂θ′q

∣∣∣∣
θcq 6=0

=

± θcq√
θ2
cq + θ2

tq

,± θtq√
θ2
cq + θ2

tq

 (4.13)

Again, ∂αq

∂θ′q

∣∣∣∣
θcq 6=0

in (4.13) is deduced to N and G that are reported previously,

and ∂αq

∂θ′q

∣∣∣∣
θcq=0

is the same as (4.10).

4.3 D-optimality Criterion

We would like a design minimizing the determinant of the covariance matrix stated

in (4.8). The answer will depend on the unknown θc and θt. One way for tackling this
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problem is by obtaining a locally optimal design that is optimal for a given (θc,θt)-

vector (Chernoff, 1953). Another recommended way is the maximin approach because

a good guess value for the parameter vector maybe unavailable. Moreover, the selected

design should be relatively robust to a mis-specification of the (θc,θt)-vector. The

Bayesian approach is another way as well to obtain optimal designs. The previously

mentioned D-optimality criteria in (2.5) can be equivalently written as following:

φ(Cov(g(θ))) =
∣∣(∂α/∂θ′)M−(∂α/∂θ′)′

∣∣− 1
R . (4.14)

For simplicity, we set φ(M ) = 0 when M is singular. R is the number of the

parameters of interest.

When all θcq 6= 0, (4.14) can be expressed as a function of the ratio, say ηq, where

ηq = θtq
θcq

. Specifically,

φ(d;α)

∣∣∣∣
θc 6=0

= φ(d;η) =

∣∣∣∣∣
(
∂α

∂θ′

∣∣∣∣
θc 6=0

)
M−

(
∂α

∂θ′

∣∣∣∣
θc 6=0

)′∣∣∣∣∣
− 1
R

=
(∣∣GM−G′

∣∣|NN ′|)− 1
R . (4.15)

Because |NN ′| does not depend on the designXH , we have the following Lemma 4.3.1

that is useful for the maximin approach.

Lemma 4.3.1 Any design d maximizes
∣∣GM−G′

∣∣− 1
R if and only if it maximizes(∣∣GM−G′

∣∣|NN ′|)− 1
R .

However, for the case where at least one θcq = 0, the D-optimality criteria may or

may not be free of the unknown parameter, ηq. In particular,

φ(d;α)|θc=θ0
= φ(d;θ0) =

∣∣∣∣∣
(
∂α

∂θ′

∣∣∣∣
θc=θ0

)
M−

(
∂α

∂θ′

∣∣∣∣
θc=θ0

)′∣∣∣∣∣
− 1
R

, (4.16)

where, ∂α
∂θ′

∣∣∣∣
θc=θ0

is reported under (4.10) for q = 1, · · · , Q.
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4.4 The Applied Maximin Approach

Because the value of the ratio parameter vector, η, is uncertain, we would like

to find a design that is robust to a mis-specification of the η-value. The applied

approach for obtaining such a design is the maximin approach considered in Maus

et al. (2010), and Kao and Mittelmann (2014). Solving a maximin design problem

can be very computationally expensive, and it is to obtain a maximin design d∗Mm

that maximizes:

min
η∈Ω

(
RE(d;d∗η), RE(d;d∗θ0)

)
= min

η∈Ω

(
φ(d;η)

φ(d∗η;η)
,
φ(d;θ0,η)

φ(d∗θ0 ;θ0,η)

)
, (4.17)

where Ω is the parameter space of η. The optimization will involve three steps:

1. Obtain the following locally optimal designs

(a) d∗η that maximizes φ(d;η) for each of the (many) possible values of η.

(b) d∗θ0 that maximizes φ(d;θ0,η).

2. With these d∗ηs and d∗θ0s, we then find minη∈Ω

(
RE(d;d∗η), RE(d;d∗θ0)

)
for each

candidate design d.

3. Achieve a design yielding the maximal value of minη∈Ω

(
RE(d;d∗η), RE(d;d∗θ0)

)
.

To search for a maximin design, we will replace Ω by a grid, and use the genetic

algorithm to find the target optimal designs in step 1 and 3.

