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ABSTRACT

Continuing and increasing reliance on fossil fuels to satisfy our population’s energy

demands has encouraged the search for renewable carbon-free and carbon-neutral

sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one

of the objectives of this dissertation was to develop protein-based strategies that

can be applied in the production of green fuels. The first project of this dissertation

aimed at developing a controllable strategy to incorporate domains with different

functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits)

into a single multicomponent system. This was accomplished through the rational

design of 2,2’-bipyridine modified dimeric peptides that allowed their metal-directed

oligomerization by forming tris(bipyridine) complexes, thus resulting in the forma-

tion of a hexameric assembly.

Additionally, two different approaches to incorporate non-natural

organometallic catalysts into protein matrix are discussed. First, cobalt proto-

porphyrin IX was incorporated into cytochrome b562 to produce a water-soluble

proton and CO2 reduction catalyst that is active upon irradiation in the presence

of a photosensitizer. The effect of the porphyrin axial ligands provided by the

protein environment has been investigated by introducing mutations into the native

scaffold, indicating that catalytic activity of proton reduction is dependent on

axial coordination to the porphyrin. It is also shown that effects of the protein

environment are not directly transferred when applied to other reactions, such as

CO2 reduction.

Inspired by the active site of [FeFe]-hydrogenases, the second approach is

based on the stereoselective preparation of a novel amino acid bearing a 1,2-ben-

zenedithiol side chain. This moiety can serve as an anchoring point for the introduc-

tion of metal complexes into protein matrices. By doing so, this strategy enables
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the study of protein interactions with non-natural cofactors and the effects that it

may have on catalysis. The work developed herein lays a foundation for furthering

the study of the use of proteins as suitable environments for tuning the activity of

organometallic catalysts in aqueous conditions, and interfacing these systems with

other supporting units into supramolecular assemblies.
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CHAPTER 1

PREFACE

As the world population continues to exponentially grow, global energy demand

increases apace. In the World Energy Outlook, the International Energy Agency

projects that the world’s yearly energy demand will rise by 27 %, from nearly

163 PW h in 2017 to 206 PW h by 2040. Almost 75 % of that energy demand

will be met by carbon-based fuels. The use of these fuels has led to currently

unprecedented atmospheric levels of CO2,1,2 a greenhouse gas that has detrimental

effects in the environment, including an increase of Earth’s surface and ocean’s

temperature, melting of ice sheets, and rise of sea levels.2,3 Forecasts indicate that

energy-related CO2 production from human activities will increase to 36 Gt y−1 by

2040,1 thus aggravating these environmental effects. As a response to this problem,

several lines of research aim to discover or improve alternative renewable fuel

production processes.

One of such ideas is to use molecular hydrogen as a fuel source, as this gas

has more chemical energy per mass than liquid fuels (142 MJ kg−1 vs 47 MJ kg−1),

and its sole combustion product is water vapor (Reaction R-1.1).4 However, despite

hydrogen being the most abundant element on Earth, only about 1 % of it can be

found in its molecular form.4 As such, the use of hydrogen gas as combustible is

limited by the methods that are used to produce it.

2H2 (g) + O2 (g) 2H2O(g) (R-1.1)

The majority of hydrogen gas is currently produced by methane steam re-

forming.5 The process consists of a reaction between steam and methane to yield a

mixture of carbon monoxide and hydrogen gas known as syngas. Carbon monoxide
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and steam can later react to form carbon dioxide and hydrogen gas.6 This practice

is energy intensive and relies on the use of fossil fuels, diminishing the environmen-

tal benefits of the use of hydrogen as fuel. Other methods of production involve

the electrolytic splitting of water into its elemental components; however, this feat

requires catalysts such as platinum in order to be carried out efficiently.4,6

Another approach to the production of renewable fuels is to close the car-

bon cycle by taking the CO2 that human activity produces and to reduce it back

into usable fuels, such as methanol, methane, or other higher hydrocarbons. Un-

fortunately, this process currently requires hydrogen gas or high temperatures.7

Additionally, carbon dioxide has a number of reduction products depending on the

number electrons involved in the reaction, availability of protons, reduction poten-

tial, and other reaction conditions (Table 1.1).8

Table 1.1. Standard Reduction Potentials of CO2.8

Reaction E◦′/Va

CO2 + e– CO –
2 −1.9

CO2 + 2H+ + 2 e– CO −0.53

CO2 + 2H+ + 2 e– HCO2H −0.61

CO2 + 4H+ + 4 e– C + 2H2O −0.20

CO2 + 4H+ + 4 e– HCHO + H2O −0.48

CO2 + 6H+ + 6 e– CH3OH + H2O −0.38

CO2 + 8H+ + 8 e– CH4 + 2H2O −0.24
a In aqueous solution, pH 7, vs NHE.

To circumvent these limitations, it is necessary to come up with cost-

effective methods that allow the production of hydrogen gas or the selective
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reduction of CO2 into usable fuels. Furthermore, these new methods should not rely

on the use of fossil fuels for them to be environmentally beneficial.

At an average rate of 120 EW at the Earth’s surface, solar power represents

an abundant, accessible, and sustainable source of energy. Nature makes use of

sunlight through photosynthesis, in which energy from light is stored in chemi-

cal bonds at an estimated global rate of 120 TW. However, solar energy is diffuse

(about 100 mW cm−2) and is limited to daylight hours.9 Thus, if solar power is to

be utilized to reduce protons into hydrogen gas, or CO2 into other fuels, it is cru-

cial to develop a system that can not only capture the sunlight, but also efficiently

transform it into the desired products.

Ideally, an optimized catalyst would minimize the energy requirements to

carry out the reactions by providing a suitable environment that stabilizes the

transition state. A large number of organometallic small molecule catalysts have

been prepared and studied over the last decades that can perform proton reduction

and CO2 reduction. Nonetheless, most of these catalysts must operate in organic

solvents, need external acids as proton sources, and often function only at highly

negative electrochemical potentials.

Millions of years of natural evolution have produced an arsenal of catalysts

in the form of enzymes that incorporate organometallic active sites embedded in

a protein matrix. Some of these enzymes, namely hydrogenases, can catalyze the

reduction of protons into molecular hydrogen, whereas other enzymes of interest

are involved in the reduction of CO2, such as carbon monoxide dehydrogenase,

which catalyzes the interconversion between CO2 and CO, or formylmethanofuran

dehydrogenase, which reduces CO2 to formylate methanofuran during an early

stage of methanogenesis. These catalysts operate in aqueous conditions, are finely
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tuned to operate at physiological pH, and have higher turnover numbers than their

small molecule counterparts.

Unfortunately, the direct use of these biological catalysts is not always

straightforward. For instance, the expression of some of these enzymes often re-

quires a complex biosynthetic machinery for their assembly, hampering the ability

to express them recombinantly and resulting in low yields. Additionally, their large

sizes result in low current density, as less molecules can be adsorbed into a surface

at the same time. The presence of labile metal complexes typically requires the

experiments to be carried out under anoxygenic conditions, which demands a phys-

ical separation of the reductive reaction center from their oxidative counterpart.

Finally, the naturally occurring enzymes are only amenable to certain reactions and

to include certain cofactors, limiting their use to such native active sites.

To circumvent these problems, our research group focuses on designing and

evaluating protein-based architectures that are capable of catalyzing these chemical

transformations in mild aqueous conditions while using light as a primary energy

source. This type of reactions can be broken down into three main components:

1) the catalytic site, 2) an electron transfer relay, and 3) the photosensitizer. By

following a modular approach, it is possible to evaluate and optimize each of them

independently, thus the need for a strategy to integrate them together into a single

architecture in order to increase the overall efficiency of the whole system.

This dissertation explores the latter by offering a strategy that can be uti-

lized to control the assembly of the described components into an oligomeric entity

in Chapter 2. The strategy presented herein is based on the rational modification

of a robust dimeric peptide with a 2,2′-bipyridine moiety. By doing so, it is possible

drive their assembly into a hexameric structure (i.e. a trimer of dimers) through

the formation of divalent metal tris(bipyridine) complexes.10
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Further, Chapters 3 and 4 describe the use and development of two differ-

ent strategies for the incorporation of catalysts into protein scaffolds. Particularly,

Chapter 3 details the design of cytochrome b562 mutants that incorporate cobalt

protoporphyrin IX with aims at catalyzing the reduction of protons and CO2 upon

irradiation in the presence of a photosensitizer. More specifically, this work eval-

uated the effects of axial coordinating residues on the activity of the embedded

catalyst in an aqueous environment.

Finally, Chapter 4 focuses on an alternative tool that allows the incorpo-

ration of a variety of organometallic mimics that cannot be found in nature. The

proposed synthetic approach is inspired by the active site of natural enzymes capa-

ble of catalyzing the reversible reduction of protons into hydrogen gas, specifically

[FeFe]-hydrogenases (Reaction R-1.2). This work details the synthesis of an unnat-

ural amino acid, (S)-2-amino-3-(3,4-disulfanylphenyl)propanoic acid, which can act

as a bridging ligand in diiron complexes that are catalytically active toward proton

reduction.

2H+ + 2 e– H2 (R-1.2)
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CHAPTER 2

RATIONAL DESIGN OF A HEXAMERIC PROTEIN ASSEMBLY STABILIZED

BY METAL CHELATION

2.1 Abstract

Protein-based self-assembled nanostructures hold tremendous promise as smart ma-

terials. One strategy to control the assembly of individual protein modules takes ad-

vantage of the directionality and high affinity bonding afforded by metal chelation.

Here, we describe the use of 2,2′-bipyridine units (bpy) as side chains to template

the assembly of large structures (MW approx. 35 000 Da) in a metal-dependent

manner. The structures are trimers of independently folded 3-helix bundles, and

are held together by 2 Me(bpy)3 complexes. The assemblies are stable to thermal

denaturation, and are more than 90 % helical at 90 ◦C. Circular dichroism spec-

troscopy shows that one of the 2 possible [M(bpy)3]2+ enantiomers is favored over

the other. Because of the sequence pliability of the starting peptides, these con-

structs could find use to organize functional groups at controlled positions within a

supramolecular assembly.

2.2 Introduction

The formation of protein-based supramolecular assemblies plays a fundamental

role in biological processes, such as in the structure of the cytoskeleton and intra-

cellular compartments, or support for the life cycle of viruses.1,2 Inspired by this

complex set of functions, protein engineers have sought to generate supramolecular

structures with novel functionalities by learning to control self-assembly and by

exploiting symmetry.3–17
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The use of metal binding motifs offers an attractive methodology to direct

the assembly of smaller subunits into well-ordered systems, with the advantage

of such association being dependent on presence of the metal and independent of

intricate sequence-coded protein-protein interactions.18–26 Further, this strategy

allows the incorporation of metal-mediated functionality such as catalysis, redox

activity, and electron transfer.11,12,27–30 Beyond the metal-ligation properties of

natural amino acids, chelating ligands such as 2,2′-bipyridine (bpy) are very attrac-

tive as means to mediate metal coordination and guide protein assemblies because

they form high-affinity metal complexes with well-defined geometry and symmetry.

Since the first reports using tris(2,2′-bipyridine) metal complexes to template the

formation of three-helix bundles, this functionality has been used extensively as a

structural element to stabilize trimeric entities upon addition of metal cations such

as Fe2+, Co2+, and Ni2+.23,31–36 In a remarkable use of this ligand, by controlling

the identity of the metal ion—thus the kinetics of ligand exchange—it was possible

to select the most stable sequences for three helix bundles via formation of dynamic

libraries.18,37 Incorporating tris(bipyridine)ruthenium(II) directly in homotrimers

has also allowed for simple systems to study electron transfer.38,39 In these systems,

the use of a single solvent-exposed metal binding site at the termini of a peptide

led to multiple backbone conformations, in some cases allowing for the presence of

multiple folds.32

This work makes use of metal chelation by bpy units to template the for-

mation of a “trimer of dimers” assembly formed by nine helices, six of which are

located in the central cavity—henceforth referred to as the “super-core”, and three

of which dock against this central ring (Figure 2.1). The hexamer is highly symmet-

ric, with the central six helices arranged in an antiparallel fashion and displaying

D3 symmetry and containing an additional pseudo 2-fold symmetry axis. At the
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structural level, the assembly is obtained by oligomerization of three-helix bundles,

each formed by a dimer of a helix-loop-helix motif, in which one of the helices is

about half the length of the other. The design is derived from the sequence of Hex-

Phe,40 which was in turn based on the sequence of a Domain Swapped Dimeric

Three Helix Bundle (DSD) that formed hexamers in the crystal structure but not

in solution.41 DSD comprises a leucine-rich hydrophobic core and salt bridges po-

sitioned at the helix-helix interfaces to impart specificity, resulting in remarkable

stability to chemical and thermal denaturation. Exploiting its unusual pseudo 2-

fold symmetry, our group has used DSD as scaffold to generate mimics of ferredoxin

by incorporating pairs of iron-sulfur clusters at controlled distances.27,28,42

Introducing hydrophobic residues in the solvent-exposed side of the long

helices modulates the formation of DSD trimers in a sequence-dependent manner.

Briefly, Hex-Phe utilized aromatic interactions to stabilize the super-core of the

DSD S LAALKSE LQALKKE GFSPEE LAALESE LQALEKK LAALKSK LQALKG
Hex-Phe S LAALKSE LQALKKE GFSPEE LAALESF LQALEKW LAALKSF LQALKG
HB1 S LAALKSE LQALKKE GFSPEE LAALESC LQALEKA LAALKSF LQALKG
HB2 S LAALKSE LQALKKE GFSPEE LAALESC LQALEKA LAALKSA LQALKG

Figure 2.1. Model of the hexameric assembly stabilized by bpy-mediated metal
chelation (top) and sequences of the prepared peptides (bottom).
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Figure 2.2. Reaction between the cysteine side chain and 2-1 to form the bpy
tagged peptides.

α-helical assembly observed in the crystal structure of DSD, resulting in sponta-

neous formation of the hexamer in solution. We speculated that replacement of one

of the aromatic residues per monomer with a bpy unit results in positioning two

sets of trimers at the super-core, at distances compatible with formation of M(bpy)3

complexes. We designed two sequences, HB1 and HB2, differing by the number of

aromatic residues predicted to be in the super-core of the hexamer, each containing

a cysteine residue through which a bpy unit can be linked by nucleophilic substi-

tution of 4-bromo-2,2′-bipyridine (2-1, Figure 2.2). We found that both sequences

formed preferentially stable hexamers over dimers in the presence of divalent tran-

sition metals, and that the magnitude of the effect is dependent on the sequence of

the peptide.

2.3 Materials and Methods

2.3.1 Synthesis of 4-bromomethyl-2,2′-bipyridine

Solvents and reagents were purchased from Sigma-Aldrich. Dry solvents were pur-

chased from Sigma-Aldrich in Sure Seal® bottles. Standard Schlenk techniques

were used for air and moisture sensitive reactions. Diisopropylamine was distilled

over CaH2, and used within 24 h. Pyridine was distilled at atmospheric pressure

over KOH. Nuclear Magnetic Resonance (NMR) data were obtained on a Var-

ian MR400 400 MHz instrument at 25 ◦C and are referenced to the solvent peak
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Scheme 2.1. Synthetic route for 2-1. (a) Tf2O, pyridine, 0 ◦C; (b) i) n-BuLi,
THF, −78 ◦C, ii) ZnCl2, iii) LiCl, 2-3, [Pd(PPh3)4], r. t. to reflux; (c) iPr2NLi,
TMSCl, THF, −78 ◦C; (d) C2Br2F4, CsF, DMF, r. t.

(CDCl3 at 7.26 ppm); all chemical shifts are given in ppm. 4-Bromomethyl-2,2′-

bipyridine (2-1) was prepared in several steps by Negishi coupling as described

before (Scheme 2.1).43

4-Methylpyridin-2-yl trifluoromethanesulfonate (2-3). Under nitro-

gen atmosphere, 2-hydroxy-4-methylpyridine (2-2, 5.0 g, 45.8 mmol) was dissolved

in pyridine (135 mL). The brown solution was cooled to 0 ◦C and trifluoromethane-

sulfonic anhydride (18.6 mL, 110.6 mmol) was added dropwise. After 1.5 hours,

water (50 mL) was added to quench the reaction and dissolve the formed white

precipitate. The solution was extracted with dichloromethane (DCM, 5× 200 mL).

The organic layers were combined, dried over MgSO4, and the solvent evaporated at

reduced pressure to give a dark brown oil. The pure product was obtained by silica

gel column chromatography using hexane/ethyl acetate/triethylamine 89:10:1 as

solvent system to yield a colorless oil (10.5 g, 95 %). 1H NMR (400 MHz, CDCl3): δ

8.24 (d, 1H, J = 5.1 Hz), 7.20 (d, 1H, J = 5.1 Hz), 7.00 (s, 1H), 2.45 (s, 3H).
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4-Methyl-2,2’-bipyridine (2-5). In a three-neck round bottom flask with

a nitrogen inlet and a reflux condenser, 2-bromopyridine (2-4, 1.0 mL, 10.3 mmol)

was dissolved in anhydrous THF (20 mL) under nitrogen. The solution was cooled

down to −78 ◦C and n-butyl lithium (n-BuLi, 1.6 M in hexanes, 11.9 mL, 19.0 mmol)

was added dropwise to give a dark red solution. The mixture was stirred for 30

minutes and was let to warm up to room temperature, at which point ZnCl2 (3.5 g,

25.8 mmol) was added. While the reaction was stirred for 2 hours at room temper-

ature, a solution of [Pd(PPh3)4] was prepared by mixing [Pd2(dba)3] (dba = diben-

zylideneacetone) (259 mg, 0.28 mmol) and triphenylphosphine (0.71 g, 2.71 mmol) in

anhydrous THF (10 mL). After the first reaction was stirred for 2 h, lithium chlo-

ride (0.9 g, 21.0 mmol), 2-3 (2.0 g, 8.33 mmol), and the freshly prepared [Pd(PPh3)4]

solution were added, and the brown-red solution was refluxed overnight under nitro-

gen. A solution of ethylenediaminotetraacetic acid (EDTA, 10 % w/v, 200 mL) was

then added, followed by a saturated solution of NaHCO3 (600 mL). The aqueous

layer was extracted with DCM (3× 200 mL), the organic layers combined, dried

over MgSO4, and the solvent evaporated under reduced pressure. The obtained

brown oil was purified by column chromatography on silica gel using hexane/ethyl

acetate/triethylamine 79:20:1 as eluent, giving the pure product as a yellow oil

that rapidly crystallized as a white solid upon standing (1.36 g, 96 %). 1H NMR

(400 MHz, CDCl3): δ 8.68 (d, 1H, J = 4.6 Hz), 8.54 (d, 1H, J = 5.0 Hz), 8.39 (d, 1

H, J = 7.9 Hz), 8.23 (s, 1H), 7.81 (d, 1H, J = 7.6 Hz), 7.30 (m, 1H), 7.14 (d, 1H,

J = 4.9 Hz), 2.44 (s, 3H).

