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ABSTRACT  

   

Although many studies have identified environmental factors as primary drivers 

of bird richness and abundance, there is still uncertainty about the extent to which 

climate, topography and vegetation influence richness and abundance patterns seen in 

local extents of the northern Sonoran Desert. I investigated how bird richness and 

abundance differed between years and seasons and which environmental variables most 

influenced the patterns of richness and abundance in the Greater Phoenix Metropolitan 

Area.  

I compiled a geodatabase of climate, bioclimatic (interactions between 

precipitation and temperature), vegetation, soil, and topographical variables that are 

known to influence both richness and abundance and used 15 years of bird point count 

survey data from urban and nonurban sites established by Central Arizona–Phoenix 

Long-Term Ecological Research project to test that relationship. I built generalized linear 

models (GLM) to elucidate the influence of each environmental variable on richness and 

abundance values taken from 47 sites. I used principal component analysis (PCA) to 

reduce 43 environmental variables to 9 synthetic factors influenced by measures of 

vegetation, climate, topography, and energy.  I also used the PCA to identify uncorrelated 

raw variables and modeled bird richness and abundance with these uncorrelated 

environmental variables (EV) with GLM. 

I found that bird richness and abundance were significantly different between 

seasons, but that richness and winter abundance were not significantly different across 

years.  Bird richness was most influenced by soil characteristics and vegetation while 
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abundance was most influenced by vegetation and climate.  Models using EV as 

independent variables consistently outperformed those models using synthetically 

produced components from PCA.  The results suggest that richness and abundance are 

both driven by climate and aspects of vegetation that may also be influenced by climate 

such as total annual precipitation and average temperature of the warmest quarter.  

Annual oscillations of bird richness and abundance throughout the urban Phoenix area 

seem to be strongly associated with climate and vegetation.  
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CHAPTER 1 

GEODATABASE OF CLIMATIC, BIOCLIMATIC, AND VEGETATION 

VARIABLES OF MARICOPA COUNTY 

INTRODUCTION 

Worldclim bioclimatic data (interactions between precipitation and temperature) 

have been used widely in ecology studies focusing especially on large regional and global 

scale species distribution models (Nix 1986; Waltari et al. 2014; Feilhauer 2012).  Users 

can easily access bioclimatic variables for most portions of the globe and obtain 

bioclimatic variables that are based on past, future, and present climate conditions 

(Hijmans et al. 2005).  Although these data are powerful and easily available, the user is 

limited to bioclimatic variables based on averaged interpolations of historical weather 

data from 1960 to 1990.  Worldclim data is known to have inaccuracies especially in 

areas with few weather stations and large elevation differences (Bobrowski & Schickhoff 

2017).  Those studying these ecosystems may especially benefit from bioclimatic 

variables derived from climate data outside of Worldclim. Recently, researchers have 

developed Program R (R Core Team 2017) code to produce the same 19 bioclimatic 

variables that are available from Worldclim, by using climate data obtained from other 

sources (Hijmans 2017).   

Bioclimatic variables are important predictors of species distributions and show 

how species distributions are driven by both climatic and non-climatic variables 

(O’Donnell & Ignizio 2012).  Most species distribution studies look primarily at climate 

and topography, but several studies show the importance of including vegetation indices 
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as part of distribution models (Wen et al. 2015; Buermann et al. 2008; Guisan & 

Zimmermann 2000).  In each of these studies, the inclusion of vegetation indices 

consistently led to more robust models in varying ecological disciplines.  The importance 

of vegetation in urban areas has also been documented (Zhao et al. 2016).  Vegetation in 

urban areas reduces dust, reduces heat island effects, increases humidity, and social 

enjoyment (Susca et al. 2011).   

Vegetation indices have been used to document vegetation structure, productivity, 

and overall health. Vegetation indices are often obtained by examining the near-infrared 

wavelengths compared to red spectrum wavelengths (Didan 2015). The moderate 

resolution imaging spectroradiometer (MODIS) sensor on the National Aeronautics and 

Space Administration (NASA) Terra satellite has been used for several decades to collect 

vegetation values throughout the world of the normalized difference vegetation index 

(NDVI) and the enhanced vegetation index (EVI) (Didan 2015).  MODIS captures one 

daily and one nightly image of every point on earth each month. Although raw index data 

has been shown useful in model development for researchers, there are no MODIS 

products generated for vegetation that show effects and seasonality of temperature on 

vegetation.  Herein, I describe the development of a data repository including climate 

variables, bioclimatic variables, and vegetation indices for Maricopa County. This study 

provides a baseline for the interdisciplinary work of researchers associated with the 

Central Arizona–Phoenix Long-Term Ecological Research (CAP LTER) program.   

 

 



 

3 

Research Objectives 

The purpose of this study was to document the compilation and creation of a 

geodatabase and the necessary bioclimatic variables, vegetation variables, and raw 

climatic variables comprised within the geodatabase for Maricopa County. My objectives 

were to: 

1. Create 19 new bioclimatic variables using modeled data from NASA Earth 

Science Data and Information System Daily Surface Weather and Climatological 

Summaries (DAYMET) for 17 years (2000 – 2016) in the same methods as 

outlined by Worldclim and United States Geological Survey (Hijmans 2005; 

O’Donnell and Ignizio 2012). 

2. Compile NDVI and EVI values and generate four new vegetation variables that 

reflect annual seasonality trends on vegetation index values for 17 years (2000 – 

2016). 

3. Compile and publish data into a publicly available data repository for the CAP 

LTER area of study.  

METHODS 

Raw Climatic Data 

DAYMET data were produced by NASA using a model imposed onto daily 

outputs of ground weather stations throughout North America producing a continuous 

surface dataset (Thornton et al. 2018; Thornton et al. 1997).  I downloaded monthly 

values of air temperature minimums, air temperature maximums, precipitation, and water 

vapor pressure from DAYMET.  The monthly values for minimum and maximum air 
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temperatures and water vapor pressure used in this geodatabase were generated by 

averaging the daily values for each month.  Monthly precipitation totals were generated 

from summing the daily DAYMET precipitation output values for each month.  The 

spatial resolution for all NASA DAYMET data was 1-km x 1-km.   

I downloaded all data in Georeferenced Tagged Image File Format (GeoTIFF) for 

all North America directly from the Oak Ridge National Laboratory Distributed Active 

Archive Center (ORNL DAAC) which serves as a data center for the NASA Earth 

Observing System Data and Information System (EOSDIS).  I downloaded data files in 

multispectral GeoTIFF raster format with 12 bands in each file (one band for each 

month).  Each individual band contained monthly data for minimum temperature, 

maximum temperature, precipitation and water vapor pressure (Table 1.1).  I conducted a 

batch download from ORNL DACC of 68 multispectral GeoTIFF rasters containing more 

than 3.5 GB of data.  I separated all downloaded multispectral GeoTIFF rasters into 

single band rasters for each parameter and month for a total of 272 monthly single band 

rasters.  I used a clip tool in ESRI ArcMap (ESRI 2011) to clip each single band raster to 

the Maricopa County extent. 

Bioclimatic Variables 

I used the single band rasters containing data for only Maricopa County to 

produce 19 bioclimatic variables for each year from 2000 - 2016.  I generated bioclimatic 

variables using the biovars function of the dismo package on Program R version 3.5.1 

(Hijmans 2017, R Core Team 2017).  Bioclimatic variables containing quarters referred 

to any 3 months in consecutive order and November and December data were analyzed 
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with January and February data of the following calendar year.  Outputs of the biovars 

function were verified against bioclimatic variables that were calculated manually in 

ESRI ArcMap (ESRI 2011) to determine the integrity of the function.  In total, 323 new 

datafiles composed of 19 new variables for all seventeen years were generated (Table 1.2,  

Nix 1986; Hijmans 2005;  O’Donnell and Ignizio 2012).   

1. Annual Mean Temperature (BIO 1) – Average monthly temperatures were 

calculated by summing each monthly temperature maximum and minimum and 

dividing by two.  Using the average monthly temperatures for each year, the 

annual mean temperature was calculated by summing all average monthly 

temperatures and dividing by 12.   

2. Annual Mean Diurnal Range (BIO 2) – Also described as the average monthly 

temperature ranges.  This variable was generated by subtracting each monthly 

temperature minimum from each monthly temperature maximum and adding the 

difference for all 12 months; the total was divided by 12 to find the annual 

average temperature change.  

3. Isothermality (BIO 3) – Isothermality is the comparison of the mean diurnal range 

(BIO2) to the annual temperature range (BIO7).  It is calculated as a percentage 

and is important in showing the daily oscillations in temperature between day and 

night.  Smaller values of isothermality signify that there are smaller fluctuations 

in temperature range in that area than the annual temperature range.   

4. Temperature Seasonality (BIO 4) – Temperature seasonality indicates the 

temperature variation within a single year.  It is calculated by taking the standard 
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deviation of all 12 average monthly temperatures for each year.  This is then 

multiplied by 100; the larger the standard deviation the more variable the 

temperature is in that area. 

5. Maximum Temperature of the Warmest Month (BIO 5) – Monthly maximum 

temperatures were compared for each year.  Maximum temperature of the 

warmest month was generated by taking the maximum temperature value out of 

the 12 compared months. Max temperature of the warmest month is important in 

documenting events that are affected by warm weather.   

6. Minimum Temperature of the Coldest Month (BIO 6) - Monthly minimum 

temperatures were compared for each year.  Minimum temperature of the coldest 

month was generated by taking the minimum temperature value out of the 12 

compared months. Minimum temperature of the coldest month is important in 

documenting events that are affected by cold weather. 

7. Annual Temperature Range (BIO 7) – Annual temperature range shows the 

variation in temperature throughout the year.  It differs from annual mean diurnal 

range in that it looks at temperature ranges of the warmest month compared to the 

coldest month instead of entire year periods.  Annual temperature range is 

calculated by subtracting the minimum temperature of the coldest month (BIO 6) 

from the maximum temperature of the warmest month (BIO 5).  Annual 

temperature range is important in documenting events that are affected by 

extreme temperature ranges.   
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8. Average Temperature of the Wettest Quarter (BIO 8) – Average temperature of 

the wettest quarter was calculated by summing the monthly total precipitation of 

12 consecutive sets of three months.  Average temperatures were then extracted 

for the set of three months with the highest total precipitation.  Average 

temperatures for the three months were then summed and divided by three to 

obtain the average temperature of the wettest quarter.  

9. Average Temperature of the Driest Quarter (BIO 9) – Average temperature of the 

driest quarter was calculated by summing the monthly total precipitation of 12 

consecutive sets of three months.  Average temperatures were then extracted for 

the set of three months with the lowest total precipitation.  Average temperatures 

for the three months were then summed and divided by three to obtain the average 

temperature of the driest quarter.   

10. Average Temperature of the Warmest Quarter (BIO 10) – Average temperature of 

the warmest quarter was calculated by summing the average monthly 

temperatures of 12 consecutive sets of three months.  Once the warmest quarter of 

the year was identified, average temperatures were extracted for these months.  

Average temperatures for the three months were then summed and divided by 

three to obtain the average temperature of the warmest quarter.   

11. Average Temperature of the Coldest Quarter (BIO 11) – Average temperature of 

the coldest quarter was calculated by summing the average monthly temperatures 

of 12 consecutive sets of three months.  Once the coldest quarter of the year was 

identified, average temperatures were extracted for these months.  Average 
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temperatures for the three months were then summed and divided by three to 

obtain the average temperature of the coldest quarter.   

12. Annual Precipitation (BIO 12) – Annual precipitation was calculated by summing 

the total precipitation for 12 months in each year.  Annual precipitation is 

important in understanding how events are affected by water availability. 

13. Precipitation of the Wettest Month (BIO 13) – Precipitation of the wettest month 

is identified by comparing each monthly total precipitation value and selecting 

those values with the highest total precipitation between the 12 monthly datasets.  

Precipitation of the wettest month is important to show how extreme water 

availability affects events within a year.  

14. Precipitation of the Driest Month (BIO 14) – Precipitation of the driest month is 

identified by comparing each monthly total precipitation value and selecting those 

values with the lowest total precipitation between the 12 monthly datasets.  

Precipitation of the driest month is important to show how extreme water 

availability affects events within a year.  

15. Precipitation Seasonality (BIO 15) – Precipitation seasonality measures how 

much monthly precipitation varies over an entire year. Precipitation seasonality is 

calculated by finding the standard deviation of the total monthly precipitation 

values.  The standard deviation of precipitation values is then divided by the sum 

of one and the quotient of annual precipitation (BIO 12) and 12.  This quotient is 

then multiplied by 100 to give you the percent value of precipitation seasonality.  

As precipitation seasonality increases, there is more variance in total precipitation 
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in that area.  Precipitation seasonality affects events that are dependent on 

precipitation stability.  

16. Precipitation of the Wettest Quarter (BIO 16) – Precipitation of the wettest quarter 

was calculated by summing the monthly total precipitation of 12 consecutive sets 

of three months.  Total monthly precipitation values were then extracted and 

summed for the set of three months with the highest total precipitation computing 

the precipitation of the wettest quarter.  This variable is useful in identifying 

events that are affected by the amount of precipitation in the wettest season of the 

year.  

17. Precipitation of the Driest Quarter (BIO 17) – Precipitation of the driest quarter 

was calculated by summing the monthly total precipitation of 12 consecutive sets 

of three months.  Total monthly precipitation values were then extracted and 

summed for the set of three months with the lowest total precipitation computing 

the precipitation of the driest quarter.  This variable is useful in identifying events 

that are affected by the amount of precipitation in the driest season of the year.  

