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ABSTRACT

Causality analysis is the process of identifying cause-effect relationships among

variables. This process is challenging because causal relationships cannot be tested

solely based on statistical indicators as additional information is always needed to

reduce the ambiguity caused by factors beyond those covered by the statistical test.

Traditionally, controlled experiments are carried out to identify causal relationships,

but recently there is a growing interest in causality analysis with observational data

due to the increasing availability of data and tools. This type of analysis will often

involve automatic algorithms that extract causal relations from large amounts of data

and rely on expert judgment to scrutinize and verify the relations. Over-reliance on

these automatic algorithms is dangerous because models trained on observational

data are susceptible to bias that can be difficult to spot even with expert oversight.

Visualization has proven to be effective at bridging the gap between human experts

and statistical models by enabling an interactive exploration and manipulation of the

data and models. This thesis develops a visual analytics framework to support the

interaction between human experts and automatic models in causality analysis. Three

case studies were conducted to demonstrate the application of the visual analytics

framework in which feature engineering, insight generation, correlation analysis, and

causality inspections were showcased.

i



To my future children

ii



ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude towards my PhD advisor, Dr.

Ross Maciejewski, for his support and guidance on my research. I would like to thank

my wife (and colleague) for her significant contributions to my research and personal

well being. I also would like to thank Arizona State University for providing an

opportunity for me to continue learning and enhancing myself, and I have no regret

for my time spent here.

This work is supported by the U.S. Department of Homeland Security under

Award Number, 2017-ST-061-QA0001 and the National Science Foundation, Grant

No. 1350573. The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the official policies,

either expressed or implied, of the U.S. Department of Homeland Security.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Correlation Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Causality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Probabilistic Causation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Visual Analytics on Causality Analysis . . . . . . . . . . . . . . . . . . . . 16

3 VISUAL ANALYTICS FRAMEWORK FOR CAUSALITY ANALYSIS . 19

4 IDENTIFYING TOPIC DRIVERS IN MEDIA EVENTS . . . . . . . . . . . . . . . 25

4.1 Analytic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Semantic Event Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Semantic Lexical Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Semantic Similarity Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Semantic Interaction for Concept Word Clustering . . . . . . . . . 34

4.2.4 Word Weights Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Causality Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Timeline with Events and Causalities . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Annotating with Text Information . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.3 Bipartite View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.4 Detail List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



CHAPTER Page

4.4.5 Entity Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Usage Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.2 Climate-induced Unrest During Drought . . . . . . . . . . . . . . . . . . . 51

4.5.3 Food Insecurity and Climate Change Media . . . . . . . . . . . . . . . . 52

4.5.4 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 SPATIOTEMPORAL TRADE NETWORK ANALYSIS . . . . . . . . . . . . . . . . 60

5.1 Global Trade Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.3 Triadic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.4 Dependency and Leverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.5 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Correlation-based Country-Product Matrix . . . . . . . . . . . . . . . . 73

5.2.2 Anomaly Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.3 Choropleth View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.4 Trade Diffusion Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.5 Clustering and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 2011 East Asia Drought and Flood . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Sustainability - Food Insecurity and Political Instability . . . . 88

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



CHAPTER Page

6 SPATIOTEMPORAL TRADE NETWORK ANALYSIS – A CASE FOR

ADDRESSING SPURIOUS CORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Causality Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Visual Analytics Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.2 Causal Path View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.3 Context of Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.4 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



LIST OF FIGURES

Figure Page

2.1 Examples of Causal Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The Visual Analytics Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Semantic Annotation Framework Exploring the Period Between Oct.12

and Nov.2, 2014 of the Climate Change Media Dataset and the ACLED

Dataset. The Timeline Shows Annotations of Possible Drivers of Media

Reports on Climate Change Framed Around Food Insecurity. Key-

words “Agriculture” and “Food” Are Used for the Semantic Map-

ping Between the Media Topic and the Text Content in The ACLED

Dataset. The Causality Model Indicates a Goodness of Fit R2 ≈ .8

with p-value ≤ .05. Actors, Locations and Descriptive Text Are An-

notated on the Timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 The Topic Keyword View Shows the 50 Most Frequent Topic Keywords

for Economy in the Social Unrest Media Collection. Keywords Are

Ordered by Their Frequency in (a) and by Topic Significance in (b).

Color Refers to the Other Measure Not Ordered by. The Two Bars of

Each Keyword Represents Its Frequency Inside and Outside the Topic

Respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 The Cluster Force Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 This Figure Shows an Interaction Process of Steering the Cluster Force

Layout to Update the Word Concept Clusters. Each Step Is Marked

Numerically on the Figure. User Can Drag a Word Away from All

Clusters or Towards Another Cluster. User Can Drag a Group of

Words to Select Them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



Figure Page

4.5 Interaction on the Event List View to Update Word Weight and the

Event Semantic Similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Initial Causality Results Without Filtering Events. The Causal Ar-

rows Are Colored Based on Their Significance, and the Current Result

Shows No Significant Causality Between the Current Media Stream

and Events, and the Best Fit Model Is Displayed with R2 ≈ 0.6 and

0.1 < p-value ≤ 0.5 at a Lag of 4. The Height of the Area Curve

Represents the Amount of Variance Explained by the Model. . . . . . . . . . . 41

4.7 Example of the Bipartite View. This View Shows the Events (Left

Side) and the Media Articles (Right Side) Indicated by the Causality

Lag Under Analysis and Connected by Semantically Matched Keywords. 46

4.8 Investigating the Plausibility of Climate-Induced Civilian Abuse during

the 2014 GHoA Drought. The Link between Violence Events and Social

Unrest RSS Have Been Explored Although Casualty Test Shows Non-

Significant Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 The Annotation Glyph for Event and Media Articles. The Analyst can

Annotate Entities by Clicking on the Expanded Nodes. . . . . . . . . . . . . . . 49

4.10 Semantic Word Clustering and Filtering for the Study of Climate-

Induced Civilian Abuse During the 2014 GHoA Drought. . . . . . . . . . . . . . 54

viii



Figure Page

5.1 A Visual Analytics System for Exploring Global Trade Networks and

Their Relationship to Regional Instability. The Anomaly Time Se-

ries (1) on Top Displays the Time Series and Anomalies of the Trade

Attributes and Stability Measures for a Selected Country. The Choro-

pleth View (2) Along with the Small Multiple Maps (3) Display the

First Order Trade Relationships Centering on Selected Countries. The

Colored Bars Below Each Small Multiple Map Show the Temporal Cor-

relation of the Selected Trade Measure to the Stability Measure. The

Clustering View (4) Displays the Hierarchical Clustering for the Coun-

tries, Based on Either the Triadic Similarity or Top Partner Similarity.

The Groups Can Also Be Configured to Show the Average Triad Distri-

butions (As (6)) and Other Measures. The Trade Diffusion Graph (5)

Displays the Propagation Effect of Anomalies. Connections Between

the Nodes Indicate the Import Dependency From The Target Node to

the Source Node Is Larger Than a Threshold, Which Can Be Adjusted

Using the Slider on the Right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 The 13 Possible Triad Configurations Are Labeled with Numbers in

Braces. In the First Row, Triad 1 to 6 Are Open Form Triads, While

in the Second Row, Triad 7 to 13 Are Closed Form Triads. . . . . . . . . . . . . 68

5.3 The Country-Product Matrix view Has an Abstract View (A) and a

Detail View (B) to Show the Correlations Between Countries’ Trade

and Stability Measures. This Figure Shows Cameroon and Mauritania

Have Many Correlations Between Cereal Trade Measures and ACLED

Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



Figure Page

5.4 The Main Choropleth Map Can Be Used to Visualize Triad, Trade

Quantity/Value, and Country Dependency/Leverage. Examples Show

the Triad Distribution (Left), China’s Dependency (Middle), and China’s

Leverage (Right) in Cereal Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 The Matrix View Showing the Triad Distribution for Each Country.

Rows in the Matrix Represent Triad Configurations and Columns in

the Matrix Represent Countries. Each Cell in the Matrix Represents

the Triad Count for The Country. The First Column in the Matrix Is

the Currently Selected Country in the Map View. The Other Columns

Are Ordered Based on Their Vector Similarity to the First Column.

The Analyst Can Remove Some Triads (Rows) from the Matrix by

Clicking on the Triad on the Similarity Control Panel. Doing So Will

Recompute the Vector Similarities and Reorder the Matrix. The Bar

Chart in the Bottom Shows the Instability Measure (e.g. ACLED, GDP). 81

x



Figure Page

5.6 The Clustering View Displays the Clusters of Countries in a Dendro-

gram. Countries in a Cluster Are Grouped in a Box (1). Clicking on

Any Box Will Break the Cluster into Two Smaller Clusters. Clicking

on Any Internal Node (2) Collapses All Children. The Analyst Can

Use the Slider (4) to Adjust the Similarity Threshold for the Hierar-

chical Clustering. The Color of the Countries Encodes Their Selected

Stability Measure. By Clicking on the Setting Icon (3) at the Top

Right Corner of Each Box, the Analyst Can Choose Between Different

View Options for the Fox. The Box Can Change to a Histogram of the

Stability Measure (5) or a Bar Chart That Compares the Mean and

the Standard Deviation of Every Triad Configuration (6). . . . . . . . . . . . . 83

5.7 Comparison Between Niger (1) and Tunisia (2) on Each Country’s

Import Quantity of Rice. By Comparing Both Countries’ Major Ex-

porters of Rice Using the Choropleth Views (1a, 2a), It Can Be Seen

that Niger Imports from a Wide Variety of Countries Whereas Tunisia

Imports Primarily from India and Pakistan. The Time Series for Both

Countries (1b, 2b) Show That Tunisia Had an Import Quantity Dip

in 2012 While Niger Had No Such Disruption. At the Same Time,

Tunisia Had a Sharp Increase in Local Conflict Events. The Analyst

Can Also Observe That Tunisia Had Fewer Types of Triads Than Niger. 86

xi



Figure Page

5.8 Egypt Had a Sharp Increase in Cereal Import Value in 2011. This

Figure Shows (1) the Import Value Distribution of Egypt, (2) The

Similar Countries Who Had the Same Increase, (3) the Scatter Plot by

ACLED and Import Value of Cereal Among Africa Countries, and (4)

the Time Series Indicating the Sharp Increase as Well as the Negative

Correlation Between Egypt’s Import Value and Its Stability Index. . . . 89

6.1 The System Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 The Correlation Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 The Causal Path View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Trend Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Variable Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xii



Chapter 1

INTRODUCTION

When extreme drought struck China’s main wheat-growing regions in 2011, it

was not China that suffered food shortages, but far-off countries like Egypt, which

experienced widespread civil unrest and food riots [1]. How was this possible? Why

was this possible? Why did policy makers not foresee this potential risk to social

stability? These questions are all related to finding the co-occurrence and cause-effect

relationships between the countries, the international policies, or other underlying

features. Causality and correlation analysis have a wide range of applications, such

as finding the relationship between a person’s education level and their health [2],

finding associations between pet ownership and health promotions [3], or identifying

if a company’s marketing campaign increases their product sales [4]. Sometimes, it

is necessary to focus on finding the cause-effect relationships, i.e. causality analysis,

because causal relationships theoretically remain stable under any condition [5]. This

property can become very important for safety-critical problems. For example, it

is important for the drug companies to understand the actual effect of their drug

regardless of the conditions of the patient [6–8].

Unfortunately, causality analysis often remains relatively overlooked in the data

science community. One reason is that causality detection is still an extremely difficult

problem. Causal relations, in principle, cannot be tested solely based on mathematical

models [9, 10], and, ideally, controlled experiments need to be carried out to reliably

establish causality [11, 12]. However, the cost of these experiments can sometimes

hinder their applicability. Thus, researchers often resort to observational studies in

which causal relations are extracted from observational data. Unfortunately, models
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trained on observational data are susceptible to bias, which makes them much less

reliable than those derived from experiments. One way to mitigate this problem is

to use expert knowledge to justify the causal claims, which often rests upon some

theoretical backgrounds, and these causal relations have to be viewed through the

lens of domain specific theories. However, as the data becomes more complex, the

utility of causality analysis with this approach tends to drift towards an exploratory

nature, in which case visualizations often become desirable supplements.

While causality analysis on observational data has recently received more atten-

tion, handling large observational data has always been hard. Problems, such as high

dimensionality or a lack of well defined structure, make many datasets difficult to

analyze. Furthermore, the daunting complexity of many datasets makes it hard to

determine what to explore. In the case of the global food trade network [13], the data

contains a trade network with over 200 countries and more than 600 food products.

If the analyst’s task is to find out whether the decrease of exports of any combi-

nations of trade products from any countries has any effect on the social stability

of another country, they would have to examine the relationships between a large

amount of pairs of variables. Such tasks can be automated, but in order to identify

causality, human input is still required. In another example, when analysts want to

analyze a large amount of news to identify whether exposure to certain information

has the potential to spur political uprisings, it is common to use natural language

processing (NLP) and information retrieval techniques to pre-process the data before

feeding it into any statistical models. In this case, the analysts have to make sure the

pre-processed data accurately represents the information in the text, otherwise any

correlation derived from the data could be spurious. It is very likely that some human

intervention is needed to fine tune the pre-processed results. The size and complex-

ity of these observational data can also intensify the deficiency of the causal models,
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whose quality and applicability tends to degrade significantly with the number of

variables. As the number of variables increase, these models take longer to execute

and become much harder to interpret. Thus, some feature selection processes are

required for pre-process, ideally with the intervention of human experts, as machines

do not yet fully possess the power of human intuition.

In order to develop an effective approach to assist people in hypothesis generation

and correlation and causality analysis, this thesis develops a visual analytics frame-

work for causality analysis. Visual analytics serves as a means of bridging automatic

models and the end users to interactively support exploring the data, model, and

results. In causality analysis, exploration and interaction can serve as a way to in-

ject user knowledge into the analysis process to help identify the “true causality”.