4-(Trimethylsilyl)methyl-2,2’-bipyridine (2-6). A nitrogen flushed

100 mL round flask was charged with diisopropylamine (2.4 mL, 17.0 mmol) in

dry THF (10 mL). The solution was cooled to −78 ◦C and n-BuLi (1.6 M in hex-

anes, 10.2 mL, 16.3 mmol) is added dropwise. After 10 min, the mixture was slowly
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warmed up to 0 ◦C, stirred for another 10 min, and cooled down again to −78 ◦C. A

solution of 2-5 (2.59 g, 15.2 mmol) in 10 mL of anhydrous THF (10 mL) was then

added dropwise to obtain a thick maroon solution. The resulting mixture was

stirred for 80 min, after which trimethylsilyl chloride (TMSCl, 2.2 mL, 17.3 mmol)

was added, turning the solution blue. The reaction was quenched by a slow ad-

dition of 5 mL of absolute ethanol. The cold reaction was then transferred to a

separatory funnel, washed with a saturated solution of NaHCO3 (40 mL), and the

aqueous layer extracted with DCM (4× 50 mL). The organic fractions were com-

bined, dried over MgSO4, and evaporated under reduced pressure to obtain an

orange oil. The crude product was purified by column chromatography in silica gel

using hexanes/ethyl acetate/triethylamine 89:10:1 as mobile phase to give a col-

orless oil (1.62 g, 44 %). 1H NMR (400 MHz, CDCl3): δ 8.68 (m, 1H), 8.47 (d, 1H,

J = 5.0 Hz), 8.38 (d, 1H, J = 8.0 Hz), 8.06 (s, 1H), 7.80 (td, 1H, J = 1.8, 7.8 Hz),

7.29 (m, 1H), 6.95 (dd, 1H, J = 1.6, 5.0 Hz), 2.22 (s, 2H), 0.04 (s, 9H).

4-Bromomethyl-2,2’-bipyridine (2-1). In a 100 mL round bottom flask

under nitrogen atmosphere in the dark, cesium fluoride (0.91 g, 5.99 mmol) and

1,2-dibromotetrafluoroethane (1.54 g, 5.93 mmol) were added to a solution of 2-6

(0.70 g, 2.89 mmol) in anhydrous N,N -dimethylformamide (DMF, 25 mL). The re-

action was stirred at room temperature overnight to obtain an orange solution.

The reaction was washed with water (150 mL) and extracted with ethyl acetate

(3× 100 mL). The organic layers were combined, washed with brine (100 mL),

dried over MgSO4, and the solvent is removed under reduced pressure. The crude

brown oil is purified by silica gel column chromatography using hexane/ethyl ac-

etate/triethylamine 79:20:1 to give a colorless oil (0.65 g, 90 %). 1H NMR (400 MHz,

CDCl3): δ 8.71 (m, 1H), 8.67 (d, 1H, J = 5.0 Hz), 8.42 (m, 2H), 7.84 (m, 1H),

7.34 (m, 2H), 4.49 (s, 2H).

14



2.3.2 Peptide Synthesis and Purification

All peptides were synthesized by automated microwave-assisted Solid Phase Peptide

Synthesis (SPPS) on a Liberty instrument (CEM Corporation). The synthesis was

carried out using standard Fmoc protection procedures. Briefly, Rink Amide resin

was deprotected using 0.1 M 1-hydroxybenzotriazole (HOBt) in a 20 % v/v piperi-

dine in DMF solution. Amino acid couplings were achieved using 0.45 M N,N,N ′,N ′-

tetramethyl-O-(1H -benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) in

DMF, 2 M N -ethyl-N -(propan-2-yl)propan-2-amine (DIEA) in N -methyl-2-pyrrolidi-

none (NMP), and 0.2 M fluorenylmethyloxycarbonyl (Fmoc) protected amino acid

(Novabiochem), followed by microwave irradiation to pre-established temperatures

according to CEM protocols. Peptides were acetylated at the N -terminus via addi-

tion of acetic anhydride under coupling conditions. The peptides were cleaved from

the resin using 94 % trifluoroacetic acid (TFA), 2.5 % water, 2.5 % 1,2-ethanedithiol

(EDT), and 1 % triisopropylsilane (TIS) for 3 h. The solution was then evaporated

under a stream of N2, and the peptide was precipitated with cold ether. Crude,

lyophilized peptides were purified using preparatory-scale HPLC on a C18 reverse-

phase column, with a linear gradient of Solvent A (99.9 % water with 0.1 % TFA)

and Solvent B (95 % acetonitrile, 4.9 % water, and 0.1 % TFA) at a flow rate of

10 mL min−1. Peptide identity was confirmed by MALDI-TOF-MS; peptides were

>99 % pure as assessed by C18 analytical Reverse Phase High-Performance Liquid

Chromatography (RP-HPLC).

2.3.3 Conjugation

The synthesized peptide (7.0 mg, 1.4 µmol) was dissolved in guanidinium hydrochlo-

ride (Gdn·HCl, 6 M)/2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris, 100 mM)
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buffer at pH 9.6. A solution of tris(2-carboxyethyl)phosphine hydrochloride

(TCEP·HCl, 20.8 mg, 73 µmol) in this same buffer (2 mL) was added, and the

mixture was heated to 70 ◦C for 30 min. A solution of 2-1 (23.6 mg, 95 µmol) in

buffer/acetone (4:1 by volume) was added and the reaction was stirred at 70 ◦C

overnight. The peptide was then purified by preparative RP-HPLC as described

above.

2.3.4 Metal Incorporation and Quantification

Divalent metal ions were incorporated into peptide variants by adding an excess

amount (20 eq) of the metal chloride salt (CoCl2·6H2O or NiCl2·6H2O, respec-

tively) in Gdn·HCl (6 M)/ Tris (100 mM) buffer at pH 7.5. The mixture was in-

cubated overnight at 4 ◦C. The resulting dark brown solution was subjected to

desalting with a PD10 G25 column (GE Healthcare) that was pre-equilibrated with

100 mM Tris at pH 7.5 to obtain the holo protein.

2.3.5 Gel Filtration

Size exclusion chromatography was performed on a G-25 gel filtration column fit to

an Agilent Technologies 1260 Insight Fast Protein Liquid Chromatography (FPLC)

system. The column was pre-equilibrated in 100 mM Tris pH 7.5, and 200 µL of

150 µM apo or holo peptide were used for each injection.

2.3.6 Analytical Ultracentrifugation

Sedimentation velocity experiments were carried out with a Beckman Coulter

XL-I instrument equipped with a monochromator and interference scanning op-

tics (632 nm) using a Ti-50 rotor as described before.44 Briefly, analytical ultracen-

trifugation cells were loaded with 420 µL of the samples at starting concentration
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of approximately ∼100 µM and allowed to equilibrate for 2 h at 4 ◦C. The buffers

used in the measurements contained 10 mM 2-amino-2-(hydroxymethyl)propane-

1,3-diol hydrochloride (Tris·HCl) pH 8.5 and 479 µM CoCl2 or NiCl2, where rele-

vant. The samples were spun at 40 000 rpm (115 000g) and absorbance scans were

taken continuously at 298 nm (Co-HB1 and Ni-HB1), 290 nm (Hex-Phe), or 286 nm

(HB1 and HB2), respectively, with a 0.003 cm step size, until the last of the bound-

aries had moved to the bottom of the solution column (at least 12 h). Data was

reduced using Sedfit44 using calculated values for buffer viscosity and density from

SEDNTERP. C(s) analysis was used to determine relative amounts and sizes of

species observed.

Sedimentation equilibrium experiments were carried out with a Beckman

XL-I and Ti-50 rotor at 4 ◦C. Briefly, samples (110 µL) containing varied concen-

trations of sample (0.1–0.8 mg mL−1) were loaded into 3 chambers of a 6-chamber

centerpiece, with buffer in each of the remaining 3. The samples were then sub-

jected to centrifugal speeds of 14 000, 20 000, and 26 000 rpm for a period of 72–96 h.

Equilibrium was established when a reasonable (<0.07) and constant rmsd was

found between sequential scans 4 hours apart. High resolution scans were taken at

various wavelengths (280, 282, and 298 nm), with a radial step size of 0.001 cm. The

data were analyzed using global fitting in Sedfit with a single species. Buffer den-

sity was calculated from SEDNTERP and partial specific volumes were determined

from the sequence.

2.3.7 Circular Dichroism Spectroscopy

Spectra were recorded on a JASCO J-815 spectropolarimeter in the range of 190–

260 nm or 300–400 nm. Data were recorded every 1 nm and averaged over 3 scans.

The concentration of apo and holo-peptides was kept at 50 µM in 100 mM Tris,

17



pH 7.5. Chemical denaturation titrations were carried out through addition of an

8 M stock solution of Gdn·HCl, followed by mixing and incubation for 5 min to

allow for equilibration. Holo peptide was titrated under anaerobic conditions. Spec-

tra were normalized to protein concentration in the sample and converted to frac-

tion folded relative to the apo or holo protein signal, which lacked Gdn·HCl.

2.4 Results and Discussion

2.4.1 Protein design and synthesis

Starting with the crystal structure of DSD (PDB ID 1G6U), we chose position 28,

which is found in the super-core, for attachment of a bpy moiety via conjugation

to a cysteine residue. The octahedral metal-chelated [M(bpy)3]2+ complex can exist

as two enantiomers, the ∆ and Λ, with coordinates available from the Cambridge

Structural Database (CSD ID Co2+: BPCOFC10, Ni2+: ADOCOM).45 Each com-

plex was modeled in Pymol and functionalized with a methyl group in position

4, which will provide the chemical moiety for conjugation to the thiol moiety of

cysteine upon nucleophilic attack. We manually docked each pre-formed complex

within the super-core within the chosen layer. We then explored the possible ro-

tamers of Cys28 in helical conformation to identify the ones that placed the thiol

at a distance compatible with ligation to the methyl group. We found that the ∆

enantiomer was a better fit for the super-core. Because of the D3 pseudosymmetry

of the assembly, this operation results in the creation of two metal binding sites in

the super-core (Figure 2.1). To explore the interplay between aromatic interactions

and metal chelation in forming a stable assembly, two versions of the peptide were

designed. Compared to Hex-Phe, HB1 conserves a phenylalanine residue at position
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42 while HB2 contains an alanine at that position. The remaining position at the

super-core, 35, was also mutated to alanine to relieve steric clashes.

Peptides corresponding to HB1 and HB2 were readily synthesized uti-

lizing microwave-assisted solid phase peptide synthesis followed by purification

via reverse-phase HPLC purification on a C18 analytical and semi-prep column.

4-Bromomethyl-2,2′-bipyridine (2-1)was synthesized via Negishi cross-coupling

following published protocols.43 Coupling of 4-bromomethyl-2,2′-bipyridine to

cysteine 28 of each peptide was carried out overnight at 70 ◦C in highly denatur-

ing conditions (6 M Gdn·HCl) to ensure peptide unfolding, under argon and

in buffered reducing conditions. The products, HB1 and HB2, were purified by

reverse-phase HPLC and verified by MALDI-TOF-MS (Figure A.1).

2.4.2 Protein characterization and metal binding

The incorporation of bipyridine moieties is also verified by the presence in the

Ultraviolet-Visible spectroscopy (UV-Vis) spectra of apo HB1 and HB2 of absorp-

tion bands corresponding to the intraligand π → π∗ transition at 244 and 286 nm

characteristic of bipyridine, which overlaps with the aromatic residues (Figures 2.3

and A.2). When the peptides were reconstituted with Ni2+ and Co2+, the π → π∗

absorption bands underwent a characteristic red shift to 298 nm (Ni2+) and 297 nm

(Co2+), respectively, with shoulders visible at 307 nm.46 A binding stoichiometry

of 2.8 and 3.4 peptides per metal respectively was obtained by titrating CoCl2

and NiCl2 into of HB2 (Figure 2.4), and of 3.4 and 3.5 into HB1 (Figure A.3). No

changes were observed in titrating Hex-Phe, used as control, with Ni2+ and Co2+,

indicating that other amino acids on the peptide scaffold do not interact with diva-

lent metals (Figures A.7 and A.8).
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Both peptides fold into structures with high helical content in solution, as

indicated by the two peaks at 208 and 222 nm in the far-UV Circular Dichroism

spectroscopy (CD) data, typical of α-helical peptides (Figures 2.5 and A.4), sug-

gesting that incorporation of the bipyridine ligand into the peptide structure did

not affect the overall structure relative to the parent peptides DSD and Hex-Phe.

Reconstitution of HB1 and HB2 with Ni2+ and Co2+ results in preservation of the

α-helical content, indicating that the structure of the peptides was maintained. In

the case of NiHB2, however, the CD spectrum shows a variation of the ratio of the

CD signal at 208 and 222 nm, which is typically close to one in highly symmetric

and well-ordered helical systems (Figure 2.5). To further investigate the stability of

the metal-chelated assemblies, we monitored helical content as a function of temper-
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Figure 2.3. UV-Vis traces for the titration of HB2 (black trace) with CoCl2 (top)
or NiCl2 (bottom; blue traces).
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Figure 2.4. Binding curves of HB2 titrated with CoCl2 (left) and NiCl2 (right) as
monitored by UV-Vis. The calculated binding stoichiometry was (a) 2.8 peptides
per metal ion, (b) 3.4 peptides per metal ion.

ature. In keeping with the parent peptides, determination of melting temperature

(Tm) is not possible because of the high stability of the assemblies to thermal de-

naturation (Figure A.5).40,41 However, HB2 reconstituted in the presence of the

metals is less stable than the apo peptides, despite a higher content in hexameric

structures (see section 2.4.3). In particular, we observed higher loss of secondary

structure for the Ni-bound HB1 and HB2, suggesting that these complexes are less

compatible with the super-core than the cobalt ones. One possible reason is that

nickel(II) forms much stronger complexes with bpy than cobalt(II), resulting in dis-

tortion to the helical structure in the hexameric assembly.46,47 Bpy has the ability

of forming chiral metal complexes, namely the ∆ and the Λ enantiomers, which give

rise to characteristic dichroic signals in the near-UV region, corresponding to the

π → π∗ transitions. In solution, neither of the two forms is favored, resulting in

net dichroic signal of zero (Figure A.6). In contrast, both the Ni2+ and Co2+ com-

plexes of HB2 display a CD signature in the 290–330 nm range, with peaks at 304

and 311 nm (Ni2+), and 306 and 313 nm (Co2+), consistent with the ∆ isomer.46

The presence of a net dichroic signal indicates that formation of one enantiomer
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Figure 2.5. CD spectra (left) and CD signal (right) corresponding to the bpy
absorption of HB2 (red), CoHB2 (blue), and NiHB2 (green).

is preferred over the other, possibly because it is energetically favored when incor-

porated within the super-core. The emergence of a dichroic signal was previously

observed in constructs that utilized tris(bpy) complexes to template a three-helix

bundle,32 or a trimeric assembly.23 Interestingly, the Λ enantiomer was favored in

those designs.

2.4.3 Metal-mediated oligomerization

We utilized Analytical Ultracentrifugation (AUC) to assess the association state

of the apo- and metal-reconstituted peptides in solution. The results of sedimenta-

tion velocity experiments are summarized in Figure 2.6. The bpy-modified peptides

behave similarly to their non-modified counterparts:40,41 the HB1 peptide formed

hexamers when loaded at high peptide concentrations, while favoring dimers at

lower peptide concentrations. Conversely, HB2 is predominantly dimeric in solution,

with a small percent forming larger hexameric structures. In both cases, chemical

modification with the bipyridyl moiety shifts the equilibrium towards the hexameric

form compared to the parent peptides. As predicted, reconstitution with a divalent

metal further shifts the equilibrium towards the hexamer, reflecting the formation
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Figure 2.6. Oligomerization state of the peptides in presence and absence of diva-
lent metals (blue, dimer; orange, hexamer).

of the complex. Addition of Co2+ results in formation of 83 % and 100 % hexamer

for CoHB2 and CoHB1 respectively. Following suit, addition of Ni2+ to HB2 in-

creases hexamer formation to 95 % total. In stark contrast, the addition of Ni2+

to HB1 decreases hexamer fraction to only 47 % of total, 17 % less than metal free

peptide. Control experiments were carried out to assess the effect of divalent metals

on the oligomerization state of Hex-Phe by sedimentation ultracentrifugation. No

significant changes to the sedimentation profile were observed, indicating that the

species are identical (Figure A.9).

2.5 Conclusion

We have shown that metal chelation, mediated by the incorporation of bipyridyl

moieties into the solvent exposed surface of a three-helix bundle, stabilizes the for-
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mation of trimers and results in the formation of stable supramolecular assemblies.

Compared to natural amino acids, the bpy ligand contains two pyridyl nitrogen

atoms in orientation compatible with metal chelation, thus forming complexes with

higher energies of formation and, in the trimer form, octahedral geometry. Mod-

eling suggested that this geometry is compatible with the hexameric assembly ob-

served in the crystal structure of DSD (1G6U).41 We found that addition of nickel

or cobalt resulted in shifting the dimer-hexamer equilibrium to the hexamer in a

sequence dependent manner, while preserving the helical structure of the peptides.

Because of the unique symmetry of the assembly, this design is unique in allowing

for further functionalization. For example, we have previously inserted two iron-

sulfur clusters at controlled distances in the DSD scaffold, and demonstrated that

the redox potentials can be modulated with single-point mutations.27,28,42 Our cur-

rent results suggest that metal chelation could be used to organize redox-active

moieties in a spatially controlled manner, utilizing self-assembly of the DSD scaf-

fold in closed hexamers. Further, this strategy may be used to stabilize fibrillar

assemblies observed in DSD mutants.41
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CHAPTER 3

EVALUATION OF THE CATALYTIC ACTIVITY OF COBALT CYTOCHROME

B562 TOWARD CO2 REDUCTION IN WATER

3.1 Introduction

The ongoing use of fossil fuels has led to an increase in atmospheric CO2 concen-

trations, causing severe consequences for the environment.1 As a response to this,

current research efforts are focused on developing energetic alternatives that can

help curb CO2 emissions. Although nature aids in the removal some of this green-

house gas through photosynthesis,2,3 negative emissions technologies are necessary

to reduce the excess gas from the atmosphere.4

One path to do so is through artificial photosynthesis, where light is uti-

lized as the energy source to drive the chemical transformation of CO2 into usable

chemicals such as fuels. Nonetheless, selectivity between the product of water reduc-

tion (namely H2 gas) and the variety of products that can be obtained from CO2

(Table 1.1) poses a problem when reducing CO2 in aqueous conditions.5

Artificial metalloenzymes can potentially be used as selective catalysts

for this reaction by offering an optimized environment not only to minimize the

energy landscape of the rate limiting step, but also to provide channels for reac-

tant binding and product release to and from the active site while protecting the

organometallic center from degradation.6,7

Our group and others have demonstrated increased catalytic lifetime and

overall turnover number of well-characterized H2 production catalysts, both in wa-

ter and in mild conditions. Recent work with nickel cyclam complexes has shown

that catalytic CO2 reduction can be enhanced by incorporation into the protein ma-

trix, and that product selectivity can be controlled by the protein environment.8,9
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Additionally, our group has shown that exchange of the metal ion to cobalt in

heme-binding proteins or peptides results in an increase of H2 production compared

to the porphyrin in solution. Moreover, altering the protein sequence results in fine

modulation of the total activity, further supporting the crucial role of the protein

environment throughout the catalytic cycle.10–12

The use of metalloporphyrins as molecular CO2 reduction electrocatalysts

has been extensively explored in the recent years.13–17 Remarkably, modifications

of reaction conditions or the porphyrin framework, particularly those that are able

to directly participate in the reaction (such as by stabilizing catalytic intermedi-

ates through hydrogen bonding) have shown increased activities of these catalysts

toward CO2 reduction.18–23 Further, the higher turnover numbers and the product

selectivity upon incorporation of cobalt porphyrins into supramolecular structures

such as metal-organic frameworks24–26 and polymers27 suggest that catalysis by

these metal complexes could be enhanced by binding to a protein environment.