18. Precipitation of the Warmest Quarter (BIO 18) – Precipitation of the warmest 

quarter was calculated by summing the average monthly temperatures of 12 

consecutive sets of three months.  Once the warmest quarter of the year was 

identified, total precipitation values were extracted for these months.  

Precipitation totals for the three months were then summed to obtain the 

precipitation of the warmest quarter.   
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19. Precipitation of the Coldest Quarter (BIO 19) – Average temperature of the 

coldest quarter was calculated by summing the average monthly temperatures of 

12 consecutive sets of three months.  Once the coldest quarter of the year was 

identified, total precipitation values were extracted for these months.  

Precipitation totals for the three months were then summed to obtain the 

precipitation of the coldest quarter.   

Vegetation Indices 

 MODIS vegetation data from NDVI and EVI monthly values used for this study 

were generated by taking the highest index value from each monthly batch of images 

(Didan 2015). All images were batch downloaded from NASA Earth Data Land 

Processes Distributed Active Archive Center.  I downloaded multispectral GeoTIFF 

rasters comprised of calculated NDVI and EVI values.  I conducted a batch download for 

a total of 204 multispectral GeoTIFF rasters.  Multispectral GeoTIFF rasters were then 

separated into single band rasters for both NDVI and EVI by month.  I used a clip tool in 

ESRI ArcMap 10.6 (ESRI 2011) to clip each single banned raster to the Maricopa County 

extent.   

To better understand seasonality of NDVI and EVI index values, new vegetation 

variables were generated.  New vegetation variables were created using the biovars 

function of the dismo package on Program R version 3.5.1 (Hijmans 2017, R Core Team 

2017).  Quarters referred to any three months in consecutive order and November and 

December data were analyzed with January and February data of the following calendar 

year in order to analyze three months.  The new vegetation variables were generated for 
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each calendar year from 2000 to 2016 (Table 1.3; based on Nix 1986; Hijmans 2004; 

O’Donnell and Ignizio 2012).   

1. Average Vegetation Indices Values of the Quarter with Highest NDVI/EVI – 

Average vegetation indices values of the quarter with the highest NDVI/EVI 

values were calculated by summing the monthly NDVI/EVI values of 12 

consecutive sets of three months.  Average vegetation indices values were 

then extracted for the set of three months with the highest total NDVI/EVI.  

Average vegetation indices values for the three months were then summed 

and divided by three to obtain the average vegetation indices of the wettest 

quarter.  

2. Average Vegetation Indices Values of the Quarter with the Lowest NDVI/EVI 

– Average vegetation indices values of the quarter with the lowest NDVI/EVI 

values were calculated by summing the monthly NDVI/EVI values of 12 

consecutive sets of three months.  Average vegetation indices values were 

then extracted for the set of three months with the lowest NDVI/EVI values.  

Average vegetation indices for the three months were then summed and 

divided by three to obtain the average vegetation indices values of the quarter 

with the lowest NDVI/EVI.   

3. Average NDVI/EVI of the Warmest Quarter – NDVI/EVI of the warmest 

quarter was calculated by summing the average monthly temperatures of 12 

consecutive sets of three months.  Once the warmest quarter of the year was 

identified, NDVI/EVI values were extracted for these months.  NDVI/EVI 
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totals for the three months were then summed and divided by three to obtain 

the average NDVI/EVI of the warmest quarter.   

4. Average NDVI/EVI of the Coldest Quarter – NDVI/EVI of the coldest quarter 

was calculated by summing the average monthly temperatures of 12 

consecutive sets of three months.  Once the coldest quarter of the year was 

identified, NDVI/EVI values were extracted for these months.  NDVI/EVI 

totals for the three months were then summed and divided by three to obtain 

the average NDVI/EVI of the coldest quarter.   

RESULTS AND DISCUSSION 

 This is the first time that bioclimatic variables have been generated using NASA 

DAYMET climate data instead of relying on past interpolated data from Worldclim.  

Each of the 17 sets (one set/year) of 19 newly created bioclimatic variables were 

produced using climate data that were collected from the same year.  Researchers have 

shown that Worldclim data is not always the most accurate in describing how bioclimatic 

variables affect events especially in areas with large elevation ranges and few weather 

stations (Bobrowski and Schickhoff 2017).  Utilizing climate data generated from the 

same sample year reduces risks of error from past data interpolation.  This is especially 

important as the rate of climate change increases, and recent past climate data becomes 

less reliable as a source for future climates (Bedia et al. 2015). 

 Vegetation indices are important tools used as surrogates for understanding plant 

productivity, habitat structure, health, and growth patterns (Zelleweger et al. 2016). The 

use of vegetation indices has spread from simple estimates of productivity to robust 
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models of groundwater availability and carbon sequestration (Fu & Burgher 2015; 

Lagomasino et al. 2019).  Several studies found that understanding vegetation patterns 

during temperature extremes increased understanding of overall vegetation impacts 

(Alcaraz-Segura et al. 2009; Mkhabela et al. 2011). This is the first time that seasonality 

effects of temperature have been applied to vegetation indices for all of Maricopa County 

(Figure 1.1).   

 Although bioclimatic variables have been used primarily to investigate species 

distributions and other similar ecological studies, researchers from all disciplines can gain 

nuanced understandings of climate interactions by using bioclimatic variables as opposed 

to simple temperature and precipitation values (Hijmans 2005).  Researchers that are 

investigating the impacts of climate change will gain significant power by using 

bioclimatic variables generated from present data instead of historical trends.   All users 

of this data repository will benefit from the ease of access to high-quality continuous 

data.   

 All raw climate data from NASA DAYMET as well as the 19 bioclimatic 

variables for Maricopa County have been made publicly available for all users for years 

2000 – 2016 through CAP LTER.  Vegetation variables of NDVI and EVI, as well as all 

newly created seasonal impacted vegetation variables will also be made publicly 

available through CAP LTER.  To download data or obtain supplementary information 

for any of the datasets used in this study, visit the following URLs: 

https://doi.org/10.6073/pasta/ded1548e4ee8611ba587d26432d5e269 

https://doi.org/10.6073/pasta/88bde1cfeeb4c94774343a943cfe23e8 

https://doi.org/10.6073/pasta/88bde1cfeeb4c94774343a943cfe23e8
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Table 1.1.  Raw climatic variables for Maricopa county obtained from National 

Aeronautics and Space Administration (NASA) daily surface weather and climatological 

summaries (DAYMET) (Thornton et al. 2018; Thornton et al. 1997). 

Parameter Units Description 

Precipitation mm/month The total accumulated precipitation over the monthly 

period of the daily total precipitation. Precipitation is the 

sum of all forms of precipitation converted to water 

equivalent 

Maximum air 

temperature 

degrees C The average over the monthly period of high temperature 

for a 24-hour period 

Minimum air 

temperature 

degrees C The average over the monthly period of minimum 

temperature for a 24-hour period 

Water vapor 

pressure 

Pa The average over the monthly period of the daily average 

partial pressure of water vapor 



 

 

1
8

 

  
Table 1.2.  Explanation of 19 bioclimatic variables, their units of measurements, and calculations used to generate variables (Nix 

1986; Hijmans et al. 2005; O’Donnell & Ignizio 2012). 

 

qrt*= Quarter

Bioclimatic Predictor Units Calculation 

Annual mean temperature degrees C Sum(monthly avg)/12; monthly avg = (max temp + min temp)/2 

Annual mean diurnal range degrees C Sum(max temp - min temp)/12 

Isothermality % (Annual Mean Diurnal Range/Annual Temperature Range) * 100 

Temperature seasonality % Std_Dev(monthly avg temp) 

Max temp. of warmest month degrees C Max Temperature all months 

Min temp. of coldest month degrees C Min Temperature all months 

Annual temperature range degrees C Max Temp of Warmest Month – Min Temp of Coldest Month 

Mean temp. of wettest qrt.* degrees C Max precip 3 consecutive month sum; sum temp avg of max months/3 

Mean temp of driest qrt. degrees C Min precip 3 consecutive month sum; sum temp avg of min months/3 

Mean temp of warmest qrt. degrees C Max monthly avg temp 3 consecutive month sum;  sum temp avg of max 

months/3 

Mean temp of coldest qrt. degrees C Min monthly avg temp 3 consecutive month sum;  sum temp avg of min 

months/3 

Annual precipitation mm Sum total precipitation all 12 months 

Precipitation of wettest month mm Max total precipitation between 12 months 

Precipitation of driest month mm Min total precipitation between 12 months 

Precipitation seasonality % ((Std_Dev(total monthly precipitation))/(1+(Annual Precip/12)))*100 

Precipitation of wettest qrt. mm Max precip of 3 consecutive month sum 

Precipitation of driest qrt. mm Min precip of 3 consecutive month sum 

Precipitation of warmest qrt. mm Max monthly avg temp 3 consecutive month sum;  sum total precip of 

max months 

Precipitation of coldest qrt. mm Min monthly avg temp 3 consecutive month sum;  sum total precip of min 

months 
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Table 1.3. Explanation of four new vegetation variables for both NDVI & EVI based on 

seasonality and extremes of temperature. 

Bioclimatic Predictor Calculation 

Average vegetation 

indices values of qrt 

with highest NDVI/EVI 

Max NDVI/EVI 3 consecutive month sum; sum NDVI/EVI 

values of max months/3 

Average vegetation 

indices values of qrt 

with lowest NDVI/EVI 

Min NDVI/EVI 3 consecutive month sum; sum NDVI/EVI 

values of min months/3 

Average NDVI/EVI of 

the warmest qrt 

Max monthly avg temp 3 consecutive month sum;  sum total 

NDVI/EVI of max months/3 

Average NDVI/EVI of 

the coldest qrt 

Min monthly avg temp 3 consecutive month sum;  sum total 

NDVI/EVI of min months/3 

qrt = Quarter  



 

 

2
0

 

Figure 1.1. Examples of three continuous variables generated for Maricopa County: Annual mean temperature, annual precipitation, 

and average normalized difference vegetation index (NDVI) value for year 2016. 
Figure 1.1: Examples of three continuous variables generated for Maricopa County: Annual mean temperature, annual precipitation, 

and average NDVI value for year 2016.   
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CHAPTER 2 

DRIVERS OF BIRD SPECIES RICHNESS IN THE NORTHERN SONORAN DESERT 

INTRODUCTION 

Desert birds show several attributes that potentially favor their resilience to 

seemingly inhospitable environments.  Birds’ overall water and energy needs are modest 

because of their reduced size, which allows them to tolerate thermal and hydric extremes 

(Wolf 2000).  Birds are also highly mobile and can search for spatially localized 

resources over broad areas and can also increase their body temperature in response to 

heat or water stress. This physiological change allows birds to lose heat to the 

environment (heat flow) and thus help conserve valuable water resources (Wolf 2000). 

By analyzing the complex determinants of bird richness, this study provides a better 

insight into how to address the conservation problems derived from the impact of climate 

change on bird richness patterns and will help practitioners to design more inclusive 

strategies to conserve birds in the face of climate change. 

The climate hypothesis states that the geographical patterns of species richness 

strongly correlate with climate variables, often related to ambient energy and water 

variables (Hawkins et al. 2003; Fine 2015). This idea emerged from the beginning of 

biogeography (Von Humboldt 2014) and has driven biogeographical studies in the last 

three decades. The water-energy dynamics theory proposes that the interaction between 

water and energy, either directly or indirectly, generates and maintains geographical 

patterns of species richness (Currie 1991; O’Brien 2000; Hawkins et al. 2003; 

Albuquerque & Beier 2015).  
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Besides measures of ambient energy and precipitation, another important factor 

for explaining animal and plant diversity is annual stability (seasonality). Stable areas, 

with less variability throughout the year, may permit specialization and therefore may 

accumulate more species (Klopfer 1959). The annual stability hypothesis postulates that 

regions with variation in temperature and precipitation have promoted species to coexist 

in the same amount of space as well as increased speciation and reduced extinction rates 

(Begon 1996; Fine 2015).   

Species richness is also related to many environmental gradients such as area, 

evolutionary speed, soil, topography, biotic interactions and processes, human factors, 

and time (Fine 2015).  Previous studies have shown how topography impacts bird species 

richness in areas of large elevation heterogeneity (Melo et al. 2009). Habitat 

heterogeneity is often calculated as the number of habitat types or as range in elevation 

(difference between the maximum and minimum elevation within an area, Davies et al. 

2006).  Urbanization can have broad effects on habitat heterogeneity.   

Urban areas are the fastest growing ecosystems in the world with over half of the 

world’s 7.7 billion people found living in municipalities, and the vast majority of all 

population increases are happening within urban ecosystems and will continue for the 

expected future (United States Population Fund 2007).  Researchers have found on the 

global scale that bird diversity in urban ecosystems is lower compared to natural 

ecosystems, and that diversity is primarily driven by landcover and city age as opposed to 

climate and topography (Aronson et al. 2014).  Urban areas convert natural landscapes 

and vegetation into structures and municipality infrastructure which increases impervious 
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surfaces, municipal green space, and building density all of which have had negative 

effects on bird diversity (Silva et al. 2015).   

Although studies have identified environmental factors as a primary driver of 

richness in natural habitats (Hawkins et al. 2003), there is still not enough evidence to 

reach a consensus regarding the primary factors influencing richness patterns especially 

at local extents in urban arid environments.  Herein, I investigated how climate, 

topography, and vegetation affect bird geographical distribution in urban ecosystems of 

the northern Sonoran Desert, areas usually defined by climatic extremes, in both time and 

space.  