4.5 Simulation Results

In this section, we focus on the detection of the HRFs by estimating the amplitude,

α, in (4.7). We consider three different scenarios that, respectively, have (Q,N):

(1, 127), (2, 121) and (3, 127) with τISI = 2 seconds. For this case, we set τTR = ∆T =
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0.1 seconds; this means that the response sampling rate is 10 Hz. At an activated

brain region, each stimulus is assumed to evoke an HRF of τdur = 32 seconds. The

drift of the time series, i.e. Sγ is assumed to be a second-order Legendre polynomial,

(Liu and Frank, 2004) and, for simplicity, the error term is assumed to follow a

stationary AR(1) process with an autocorrelation coefficient of 0.3. We now present

the simulation results under D-optimality. All the computations in the following

subsection are conducted on a desktop computer of a 4.00 GHz Intel Core i7-4790k

quad-core processor with 16GB RAM.

Two methods are considered for obtaining maximin designs. Method IA is our

proposed method described in the previous section when αq as in (4.7). We first adopt

the genetic algorithm of Kao et al. (2009) to obtain the required locally optimal

designs d∗η that maximizes the D-optimality criterion φ(d;η) stated in (4.15). In

particular, for Q = 1, 2, and 3, we obtain (9, 81, 729) locally optimal design d∗η that

maximizes φ(d;η) for the (9, 81, 729) grid points of η in G̃1, G̃2, and G̃3; respectively.

To reflect the change in the latency of the response, it typically varies between [−2, 2]

seconds and the corresponding ratio parameter also varies between [−2, 2] seconds; see

also Figure 1.d of Henson et al. (2002), Worsley and Taylor (2006), Henson and Friston

(2007), and Liao et al. (2000). We set G̃1 = {η1 | ηi = −2,−1.5,−1, ..., 2, i = 1}. For

Q = 2, G̃2 = {(η1, η2) | ηi = −2,−1.5,−1, ..., 2, i = 1, 2} and similarly for Q = 3,

G̃3 = {(η1, η2, η3) | ηi = −2,−1.5,−1, ..., 2, i = 1, 2, 3}. Then, we again adopt the

genetic algorithm to obtain the required locally optimal designs d∗θ0 that maximizes

the D-optimality criterion φ(d;θc = θ0) stated in (4.16). In particular, for Q = 1, 2,

and 3, we obtain (1, 19, 271) locally optimal design d∗θc that maximizes φ(d;θ0,η) in

G1, G2, and G3; respectively. We define θ
(k)
0 be a vector contains k zero elements.

Thus, G1 = {θ(1)
0 }. For Q = 2, G2 = {θ(2)

0 } ∪ {{θ
(1)
0 } × G̃1} and similarly for Q = 3,

G3 = {θ(3)
0 } ∪ {{θ

(2)
0 } × G̃1} ∪ {{θ(1)

0 } × G̃2}.
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Table 4.1 summarizes the number of locally optimal designs needed for Method

IA and the total computing time spent on obtaining all these locally optimal designs

for q = 1, 2, and 3 in G̃1 ∪G1, G̃2 ∪G2, and G̃3 ∪G3; respectively.

Table 4.1: Locally Optimal Designs; Method IA

Q = 1 Q = 2 Q = 3

# of LODs 10 100 1000

CPU(mins) 10.73 279.65 5300.66

In Table 4.2, we compare the performance of Method IA on obtaining maximin

designs, d∗Mm, for (Q,N) = (1, 127), (2, 121), and (3, 127). The minimum relative effi-

ciency of the obtained d∗Mm and the computing time are reported there (the first row).