This framework facilitates causality analysis by developing several interactive visual

analytics components to assist exploration, variable extraction, and model tuning.

Case studies of this framework were conducted to demonstrate its capabilities across

different domain applications.

The first case study focuses on the exploration, linkage, and annotation of multiple

media sources to explore drivers of discourse. In this case study, text analysis meth-

ods were used to extract relevant media documents and the results were subsequently

used for causality analysis. First, semantic matching was applied to identify keywords

and concepts that an analyst considers to be related between two datasets. A novel

widget enables domain experts to quickly cluster, split, and merge keywords from

a semantic dictionary to ensure that meaningful similarities are captured through

a visual to parametric interface while allowing for analyst-guided language disam-

biguation. While there are known limitations of keyword searches, by enriching an

analyst’s choice of keywords with semantic meaning, a broader matching was enabled

that better aligns with the user’s mental model. In this way, searching was not lim-
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ited on one (or several) keyword(s) but instead applied on semantic meanings that

embeds the analyst’s domain knowledge. Once users are satisfied with the semantic

grouping of keywords, filtering is performed and a raw count of semantically related

articles and events per time step can be extracted from each of the time-oriented

textual datasets. Using these time series, a secondary annotation step is performed

where causality measures are applied to the derived time series to extract possible

drivers. These causality measures could indicate that past events contained in time

series A contain information that can help predict time series B above and beyond

the information contained only in time series B. If a causal link is established, the

framework then indicates the temporal lag under which causality was identified and

provides interactions to further filter and annotate the time series based on relation-

ships between locations, actors and other derived information.

The second case study focuses on enabling the users to understand how trade

relationships impact local vulnerabilities over time in a global trade dataset. To

support such an analysis of multivariate trade data, the visual analytics framework

integrated a local network structure analysis technique based on triadic closure [14],

and anomaly detection and correlation analysis for pattern analysis and hypothesis

generation. To provide a basic understanding of the trade data, an interactive global

map view was used to visualize both the volume and proportion of trade events for

imports, exports, and triadic structures. Temporal correlation analysis and anomaly

detection are provided to guide the user to structures of interest within the data,

and small multiples are used to allow comparisons between regions with similar data

features. Other views include a triad comparison matrix which compares the triad

distribution for each country, and a triad hierarchical clustering view which groups

countries based on their triad profile similarities.
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The third case study extends the trade analysis case and focuses on identifying

spurious correlations. Here, causal models were trained on trade measures and sta-

bility measures, and the results were matched against the detected correlations to

identify potential spuriousness. The corresponding sub-network of the causal model

was visualized to help the analysts understand the rationale of the indicated spu-

riousness. Additional contextual information surrounding the causal relations was

provided to help inspect the causal relations, and interactions were implemented to

adjust the models.

In conclusion, this thesis develops a visual analytics framework for correlation

and causality analysis which assists analysts in exploring and manipulating data and

models. This framework structures a general visual analytics pipeline for causality

analysis, and specifies the role of interaction between human and machines in cor-

relation and causality analysis. Three case studies were conducted based on this

framework, and demonstrate that the visual analytics framework is effective at as-

sisting the analysis. The contributions of this thesis include:

1. A general framework for visual analytics in causality analysis.

2. Applied causality metrics for identifying topic drivers in media streams.

3. A user-guided semantic lexical matching scheme for document selection.

4. A causality-driven annotation scheme for exploring potential media drivers.

5. A novel triad analysis for exploring network dependencies to identify possible

relationships between trade network structures and other measures of interest.

6. An integration of space, time, and network analysis methods to support the

linked analysis of trade network data and conflict events through anomaly de-

tection and correlation analysis across imports, exports and triadic structures.
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7. An end-to-end solution to causality analysis, which makes causality analysis

more accessible by facilitating the generation, exploration, and modification of

causal models.
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Chapter 2

BACKGROUND AND RELATED WORK

Causality is a basic metaphysical notion concerning the relationship between cause

and effect [15]. Philosophical thinking about causality predates those of Aristotle,

who extrapolates that causality analysis is the search for explanation about states of

being [16]. Modern theories on causality, however, were developed in the past cen-

tury, which progressed through a diverging path led by Rubin and Pearl. Rubin [11]

pioneered the usage of the potential outcome framework [17] for causality analysis in

which causality is expressed as the difference between two potential outcomes, with

one of them being the observation. The effect of the potential outcomes are typically

estimated through randomized experiments. Pearl laid the foundation of graphical

causal models [5] in which causal relations are expressed as conditionally independent

relations that can be fully described in a directed acyclic graph (DAG), often referred

to as the Bayesian network [18]. Casting all causal assumptions in a graphical lan-

guage offers a more complete and intuitive representation of causal dynamics among

variables, and it also makes it easier to algorithmically identify causal effects based on

non-experimental data [5, 19]. Pearl’s work led to a proliferation of causality analysis

techniques for observational data [20–22], which spans a wide range of adaptations

in fields such as epidemiology [23–27], biology [28–30], and social science [26, 31].

Both the potential outcome framework and graphical causal model address prob-

lems regarding the search for “true causality”, whereas some works instead focuses

on generating causal hypothesis. One such line of work emerged from econometrics,

led by Granger with his Granger causality method [32]. Granger causality is pri-

marily concerned with the predictive ability of one time series over the other, and,
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despite its name, is really not about “true” causality due to its inability to control

for unobserved spurious effects. However, by providing evidence regarding temporal

precedence, Granger causality is a powerful method for hypothesis generation, and

its simplicity and interpretability have contributed to Granger causality’s popular-

ity in temporal causality analysis. Recently, there have also been efforts to combine

Granger causality with graphical models to address its susceptibility to spurious ef-

fects [33, 34]. This thesis leverages Bayesian networks and Granger causality for

causality modelling, combining them with visual analytics components to support

causal explanations and hypothesis generation.

Visual analytics systems dedicated to causality analysis are still in their infancy,

but there has been a rich body of visual analytics research focusing on correlation

analysis. Correlation analysis can serve as a preliminary step for causality analysis

and can also provide insights for data exploration. This thesis also uses correlation

analysis as means of insight generation, and visual analytics components are developed

for this task. The following sections will discuss correlation visualizations, graphical

models on causality analysis, and the current state of the art in causality visualization.

2.1 Correlation Visualizations

Causality analysis can begin with identifying correlations, and correlations can

provide many hints about the underlying patterns of the data. Correlation analysis

and visualization are essential components of this thesis and significant effort by an-

alysts are often spent on correlation inspection on high dimensional spatiotemporal

data. Many visualization techniques have been established for correlation analysis,

such as the scatterplot, the parallel coordinate plot [35] and the correlation ma-

trix. While these visualizations provide users with an overview for simple tasks,

more complex frameworks are needed for in-depth analysis. Zhang et al. proposed
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a visualization framework called Correlation Map [36] to visualize correlations for

multi-variate data. Correlations among variables were visualized in a network using

a force-directed layout with the strength of force encoding the strength of the corre-

lations. A hierarchy of variables was also built using a correlation-related metric to

enable splitting and merging operations on the variables. The authors also extended

the interface to include a subspace scatter plot to integrate data into the Correlation

Map [37], which projects the data points to the divided triangles from the network.

Qu et al. [38] introduces a polar system using a circular pixel bar chart to detect

correlations between wind direction, wind speed and other attributes to help users

understand how these facts contribute to the air pollution problem in Hong Kong.

Correlation based systems can also be used for inspecting high dimensional data. Xia

et al. [39] developed a visual analytics system that explores the relationships between

dimensions by comparing the similarity of views, which serves as the basis for feature

selection and categorization. Yuan et al. [40] visualized correlations of dimensions

by projecting them into a 2D plane, where these dimensions are first grouped in a

hierarchy, and each group can be subsequently compared. Visualization has also been

used for inspecting temporal correlations. Dang et al. [41] developed a system that

visualizes correlation among dimensions in a high dimensional temporal dataset, in

which temporal comparisons are done through a sequence of scatterplots and dissim-

ilarity measures of these scatterplots are computed and visualized in a time series.

Lee et al. [42] designed an algorithm to extract and cluster salient temporal trends

and visualizations were developed to display these temporal trends. The methods

proposed in these works are not directly used by this thesis, but correlations on large

spatiotemporal data are explored in this thesis, and this thesis will discuss its own

approaches to correlation visualization.
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2.2 Causality Analysis

It is well known that “correlation does not imply causation”. However, the ma-

jority of correlation visualization tools does not address this fundamental issue in

causality analysis. That is, how can we make the analysts to determine if the de-

tected correlation is spurious. For this, there needs to be some addition to correlation

visualization that stimulates causal reasoning. This thesis attempts to incorporate

graphical causal models as a guidance to causal reasoning in the proposed visual

analytics framework. This section provides general background on graphical causal

models, along with some techniques that can be used to generate and manipulate

these models, many of which are related to the methods used in this thesis.

2.2.1 Probabilistic Causation

Causality analysis, as opposed to correlation analysis, attempts to find fundamen-

tally stable directional relationships that would hold true regardless of the conditions

binding them [10]. In order to verify a causal relationship, one would have to exam-

ine all factors that can potentially influence the causal relations, which leads to the

philosophical notion that true causal relationships can not unequivocally be found.

However, by limiting the problem to a restricted setting, one would be able to assess

the probability of something causing the other [43].

One way to express causality probabilistically is to use conditional probability [44–

46]:

X → Y ⇐⇒ P (Y | X) > P (Y ) (2.1)

In other words, X causes Y if and only if the occurrence of Y given X is more

likely than that of not given X. However, this definition suffers from two fundamental

deficiencies [47]: the equivalence of P (Y | X) > P (Y ) and P (X | Y ) > P (X) means
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Figure 2.1: Examples of Causal Diagrams.

the directionality of the relationship can not be deduced from Equation (2.1) alone;

and the potential spuriousness of the relationship has not been adequately addressed.

In other words, Equation (2.1) is essentially an expression of association, thus more

restrictions are likely needed in order to specify causality.

One way that spurious correlations between X and Y can arise is due to variables

called confounders [5, 48], which are defined as factors that have influence on both X

and Y . These confounders can introduce a magnifying influence, namely confounding

bias [5], on the relationship between the pair of variables. In an extreme case, shown

in Figure 2.1(a), the confounder U can make two completely unrelated variables X

and Y appear positively correlated. In order to prove/disprove the existence of a

causal relationship, one must condition on the confounders to remove their effects.

In Figure 2.1(a), X and Y are said to be conditionally independent of U , expressed

as [5]:

P (Y | U) = P (Y | X,U)

11



or

(X ⊥⊥ Y | U)

Therefore, the correlation will completely disappear if one conditions on U . However,

it is often the case that the causal effects coexist with the effect of the confounders,

in this case, conditioning will expose the actual causal relationship by removing the

confounding bias.

Another more peculiar cause of spurious correlation results from having X and

Y influencing the same external factor(s) V , namely the collider [10], in which case

spurious correlation between X and Y arise when one incidentally conditioned on V

during analysis. This phenomenon is also called Berkson’s paradox [49].

Conditional independence can be derived using a graphical criterion introduced

by Pearl [5, 18] called d-separation. Given a set of relationships as a graph,

“A path p is said to be d-separated (or blocked) by a set of nodes Z iff

1. p contains a chain i → m → j or a fork i ← m → j such that the

middle node m ∈ Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the

middle node m 6∈ Z and no descendant of m is in Z [5].”

An example of this concept is illustrated in Figure 2.1(b), in which case X and Y are

d-separated by the set {U,M}, which is equivalent to saying (X ⊥⊥ Y | UM). It is

also worth noting that d-separation involves the notion of chain, such as X →M → Y

in Figure 2.1(b). The idea that M intercepts X and Y stems from the fact that by

knowing the state of M , the information on the state of X would become redundant

for assessing the state of Y . However, one can also stress that X still asserts influence

on Y , albeit indirectly. When the analysts are solely concerned about assessing the
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actual influence from one variable to the other (e.g. X to Y in Figure 2.1(b)) —

as is for the majority of research, much attention should be directed to controlling

the confounding bias. It is for this reason that Pearl [5, 50] introduced an extended

concept called the back-door criterion. In a directed acyclic relational graph (DAG),

“A set of variables Z satisfies the back-door criterion relative to an ordered

pair of variables (xi, xj) if:

1. no node in Z is a descendent of xi; and

2. Z d-separates every path between xi and xj that contains an arrow

in to xi [5].”

As for the example in Figure 2.1(b), the set {U} is said to satisfy the back-door

criterion relative to {(X,M), (M,Y )}. This allows us to assess the effect of X on Y

with the equation:

P (Y | X) = P (Y | X,U)P (U)

With each component P (y | x) computed as a marginalization over U ,

P (y | x) =
∑
u

P (y | x, u)P (u)

However, it is often the case that the confounder(s) are unobserved and/or their

effects are very hard to measure [51], which makes it nearly impossible to directly

assess the causal effect between a pair of variables. Fortunately, the effect of causal

relations can still be estimated with observed data through the help of intermediate

variables called mediators [52–55]. As an illustration, consider modifying the example

in Figure 2.1(b) such that the variable U represents a set of latent confounding factors

influencing both X and Y (Figure 2.1(c)). Then, with the assumption that X →M is

unconfounded and M → Y is unconfounded given X, we can leverage the mediator M
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to directly estimate the effect of X on Y , circumventing the latent confounder(s) U .

Pearl [5, 56] summarized the requirements for mediators in his front-door criterion.

“A set of variables Z is said to satisfy the front-door criterion relative to

an ordered pair of variables (X, Y ) if:

1. Z intercepts all directed paths from X to Y ;

2. there is no unblocked back-door path from X to Z; and

3. all back-door paths from Z to Y are blocked by X [5].”