The impacts of climate on plant and animal abundance and distributions have 

already been discussed in desert ecosystems (Albuquerque et al. 2018).  Deserts warm 

and dry more quickly than other ecosystems (Iknayan & Beissinger 2018).  Since studies 

reported measures of water and ambient energy as the primary drivers of species 

distribution (Naujokaitis-Lewis et al. 2018; Albuquerque et al. 2018; Iknayan and 

Beissinger 2018), the predicted changes in climate may result in a substantial contraction 

of the suitable habitat over the next century (Albuquerque et al. 2018).  In addition, 

significant changes in environmental temperatures may produce a negative consequence 

for wildlife, including desert bird deaths (Albright et al. 2017). 

Research Objectives 

Several studies have reported the effects of urbanization on bird species richness 

and they have indicated that variables such as taxonomic group, extent of analysis, and 

intensity of urbanization produces no change, decrease or even increases richness in some 
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cases (McKinney 2008). Herein, I determine how bird richness compares through time 

and seasons in the urban ecosystems of the northern reaches of the Sonoran Desert as 

well as document which environmental variables most influence bird richness in the same 

area. I did not consider urban related variables because accurate temporal detailed urban 

inventories are unavailable for the Phoenix area. 

My objectives were to: 

1) Test if bird species richness was different between seasons for all sites, as well as 

if bird species richness was significantly different between years. 

2) Identify those environmental variables that most influence bird species richness in 

the ecosystems of the northern Sonoran Desert by season and year and compare 

how models perform longitudinally. 

METHODS 

Study area 

The study area includes the northeast portion of the Sonoran Desert, which 

includes Maricopa County and the greater Phoenix metropolitan area (GPMA), one of the 

fastest growing regions in the United States (Appendix A). The Sonoran Desert includes 

more than 350 birds and more than 2,000 species. Maricopa County is the nation's 4th 

largest county by population as well as the fastest growing county in the United States 

(U.S. Census Bureau 2010). Regarding climate, there are two separate rainfall seasons, 

one from November through March, and another from July and August.  The other 

months are generally dry.  The Sonoran Desert is considered much lusher than the 

surrounding deserts due to this seasonal rainfall pattern and mild winters (Dimmitt 2015).   



 

25 

Bird data 

I obtained data from the long-term monitoring of bird abundance and diversity 

from the Central Arizona–Phoenix Long-Term Ecological Research (CAP LTER).  As 

seen in Appendix A, a total of 104 sites was visited on three separate days by three 

different observers in winter (Dec-15 Mar) and spring (15 Mar – May) from 2001 to 2016 

excluding 2003 (surveys were not conducted in 2003).  At each point count survey, 

observers would wait five minutes after arriving at a site and then record all birds seen or 

heard within a 40-meter radius from the observer for 15 minutes as suggested by Bibby et 

al. (1992).  All surveys were conducted within four hours of dawn.  No species were 

documented that were seen outside or above the 40-meter radius except for wide-ranging 

migrating or soaring species. All species were classified by alpha codes as prescribed by 

Ralph (1993).   

The bird dataset includes survey locations in six general site groupings: (1) ESCA 

- a subset of the CAP LTER's Ecological Survey of Central Arizona (ESCA) long-term 

monitoring sites. ESCA sites include a diversity of habitats including urban, suburban, 

rural, commercial areas, parks, agricultural fields, and the native Sonoran Desert. (2) 

North Desert Village (NDV) - small neighborhoods which reflect dominant landscaping 

preferences employed throughout Phoenix. (3) Riparian habitats - sampling locations 

span a wide diversity of habitats throughout the -Phoenix area. (4) Salt River - Locations 

along the Salt River. (5) Desert Fertilization - Areas located at desert parks. (6) PASS - 

locations related to Phoenix Area Social Survey (PASS) neighborhoods. 
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To prepare a reliable presence dataset, I cleaned the data by (1) removing records 

with partial information (e.g. unidentified bird species);  (2) deleting records that did not 

have longitudinal consistency among all survey years and (3) reducing spatial 

aggregation by ensuring a minimum distance of 1-km between consecutive locations (the 

same spatial resolution of environmental variables). Finally, I included a total of 47 

locations from the ESCA and Riparian surveys consisting of sites throughout Maricopa 

County in the following habitat types and sites per habitat: commercial (4), residential 

(12), desert (13), agricultural (3), agricultural/residential (4), riparian (11) (Appendix B). 

Environmental data 

I used raw temperature, precipitation, and water vapor pressure data from NASA 

DAYMET remote sensing program as described in Chapter One (Raw Climatic Data, 

page 3).     

Bioclimatic Variables 

In order to view seasonality and nuanced climatic impacts on bird richness 

throughout Phoenix, I used 19 bioclimatic variables that were produced for each study 

year as described in Chapter One (Bioclimatic Variables, page 4).  

Vegetation 

 Because researchers have seen positive correlations between bird richness and 

vegetation productivity (Seto et al. 2004),  I used NDVI and EVI as surrogates of 

vegetation productivity and formatted vegetation datasets as described in Chapter One 

(Vegetation Indices, page 9).  I produced and used four new annual vegetation variables 
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based on NDVI and EVI values driven by seasonality and temperature as described in 

Chapter One (Vegetation Indices, page 9). 

Soil/Geomorphology Data 

I obtained soil data from the International Soil Reference and Information Centre 

(ISRIC) for Maricopa County for 2017.  I conducted batch downloads of data directly 

from the ISRIC Soil Grid user interface (Hengl et al. 2014).  I used the digital elevation 

model (30-m) for Maricopa County to generate 1-km resolution maps of elevation (mean 

elevation), elevation range (the difference between the maximum and minimum elevation 

values), aspect, and slope in ESRI ArcMap (ESRI 2011).  I obtained all sunshine 

variables from Neteler (2005). 

Environmental Variables and Richness  

I divided analyses by season with data separated into winter and spring surveys.  I 

used R (R Core Team 2017) version 3.5.1 to derive species richness for each site in each 

season and year using the aggregate function.  For the seasonal data, I hypothesized that 

there was no difference among richness values across all years (Null hypothesis). To test 

this hypothesis, I first performed a Shapiro-Wilk normality test. Results from this test 

indicated that the data are not normally distributed.  Therefore, I used the Kruskal-Wallis 

rank sum test to verify if richness values are the same across all years. I also performed a 

Wilcoxon rank sum test with continuity correction to verify if richness differs between 

the winter and spring seasons. The null hypothesis is that there is no difference between 

bird richness between seasons.  

Variable Selection 
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In order to determine the most important environmental variables for the richness 

dataset, I generated an average dataset of each environmental variable across all years.  I 

then used the function principal (R Core Team 2017) and the average environmental 

variables to perform a principal component analysis (PCA) in order to reduce the 

dimensionality of the data.  The PCA allowed me to recognize discontinuous subsets and, 

most importantly, to identify sets of relatively uncorrelated environmental variables. I 

used the varimax rotation function to produce rotated component loadings which are 

easier to interpret. This function maximizes the sum of the variance of the squared 

loadings while producing a smaller number of important variables (Stevens 1992). Then, 

I used the Kaiser criterion to select the number of principal components, i.e. those factors 

with an eigenvalue greater that one (Appendix C; Kaiser 1964). For each principal 

component or factor, I selected the variable with the largest absolute factor loading value 

(correlation between the averaged environmental variables and the global richness PCA 

factors) as the component defining a variable for all further analysis.  Alternatively, I 

produced factor scores - new variables, expressed as z-scores, derived from original 

variables (Appendix D). 

Once I identified the set of relatively uncorrelated environmental variables (EV) 

from the PCA, I used generalized linear models (GLM) with a Poisson distribution by 

season and site for each year’s species richness. Additionally, I also performed the same 

GLM with a Poisson distribution for each season and site with the PCA components as 

exploratory variables. I extracted R2 values (Model Goodness of Fit) for each model. In 

addition, I used the beta function in R (R Core Team 2017), to calculate standardized beta 
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coefficients to determine long-term trends in variable importance through time. For each 

season, a frequency was generated for the number of times each variable was the first or 

second most important driver in the yearly GLM compared to the rest of the independent 

variables. 

RESULTS 

Variable selection 

PCA analysis with Varimax rotation identified 9 major components (Appendix 

C). Two of them corresponded to variables related to vegetation structure, as expressed 

by NDVI and EVI values. Three of them corresponded to precipitation and temperature 

(energy) values. Two factors corresponded to topographic variables and sunshine 

variables. One factor corresponded to water vapor pressure variables (Appendix D).  I 

next selected the variable with the highest loadings, the remaining variables were used 

with the EV analysis:  (1) mean diurnal range, (2) mean temperature of warmest quarter, 

(3) precipitation of driest quarter, (4) NDVI average, (5) NDVI standard deviation, (6) 

water vapor pressure standard deviation, (7) aspect, (8) sunshine hours and (9) sunshine 

hours minimum. Because soils variables were not strongly correlated with any PCA 

factors, I decided to add them as separate environmental variables to the EV analysis.  

The GLM with the environmental variables (EV) as predictors of richness included the 

most correlated variables (9 variables) plus bulk density, soil pH and soil diversity. 

Variation in Richness Across Years 

Bird species richness ranged from 4 to 43 and from 7 to 44 for the winter and 

spring seasons respectively (Figure 2.1 & 2.2). The Wilcoxon rank sum test with 
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continuity correction revealed that richness values differed between seasons - spring and 

winter (W = 369260, p-value < 0.001), rejecting the null hypothesis that richness was 

equal across seasons. 

The average richness values varied widely across years for both seasons. For the 

spring season, the highest richness value was observed in 2001 and 2016, whereas the 

lowest values were observed in 2004 and 2005 (Figure 2.1). For the winter, the highest 

richness value was observed in 2008 and the lowest value was observed in 2002 (Figure 

2.2). In both cases, the Kruskal-Wallis rank sum test indicated that there was not 

significant difference in species richness among the years: Spring - Kruskal-Wallis chi-

squared = 11.989, df = 14, p-value = 0.607 and Winter - Kruskal-Wallis chi-squared = 

22.188, df = 14, p-value = 0.075 (Figure 2.3). 

Predictors of bird richness  

GLM models provided strong descriptions of bird species richness patterns across 

all habitats in the upper Sonoran Desert ecosystem. Over the years, models explained a 

similar percentage of patterns of species richness - 41% and 55%, on average, for the 

winter and spring seasons respectively (Figure 2.4; Appendix E). GLM models with 

environmental variables (EV) performed better than models with PCA factors as 

predictors. On average, EV models explained 50% and 55% of the variance of spring and 

winter bird species richness, respectively (Figure 2.4; Appendix E). PCA models 

explained on average 41% and 44% of the variance of spring and winter bird species 

richness, respectively. The minimum coefficient of determination value was observed in 

2005 for both winter and spring seasons. The highest explanatory power was observed in 
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2001 (winter) and 2002 (spring) (Figure 2.4; Appendix E). In all cases, the explanatory 

power of EV and PCA models was low from 2008 to 2011 and was high from 2001 to 

2004 and in 2014 and 2016. All coefficients of variation are given in Appendix E. 

PCA models and their standardized coefficients indicated that vegetation 

structure, as expressed by NDVI variables, was the most important driver of bird species 

richness in all seasons (Figure 2.5). Vegetation, as expressed as EVI minimum and 

standard deviation, and sunshine variables were the second most important drivers of 

spring bird species richness, while precipitation, climate, topography and sunshine 

figured as secondary drivers of winter bird species richness (Figure 2.5).  

EV models and their standardized coefficients indicated that soil variables, as 

expressed by pH and bulk density variables, were the most important drivers of bird 

species richness in all seasons (Figure 2.6). Vegetation structure, as expressed by NDVI 

values (mean and SD), was the secondary driver of bird species richness (Figure 2.6).  All 

variance importance factors for PCA are given in Appendix F & G.  All variance 

important factors for EV are given in Appendix H & I. 

DISCUSSION 

I describe the first graph of long-term variation in richness across multiple 

ecosystems in the upper Sonoran Desert. Banville et al. (2017) investigated the decadal 

declines in bird diversity in urban riparian zones of the northern Sonoran Desert area. 

They concluded that bird richness declined across riparian areas during their period of 

study. Different to Banville et al. (2017), my results indicate an oscillation, rather than a 

decline of bird richness. Results also suggest that richness values do not differ across 
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years for either season, supporting the hypothesis that richness values are not 

significantly different. The uncovering of indirect, vegetation-structure effects of soil 

variables on bird species richness across urban areas of Phoenix, is the most novel result 

of my research. 

For EV models, the soil variables, especially soil pH and bulk density, were the 

primary drivers of richness seen across all years. Since soil strongly affects vegetation 

structure and composition (Myers et al. 2015), our results indicate that that soil variables 

are acting as a surrogate for vegetation structure and thus influencing bird diversity. 

Previous species distribution studies have shown the importance of abiotic factors, such 

as topography, soil pH, and soil bulk density as key indicators of site vegetation diversity 

(Myers at al. 2015; Grime 1979; Kerr & Packer 1997; Pausas & Austin 2001; Rahbek & 

Graves 2001 as cited in Zellweger et al. 2016).  Myers et al. (2015) investigated the effect 

of soil diversity and composition on birds and butterflies and observed that species 

richness was similar on different soil types, but species compositions varied among soil 

types and vegetation treatments. While my results demonstrate that soils variables are 

strong predictors of bird species richness, Zellweger at al. (2016) found that soil pH was 

less effective in predicting bird richness as it was in predicting plant diversity.  The 

results of this study suggest that the degree to which soil variables affect bird diversity is 

a subject for future research. 