This chapter describes the reengineering of cytochrome b562 (cyt b562) into

water-soluble catalysts capable of reducing CO2 in aqueous conditions. Cyt b562 is

a small, water-soluble, four-helix bundle that natively binds a heme cofactor via

bis-axial ligation from the side chains of residues His102 and Met7 (Figure 3.1). In

previous work, our group probed the effect of mutating the coordinating methionine

to alanine, aspartate, or glutamate in hydrogen production, showing an increase in

hydrogen production of the mutant M7A over wild type (WT).12 This project ex-

pands this investigation by analyzing the effect of axial mutations on the efficiency

of CO2 reduction in water, which yields formate, carbon monoxide, and hydrogen

upon light irradiation conditions by making use of a photosensitizer and a sacrifi-

cial electron donor. The generated mutants were designed to either remove axial

ligation sites (M7A and H102A) or alter axial ligation (M7H) in order to probe the
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(a) (b)

Figure 3.1. Structure of cyt b562 showing the coordinating axial ligands. PDB
entry: 1QPU. Colors represent carbon (porphyrin: black, axial residues: orange),
oxygen (red), nitrogen (blue), sulfur (yellow). The metal ion is shown as a sphere
(brown).

electronic and steric effects that these ligands (or lack thereof) may have during

catalysis.

3.2 Materials and Methods

All chemicals were purchased from Sigma-Aldrich and used without further purifi-

cation unless otherwise noted. Calibration gases were obtained from Matheson in

14 L lecture bottles. All aqueous solutions were prepared using deionized water with

a resistivity greater or equal to 18 MΩ. Cobalt(III) protoporphyrin IX chloride was

purchased from Sigma-Aldrich and used without further purification.

3.2.1 Protein Expression

Mutants were generated using Gibson assembly and sequenced directly in the

pET30c(+) vector utilizing the T7 promoter sequence. The verified mutants were

transformed into a BL21(DE3) E. coli cell line and grown in 1 L of 2xTY media

at 37 ◦C with shaking. Cells were induced with 1 mM β-d-thiogalactopyranoside

(IPTG) at an OD600 of 0.6 and cells were harvested after 4 h of expression. The

cell pellets were suspended in 20 mM Tris·HCl, 1 mM dithiotreitol (DTT), 0.5 mM
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EDTA and lysed by multiple cycles of ultrasonication. The clarified lysate was

brought to 75 % saturation with solid ammonium sulfate, and precipitated proteins

were removed by centrifugation. The supernatant, containing the cytochrome mu-

tants, was dialyzed against two changes of 10 mM Tris pH 7.5 and one of water at

4 ◦C.

Following dialysis, the protein solution was lyophilized and redissolved in

10 mM NaCl for further purification via RP-HPLC using a preparatory scale C18

column with a linear gradient from 100 % solvent A (0.1 % v/v TFA in water) to

100 % solvent B (4.9 % v/v water, 0.1 % v/v TFA in acetonitrile). The fractions

containing the desired protein were then lyophilized to yield the pure apo-protein.

The protein identities were confirmed via MALDI-TOF-MS and their purity deter-

mined by C18 analytical analysis.

Purified proteins were reconstituted with cobalt protoporphyrin IX

(CoPPIX) similarly to previously reported procedures. Samples in 100 mM Tris

pH 8.5 were subjected to 50 M excess of DTT for 30 min, followed by a 50 M excess

of CoPPIX for 1 h. Excess porphyrin was removed by subjecting protein to a PD10

desalting column equilibrated in 50 mM Tris pH 7.5. Sample concentrations were

determined via UV-Vis utilizing extinction coefficients determined by Inductively

Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), normalizing spectrum

to the measured cobalt concentration. The protein was used immediately or frozen

at −80 ◦C for future characterization.

3.2.2 Binding Assays

The dissociation constants (Kd) for each of the mutants was estimated by titrating

a solution of CoPPIX in 1 M potassium phosphate (KPi) pH 6.0 with a solution of

the appropriate protein containing the same total concentration of CoPPIX and
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monitoring the change in absorbance of the Soret band of the free or bound por-

phyrin (417 nm or ca. 425 nm, respectively).

Since both Soret peaks overlap with each other, we can write the absorbance

at a particular wavelength λ as:

Aλ = ελCo[Co] + ελCoP[CoP] (3.1)

Further, when no protein has been added, equation 3.1 becomes:

Aλ0 = ελCo[Co]T (3.2)

where [Co]T corresponds to the total CoPPIX concentration. Subtracting equa-

tion 3.1 from equation 3.2 and simplifying we obtain:

∆Aλ = Aλ0 − Aλ = ελCo ([Co]T − [Co])− ελCoP[CoP] (3.3)

For the dissociation equilibrium of CoP shown in reaction R-3.1, we can

write the mass balance equation for CoPPIX as equation 3.4.

CoP Co + P (R-3.1)

[Co]T = [Co] + [CoP] (3.4)

By using equation 3.4, equation 3.3 becomes:

∆Aλ = ∆ελ[CoP] (3.5)
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where ∆ελ = ελCo − ελCoP. The Kd expression for the dissociation of CoP is given by

equation 3.6, and the mass balance equation for protein is shown in equation 3.7.

Kd = [Co][P]
[CoP] (3.6)

[P]T = [P] + [CoP] (3.7)

Making use of mass balance equations 3.4 and 3.7, substituting equation 3.5 appro-

priately, and solving for [P]T we can modify equation 3.6 to obtain:

[P]T = Kd ·∆Aλ
∆ελ[Co]T −∆Aλ + ∆Aλ

∆ελ (3.8)

which can be used to fit our data, albeit in the less conventional way of having ∆Aλ

as the independent variable, rather than [P]T.

3.2.3 Circular Dichroism Spectroscopy (CD)

CD spectra were recorded on a JASCO J-815 spectropolarimeter in the range of

190–260 nm. Data points were recorded every 1 nm and averaged over 3 scans. The

concentrations of apo and holo-proteins were kept at 10 µM in 10 mM Tris pH 7.5.

Thermal denaturation was performed by heating samples from 4 to 90 ◦C, monitor-

ing loss of signal at 222 nm.

3.2.4 Photocatalysis Experiments

The stock buffer was prepared by making a solution containing 200 mM KPi and

125 mM ascorbic acid (AscOH) and adjusting it to pH 6.0. The solution was then

bubbled with CO2 or Ar, and adjusted back to pH 6.0 with KOH if necessary. Fi-

nally, solid [Ru(bpy)3]Cl2·6H2O was added to make a 1.25 mM solution, and the
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buffer aliquoted out, the headspace evacuated with the appropriate gas, and the

aliquots flash frozen and stored at −80 ◦C. Before each assay, CoPPIX was dis-

solved in 100 mM KOH to make a saturated solution, and the concentration is de-

termined by UV-Vis using the Soret peak at 417 nm with an extinction coefficient

of ε = 143 540 M−1 cm−1 (as determined by ICP-OES measurements). The frozen

buffer is thawed under an atmosphere of the corresponding gas, and an appropriate

amount of CoPPIX and/or protein (in 200 mM KPi) is added to obtain a work-

ing solution containing 20 µM CoPPIX, 30 µM protein, 100 mM AscOH, and 1 mM

[Ru(bpy)3]2+ in 200 mM KPi.

For each trial, 400 µL of the prepared sample was added to a 10 mm× 1 mm

gas tight cuvette of known headspace volume, and the headspace sparged with the

appropriate gas (Ar or CO2) for 20 min. The cuvettes were then irradiated with a

white light LED source for 8 h. The gaseous products, H2 and CO, were analyzed

at different time intervals using gas chromatography, while formate was quantified

at the end of the experiment using 1H NMR as detailed in the next section. All

experiments were done in triplicate and the variation is reported as the standard

deviation of the sample.

3.2.5 Product Quantification

At the appropriate time intervals, the headspace was sampled with a gas-tight sy-

ringe for H2 and CO quantification by first injecting the same volume of Ar or CO2

to be withdrawn, mixing thoroughly, and removing the corresponding sample.

The samples were analyzed in an SRI Instruments gas chromatograph

equipped with a 3 ′ × 1/8 ′′ molecular sieve 5Å packed column with a Thermal

Conductivity Detector (TCD) and a Flame Ionization Detector (FID) with a

methanizer connected in series. The analytes are eluted using Ar as a carrier gas
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with a temperature program starting at 60 ◦C for 1 min, ramping at 20 ◦C min−1

until 80 ◦C, holding for 2 min, ramping at 50 ◦C min−1 to 250 ◦C, and holding until

the CO2 exits the instrument, with a retention time (tR) ca. 12 min. A peak cor-

responding to H2 was seen on the TCD channel at tR = 0.400 min, while the peak

corresponding to CO appeared at tR = 3.42 min on the FID channel. By comparing

the peak areas to a calibration curve, we are able to quantify the number of moles

of each gas in the injected sample.

After irradiation was stopped, the solution was frozen at −80 ◦C for future

analysis. Formate was quantified by diluting the sample to make a solution con-

taining 10 % v/v D2O in water and 100 µM sodium 4,4-dimethyl-1-silapentane-1-

sulfonate (DSS) as an internal standard. The samples were then analyzed by 1H

NMR using a water suppression method with 64 scans and a 30 s relaxation delay.

The formate concentration was determined by comparing the integration area of the

singlet at 8.45 ppm to the DSS peak at 0.0 ppm.

3.3 Results and Discussion

3.3.1 Protein Expression and Characterization

All apo proteins were obtained as described in section 3.2 with the analytical HPLC

traces showing >95 % purity of the protein. The CD characterization of WT and

M7A has been previously reported by our group.12 The apo M7H and H102A mu-

tants were also characterized by CD where they showed the typical signals of α-

helical proteins, with local minima at 208 and 222 nm (Figures B.5 and B.6). Fur-

ther, the signal intensity increases upon addition of CoPPIX indicating an increase

in helical content upon binding of the cofactor. This gain in stability was corrobo-

rated by following the loss of intensity of the 222 nm peak with increasing temper-
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ature to obtain the thermal denaturation curves (Figures B.5 and B.6). Table 3.1

shows that the Tm for all of the mutants increases with addition of CoPPIX, fur-

ther indicating an increase in stability of the fold upon reconstitution with their

cofactor.12

Table 3.1. CD characterization data of apo and holo cyt b562 mutants.

Mutant Tm (apo) / ◦C Tm (holo) / ◦C ∆Tm / ◦C

WTa 58 85 +21

M7Aa 52 64 +12

M7H 47 62 +15

H102A 56 61 +5
a From reference 12.

Binding of the cofactor was also analyzed through UV-Vis titration of apo

protein to a solution of CoPPIX. In all cases the Soret peak showed a bathochromic

shift, with a λmax = 230 nm for WT and 425 nm for the mutants (Figures B.1

to B.4). The ∆ε (at 430 nm for WT to minimize signal overlap, 417 nm for the

mutants) and Kd values for each titration were obtained by fitting the data to equa-

tion 3.8 (Figures B.1 to B.4) and are summarized in Table 3.2. The ∆ε values cor-

responded to the those calculated from the last points on each of the titrations

(2–5 eq) within 5 % error. All the obtained Kd values were on the low nanomolar

range, indicating that all mutants bind CoPPIX with similar affinity, thus sug-

gesting that binding is driven mainly by the hydrophobic sequestration of the por-

phyrin rather than by binding of the axial ligands.

38



Table 3.2. Binding data of CoPPIX-cyt b562 mutants as monitored by UV-Vis.

Mutant
∆ε417/

Kd / nM Adj. R2

mM−1 cm−1

WT 78.47 a 217± 30 0.9743

M7A 98.21 170± 7 0.9814

M7H 101.64 126± 42 0.8825

H102A 116.30 28± 17 0.8678
a At 430 nm.

3.3.2 Photocatalytic Activity

The cyt b562 mutants were assayed to investigate their ability to reduce CO2 under

photoinduced conditions by using [Ru(bpy)3]2+ as photosensitizer and ascorbic acid

as sacrificial electron donor in water. Upon irradiation [Ru(bpy)3]2+ achieves an

excited state that can be reduced by ascorbic acid into [Ru(bpy)3]+, which can then

transfer electrons to the catalyst for the reduction of substrate (Figure 3.2, steps

1–3).28

Under the studied experimental conditions, the catalysts were capable of

reducing protons into H2 both in the presence and absence of CO2 as substrate.

Further, carbon monoxide and formate were also observed as products when CO2

was present. Controls lacking CoPPIX showed little H2 was produced and no CO

or HCO –
2 were detected, indicating that these species were indeed produced by

the cobalt catalyst. The presence of each of these products can be explained on

the basis of previous mechanistic studies of cobalt porphyrins used as catalysts

for these reactions (Figure 3.2). Briefly, the metal site is reduced to Co(I) by the

photosensitizer as described above (step 3), which is capable of binding H+ to form
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Figure 3.2. Catalytic cycles for the generation of H2, CO, and HCO –
2 by cobalt

porphyrins through photoirradiation in the presence of [Ru(bpy)3]2+ and ascorbic
acid as sacrificial electron donor. Based on references 28 and 33.

a metal hydride complex (step 4), or CO2 to form the corresponding adduct (step

8). The metal hydride complex can then be protonated to form H2 gas (step 5),

or it can undergo an insertion reaction with CO2 to form formate (steps 6 and 7);

while the CO2 adduct can proceed through a series of proton transfer events that

culminate in the loss of water and formation of CO (steps 9 and 10).28–32

Not surprisingly, experiments that lacked the protein scaffold in solution

soon showed a precipitate in the cuvettes. This is consistent with the fact that

CoPPIX forms insoluble aggregates in water. The trials that included any of the

cyt b562 mutants did not show any discernable precipitate throughout the length of

the experiment.
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The activity of the catalyst was followed over time and is reported as the

turnover number (TON) of each catalyst, defined as the total number of moles of

product produced during the experiment divided by the initial number of moles

of catalyst (8 nmol). The catalysts were initially evaluated under 1 atm CO2 in a

buffer saturated with this gas at pH 6.0 (Figures 3.3 and 3.4). Figure 3.5 summa-

rizes the final TON for the catalysts in the assayed conditions (8 nmol). Interest-

ingly, all mutants showed similar activity for CO production (TON ∼35), albeit

still higher than that observed for the porphyrin alone (TON 19± 1), indicating

that activity is increased by the interaction of the protein with the porphyrin. Sur-

prisingly, formate concentrations where similar in the experiments with free por-

phyrin and for all of the mutants with the exception of M7A, which showed slightly

lower formate concentrations (TON ∼35 vs. 20± 3). Nonetheless, the mutants did

show variation in their H2 production activity at pH 6.0 (Figure 3.3): M7A showed

a (20± 5) % increase in H2 compared to the porphyrin alone, followed by M7H

((45± 7) %), then WT ((72± 7) %), and finally H102A with the highest increase in

activity ((113± 5) %).

To determine if there was any net effect of the presence of CO2 on the re-

duction of protons, the catalysts’ activity was assayed under the same conditions

without CO2 by sparging the solution and headspace with Ar instead (Figure B.9).

As expected, no CO or HCO –
2 were detected, which is consistent with the fact that

these compounds are indeed the product of CO2 reduction in the previous experi-

ments. As shown in Figure 3.5, the TON values for H2 for CoPPIX and the cyt b562

mutants remained the same, indicating that overall H2 production is not affected by

the presence of CO2.

These results indicate that the activity trends observed for H2 production

are independent of the presence of CO2. This suggests that axial ligation at posi-
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Figure 3.3. Produced H2 over time from the photoinduced reduction of protons
by [Ru(bpy)3]2+, CoPPIX, and cobalt cyt b562 mutants at pH 6.0 under 1 atm CO2.
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tion 7 results in the highest activity, thus explaining why M7A, which lacks coor-

dination at this position, exhibits the lowest increase in H2 production among the

studied Co-cyt b562 mutants. Further, the data supports the fact that the methio-

nine coordination at this position results in a higher overall activity, as mutants

bearing this residue (WT, H102A) resulted in the highest TON values. A possible

explanation of these observations is that as the metal center becomes more electron

rich, a softer ligand—such as methionine’s thioether side chain—is capable of better

CoPPIX WT M7A M7H H102A
0

20

40

60

80

100

120

140

160

180

200

220

240

CoPPIX WT M7A M7H H102A
0

20

40

60

80

100

120

140

160

180

200

220

240

Tu
rn

ov
er

N
um

be
r

Figure 3.5. Turnover number values obtained for CoPPIX and cobalt cyt b562 mu-
tants under irradiation with light for 8 h in 100 mM AscOH, 1 mM [Ru(bpy)3]2+,
and 200 mM KPi. The bars represent the TON of each catalyst at pH 6.0 in ab-
sence (H2: yellow) and presence of CO2 (H2: red, CO: dark blue, HCO –

2 : dark
green); and in the presence of CO2 at pH 7.0 (H2: orange, CO: light blue, HCO –

2 :
light green). The error bars represent the standard deviation of the sample.
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stabilizing the reduced intermediates that are formed throughout the catalytic cy-

cle. Finally, the difference between the activities of H102A and WT can be due to

the opening of a coordination site on one side of the porphyrin, thus increasing the

chance of substrate binding to the active site.

In order to investigate if CO2 reduction was pH dependent, the catalysts

were evaluated also at pH 7.0 (Figures B.10 and B.11). The TON for CO did not

suffer any considerable changes between the mutants, consistent with the indepen-

dence of CO2 binding from proton concentration. Unsurprisingly the H2 yield for

WT, M7A, and H102A decreased by 20 %, which is to be expected when proton

concentration is decreased 10-fold. However, no significant change of H2 TON was

observed for free porphyrin or the M7H mutants, suggesting that under these con-

ditions M7H behaves similarly to CoPPIX. Finally, although formate production is

in principle dependent on proton reduction, no significant changes in turnover num-

ber were observed for this compound, which might indicate that other factors may

come into play when it comes to CO2 reduction by these catalysts in an aqueous

environment.

3.4 Conclusions

In summary, this work aimed at the design of cyt b562 mutants that incorporate

CoPPIX as cofactor and were capable of reducing protons and CO2 into H2, CO,

and HCO –
2 upon light irradiation in the presence of [Ru(bpy)3]2+ and ascorbic acid

as photosensitizer and sacrificial electron donor, respectively. The proteins were

designed to investigate the effect of axial mutations on the porphyrin, including the

native ligation (WT), removal of a ligand site (M7A, H102A), or change of ligation

site (M7H). All proteins bound the porphyrin with similar affinity and exhibited
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an increase in folding stability upon binding and remained solubilized in water

throughout the experiments.

The findings indicate that CO2 reduction into CO is slightly increased when

incorporated into the protein, whereas HCO –
2 production did not see any changes

between free and bound catalyst. On the other hand, proton reduction showed a

difference in activities between the mutants, indicating that both electronic and

steric effects play an important role throughout the catalytic cycle that leads to H2

production. Additionally, three of the protein scaffolds (WT, M7A, H102A) showed

a dependence of proton reduction activity at higher pH, but M7H and the free por-

phyrin did not show any noticeable change in activity at the examined pH values.

Moreover, no pH dependence of CO2 reduction activity was observed between the

catalysts, indicating that other factors may come into play in the mechanism of

CO2 reduction by these catalysts.