Given that {M} satisfies the front-door criterion relative to {(X, Y )}, the effect of X

on Y can be computed as [5]

P (y | x) =
∑
m

P (m | x)
∑
x

P (y | x,m)P (x)

2.2.2 Bayesian Networks

Pearl’s back-door and front-door criterion theorized the general approaches for

controlling confounding bias. A large body of research has implicitly or explicitly

included these approaches [57–59], and many of these appoaches involve a standard

method called the controlled experiment, in which the causal relationship is estab-

lished through measurements on randomized samples with the confounding variables

carefully vetted and controlled. To carry out this type of experiment, one would have

to assume a theoretical structure of the relationships, then carefully verify them based

on experimental results. Obviously, this type of analysis can encounter limitations

when dealing with complex multivariate problems as the cost of the experiments can

become prohibitively high. Hence, we are seeing an increasing amount of studies that

attempt to extract causal relations from observational data, where the results can

serve as aids for policy making or guidance for experiments [60–62]. Many of these
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studies involve a type of graphical model called the Bayesian network [63]. Bayesian

networks represent conditional dependence/independence among variables in a direct

acyclic graph (DAG), which can be interpreted as a causal networks [5, 63]. Learning

Bayesian networks from data generally involves two steps [21]:

1. Structural Learning

Structural learning is a process to estimate the DAG structure of a network

from data, where the methods often build on top of the structural causal theo-

ries previously mentioned. There are, in general, two approaches to structural

learning [21]: the score based approach and the constraint based approach. The

score based approach searches though the space of available structures given the

data and finds the one which produces the optimal score, which is typically cal-

culated by solving the maximum likelihood estimation (MLE) for the structure

given the data [21]. Since the number of available structures grows exponentially

with the number of variables in the data, the search is an NP-hard problem [64].

Some heuristic based methods can also be applied to reduce the search space,

such as the hill climb algorithm [20]. These methods often settle in a local

maximum, thus their results can only be treated as an approximation.

The constraint based approach, pioneered by Verma and Pearl in their causal

discovery framework [65, 66], attempts to find the causal structure by first test-

ing conditional independence between each pair of variables given all possible

combinations of parent nodes, which effectively produces an undirected graph

called the skeleton. Then, the DAG can be obtained by orienting the edges

according to the constraints imposed by the skeleton. The conditional inde-

pendence can be tested using methods such as the χ2 test [67] (for discrete

variables) and partial correlation [68] (for continuous variables).
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2. Parameter Estimation

Parameter estimation is a process to estimate the conditional probability dis-

tributions (CPDs) given the structure and observation. Each CPD specifies the

probability distribution of a variable given its parents in the network, and it can

typically be derived via MLE by assuming that the prior probability follows a

Dirichlet distribution [69]. A Bayesian network is fully specified if the CPD of

each variable in the network is filled.

The learned Bayesian network provides a best guess of the causal structure given

the observation, which can serve as a guidance to causality inspection. The utility of

this model in the proposed visual analytics framework will be discussed in Chapter 6.

2.2.3 Visual Analytics on Causality Analysis

There are several works that focused on visualizing causal diagrams. Elmqvist et

al. proposed a visualization technique called growing squares [70]. This visualization

design borrows from the Hasse Diagram [71], with the exception that each node is

assigned a unique color, and an animated growing square is triggered when a causal

effect initiates. The growing squares kept a mixture of colored grids representing the

cause and effect nodes to keep track of the event sequence. One problem with this

layout is that it uses a simple color coding scheme that does not scale well with system

size. Elmqvist later proposed an enhanced version called growing polygon [72] where

each node is assigned an n-sided polygon, and each such polygon is subsequently

filled with the colors of the causes influencing it. However, both growing squares

and growing polygons have limited abilities for signifying causal strength. Kadaba et

al. [73] address these problems by depicting causal relations by node-link arrow and

glyphs, leveraging simple animations of node sizes to indicate interactions between the
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factors and the target. Other work has been done to directly visualize the Bayesian

belief networks [74] in which the layout is guided by a temporal order, and multiple

visual variables like color, node size, and proximity are used to represent network

semantics.

Causality visualization can also be used as an aid for causal inferences. Wang

et al. [75] developed a visual analytics system utilizing Bayesian networks to help

incorporate human knowledge in identifying causal relationships. In their system,

the causal relationships were visualized using a force directed layout [76]. The an-

alyst is allowed to interact with the causal graph interface to modify the diagram,

such as adding, removing, or modifying a causal relationship. Visual feedback is pro-

vided to help the analyst assess the implications of such modifications. However, the

drawback of this layout is that it can potentially display an overly complex struc-

ture, especially when the diagram is large. Following this, Wang et al. proposed

an improved version [77] which contains a layout that emphasized the flow of causal

sequences. This layout extracts causal paths from the diagram using spanning trees

and displays them as a flow in consistent directions. In addition, the system also

allows for comparison of models trained on subdivisions of the data, along with a

visual pooling process to summarize and diagnose different models. One limitation

of this approach is that it cannot analyze causalities in time series data. For time

series data, Granger Causality [32] is a widely adapted technique. Zhu et al. [78] pro-

posed a spatio-temporal Granger Causality model to analyze causality between urban

dynamics and air pollution. However, there have been few works utilizing Granger

Causality in the visual analytics domain. This thesis utilizes both Bayesian networks

and the Granger causality for causal modelling and visualizations are implemented to

assist the analysts understanding and manipulating the models. Details of the imple-

mentations will be discussed in the case studies, and they differ from Wang and Zhu’s
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work by providing contextual information surrounding the detected causal relations

to further enhance understanding of the causal relations.
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Chapter 3

VISUAL ANALYTICS FRAMEWORK FOR CAUSALITY ANALYSIS

Causality analysis with observational data has become more popular due to in-

creasing availability of data, but its applicability is still limited due to several con-

straints:

• Causal models trained on observational data are susceptible to bias due to spu-

rious effects from unobserved variables. This unreliability has put people off

from using these models in critical tasks. However, with enough expert over-

sight, these causal models can turn into powerful tools to solve problems that

were previously deemed impossible. Unfortunately, to the best of my knowl-

edge, there do not exist many tools to assist human experts in inspecting and

interpreting the model results in an interactive and intuitive way.

• Learning causal models with large amounts of data can be very time consuming,

and the interpretability of the model tends to decrease as the number of variables

gets larger. In order to address this issue, one would have to omit certain

variables that do not contribute to the analysis to reduce the complexity of the

model. This process cannot be completely automatized, as it will put further

strain on interpretability.

The goal of the proposed visual analytics framework is to assist causality analysis by

easing the interactions between human experts and automatic models, and to help

the human experts better understand and manipulate the data and model results.

Doing so can potentially mitigate the issues of interpretability and make causality
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Figure 3.1: The Visual Analytics Framework.

analysis more accessible. In order to achieve this goal, the framework needs to satisfy

several design requirements:

R1 The framework needs to support exploration and manipulation of data to im-

prove insight generation and modelling.

R2 The framework should enable interactive training and tuning of models and

support immediate feedback.

R3 The framework should provide contextual information surrounding model re-

sults to assist explanation and verification of the results.

Figure 3.1 illustrates the pipeline of the framework, which consists of the following

components:

C1 Exploration

The typical analysis workflow begins with exploring the dataset. Analysts rely

on this approach to develop an understanding of the data and perform qual-

itative measurements to help generate insights to guide the direction of the
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analysis. Many problems in the dataset can also be discovered during the ex-

ploration, such as missing or erroneous data. Exploration is not only limited to

the initial stage of analysis, but exploration can help enhance the understand-

ing of the model output throughout the analysis. Visualization has played an

important role in exploratory analysis because it is effective at summarizing and

presenting large volumes of data [79, 80]. This framework uses visualization to

facilitate exploration on data and models, as well as the intermediate results

from each component in the pipeline.

C2 Variable Extraction

Variable extraction is a process to refine and extract useful features from a

dataset to be fed into the analytical process. This process typically involves fil-

tering redundant features and/or transforming the values of the data to produce

a concise and accurate representation of the data, it also often involves organiz-

ing and standardizing the data format when the data is unstructured. Variable

extraction is a necessary step for nearly all types of numerical analysis; however,

there exists some difference in preference when it is applied in causality analysis

versus predictive analysis. In predictive analysis, the goal is to predict future

observations, thus variable extraction tends to focus on selecting the subset of

data that helps produce the most optimal predictions, sometimes by sacrificing

the interpretability of the model. In causality analysis, the focus of variable ex-

traction is to select the set of variables that mirrors the participating entities in

the phenomenon being studied in order to produce a comprehensive model that

best explains the phenomenon, in which case sacrificing interpretability is much

less acceptable. In causality analysis, variable extraction can be supported by

incorporating domain knowledge, which makes visual analytics very applicable.
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C3 Association Extraction

Association extraction [81] can be defined as a process to model the relation-

ships between the variables of interest, regardless of if they are causal or not.

Association extraction can serve as a preliminary step for causality analysis,

but association extraction itself can also provide valuable insight. Common

methods for association extraction include correlation analysis and regression.

However, the analysts need to be aware that some of the correlations can be

spurious and additional examinations may be needed to rule out these spurious

correlations. To carry out these examinations, the analysts can either rely on

their domain knowledge and/or conduct experiments. However, as the data size

gets larger, it becomes increasingly difficult to manually examine each pair of

correlations, thus some automatic methods are necessary.

C4 Causality Modelling

Causality modeling attempts to model the true causal relationships among vari-

ables. This process often involves two steps: separating the true relationships

from the spurious ones (as mentioned in the previous section) and determin-

ing the direction of the relationship. The most reliable way to identify true

causal relationships is through controlled experiments. However, as the prob-

lem gets more complex, the cost of running these experiments tends to grow

as well. Recently, there has been a growing interest in running causal models

on observational data, commonly by using Bayesian networks and/or structural

equation models (SEM) [23–27]. These models attempt to capture causal rela-

tionships by dissecting the structure of the relationships among the variables.

However, the results they generate are not guaranteed to be true causality due

to spurious effects imposed by externalities beyond the observations. Moreover,
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the direction of causal relationships generated by these models can also be am-

biguous since there could be multiple “optimal” orientations that fit the same

observation. Because of these shortcomings, it is extremely important to double

check and verify the results of these models, which often requires human input.

C5 Pattern of Relationship

Since causal models trained on observational data are inherently ambiguous,

it is up to the analyst to decode the meaning of the causal relationships and

decide whether or not they are reasonable. As such, it necessary to examine

these relationships through the lens of a broader context. Although the analysts

can often supplement those information based on their own domain knowledge,

it is still desirable to provide contextual information in the system targeting

the causal relationships. This is not just for convenience, since large amounts of

data can be collected through existing infrastructure, the analysts can clearly

leverage these data to gain a better understanding of the relationships and

discover potential surprises.

C6 Model Tuning

If there are invalid causal relationships in the model, it makes sense to allow

the analyst to modify the model. As such, the framework should support op-

erations such as adding/removing variables, adding/removing causal relations,

and setting variables to constants. Doing so may alter the optimal structure

of the relationships between the variables, which means the causal relations

in the model will need to be adjusted accordingly. The analysts then have to

investigate the validity of the updated model by going through the pipeline

again.
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C7 Explanation

Once the analysts are satisfied with the model, they can then try to explain

the model with their own knowledge and/or the information provided by the

system. The system can also include functionality to allow the experts to an-

notate the final presentation of the results. These annotations can help experts

immediately interact with the data to flag events that can constitute changes

in the underlying equilibrium of these processes, they can also potentially help

the experts to save the states of their “thinking process” on the findings so they

can share these with other experts to ease communication and collaboration.

The framework in Figure 3.1 is a general visualization pipeline for causality and

correlation analysis. The following chapters will discuss three case studies that im-

plements visual analytics systems based on the proposed framework to address to

specific problems. One case study focuses on identifying causal relationships between

conflict events and media reports by extracting information from two text documents.

The other case studies focus on exploring correlation and causality between trade and

social stability in every country from a large spatiotemporal food trade network data.
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Chapter 4

IDENTIFYING TOPIC DRIVERS IN MEDIA EVENTS

As citizen news reports, micro-blogs and other media outlets have increased, a

variety of tools have emerged for analyzing media data collections. Such tools tend to

focus on topic extraction [82, 83], event detection [84], and information flows [85, 86]

as a means of quickly assessing the development of ongoing stories. However, recent

work often focuses on exploring evolving media discourse in isolation. What is needed

are tools and methods that can enable analysts to link together multiple data sources

of interest in order to identify patterns and drivers that exist between datasets that

are not fully captured or represented in any single dataset alone. To that end, new

technologies have been developed for fusing media data and secondary data sources

to provide contextual information. For example, recent work from Wanner et al. [87]

and Hullman et al. [88] explored methods for time series analysis to identify text

features of interest in conjunction with quantitative phenomena observed in stock

prices, Liu et al. [89] proposed TextPioneer with a combination of hierarchical tree

visualization and a twisted-ladder-like visualization to present and analyze the lead-

lag patterns in a topic between different corpus, and work by Lu et al. [90] explored

methods for identifying intervention points in news media data to cue analysts into

the exploration of secondary datasets of interest.

However, fusing datasets and providing means of identifying and annotating po-

tential temporal drivers is still fraught with challenges. For example, imagine col-

lecting a corpus of text from Twitter discussing a sale product (e.g., tennis shoes) as

well as a collection of product reviews on tennis shoes from Amazon. In this case,

an analyst may want to see if discussion on Twitter is driving ratings and comments
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in the product reviews. Challenges here could be that the language used on Twitter

and the language used on the product review site do not have a one to one matching

(e.g., “This shoe is sick” could be counted as a positive review, but the language on

the product review site may use less slang). As such, keyword searches to filter the

document collections to only positive reviews may not be able to rely on traditional

topic modeling tools and often need domain expert intervention. Once a dataset is

curated, then further automated analysis to explore drivers between the datasets must

be performed (for example, do positive tweets about a product proceed positive prod-

uct reviews?). Annotations of key events in the timeline and key actors in the text

corpora are also relevant and need to be annotated in the hypothesis exploration and

analysis phase to help the analyst navigate large document collections and identify

key components of the event drivers.