For PCA models, vegetation structure was the primary driver followed by a 

combination of water and energy variables as the second and third most important 

variables.  Results for bird species richness in the northern Sonoran Desert show a 
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consistent, shared selection of major environmental variables, even though the primary 

drivers of richness changed with the method used (PCA and EV). These trends show that 

results obtained depend on what environmental variables are included in the study. 

Models with EV generally explained more variance than models including PCA scores as 

synthetic variables. This might be because the PCA analysis did not capture the full soil 

gradient.  

Vegetation structure, as expressed by NDVI mean and standard deviation, was the 

next most common variable. The results support the hypothesis that vegetation 

productivity as expressed by vegetation indices is an important predictor of bird species 

richness at local scales (Seto et al. 2004).  Other studies have also documented the direct 

relationship between bird richness and vegetation productivity in semi-arid ecosystems 

such as the Chauhan Desert and interior Australia (St. Louis et al. 2006; Pavey & Nano 

2009). They found that vegetation productivity as measured from remote sensing sources 

had the largest impact to overall bird richness.  Pavey and Nano (2009) found that desert 

birds were most influenced in distribution and diversity by fixed vegetation stands with 

diverse structure that offered food resources and nesting habitat. St. Louis et al. (2006) 

showed positive relationships between vegetation productivity and bird richness in multi-

canopied woodland habitats.  MacArthur and MacArthur (1961) found that bird diversity 

was not driven as much by vegetation diversity as by vegetation structure with vegetation 

composing an understory, mid-story, and canopy.  Ecosystems with complex vegetation 

structure support higher species richness from increased niche space availability thus 

reducing competition as well as providing more availability to required resources.   
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Besides soils and vegetation, results indicated that climate was a key variable 

driving bird richness in the study area.  Overall, climate accounted for only a small 

proportion of the explained variation of bird richness for all 15 years.  Two possible 

reasons for this outcome may be that (1) the urban expansion of Phoenix is diverse 

enough to sustain bird richness across years and/or (2) that bird richness is more directly 

linked to vegetation and soil characteristics than general climate trends.  The first option 

seems unlikely since several studies have documented that urban ecosystems tend to have 

higher abundance and lower richness of birds (Faeth et al. 2011).  It is likely that the EV 

analysis does not find climate as impactful because of the addition of the soil variables. 

Climate directly impacts vegetation diversity and productivity as well as soil 

characteristics.   

Results support the climate water-energy dynamics hypothesis (Hawkins et al. 

2003). This hypothesis claims that the interaction of water-energy variables generates and 

maintain richness. Rodriguez et al. (2005) argued that annual actual evapotranspiration 

(AET), a joint measure of energy and water variables, and the global vegetation index, an 

estimate of plant biomass, constrain herptile richness at a global extent. Davies et al. 

(2007) investigated the global distribution of bird species richness and observed that 

topography and energy were the key drivers of bird species richness.  This study 

demonstrates that both vegetation and climate contribute to total bird richness even at the 

local scale. 

Also, since I reported evidence that bird species richness is strongly correlated 

with abiotic drivers, the results of this study support the tenet that bird richness can be 
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modeled and predicted as a function of environmental variables at local scales in arid 

urban environments (Hawkins et al. 2003, Albuquerque & Beier 2015). The majority of 

these studies which investigated patterns of bird species were conducted at broadscale 

extents.  However, I do acknowledge the lack of urban associated variables such as 

impervious surface and land use to compare importance between urban variables and 

climate driven variables.   

Management Implications 

The vegetation indices used in my study showed longitudinal consistency that the 

areas with highest NDVI/EVI values were along riparian corridors and 

suburban/agricultural portions at the periphery of the GPMA. Positive relationships 

between vegetation indices and species richness overall years suggest that riparian and 

agricultural habitats are a vital component of increasing and sustaining bird diversity in 

the urban ecosystems at the northern reaches of the Sonoran Desert.  Bateman et al. 

(2015) found that bird richness along the Salt River of the GPMA was highest in riparian 

areas that had been actively restored.  I recommend ecosystem managers continue to 

protect and restore critical riparian habitat to promote and maintain bird diversity.  One 

way that managers can protect riparian corridors is by understanding how vegetation 

structure will change in riparian areas with changes in the climate.   

Researchers found on Mt. Kilimanjaro that vegetation and food availability were 

indirectly affected by the prevailing climate (Ferger et al. 2006).  Wildlife managers now 

have access to climate data that can capture the seasonality and extremes of both 

temperature and precipitation on an annual basis for all of Maricopa County (Boehme et 
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al. 2019).  These data along with the understanding that bird richness is driven primarily 

by vegetation and climate in the arid northern Sonoran Desert as seen in this study, 

provide a valuable baseline understanding of vegetation and climate changes through 

time.    



 

37 

REFERENCES 

 

Albright, T., Mutiibwa, D., Gerson, A., Smith, E., Talbot, W., O'Neill, J.,  

Wolf, B. (2017). Mapping evaporative water loss in desert passerines reveals an 

expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences 

of the United States of America, 114(9), 2283-2288. doi:10.1073/pnas.1613625114 

 

Albuquerque, F., & Beier, P. (2015). Global patterns and environmental correlates of 

high-priority conservation areas for vertebrates. Journal of Biogeography, 42(8), 1397-

1405. doi:10.1111/jbi.12498 

 

Albuquerque, F., Benito, B., Rodriguez, M., & Gray, C. (2018). Potential changes in the 

distribution of Carnegiea gigantea under future scenarios doi:10.7717/peerj.5623 

 

Aronson, M., La Sorte, F., Nilon, C., Katti, M., Goddard, M., Lepczyk, C., Warren, P., 

Williams, N., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., 

Kooijmans, J., Kühn, I., Macgregor-Fors, I., McDonnell, M., Mörtberg, U., Pysek, P., 

Siebert, S., Sushinsky, J., Werner, P., Winter, M. (2014). A global analysis of the impacts 

of urbanization on bird and plant diversity reveals key anthropogenic drivers. 

Proceedings. Biological Sciences / The Royal Society, 281(1780), 20133330. 

 

Banville, M., Bateman, H., Earl, S., & Warren, P. (2017). Decadal declines in bird 

abundance and diversity in urban riparian zones. Landscape and Urban Planning, 159, 

48-61. doi:10.1016/j.landurbplan.2016.09.026 

 

Bateman, H., Stromberg, J., Banville, M., Makings, E., Scott, B., Suchy, A., & Wolkis, 

D. (2015). Novel water sources restore plant and animal communities along an urban 

river. Ecohydrology, 8(5), 792-811. doi:10.1002/eco.1560 

 

Begon, M. (1996). In Harper J., & Townsend C. Ecology : Individuals, populations, and 

communities (3rd ed.). Oxford, UK; Cambridge, MA: Blackwell Science. 

 

Bibby, C. (1992). In Burgess, N., & Hill, D., British Trust for Ornithology and Royal 

Society for the Protection of Birds, Bird census techniques. London, UK: Academic 

Press. 

 

Boehme, C., Stratton, C., & Albuquerque, F. (2019). Bioclimatic predictors in Maricopa 

County, Arizona derived from remotely sensed, daily weather parameters (NASA 

DAYMET): 2000-2016. Environmental Data Initiative. 

https://doi.org/10.6073/pasta/ded1548e4ee8611ba587d26432d5e269 

 

Currie, D. (1991). Energy and large-scale patterns of animal and plant species richness. 

The American Naturalist, 137(1), 27-49. doi:10.1086/285144 

 



 

38 

Davies, R., Orme, C., Storch, D., Olson, V., Thomas, G., Ross, S., Ding, T., Rasmussen, 

P., Bennett, P., Owens, I., Blackburn, T., & Gaston, K. (2006). Human impacts and the 

global distribution of extinction risk. Proceedings of the Royal Society B: Biological 

Sciences, 273(1598), 2127-2133. doi:10.1098/rspb.2006.3551 

 

Davies R., David, G., David, O. C., Olson Valerie, S., Thomas A., Ross G., Simon, H., 

Gaston, K. (2007). Topography, energy and the global distribution of bird species 

richness. Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1189-

1197. doi:10.1098/rspb.2006.0061 

 

Dimmitt, M., Comus, P., & Phillips, S. (2000). A natural history of the Sonoran Desert. 

Tucson, AZ : Arizona-Sonora Desert Museum Press; Oakland, CA : University of 

California Press. 

 

ESRI. (2011). ArcGIS Desktop: Release 10, version 10.6. Redlands, CA: Environmental 

Systems Research Institute. 

 

Faeth, S., Bang, C., & Saari, S. (2011), Urban biodiversity: patterns and mechanisms. 

Annals of the New York Academy of Sciences, 1223: 69-81. doi:10.1111/j.1749-

6632.2010.05925.x 

 

Ferger, B., Mbonile, M., Devenne, F., & Martin, T. (2006). Mount Kilimanjaro : 

Mountain, memory, modernity. Tanzania: Tanzania: Mkuki na Nyota Publishers Ltd. 

 

Fine, P. (2015). Ecological and evolutionary drivers of geographic variation in species 

diversity. Annual Review of Ecology, Evolution, and Systematics, 46(1), 369-392. 

doi:10.1146/annurev-ecolsys-112414-054102 

 

Grime, J. (1979). Primary strategies in plants. Transactions of the Botanical Society of 

Edinburgh, 43(2), 151-160. doi:10.1080/03746607908685348 

 

Hawkins, B., Porter, E. & Diniz-Filho, J. (2003). Productivity and history as predictors of 

the latitudinal diversity gradient of terrestrial birds. Ecology, 84(6), 1608-1623. 

doi:PAHAPO]2.0.CO;2 

 

Hawkins, B., Field, R., Cornell, H., Currie, D., Guégan, J., Kaufman,  D., Turner. G. 

(2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 

84(12), 3105-3117. doi:10.1890/03-8006 

 

Hengl, T, de Jesus, J., MacMillan, R., Batjes, N., & Heuvelink, G. (2014) SoilGrids1km 

Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. 

doi:10.1371/journal.pone.0105992 

 



 

39 

Iknayan, K., & Beissinger, S. (2018). Collapse of a desert bird community over the past 

century driven by climate change. Proceedings of the National Academy of Sciences of 

the United States of America, 115(34), 8597-8602. doi:10.1073/pnas.1805123115 

 

Kaiser, H. (1964). A method for determining eigenvalues. Journal of the Society for 

Industrial & Applied Mathematics, 12(1), 238-248. doi:10.1137/0112023 

 

Kerr, J., & Packer, L. (1997). Habitat heterogeneity as a determinant of mammal species 

richness in high-energy regions. Nature, 385(6613), 252-254. doi:10.1038/385252a0 

 

Klopfer, P. (1959). Environmental determinants of faunal diversity. The American 

Naturalist, 93(873), 337-342. doi:10.1086/282092 

 

MacArthur, R., & MacArthur, J. (1961). On Bird Species Diversity. Ecology, 42(3), 594-

598. doi:10.2307/1932254 

 

McKinney, M. (2008). Effects of urbanization on species richness: A review of plants 

and animals. Urban Ecosystems, 11: 161. 

 

Melo, A., Rangel, T., & Diniz-Filho, J. (2009). Environmental drivers of beta-diversity 

patterns in New-World birds and mammals. Ecography, 32(2), 226-236. 

doi:10.1111/j.1600-0587.2008.05502.x 

 

Myers, M., Mason, J., Hoksch, B., Cambardella, C., & Pfrimmer, J. (2015). Birds and 

butterflies respond to soil‐induced habitat heterogeneity in experimental plantings of 

tallgrass prairie species managed as agroenergy crops in Iowa, Journal of Applied 

Ecology 52 (5), 1176-1187. 

 

Naujokaitis‐Lewis, I., Pomara, L., & Zuckerberg, B. (2018). Delaying conservation 

actions matters for species vulnerable to climate change. Journal of Applied Ecology, 

55(6), 2843-2853. doi:10.1111/1365-2664.13241 

 

Neteler, M. (2005). Shuttle radar topography mission and VMAP0 data in OGR and 

GRASS. Open Source GIS: A GRASS GIS Approach. Boston, MA: Kluwer Academic 

Publishers. 

 

O'Brien, E., Field, R., & Whittaker, R. (2000). Climatic gradients in woody plant (tree 

and shrub) diversity: Water-energy dynamics, residual variation, and topography. Oikos, 

89(3), 588-600. doi:10.1034/j.1600-0706.2000.890319.x 

 

Pausas, J., & Austin, M. (2001). Patterns of plant species richness in relation to different 

environments: An appraisal. Journal of Vegetation Science, 12(2), 153-166. 

doi:10.2307/3236601 



 

40 

Pavey, C., & Nano, C. (2009). Bird assemblages of arid Australia: Vegetation patterns 

have a greater effect than disturbance and resource pulses. Journal of Arid Environments, 

73(6-7), 634-642. doi://doi.org/10.1016/j.jaridenv.2009.01.010 

 

R Core Team. (2017). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria.  URL https://www.R-project.org/ 

 

Rahbek, C., & Graves, G. (2001). Multiscale assessment of patterns of bird species 

richness. Proceedings of the National Academy of Sciences, 98(8), 4534-4539. 

doi:10.1073/pnas.071034898 

 

Ralph, C., & Pacific Southwest Forest and Range, Experiment Station. (1993). Handbook 

of field methods for monitoring land birds Albany, Calif.: Pacific Southwest Research 

Station. 