This work shows that it is possible to regulate the hydrogen production ac-

tivity of CoPPIX by incorporating it into cyt b562 and mutating residues involved

in the first coordination sphere of the porphyrin. Further work involving the study

of other relevant mutations at this site or the second coordination sphere could

provide insight into the mechanism(s) of these catalysts in photoinduced reduc-

tion of H+ and CO2, which in turn could have positive implications in the field of

renewable energy and green chemistry.
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CHAPTER 4

A NOVEL DITHIOL AMINO ACID FOR THE INCORPORATION OF

[FeFe]-HYDROGENASE ACTIVE SITE MIMICS INTO PROTEIN SCAFFOLDS

4.1 Introduction

The use of hydrogen as an alternative fuel has caught the interest of the scientific

community for several reasons, including its abundance, high heat of combustion

and its suitability as a green fuel, since the only product of its reaction with oxygen

is water (Reaction R-1.1). However, current processes for the production of this gas

rely on the use of precious metals or high energy processes.1,2

In nature, hydrogen metabolism is regulated by hydrogenases, enzymes that

are capable of reversibly reducing protons to hydrogen (Reaction R-1.2) with high

efficiency under mild conditions while utilizing earth-abundant metals. Of partic-

ular interest are the [FeFe]-hydrogenases, which are biased toward the production

of hydrogen gas. The active site in these hydrogenases, the H-cluster, is comprised

of a [Fe4S4] cluster tethered by a cysteine residue to the proximal iron atom of a

peculiar diiron complex. The metal atoms in the latter are coordinated by carbonyl

and biologically-unique cyanide ligands, while also being linked together by an aza-

dithiolate bridge (Figure 4.1).3–6

Recently, a wide variety of small molecule mimics of the H-cluster have been

prepared in order to elucidate the enzyme’s mechanism, with the hope of reproduc-

ing its activity without the need of the complex biological machinery needed for its

expression. These studies have shown that the nature of the ligands has an impor-

tant effect in the proton reduction mechanism, as they regulate the oxidation state

of the metals and the geometry of the catalyst, thus determining the binding mode

of the hydride and the order of protonation and electron transfer events.7–12
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Figure 4.1. (a) Modeled H-cluster of D. desulfuricans [FeFe]-hydrogenase, PDB
code: 1HFE, and (b) its corresponding line structure representation.

Unfortunately, these organometallic compounds are typically not water solu-

ble, lack the high turnover numbers of the native enzyme, are oxygen sensitive, and

often show irreversible events upon electrochemical reduction, thus making them

unsuitable for light driven catalysis where electrons must be transferred one-by-

one.7–9,13–15 The reason behind these shortcomings can be attributed to the lack of

second-sphere and long-range interactions that the natural enzymes provide. These

interactions help stabilize important intermediates during the course of the reaction

and alter their redox potential. The protein environment also provides a proton

channel that controls the movement of substrates and product to and from the

redox center.16,17 With this in mind, some research groups have ventured into ex-

ploring the utilization of a variety scaffolds to mimic the role of the protein during

catalysis and study proton reduction by this diiron complex.18

Different strategies have been utilized to incorporate mimics of the active

site of [FeFe]-hydrogenases into supramolecular structures; however, most of them

are not easily amenable to modification and offer a narrow variety of functional

groups, making it difficult to reproduce the chemically rich environment that pro-

teins offer.19–23
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Some examples can be found in the literature that make use of proteins and

peptide scaffolds, the main strategy being the use of the dithiol bridge to anchor

the diiron complex. For instance, the thiol groups of cysteine residues have been

used as anchoring points to incorporate the diiron mimic into proteins and pep-

tides.24–27

Other synthetic approaches have involved specifically targeting a particular

residue in a peptide or protein by using orthogonal groups. In the case of peptides

made through SPPS, for instance, it is possible to use an orthogonal protecting

group that can be selectively deprotected on-resin to incorporate a dithiol function-

ality, which after cleavage of the peptide can be used to anchor a diiron complex.28

For proteins, the use of the bioorthogonal maleimide-thiol reaction has been utilized

to incorporate the diiron catalyst in a similar fashion into the cavity of a protein

bearing a single cysteine residue.29

Perhaps more interestingly, our laboratory has explored the alternative of

utilizing non-natural amino acids that bear the dithiol bridge as a side chain. In

previous work, our group reported the preparation of an amino acid with a 1,3-

propanedithiol side chain that was suitable for SPPS. This amino acid was then

incorporated into a helical peptide where a diiron hexacarbonyl mimic of [FeFe]-

hydrogenase was tethered through the dithiol groups resulting in aqueous proton re-

duction catalysis in a photosensitized experiment.30 Additionally, phosphine amino

acids have also been utilized to tether the diiron complex asymmetrically, more in

line with the native cofactor.31

However, no work has been done to explore the incorporation of [FeFe]-

hydrogenase mimics that could be more suitable for photocatalysis. Studies done

on (μ-1,2-benzenedithiolato-1κ2S :2κ2S)bis(tricarbonyliron)(Fe—Fe) have shown

that upon irradiation in presence of a photosensitizer and a sacrificial electron
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donor, complexes bearing a 1,2-benzenedithiolate bridge have a higher activity

as compared to those containing an azadithiolate bridge found in the native cofac-

tor.13,32–34 DFT calculations suggest this may be due to a different mechanism in

which the bridging ligand plays a crucial role in stabilizing the reduced intermedi-

ates throughout the reaction.32

In order to evaluate this type of [FeFe]-hydrogenase mimics in aqueous con-

ditions, and with particular interest in studying how protein interactions may come

into play with the proposed mechanism, this work presents the enantioselective syn-

thesis a novel amino acid bearing 1,2-benzenedithiol as a side-chain and suitable

protecting groups for its use in Fmoc SPPS (Figure 4.2).

H3

+©
N

SR
SR

C
–©

O2

Figure 4.2. Structure of target compound 4-1.

4.2 Retrosynthetic Analysis

Several synthetic routes were assayed to prepare the target molecule involving the

use of alternative ways of controlling the stereochemistry of the final reaction. The

results from these attempts were not successful and are not discussed in this chap-

ter, but a brief overview is presented in Appendix D. The most promising strategy

that was followed makes use of a nickel-based chiral auxiliary, [(N -benzyl-l-prolyl-

κN )(2-{(E)-[(carboxylato-κO-methyl)imino-κN ](phenyl)methyl}phenyl)azanido-

κN ]nickel (NiCA, Figure 4.3), which can be alkylated with a modified Mitsunobu

reaction on the corresponding benzyl alcohol.35,36 The preparation of the benzyl

alcohol could be carried from the reduction of the benzaldehyde derivative, which
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Figure 4.3. (a) Structure of NiCA and (b) rationale behind its stereospecificity.

could also be obtained from the reduction of a nitrile group. The nitrile group

activates the ring toward nucleophilic aromatic substitution, thus 3,4-dichloroben-

zonitrile (4-2) was chosen as a starting material for this synthesis (Scheme 4.1).
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Scheme 4.1. Retrosynthetic analysis for the synthesis of compound 4-1.

4.3 Results and Discussion

The synthetic route followed for the synthesis of the target compound is shown on

Scheme 4.2. Two different sulfur nucleophiles were evaluated to introduce the thiol
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Scheme 4.2. Synthetic route for compound 4-1. (a) 4-3a or 4-3b, NaH, DMF,
0 ◦C to r. t.; (b) DIBAL, toluene, 0 ◦C; (c) NaBH4, EtOH; (d) NiCA, CMBP,
toluene, 110 ◦C; (e) MeOH, HCl, reflux.

groups on the basis of their nucleophilicity and lability as protecting groups. The

thiols thus chosen were (4-methoxyphenyl)methanethiol (4-3a), and 2-(trimethylsi-

lyl)ethanethiol (4-3b).

The nucleophilic substitution of 4-2 to obtain compounds 4-4a,b was car-

ried out by using the sodium thiolate salt of the thiols, formed in situ by their

irreversible deprotonation using NaH in DMF. Low to moderate yields were ob-

tained when 4-3a was used as compared to 4-3b, likely due to the bulkiness of the

former. Purification of 4-4a was very demanding, indicating that a number of side

reactions occurred when (4-methoxyphenyl)methyl (PMB) was used as protecting

group, which could involve the monosubstituted products, demethylation of the

methoxy group by the thiolate nucleophile, or other side products that can result

from the latter. In contrast, there was little difficulty on when the 2-(trimethylsi-
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lyl)ethyl (TMSE) group was used, in line with the lower steric hindrance and more

inert nature of this group.

Selective reduction of the nitrile with DIBAL in THF yielded the desired

aldehydes 4-5a,b in moderate to high yields with no detectable side products. Fur-

ther reduction to alcohols 4-6a,b with NaBH4 in an ethanol:water mixture also

went smoothly for all compounds in good yields.

The NiCA was prepared as reported in the literature35,37,38 and the coupling

to the obtained alcohols using CMBP in refluxing toluene was carried out without

major complications and the NiCA complexes 4-7a,b were obtained in moderate

yields. The structure of the complexes was determined by 2D NMR experiments

(PMB: Figures C.15 to C.18; TMSE: Figures C.21 to C.24).

The free amino acid with the protected thiols was recovered after acidic

hydrolysis of the NiCA complex in methanol. Surprisingly, the amino acid was

recovered in the organic phase, likely due to the high hydrophobicity of the side

chains, albeit along with the other part of the ligand as a result from the imine

hydrolysis. Due to the ionic nature of the amino acid, column chromatography

using silica gel proved complicated, as it is difficult to elute the amino acid once

it is adsorbed onto the stationary phase. An alternative is to use ion exchange

chromatography with an anion exchange resin, as at high pH values the amino

groups in both, the amino acid and the ligand, will be the deprotonated (neutral),

and the carboxylate in the amino acid will have a negative charge, thus making it

possible to elute the ligand first, and then switch to an acidic solvent to elute the

desired amino acid.

The removal of the protecting groups on 4-1 was not successful for either

protecting group. The PMB groups have proven stable on acidic cleavage using

TFA, both in DCM and neat, and to the use of mercury salts (Hg(OAc)2) in this
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same acid.39,40 Other unsuccessful attempts include the use of AgBF4 in TFA41 and

TMSCl with Ph2SO in the same solvent.42 Alternative methods that can be still

assayed include anhydrous HF or reduction of the protecting group with sodium

metal in ammonia.43

Similarly, the TMSE deprotection with tetrabutylammonium fluoride

(TBAF) in THF44 has not been successful in the deprotection of the thiol groups,

despite the fact that 4-4b did show signs of deprotection in the same conditions.

A possible explanation of this fact is that the thiolate anion that acts as leaving

group is better stabilized by the cyano group, suggesting that a stronger driving

force may be necessary for a successful reaction on the amino acid. This could be

accomplished by using a different source of fluoride ions in a less polar solvent, or

by making use of a different deprotection mechanism that simultaneously protects

the thiols from other side reactions, such as dimethyl(methylsulfanyl)sulfonium

tetrafluoroborate ((MeSSMe2)BF4).45

4.4 Conclusions

This project aimed at developing a novel artificial amino acid bearing a 1,2-ben-

zenedithiol side chain that could serve as anchoring point for embedding [FeFe]-

hydrogenase mimics into peptide and protein scaffolds. Two versions of the desired

amino acid were prepared with different protecting groups on the thiols, namely

(4-methoxyphenyl)methyl and 2-(trimethylsilyl)ethyl. Product stereochemistry was

controlled by using a nickel-based chiral auxiliary in a Mitsunobu-like reaction.

The use of this amino acid will allow future work into investigating the effect

of [FeFe]-hydrogenase organometallic mimics that may be more suitable for the

photoinduced reduction of protons, which could have important implications as

we move toward a green fuel-based society. Additionally, this amino acid can be
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used for the incorporation of other organometallic complexes, thus allowing a high

throughput exploration of the effect of the protein environment on catalysts that

are not close in structure or activity to those found in nature.46,47 Further, the

chelating nature of this particular ligand could be taken advantage of on the fields

of metal-mediated self-assembly and the design of novel protein-based materials.

4.5 Experimental Details

All reagents were purchased from Acros Organics, Alfa Aesar, Oakwood Chemicals,

Sigma Aldrich, or TCI America and used as received. All reactions were carried

out under an atmosphere of argon gas using traditional Schlenk techniques. Dry

DMF and toluene were purchased from Sigma Aldrich in SureSeal bottles and used

as received. Thin Layer Chromatography (TLC) was performed on silica plates

with a fluorescent marker (Analtech) and visualized under UV light, or by exposing

to iodine vapors, a KMnO4 stain solution, a 2,4-dinitrophenylhydrazine staining

solution, an Ellman’s reagent solution (for thiols), or a ninhydrin solution. Column

chromatography was performed using 230–400 mesh silica gel (SiliaCycle). The

compounds were characterized by NMR in a Varian 400 MHz or a Bruker 500 MHz

spectrometer.

4.5.1 Synthesis of substituted benzonitriles (4-4)

3,4-Bis{[(4-methoxyphenyl)methyl]sulfanyl}benzaldehyde (4-4a). To a sus-

pension of NaH (1.05 g, 43.6 mmol) in DMF (15 mL) was added 4-3a (6.1 mL) in

DMF (15 mL) dropwise while keeping the reaction in a water-ice bath. The suspen-

sion became clear and was stirred for 30 min at the same temperature. A solution

of 4-2 (3.0 g) in DMF (10 mL) was then added dropwise through an addition fun-

nel. The reaction mixture quickly turned to a yellow color. The water-ice bath
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was removed and the mixture was stirred overnight at room temperature. The

solvent was removed under reduced pressure and the residue diluted with water

(15 mL). The suspension was extracted with CHCl3 (3× 25 mL), the organic layers

washed with water (3× 25 mL), dried over MgSO4, and the solvent removed under

reduced pressure. The pure product was purified by column chromatography using

a hexanes:ethoxyethane (Et2O) 3:2 as a mobile phase and obtained as a white solid

(2.95 g, 35 %). m. p. 90–92 ◦C. Rf (hexanes:Et2O 3:2) 0.1. 1H NMR (400 MHz,

CDCl3): δ 7.34 (d, 1H, J = 1.4 Hz), 7.30 (dd, 1H, J = 8.2, 1.2 Hz), 7.24 (d, 2

H,J = 8.5 Hz), 7.15 (m, 3H), 6.86 (m, 4H), 4.14 (s, 2H), 4.07 (s, 2H), 3.80 (s, 3H),

3.79 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.10, 159.02, 145.94, 137.78, 135.93,

132.93, 130.10, 130.03, 130.03, 129.91, 129.00, 128.19, 127.77, 127.04, 126.37, 125.27,

113.11, 113.97, 108.54, 55.23, 55.22, 37.71, 36.66.

3,4-Bis{[(2(trimethylsilyl)ethyl]sulfanyl}benzonitrile (4-4b). The

procedure was similar to the one used for 4-4a, using 1.79 mL (11.2 mmol) of 4-3b

as thiolate, 286 mg (11.9 mmol) of NaH, and 640 mg (3.72 mmol) of 4-2. The com-

pound was purified through column chromatography using hexanes:Et2O 92.5:7.5

as mobile phase, and obtained as a clear oil (937 mg, 68 %). Rf (hexanes:Et2O

92.5:7.5) 0.43. 1H NMR (400 MHz, CDCl3): δ 7.42 (d, 1H, J = 1.7 Hz), 7.38 (dd,

1H, J = 8.2, 1.7 Hz), 7.17 (d, 1H, J = 8.2 Hz), 2.96 (m, 4H), 0.96 (m, 4H), 0.07

(s, 9H), 0.06 (s, 9H). 13C NMR (100 MHz, CDCl3): δ 145.65, 137.19, 131.04, 129.17,

125.61, 118.97, 108.30, 29.54, 28.53, 16.46, 16.00, −1.66.

4.5.2 Synthesis of substituted benzaldehydes (4-5)

3,4-Bis{[(4-methoxyphenyl)methyl]sulfanyl}benzaldehyde (4-5a). To a

stirred solution of 4-4a (2.95 g, 7.2 mmol) in dry toluene (70 mL) at 0 ◦C, DIBAL

in toluene (25 % w/v in toluene, 9.9 mL, 14.5 mmol) was added dropwise through
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an addition funnel. After the addition was completed, the reaction was stirred

for 3 h at 0 ◦C, and then quenched by the dropwise addition of 3 mL of acetone,

followed by the dropwise addition of half-saturated aqueous solution of Rochelle’s

salt (sodium potassium tartrate, 25 mL). The reaction was let warm up to room

temperature and stirred overnight until the layers were separated. The aqueous

layer was extracted with ethyl acetate (EtOAc) (3× 50 mL), the organic fractions

combined, and washed with brine (50 mL), dried over MgSO4, and the solvent was

removed in vacuo. The product was purified through column chromatography using

hexanes:EtOAc 1:1 as mobile phase and obtained as a yellow oil (2.81 g, 95 %). Rf

(hexanes:EtOAc 1:1) 0.56. 1H NMR (400 MHz, CDCl3): δ 9.72 (s, 1H), 7.58 (d, 1H,

J = 1.6 Hz), 7.49 (dd, 1H, J = 8.1, 1.6 Hz), 7.20 (d, 3H, J = 8.5 Hz), 7.09 (d, 2H,

J = 8.6 Hz), 6.76 (d, 2H, J = 8.6 Hz), 6.70 (d, 2H, J = 8.6 Hz), 4.06 (s, 2H), 4.01

(s, 2H), 3.69 (s, 3H), 3.67 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 191.03, 159.25,

159.10, 148.15, 135.39, 133.54, 131.41, 130.34, 130.25, 128.46, 128.30, 127.43, 126.16,

114.28, 114.09, 55.44, 55.41, 38.05, 36.89.

3,4-Bis{[(2-(trimethylsilyl)ethyl]sulfanyl}benzaldehyde (4-5b). This

compound was synthesized using the same procedure as outlined for 4-5a using

937 mg (2.55 mmol) of 4-4b and 3.48 mL (5.10 mmol) of DIBAL (25 % w/v in

toluene) in 25 mL of toluene. The compound was obtained after purification via

column chromatography (hexanes:Et2O 9:1), yielding a yellow oil (819 mg, 87 %).

Rf (hexanes:Et2O) 0.46. 1H NMR (400 MHz, CDCl3): δ 9.90 (s, 1H), 7.72 (d, 1H,

J = 1.7 Hz), 7.61 (dd, 1H, J = 8.1, 1.7 Hz), 7.25 (d, 1H, J = 8.1 Hz), 3.03 (m, 4H),

0.98 (m, 4H), 0.08 (s, 9H), 0.05 (s, 9H). 13C NMR (100 MHz, CDCl3): δ 191.18,

147.92, 136.35, 133.24, 129.15, 127.83, 125.20, 29.49, 28.50, 16.70, 16.05, −1.62.
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4.5.3 Synthesis of substituted benzyl alcohols (4-6)

(3,4-Bis{[(4-methoxyphenyl)methyl]sulfanyl}phenyl)methanol (4-6a). To

a solution of 4-5a (2.82 g, 6.9 mmol) in THF:EtOH 2:3 (25 mL) cooled at 0 ◦C was

added NaBH4 (628 mg, 2.4 mmol) in portions. The reaction was stirred for 3 h at

room temperature and then poured onto HCl 2 N (25 mL) containing ice (30 g).

The suspension was then extracted with CHCl3 (3× 50 mL), the organic layers

dried with MgSO4, and the solvent removed with a rotary evaporator. The com-

pound is purified through column chromatography using hexanes:EtOAc 1:2 to

obtain an off-white solid (2.29 g, 81 %). Rf (hexanes:EtOAc 1:2) 0.50. 1H NMR

(400 MHz, (CD3)2CO): δ 7.37 (d, 1H, J = 1.3 Hz), 7.72 (m, 5H), 7.11 (dd, 1H,

J = 8.0, 1.3 Hz), 6.84 (m, 4H), 4.57 (d, 2H, J = 3.8 Hz), 4.22 (br, 1H), 4.13 (s, 2

H), 4.10 (s, 2H), 3.76 (s, 3H), 3.75 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 159.95,

159.89, 142.29, 138.52, 135.44, 131.14, 131.05, 130.91, 130.19, 129.93, 128.10, 125.41,

114.71, 114.66, 64.17, 55.58, 55.57, 38.05, 37.79.