As such, this case study instantiates the proposed visual analytics framework

(Figure 3.1) into a system (Figure 4.1) that focuses on the exploration, linkage, and

annotation of multiple media sources to explore drivers of discourse. First, semantic

matching was applied to identify keywords and concepts that an analyst considers to

be related between two datasets. A novel widget enables domain experts to quickly

cluster, split, and merge keywords from a semantic dictionary to ensure that meaning-

ful similarities are captured through a visual to parametric interface while allowing for

analyst-guided language disambiguation. While there are known limitations of key-

word searches, by enriching an analyst’s choice of keywords with semantic meaning,

a broader matching was enabled that better aligns with the user’s mental model. In

this way, the system moves away from searching on one (or several) keyword(s) and
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Figure 4.1: Semantic Annotation Framework Exploring the Period Between Oct.12

and Nov.2, 2014 of the Climate Change Media Dataset and the ACLED Dataset.

The Timeline Shows Annotations of Possible Drivers of Media Reports on Climate

Change Framed Around Food Insecurity. Keywords “Agriculture” and “Food” Are

Used for the Semantic Mapping Between the Media Topic and the Text Content in

The ACLED Dataset. The Causality Model Indicates a Goodness of Fit R2 ≈ .8

with p-value ≤ .05. Actors, Locations and Descriptive Text Are Annotated on the

Timeline.
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instead search on semantic meanings that embeds the analyst’s domain knowledge

into the search.

4.1 Analytic Tasks

As an example analysis, first consider a scenario in which a political scientist wants

to explore the relationship between local conflicts and the 2015 Nigerian election.

Prior to the Nigerian election, domain experts had hypothesized that widespread

riots and social unrest would occur as part of the election cycle. The domain expert

wanted to analyze social unrest news articles and local conflict events in Africa during

the time leading up to the election to inspect if the election campaign media was a

precursor to violence (or vice-versa). First, the data for analysis is collected from

two sources (news media and a curated event dataset documenting violent conflicts

in Africa). These datasets are a superset of the data needed for analysis. Thus,

the first task is filtering the data for the relevant text. Once a subset of the media

posts and the conflict event records are curated, the documents need to be checked

for relevancy, and a temporal aggregation must be performed to enable cause-effect

relationship analysis. In this case, the analyst is interested in relationships between

the subset of media data related to the election in Nigeria and the subset of conflict

events in Africa occurring in Nigeria. As key events, actors and locations are identified

in the data, the analyst also needs to annotate their findings in order to explain the

events and the news contents and support the hypothesis generation and explanation

phase.

Given this example analysis task, several components of the proposed visual ana-

lytics framework (Chapter 3) can be used to create a work flow that can be generalized

into several key steps for the identification of topic drivers in media data:
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1. Identify topics within the datasets in order to explore their evolution over time

(Ch. 3: C1);

2. Link and filter datasets so that the extracted media items are relevant to the

analysis (Ch. 3: C2);

3. Identify critical entities within the datasets (Ch. 3: C2), and;

4. Provide methods for cause-effect identification and identify potential leading or

lagging indicators (Ch. 3: C3, C4).

4.2 Semantic Event Retrieval

4.2.1 Semantic Lexical Match

In many application areas, the key to successful data analysis and reasoning in-

volves integrating data from different sources, for example, linking financial data

with news reports may help analysts develop models for predicting stock market re-

sponses [87]. One critical task in linking multiple datasets is performing text query

matches based on document similarities. This task usually leverages information re-

trieval methods [91]; however, many media posts contain short text messages or other

limited information which may not contain the specific query word, restricting the

effectiveness of simple keyword matching. In order to solve this problem, word se-

mantic similarity measures have been studied [92, 93]. The general idea is to match

the word sets from text segments by pairing every word in one data collection with

its most similar word from the other data collection and then calculate a weighted

sum of all pairs. Though this method can be used to measure the semantic similarity

between text segments, there are two major challenges in querying for relevant events

in media:
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(a) Ordered by frequency (b) Ordered by significance

Figure 4.2: The Topic Keyword View Shows the 50 Most Frequent Topic Keywords

for Economy in the Social Unrest Media Collection. Keywords Are Ordered by Their

Frequency in (a) and by Topic Significance in (b). Color Refers to the Other Measure

Not Ordered by. The Two Bars of Each Keyword Represents Its Frequency Inside

and Outside the Topic Respectively.

1. One dataset under exploration may have a wide word coverage which would tend

to increase the maximum similarity measurements between the two datasets.

2. The knowledge-based word similarity measure returns the highest similarity

score among all possible word senses [94]; however, not all word senses are

relevant to the analyst’s semantic definition. For example, the word “crop” can

relate to agriculture or a type of haircut, but an analyst studying agriculture

would likely be uninterested in articles about hair care.

Topic Keyword View: In order to reduce the issues with word coverage, this

framework first extracts a list of keywords from the selected media topic. Next, the
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analyst can explore the uniqueness of these keywords through the Topic Keyword

View, Figure 4.2. In this view, a small multiples bar graph is used to show the 50

most frequent keywords. The height of the left bar represents the frequency of the

word with respect to documents that are classified into the selected topic. The height

of the right bar represents the frequency of the word in all other documents in the

dataset. This view has two options for ordering these keywords, either by the word

frequency in this topic or by the significance of this word with respect to all other

topics in the dataset. The significance measure of a keyword w to a topic d is defined

by:

significance(w, d) =
f(w, d)−

∑
t∈T,t6=d f(w, t)∑

t∈T f(w, t)
, (4.1)

where T denotes the set of all topics extracted from the media collection, f(w, t) is

the frequency of word w in topic t, and d is the topic under analysis. The range

of this metric is [−1, 1] where values closer to 1 means the word is more significant

in the chosen topic. This measure is also perceptually visible based on the height

of the two bars. If the left bar is taller than the right bar, the significance value is

positive; if the left bar is shorter than the right bar, the significance value is neg-

ative. Analysts can select keywords by clicking on the bar graph and they will be

highlighted by a rectangular box. In Figure 4.2, the five most frequent words in the

topic, Economy, have been selected and are shown at the first line by the frequency

order (Figure 4.2(a)). When the view is reordered based on the significance metric,

three of the five most frequent keywords are also listed as the top five most significant

keywords while the other two fall into the last ten words of the list (Figure 4.2(b)).

Using this view, a keyword selection reference is provided so that the analysts can

choose representative words for the media topic, thereby injecting domain knowledge

into the semantic annotation pipeline while reducing the word set chosen for semantic
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matching.

Similarity Measure: Once keywords are chosen, semantic matching to identify rele-

vant links between the datasets is performed. A semantic similarity score is calculated

between the selected keywords and the documents in the secondary dataset which is

then filtered by this score and the documents that have a high semantic similarity

score are returned for evaluation.

A knowledge-based word semantic similarity metric, Wu and Palmer [95], was used

to first calculate the word-word similarity between selected media topic keywords and

all words in the secondary dataset. This metric measures the depth of two given senses

in the WordNet taxonomy [96], along with the depth of the least common subsumer

(LCS). The sense-to-sense similarity is calculated as follow:

SenseSim =
2× depth(LCS)

depth(sense1) + depth(sense2)

This is a sense-to-sense similarity measure, but it can be used as a word-to-word

similarity measure by selecting the highest similarity score among all the similarities

between the senses of these two words. Thus, word similarity can be defined as

WordSim = Max(SenseSim), which is a score between 0 and 1.

Given a keyword set representing the media topic and the word-to-word similarity

measure, a semantic similarity metric can be developed to measure the relatedness of

a document to this media topic. The media topic can be described as a set of keywords

K = {k1, k2, . . . , km} where ki is one of the m keywords. Similarly, the document in

the secondary dataset can also be represented by a set of words E = {w1, w2, . . . , wn}

where wi is the word occurring in the document from the secondary dataset. Note

that both the media keywords in K and the words in the secondary dataset E are

preprocessed to remove stop words and are lemmatized using CoreNLP [97] for con-
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sistency. Using the above notations, our similarity score between a topic in dataset

one and a document in dataset two is calculated as follows:

EventSim(E,K) =
∑

w,∃ki∈K,
WordSim(ki,w)>θ

δwtfidf(w,E), (4.2)

where θ is a threshold to filter for semantically similar words (by inspection, θ = 0.8

was a reasonable choice and is used as the threshold values for all examples), the

tf-idf is used to weight the word’s importance, and 0 ≤ δ ≤ 1 is a weight for each

semantically matched word. The value of δ is initially set to be 1 for all words,

and δ can be changed during the visual to parametric interaction methods that are

described in Section 4.2.2. The augmented frequency was used for tf(w,E) to prevent

a bias towards longer documents, where

tfidf(w,E) =

(
0.5 +

0.5× fw,E
max{fw′,E : w′ ∈ E}

)
× idf(w,D)

idf(w,D) = log
N

| {E ∈ D : w ∈ E} |
,

and w is one word in a document of the secondary dataset E, and the whole sec-

ondary data collection is D, the size of which is N . The inverse document frequency,

idf(w,D), is logarithmically scaled. This approach returns a list of documents or-

dered by their similarity scores together with the words that are semantically similar

to at least one of the media topic keywords. The semantically matched documents

from the secondary dataset are shown in the Event List view (Figure 4.5) since in our

analysis each document in the secondary dataset describes one event.

4.2.2 Semantic Similarity Update

As previously mentioned, a direct calculation of semantic similarity from a knowl-

edge base has issues with one keyword semantically belonging to multiple related

concepts, for example, if you look at relationships for “food” in the knowledge base,
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both “bread” and “education” appear; however, these represent two very different

concepts which may not be the intention of the analyst. Thus, a visual to parametric

interface is developed, building on the conceptual work of Leman et al. [98], in which

the analyst can cluster the concepts returned from the knowledge base to better refine

the semantic similarity matching. In addition to clustering concept words, the ana-

lysts can mark entries returned from the secondary dataset as relevant or irrelevant

which will update the word similarity weight (δ in Equation 4.2) thereby modifying

the semantic scores and reorganizing the event list.

4.2.3 Semantic Interaction for Concept Word Clustering

Again, even though a chosen keyword may semantically match a word in the

secondary dataset, this matching may not align based on the contextual concept in

which an analyst is working. For example, the word “food” has the following three

noun senses:

• food#n#1: any substance that can be metabolized by an animal to give energy

and build tissue;

• food#n#2: any solid substance (as opposed to liquid) that is used as a source

of nourishment, and;

• food#n#3: anything that provides mental stimulus.

If an analyst wants to relate concepts of food and agriculture, sense 1 and 2 are likely

related to the semantic search; however, sense 3 is unrelated.

Cluster Force Layout:

Based upon the interface design of IN-SPIRE [99] that uses word clusters to rep-

resent document themes, a cluster force layout (Figure 4.3) has been developed to
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Figure 4.3: The Cluster Force Layout.

group words in the semantic dictionary based on their word-to-word similarities. The

features include methods that enable the analyst to steer and update this clustering

in order to develop an appropriate concept map for semantic annotation. To separate

words by their meaning, complete-link agglomerative hierarchical clustering [100] is

used, in which the similarity between two clusters is decided by the smallest similarity

of all word pairs between the two clusters. To develop a concept map, an analyst can

interact with the cluster force layout (Figure 4.1 bottom middle). In the layout, each

node represents a word. The nodes with a solid background represent the selected

keywords from the media data, and the nodes without a background color represent

the words extracted from the secondary dataset that are semantically related to the

selected keywords. This view uses a categorical color scheme to separate different
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keyword bubble groups. Words in the secondary dataset are attracted to their cor-

responding keyword in the media data, and words belonging to the same cluster are

further attracted together. Collision detection is applied to ensure that the nodes

do not overlap each other, and nodes in different clusters are separated by a larger

margin. As a result, each keyword and its semantically related words naturally form

a bubble group, along with internal bubble clusters formed by the clusters of the se-

mantically related words. We call the former the keyword bubble group and the after

the bubble cluster. The nodes in each keyword bubble group are colored to match the

keyword legend on the top right corner. The size of each node is proportional to the

frequency at which the word appears in the event records. In the case where a word

becomes too small to see, the analyst can mouse over the nodes to show the words in

a tooltip. Sometimes the analyst may select many keywords and the keywords may

contain many semantically related words, then there will not have been enough space

to display all the words in the view. In practice, a 900×450 space for this view can

support 4 keyword bubble groups with around 100 semantically similar word bub-

bles. To enable the capability of analyzing more words, zooming and panning on the

cluster view is also allowed. The analyst can also freely drag the keyword nodes and

the cluster nodes to adjust their relative position. As the clusters move close to each

other, an attractive/repulsive force will be activated based on the similarity between

the two clusters. This similarity score is calculated by taking the average of all word

pair similarities. If the similarity between the two clusters is greater than 0.5, the

clusters will attract each other, otherwise, they will repel each other.

Implementation of Cluster Force Layout: The force directed layout from the d3

library [101] was used. The clusterings were formed by adding a gravitational force

to each of the selected keywords such that the keywords would only attract the words
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that belong to their clusterings. Then, the clusters were formed by adding a force

between words that belong to the same clusters. A collision detection force was also

added to prevent the nodes from overlapping each other, and the collision detection

force will separate nodes in different clusters by a larger space than nodes in the same

clusters. To stabilize the force layout and prevent jittering during interaction, a repul-

sion force was also added between each node to neutralize the other attracting forces

when the layout has already formed its shape to prevent the nodes from constantly

colliding. However, when a cluster moves close to another cluster that belongs to a

different clustering, the repulsive force would turn into an attractive force toward the

nodes between the two clusters. Also, whenever the user drags any clusters on the

layout, the strength of the attractive forces for the cluster will be slightly increased

to ensure the cluster shape is preserved.