This is only the time spent on the genetic algorithm to search for d∗Mm. The total CPU

time needed should also include the time required for obtaining the locally optimal

designs presented in Table 4.1. Consequently, the total times needed for obtaining

d∗Mm are approximately 12, 283 and 5307 minutes, respectively. The times needed for

different stimulus are increasing, especially for Q = 3. Our proposed approach (first

row) is the most efficient. For evaluating the performance of the obtained d∗Mm, we

consider the optimal design d∗θc , and d∗θc|θt that maximize φ(d∗;θc) = |M 1|
1
R , and

φ(d∗;θc|θt) = |M 2|
1
R where,

M 1 =(IQ ⊗ h∗)′X ′V ′(IT − PV S)V X(IQ ⊗ h∗);

M 2 =(IQ ⊗ h∗)′X ′V ′(IT − PV [X(IQ⊗dh∗),S])V X(IQ ⊗ h∗).

We evaluate these designs to calculate minη∈Ω

(
RE(d;d∗η), RE(d;d∗θ0)

)
. By compar-

ing the first row with the last two in 4.2, all d∗Mms obtained by different stim-

ulus perform similarly, and they all achieve at least 97% relative efficiency over
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G̃1 ∪G1, G̃2 ∪G2, and G̃3 ∪G3. These results indicate that our proposed Method IA

can efficiently obtain a good maximin design.

Table 4.2: minη∈Ω RE(.;d∗η,d
∗
θ0

) of d∗Mm Method IA Versus d∗θc and d∗θc|θt

Q = 1 Q = 2 Q = 3

φ CPU(#Iter) φ CPU(#Iter) φ CPU (#Iter)

d∗Mm 0.9775 1.53(601) 0.9704 3.21(801) 0.9653 6.24(801)

d∗θc 0.9049 0.90(401) 0.8340 2.25(601) 0.7974 2.17(401)

d∗θc|θt 0.9051 29.30(601) 0.8949 44.47(1001) 0.8875 41.65(801)

In Table 4.3, we compare the performance of the d∗Mm obtained by Method IA

with some traditional designs that are widely used in functional brain imaging studies.

These traditional designs include blocked designs, an m-sequence-based design, and

ten randomly generated designs. We consider blocked designs having a 16 seconds-on-

16 seconds-off pattern or 12 seconds-on-12 seconds-off pattern. These designs perform

well for detecting brain activation under linear models, (Maus et al., 2010). Even

though blocked design of size six performs similarly as the maximin design in Q = 1,

for larger Q′s, they do not perform well for detection under the linear model when the

parametric function is non linear. An m-sequence (or maximum length sift-register

sequence) of length N = (Q + 1)r − 1. These sequences are commonly used for

estimating the HRF in fMRI studies (i.e. for estimating h of Model (2.2)). However,

they do not perform as well as the d∗Mm obtained from Method IA. We also randomly

generate ten design sequences and the range of the minη∈Ω

(
RE(d;d∗η), RE(d;d∗θ0)

)
of

these random designs are also reported in Table 4.2. Similarly, they do not outperform

the maximin design obtained from our proposed method.

In Figure 4.2, we provide these maximin designs by presenting the value of the
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Table 4.3: minη∈Ω RE(.;d∗η,d
∗
θ0

) of d∗Mm From Method IA Versus Some Traditional

Designs

Q = 1 Q = 2 Q = 3

d∗Mm 0.9775 0.9730 0.9653

m-sequence-based design 0.8476 0.8396 0.8423

blocked design (size=8) 0.9047 0.8348 0.7982

blocked design (size=6) 0.9648 0.8669 0.8275

ten random designs 0.8196-0.8693 0.7899-0.8720 0.8104-0.8421

nth element dn of d∗Mm. These d∗Mm’s seem to be a mixture of a blocked and a rapid

event-related design, i.e., m-sequences or random designs, (Maus et al., 2010).
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(Q, N)= (1, 127)

20 40 60 80 100 120

stimulus1

(Q, N)= (2, 121)

20 40 60 80 100 120

stimulus1
stimulus2

(Q, N)= (3, 127)

20 40 60 80 100 120

stimulus1
stimulus2
stimulus3

Figure 4.1: The maximin designs d∗Mm = (d1, ..., dN) obtained from Method IA.
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Method IB is the alternative method that we proposed. It is partially described

in the previous section when considering the first case of αq in 4.7. Similar to method

IA, we use the obtained locally optimal designs d∗η that maximizes the D-optimality

criterion φ(d;η). In particular, for Q = 1, 2, and 3 in previous results, we obtained

(9, 81, 729) locally optimal designs that maximizes φ(d;η) in G̃1, G̃2, and G̃3; respec-

tively. G̃1, G̃2, G̃3 are as described in Method IA.