(3,4-Bis{[2-(trimethylsilyl)ethyl]sulfanyl}phenyl)methanol (4-6b).

The same procedure as for the preparation of 4-6a was followed using 762 mg

(2.06 mmol) of 4-5b and 156 mg (4.12 mmol) of NaBH4 in 8.2 mL of ethanol. Af-

ter purification by column chromatography (hexanes:EtOAc 4:1) the compound was

obtained as a yellow oil (732 mg, 96 %). Rf (hexanes:EtOAc 4:1) 0.44. 1H NMR

(400 MHz, CDCl3): δ 7.25 (m, 2H), 7.12 (dd, 1H, J = 8.0, 1.9 Hz), 4.66 (s, 2H),

2.95 (m, 4H), 1.67 (br, 1H), 0.95 (m, 4H), 0.05 (s, 9H), 0.04 (s, 9H). 13C NMR

(100 MHz, CDCl3): δ 138.98, 138.28, 136.56, 129.22, 127.09, 124.71, 65.09, 29.45,

29.14, 16.70, 16.60, −1.58, −1.61.
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4.5.4 Synthesis of alkylated NiCA complexes (4-7)

[(N -Benzyl-l-prolyl-κκκN ){2-[{(E)-[(2S)-(3,4-bis{[(4-methoxyphenyl)-

methyl]sulfanyl}phenyl)-1-carboxylato-κκκO-ethyl]imino-κκκN}(phenyl)-

methyl]phenyl}azanido-κκκN ]nickel (4-7a). A solution of 4-6a (596 mg,

1.45 mmol), NiCA (1.44 g, 2.89 mmol), and CMBP (380 µL), 1.45 mmol) in dry

toluene (725 µL) was stirred and refluxed at 120 ◦C overnight. After the reaction

was complete, the solvent was evaporated under reduced pressure and the crude

mixture was purified through column chromatography using DCM 9:1 as mobile

phase. The compound was obtained as a crystalline orange-red powder (714 mg,

55 %). When 2 eq of 4-5a and CMBP where used in the presence of 1 eq of NiCA

the yield was 96 % based on NiCA. Rf (DCM:acetone 9:1) 0.3. 1H NMR (500 MHz,

CDCl3): δ 8.34 (dd, 1H, J = 8.8, 1.2 Hz), 8.01 (d, 2H, J = 6.8 Hz), 7.50 (m, 2H),

7.39 (m, 1H), 7.28 (m, 6H), 7.16 (m, 2H), 7.00 (d, 2H, J = 8.6 Hz), 6.90 (m, 2H),

6.81 (m, 2H), 6.68 (m, 4H), 6.43 (dd, 1H, J = 7.6, 1.7 Hz), 4.23 (m, 2H), 4.10 (d, 2

H, J = 3.2 Hz), 3.84 (m, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 3.43 (d, 1H, J = 12.6 Hz),

3.31 (dd, 1H, J = 9.8, 7.2 Hz), 3.05 (m, 1H), 2.92 (dd, 1H, J = 13.8, 4.2 Hz), 2.61

(dd, 1H, J = 13.8, 5.6 Hz); 2.33 (m, 3H), 1.93 (m, 1H), 1.61 (m, 1H) . 13C NMR

(125 MHz, CDCl3): δ 180.54, 178.40, 171.13, 158.85, 158.66, 143.04, 139.65, 134.68,

134.11, 133.63, 133.41, 132.52, 131.50, 130.62, 130.13, 130.10, 129.91, 129.79, 129.06,

128.85, 128.77, 128.10, 127.91, 127.88, 127.03, 125.92, 123.54, 120.51, 113.94, 113.86,

113.83, 71.13, 70.30, 63.40, 57.53, 55.28, 55.25, 38.84, 37.86, 36.25, 30.82, 23.13.

[(N -Benzyl-l-prolyl-κκκN ){2-[{(E)-[(2S)-(3,4-bis{[2-(trimethylsilyl)-

ethyl]sulfanyl}phenyl)-1-carboxylato-κκκO-ethyl]imino-κκκN}(phenyl)methyl]-

phenyl}azanido-κκκN ]nickel (4-7b). A mixture of 4-6b (732 mg, 1.96 mmol),

NiCA (1.97 g), 3.93 mmol), and CMBP (515 µL, 1.96 µL) in dry toluene (4 mL) was
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stirred and refluxed at 120 ◦C overnight. The solvent was then removed under re-

duced pressure and the crude mixture was purified via column chromatography us-

ing a gradient from DCM:acetone 99:1 to DCM:acetone 95:5 to obtain a red-orange

oil (826 mg, 49 %). Rf (DCM:acetone 99:1) 0.26. 1H NMR (500 MHz, CDCl3): δ

8.23 (d, 1H, J = 8.7 Hz), 8.03 (d, 2H, J = 7.0 Hz), 7.51 (m, 2H), 7.40 (m, 1H),

7.27 (m, 4H), 7.14 (m, 2H) 6.96 (m, 2H), 6.66 (m, 3H), 4.28 (m, 2H), 3.43 (d, 1H,

J = 12.7 Hz), 3.33 (dd, 1H, J = 10.0, 7.1 Hz), 3.15 (m, 2H), 2.95 (m, 2H), 2.79 (m,

3H), 2.53 (m, 1), 2.38 (m, 2H), 2.00 (m, 1H), 1.77 (m, 1H), 0.93 (m, 4H), 0.03 (s,

9H), −0.01 (s, 9H). 13C NMR (125 MHz, CDCl3): δ 180.53, 178.53, 171.16, 143.06,

138.85, 135.88, 134.19, 133.65, 133.43, 132.50, 131.61, 129.79, 129.09, 129.05, 128.88,

128.88, 128.51, 127.97, 127.72, 127.30, 126.16, 123.56, 120.65, 71.53, 70.48, 63.44,

57.65, 39.78, 30.99, 29.20, 28.58, 23.37, 16.59, 16.18, −1.62, −1.64.

4.5.5 General procedure for the synthesis of 4-1

(S)-2-Amino-3-(3,4-bis{[(4-methoxyphenyl)methyl]sulfanyl}phenyl)-

propanoic acid (4-1a). Compound 4-7a (52 mg, 58 µmol) was refluxed in

methanol (1.2 mL) in presence of HCl (60 µL, 120 µmol) for 2 h to obtain a blue-

green solution. The solvent was then removed under reduced pressure. The crude

product was redissolved in water (5 mL), and extracted with DCM (3× 5 mL). The

organic extracts were dried over MgSO4 and the solvent evaporated. The product

was not isolated.

(S)-2-Amino-3-(3,4-bis{[2-(trimethylsilyl)ethyl]sulfanyl}phenyl)-

propanoic acid (4-1b). A mixture of 4-7b (150 mg, 0.176 mmol) and HCl 2 M

(1.76 mL, 3.52 mmol) in methanol (3.5 mL) was refluxed for 2 h and the solvent then

removed under reduced pressure. The residue was treated with water (10 mL) and
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extracted with DCM (3× 10 mL). The organic fractions were combined and dried

over MgSO4, and the solvent removed in vacuo. The product was not isolated.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE OUTLOOK

Over millions of years of evolution, nature has selected a rich variety of metalloen-

zymes that make use of earth-abundant metals embedded in a protein architec-

ture in order to catalyze a wide array of redox reactions. As such, studying the

effect that the protein plays in regulating the activity of these metal-based catalytic

centers has become a growing field of study. In particular, the design of artificial

metalloenzymes with tailored activities has become the objective of many research

groups, as current methodologies to carry out the production of valuable goods—

such as renewable fuels—typically involve the use of expensive and energy intensive

methodologies.

This thesis explored the design of metalloproteins with aims at building a

multicomponent system that could integrate the several parts of a light-driven re-

dox catalytic reaction, such as the light absorbing component, an electron transport

chain, and the catalytic center. Further, it also discussed the use of two strategies

to incorporate catalytic centers into protein and peptide environments in order to

enhance their catalytic properties in the reduction of protons into hydrogen gas and

carbon dioxide into other reduced carbon species.

Since each part of the redox process has its own particular requirements, the

best approach would be to develop a strategy that can be used to bring each of the

elements together. The first part of this dissertation makes use of 2,2′-bipyridine as

a ligand to template the metal-driven trimerization of peptides. By covalently at-

taching this ligand to DSD, a robust protein scaffold that forms dimers in solution,

it was shown that addition of divalent metals results in the trimerization of these

dimers, effectively forming a hexameric supramolecular architecture. The results
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also indicate that the degree of oligomerization strongly depends on the sequence

of the peptide and the nature of the metal ion, as thermodynamics and kinetics of

the formation of the tris(bpy) complexes has an effect in the folding of the designed

peptides.

In particular, this strategy can be not only utilized for the assembly of the

desired components into a supramolecular machinery, but the use of the tris(bpy)

functionality opens up the door for the formation of photoactive complexes, which

may be utilized as the light absorbing centers of the system. Future experiments

with this strategy would then aim at incorporating the electron transfer and cat-

alytic modules into a single structure, as well as introducing a photoactive species

into the architecture, whether it be by integration of a third subunit, or by making

use of photoactive tris(bpy) moieties.

With a system capable of combining the necessary components into a sin-

gle entity, this dissertation then explores the use and development of strategies

that make use of proteins or peptides as scaffolds that incorporate earth-abundant

organometallic complexes in order to enhance their properties through the effect of

the surrounding environment.

The first of these strategies made use of a host-guest approach by incorpo-

rating the cobalt version of heme, cobalt protoporphyrin IX, into cytochrome b562,

a natural heme-binding protein. In this particular enzyme, the protein not only

serves as a support for the metal complex, but it also provides two coordinating

ligands that can alter the properties of the bare compound. Taking this into con-

sideration, the underlying hypothesis of this work was that modification of these

particular ligands would have an effect in the catalytic properties of this complex.

Further, in order to evaluate their potential use as catalysts for the target reactions

in an environmentally friendly fashion, the activity of these constructs was assayed
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in the presence of a photosensitizer/sacrificial electron donor; consequently, light

was the primary energy source to drive these catalytic reactions.

There are three key aspects that are worth highlighting. First, incorporation

of the porphyrin into any of the studied protein structures resulted in active cata-

lysts that remained water soluble throughout the time span of the experiments, as

opposed to the porphyrin which quickly precipitated in water. Additionally, all of

the designed metalloenzymes were active toward proton and CO2 reduction, pro-

ducing molecular hydrogen from the former, and carbon monoxide and formic acid

from the latter, and total turnover number was enhanced for the production of hy-

drogen and carbon monoxide upon reconstitution of the protein with the cobalt

porphyrin. Finally, the total activity for hydrogen production varied between the

analyzed mutants, while that of CO and HCO2H remained the same. This impor-

tant finding supports the hypothesis that modification of the axial ligands would

result in modification of the catalytic activity. Interestingly, these results also sug-

gest that although the observed effect of the studied mutations may operate on

certain reactions, it may not be as evident in others.

This last statement presents an opportunity for future work with this sys-

tem. Exploring the functional groups that can be incorporated into the protein

sequence—and now not only limited to natural amino acids but also a library of ar-

tificial ones—future endeavors may seek to characterize the effect of other residues

that may act as ligands in order to observe an effect on the catalytic reduction of

CO2 or to further improve on the activity of hydrogen generation. Moving forward,

modification of residues surrounding the active site might offer not only better cata-

lysts, but also insight into the mechanism of the reactions at play, thus resulting in

a better foundation for the rational design of this and other metalloenzymes.
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While this approach has proven useful for incorporating a catalyst that is

not found in nature to a guest protein, it is limited in the sense that this and re-

lated proteins are designed to bind the same type of cofactors due to the nature of

the binding pocket. In order to expand the range of organometallic complexes that

could be incorporated into the protein environment a different strategy has been

developed. This dissertation has also presented a suitable alternative to incorporate

another class of catalysts by describing the preparation of an unnatural amino acid

bearing a 1,2-benzenedithiol side chain. Two versions of the amino acids have been

prepared through an enantioselective route that yielded the amino acid in the same

configuration as natural amino acids. The two amino acids differ in the protecting

groups for the thiol groups, one with PMB and TMSE, respectively.

This novel amino acid resembles the dithiol bridge present in the unique

active site of [FeFe]-hydrogenases, thus it is suitable for the incorporation of mimics

of this catalytic center. Moreover, complexes bearing this non-innocent ligand have

been shown to have enhanced catalytic activity when used during the light driven

reduction of protons, likely due to the stabilization of the one-electron reduced

species that are inherently formed throughout the process.

Non-natural amino acids are a powerful tool when it comes to conferring

new functionality to proteins. This particular functional group is interesting in the

metalloenzyme field as it offers a new chelating ligand capable of binding metals,

particularly in lower redox states due to the soft nature of the thiolate groups, and

stabilizing radical intermediates. Moving forward, two general pathways for the

use of this amino acid can be outlined. First, the incorporation of the amino acid

into small peptides by automated solid phase synthesis should be straightforward

from the Fmoc protected compound. In this way organometallic complexes can be

reconstituted to form water soluble versions thereof. Perhaps of interest could be to
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take advantage of the orthogonality of the protecting groups that have been used,

as this would allow the introduction of different metal functionalities on different

positions of the same structure.

The second pathway would be the introduction of the amino acid into pro-

tein scaffolds by making use of amber codon suppression technology, which allows

the incorporation of non-natural amino acids into protein sequences by using a

tRNA/tRNA aminoacyl synthase pair that is orthogonal to the cell expression sys-

tem. The success of this approach would greatly broaden the scope not only of

protein environments that can be used to analyze their effects on organometallic

mimics, but also for the high-throughput screening for finding the best scaffolds for

a particular complex, or even directed evolution methods to select for them.

Ultimately, this thesis has contributed to the field of metalloprotein design

by offering strategies to incorporate catalysts into proteins, exploring the effect of

protein environment on catalysts, and providing a methodology for the assembly

of components of a multi-domain protein based redox system. Overall, the results

of this thesis are compatible with current research efforts as they expand on the

interaction between proteins and metals upon catalysis, while setting the starting

point for future projects in the area. The mechanistic insight gathered through

these projects will help with the development of new and better protein-based cata-

lysts and the chemical principles behind them could also further be applied to other

materials, thus playing an important role in the development of new technologies

that can satisfy our society’s growing energetic demand in a sustainable way.

76



REFERENCES

Adams, M. W. W. The structure and mechanism of iron-hydrogenases. Biochim-
ica et Biophysica Acta (BBA) - Bioenergetics 1990, 1020, 115–145 (cit. on
p. 51).

Akaji, K.; Tatsumi, T.; Yoshida, M.; Kimura, T.; Fujiwara, Y.; Kiso, Y. Synthesis
of cystine-peptide by a new disulphide bond-forming reaction using the si-
iyl chloride–sulphoxide system. Journal of the Chemical Society, Chemical
Communications 1991, 167–168 (cit. on p. 58).

Alcala-Torano, R.; Sommer, D. J.; Bahrami Dizicheh, Z.; Ghirlanda, G. Chapter
Seventeen—Design Strategies for Redox Active Metalloenzymes: Applica-
tions in Hydrogen Production. In Methods in Enzymology, Pecoraro, V. L.,
Ed.; Academic Press: 2016, pp 389–416 (cit. on pp. 30, 52).

Alcala-Torano, R.; Walther, M.; Sommer, D. J.; Park, C. K.; Ghirlanda, G. Ra-
tional design of a hexameric protein assembly stabilized by metal chelation.
Biopolymers 2018, 109, e23233 (cit. on p. 4).

Allen, M.; Dube, O.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.;
Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; Perez, R.; M.Wairiu;
Zickfeld, K. Framing and Context. In Global Warming of 1.5 ◦C. An
IPCC Special Report on the impacts of global warming of 1.5 ◦C above pre-
industrial levels and related global greenhouse gas emission pathways, in the
context of strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, Masson-Delmotte,
V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P., Pirani, A.,
Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.,
Chen, Y., Zhou, X., Gomis, M., Lonnoy, E., Maycock, T., Tignor, M.,
Waterfield, T., Eds.; In Press: 2018 (cit. on p. 1).

Anderson, M. B.; Ranasinghe, M. G.; Palmer, J. T.; Fuchs, P. L. Cytochalasin
support studies. 10. Nucleophilic and electrophilic mercaptanylations via
2-(trimethylsilyl)ethanethiol-derived reagents. The Journal of Organic Chem-
istry 1988, 53, 3125–3127 (cit. on p. 58).

Apfel, U.-P.; Rudolph, M.; Apfel, C.; Robl, C.; Langenegger, D.; Hoyer, D.; Jaun,
B.; Ebert, M.-O.; Alpermann, T.; Seebach, D.; Weigand, W. Reaction of
Fe3(CO)12 with octreotide—chemical, electrochemical and biological investi-
gations. Dalton Transactions 2010, 39, 3065–3071 (cit. on p. 53).

Aussignargues, C.; Pandelia, M.-E.; Sutter, M.; Plegaria, J. S.; Zarzycki, J.; Turmo,
A.; Huang, J.; Ducat, D. C.; Hegg, E. L.; Gibney, B. R.; Kerfeld, C. A.

77



Structure and function of a bacterial microcompartment shell protein engi-
neered to bind a [4Fe-4S] cluster. Journal of the American Chemical Society
2016, 138, 5262–5270 (cit. on p. 8).

Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. Dissection of Electronic
Substituent Effects in Multielectron-Multistep Molecular Catalysis. Electro-
chemical CO2-to-CO Conversion Catalyzed by Iron Porphyrins. The Journal
of Physical Chemistry C 2016, 120, 28951–28960 (cit. on p. 31).

Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. Through-Space Charge
Interaction Substituent Effects in Molecular Catalysis Leading to the Design
of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion.
Journal of the American Chemical Society 2016, 138, 16639–16644 (cit. on
p. 31).

Bale, J. B.; Gonen, S.; Liu, Y.; Sheffler, W.; Ellis, D.; Thomas, C.; Cascio, D.;
Yeates, T. O.; Gonen, T.; King, N. P.; Baker, D. Accurate design of
megadalton-scale two-component icosahedral protein complexes. Science
2016, 353, 389–394 (cit. on p. 8).

Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Hydrogen production through
sorption-enhanced steam methane reforming and membrane technology: A
review. Energy 2008, 33, 554–570 (cit. on p. 2).

Belokon, Y. N.; Bakhmutov, V. I.; Chernoglazova, N. I.; Kochetkov, K. A.; Vitt,
S. V.; Garbalinskaya, N. S.; Belikov, V. M. General method for the asymmet-
ric synthesis of α-amino acids via alkylation of the chiral nickel(II) Schiff
base complexes of glycine and alanine. Journal of the Chemical Society,
Perkin Transactions 1 1988, 305–312 (cit. on pp. 54, 57).

Belokon, Y. N.; Tararov, V. I.; Maleev, V. I.; Savel’eva, T. F.; Ryzhov, M. G. Im-
proved procedures for the synthesis of (S)-2-[N -(N ′-benzylprolyl)amino]-
benzophenone (BPB) and Ni(II) complexes of Schiff’s bases derived from
BPB and amino acids. Tetrahedron: Asymmetry 1998, 9, 4249–4252 (cit. on
p. 57).