Semantic Interaction: In addition to visualizing word clusters, the cluster layout

allows analysts to select sub-clusters and filter out words through semantic interac-

tions [102–104]. The underlying concept is that by allowing users to directly manipu-

late data in the visualization space, updates to the positions of data elements on the

screen can be tied back to weights in the analytic modules on the backend, which can

then be translated to the model updates. Our cluster force layout supports semantic

interactions for creating concept clusters. Here, a user can change the number of

clusters by dragging the slider on the top left corner to set the similarity threshold

in the hierarchical clustering and change the similarities between words through drag

and drop interactions on the bubbles. Let k denote the number of clusters shown

in one keyword bubble group, and its word set can then be represented by clusters

Ci = {wij}, where i = 1, 2, . . . , k, j = 1, 2, . . . , ni, such that cluster Ci contains ni

words. An analyst can drag a word, w, from its current cluster Ci to another cluster
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Figure 4.4: This Figure Shows an Interaction Process of Steering the Cluster Force

Layout to Update the Word Concept Clusters. Each Step Is Marked Numerically

on the Figure. User Can Drag a Word Away from All Clusters or Towards Another

Cluster. User Can Drag a Group of Words to Select Them.

Ci′ such that the similarities between w to all other words in Ci decrease and the

similarities between w to all words in Ci′ increase while the similarities between w to

the words not in Ci nor Ci′ do not change. The new similarities of word w to other

words updates as follows:

sim′(w,w′) =


sim(w,w′) + (1− sim(w,w′))× 0.1, w′ ∈ Ci′

sim(w,w′)× 0.9, w′ ∈ Ci

sim(w,w′), otherwise

Here sim(w,w′) represents the similarity between the word w and w′ before the

interaction, and sim′(w,w′) represents the new similarity after the interaction. If
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Figure 4.5: Interaction on the Event List View to Update Word Weight and the Event

Semantic Similarity.

the analyst finds that there are no clusters that the word w can join, s/he can try

to reduce the similarity between this word and all the other words in the keyword

bubble group. To do this, s/he can click on any nodes in this keyword bubble group to

activate the convex boundary and then drag the word w outside the boundary. Doing

so will reduce the similarity between the word and other words in this keyword’s group

by 50%. The change of these similarities will trigger an update of the hierarchical

clustering and the cluster force layout. To hide the boundary, the analyst can click

any of the nodes in the bubble.

Once an analyst is satisfied with a concept cluster, s/he can choose the words

in the cluster to be used for semantic similarity matching for the event records.

The analyst can select the cluster by holding the mouse on any of the nodes in the

cluster, and the selected cluster will be highlighted by an orange border. The analyst

can then drag this cluster into the container in the bottom right corner to select the

words, and those selected words will remain in the container and be used for semantic

similarity matching. Alternatively, the analyst can also drag any individual words to
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the container. Selected words can be removed by dragging them out of the container.

An example of these interactions is illustrated in Figure 4.4 which shows how we can

use the cluster force layout to eventually select a subset of words related to “food”. In

Figure 4.4, the analyst is creating a concept map for the keyword “food”. The bubbles

contain semantically related words as captured using the WordNet similarity. First,

the analyst inspects the different clusters. In step 1, the analyst wants to refine the

cluster containing “meal”, “food”, and “water”. The word “treat” is moved into the

other cluster within the keyword bubble group and the clustering updates. Due to the

semantic similarity score between “treat” and “centre”, “centre” is also moved with

“treat”. In step 2, the analyst wants to remove “media” entirely from the analysis

and drags it outside the convex boundary of the “food” clustering. Then, in step 3,

“board” is moved away from “food” but positioned next to “cut” as the analyst feels

those may be conceptually similar. After having a cluster with words “food, water,

meal”, the analyst notices that the word “beef” might also relate to the concept of

food, so in step 4, “beef” is dragged to the cluster of food. This turns into a state

where the word “stick” is also clustered together with food and the analyst drags it

away as shown in step 5. Finally, in step 6, the analyst chooses to use the words in

the highlighted cluster for the semantic matching.

4.2.4 Word Weights Update

In addition to semantically interacting with the cluster force layout to refine the

concept words, users can also interact with the Event List showing the text details

from elements in the secondary dataset (Figure 4.1 bottom right). Each record in the

Event List view contains the date, similarity score, and the text for an event. The

selected semantically similar words are highlighted using the same color as the related

media keywords. For example, the Event List in Figure 4.1 shows events queried by
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Figure 4.6: Initial Causality Results Without Filtering Events. The Causal Arrows

Are Colored Based on Their Significance, and the Current Result Shows No Significant

Causality Between the Current Media Stream and Events, and the Best Fit Model Is

Displayed with R2 ≈ 0.6 and 0.1 < p-value ≤ 0.5 at a Lag of 4. The Height of the

Area Curve Represents the Amount of Variance Explained by the Model.

topic keywords “food” and “agriculture”, which match to qualitative colors “pink”

and “blue”. The semantically similar words (e.g. “meal” is related to “food” and

“fishing” is related to “agriculture”) are highlighted by the corresponding color in the

Event List. When browsing related events, the analyst can mark an event as relevant

or irrelevant by clicking directly on the text. When marked as irrelevant, the word

weight δ in Equation 4.2 will decrease by 0.25 (until reaching 0), and δ will increase by

0.25 (until reaching 1.0) if marked as relevant. Through this interaction, the scoring

measure of the events will update while the word similarity cluster does not change.

For example, in Figure 4.5, we filter a list of events based on words similar to food,

and we notice that the word “beef” in the first event does not mean the meat for

eating but means “to strengthen”, and we mark this event as irrelevant. The weight

of the word “beef” then decreased and the rank of this event drops, as shown in the

right side list.
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4.3 Causality Detection

While the semantic similarity analysis and interactions enable the analyst to filter

and link events between two datasets, these methods do not provide any indication of

whether or not the events identified in the secondary dataset seem to be driving the

media topics under analysis. As such, this framework leverages statistical causality

models to provide a quantitative indicator of significance under the hypothesis that

the current event series is driving the media discourse. The input to the causality

model is formulated as two time series. Time series Y (T ) = {y1, y2, . . . , yt, . . . , yT}

represents the volume per time step of documents in our media data classified into the

topic of interest. Time series X(T ) = {x1, x2, . . . , xt, . . . , xT} represents the volume

per time step of related events identified during the semantic matching procedure.

Then, causality between these two time series can be tested for, where Y is the effect

and X is the cause. Here, it is important to note that there may be other relevant

factors in a larger universe to X and Y which cannot be modeled practically, so

spurious causalities may also be identified; however, these measures are still able

to provide insight and help in the hypothesis generation, testing, and exploration

process. While no statistical technique can provide a definitive test for causality,

a causality test is able to provide explanations of effects as the results of potential

causes and suggest whether a change in the media stream might be correlated to

some local events [105]. Another issue in this test is that the causal effect can be

bidirectional, which means X can cause Y and Y may also cause X. In such a

situation, a feedback mechanism should appear. In this application, we focus only

on one directional causality, exploring the question of X causes Y . The following

assumptions on our dataset are also made:

1. The cause shall appear before of the effect;
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2. The information in a larger universe not coded in U = {X, Y } will be irrelevant,

and;

3. Both X and Y are stationary series, which means their means neither change

over time nor follow any trends. This should be reasonable for natural events,

otherwise they shall first be transformed to stationary processes.

The Granger causality test [32] is applied. In a simple causal model (no in-

stantaneous causality and no feedback mechanism), causality is tested by fitting the

following two linear regression models and testing if the prediction variance is statis-

tically significantly improved in the second model.

yt = a0 +
m∑
i=1

aiyt−i + εt

yt = a0 +
m∑
i=1

aiyt−i +
m∑
i=1

aixt−i + εt

Here, εt is an uncorrelated noise series, i.e, E[εtεs] = 0, s 6= t, and m can be any

integer in [1, T ].

Let σ2(A|B) be the variance of εt(A|B) which is the error series in the prediction

model that series A is the response and series B is the predictor. In the test, given a

value of m, it can be said that X Granger-causes Y at lag m is statistically significant

if

σ2(Y |Y − Y (t−m), X −X(t−m)) < σ2(Y |Y − Y (t−m)). (4.3)

The F-test is used here to test the significance of the increment of the explanatory

power of adding X by comparing the overall fit of the model using only Y and then

by using both Y and X. A corresponding p-value is also used to show the significance

level, where the null hypothesis is that the variance has not decreased by adding X.

An R2 value is used to indicate the performance of the second model by showing

how much variance can be fit using both X and Y . The causality test treats the
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two timeseries data as two arrays of data, the length of time gaps between each data

point depends on the granularity of the timeseries. Currently in our system, the

granularity of our data is in days, but the causality test will also work for hourly

or monthly data. Since the question of “true causality” requires field testing and

controlled experiments, the applied statistical method should only be considered as

“predictive” causality which tests whether one time series is useful in forecasting

another [106]. However, this is useful as an indicator for trends and drivers and can

help an analyst in exploring hypotheses. This serves as a basis for choosing which

points in the Timeline may need further annotation.

4.4 Annotation

Annotations have been used in visualizations to highlight interesting data points,

provide context, and display detected events [88, 107–109]. Our system allows ana-

lysts to annotate media articles and related events, and provides causality modeling

indicators in the Timeline for correlation discovery and externalization.

4.4.1 Timeline with Events and Causalities

One of the main views in this system is the Timeline, Figure 4.6, which starts from

a single line denoting the volume of the media stream to be augmented gradually by

adding relevant events, causalities, and descriptive text annotations. The solid black

line indicates the trend of the percentage volume of the selected media topic. The

dots in gray on this line represent related events that happened on a given day, and

the size of a gray dot represents the number of events that happened on that day.

The size and the amount of the dots will update after interactions with the Topic

Keyword view, the Cluster Force Layout, and the Event List view.
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When the analyst is satisfied that the relevant events have been semantically

linked, they can click on the “Causality Test” button (see Figure 4.1) to run the

causality test on the retrieved events and the media topic. This causality test returns

the statistics for all models with possible lag smaller than 10. For each model, the

p-value and R2 are displayed for evaluation. These causality models with different

lags are indicated at the top right corner of the Timeline by a legend consisting of

several bars, one for each model. To the left of each bar, the lag of the model is

shown, and the length of the bar indicates the R2 value. When one model is selected,

a stream area, referred to as the explanatory area, is shown below the topic volume

line to represent the R2 which denotes how much variance is explained by the model.

For example, when a model’s R2 = 0.6 the explanatory area will cover 60% of the

area under the media stream line, Figure 4.6. The analyst can move the mouse along

the timeline to browse the model for each date, and the identified lags and events will

be shown on top of the timeline illustrated with arrows (causal arrows in Figure 4.6)

connecting the possible driving events to the effect date of media articles. The color

gradient, in a sequential color scheme, shows the respective significance levels referring

to the p-value color legend. For example, in the Figure 4.6 the color of the causal

arrows are light green which means the causality is only significant at a level lower

than 90%.

For a model with lag m, the media stream is fitted with a linear regression model

yt = a0 +
∑m

i=1 aiyt−i +
∑m

j=1 bjxt−j and only the past m time steps have been used

as predictors. The start point of each arrow matches the time of the event and the

end point (the point with an arrow) matches the time t where the volume of news

articles are being predicted. The width of an arrow’s starting point corresponds to the

amount of events happening that day. For the purpose of perception and aesthetics,

the arrows are ordered by their length either bottom up or top down, based on the
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Figure 4.7: Example of the Bipartite View. This View Shows the Events (Left Side)

and the Media Articles (Right Side) Indicated by the Causality Lag Under Analysis

and Connected by Semantically Matched Keywords.

position of the gray dots which represent the potential causal events. Our timeline

view currently supports only the results from one causality test on one pair of series,

and future work will explore methods to overcome this limitation.

4.4.2 Annotating with Text Information

When the causality test result is positive, it shows the possibility that event series

is the cause of the media series, however, to make such hypothesis it is necessary to

look into the content of the media articles and the detail information of those events.

A bipartite view is used to allow the analysts to navigate through the events and

media articles, and then the analysts can pick interesting events and media articles

to be annotated on the timeline.
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4.4.3 Bipartite View

The Bipartite View (Figure 4.7) displays the connections between media articles

and event records linked by the causal arrow. The bipartite view updates while the

analysts anchor on a date to investigate (by moving the mouse on the timeline while

holding the left key). Initially the bipartite view displays the events and media ar-

ticles on the same day. Once the analyst selects a causal arrow by clicking it, the

bipartite view displays the events and media articles linked by the arrow. The right

side of the Bipartite View lists all media articles and the left side lists relevant events.

Both media articles and events are colored according to the semantically matched key-

words. For media articles, the semantically matched keywords are the selected media

keywords that the articles contain. For events, the matched keywords are the selected

media keywords that have some of their semantically related words contained in the

event notes. When the article or event record has one matched keyword, it will be

represented as a rectangle in the color corresponding to the keyword’s legend. If more

than one keyword has been matched, this rectangle will use a blended color from all

the matched keywords’ colors. Both media articles and events are grouped according

to their color, i.e. the semantically matched keywords. The edges connect the groups

by their keyword co-occurrence. The edges are colored by the color of matched key-

words that both of the connected groups contain. For example, Figure 4.7 shows the

bipartite view of topic “Election” and keywords “inec” (Independent National Elec-

toral Commission), “medical”, “electoral”, “health”, and “hospital”. Mousing over

any rectangles on the bipartite view will bring out the tooltip which shows the be-

ginning of the event note/article. For displaying a long list of matches, the Bipartite

View is scrollable so that the user can view the details when they do not fit in the

area.
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Figure 4.8: Investigating the Plausibility of Climate-Induced Civilian Abuse during

the 2014 GHoA Drought. The Link between Violence Events and Social Unrest RSS

Have Been Explored Although Casualty Test Shows Non-Significant Result.