 

Rodríguez, M., Belmontes, J., & Hawkins, B. (2005). Energy, water and large-scale 

patterns of reptile and amphibian species richness in Europe. Acta Oecologica, 28(1), 65-

70. doi:10.1016/j.actao.2005.02.006 

 

Seto, K., Fleishman, E., Fay, J., & Betrus, C. (2004). Linking spatial patterns of bird and 

butterfly species richness with landsat TM derived NDVI. International Journal of 

Remote Sensing, 25(20), 4309-4324. doi:10.1080/0143116042000192358 

 

Silva, C., García, C., Estay, S., & Barbosa, O. (2015). Bird richness and abundance in 

response to urban form in a latin American city: Valdivia, Chile as a case study. PLoS 

ONE, 10(9), E0138120. 

 

Stevens, J., (1992). Applied multivariate statistics for the social sciences (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

 

St-Louis, V., Pidgeon, A., Clayton, M., Locke, B., Bash, D., & Radeloff, V. (2009). 

Satellite image texture and a vegetation index predict bird biodiversity in the Chihuahuan 

desert of New Mexico. Ecography, 32(3), 468-480. doi:10.1111/j.1600-

0587.2008.05512.x 

 

United Nations Population Fund. (2007). State of the World Population 2007: Unleashing 

the potential of urban growth. United Nations Population Fund, New York, NY. 

 

U.S. Census Bureau; American Community Survey, 2010 American Community Survey 

1-Year Estimates, Table GCT0101; generated by Cameron Boehme; using American 

FactFinder; <http://factfinder.census.gov.  

 

Von Humboldt, A., Jackson, S., Walls, L., & Person, M. (2014). Views of nature. 

Chicago, IL: The University of Chicago Press. 

https://www.r-project.org/


 

41 

Wolf, B. (2000). Global warming and bird occupancy of hot deserts: A physiological and 

behavioral perspective. Revista Chilena De Historia Natural, 73(3), 395-400. 

doi:10.4067/S0716-078X2000000300003 

 

Zellweger, F., Baltensweiler, A., Ginzler, C., Roth, T., Braunisch, V., Bugmann, H., & 

Bollmann, K. (2016). Environmental predictors of species richness in forest landscapes: 

Abiotic factors versus vegetation structure. Journal of Biogeography, 43(6), 1080-1090. 

doi:10.1111/jbi.12696  



 

42 

Table 2.1. Soil/Geomorphological variables from international soil reference and 

information center (ISRIC) soil grid and Neteler 2005 

Soil Variable Resolution Description 

Elevation 1km x 1km Site elevation in m above sea-level 

Elevation range 1km x 1km Difference in elevation between min and max 

Aspect 1km x 1km Site gradient from 1° to 360°  

Slope 1km x 1km Site gradient from 0°  to 90°  

Bulk density 1km x 1km Bulk density (fine earth) kg/m3 

Soil pH 1km x 1km pH index measured in water solution 

Soil diversity 1km x 1km Differing soil series; number 

Soil organic 

matter 1km x 1km Soil organic carbon content permille 

Sun hours avg 1km x 1km Average sun hours 

Sun hours max 1km x 1km Maximum sun hours 

Sun hours min 1km x 1km Minimum sun hours 

Sun hours Q1 1km x 1km Sun hours of first quartile 

Sun hours Q3 1km x 1km Sun hours of third quartile 

Sun hours range 1km x 1km Range of sun hours 

avg = Average  
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FIGURE 2.1. Spring bird richness for all sites combined.  Mean and quartiles can be seen 

on the boxplot. Kruskal-Wallis chi squared showed that richness is not significantly 

different between any years.
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FIGURE 2.2. Winter bird richness for all sites combined.  Mean and quartiles can be seen 

on the boxplot. Kruscal-Wallis chi squared showed that richness is not significantly 

different between any years 
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FIGURE 2.3. Mean richness values for the spring and winter seasons, across fifteen years 

with coordinating confidence intervals. Kruskal-Wallis rank sum test indicated that there 

was not significant difference in species richness among the years while Wilcoxon rank 

sum test with continuity correction revealed that richness differed between seasons.  

Seasons - W = 369260, p-value < 0.001 

Spring - Kruskal-Wallis chi-squared = 11.989, df = 14, p-value = 0.607 

Winter - Kruskal-Wallis chi-squared = 22.188, df = 14, p-value = 0.075 
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FIGURE 2.4. Explanatory power, expressed by the coefficient of determination, of 

generalized linear models of bird species richness for two seasons; winter and spring. 

Values are expressed per year, from 2001 to 2016. The year 2003 was excluded from the 

analysis because of lack of data. 
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FIGURE 2.5. Frequency of most important drivers of spring and winter bird species richness in the northern Sonoran Desert. Values 

represent the number of times which a given PCA factor figured as primary or secondary drivers of species richness from 2001 to 

2016.  Relationships between variables and abundance shown by symbols (+/-). 
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FIGURE 2.6. Frequency of most important drivers of spring and winter bird species richness in the northern Sonoran Desert. Values 

represent the number of times which a given environmental variable (EV) figured as primary or secondary drivers of species richness 

from 2001 to 2016. Relationships between variables and abundance shown by symbols (+/-). 
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CHAPTER 3 

DRIVERS OF BIRD ABUNDANCE IN THE NORTHERN  

SONORAN DESERT 

INTRODUCTION 

Most of the research conducted on impacts of environmental variables on species 

abundance is relegated to modeling species distribution patterns (Ehrlen & Morris 2015).  

Further, most of the studies involving modeling species distributions never address 

abundance directly and rely on an indirect habitat-based model approach instead of an 

abundance or density-based model. Researches have documented the relationship that 

exists between resource selection functions and abundance in many species (Boyce & 

McDonald 1999), but resource selection function or habitat selection can vary even 

within species (Wagner et al. 2011).  

Environmental variables influence species abundance both directly and indirectly 

(Aspinall & Matthews 1994; Masters et al. 1998; Menendez et al. 2007).  Severe 

droughts have accelerated habitat biome shifts in all terrestrial ecosystems globally 

(Martínez-Vilalta & Lloret 2016).  Increased temperatures have impacted food chains and 

introduced new interspecies interactions on every continent (Walther 2010).  

Temperature extremes have killed entire subpopulations in one species of flying fox in 

Australia (Welbergen et al. 2007).  Extreme temperatures have also impacted many bird 

species through widespread nest failures that have lasting effects for several years 

(Stenseth et al. 2002).  I acknowledge that species abundance is greatly affected by 
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competition, resource availability, and land use, but each of these falls outside of the 

scope of this study.  What environmental drivers have direct impacts on bird abundance? 

Boyce and McDonald (1999) were able to show that there is a relationship 

between a resource selection function and species abundance. Therefore, species 

abundance may be indirectly impacted by climate through changes in vegetation structure 

and productivity.  Riparian corridors often have higher bird diversity, vegetation index 

values, such as the normalized difference vegetation index (NDVI), and productivity than 

most surrounding areas; vegetation indices, therefore, may be an important variable in 

understanding bird abundance through time (Knopf et al. 1988).  Although habitat 

modeling and resource selection functions are valuable in determining density and 

distribution, a more direct approach, such as modeling environmental variables directly to 

abundance can be useful in determining possible effects on abundance as climate shifts.   

Research Objectives 

The purpose of this study was to determine how bird abundance compares 

through time and seasons in the ecosystems of the northern Sonoran Desert as well as 

understand which environmental variables most influence bird abundance in the same 

area. My objectives were to: 

1) Test if bird abundance was different between seasons for all sites, as well as if 

bird abundance was significantly different between years. 

2) Identify environmental variables that most influence bird abundance in the 

ecosystems of the northern Sonoran Desert by season and year and compare how 

models perform longitudinally.  
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METHODS 

Study area 

The study area includes the northeast portion of the Sonoran Desert, which 

includes Maricopa County and the greater Phoenix metropolitan area (GPMA) as 

described in Chapter One (Study Area, page 24; Appendix A).    

Bird Data 

I obtained data from the long-term monitoring of bird abundance from the Central 

Arizona–Phoenix Long-Term Ecological Research (CAP LTER) as described in Chapter 

Two (Bird Data, page 25; Appendix B).   

Environmental data 

I used raw temperature, precipitation, and water vapor pressure data from NASA 

DAYMET remote sensing program as described in Chapter One (Raw Climatic Data, 

page 3).     

Bioclimatic Variables 

In order to view seasonality and nuanced climatic impacts on bird abundance 

throughout Phoenix, I used 19 bioclimatic variables that were produced for each study 

year as described in Chapter One (Bioclimatic Variables, page 4).  

Vegetation 

 Researchers have seen positive correlations between bird abundance and 

vegetation type (Pavey & Nano 2009).  I used NDVI and EVI to quantify vegetation 

productivity and formatted vegetation datasets as described in Chapter One (Vegetation 

Indices, page 9).  I produced and used four new annual vegetation variables based on 
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NDVI and EVI values driven by the seasonality of temperature as described in Chapter 

One (Vegetation Indices, page 9). 

Soil/Geomorphology Data 

As described in Chapter Two (Soil/Geomorphology Data, page 27), I compiled 

several variables that helped described soil, geomorphology, and sunshine for all of the 

survey sites.   

Environmental Variables and Abundance  

I divided the abundance analysis by season with data separated into winter and 

spring surveys resembling the analysis for bird richness in Chapter Two (Environmental 

Variables and Richness, page 27).  I used R (R Core Team 2017) version 3.5.1 to 

calculate bird abundance for each site in each season and year using the aggregate 

function.  For the seasonal data, I hypothesized that there is no difference among 

abundance values across all years (null hypothesis). To test this hypothesis, I performed 

the same tests as described in richness analysis in Chapter Two (Environmental Variables 

and Abundance, page 27) namely: (1) Shapiro-Wilk normality test on spring and winter 

abundance data,  (2) Kruskal-Wallis rank sum test on abundance values across all years 

per season (seasonal data results indicated that data are not normal),  and (3) Wilcoxon 

rank sum test with continuity correction to compare winter and spring abundance by site.  

Variable Selection 

In order to reduce the dimensionality of data (43 variables), I conducted a 

principal component analysis (PCA) as described in Chapter Two (Variable Selection, 

page 27; Appendix C & D).   I then used generalized linear models (GLM) with a Poisson 
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distribution by season and site for each year’s bird abundance as described in Chapter 

Two (Variable Selection, page 27). I extracted R2 values (model goodness of fit) for each 

model. In addition, I used the beta function in R (R Core Team 2017), to calculate 

standardized beta coefficients to determine long-term trends in variable importance 

through time.  

RESULTS 

Variable selection 

Since PCA analysis with Varimax rotation was conducted before the addition of 

dependent variable (bird richness or abundance), results were the same as those reported 

for bird richness in Chapter Two (Variable Selection, page 29; Appendix C & D).   

Variation in Abundance Across Years 

Bird abundance ranged from 8 to 3,463 and from 18 to 1,577 for the winter and 

spring seasons respectively (Figure 3.1 & 3.2). The Wilcoxon rank sum test with 

continuity correction revealed that abundance values differed between seasons - spring 

and winter (W = 264101, p-value < 0.001), rejecting the null hypothesis that abundance 

was equal across seasons.  Winter had greater than 13,000 more individuals identified 

than spring over all 47 sites.   

The average abundance values varied widely across years for both seasons and 

survey types. For the spring season, the highest abundance value was observed in 2012 

and 2013, whereas the lowest values were observed in 2002 (Figure 3.3). For the winter, 

the highest richness value was observed in 2008 and the lowest value was observed in 

2002 (Figure 3.3).  The Kruskal-Wallis rank sum test indicated that there was not a 
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significant difference in abundance among the years for winter; however, abundance 

values between spring years were significantly different: Spring - Kruskal-Wallis chi-

squared = 30.613, df = 14, p-value = 0.006 and Winter - Kruskal-Wallis chi-squared = 

20.24, df = 14, p-value = 0.123. 

Predictors of Bird Abundance  

Both the PCA and environmental variable (EV) GLM provided strong 

descriptions of bird abundance patterns in the northern Sonoran Desert ecosystem. Over 

the 15 years, individual models explained a similar percentage of patterns of bird 

abundance - 54% and 53%, on average, for the winter and spring seasons respectively 

(Figure 3.4). Overall, GLM models with environmental variables (EV) performed better 

than models with PCA factors as predictors. On average, EV models explained 56% and 

60% of the variance of spring and winter bird abundance, respectively (Appendix J). 

PCA models explained on average 50% of the variance for both spring and winter bird 

abundance. The minimum coefficient of determination value was observed in 2002 

(winter) and 2006 (spring). The highest explanatory power was observed in 2005 (winter) 

and 2012 (spring) (Figure 3.4).  In all cases, the explanatory power of EV and PCA 

models was low in 2006.  Winter explanatory power was much more volatile than spring 

with several back-to-back years of high and then low with drops of more than 30 percent.  

The explanatory power of spring abundance was low in 2009 and 2010 and then again in 

2014 and 2015 (Figure 3.4).  All coefficients of variation are given in Appendix J.   

PCA models and their standardized beta coefficients indicated that vegetation and 

climate were the most important drivers of bird abundance in all seasons (Figure 3.5; 



 

55 

Appendix K & L). Topography, as expressed by aspect, and vegetation II (vegetation 

standard deviations) were the second most important drivers of winter bird abundance, 

while precipitation, climate, topography, and sunshine figured as secondary drivers of 

spring bird abundance (Figure 3.5; Appendix K & L).  