Bhugun, I.; Lexa, D.; Savéant, J.-M. Catalysis of the Electrochemical Reduction of
Carbon Dioxide by Iron(0) Porphyrins: Synergystic Effect of Weak Brönsted
Acids. Journal of the American Chemical Society 1996, 118, 1769–1776 (cit.
on p. 31).

Birdja, Y. Y.; Vos, R. E.; Wezendonk, T. A.; Jiang, L.; Kapteijn, F.; Koper,
M. T. M. Effects of Substrate and Polymer Encapsulation on CO2 Electrore-

78



duction by Immobilized Indium(III) Protoporphyrin. ACS Catalysis 2018, 8,
4420–4428 (cit. on p. 31).

Boyle, A. L.; Woolfson, D. N. De novo designed peptides for biological applications.
Chemical Society Reviews 2011, 40, 4295–4306 (cit. on p. 8).

Brodin, J. D.; Carr, J. R.; Sontz, P. A.; Tezcan, F. A. Exceptionally stable, redox-
active supramolecular protein assemblies with emergent properties. Proceed-
ings of the National Academy of Sciences of the United States of America
2014, 111, 2897–2902 (cit. on pp. 8, 9).

Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. Highly
Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a
Cobalt Porphyrin Molecular Catalyst. ACS Catalysis 2019, 9, 4867–4874
(cit. on p. 31).

Camara, J. M.; Rauchfuss, T. B. Combining acid-base, redox and substrate binding
functionalities to give a complete model for the [FeFe]-hydrogenase. Nature
Chemistry 2011, 4, 26 (cit. on p. 51).

Capon, J.-F.; Gloaguen, F.; Pétillon, F. Y.; Schollhammer, P.; Talarmin, J. Elec-
tron and proton transfers at diiron dithiolate sites relevant to the catalysis
of proton reduction by the [FeFe]-hydrogenases. Coordination Chemistry
Reviews 2009, 253, 1476–1494 (cit. on pp. 51, 52).

Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. Activation of proton by
the two-electron reduction of a di-iron organometallic complex. Journal of
Electroanalytical Chemistry 2006, 595, 47–52 (cit. on p. 54).

Case, M. A.; McLendon, G. L. Metal-assembled modular proteins: Toward func-
tional protein design. Accounts of Chemical Research 2004, 37, 754–762 (cit.
on p. 9).

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy fu-
ture. Nature 2012, 488, 294 (cit. on p. 51).

Corrie, J. E. T.; Hlubucek, J. R.; Lowe, G. Synthesis of a cephalosporin analogue.
Journal of the Chemical Society, Perkin Transactions 1 1977, 1421–1425
(cit. on p. 58).

Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. A Local Proton Source En-
hances CO2; Electroreduction to CO by a Molecular Fe Catalyst. Science
2012, 338, 90 (cit. on p. 31).

79



Dang, B.; Wu, H.; Mulligan, V. K.; Mravic, M.; Wu, Y.; Lemmin, T.; Ford, A.;
Silva, D.-A.; Baker, D.; DeGrado, W. F. De novo design of covalently con-
strained mesosize protein scaffolds with unique tertiary structures. Proceed-
ings of the National Academy of Sciences of the United States of America
2017, 114, 10852–10857 (cit. on p. 8).

Dhanasekaran, T.; Grodkowski, J.; Neta, P.; Hambright, P.; Fujita, E. p-Terphenyl-
Sensitized Photoreduction of CO2 with Cobalt and Iron Porphyrins. Interac-
tion between CO and Reduced Metalloporphyrins. The Journal of Physical
Chemistry A 1999, 103, 7742–7748 (cit. on p. 40).

DuBois, D. L.; Bullock, R. M. Molecular Electrocatalysts for the Oxidation of Hy-
drogen and the Production of Hydrogen—The Role of Pendant Amines as
Proton Relays. European Journal of Inorganic Chemistry 2011, 2011, 1017–
1027 (cit. on p. 51).

Faiella, M.; Roy, A.; Sommer, D.; Ghirlanda, G. De novo design of functional pro-
teins: Toward artificial hydrogenases. Peptide Science 2013, 100, 558–571
(cit. on p. 51).

Fedorova, A.; Chaudhari, A.; Ogawa, M. Y. Photoinduced electron-transfer along
alpha-helical and coiled-coil metallopeptides. Journal of the American Chem-
ical Society 2003, 125, 357–362 (cit. on p. 9).

Fedorova, A.; Ogawa, M. Y. Site-specific modification of de novo designed coiled-
coil polypeptides with inorganic redox complexes. Bioconjugate Chemistry
2002, 13, 150–154 (cit. on p. 9).

Felton, G. A. N.; Mebi, C. A.; Petro, B. J.; Vannucci, A. K.; Evans, D. H.; Glass,
R. S.; Lichtenberger, D. L. Review of electrochemical studies of complexes
containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including
catalysis by these complexes of the reduction of acids to form dihydrogen.
Journal of Organometallic Chemistry 2009, 694, 2681–2699 (cit. on pp. 51,
52).

Felton, G. A. N.; Vannucci, A. K.; Chen, J.; Lockett, L. T.; Okumura, N.; Petro,
B. J.; Zakai, U. I.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. Hydrogen
Generation from Weak Acids: Electrochemical and Computational Studies
of a Diiron Hydrogenase Mimic. Journal of the American Chemical Society
2007, 129, 12521–12530 (cit. on p. 54).

Fujita, E. Photochemical carbon dioxide reduction with metal complexes. Coordina-
tion Chemistry Reviews 1999, 185-186, 373–384 (cit. on pp. 2, 30).

80



Ghadiri, M. R.; Soares, C.; Choi, C. A convergent approach to protein design.
Metal ion-assisted spontaneous self-assembly of a polypeptide into a triple-
helix bundle protein. Journal of the American Chemical Society 1992, 114,
825–831 (cit. on pp. 9, 22).

Ghirlanda, G.; Lear, J. D.; Ogihara, N. L.; Eisenberg, D.; DeGrado, W. F. A hierar-
chic approach to the design of hexameric helical barrels. Journal of Molecu-
lar Biology 2002, 319, 243–253 (cit. on pp. 10, 21, 22).

Hauser, A.; Mader, M.; Robinson, W. T.; Murugesan, R.; Ferguson, J. Electronic
and molecular-structure of Cr(2,2’-bipyridine)3+

3 . Inorganic Chemistry 1987,
26, 1331–1338 (cit. on p. 18).

Howorka, S. Rationally engineering natural protein assemblies in nanobiotechnology.
Current Opinion in Biotechnology 2011, 22, 485–491 (cit. on p. 8).

Huynh, H. V.; Schulze-Isfort, C.; Seidel, W. W.; Lügger, T.; Fröhlich, R.; Kataeva,
O.; Hahn, F. E. Dinuclear Complexes with Bis(benzenedithiolate) Ligands.
Chemistry – A European Journal 2002, 8, 1327–1335 (cit. on p. 59).

International Energy Agency. World Energy Outlook 2018. https://www.iea.org/
weo/ (accessed 02/12/2019) (cit. on p. 1).

Irving, H.; Mellor, D. H. 1002. The stability of metal complexes of 1,10-phenan-
throline and its analogues. Part I. 1,10-Phenanthroline and 2,2′-bipyridyl.
Journal of the Chemical Society 1962, 5222–5237 (cit. on p. 21).

Jian, J.-X.; Liu, Q.; Li, Z.-J.; Wang, F.; Li, X.-B.; Li, C.-B.; Liu, B.; Meng, Q.-Y.;
Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Chitosan confinement enhances
hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-
hydrogenase. Nature Communications 2013, 4, 2695 (cit. on p. 52).

Jones, A. K.; Lichtenstein, B. R.; Dutta, A.; Gordon, G.; Dutton, P. L. Synthetic
Hydrogenases: Incorporation of an Iron Carbonyl Thiolate into a Designed
Peptide. Journal of the American Chemical Society 2007, 129, 14844–14845
(cit. on p. 53).

Jones, E. Y. Structure and function in complex macromolecular assemblies: Some
evolutionary themes. Current Opinion in Structural Biology 2012, 22, 197–
199 (cit. on p. 8).

Kang, M.; Light, K.; Ai, H.-w.; Shen, W.; Kim, C. H.; Chen, P. R.; Lee, H. S.;
Solomon, E. I.; Schultz, P. G. Evolution of iron(II)-finger peptides by using a
bipyridyl amino acid. Chembiochem 2014, 15, 822–825 (cit. on p. 9).

81

https://www.iea.org/weo/
https://www.iea.org/weo/


King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.;
Yeates, T. O.; Baker, D. Accurate design of co-assembling multi-component
protein nanomaterials. Nature 2014, 510, 103–108 (cit. on p. 8).

King, N. P.; Sheffler, W.; Sawaya, M. R.; Vollmar, B. S.; Sumida, J. P.; Andre, I.;
Gonen, T.; Yeates, T. O.; Baker, D. Computational design of self-assembling
protein nanomaterials with atomic level accuracy. Science 2012, 336, 1171–
1174 (cit. on p. 8).

Kleingardner, J. G.; Kandemir, B.; Bren, K. L. Hydrogen Evolution from Neutral
Water under Aerobic Conditions Catalyzed by Cobalt Microperoxidase-11.
Journal of the American Chemical Society 2014, 136, 4–7 (cit. on p. 31).

Knörzer, P.; Silakov, A.; Foster, C. E.; Armstrong, F. A.; Lubitz, W.; Happe, T.
Importance of the Protein Framework for Catalytic Activity of [FeFe]-
Hydrogenases. Journal of Biological Chemistry 2012, 287, 1489–1499 (cit. on
p. 52).

Kobayashi, N.; Yanase, K.; Sato, T.; Unzai, S.; Hecht, M. H.; Arai, R. Self-
assembling nano-architectures created from a protein nano-building block
using an intermolecularly folded dimeric de novo protein. Journal of the
American Chemical Society 2015, 137, 11285–11293 (cit. on p. 8).

Koide, T.; Yuguchi, M.; Kawakita, M.; Konno, H. Metal-assisted stabilization and
probing of collagenous triple helices. Journal of the American Chemical Soci-
ety 2002, 124, 9388–9389 (cit. on p. 9).

Kondo, M.; Ichii, K.; Patra, P. K.; Poulter, B.; Calle, L.; Koven, C.; Pugh,
T. A. M.; Kato, E.; Harper, A.; Zaehle, S.; Wiltshire, A. Plant Regrowth
as a Driver of Recent Enhancement of Terrestrial CO2 Uptake. Geophysical
Research Letters 2018, 45, 4820–4830 (cit. on p. 30).

Koreeda, M.; Yang, W. Chemistry of 1,2-Dithiins. Synthesis of the Potent Antibi-
otic Thiarubrine A. Journal of the American Chemical Society 1994, 116,
10793–10794 (cit. on p. 58).

Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi,
O. M.; Yang, P. Metal-Organic Frameworks for Electrocatalytic Reduction
of Carbon Dioxide. Journal of the American Chemical Society 2015, 137,
14129–14135 (cit. on p. 31).

Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO2
reduction by cobalt phthalocyanine. Chemical Science 2016, 7, 2506–2515
(cit. on p. 31).

82



Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Atmospheric CO2: Principal
Control Knob Governing Earth’s Temperature. Science 2010, 330, 356 (cit.
on p. 30).

Lai, Y.-T.; King, N. P.; Yeates, T. O. Principles for designing ordered protein as-
semblies. Trends in Cell Biology 2012, 22, 653–661 (cit. on p. 8).

Lee, C. H.; Dogutan, D. K.; Nocera, D. G. Hydrogen Generation by Hangman Met-
alloporphyrins. Journal of the American Chemical Society 2011, 133, 8775–
8777 (cit. on p. 31).

Leung, K.; Nielsen, I. M. B.; Sai, N.; Medforth, C.; Shelnutt, J. A. Cobalt-
Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water.
2. Mechanism from First Principles. The Journal of Physical Chemistry A
2010, 114, 10174–10184 (cit. on p. 40).

Lieberman, M.; Sasaki, T. Iron(II) organizes a synthetic peptide into 3-helix bun-
dles. Journal of the American Chemical Society 1991, 113, 1470–1471 (cit.
on p. 9).

Lin, S.; Diercks, C. S.; Zhang, Y.-B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.;
Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent or-
ganic frameworks comprising cobalt porphyrins for catalytic CO2 reduction
in water. Science 2015, 349, 1208 (cit. on p. 31).

Ljubetič, A.; Gradišar, H.; Jerala, R. Advances in design of protein folds and assem-
blies. Current Opinion in Chemical Biology 2017, 40, 65–71 (cit. on p. 8).

Ljubetič, A.; Lapenta, F.; Gradišar, H.; Drobnak, I.; Aupič, J.; Strmšek, Ž.;
Lainšček, D.; Hafner-Bratkovič, I.; Majerle, A.; Krivec, N.; Benčina, M.;
Pisanski, T.; Veličković, T. Ć.; Round, A.; Carazo, J. M.; Melero, R.; Jerala,
R. Design of coiled-coil protein-origami cages that self-assemble in vitro and
in vivo. Nature Biotechnology 2017, 35, 1094–1101 (cit. on p. 8).

Lomoth, R.; Ott, S. Introducing a dark reaction to photochemistry: photocat-
alytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton
Transactions 2009, 9952–9959 (cit. on pp. 52, 54).

Lu, Y.; Yeung, N.; Sieracki, N.; Marshall, N. M. Design of functional metallopro-
teins. Nature 2009, 460, 855 (cit. on p. 30).

Luo, Q.; Hou, C.; Bai, Y.; Wang, R.; Liu, J. Protein assembly: Versatile approaches
to construct highly ordered nanostructures. Chemical Reviews 2016, 116,
13571–13632 (cit. on p. 8).

83



Luo, X.; Wang, T.-S. A.; Zhang, Y.; Wang, F.; Schultz, P. G. Stabilizing protein
motifs with a genetically encoded metal-ion chelator. Cell Chemical Biology
2016, 23, 1098–1102 (cit. on p. 9).

Manbeck, G. F.; Fujita, E. A review of iron and cobalt porphyrins, phthalocyanines
and related complexes for electrochemical and photochemical reduction of
carbon dioxide. Journal of Porphyrins and Phthalocyanines 2015, 19, 45–64
(cit. on p. 31).

Mason, S. F. The electronic spectra and optical activity of phenanthroline and
dipyridyl metal complexes. Inorganica Chimica Acta Reviews 1968, 2, 89–
109 (cit. on pp. 19, 21).

McNamara, W. R.; Han, Z.; Yin, C.-J.; Brennessel, W. W.; Holland, P. L.; Eisen-
berg, R. Cobalt-dithiolene complexes for the photocatalytic and electrocat-
alytic reduction of protons in aqueous solutions. Proceedings of the National
Academy of Sciences 2012, 109, 15594–15599 (cit. on p. 59).

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of
fixation and transformation of carbon dioxide. Energy & Environmental
Science 2010, 3, 43–81 (cit. on p. 2).

Mills, J. H.; Khare, S. D.; Bolduc, J. M.; Forouhar, F.; Mulligan, V. K.; Lew, S.;
Seetharaman, J.; Tong, L.; Stoddard, B. L.; Baker, D. Computational design
of an unnatural amino acid dependent metalloprotein with atomic level ac-
curacy. Journal of the American Chemical Society 2013, 135, 13393–13399
(cit. on p. 9).

Mills, J. H.; Sheffler, W.; Ener, M. E.; Almhjell, P. J.; Oberdorfer, G.; Pereira,
J. H.; Parmeggiani, F.; Sankaran, B.; Zwart, P. H.; Baker, D. Computational
design of a homotrimeric metalloprotein with a trisbipyridyl core. Proceed-
ings of the National Academy of Sciences of the United States of America
2016, 113, 15012–15017 (cit. on pp. 9, 22).

Mocny, C. S.; Pecoraro, V. L. De novo protein design as a methodology for syn-
thetic bioinorganic chemistry. Accounts of Chemical Research 2015, 48,
2388–2396 (cit. on p. 9).

Mondal, B.; Rana, A.; Sen, P.; Dey, A. Intermediates Involved in the 2 e–/2 H+

Reduction of CO2 to CO by Iron(0) Porphyrin. Journal of the American
Chemical Society 2015, 137, 11214–11217 (cit. on p. 31).

84



Moore, G. F.; Brudvig, G. W. Energy Conversion in Photosynthesis: A Paradigm
for Solar Fuel Production. Annual Review of Condensed Matter Physics
2011, 2, 303–327 (cit. on p. 3).

Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to the Photocatalytic
Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research
2009, 42, 1983–1994 (cit. on pp. 39, 40).

Ni, T. W.; Tezcan, F. A. Structural characterization of a microperoxidase inside a
metal-directed protein cage. Angewandte Chemie-International Edition 2010,
49, 7014–7018 (cit. on p. 9).

Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C.
Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual
coordination to an active site Fe binuclear center. Structure 1999, 7, 13–23
(cit. on p. 51).

Nielsen, I. M. B.; Leung, K. Cobalt-Porphyrin Catalyzed Electrochemical Reduc-
tion of Carbon Dioxide in Water. 1. A Density Functional Study of Interme-
diates. The Journal of Physical Chemistry A 2010, 114, 10166–10173 (cit.
on p. 40).

Nishimura, O.; Kitada, C.; Fujino, M. New Method for Removing the S-p-
Methoxybenzyl and S-t-Butyl Groups of Cysteine Residues with Mercuric
Trifluoroacetate. Chemical & Pharmaceutical Bulletin 1978, 26, 1576–1585
(cit. on p. 58).

Noisier, A. F. M.; Harris, C. S.; Brimble, M. A. Novel preparation of chiral α-amino
acids using the Mitsunobu-Tsunoda reaction. Chemical Communications
2013, 49, 7744–7746 (cit. on p. 54).

Ogihara, N. L.; Ghirlanda, G.; Bryson, J. W.; Gingery, M.; DeGrado, W. F.; Eisen-
berg, D. Design of three-dimensional domain-swapped dimers and fibrous
oligomers. Proceedings of the National Academy of Sciences of the United
States of America 2001, 98, 1404–1409 (cit. on pp. 10, 21, 22, 24).

Onoda, A.; Kihara, Y.; Fukumoto, K.; Sano, Y.; Hayashi, T. Photoinduced Hy-
drogen Evolution Catalyzed by a Synthetic Diiron Dithiolate Complex Em-
bedded within a Protein Matrix. ACS Catalysis 2014, 4, 2645–2648 (cit. on
p. 53).

Park, C. K.; Stiteler, A. P.; Shah, S.; Ghare, M. I.; Bitinaite, J.; Horton, N. C. Acti-
vation of DNA cleavage by oligomerization of DNA-bound SgrAI. Biochem-
istry 2010, 49, 8818–8830 (cit. on pp. 16, 17).

85



Pellegrin, Y.; Odobel, F. Sacrificial electron donor reagents for solar fuel production.
Comptes Rendus Chimie 2017, 20, 283–295 (cit. on p. 40).

Plegaria, J. S.; Pecoraro, V. L. De Novo Design of Metalloproteins and Metalloen-
zymes in a Three-Helix Bundle. In Computational Design of Ligand Binding
Proteins, Stoddard, B. L., Ed.; Methods in Molecular Biology, Vol. 1414;
Humana Press: New York, NY, 2016, pp 187–196 (cit. on p. 9).

Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced Photochemical
Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a
Metal-Organic Framework. Journal of the American Chemical Society 2013,
135, 16997–17003 (cit. on p. 52).

Rao, H.; Lim, C.-H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-Light-Driven
Conversion of CO2 to CH4 with an Organic Sensitizer and an Iron Porphyrin
Catalyst. Journal of the American Chemical Society 2018, 140, 17830–17834
(cit. on p. 31).