Through the annotation method described above, the analyst can build a story

talking about correlations between the media topic and the possible causing events

with a timeline depicted as Figure 4.1.

4.4.4 Detail List

The detailed information that the rectangles in the Bipartite View contain can be

explored in the linked detail view on the sides of the Bipartite view. The detail of

event records are listed on the left and the detail of media articles are listed on the

right (Figure 4.8, bottom). Each event record has up to two actors, a location, and a

note describing the event. The border color of each entry in the lists matches the color

of its matched keywords. Different to the color design of the Bipartite View, if there

are more than one matched keyword for the entry, there will be multiple borders,
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(a) Event Annotation (b) Media Article Annota-

tion

Figure 4.9: The Annotation Glyph for Event and Media Articles. The Analyst can

Annotate Entities by Clicking on the Expanded Nodes.

each colored by one keyword’s color. The order of entries on both lists reflects the

order of the rectangles on the bipartite view.

4.4.5 Entity Annotations

While exploring the detailed information through the bipartite view, the analysts

can externalize their findings to the timeline by double clicking on the media and

event rectangles. The selected event will be annotated as a record icon using its

keyword’s color. The selected media text will be annotated as a feed icon using

the color of its keyword. To expand the detailed information of the annotated events

and media articles, analysts can click on an icon, and the actors, locations, and text

information will be available as expanded nodes (Figure 4.9). From these nodes, the

analyst can choose which event attribute to show on the Timeline. The annotation

can help analysts to immediately interact with data so that one can flag events that

can constitute changes in the underlying equilibrium of these processes.

49



4.5 Usage Scenario

In this section, we demonstrate this system through an analysis using a climate

change media collection and a social unrest media collection respectively. These

datasets will be semantically annotated by the Armed Conflict Event Location Dataset

(ACLED) [110] and causal drivers explored. For the use cases, a paired analysis pro-

tocol [111] was used in which system features were explained and demonstrated to

our partners in political science. The analysts discussed their developing hypotheses

and instructed the framework developers driving the system.

4.5.1 Datasets

ACLED: The ACLED dataset (1997 to present) contains information on the dates

and locations of all reported political violence events in over 50 developing countries

with a focus on Africa. Each event record contains information on the date, loca-

tion, event type and actors involved with approximately 6500 events from August to

December 2014.

Climate Change Media: The climate change media dataset is composed of RSS

feeds from 122 English language news outlets and filtered for relevance by matching

against a set of 222 keywords. From August 2014 to December 2014, this collection

contains 1245 relevant articles with 9070 sentences which are further coded into one

(or none) of 25 framing categories. All articles have been analyzed through entity

recognition to extract people, location, and organizations. A more specific description

can be found in [90].

Social Unrest Media: The social unrest media dataset is composed of RSS feeds

from 128 English language news outlets collected in March 2015. RSS feeds were

scanned hourly and the content of each news article was filtered by a set of 378 social
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unrest keywords. The LDA topic modeling algorithm [112] was run on these articles

and 50 topics were extracted. The following 7 topics were selected based on their

relatedness to the ACLED dataset: Election, Economy, Education, Conflicts, Agri-

culture, Justice, and Energy. All articles have been processed using entity recognition

for annotation.

4.5.2 Climate-induced Unrest During Drought

The drought in Africa has attracted the attention of researchers who want to an-

alyze potential societal impacts that the draught may have [113]. Specifically, the

draught has caused widespread agricultural failures and led to famines and political

instability. In this use case, the analyst wanted to explore if the GHoA (Great Horn

of Africa) drought in 2014 coincided with instances of political violence. Causal rela-

tionships are extremely difficult to test when using observational data, and political

scientists debate about the relationships between climate change and political vio-

lence [114]. Furthermore, the research that examines the role of drought in instances

of violent conflict lacks consensus [115], and it remains unclear whether the onset of

drought and subsequent observations of violence could be indicative of broader phe-

nomena, such as a governance failure or institutional failure. As such, this use case

focuses on the question: Is the 2014 drought in the GHoA linked to reports of social

unrest and political violence? To probe this question, the researcher first selected

“social unrest RSS”, defined the temporal domain to encompass the month of March

2014, and picked agriculture as the topic to explore. Next, events of “violence against

civilians” (which ACLED defines as any armed/violent group that attacks civilians”)

is selected to explore potential drivers between droughts and violence.

To begin, the analyst selected the following words, based on the significance or-

dering, as most plausibly being related to the March - June 2014 GHoA drought:

51



“water”, “food”, “farmer”, and “climate”. These selections are then used to update

the relevant events and explore the semantic linkages in the clustering bubble interface

displayed below the event timeline. The clustering results reveal that the word “cli-

mate”, in this semantic mapping, shares words/concepts not related to the concept

of agriculture. Instead, words such as “way, order, demand, tension, and control”

are found, even after adjusting the similarity threshold to .75. Thus, “climate” is

removed and the event list is updated to reflect the change (see Figure 4.10). After

removing “climate”, the analyst remains largely satisfied with the clustering for the

remaining terms and now creates clustering within the keyword selection container.

The causality test is performed and returns the following insignificant model result:

lag=2, R2=0.090 (see Figure 4.8). The insignificant result is not surprising to the

analyst since many other factors are also expected to drive the events. However, he

also requested to further explore the details of the events and the media posts to

identify if there were other keywords or factors he may not have considered. Using

the Bipartite View, the analyst briefly evaluated the links between the keywords and

the recorded episodes of political violence perpetuated against civilians. His search

revealed shared associations between terms related to drought and a recorded event

of Al Shabaab beheading a civilian for unstated reasons, (see Figure 4.8). Based on

the exploration, the analyst concludes that the linkage between resource shortages

and civilian abuse may be less plausible.

4.5.3 Food Insecurity and Climate Change Media

The analyst was interested in exploring potential drivers of climate change media

discussions with respect to ongoing conflict events in Africa. He hypothesized that

external drivers, such as riots and protests, may be driving the types of framing

being used to discuss climate change. First, the analyst loads the Climate Change
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media collection and the ACLED dataset. The analyst decides to focus on the food

insecurity frame “ProbThreatFood”, from October 12th to November 3rd, 2014. Next

the analyst chooses to explore “Riots/Protests” from ACLED to annotate the media

frame. The analyst first selects keywords “food”, “crop”, and “agriculture”. The

analyst adjusts the threshold in the Cluster View and discusses the resulting clusters.

First the analyst chooses several topic keywords related to food insecurity in the

climate change media dataset, selecting “crop”, “food”, and “agriculture”. Events

are then automatically selected through the semantic keyword processing, and the

analyst runs an initial causality test which shows no significant causal correlations.

The result of this initial model is shown in Figure 4.6. The problem is that many

events that are marked as semantically similar to these keywords do not match the

analyst’s meaning of “crop”, “food”, and “agriculture”. Thus, the analyst begins

using the Cluster View to group the words into conceptual groups. As such, the

analyst explores semantic keywords related to the selection of “crop”. However, the

analyst finds that events in the secondary dataset matched as semantically similar to

“crop” are not embedding the meaning of “cultivated plants”. Instead, the related

words, particularly “plant”, are referring to industrial plants in the event data, but

not cultivated plants. This illustrates the difficulties that a fully automatic approach

might face. While it may be reasonable to assume that “plant” as a keyword would

represent agricultural concepts, in the ACLED dataset this is not the case. Thus,

the analyst removes “crop” from the keyword list so that events semantically linked

to this concept of crop are no longer selected. Again, since different domains use

slightly different linguistic descriptors, a visual analytics solution can enable analysts

to inject domain knowledge and reasoning into the analysis pipeline.

Next, the analyst explores the clusters of semantic keywords linked to “food”,

as shown in Figure 4.4, and conceptualizes the meaning of several clusters. Seeing
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Figure 4.10: Semantic Word Clustering and Filtering for the Study of Climate-

Induced Civilian Abuse During the 2014 GHoA Drought.

words in the blue cluster, such as “education”, “course”, and “issue”, being clustered

together was identified as primarily being a concept of “food for thought”. The

analyst finds that one cluster contains many “food” related words (e.g. meal, water,

food). However, there are still some irrelevant words in this cluster (e.g. treat, centre,

board and media). To better select related events to “food”, the analyst drags these

irrelevant words either into the other cluster or away from both clusters, the result

of which is shown in Figure 4.4 - Step 4, where one cluster now contains “food”,

“water”, “meal” and “beef”. Now, the analyst chooses to only semantically link the

word “food” to match his conceptual notion.

The analyst then chooses to filter only on certain conceptual cluster groups that

he has now created in the cluster view. For example, in the cluster view illustrated
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in Figure 4.4(step 6), the cluster with words (food, water, meal, beef) are selected by

dragging into the word selection container and used to semantically link the media

dataset to events. However, after exploring the event notes, the analyst realizes that

“beef” is only used in the context of “beef up”, so the analyst removes the word “beef”

from the semantic filtering as this meaning does not relate to the current conceptu-

alization of food. The analyst then further filters the events using his agriculture

concept group. After filtering events, the best fit causality model at this point is still

not significant (R2 ≈ 0.6 and p-value > 0.1), Figure 4.6. From the event list view, the

analyst sees that there are many words in the event data that are semantically linked

by the media keyword “agriculture” but not related to the meaning in the context of

food problems. The analyst again refines the Cluster View to select relevant words

for “agriculture” and selects “agriculture” and “fishing” (as Africa has large exports

of fish) which is shown in the word selection container in Figure 4.1. The causality

modeling returns three models with lag equals to 2, 3, and 4 respectively. The best

fit model (Figure 4.1) has lag = 4, R2 ≈ 0.8 and p-value ≤ 0.05.

Switching to the Causality Inspection tab for more details of the relevant media

articles and ACLED events, the analyst explores the connections suggested by the

causality model with lag = 4 using the Bipartite view to further annotate potential

causal relationships. Here, the analyst explores filtered events, annotating nodes with

text and exploring lags in the dataset. The final resulting annotated Timeline that was

developed is shown in Figure 4.1. In looking at the peak discussion of food insecurity,

we are seeing articles mentioning Food shortages and rising prices have the potential

to worsen political, ethnic, class and religious tensions, and “Ordinary people could

go hungry if their countries can not produce enough food”. Prior to these articles, we

are seeing an increased number of riots and protest around unpaid meal allowances

and discussions of lack of food. Here, discussions of riots and protests related to food
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are marked on the Timeline and can provide insight into what external events may

cause shifts in media framing, for example, if there are more protests related to food

issues, does climate change media pick up on this and begin framing climate change

as a food insecurity issue?

4.5.4 User Feedback

The user feedback was collected from three groups of experts, a political scientist,

the collaborators in communication, and our outside partners. The political scientist

expert was interested in developing a system to enhance his data exploration process.

This expert provided detailed feedback about tool usage and details in the use case are

from an ongoing analysis. The second group consists of faculty and doctoral students

in the Communications Department at Arizona State University. Their interest is in

the impacts of framing in social media, which requires the ability to map different

lexicons among topics. This group provided detailed feedback on keyword selection

and analysis and used the system to perform social media analyses. The final group

consists of experts whose feedback was informally solicited during demo sessions of the

tool. Here, experts were walked through the tool usage and use cases, and discussions

were held regarding how such a tool would be useful for their domain applications.

Through using the system themselves, the political science and communication

experts liked the system overall, indicating that the major advantages were that

this “Allows me to read in a way that I can’t do manually. This tool allows me to

explore my beliefs about the data and events and record details to the point of theory

construction.” Our experts liked the clustering force directed layout and consider

it to be a more intuitive display. They felt it increased their understanding and

willingness to engage with the program. The political science analyst also felt that

the ability to easily hone the selection of the terms of interest by removing and adding
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words to more relevant clusters is a striking feature, and the immediate updating of

the clustering algorithm within the user-interface after winnowing the clustering to

domain-relevant terms is very useful and appropriate. The analyst considers the

embedded Granger causality testing to be simple to use, and the causality testing

helped lead to formalization of actual hypotheses and provides some level of base

knowledge about what concepts of interest are most relevant. The visualization of

how much variance the model explained being represented as a filled area under the

curve was noted as being highly intuitive.

Along with the above detailed feedback, the system has also been demonstrated

to industrial partners. Feedback from these demonstrations indicated that users like

the interface and the approach of semantically linking events to media topics. They

think the visual representation of the clustered keywords are quite intuitive and the

causality test is easy to understand. They also pointed out some limitations of the

system. First, the system needs the text dataset to be preprocessed, including cat-

egorization (e.g. labeling by domain experts or topic modeling) and word similarity

calculation. This limitation currently prevents this system from handling streaming

text data. Second, the demonstrations only showed how to link between media posts

and conflict events. However, these demonstrations were given to people in vastly dif-

ferent domains who indicated a need to analyze proprietary data sources which may

require modifications to the visual design to support domain specific annotations.

Furthermore, many media sources of interest also contain video and images, as

such, extracting relevant content becomes difficult. Also, the scalability of the system

is a critical issue. In the datasets used by the collaborators for the case studies,

scalability was not an issue as some data curating had already been performed and

pre-processing of data could take place prior to interactive analysis. However, a key

task of causality analysis is to build predictive models. During our demonstrations,
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requests for real-time model building and updates using streaming data was discussed.

Currently, the system is limited by the pre-processing requirements; however, the

workflow proposed by the system is robust to support the causality modeling task

but will require the addition of a streaming data processing step.