EV models and their standardized coefficients indicated that climate and 

vegetation as expressed by mean temperature of the warmest quarter and NDVI were the 

most important drivers of spring bird abundance (Figure 3.6; Appendix M & N). The 

secondary drivers of spring abundance were expressed by average NDVI and standard 

deviation of NDVI as well as soil pH and soil diversity values.  Primary drivers of winter 

abundance were climate and vegetation as expressed by mean temperature of the warmest 

quarter and average NDVI values.  Secondary drivers of winter abundance were 

composed of climate, vegetation and soil variables to all small amounts (Figure 3.6).  All 

EV variable importance values are given in Appendix M & N. 

DISCUSSION 

My study provides a comprehensive assessment of changes in urban bird 

abundance throughout 16 years. This study documents changes, mostly a decline, in 

abundance values that differed between seasons - spring and winter. Banville et al. (2017) 

studied the spring and winter abundances of birds in urban riparian areas of the Phoenix 

metropolitan area and also observed seasonal differences in riparian bird abundance and 

composition. They reported declining trends in both migratory and resident species and 

that urban riparian areas are key for supporting high levels of bird species diversity. In a 

recent global study about the impacts of urbanization on bird diversity, Aronson et al. 



 

56 

(2014) revealed that global urban bird diversity has decreased substantially. They also 

reported that urban areas support regional biodiversity, and that urbanization has had 

profound effects on biodiversity (Aronson et al. 2014).  

A potential explanation for the decline observed herein is urban change (Kane et 

al. 2014). Callaghan et al. (2018) investigated the effect of local landscape attributes on 

bird diversity across 51 cities and observed that green areas were the most important 

predictor of bird biodiversity, highlighting the critical importance of vegetation structure 

as the primary factor explaining bird biodiversity and mitigating loss from urbanization. 

The urbanization in metropolitan areas is changing the vegetation cover patterns which 

directly affect bird abundance (Rodrigues et al. 2018). Since vegetation structure and 

cover are key drivers of species distribution, I believe that the vegetation cover in this 

area may play a key role in explaining the fluctuations in abundance. Like most of the 

major cities in the US, the Phoenix Metropolitan area is densely urbanized which directly 

affects current land cover patterns (Kane et al. 2014). This change often leads to 

substantial native vegetation suppression, which may negatively affect birds, especially 

specialist species (Rodrigues et al. 2018). 

Besides urbanization, extrinsic factors such as climate are key to explain the 

fluctuation of bid abundance (Hawkins et al. 2003). Without the inclusion of climate data, 

McFarland et al. (2011) saw minimal success in using average NDVI to account for the 

variation seen in bird abundance on the San Pedro riparian area in southeast Arizona 

(R2=0.30). In this study, I found that the lowest average coefficient of variation (R2) was 

0.50 when using PCA components and 0.56 when using environmental variables (EV).  
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This supports using a comprehensive multifaceted dataset to explore variations seen in 

bird abundance.  Other studies have also found that explanatory power is increased with 

combinations of vegetation variables along with other variables of climate and/or 

topography (Seoane et al. 2004).    

Regarding the modelling choices, I found that bird abundance was better 

explained by models that used raw environmental variables than the synthetically 

produced components from the PCA variable selection. I urge researchers conducting 

regression and generalized linear models to contrast analyses using PCA components 

against raw variables.  I consistently found more explanatory power in EV models 

compared to those models that used synthetic components. To determine if soils were 

responsible for the increase of variation explained in the EV models compared to the 

PCA models, I conducted a post hoc analysis without any soil variables and found that 

the EV models dropped on average 10% in their ability to explain the variation seen in 

abundance in both spring and winter seasons.  Soil characteristics, namely soil pH, bulk 

density, and soil diversity, drive bird abundance in this study area along with climate and 

vegetation and support the hypothesis that many different environmental variables should 

be used to produce the most powerful models of bird abundance (Seoane et al. 2004 & 

McFarland et al. 2011). Soil factors affect directly and indirectly the growth and 

distribution of landcover and vegetation structure, which ultimately affect bird abundance 

and distribution (Myers et al. 2015; Girma et al. 2017). 

I acknowledge that the fluctuations of species abundance found in this study may 

be related to intrinsic factors such as migratory behavior, competition, and breeding 
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(Aynalem & Bekele 2008). Banville et al. (2017) supported that the decrease in bird 

diversity is mostly explained by changes in the occurrence of migratory birds and 

specialists. They reported that both species types were more common at earlier years, and 

that some of them have been lost or replaced by more abundant species (Banville et al. 

2017).   

In summary, consistent with previous analyses of bird diversity in urban areas, the 

abundance of bird species in the Phoenix Metropolitan area declined among the years and 

seasons. For the first time, results show that this pattern is largely associated with current 

climatic conditions and vegetation variables, with energy variables being one of the most 

relevant (according to Hawkins et al.’s conjecture 2003). The climate–vegetation models 

developed here show that mean temperature of the warmest quarter and NDVI were the 

most important drivers of spring bird abundance.  My results support the tenet that the 

abundance of urban birds is strongly affected by the spatiotemporal distribution of 

environmental variables (McCain 2009). 
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FIGURE 3.1. Spring bird abundance for all sites combined.  Mean and quartiles can be 

seen on the boxplot. Kruscal-Wallis chi squared showed that abundance is significantly 

different between any years 
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FIGURE 3.2. Winter bird abundance for all sites combined.  Mean and quartiles can be 

seen on the boxplot. Kruscal-Wallis chi squared showed that abundance is not 

significantly different between any years 
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FIGURE 3.3. Mean abundance values for the spring and winter seasons, across fifteen 

years with coordinating confidence intervals. The Wilcoxon rank sum test with continuity 

correction revealed that abundance differed between seasons.  

Seasons - W = 264101, p-value < 0.001 

Spring - Kruskal-Wallis chi-squared = 30.613, df = 14, p-value = 0.006 

Winter - Kruskal-Wallis chi-squared = 20.24, df = 14, p-value = 0.123 

  



 

65 

FIGURE 3.4. Explanatory power, expressed by the coefficient of determination, of 

generalized linear models of bird abundance for two seasons; winter and spring. Values 

are expressed per year, from 2001 to 2016. The year 2003 was excluded from the analysis 

because of lack of data. 
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FIGURE 3.5. Frequency of most important drivers of spring and winter bird abundance in the northern Sonoran Desert. Values 

represent the number of times which a given principal component analysis (PCA) factor figured as primary or secondary drivers of 

abundance from 2001 to 2016.  Relationships between variables and abundance shown by symbols (+/-).  

 
 



 

 

6
7

 

FIGURE 3.6. Frequency of most important drivers of spring and winter bird abundance in the northern Sonoran Desert. Values 

represent the number of times which a given environmental variable (EV) figured as primary or secondary drivers of abundance from 

2001 to 2016. Relationships between variables and abundance shown by symbols (+/-). 
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APPENDIX A 

STUDY AREA MAP 
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APPENDIX A.  Site map of Maricopa County in relation to the Sonoran Desert. 

Locations of Central Arizona–Phoenix Long-Term Ecological Research survey sites 

spread across the Maricopa County.  I used 47 sites from the Riparian and Ecological 

Survey of Central Arizona (ESCA) surveys.  No sites were used from North Desert 

Village (NDV) Phoenix Area Social Survey (PASS), or Salt River  (SRBP) surveys.
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APPENDIX B 

POINT COUNT SURVEY LOCATIONS AND DESCRIPTION 
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APPENDIX B. Site identification, location and habitat of 47 sites used for this analysis.  

Riparian and Ecological Survey of Central Arizona (ESCA) surveys were the only two 

surveys used after filtering process was complete.   

Site ID Survey lat long Habitat Classification 

AA-17 ESCA 33.45215 -111.801 Commercial 

AA-20 ESCA 33.31575 -111.824 Residential 

AB-19 ESCA 33.35162 -111.774 Residential 

AC-16 ESCA 33.47894 -111.719 Commercial 

AD-10 ESCA 33.67689 -111.711 Desert park 

AD-21 ESCA 33.30702 -111.703 Agricultural 

AE-23 ESCA 33.2187 -111.626 Agricultural/Residential 

AF-12 ESCA 33.61024 -111.622 Scrub flat desert  

EE-15A Riparian 33.38449 -111.947 Riparian, ephemeral-engineered 

EE-6A Riparian 33.61084 -112.251 Riparian, ephemeral-engineered 

EE-7C Riparian 33.60987 -112.108 Riparian, ephemeral-engineered 

EN-4B Riparian 33.73959 -112.681 Riparian, ephemeral-natural 

EN-7B Riparian 33.8162 -111.973 Riparian, ephemeral-natural 

F-8 ESCA 33.75598 -112.742 Scrub flat desert  

G-15 ESCA 33.49892 -112.674 Natural desert 

I-11 ESCA 33.65442 -112.618 Natural desert 

I-17 ESCA 33.44059 -112.577 Scrub flat desert  

L-7 ESCA 33.7813 -112.452 Scrub flat desert  

M-16 ESCA 33.48267 -112.444 Agricultural 

N-12 ESCA 33.62206 -112.376 Agricultural/Residential 

O-9 ESCA 33.70632 -112.357 Scrub flat desert  

P-16 ESCA 33.4821 -112.304 Residential 

P-18 ESCA 33.41178 -112.291 Agricultural 

PE-10B Riparian 33.3894 -112.257 Riparian, perennial-engineered 

PE-11A Riparian 33.36293 -111.735 Riparian, perennial-engineered 

PE-13A Riparian 33.5983 -112.069 Riparian, perennial-engineered 

PE-1D Riparian 33.43499 -111.904 Riparian, perennial-engineered 

PN-1B Riparian 33.54746 -111.657 Riparian, perennial-natural 

PN-7A Riparian 33.88142 -111.959 Riparian, perennial-natural 

Q-7 ESCA 33.78404 -112.25 Natural desert 

R-12 ESCA 33.60712 -112.194 Residential 

S-16 ESCA 33.46672 -112.142 Residential 

T-11 ESCA 33.64816 -112.133 Residential 

T-13 ESCA 33.57299 -112.139 Residential 

T-19 ESCA 33.37853 -112.121 Agricultural/Residential 

U-12 ESCA 33.62722 -112.079 Residential 

U-13 ESCA 33.59796 -112.083 Desert remnant 

U-8 ESCA 33.7711 -112.092 Natural desert 

V-13 ESCA 33.58346 -112.023 Residential 

V-14 ESCA 33.55222 -112.055 Residential 
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V-20 ESCA 33.3282 -112.032 Natural desert 

W-15 ESCA 33.52389 -111.992 Residential 

W-17 ESCA 33.44464 -112 Commercial 

W-6 ESCA 33.82083 -112.011 Natural desert 

X-18 ESCA 33.41963 -111.929 Commercial 

Y-19 ESCA 33.37724 -111.915 Residential 

Z-23 ESCA 33.21929 -111.872 Agricultural/Residential 
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APPENDIX C 

NON-GRAPHICAL SOLUTIONS TO SCREE PLOT  
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APPENDIX C. Non graphical solutions to scree plot.  Using the Kaiser criterion, I 

selected components based on the number of components with eigenvalues greater than 

one.   
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APPENDIX D 

PRINCIPAL COMPONENT ANALYSIS VALUES 
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APPENDIX D. Principal Component Analysis (PCA) used to reduce the dimensionality of the 43 total environmental variables before 

conducting further generalized linear models.  PCA components have been renamed for those variables that contribute the highest 

loading for each. 