Roy, A.; Madden, C.; Ghirlanda, G. Photo-induced hydrogen production in a heli-
cal peptide incorporating a [FeFe] hydrogenase active site mimic. Chemical
Communications 2012, 48, 9816–9818 (cit. on p. 53).

Roy, A.; Sarrou, I.; Vaughn, M. D.; Astashkin, A. V.; Ghirlanda, G. De novo design
of an artificial bis [4Fe-4S] binding protein. Biochemistry 2013, 52, 7586–
7594 (cit. on pp. 10, 24).

Roy, A.; Sommer, D. J.; Schmitz, R. A.; Brown, C. L.; Gust, D.; Astashkin, A.;
Ghirlanda, G. A de novo designed 2 [4Fe-4S] ferredoxin mimic mediates elec-
tron transfer. Journal of the American Chemical Society 2014, 136, 17343–
17349 (cit. on pp. 9, 10, 24).

Roy, L.; Case, M. A. Electrostatic determinants of stability in parallel 3-stranded
coiled coils. Chemical Communications 2009, 192–194 (cit. on p. 9).

Roy, S.; Nguyen, T.-A. D.; Gan, L.; Jones, A. K. Biomimetic peptide-based models
of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Dalton
Transactions 2015, 44, 14865–14876 (cit. on p. 53).

Roy, S.; Shinde, S.; Hamilton, G. A.; Hartnett, H. E.; Jones, A. K. Artificial [FeFe]-
Hydrogenase: On Resin Modification of an Amino Acid to Anchor a Hexacar-
bonyldiiron Cluster in a Peptide Framework. European Journal of Inorganic
Chemistry 2011, 2011, 1050–1055 (cit. on p. 53).

86



Salgado, E. N.; Lewis, R. A.; Mossin, S.; Rheingold, A. L.; Tezcan, F. A. Control
of protein oligomerization symmetry by metal coordination: C2 and C3 sym-
metrical assemblies through CuII and NiII coordination. Inorganic Chemistry
2009, 48, 2726–2728 (cit. on p. 9).

Salgado, E. N.; Radford, R. J.; Tezcan, F. A. Metal-directed protein self-assembly.
Accounts of Chemical Research 2010, 43, 661–672 (cit. on p. 9).

Sano, Y.; Onoda, A.; Hayashi, T. A hydrogenase model system based on the se-
quence of cytochrome c: photochemical hydrogen evolution in aqueous media.
Chemical Communications 2011, 47, 8229–8231 (cit. on p. 53).

Sano, Y.; Onoda, A.; Hayashi, T. Photocatalytic hydrogen evolution by a diiron
hydrogenase model based on a peptide fragment of cytochrome c556 with an
attached diiron carbonyl cluster and an attached ruthenium photosensitizer.
Journal of Inorganic Biochemistry 2012, 108, 159–162 (cit. on p. 53).

Savage, S. A.; Smith, A. P.; Fraser, C. L. Efficient synthesis of 4-, 5-, and 6-methyl-
2,2’-bipyridine by a Negishi cross-coupling strategy followed by high-yield
conversion to bromo- and chloromethyl-2,2’-bipyridines. Journal of Organic
Chemistry 1998, 63, 10048–10051 (cit. on pp. 12, 19).

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Na-
ture 2001, 414, 353 (cit. on pp. 1, 2, 51).

Schneider, C. R.; Manesis, A. C.; Stevenson, M. J.; Shafaat, H. S. A photoactive
semisynthetic metalloenzyme exhibits complete selectivity for CO2 reduction
in water. Chemical Communications 2018, 54, 4681–4684 (cit. on p. 30).

Schneider, C. R.; Shafaat, H. S. An internal electron reservoir enhances catalytic
CO2 reduction by a semisynthetic enzyme. Chemical Communications 2016,
52, 9889–9892 (cit. on p. 30).

Shen, J.; Kolb, M. J.; Göttle, A. J.; Koper, M. T. M. DFT Study on the Mecha-
nism of the Electrochemical Reduction of CO2 Catalyzed by Cobalt Por-
phyrins. The Journal of Physical Chemistry C 2016, 120, 15714–15721 (cit.
on p. 40).

Shiro, A.; Shumpei, S.; Yasutsugu, S.; Yoshifumi, N. A New Method for the Pro-
tection of the Sulfhydryl Group during Peptide Synthesis. Bulletin of the
Chemical Society of Japan 1964, 37, 433–434 (cit. on p. 58).

Singleton, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. A Cyclodextrin
Host/Guest Approach to a Hydrogenase Active Site Biomimetic Cavity.

87



Journal of the American Chemical Society 2010, 132, 8870–8871 (cit. on
p. 52).

Smith, P.; Davis, S. J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.;
Jackson, R. B.; Cowie, A.; Kriegler, E.; van Vuuren, D. P.; Rogelj, J.; Ciais,
P.; Milne, J.; Canadell, J. G.; McCollum, D.; Peters, G.; Andrew, R.; Krey,
V.; Shrestha, G.; Friedlingstein, P.; Gasser, T.; Grübler, A.; Heidug, W. K.;
Jonas, M.; Jones, C. D.; Kraxner, F.; Littleton, E.; Lowe, J.; Moreira, J. R.;
Nakicenovic, N.; Obersteiner, M.; Patwardhan, A.; Rogner, M.; Rubin, E.;
Sharifi, A.; Torvanger, A.; Yamagata, Y.; Edmonds, J.; Yongsung, C. Bio-
physical and economic limits to negative CO2 emissions. Nature Climate
Change 2015, 6, 42 (cit. on p. 30).

Sommer, D. J.; Roy, A.; Astashkin, A.; Ghirlanda, G. Modulation of cluster incor-
poration specificity in a de novo iron-sulfur cluster binding peptide. Biopoly-
mers 2015, 104, 412–418 (cit. on pp. 9, 10, 24).

Sommer, D. J.; Vaughn, M. D.; Clark, B. C.; Tomlin, J.; Roy, A.; Ghirlanda, G.
Reengineering cyt b562 for hydrogen production: A facile route to artificial
hydrogenases. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016,
1857, 598–603 (cit. on pp. 31, 37, 38).

Sommer, D. J.; Vaughn, M. D.; Ghirlanda, G. Protein secondary-shell interactions
enhance the photoinduced hydrogen production of cobalt protoporphyrin IX.
Chemical Communications 2014, 50, 15852–15855 (cit. on p. 31).

Song, W. J.; Tezcan, F. A. A designed supramolecular protein assembly with in
vivo enzymatic activity. Science 2014, 346, 1525–1528 (cit. on pp. 8, 9).

Sontz, P. A.; Song, W. J.; Tezcan, F. A. Interfacial metal coordination in engi-
neered protein and peptide assemblies. Current Opinion in Chemical Biology
2014, 19, 42–49 (cit. on p. 9).

Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X. S. On the causal
structure between CO2 and global temperature. Scientific Reports 2016, 6,
21691 (cit. on p. 1).

Streich, D.; Astuti, Y.; Orlandi, M.; Schwartz, L.; Lomoth, R.; Hammarström, L.;
Ott, S. High-Turnover Photochemical Hydrogen Production Catalyzed by
a Model Complex of the [FeFe]-Hydrogenase Active Site. Chemistry – A
European Journal 2010, 16, 60–63 (cit. on p. 54).

Sun, Y.; Gu, L.; Dickinson, R. E.; Norby, R. J.; Pallardy, S. G.; Hoffman, F. M.
Impact of mesophyll diffusion on estimated global land CO2 fertilization.

88



Proceedings of the National Academy of Sciences 2014, 201418075 (cit. on
p. 30).

Tard, C.; Pickett, C. J. Structural and Functional Analogues of the Active Sites
of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases. Chemical Reviews 2009, 109,
2245–2274 (cit. on p. 51).

Tezcan, F. A.; Crane, B. R.; Winkler, J. R.; Gray, H. B. Electron tunneling in pro-
tein crystals. Proceedings of the National Academy of Sciences of the United
States of America 2001, 98, 5002–5006 (cit. on p. 9).

Turner, J. A. Sustainable Hydrogen Production. Science 2004, 305, 972 (cit. on
p. 1).

Ueki, H.; Ellis, T. K.; Martin, C. H.; Boettiger, T. U.; Bolene, S. B.; Soloshonok,
V. A. Improved Synthesis of Proline-Derived Ni(II) Complexes of Glycine:
Versatile Chiral Equivalents of Nucleophilic Glycine for General Asymmetric
Synthesis of α-Amino Acids. The Journal of Organic Chemistry 2003, 68,
7104–7107 (cit. on p. 57).

Vignais, P. M.; Billoud, B. Occurrence, Classification, and Biological Function of
Hydrogenases: An Overview. Chemical Reviews 2007, 107, 4206–4272 (cit.
on p. 51).

Wang, F.; Liang, W.-J.; Jian, J.-X.; Li, C.-B.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Ex-
ceptional Poly(acrylic acid)-Based Artificial [FeFe]-Hydrogenases for Photo-
catalytic H2 Production in Water. Angewandte Chemie International Edition
2013, 52, 8134–8138 (cit. on p. 52).

Wang, F.; Wang, W.-G.; Wang, H.-Y.; Si, G.; Tung, C.-H.; Wu, L.-Z. Artificial
Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to
High Efficiency for Light-Driven Hydrogen Evolution. ACS Catalysis 2012,
2, 407–416 (cit. on p. 52).

Wang, M.; Chen, L.; Li, X.; Sun, L. Approaches to efficient molecular catalyst sys-
tems for photochemical H2 production using [FeFe]-hydrogenase active site
mimics. Dalton Transactions 2011, 40, 12793–12800 (cit. on p. 52).

Wang, N.; Wang, M.; Chen, L.; Sun, L. Reactions of [FeFe]-hydrogenase models
involving the formation of hydrides related to proton reduction and hydrogen
oxidation. Dalton Transactions 2013, 42, 12059–12071 (cit. on pp. 51, 52).

Winkler, M.; Esselborn, J.; Happe, T. Molecular basis of [FeFe]-hydrogenase func-
tion: An insight into the complex interplay between protein and catalytic

89



cofactor. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2013, 1827,
974–985 (cit. on p. 52).

Woolfson, D. N.; Mahmoud, Z. N. More than just bare scaffolds: Towards multi-
component and decorated fibrous biomaterials. Chemical Society Reviews
2010, 39, 3464–3479 (cit. on p. 8).

Yoshida, M.; Tatsumi, T.; Fujiwara, Y.; Iinuma, S.; Kimura, T.; Akaji, K.; Kiso, Y.
Deprotection of the S-Trimetylacetamidomethyl (Tacm) Group Using Silver
Tetrafluoroborate: Application to the Synthesis of Porcine Brain Natriuretic
Peptide-32 (pBNP-32). Chemical & Pharmaceutical Bulletin 1990, 38, 1551–
1557 (cit. on p. 58).

Yu, T.; Zeng, Y.; Chen, J.; Li, Y.-Y.; Yang, G.; Li, Y. Exceptional Dendrimer-
Based Mimics of Diiron Hydrogenase for the Photochemical Production
of Hydrogen. Angewandte Chemie International Edition 2013, 52, 5631–5635
(cit. on p. 52).

Zastrow, M. L.; Peacock, A. F. A.; Stuckey, J. A.; Pecoraro, V. L. Hydrolytic catal-
ysis and structural stabilization in a designed metalloprotein. Nature Chem-
istry 2012, 4, 118–123 (cit. on p. 9).

Zastrow, M. L.; Pecoraro, V. L. Designing functional metalloproteins: From struc-
tural to catalytic metal sites. Coordination Chemistry Reviews 2013, 257,
2565–2588 (cit. on p. 9).

Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.;
Meng, X.; Zhang, J.; Ye, J. Efficient Visible-Light-Driven Carbon Dioxide
Reduction by a Single-Atom Implanted Metal-Organic Framework. Ange-
wandte Chemie International Edition 2016, 55, 14310–14314 (cit. on p. 31).

Zhang, J.; Zheng, F.; Grigoryan, G. Design and designability of protein-based as-
semblies. Current Opinion in Structural Biology 2014, 27, 79–86 (cit. on
p. 8).

Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.;
Liang, Y.; Wang, H. Highly selective and active CO2 reduction electrocat-
alysts based on cobalt phthalocyanine/carbon nanotube hybrid structures.
Nature Communications 2017, 8, 14675 (cit. on p. 31).

90



APPENDIX A

SUPPORTING INFORMATION FOR CHAPTER 2

91



(a)

2,000 4,000 6,000 8,000
0

10,000

20,000

30,000

40,000

5270.37

m/z

C
ou

nt
s

(b)

2,000 4,000 6,000 8,000
0

20,000

40,000

60,000

5197.51

m/z

C
ou

nt
s

Figure A.1. MALDI-TOF-MS spectra of (a) HB1 and (b) HB2.
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Figure A.2. UV-Vis traces for the titration of HB1 (black trace) with CoCl2 (top)
or NiCl2 (blue traces).
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Figure A.3. Binding curves of HB1 titrated with CoCl2 (left) and NiCl2 (right) as
monitored by UV-Vis. The calculated binding stoichiometry was (a) 3.4 peptides
per metal ion, (b) 3.5 peptides per metal ion.
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Figure A.4. CD spectra of HB1 (red), CoHB1 (blue), and NiHB1 (green).
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Figure A.5. Thermal denaturation curves of HB2 (red), CoHB2 (blue), and
NiHB2 (green). Molar ellipticity was followed at 222 nm.
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Figure A.6. UV-Vis (left) and CD (right) data for bpy-4-CO2H ((2,2’-bipyridine)-
6-carboxylic acid, red trace), [Co(bpy-4-CO2H)3]2+ (blue traces), and [Ni(bpy-4-
CO2H)3]2+ (green traces). Spectra obtained in 100 mM Tris·HCl buffer at pH 8.5.
The [Co(bpy-4-CO2H)3]2+ sample contains total concentrations of [CoCl2] =
41.3 µM and [bpy-4-CO2H] = 187 µM; the [Ni(bpy-4-CO2H)3]2+ sample was prepared
with a total concentration of [Ni(OAc)2] = 30.6 µM and [bpy-4-CO2H] = 140 µM.
The [bpy-4-CO2H] in the red trace was 187 µM.
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Figure A.7. Titration of 10 mM Tris buffer pH 8.0 (left) and 76.5 µM Hex-Phe
(right) in the same buffer with CoCl2.
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Figure A.8. Titration of 10 mM Tris buffer pH 8.0 (left) and 76.5 µM Hex-Phe
(right) in the same buffer with NiCl2.
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Figure A.9. Sedimentation AUC of Hex-Phe alone (red) and in the presence of
Co(II) (blue) or Ni(II) (green). The three species sediment with the same coeffi-
cient indicating no changes to the oligomerization state.

96



APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 3

97



200 300 400 500 600 700

0

0.05

0.1

0.15

0.2

Wavelength/nm

A
bs

or
ba

nc
e

0 1 2 3 4 5

0

0.02

0.04

0.06

[cyt b562]/[CoPPIX]

∆
A

43
0

Figure B.1. UV-Vis traces (top) and fitted binding isotherm (bottom) for the
titration of CoPPIX (0.89 µM, black trace) with cyt b562 WT in 1 M KPi pH 6.0.
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Figure B.2. UV-Vis traces (top) and fitted binding isotherm (bottom) for the
titration of CoPPIX (3.86 µM, black trace) with cyt b562 M7A in 1 M KPi pH 6.0.
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Figure B.3. UV-Vis traces (top) and fitted binding isotherm (bottom) for the
titration of CoPPIX (2.40 µM, black trace) with cyt b562 M7H in 1 M KPi pH 6.0.
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Figure B.4. UV-Vis traces (top) and fitted binding isotherm (bottom) for the
titration of CoPPIX (1.05 µM, black trace) with cyt b562 H102A in 1 M KPi pH 6.0.
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Figure B.5. CD spectra (top) and thermal denaturation curves (bottom) of apo
(black) and holo (red) cobalt cyt b562 M7H.
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Figure B.6. CD spectra (top) and thermal denaturation curves (bottom) of apo
(black) and holo (red) cobalt cyt b562 H102A.

103



0 100 200 300 400
−50

0

50

100

150

200

250

300

nH2/nmol

Pe
ak

ar
ea

/A
U

Figure B.7. Calibration curve for H2. The data was fitted to the linear equation
y = 0.679− 2.27, with an adjusted R2 = 0.9970.
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Figure B.8. Calibration curve for CO. The data was fitted to the linear equation
y = 17.62x− 107.97, with an adjusted R2 = 0.9958.
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Figure B.9. Produced H2 over time from the photoinduced reduction of protons
by CoPPIX and cobalt cyt b562 mutants at pH 6.0 under Ar. The experiments
were carried out in 100 mM AscOH, 1 mM [Ru(bpy)3]2+, 200 mM KPi, and 20 µM
catalyst. The error bars represent the standard deviation of the sample.
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Figure B.10. Produced H2 over time from the photoinduced reduction of protons
by CoPPIX and cobalt cyt b562 mutants at pH 7.0 under 1 atm CO2. The experi-
ments were carried out in 100 mM AscOH, 1 mM [Ru(bpy)3]2+, 200 mM KPi, and
20 µM catalyst (when appropriate). The error bars represent the standard deviation
of the sample.
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Figure B.11. Produced CO over time from the photoinduced reduction of protons
by CoPPIX and cobalt cyt b562 mutants at pH 7.0 under 1 atm CO2. The experi-
ments were carried out in 100 mM AscOH, 1 mM [Ru(bpy)3]2+, 200 mM KPi, and
20 µM catalyst. The error bars represent the standard deviation of the sample.
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Figure C.1. 1H NMR spectrum of compound 4-4a. The red star indicates traces
of toluene as impurity.
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Figure C.2. 13C NMR spectrum of compound 4-4a. The red stars indicate traces
of toluene as impurity.

109



-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

1
8
.0

0

3
.9

2

3
.9

7

0
.9

1

0
.9

3

0
.9

1
F (s)

0.07

J(3.2)

G (s)

0.06

J(3.3)

E (m)

0.96

D (m)

2.96

B (d)

7.42

J(1.7)

A (dd)

7.38

J(8.1, 1.8)

C (d)

7.17

J(8.2)

δ/ppm

Figure C.3. 1H NMR spectrum of compound 4-4b.
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Figure C.4. 13C NMR spectrum of compound 4-4b.
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Figure C.5. 1H NMR spectrum of compound 4-5a.
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Figure C.6. 13C NMR spectrum of compound 4-5a.
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Figure C.7. 1H NMR spectrum of compound 4-5b.
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Figure C.8. 13C NMR spectrum of compound 4-5b.
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Figure C.9. 1H NMR spectrum of compound 4-6a.
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Figure C.10. 13C NMR spectrum of compound 4-6a.
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Figure C.11. 1H NMR spectrum of compound 4-6b.
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Figure C.12. 13C NMR spectrum of compound 4-6b.
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Figure C.13. 1H NMR spectrum of compound 4-7a.
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Figure C.14. 13C NMR spectrum of compound 4-7a.
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Figure C.15. COSY spectrum of compound 4-7a.
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Figure C.16. 1H-13C HSQC spectrum of compound 4-7a.
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Figure C.17. 1H-13C H2BC spectrum of compound 4-7a.
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Figure C.18. 1H-13C HMBC spectrum of compound 4-7a.
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Figure C.19. 1H NMR spectrum of compound 4-7b.
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Figure C.20. 13C NMR spectrum of compound 4-7b.
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Figure C.21. COSY spectrum of compound 4-7b.
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Figure C.22. 1H-13C HSQC spectrum of compound 4-7b.
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Figure C.23. 1H-13C H2BC spectrum of compound 4-7b.
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Figure C.24. 1H-13C HMBC spectrum of compound 4-7b.
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APPENDIX D

ATTEMPTED ALTERNATIVE SYNTHETIC ROUTES FOR CHAPTER 4
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Chapter 4 has discussed the synthetic approach followed for the synthesis of an

unnatural amino acid that contains a 1,2-benzenedithiol side chain (4-1). This Ap-

pendix presents an overview of the synthetic strategies that were also attempted

with aims at preparing 4-1, but that were unsuccessful or not further pursued. The

work presented herein utilized different methodologies to control the stereochem-

istry of the amino acid moiety, introduce the sulfur groups into the aromatic ring,

and/or make use of different protecting groups on the thiol groups in order to be

able to facilitate their deprotection.