4.6 Discussion

This case study presents a system for semantically annotating media topic dis-

course through linked datasets. To accomplish this, a cluster force layout that can

facilitate the development of a concept map of keywords has been designed to be used

for semantically filtering linked events. Relationships between these events and media

trends can be analyzed using causality modeling, and model results are interactively

displayed on the Timeline. Though the causality modeling cannot guarantee a true

cause-effect relationship, results obtained from such models are able to help analysts

in their knowledge discovery and hypothesis generation. Analysts may explore sug-

gested connections between media articles and linked events, and articles and events

that are linked by multiple concepts are further visualized in the Bipartite View.

From the Bipartite View, analysts can annotate events of interest on the Timeline to

help inform their given hypotheses.

While the usage examples focused on media and conflicts in Africa, the tools

developed are applicable to a variety of domains and data. However, there are several

limitations to this system. First, the semantic match is constrained to a keyword

based approach, i.e., the analyst must choose an initial set of keywords from the

document as a starting point. This can limit the matching as other words between

the corpuses may serve as more appropriate semantic bridges. Second, although we

have shown that the knowledge-based semantic similarity methods can be leveraged

to connect two textual datasets, other information retrieval metrics could also be
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explored and compared. Third, the system has limitations of its scalability and

capability of generalizing to streaming data and more complexed data format. The

scalability issue exists in both the cluster view and the Timeline as discussed. More

advanced techniques in database and similarity calculations are needed to generalize

this system for streaming data and broader datasets.
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Chapter 5

SPATIOTEMPORAL TRADE NETWORK ANALYSIS

Economic globalization connects regions of the world and creates complex inter-

dependencies among countries. Through trade connectivity, the risks associated with

climate-induced changes in agricultural production (e.g. floods and droughts) are

exported from areas with localized disruption to distant parts of the globe [116]. For

instance, the monsoons of Southeast Asia may seem to have little to do with food

supplies in distant parts of the world. However, when one considers that countries as

distant as St. Kitts in the Caribbean and Congo in Africa both rely on Thailand for

over 95% of their imported rice, it becomes clear that a significant disruption in Thai-

land’s agricultural production could have a dire impact on food security thousands

of miles away. Without an appreciation of the effects of global networks, attempts

to mitigate social and economic disruption may lead to investment, for instance, in

countries expecting drought and not in countries that will face food shortages due

to that drought. However, food and water vulnerability are typically forecasted for

demarcated and isolated units – regions, countries, subnational units, cities – while

ignoring the impact of connections to other units (e.g. [117]). Little has been done

on how a trade network topology contributes to the delocalized vulnerability of food

and water delivery systems, insights that are crucial to planning for sustainable and

resilient access to food and water. Furthermore, it is important to understand how

trade network topology and network-induced food risks contribute to distant polit-

ical instability and social unrest [118–120]. While the network of global trade has

been well-studied, those studies are largely limited to characterizing the magnitude

of exports between countries [121–124], the quantities of virtual water transmitted
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Figure 5.1: A Visual Analytics System for Exploring Global Trade Networks and

Their Relationship to Regional Instability. The Anomaly Time Series (1) on Top

Displays the Time Series and Anomalies of the Trade Attributes and Stability Mea-

sures for a Selected Country. The Choropleth View (2) Along with the Small Multiple

Maps (3) Display the First Order Trade Relationships Centering on Selected Coun-

tries. The Colored Bars Below Each Small Multiple Map Show the Temporal Correla-

tion of the Selected Trade Measure to the Stability Measure. The Clustering View (4)

Displays the Hierarchical Clustering for the Countries, Based on Either the Triadic

Similarity or Top Partner Similarity. The Groups Can Also Be Configured to Show

the Average Triad Distributions (As (6)) and Other Measures. The Trade Diffusion

Graph (5) Displays the Propagation Effect of Anomalies. Connections Between the

Nodes Indicate the Import Dependency From The Target Node to the Source Node

Is Larger Than a Threshold, Which Can Be Adjusted Using the Slider on the Right.

through those exports [125–127], or identifying the largest and most connected nodes

in the network [128–131].
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Currently, what is needed are tools and methodologies that enable users to ex-

plore complex aspects of local trade structures and their relationships to local vul-

nerabilities. Recently, the visual analytics community has begun developing tools for

analyzing complex global events. For example, geo-social relationships to the global

trade network have been visually explored [132], and the relationship between climate

change and human conflict has been analyzed through linked geographical visualiza-

tions and statistical analytic views [90, 133]. Other analyses have called attention

to how human migration might affect international trade [134] and how international

trade may contribute to national air pollution [135]. Current methods have focused on

geographic flow relationships [136, 137], movement of individuals and ships [138, 139],

and spatiotemporal event detection [140, 141]. However, current methods have been

limited to single temporal snapshots of flow and anomaly detection on space-time,

ignoring networked effects. Understanding how trade relationships impact local vul-

nerabilities over time requires new methods that can provide an integrated analysis

of local disruptions.

In the context of geographic network and flow analysis, common visualization

methods quickly succumb to issues of overplotting. Geographic relationships need to

be maintained to enable quickly filtering and exploring country relationships within

a familiar spatial representation. However, as the number of attributes per coun-

try becomes large, and as the number of flows under analysis increase, methods for

identifying data relationships and anomalies becomes critical. As such, this problem

lends itself to a visual analytics approach where an analyst is needed to contextualize

the geopolitical relationships of trade while being able to quickly cluster, filter and

explore the data space. The contribution of this case study include a visual analytics

system for combining multiple existing visualization techniques to help complement

the user in processing large geographical data and their topological network relation-
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ships. This case study introduces the concept of exploring triadic closures [14] over

time, and by linking various triadic analysis features (a detailed explanation of triad

analysis is provided in Section 5.1.3) with anomaly detection, the system enables ad-

vanced filtering to help analysts identify unexpected patterns over feature space, time

and network topology. Furthermore, the application of lead/lag time series analysis

coupled with small multiples and clustering provides users with a novel mechanism

to compare similarities of attributes between countries which possibly responded to

the same known external disruptions in the network. This case study also explores

the use of a diffusion graph to visualize the trade influence over countries, coupled

with cluster analysis. Finally, the integration of correlation analysis with anomaly

detection enables a novel visual analysis of the impact of trade-related anomalies on

social instability, creating new mechanisms for hypothesis generation.

In order to identify challenges and needs in this area, an iterative design proce-

dure was followed through with collaborators in Sustainability and Political Science.

From the discussion with the collaborators, a basic structure of analysis was defined

(detailed in Section 5.2) and system components identified. The basis of analysis is

supported by an interactive map to visualize both the volume and proportion of trade

events for imports, exports, and triadic structures. Temporal correlation analysis and

anomaly detection are integrated to guide the user to structures of interest within

the data, and small multiples are used to allow comparisons between regions with

similar anomalies. Other views include a trade diffusion graph which explores the

propagation effect of trade anomalies and a hierarchical clustering view which groups

countries based on their triad profile similarities or trade partner similarities.

Overall, this case study advances previous visual analytics methods in this area

by providing a novel correlation and triad anomaly detection proceudre to reduce

the analysis search space. A suite of well-known visuals were utilized and several
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customized views were provided to support advanced data exploration and hypothesis

generation.

5.1 Global Trade Analytics

The aim of this case study is to support domain experts from political science and

sustainability to explore relationships between international trade structures and re-

gional stability measures (e.g., national economic development measures and regional

conflicts). In the initial discussions with our stakeholders, our goal was to elicit their

analytic tasks and requirements. The requirements of the system was formatted based

on the rationale of the targeted analysis from experts as well as relevant literature in

trade analysis [142–144].

5.1.1 Data Description

To study the relationship between international trade events, country stability,

and human conflicts, the domain experts have collected and provided international

trade data [145], Armed Conflict Location Event Data (ACLED)[110], and economic

data.

Trade Data: The trade data comes from the United Nations Food and Agricul-

ture Organization (FAO) [145], and contains worldwide bilateral trade information

of agriculture products. Each record in the data represents the total volume of trade

occurred between two countries within one calendar year, and each record has 6 at-

tributes: year, exporting country, importing country, the product of trade, trade

quantity in tons, and trade value in dollars. The global trade data is available from

FAOStat [145] and has been aggregated yearly from 1986 to 2013. The original data

contains 600 types of agriculture products, many of them are very similar, such as

“Meat, pig” and “Meat, pork”. Our collaborators have grouped the trade products
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into 20 categories creating a two-level hierarchy. As such, the trade network data con-

sists of approximately 8.8 million trade records over 245 countries and territories with

20 product categories made up of approximately 600 individual goods. This means

that there are nearly 150,000 possible networks when considering countries, product

categories and individual goods (even more for group combination selections).

Stability Data: The Worldwide Governance Indicators (WGI) dataset [146] is

used, which reports aggregate governance indicators for over 200 countries and ter-

ritories from 1996 to 2015. The original data contains a six-dimensional gover-

nance index. Our collaborators focus on the “Political Stability and Absence of

Violence/Terrorism” governance index which ranges approximately from -2.5(weak)

to 2.5(strong); high governance index indicates high stability.

Economic Data: The GDP data from the world bank is also collected. It contains

GDP and GDP per capita data for 265 political entities from 1960 to 2015, some of

the political entities are continents. Only the data that overlaps with countries in the

FAO data is used.

5.1.2 Design Requirements

When beginning the system development, the analysts from sustainability and

political science identified the primary question that they wanted to ask of their data:

“Are there topological network structures associated with trade that serve as potential

indicators of future instability?” Based on our discussions, it is clear that this topic

has received much attention from their communities; however, our domain experts

had identified current limitations in studying global trade networks. Specifically,

many studies that do attempt to study the topology of food trade networks suffer

from three typical simplifications that, while making analysis more tractable, may

significantly distort conclusions:
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• Aggregating commodities into a single network of “trade” (e.g. [124, 147]) - this

ignores the flow of individual commodities and the relative importance of each.

• Ignoring the intensity, or weight, of trade (e.g. [121, 147]) - these studies con-

sider only whether trade exists between country A and B, but disregard the

magnitude of that trade. This ignores power differentials between countries,

economies of scale, and concentrations of resources in specific regions of the

network.

• Ignoring the directionality of the trade (e.g. [127, 147–149]) - perhaps the most

egregious simplification is that an importer and exporter are treated equally

and the direction of the flow of goods, transfer of risks, and shifts in power are

ignored.

As such, our experts wanted a system that could allow for both aggregated and

disaggregated food networks. We also discussed the fact that the combination of

goods and years results in over 150,000 networks and this number is growing over time.

What they required was a tool that could highlight time periods where large changes

in the network structure were occurring and when these changes were correlated

with changes in the various stability or economic measures that they had collected

(e.g., ACLED events, stability indicators, and GDP). As such, our design rationale

follows the visual analytics mantra proposed by Keim et al. [150], “Analyze first, show

the important, zoom, filter and analyze further, details on demand,” and we have

formulated several design requirements for the system. These design requirements

also reflect the components of the proposed visual analytics framework in Chapter 3.

R1 The system needs to provide an overview for the expert to start their analysis

given the sheer number of possible networks, each of them can be centered on

many possible countries. This overview needs to visualize patterns detected
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from the networks and the possible relationships between the network and local

instability to help the expert select the data needed to be explored (Ch. 3: C1).

R2 Explorations of a trade network should be supported for the investigation of

different trade measures, e.g., imports, exports, and reliance, and the structure

of country’s local network topologies (Ch. 3: C1).

R3 The system needs the capability to show the possible influence between countries

on their trade network (Ch. 3: C4). This is important to analyze the impact

of food shortage on the network, and how such impact could further link to a

country’s stability disruption.

R4 Statistical analysis, such as correlation analysis and anomaly detection, should

be integrated to assist the expert in generating and verifying hypotheses

(Ch. 3: C3).

R5 The system needs to retrieve similar countries based on the selected anomaly,

and allow the expert to compare the trade networks involved with these coun-

tries (Ch. 3: C2, C3). Supporting this is critical for the expert to generalize

their findings.

In this problem domain, we have analysts that need views of space, time, and network

connections of entities. Spatial views need to allow quick reference to regional varia-

tions in form analysts are familiar with (e.g., country level choropleth maps), while

the temporal components need to be designed to help explore lags and leads. Critical

to this is identifying regions that have similar temporal trends to a country of interest.

If known disruptions have occurred in country A, analysts want to explore if other

countries are experiencing similar trends as this may indicate upcoming disruptions

(e.g., social unrest or violence). This suggests the needs for multiple views designed

to link spatial regions for selection, highlight common attributes amongst regions for
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Figure 5.2: The 13 Possible Triad Configurations Are Labeled with Numbers in

Braces. In the First Row, Triad 1 to 6 Are Open Form Triads, While in the Sec-

ond Row, Triad 7 to 13 Are Closed Form Triads.

clustering, and identify unexplored regions that exhibit similar temporal and network

dynamics that may have been leading indicators of unrest in known problem areas.

5.1.3 Triadic Analysis

Our domain experts also had specific requirements for analyzing local network

attributes. Specifically, they wanted to explore triadic structures of the global and

local trade patterns. Characteristics of trade networks, as with other types of net-

works such as social networks, biological networks, and economic networks, can be

revealed by analyzing local structures. For example, if country A imports a specific

product from both country B and country C, a competitive relationship may arise

between B and C. The nature of this relationship also depends on the product flows

between B and C and the types of products flowing between all three countries. To

analyze these effects of local structure in a directed network, researchers typically

analyze the network’s triads, or subsets of three connected nodes. In contrast to

dyads, triads are the smallest structures within a network that exhibit truly social

characteristics [151–153]. The use of triads has long been a standard methodology in
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the study of networks [152], particularly with regard to properties such as structural

balance [154] and transitivity [155]. While larger subgraphs can also be studied (e.g.

tetrads), triads are a logical starting point for directed networks because the relatively

small number of possible configurations are manageable for exploratory analysis [143].