 

Environmental variables 

PC1 

(Veg) 

PC2 

(Climate) 

PC3 

(Energy) 

PC4 

(Veg 

II) 

PC5 

(Topo+Sun) 

PC6 

(Precip) 

PC7 

(Sunshine) 

PC8 

(Water 

Vpr) 

PC9 

(Topo 

II) 

Annual Mean Temp 0.17 0.94 -0.14 -0.09 0.07 0.1 -0.02 0.13 0.04 

Mean Diurnal Range 0.07 0.19 0.97 0.05 -0.01 0.02 -0.08 0.06 0.02 

Isothermality 0.08 -0.03 0.97 0.02 0 0.1 -0.07 0.05 0.02 

Temp Seasonality 0.04 0.75 0.5 0.12 -0.05 -0.23 -0.07 0.1 0.04 

Max Temp of Warmest 

Month 0.15 0.87 0.41 0.01 0.05 -0.03 -0.08 0.14 0.09 

Min Temp of Coldest 

Month 0.07 0.39 -0.89 -0.12 0.08 0.06 0.05 0.05 0.06 

Temp Annual Range 0.07 0.41 0.89 0.09 -0.02 -0.06 -0.09 0.07 0.03 

Mean Temp of Wettest Qrt 0.27 0.61 -0.09 -0.11 -0.21 0.01 0.09 0.33 -0.38 

Mean Temp of Driest Qrt 0.05 0.52 -0.39 0.06 -0.01 0.33 0.2 0.08 0.39 

Mean Temp of Warmest 

Qrt 0.14 0.97 0 -0.04 0.06 -0.01 -0.03 0.14 0.05 

Mean Temp of Coldest Qrt 0.17 0.87 -0.33 -0.13 0.12 0.14 0 0.13 0.04 

Annual Precip. -0.06 -0.96 -0.1 0 -0.07 0.08 -0.04 0.05 0.13 

Precip. of Wettest Month -0.11 -0.89 0.08 0.06 0.01 -0.27 -0.1 0.16 0.16 

Precip. of Driest Month 0.05 0.23 -0.08 -0.08 -0.27 0.67 0.22 -0.06 0.39 

Precip. Seasonality -0.1 -0.29 0.2 0.12 0.23 -0.8 -0.06 0.2 0.17 

Precip. of Wettest Qrt -0.08 -0.95 -0.02 0.04 0 -0.16 -0.06 0.08 0.15 

Precip. of Driest Qrt 0.07 -0.44 0.13 0.02 -0.15 0.82 -0.01 0.06 0.12 

Precip. of Warmest Qrt -0.15 -0.73 0.39 -0.1 -0.02 0.12 0.02 0.41 -0.15 

Precip. of Coldest Qrt -0.05 -0.91 -0.27 0.05 -0.05 0.13 -0.06 -0.07 0.16 
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EVI max 0.57 0.03 0.16 0.77 0.03 -0.07 -0.02 -0.06 0.01 

EVI 0.95 0.2 0.08 0.18 0.05 0.02 -0.06 0 0 

EVI min 0.8 0.01 -0.02 -0.38 0.08 -0.08 -0.07 -0.06 -0.03 

EVI sd 0.45 0.03 0.17 0.85 0.04 -0.01 -0.01 0 0.05 

EVI of Wettest Qrt 0.95 0.11 0.03 0.23 0.03 -0.02 -0.03 0 0.02 

EVI of Driest Qrt 0.93 0.19 0.13 0.22 0.07 0.03 -0.09 -0.01 0.01 

EVI of Warmest Qrt 0.92 0.28 0.11 0.09 0.07 0.06 -0.06 -0.03 -0.02 

EVI of Coldest Qrt 0.92 0.06 0 0.3 0.01 -0.05 -0.05 0.04 0.02 

NDVI max 0.48 -0.14 0.01 0.79 -0.05 -0.06 0.12 -0.05 0.04 

NDVI 0.98 0.11 -0.03 0.14 -0.01 0.06 0.02 -0.01 0 

NDVI min 0.83 0.05 -0.14 -0.46 -0.01 0.09 0 -0.07 -0.03 

NDVI sd 0.32 -0.15 0.1 0.9 -0.03 -0.02 0.07 -0.01 0.07 

NDVI of Wettest Qrt 0.97 0.04 -0.08 0.15 -0.03 0.05 0.04 0 0.03 

NDVI of Driest Qrt 0.96 0.14 0.02 0.17 0.01 0.06 -0.01 -0.02 0 

NDVI of Warmest Qrt 0.94 0.24 0.02 0.05 0.04 0.1 -0.01 -0.03 -0.03 

NDVI of Coldest Qrt 0.92 -0.1 -0.11 0.29 -0.08 -0.01 0.07 0.01 0.03 

Water vapor pressure max -0.07 0.15 -0.27 0.04 0.15 -0.05 -0.01 0.84 0.14 

Water vapor pressure  0.04 -0.28 -0.83 -0.14 -0.04 0.23 0.06 0.21 0.14 

Water vapor pressure min 0.03 0.08 -0.97 -0.07 0.03 0 0.09 -0.01 -0.04 

Water vapor pressure sd -0.05 0.19 0.27 -0.1 0.01 -0.12 0.03 0.86 -0.21 

Elevation -0.15 -0.91 -0.24 0.03 -0.13 0.06 0.13 -0.16 -0.1 

Slope 0.01 -0.25 -0.04 0.02 -0.77 0.05 0.13 -0.1 0.18 

Aspect -0.04 -0.1 -0.04 0.21 0.17 0.07 -0.1 -0.09 0.55 

Sunshine hours 0.11 0.06 -0.05 -0.05 0.93 -0.13 0.02 0.02 0.16 

Sunshine hours max 0.11 -0.05 -0.12 -0.04 0.89 -0.03 0.18 0.03 0.23 

Sunshine hours min 0.12 0.03 0.18 -0.07 0.13 -0.1 -0.93 -0.01 0.06 

Sunshine hours Q1 -0.13 0.02 -0.05 0.13 0.54 -0.04 -0.19 -0.12 -0.65 

Sunshine hours Q3 0.03 0.27 0.03 0.01 0.81 -0.27 0.15 0.01 -0.17 
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Sunshine hours range -0.05 -0.05 -0.21 0.04 0.33 0.07 0.9 0.02 0.06 

Bulk density 0.38 0.5 -0.17 -0.28 0.13 -0.05 -0.19 -0.22 -0.04 

Soil pH -0.4 -0.03 0.38 0.24 0.37 -0.39 -0.14 0.22 0.2 

Soil diversity 0.06 0.45 -0.16 -0.49 0.12 0.26 0.09 0.05 -0.38 

Soil organic carbon -0.02 -0.69 -0.2 0.02 -0.38 0.11 0.24 -0.09 -0.08 

Loadings 11.78 11.60 6.80 4.10 4.00 2.59 2.16 2.14 1.80 

Proportional variance 0.23 0.22 0.13 0.08 0.08 0.05 0.04 0.04 0.03 

Cumulative variance 0.23 0.45 0.58 0.66 0.74 0.79 0.83 0.87 0.90 

 

Veg = Vegetation; Qrt = Quarter; Precip = Precipitation; Topo = Topography; sd = Standard Deviation;  Temp = Temperature
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APPENDIX E 

COEFFICIENT OF VARIATION (BIRD RICHNESS) 
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APPENDIX E.  Coefficient of variation  (R2) or goodness of fit for each model to yearly 

bird abundance.  Values closer to one have more explanatory power.  All R2 values 

extracted using Effron Pseudo R2.  All seasons shown for principal component analysis 

(PCA) and environment variable (EV) analysis for all years. 

 PCA EV 

 Spring Winter Spring Winter 

2001 0.48 0.50 0.62 0.70 

2002 0.62 0.67 0.70 0.81 

2004 0.67 0.54 0.69 0.62 

2005 0.46 0.52 0.52 0.61 

2006 0.52 0.31 0.59 0.46 

2007 0.45 0.61 0.52 0.63 

2008 0.36 0.36 0.45 0.53 

2009 0.32 0.32 0.40 0.36 

2010 0.26 0.37 0.37 0.42 

2011 0.29 0.34 0.42 0.37 

2012 0.26 0.40 0.36 0.53 

2013 0.38 0.37 0.47 0.60 

2014 0.41 0.55 0.49 0.63 

2015 0.26 0.27 0.38 0.35 

2016 0.37 0.54 0.51 0.65 

Avg 0.41 0.44 0.50 0.55 

Max 0.67 0.67 0.70 0.81 

Min 0.26 0.27 0.36 0.35 

Range 0.41 0.40 0.33 0.46 
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APPENDIX F 

STANDARDIZED REGRESSION GLM COEFFICIENT (RICHNESS SPRING PCA)
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APPENDIX F. Standardized regression GLM coefficients (β) for spring bird richness PCA models. Higher absolute values indicate 

more importance within model.  Signs indicate relationship to richness. β values were used to generate spring portion of Figure 2.5. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Vegetation 0.14 0.26 0.29 0.20 0.24 0.21 0.16 0.14 0.19 0.21 0.14 0.22 0.24 0.19 0.18 

Climate -0.06 -0.06 -0.10 -0.07 -0.08 -0.08 -0.11 -0.05 -0.09 -0.03 0.01 -0.03 -0.09 -0.06 -0.06 

Energy -0.05 0.08 0.03 0.00 -0.01 0.01 -0.03 0.00 0.01 0.04 0.01 0.05 0.07 0.05 0.01 

Vegetation II 0.00 -0.11 -0.15 -0.13 -0.08 -0.08 -0.03 -0.04 -0.13 -0.13 -0.05 -0.12 -0.17 -0.16 -0.09 

Topography/Sun -0.12 -0.11 -0.13 -0.11 -0.12 -0.06 0.01 -0.06 -0.07 -0.07 -0.02 -0.05 -0.06 -0.02 0.00 

Precepitation -0.06 -0.05 -0.10 -0.08 -0.12 -0.06 0.01 -0.01 -0.07 -0.12 -0.03 -0.02 -0.09 -0.13 -0.05 

Sunshine 0.06 0.13 0.10 0.10 0.12 0.09 0.03 0.06 0.07 0.09 0.05 0.06 0.10 0.11 0.07 

Water vapor -0.01 -0.02 0.01 -0.04 0.00 -0.05 -0.03 -0.01 0.02 -0.05 -0.03 -0.02 -0.02 -0.06 -0.08 

Topography II 0.01 0.04 0.11 0.03 0.01 0.03 0.02 0.03 0.01 0.04 0.05 0.03 0.09 0.05 0.04 
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APPENDIX G 

STANDARDIZED REGRESSION GLM COEFFICIENT (RICHNESS WINTER PCA)
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APPENDIX G. Standardized regression GLM coefficients (β) for winter bird richness PCA models. Higher absolute values indicate 

more importance within model.  Signs indicate relationship to richness. β values were used to generate winter portion of Figure 2.5. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Vegetation 0.19 0.24 0.25 0.32 0.20 0.24 0.11 0.19 0.21 0.21 0.24 0.23 0.22 0.20 0.30 

Climate -0.02 -0.08 0.01 -0.10 -0.08 0.02 0.04 -0.09 0.01 -0.03 -0.02 -0.04 0.06 -0.01 -0.03 

Energy 0.01 0.02 0.06 0.11 -0.02 0.01 0.04 0.01 0.05 0.02 0.09 0.07 0.06 0.07 0.04 

Vegetation II -0.03 -0.01 -0.10 -0.25 -0.08 -0.14 -0.03 -0.04 -0.11 -0.11 -0.15 -0.12 -0.18 -0.15 -0.24 

Topography/Sun -0.08 -0.01 -0.13 -0.08 -0.07 -0.06 0.01 -0.01 -0.05 -0.09 -0.03 -0.02 -0.05 -0.07 -0.01 

Precepitation 0.02 0.10 -0.06 -0.11 -0.04 -0.01 0.07 -0.01 -0.03 -0.03 -0.02 -0.01 0.01 -0.13 -0.07 

Sunshine 0.09 0.09 0.11 0.12 0.06 0.06 -0.01 -0.01 0.04 0.06 0.05 0.09 0.05 0.09 0.06 

Water vapor -0.04 -0.02 -0.03 -0.04 0.01 -0.05 -0.05 -0.05 -0.01 0.03 -0.03 0.01 -0.08 -0.04 -0.04 

Topography II 0.00 0.01 0.03 0.11 0.02 0.10 0.04 -0.03 0.04 0.03 0.05 -0.01 0.04 0.08 0.09 
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APPENDIX H 

STANDARDIZED REGRESSION GLM COEFFICIENT (RICHNESS SPRING EV)
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APPENDIX H. Standardized regression generalized linear models (GLM) coefficients (β) for spring bird richness environmental 

variables (EV) models.  Higher absolute values indicate more importance within model.  Signs indicate relationship to richness. β 

values were used to generate spring portion of Figure 2.6. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean diurnal 

Range 0.00 0.08 0.03 0.02 0.03 0.01 -0.01 0.01 0.03 0.06 0.03 0.05 0.04 0.05 0.04 

Mean temp 

Warmest qrt 0.02 0.02 -0.05 -0.03 -0.06 -0.03 -0.02 0.03 -0.01 0.00 0.08 0.04 0.00 -0.02 0.00 

Precip driest qrt -0.07 -0.05 -0.06 -0.05 -0.10 -0.02 0.00 -0.01 -0.05 -0.09 -0.01 0.00 -0.03 -0.10 -0.05 

NDVI 0.08 0.18 0.22 0.12 0.14 0.17 0.10 0.08 0.06 0.11 0.07 0.13 0.16 0.10 0.10 

NDVI sd 0.00 -0.08 -0.09 -0.11 -0.03 -0.09 -0.04 -0.03 -0.07 -0.08 -0.03 -0.09 -0.14 -0.09 -0.07 

WVP sd -0.04 -0.03 0.01 -0.03 0.03 -0.05 -0.02 -0.01 0.03 -0.03 -0.04 -0.02 -0.01 -0.06 -0.06 

Sunshine hrs 0.02 0.01 -0.04 0.00 0.02 0.01 0.06 0.03 0.06 0.05 0.08 0.05 0.04 0.10 0.10 

Sunshine hrs min 0.02 -0.04 -0.02 -0.05 -0.03 -0.05 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.03 -0.02 -0.01 

Aspect -0.02 0.03 0.12 0.02 0.05 0.01 0.03 0.03 -0.01 0.02 -0.01 -0.01 0.03 -0.02 0.03 

Bulk density -0.19 -0.18 -0.13 -0.10 -0.13 -0.06 -0.06 -0.11 -0.08 -0.12 -0.08 -0.05 -0.14 -0.14 -0.12 

Soil pH -0.21 -0.20 -0.12 -0.15 -0.19 -0.08 -0.13 -0.14 -0.19 -0.16 -0.15 -0.14 -0.12 -0.13 -0.17 

Soil diversity -0.08 -0.06 -0.03 -0.08 -0.03 -0.10 -0.08 -0.06 -0.10 -0.07 -0.08 -0.10 -0.10 -0.04 -0.06 

qrt = Quarter; temp = Temperature; Precip = Precipitation; sd = Standard Deviation; WVP = Water Vapor Pressure; hrs = hours



 

95 

 