First, some of the planned reactions involved the use of the same synthetic

scheme presented in Scheme 4.2 but with different thiols (Table D.1), namely

methanethiol (4-3c), 2-methylpropane-2-thiol (4-3d), phenylmethanethiol 4-3e,

(2,4-dimethoxyphenyl)methanethiol (4-3f),1 (2,4,6-trimethoxybenzyl)methanethiol

(4-3g),1 and triphenylmethanethiol (4-3h). In the case of 4-3c the reaction with

4-2 seemed to go with high yields as expected from the small nucleophile, which

is consistent with the observations discussed in Section 4.3. However, upon reduc-

tion with DIBAL to the corresponding aldehyde, the 1H NMR spectrum showed

two singlets in the low field region corresponding to the CHO proton, indicating

that an inseparable mixture of compounds had been obtained; thus, this synthesis

was abandoned. When 4-3d,h were used no reaction was observed, likely due to

steric crowding of the nucleophile. Similarly, reactions with 4-3i,j resulted in com-

plex mixtures that ended up in very low yields after difficult purifications. Finally,

4-3e behaved similarly to PMB, which was discussed in the main text, albeit with

slightly lower yields. As with the case of PMB, attempts for the deprotection of the

group in the same conditions as were not successful.

One of the attempted strategies aimed at preparing the benzyl alcohol syn-

thon 4-6, albeit introducing the sulfur groups through a Newman-Kwart rearrange-

126



Table D.1. Structure of the screened thiols for the preparation of compound 4-4.

Thiol (4-3) Structure

a SH

OMe

b Si
SH

c CH3SH

d SH

e SH

f SH

OMeOMe

g

OMe

SH

OMeOMe

h
SH

ment (Scheme D.1).2,3 Briefly, 3,4-dihydroxybenzoic acid is transformed into its

methyl ester and the phenol groups modified with N,N -dimethylthiocarbonyl chlo-

ride to yield the corresponding bis(O-thiocarbamate). These functional groups

undergo a rearrangement reaction at high temperature (240 ◦C) and, in this partic-

ular molecule, form a cyclic S,S ′-dithiocarbonate dithioester. Basic hydrolysis of

the latter yields 3,4-disulfanylbenzoic acid. This Newman-Kwart rearrangement,

although previously reported in the literature, failed to give yields above 20 % and
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CO2Me

OH
OH

(a)

CO2Me

O

S

NMe2

O

S

NMe2 (b)

CO2Me

S

O
S

(c)

CO2H

SH
SH

BocHN

OH
HO

CO2Me

(a)

BocHN

O

S

NMe2

O

SNMe2

CO2Me

(b)

BocHN

S
O

S

CO2Me

Scheme D.1. Alternative synthetic route for 4-1 involving a Newman-Kwart re-
arrangement from 3,4-dihydroxybenzoic acid (top sequence) or l-DOPA (bottom
sequence). (a) Me2NC(S)Cl, DABCO, DMF; (b) Ph2O, 240 ◦C; (c) NaOH.

resulted in a very difficult mixture to purify, thus the approach was abandoned as it

was still necessary to protect the thiols with a group stable to reducing conditions

that would convert the carboxylic acid into the desired benzyl alcohol. Nonetheless,

this approach was also attempted with 3,4-dihydroxyphenylalanine, a naturally oc-

curring amino acid known as l-DOPA. It is likely that the absence of an electron

withdrawing group on the ring was the reason the rearrangement did not occur in

this case.

Other alternatives for the preparation of synthon 4-6 relied in the use

of thiosulfate sodium salts, which can be introduced into an aromatic ring via

a copper(I) catalyzed reaction between an aryl halide and sodium thiosulfate

(Scheme D.2).4 The strategy was first tried on 4-2 but no reaction was observed.

To rule out the effect of the halide group, 3,4-diiodobenzonitrile was prepared

from 3-amino-4-iodobenzonitrile via diazotization and substitution by KI. The aryl
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CN

NH2

I

(b)

CN

I
I

(a)
CN

S2

–©
O3

S2

–©
O3

(c)

CN

SR
SR

CN

Cl
Cl

(a)

Scheme D.2. Alternative synthetic route for 4-1 involving the preparation of
thiosulfate salts. (a) CuI, DMEDA, Na2S2O3, DMSO; (b) i) NaNO2, TsOH, ii) KI;
(c) RMgCl.

diiodide did not react under the reaction conditions, suggesting that steric crowding

was the cause of the lack of reactivity.

The last strategy that aimed at using NiCA to control the stereochemistry

is based on the use of the benzyl bromide instead of the benzyl alcohol. This was

tried using the acetamidomethyl (Acm) protecting group, introduced by treating

4-methylbenzene-1,2-dithiol with N -hydroxymethylacetamide in acidic conditions.

The bis(Acm) derivative was then brominated at the benzylic carbon with N -bro-

mosuccinimide (NBS) in moderately low yields. Upon treatment of NiCA with this

benzyl bromide in basic conditions, the desired product was not obtained, presum-

ably due to side reactions involving the hydrolysis of the acetamide functionality.
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CH3

SH
SH

(a)

CH3

SAcm
SAcm

(b)

CH2Br

SAcm
SAcm

(c)

N SAcm

SAcmO O

NO

NBn
Ni

Scheme D.3. Alternative synthetic route for 4-1 using Acm as a thiol protecting
groups for the coupling of NiCA to the corresponding benzyl bromide. (a) AcNH-
CH2OH, HCl, DMF; (b) i) NBS, AIBN, DCE; (c) NiCA, NaOH, MeCN.

Two of the proposed synthetic routes diverge from compound 4-5 in the

scheme shown presented in Chapter 4. The first of these is based on the formation

of the corresponding hydantoin and subsequent hydrolysis to form the aryl pyru-

vate, which can be enzymatically converted to the corresponding amino acid by

aminotransferases (Scheme D.4).5,6 Unfortunately, the hydantoin coupling did not

work under the evaluated acetate/acetic acid system. The other alternative is based

on formation of the cinnamic acid, which was accomplished through a Knoevenagel

CHO

SPMB
SPMB

(a)

NH
O

NH

O

SPMB
SPMB

(b)

O

C
–©

O2

SPMB
SPMB

(c)

+©
NH3

C
–©

O2

SPMB
SPMB

Scheme D.4. Alternative synthetic route for 4-1 through formation of the corre-
sponding hydantoin. (a) NaOAc, HCl, DMF; (b) NaOH; (c) aminotransferase.
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OH
OH

CO2Me

SPMB
SPMB

(d)

OH

CO2Me

SPMB
SPMB

(b)

+©
NH3

C
–©

O2

SPMB
SPMB (e)

Scheme D.5. Alternative synthetic route for 4-1 via cinnamic acid formation. (a)
malonic acid, β-alanine, pyridine; (b) phenylalanine/tyrosine ammonia lyase; (c)
AD-mix-α; (d) Et3SiH, TFA, DCM; (e) i) DPPA, DIAD, PPh3, ii) H2, Pd/C, iii)
LiOH.

reaction on 4-5a with good yields.7 The cinnamic acid can be transformed to the l-

amino acid in two ways: 1) by an enzymatic reaction using phenylalanine/tyrosine

ammonia lyase;8,9 or 2) through a proposed synthetic sequence that involves the

asymmetric Sharpless dihydroxylation, regioselective reduction of the benzylic al-

cohol, Mitsunobu substitution of the α-alcohol with azide, and reduction of the

latter to yield the amine group (Scheme D.5).10 These proposed synthetic path-

ways were not attempted due to the inability to remove the protecting groups, but

would still be interesting to pursue once the conditions for the thiol deprotection

are optimized.

Another option to using the NiCA involved the catalyzed sp3 directed aryla-

tion of l-alanine.11 This strategy requires an iodide group on the aromatic ring at

the coupling position. Two different pathways were devised for the preparation of

the aryl iodide bearing the protected dithiol groups. The first one involved the elec-
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PhthHN CONHArF
+ Ar I

PhthHN

Ar

CONHArF

Scheme D.6. General reaction for the directed sp3 arylation of l-alanine. The con-
ditions for the reaction are: Pd(TFA)2, 2-picoline, TFA, Ag2CO3, DCE. Phth = ph-
thaloyl, ArF = 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl. Edited from reference
11.

trophilic aromatic substitution on 2-aminobenzenesulfonic acid with ICl,12 which

yielded the desired compound in moderately good yields (Scheme D.7). The potas-

sium 4-iodobenzene-1,2-disulfonate salt was later obtained by a Leuckart thiophenol

reaction followed by exhaustive oxidation with KMnO4. Attempts to obtain the

disulfonyl chloride for further reduction to the thiols with PCl5 were unsuccessful.

Another pathway that avoids simultaneous formation of the disulfonyl chlo-

ride began with 4-iodobenzenesulfonyl chloride, which was reduced to the thiol

with PPh3 in good yields,13 and then protected as a methyl thioether in moderately

good yields (Scheme D.7). The synthetic sequence aimed at introducing the sul-

SO3H
NH2 (a)

I

SO3H
NH2

(b)

I

S
–©

O3

S
–©

O3

(c)

I

SO2Cl
SO2Cl

(d)

I

SMe
SMe

I

SO2Cl

(d)

I

SMe

(e)

I

SO2Cl
SMe

(d)

Scheme D.7. Aryl iodide preparation for directed l-alanine arylation. (a) ICl,
HCl, H2O; (b) i) KNO2, HCl, ii) EtOC(S)SK, H2O, iii) KMnO4, H2O; (c) PCl5,
150 ◦C; (d) i) PPh3, PhMe, ii) CH3I, K2CO3; (e) ClSO3H, CHCl3, reflux.
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fonyl chloride group with chlorosulfonic acid, followed by another reduction with

PPh3 to yield the free thiol which could be protected with an appropriate protect-

ing group. This sequence would allow the introduction of orthogonal groups to each

of the thiols, which could be attractive for some applications. The chlorosulfona-

tion reaction resulted in a variety of products that were difficult to handle, and the

product was not able to be isolated.

Finally, the last proposed synthetic route involved the formation of the ben-

zene ring via a catalyzed [2+2+2] cycloaddition reaction involving an appropriate

bis(thioalkyne) and l-propargylglycine (l-Prg) (Scheme D.8).14,15 The procedure

to prepare the bis(thioalkyne) involved the use of trimethylsilylacetylene, which

was deprotonated with n-BuLi and treated with elemental sulfur. Attempts to trap

the thioalkyne with di(1H -imidazol-1-yl)methanone (Im2CO) and di(1H -imidazol-

1-yl)methanethione (Im2CS) were unsuccessful; but attempts to trap with oxalyl

chloride, for example, could be interesting to investigate moving forward.

TMS
(a)

X
S TMS

S TMS

(b)
X

S

S

(c)

X
S

CO2Me

NHFmoc

S

X=O,S

Scheme D.8. Alternative synthetic route toward compound 4-1 involving a
[2+2+2] cycloaddition strategy. (a) i) n-BuLi, THF, −78 ◦C, ii) S8, iii) Im2CO
or Im2CS; (b) i) TBAF, THF; (c) i) RuCl(PPh3)3, EtOH, ii) l-Fmoc-Prg-OMe.

133



D.1 References

1. Vetter, S. Direct Synthesis of Di-and Trimethoxybenzyl Thiols from the Cor-
responding Alcohol. Synthetic Communications 1998, 28, 3219–3223 (cit. on
p. 126).

2. Liénard, B. M. R.; Selevsek, N.; Oldham, N. J.; Schofield, C. J. Combined
Mass Spectrometry and Dynamic Chemistry Approach to Identify Metalloen-
zyme Inhibitors. ChemMedChem 2007, 2, 175–179 (cit. on p. 127).

3. Mahendran, A.; Vuong, A.; Aebisher, D.; Gong, Y.; Bittman, R.; Arthur, G.;
Kawamura, A.; Greer, A. Synthesis, Characterization, Mechanism of Decom-
position, and Antiproliferative Activity of a Class of PEGylated Benzopoly-
sulfanes Structurally Similar to the Natural Product Varacin. The Journal of
Organic Chemistry 2010, 75, 5549–5557 (cit. on p. 127).

4. Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.;
Senanayake, C. H. The Reaction of Grignard Reagents with Bunte Salts:
A Thiol-Free Synthesis of Sulfides. Organic Letters 2014, 16, 1196–1199 (cit.
on p. 128).

5. Raap, J.; Nieuwenhuis, S.; Creemers, A.; Hexspoor, S.; Kragl, U.; Lugten-
burg, J. Synthesis of Isotopically Labelled l-Phenylalanine and l-Tyrosine.
European Journal of Organic Chemistry 1999, 1999, 2609–2621 (cit. on
p. 130).

6. Jung, J.-E.; Lee, S. Y.; Park, H.; Cha, H.; Ko, W.; Sachin, K.; Kim, D. W.;
Chi, D. Y.; Lee, H. S. Genetic incorporation of unnatural amino acids biosyn-
thesized from α-keto acids by an aminotransferase. Chemical Science 2014, 5,
1881–1885 (cit. on p. 130).

7. Kolb, K. E.; Field, K. W.; Schatz, P. F. A One-Step Synthesis of Cinnamic
Acids Using Malonic Acid: The Verley-Doebner Modification of the Knoeve-
nagel Condensation. Journal of Chemical Education 1990, 67, A304 (cit. on
p. 131).

8. Weise, N. J.; Ahmed, S. T.; Parmeggiani, F.; Galman, J. L.; Dunstan, M. S.;
Charnock, S. J.; Leys, D.; Turner, N. J. Zymophore identification enables the
discovery of novel phenylalanine ammonia lyase enzymes. Scientific Reports
2017, 7, 13691 (cit. on p. 131).

9. Ahmed, S. T.; Parmeggiani, F.; Weise, N. J.; Flitsch, S. L.; Turner, N. J.
Engineered Ammonia Lyases for the Production of Challenging Electron-Rich
l-Phenylalanines. ACS Catalysis 2018, 8, 3129–3132 (cit. on p. 131).

134



10. Varadaraju, T. G.; Hwu, J. R. Synthesis of anti-HIV lithospermic acid by
two diverse strategies. Organic & Biomolecular Chemistry 2012, 10, 5456–
5465 (cit. on p. 131).

11. He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.;
Yu, J.-Q. Ligand-Controlled C(sp3) H Arylation and Olefination in Synthesis
of Unnatural Chiral α–Amino Acids. Science 2014, 343, 1216–1220 (cit. on
pp. 131, 132).

12. Boyle, M. CLXXXVI.—The iodobenzenemonosulphonic acids. Part I. Jour-
nal of the Chemical Society, Transactions 1909, 95, 1683–1716 (cit. on
p. 132).

13. Bellale, E. V.; Chaudhari, M. K.; Akamanchi, K. G. A Simple, Fast and
Chemoselective Method for the Preparation of Arylthiols. Synthesis 2009,
2009, 3211–3213 (cit. on p. 132).

14. Garcia, L.; Pla-Quintana, A.; Roglans, A. Synthesis of non-proteinogenic
phenylalanine derivatives by rhodium-catalyzed [2+2+2] cycloaddition re-
actions. Organic & Biomolecular Chemistry 2009, 7, 5020–5027 (cit. on
p. 133).

15. Destito, P.; Couceiro, J. R.; Faustino, H.; López, F.; Mascareñas, J. L.
Ruthenium-Catalyzed Azide-Thioalkyne Cycloadditions in Aqueous Media:
A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte
Chemie International Edition 2017, 56, 10766–10770 (cit. on p. 133).

135



APPENDIX E

PUBLISHED MATERIAL

136



Parts of this dissertation have been previously partially or in full. The published

materials were included with permission from all co-authors and the publication

source.

Chapter 2

Alcala-Torano, R.; Walther, M.; Sommer, D. J.; Park, C. K.; Ghirlanda, G. Ratio-

nal design of a hexameric protein assembly stabilized by metal chelation. Biopoly-

mers 2018, 109, e23233.

137



APPENDIX F

PERMISSION TO REPRODUCE CHAPTER 2 FROM BIOPOLYMERS

JOURNAL

138



5/28/2019 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet 1/2

Title: Rational design of a hexameric
protein assembly stabilized by
metal chelation

Author: Rafael Alcala‐Torano, Mathieu
Walther, Dayn J. Sommer, et al

Publication: Biopolymers
Publisher: John Wiley and Sons
Date: Sep 6, 2018
© Wiley Periodicals, Inc.

  Logged in as:
  Rafael Alcala-Torano

Order Completed

Thank you for your order.

This Agreement between Mr. Rafael Alcala-Torano ("You") and John Wiley and Sons ("John Wiley and
Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons
and Copyright Clearance Center.

Your confirmation email will contain your order number for future reference.

printable details

License Number 4597820107053

License date May 28, 2019

Licensed Content
Publisher

John Wiley and Sons

Licensed Content
Publication

Biopolymers

Licensed Content Title Rational design of a hexameric protein assembly stabilized by metal chelation

Licensed Content
Author

Rafael Alcala‐Torano, Mathieu Walther, Dayn J. Sommer, et al

Licensed Content Date Sep 6, 2018

Licensed Content
Volume

109

Licensed Content Issue 10

Licensed Content Pages 8

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

Rational Metalloprotein Design for Energy Conversion Applications

Expected completion
date

Aug 2019

Expected size (number
of pages)

100

Requestor Location Mr. Rafael Alcala-Torano 

TEMPE, AZ 85281
United States
Attn: Mr. R afael Alcala-
Torano

Publisher Tax ID EU826007151

139


	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SCHEMES
	LIST OF ABBREVIATIONS
	PREFACE
	References

	RATIONAL DESIGN OF A HEXAMERIC PROTEIN ASSEMBLY STABILIZED BY METAL CHELATION
	Abstract
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	References

	EVALUATION OF THE CATALYTIC ACTIVITY OF COBALT CYTOCHROME B562 TOWARD CO2 REDUCTION IN WATER
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	References

	A NOVEL DITHIOL AMINO ACID FOR THE INCORPORATION OF [FeFe]-HYDROGENASE ACTIVE SITE MIMICS INTO PROTEIN SCAFFOLDS
	Introduction
	Retrosynthetic Analysis
	Results and Discussion
	Conclusions
	Experimental Details
	References

	CONCLUDING REMARKS AND FUTURE OUTLOOK
	REFERENCES
	SUPPORTING INFORMATION FOR CHAPTER 2
	SUPPORTING INFORMATION FOR CHAPTER 3
	SUPPORTING INFORMATION FOR CHAPTER 4
	ATTEMPTED ALTERNATIVE SYNTHETIC ROUTES FOR CHAPTER 4
	References

	PUBLISHED MATERIAL
	PERMISSION TO REPRODUCE CHAPTER 2 FROM BIOPOLYMERS JOURNAL