Table 4.4 summarizes the number of locally optimal designs needed for Method

IB and the total computing time spent on obtaining all these locally optimal designs.

Table 4.4: Locally Optimal Designs; Method IB

Q = 1 Q = 2 Q = 3

# of LODs 9 81 729

CPU(mins) 9.68 228 3888.50

In Table 4.5, we compare the performance of Method IB on obtaining maximin

designs, d∗Mm, for (Q,N) = (1, 127), (2, 121), and (3, 127). The minimum relative

efficiency of the obtained d∗Mm and the computing time are reported in the first

row. The total CPU time needed for obtaining d∗Mm are approximately 11, 234 and

3894 minutes, respectively. For evaluating the performance of the obtained d∗Mm,

we consider the locally optimal design d∗θc , and d∗θc|θt that maximize φ(d∗;θc) and

φ(d∗;θc|θq) similar to the previous section. This results is very similar to the obtained

results on Method IA.

In Table 4.6, we compare the performance of the d∗Mm obtained by Method IB

with some traditional designs. These traditional designs include blocked designs, an

m-sequence-based design, and ten randomly generated designs. We consider blocked

designs having a 16 seconds-on-16 seconds-off pattern or 12 seconds-on-12 seconds-off
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Table 4.5: minη∈ΩRE(.;d∗η) of d∗Mm Versus d∗θc and d∗θc|θt ; Method IB

Q = 1 Q = 2 Q = 3

φ CPU(#Iter) φ CPU(#Iter) φ CPU (#Iter)

d∗Mm 0.9777 1.54(601) 0.9732 5.56(1401) 0.9669 5.75(801)

d∗θc 0.9049 0.90(401) 0.8340 2.25(601) 0.7974 2.17(401)

d∗θc|θt 0.9051 29.30(601) 0.8949 44.47(1001) 0.8875 41.65(801)

pattern. These designs perform the same as the traditional designs in Method IA.

Table 4.6: minη∈ΩRE(.;d∗η) of d∗Mm Versus Some Traditional Designs; Method IB

Q = 1 Q = 2 Q = 3

d∗Mm 0.9777 0.9730 0.9669

m-sequence-based design 0.8476 0.8396 0.8423

blocked design (size=8) 0.9047 0.8348 0.7982

blocked design (size=6) 0.9648 0.8669 0.8275

ten random designs 0.8030-0.8679 0.8086-0.8635 0.7998-0.8525

Figure 4.2, presents the value of the nth element dn of d∗Mm maximin designs.

Similar to the obtained results in Method IA, these d∗Mm’s seem to be a mixture of a

blocked and a rapid event-related design.

In Table 4.7, we evaluate d∗Mm by Method IB over G̃1∪G1, G̃2∪G2, and G̃3∪G3;

respectively. Also, we evaluate d∗Mm by Method IA over G̃1, G̃2, and G̃3; respectively.

The minimum relative efficiencies are reported for q = 1, 2, 3. Both methods can

efficiently generate high quality designs. However, the proposed Method IB is more

efficient than Method IA in terms of the achieved design efficiency and required CPU
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Figure 4.2: The maximin designs d∗Mm = (d1, ..., dN) obtained from Method IB.
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time. These results indicate that Method IB can efficiently obtain a good maximin

design.

Table 4.7: Evaluation of d∗Mm Method IB Versus d∗Mm Method IA

Q = 1 Q = 2 Q = 3

minη∈ΩRE(d∗MmIB
;d∗η,d

∗
θ0

) 0.9777 0.9732 0.9669

minη∈ΩRE(d∗MmIA
;d∗η) 0.9775 0.9704 0.9653

As mentioned previously that Method IB is more efficient, Table 4.8 reports min-

imum relative efficiencies of d∗Mm Method IB, d∗θc , and d∗θc|θt over G1, G2, and G3. All

these results show that minη∈ΩRE(d;d∗θ0) ≥ minη∈Ω RE(d;d∗η) where d = d∗Mm,d
∗
θc ,

and d∗θc|θt . It suggests that GA tends to perform well by focusing on the reduced

parameter space G̃1, G̃2, and G̃3; respectively. In addition, these designs are still

performing well with or without including θc = θ0 in the parameter space.