APPENDIX I 

STANDARDIZED REGRESSION GLM COEFFICIENT (RICHNESS WINTER EV)
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APPENDIX I. Standardized regression generalized linear models (GLM) coefficients (β) for winter bird richness environmental 

variables (EV) models.  Higher absolute values indicate more importance within model.  Signs indicate relationship to richness. β 

values were used to generate winter portion of Figure 2.6. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean diurnal 

Range 0.07 0.03 0.06 0.07 0.01 -0.01 0.07 0.04 0.06 0.02 0.09 0.09 0.06 0.06 0.05 

Mean temp 

Warmest qrt 0.06 0.06 0.08 -0.02 -0.01 0.11 0.07 -0.05 0.05 0.05 0.06 0.06 0.12 0.01 0.08 

Precip driest qrt -0.09 0.00 -0.02 -0.05 -0.07 0.04 0.00 -0.05 -0.03 0.00 -0.02 -0.07 0.01 -0.05 -0.04 

NDVI 0.11 0.22 0.19 0.27 0.14 0.19 0.07 0.13 0.14 0.11 0.14 0.12 0.16 0.14 0.15 

NDVI sd -0.01 -0.05 -0.10 -0.23 -0.08 -0.13 -0.01 -0.03 -0.07 -0.06 -0.11 -0.08 -0.17 -0.14 -0.16 

WVP sd -0.06 -0.06 -0.03 -0.04 0.01 -0.05 -0.02 0.01 -0.01 0.02 -0.01 0.01 -0.08 -0.03 0.00 

Sunshine hrs 0.05 0.08 -0.01 0.00 0.03 0.00 0.04 0.03 0.02 0.03 0.04 0.13 0.02 0.00 0.12 

Sunshine hrs min 0.01 -0.02 -0.04 -0.06 0.00 -0.02 0.04 0.03 0.01 0.01 0.00 0.00 -0.01 -0.06 0.01 

Aspect 0.03 0.06 0.04 0.05 0.07 0.05 0.10 0.01 0.03 -0.01 0.05 -0.02 0.01 0.02 0.04 

Bulk density -0.23 -0.26 -0.14 -0.15 -0.16 -0.10 -0.07 -0.04 -0.08 -0.09 -0.11 -0.19 -0.10 -0.04 -0.10 

Soil pH -0.29 -0.25 -0.16 -0.09 -0.17 -0.11 -0.17 -0.12 -0.11 -0.15 -0.17 -0.27 -0.16 -0.06 -0.21 

Soil diversity 0.00 0.01 -0.08 -0.11 -0.03 -0.07 -0.01 -0.03 -0.05 -0.07 -0.06 -0.05 -0.06 -0.14 -0.08 

qrt = Quarter; temp = Temperature; Precip = Precipitation; sd = Standard Deviation; WVP = Water Vapor Pressure; hrs = hours
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APPENDIX J 

COEFFICIENT OF VARIATION (BIRD ABUNDANCE)



 

98 

 

APPENDIX J. Coefficient of variation  (R2) or goodness of fit of each model to yearly 

bird abundance.  Values closer to one have more explanatory power.  All R2 values 

extracted using Effron Pseudo R2. All seasons shown for principal component analysis 

(PCA) and environment variable (EV) analysis for all years. 

 

  PCA EV 

 Spring Winter Spring Winter 

2001 0.43 0.60 0.52 0.69 

2002 0.63 0.25 0.64 0.34 

2004 0.44 0.60 0.50 0.74 

2005 0.52 0.68 0.63 0.74 

2006 0.33 0.35 0.40 0.44 

2007 0.62 0.57 0.66 0.63 

2008 0.56 0.31 0.68 0.66 

2009 0.36 0.54 0.47 0.55 

2010 0.37 0.48 0.47 0.62 

2011 0.52 0.42 0.55 0.53 

2012 0.67 0.45 0.73 0.53 

2013 0.58 0.46 0.64 0.64 

2014 0.38 0.49 0.45 0.59 

2015 0.46 0.56 0.46 0.59 

2016 0.57 0.60 0.60 0.66 

Avg 0.50 0.49 0.56 0.60 

Max 0.67 0.68 0.73 0.74 

Min 0.33 0.25 0.40 0.34 

Range 0.34 0.43 0.34 0.40 



 

99 

 

APPENDIX K 

STANDARDIZED REGRESSION GLM COEFFICIENT  

(ABUNDANCE SPRING PCA)
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APPENDIX K. Standardized regression generalized linear models (GLM) coefficients (β) for spring bird abundance principal 

component analysis (PCA) models. Higher absolute values indicate more importance within model.  Signs indicate relationship to 

abundance. β values were used to generate spring portion of Figure 3.5. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Vegetation 0.24 0.42 0.15 0.29 0.19 0.15 0.44 0.22 0.31 0.43 0.72 0.54 0.18 0.29 0.48 

Climate 0.14 0.30 0.31 0.29 0.17 0.34 0.19 0.24 0.24 0.26 0.22 0.23 0.20 0.17 0.09 

Energy 0.07 0.26 -0.02 -0.05 -0.13 0.04 0.01 -0.05 0.04 0.05 0.04 0.21 0.00 0.06 0.05 

Vegetation II -0.11 -0.32 -0.03 -0.02 0.04 0.15 -0.12 -0.10 -0.14 -0.25 -0.38 -0.31 -0.09 -0.23 -0.23 

Topography/Sun 0.06 -0.03 0.05 0.05 -0.02 0.03 0.12 0.03 0.08 -0.07 0.12 0.10 0.07 0.06 0.04 

Precepitation 0.20 -0.07 0.14 0.07 -0.05 0.12 -0.06 0.00 0.01 -0.16 -0.21 -0.08 0.05 -0.05 -0.09 

Sunshine -0.01 0.14 -0.08 -0.08 -0.01 -0.04 -0.01 -0.03 0.03 0.08 -0.05 0.09 -0.04 0.01 0.03 

Water vapor 0.06 -0.18 -0.04 0.04 -0.02 -0.06 -0.10 -0.08 -0.22 -0.07 -0.01 -0.10 -0.08 -0.12 -0.10 

Topography II 0.01 0.16 0.10 0.13 0.02 0.13 0.16 0.12 0.08 0.15 0.35 0.27 0.12 0.15 0.10 
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APPENDIX L 

STANDARDIZED REGRESSION GLM COEFFICIENT  

(ABUNDANCE WINTER PCA)
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APPENDIX L. Standardized regression generalized linear models (GLM) coefficients (β) for winter bird abundance principal 

component analysis (PCA) models. Higher absolute values indicate more importance within model.  Signs indicate relationship to 

abundance. β values were used to generate winter portion of Figure 3.5. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Vegetation 0.35 0.08 0.76 0.95 0.32 0.35 -0.41 0.57 0.56 0.58 0.33 0.46 0.50 0.52 0.44 

Climate 0.36 0.07 0.50 0.41 0.46 0.76 0.83 0.21 0.26 0.43 0.28 0.29 0.23 0.18 0.47 

Energy 0.16 -0.09 0.24 0.15 0.10 0.39 -0.05 0.06 -0.04 -0.04 0.11 0.21 0.09 0.14 -0.10 

Vegetation II -0.22 0.19 -0.58 -0.65 -0.16 -0.46 0.54 -0.20 -0.47 -0.36 -0.29 -0.49 -0.45 -0.39 -0.13 

Topography/Sun 0.10 0.52 0.24 0.29 0.02 0.31 0.25 0.30 0.15 -0.02 0.19 0.17 0.19 0.07 0.05 

Precepitation 0.10 0.12 -0.05 -0.19 -0.02 0.22 0.24 -0.01 -0.11 -0.31 0.08 0.05 0.07 -0.08 -0.04 

Sunshine 0.13 -0.16 -0.09 -0.30 0.00 -0.09 -0.63 0.00 -0.10 0.08 -0.06 0.07 -0.06 0.06 -0.03 

Water vapor -0.14 0.16 0.00 0.14 -0.02 -0.41 0.08 -0.20 -0.21 -0.23 -0.22 -0.33 -0.21 -0.11 -0.24 

Topography II 0.06 0.54 0.48 0.61 0.19 0.50 0.02 0.16 0.15 0.06 0.13 0.13 0.21 0.17 0.00 
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APPENDIX M 

STANDARDIZED REGRESSION GLM COEFFICIENT  

(ABUNDANCE SPRING EV)
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APPENDIX M. Standardized regression generalized linear models (GLM) coefficients (β) for spring bird abundance environmental 

variables (EV) models.  Higher absolute values indicate more importance within model.  Signs indicate relationship to abundance. β 

values were used to generate spring portion of Figure 3.6. 

 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean diurnal 

Range 0.06 0.20 0.00 -0.02 -0.12 0.03 0.01 -0.03 0.07 0.00 -0.07 0.11 -0.03 0.03 0.02 

Mean temp 

Warmest qrt 0.28 0.34 0.38 0.42 0.28 0.26 0.26 0.35 0.31 0.36 0.50 0.31 0.31 0.22 0.17 

Precip driest qrt 0.09 0.05 0.12 0.10 0.00 0.12 0.04 0.09 0.08 0.06 0.11 0.09 0.08 0.04 0.00 

NDVI 0.22 0.29 0.10 0.19 0.24 0.17 0.28 0.12 0.20 0.32 0.56 0.36 0.23 0.23 0.41 

NDVI sd -0.16 -0.22 -0.01 -0.03 0.00 0.21 -0.02 -0.09 -0.12 -0.19 -0.32 -0.16 -0.15 -0.17 -0.19 

WVP sd 0.04 -0.14 -0.01 0.09 -0.10 -0.05 0.05 -0.03 -0.16 -0.04 0.04 0.00 -0.11 -0.11 -0.07 

Sunshine hrs 0.08 0.03 0.06 0.08 0.05 -0.02 0.10 0.14 0.21 0.01 0.07 -0.02 0.04 0.06 0.05 

Sunshine hrs min 0.01 -0.09 0.06 0.04 0.05 0.00 -0.05 0.04 -0.02 -0.05 -0.02 -0.12 0.03 -0.01 -0.01 

Aspect 0.09 0.05 0.07 0.16 -0.03 0.05 0.24 0.02 -0.06 0.10 0.25 0.24 0.06 0.04 0.10 

Bulk density -0.13 0.02 0.05 0.06 -0.16 0.19 0.16 0.05 0.09 0.01 0.01 0.15 -0.08 0.02 -0.02 

Soil pH -0.18 -0.07 -0.13 -0.17 0.03 0.05 -0.08 -0.17 -0.19 0.01 0.09 0.05 0.00 0.03 0.01 

Soil diversity 0.00 -0.11 -0.06 -0.15 0.01 0.04 -0.12 -0.22 -0.24 -0.12 -0.21 -0.06 -0.05 -0.05 -0.03 

qrt = Quarter; temp = Temperature; Precip = Precipitation; sd = Standard Deviation; WVP = Water Vapor Pressure; hrs = hours
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APPENDIX N 

STANDARDIZED REGRESSION GLM COEFFICIENT  

(ABUNDANCE WINTER EV)
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APPENDIX N. Standardized regression generalized linear models (GLM) coefficients (β) for winter bird abundance environmental 

variables (EV) models.  Higher absolute values indicate more importance within model.  Signs indicate relationship to abundance. β 

values were used to generate winter portion of Figure 3.6. 

 2001 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

Mean diurnal 

Range 0.18 0.00 0.08 -0.05 0.09 0.29 -0.31 -0.01 -0.12 -0.05 0.14 0.19 0.03 0.08 -0.02 

Mean temp 

Warmest qrt 0.40 0.42 0.83 0.78 0.56 0.84 0.20 0.37 0.47 0.60 0.42 0.47 0.41 0.33 0.53 

Precip driest qrt -0.03 -0.19 0.19 0.15 -0.08 0.22 0.34 0.15 0.18 0.02 0.01 0.04 0.15 0.05 0.01 

NDVI 0.30 0.01 0.41 0.55 0.20 0.39 0.05 0.39 0.42 0.38 0.25 0.35 0.31 0.31 0.42 

NDVI sd -0.19 0.08 -0.37 -0.38 -0.11 -0.46 0.57 -0.11 -0.48 -0.38 -0.30 -0.60 -0.41 -0.27 -0.20 

WVP sd -0.15 0.11 0.16 0.32 0.06 -0.45 0.43 -0.03 -0.11 -0.05 -0.19 -0.20 -0.05 -0.05 -0.22 

Sunshine hrs 0.18 0.35 0.08 0.07 0.15 0.14 -0.27 0.22 0.33 0.36 0.28 0.40 0.23 0.16 0.34 

Sunshine hrs min -0.06 0.32 -0.05 0.03 0.17 0.01 -0.06 -0.08 0.12 0.12 0.13 0.02 0.04 -0.01 0.13 

Aspect 0.10 0.27 0.35 0.31 0.17 0.18 0.33 0.12 -0.06 -0.11 0.03 0.00 0.15 0.05 -0.02 

Bulk density -0.20 -0.54 0.07 0.17 -0.33 -0.06 1.11 0.27 0.09 -0.13 -0.18 -0.27 0.03 -0.02 -0.17 

Soil pH -0.27 -0.60 -0.17 0.00 -0.34 -0.05 0.87 0.01 -0.11 -0.30 -0.30 -0.47 -0.25 -0.16 -0.26 

Soil diversity 0.06 -0.50 -0.22 -0.34 -0.11 -0.21 0.50 -0.20 -0.43 -0.47 -0.15 -0.31 -0.22 -0.17 -0.10 

qrt = Quarter; temp = Temperature; Precip = Precipitation; sd = Standard Deviation; WVP = Water Vapor Pressure; hrs = hours 
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