Table 4.8: minη∈Ω RE(.;d∗θ0) of d∗Mm Method IB Versus d∗θc and d∗θc|θt

Q = 1 Q = 2 Q = 3

d∗Mm 0.9781 0.9758 0.9686

d∗θc 0.9197 0.8454 0.8103

d∗θc|θt 0.9197 0.9031 0.8946
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Chapter 5

CONCLUSION

In this dissertation, we investigate two issues in high temporal resolution neuro-

imaging studies when obtaining optimal designs.

In the first part, we propose an efficient approach to obtain optimal designs for

high temporal resolution neuro-imaging studies to estimate the HRF. The major

challenge is that the design matrix is large. In order to tackle this issue, the main

idea is by considering the information matrix, M s of hs in Model (3.2) instead of that

of the ‘full’ information matrix M of h of Model (3.1). Thus, we apply the proposed

approach described in Step X-1 to X-3 to optimize the surrogate criterion φ(d|Xs) of

φ(d|X). Under certain conditions, we show mathematically that a judiciously selected

Xs not only allows an unbiased estimate of hs as suggested by Lemma 3.1.1, but also

makes φ(d|Xs) a good surrogate of φ(d|X). Moving away from these conditions,

we consider the genetic algorithm of Kao et al. (2009) to obtain an optimal design

d∗ that maximizes φ(d∗s|Xs) using the subsampled matrix Xs. We demonstrate the

usefulness of our method for estimating the HRF with both τTR = ∆T and τTR 6= ∆T

under the A-optimality criteria through case studies. We find that our obtained

designs outperform some traditional fMRI designs in all cases. We also observe that

φ(d∗s|Xs) provides a very good surrogate for φ(d∗|X). We show that the proposed

method can obtain designs that perform very well in terms of the φ(d∗|X)-value

with much less CPU time. Our observation of cases with different stimulus types

and different τISI consistently show the usefulness of the proposed method. Thus,

we infer further that this method will provide optimal designs for experiments with

much faster scanning time and also can be extended to other optimality criteria, such
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as D-optimality criterion.

In the second part, we extend the existing approaches to obtain optimal design

for high temporal resolution neuro-imaging studies when HRF is modeled by a linear

combination of the double-gamma function and its temporal derivative. The proposed

parametric function was inspired by Calhoun et al. (2004) for estimating the ampli-

tude. We consider a slight modification of the parametric function to accommodate

cases where the temporal HRF parameter, θt is active but θc = 0. Because the value

of the latency parameter or the ratio parameter vector, η, is uncertain, we apply

the maximin approach considered in Maus et al. (2010), and Kao and Mittelmann

(2014). We incorporate GA and demonstrate the usefulness of the modified approach

through several case studies. The performance of the maximin designs is compared

with different designs along with some traditional designs under the D-optimality

criterion. We observe that these designs are relatively robust to the misspecification

of the latency parameter vector. The optimal designs obtained by Method IA and

Method IB always perform better than the traditional designs. Furthermore, the GA

tends to perform well when the parameter space is reduced. For comparison purposes,

we choose the D-optimality criterion because of the simplified result by Lemma 4.16,

however, the proposed approach can be further extended to other optimality criteria,

such as the A-optimality criterion. The results show that Method IB helps to obtain

maximin designs with better efficiencies and requires significantly less time to obtain

the locally optimal designs compared to Method IA. In addition, to check the robust-

ness of the obtained designs from Method IB, we evaluate these designs under the

setting of Method IA. We observe that obtaining maximin designs without including

θc = θ0 can further reduce the computational burden without having a negative effect

on the design efficiencies.
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