A triad is a three-node directed subgraph, of which there are 13 configurations

(grouped triads) (Figure 5.2). When a network represents international trade, a triad

can be viewed as a group of three countries and their associated trade interactions.

The reasons we use triads, instead of dyads (two-node relationship) are: 1) Dyads

result in fewer trade patterns when compared to triads, and therefore using triads

may provide a finer characterization of the network’s local pattern; 2) Bonds coincide

more with triads than dyads, and; 3) Triads can be considered as more stable than

dyads because a triad describes a relationship among three countries which is less

easy to change [156].

Triadic analysis has revealed previously unknown structural attributes of networks

that appear to be fundamental to a wide variety of natural, social, and man-made

systems [143, 157–160]. For instance, one of our collaborator’s previous studies shows

that countries at different stages of economic development have different triadic pro-

files [142]. As such, our collaborators were interested in analyzing how these triadic

patterns within trade networks affect a country’s vulnerability. Collapsing a network

into a triad profile enables users to compare across a variety of network sizes and types

and to identify triads that occur more or less frequently than expected [143, 144]. In

addition, each triad has particular properties (e.g., transitivity) associated with con-

flict and reciprocity in social interactions [155]. These properties can help explain

local differences and global patterns in networks which map human social interac-

tions [158, 161, 162].
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Several studies have used triadic analysis to study relationships between coun-

tries [123, 163–165]. However, while researchers generally agree that triadic analysis

is a crucial methodological component of analyzing international relationships, there

is no general agreement on what triads tell us about those relationships. To better

understand the value that triadic analysis offers for the study of the global network,

and to generate meaningful hypotheses, there is a need for a generalized platform to

explore the triadic structure of international networks, such as trade networks, and

global outcomes, such as country-level stability. Thus, this system integrates triads

to support trade network analysis. Grouped by triad selection, this system supports

anomaly detection, correlation analysis, clustering and similarity comparisons.

5.1.4 Dependency and Leverage

Besides measuring the absolute value of trade quantity/values from one country

to the other, our collaborators also required a means of exploring dependency and

leverage between countries. This measure is calculated based on the percentage of

the quantity/values of the trade relationship over the total import quantity/values of

the importing countries. More precisely, let ci denote the exporting country and cj

the importing country, and the amount of exports from ci to cj denoted as Qci→cj ,

then the percentage of export from ci to cj over all imports to cj can be calculated

as:

Ici→cj =
Qci→cj∑
kQck→cj

A large Ici→cj indicates that cj is dependent on ci, conversely, it also means ci holds a

leverage on cj and in this case cj is susceptible to having a short supply of the trade

products when ci stops export to cj.
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5.1.5 Clustering Coefficient

Clustering coefficient is a measure of the strength of connection in the subgraph

consisted by the node’s neighbors. It is therefore used in the framework to assess

the robustness of the trade relations for each country. The clustering coefficient for

a country measures how strongly connected its trade partners are. The clustering

coefficient is traditionally defined as:

Ci(W ) =

∑
j 6=i,k 6=(i,j) aijajkaki

di(di − 1)
,

where aij ∈ {0, 1} denotes whether an edge exists between node i and node j, and di

represents the degree of node i. The edge between i and j can be in either directions.

The traditional clustering coefficient does not factor in the weight of the network

edges (as was noted in the design requirements), thus our system also implements an

extension to the clustering coefficient as proposed by Onnela, et al.[166]:

C̃i(W ) =

∑
j 6=i,k 6=(i,j)(w̃ijw̃jkw̃ki)

1/3

di(di − 1)
,

where w̃ij represents the weight of edge between node i and node j. This definition

extends the traditional clustering coefficient definition to deal with weighted networks.

Thus, for a given product or category, we can measure the clustering coefficient by

year and detect anomalies and calculate correlations to other data.

5.2 System Design

Based upon the design requirements and analytical needs discussed in Section 5.1.2

and Chapter 3, a visual analytics system is developed to facilitate the exploration of

relationships between international trade data and measures of a countrys stability.

This system (Figure 5.1, Figure 5.3) consists of 5 major components designed to

support the design requirements (R1-R5). 1) The country-product matrix (Figure 5.3)
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which highlights the significant correlations and anomalies for each country/item

pair (R1, R4). 2) The time series view (Figure 5.1(1)) that displays the trend and

anomalies of trades and stability measures for the selected country (R4). 3) The

choropleth map view (Figure 5.1(2)) that displays the trade profile of a selected

country (R2), along with a small multiple of choropleth maps (Figure 5.1(3)) used

to compare the trade profiles of related countries to the selected one (R5). 4) The

clustering view (Figure 5.1(4)) and scatter plot view (Figure 5.8(3)) are used to

explore the similarities and differences of each country’s trade profiles and compare

trade profiles to stability measures (R5). 5) The trade diffusion graph (Figure 5.1(5))

displays the trade flow of the selected food products from the selected country to the

countries whose disruption in trade are affected or affecting the selected country (R3).

A sample analytic flow can be described as: 1) The analyst uses the matrix view to

find the countries and food products whose trade profile exhibits a temporal pattern

that is strongly correlated with the stability measures. 2) Given the selection, the time

series view will display the trend of trades along with the trend of stability measures

and mark the anomalies. The analyst can select a time range by brushing on the

time series or clicking on an anomaly. 3) After a time range is selected, the analyst

uses the choropleth map to examine the trade relationships between the selected

country and other countries and uses the small multiple of maps to compare the

country of interest to the trade profiles of countries that exhibits the similar anomalous

pattern. 4) The analyst then uses the network diagram to explore and hypothesize

on the propagating effect of trade disruptions from/to the selected countries. 5)

Finally, using the clustering view and scatter plot view, the analyst explores how the

selected country’s trade profile compares among other countries and examines whether

countries with similar trade profiles also share similar social stability measures.
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This sample analytic flow highlights the basic structure of this system. Here, each

view and analysis process was chosen to support specific tasks of the analysis, where

the support of the coupled interactions of space, time, and network analyses is needed.

By supporting multiple linked views, the switch between these three concepts can

be facilitated. Furthermore, by providing methods of clustering and filtering across

measures in space, time and networks, this system enables the integration of these

concepts for advanced analysis.

5.2.1 Correlation-based Country-Product Matrix

Due to the large number of possible networks, the system provides a country-

product matrix view to browse for interesting networks. In this view (Figure 5.3),

countries and products are presented as rows and columns. Each cell in this matrix

visualizes the correlations between trade measures and stability measures given a

country and a product.

This matrix view consists an abstract view (Figure 5.3A) and a detail view (Fig-

ure 5.3B). The abstract view provides an overview for the temporal correlations be-

tween each country’s trade profiles and its stability measures with respect to 20 food

categories. The color of the cell represents the total number of correlations, the

darker, the higher. To help identify countries/product groups with large numbers

of correlations, the matrix, by default, is ordered using a 2D sort method [167] to

shift darker cells to the top left corner. The analyst can browse the matrix using the

country slider on the left and the product slider on the top. A snapshot of the whole

matrix is displayed on the top left corner to help keep track of the current location

within the matrix, which is highlighted using a purple border in the snapshot. Cus-

tomized reordering is also supported. The analyst can click on the “row” or “col”

button on the top-right corner to order rows or columns based on the sum of correla-
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Figure 5.3: The Country-Product Matrix view Has an Abstract View (A) and a

Detail View (B) to Show the Correlations Between Countries’ Trade and Stability

Measures. This Figure Shows Cameroon and Mauritania Have Many Correlations

Between Cereal Trade Measures and ACLED Events.

tions for each row or column. S/he can also click on a particular row (country) to sort

columns (products) based on the number of correlations associated to this country

and sort the countries based on their similarities of the indicated correlation patterns

to this country. In addition, S/he can click on on a particular column (product) to

sort countries based on the number of correlations in this product.

Once interesting cells are found, the user can brush over the cells to zoom in and

switch to the detail view, which displays individual correlations. For any pair of trade

metric and stability, the pairwise Pearson’s correlation coefficients were calculated

for leads/lags between -5 and 5. In the detail view, each cell is expanded with more

information. The trade attributes with correlations are displayed in a circular layout

74



surrounding the stability measure (colored in gray). The arrows connecting them

indicate the directions of the correlations: if the correlation occurs when the trade

attribute lags the stability measure, the arrow points from the trade attribute to

the stability measure. Conversely, if the stability lags the trade attribute, the arrow

points to the trade attribute. Double-direction arrows indicate lags in both directions.

These correlations only provide a hint of possible connections between the trade

and stability for the countries. Some identified correlations may be spurious. How-

ever, these correlations serve as a starting point for the analysts to choose an initial

country/item when there is no clear target in mind (knowing which particular coun-

try and food item to look at). Once the analysts pick a country/item pair, they can

click on the corresponding cell to further investigate. Here we note that correlation is

not equal to causation, so the method of identifying all correlations may suffer from

p-fishing. As such, a human in the loop is critical for identifying potential correlations

of interest and removing obviously spurious correlations.

5.2.2 Anomaly Time Series

While correlations are critical for hypothesis generation, our analysts also wanted

to be cued to anomalous changes in the trade network or stability time series. By

finding anomalies, domain experts can begin reasoning about what other world events

may have been contributing to these changes. To support such analyses, an anomaly

time series is implemented for the selected country and visualized detected anomalies.

An anomaly is defined as any sudden rise or drop from the previous year, which

means there could be a shock in the agriculture trade network. To detect anomalies,

the time series is first detrended by taking the first difference: ỹt = yt − yt−1 for

t ∈ [2, T ]. Then the mean µ and standard deviation σ of {ỹt|t ∈ [2, T ]} are computed

and the upper and lower limit is defined as UL = µ + 2σ, LL = µ − 2σ. Thus, for
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any time t, a sudden rise (ỹt > UL) or drop (ỹt < LL) are detected as an anomaly.

Other methods, (e.g. ARIMA [168], EWMA [169]) could also be applied.

For a selected country/item pair, the anomaly time series (Figure 5.1 (1)) displays

its trade measures, counts of different triads, and social stability (ACLED count and

stability) by year. Which type to display can be toggled using the left-side buttons.

In addition, the triad counts can be filtered based on the magnitude of the trade

relationships using a slider in the top of the interface. This filter is applied to all the

triad counts in the networks under analysis throughout the entire framework. For

all time series, anomaly detection has been conducted and detected anomalies will

be plotted as dots on the corresponding lines. Each anomaly dot can be clicked to

investigate countries sharing the same type of anomaly (which occurs in the same

year of the same attribute time series). These countries will be displayed as small

multiples.

Since there can be multiple time series in the line chart, the analysts can click

on the legend to highlight or de-highlight a time series. Whenever the time series is

highlighted, a temporal correlation indicator will be displayed to show the correlation

between the trade time series and the stability time series from lag 5 to lead 5. The

correlations are colored using a diverging color scheme in which the blues encode pos-

itive correlations and reds encodes negative correlations. These correlation bars are

also shown under each small multiple map to indicate the corresponding correlations

for that country.

5.2.3 Choropleth View

For a selected country and product, we have a main map and a set of small

multiples to visualize trade network elements.
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Figure 5.4: The Main Choropleth Map Can Be Used to Visualize Triad, Trade Quan-

tity/Value, and Country Dependency/Leverage. Examples Show the Triad Distribu-

tion (Left), China’s Dependency (Middle), and China’s Leverage (Right) in Cereal

Network.

The Main Choropleth Map. The main map (Figure 5.4) interactively displays

the global relationship of other countries to the selected one. It can be switched

between trade measures, dependency and leverage, and triad distributions. Users

are also allowed to quickly change the selected country by clicking on a country on

the map. This choropleth map also supports a detailed overview of a country’s core

trade products. When mousing over a country, the top 5 import/export products for

the country are shown as a bar chart. The value in each bar represents the ratio of

the goods’ import/export value (or quantity) over the country’s total import/export

value (or quantity).

Trade Connections and Magnitude. On the main map, the selected country is

highlighted in orange and all other countries on the map are colored using a sequential

color scale based on the selected measure (trade quantity/value or triad). Triads are

visualized by the sum of the triad counts in the selected types (out of the 13 types)

associated with each country in the food network. Trade Quantity is given in tons.

When this option is chosen, countries that are in the selected country’s trade network

are colored based on the imports/exports quantity from/to the selected country. A
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logarithmic scale is used for better color separation. Trade Value is given in dollars.

Again, when this option is chosen, countries that are first order members of the

selected country’s trade network (which means they are directly trading with each

other) are colored based on the dollar value of imports/exports from/to the selected

country. This color also employs a log scale.

Trade Dependency and Trade Leverage. Trade dependency is derived from

trade quantity and trade value. The map can show the trade dependency of the

selected country to the other countries. The dependency, as explained in Sec. 5.1.4,

has a range of [0, 1]. The color of each country represents how dependent the selected

country is to the country. The dependency can be toggled between import and export.

The color scale is manually defined to be [0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] which

is approximately logarithmic. Trade Leverage is also derived from trade quantity

and trade value. The map shows the trade leverage of the selected country to the

other countries as described in Section 5.1.4. The colors are defined in the same way

as the dependency.

Small Multiple Maps. To help the analyst find similar countries in terms of anoma-

lies, this system has a small multiple maps view (Figure 5.1 (3)) alongside the main

map such that for a selected anomaly, the small multiple maps view will display all

other countries that have an anomaly in the same year with the same attribute. These

small multiples also use choropleth maps to visualize the trade measure centered on

these similar countries. The visual setting is synced with the main map. Each of these

small multiples was coupled with a colored correlation bar to indicate the temporal

correlation of the selected trade attribute to the stability measure. These correlation

bars have the same visual encodings as the one in the anomaly time series. Clicking

on the label of any small multiple maps will switch the centered country between the
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main map and the small multiple map, and the other components of the system will

update according to the new country selection.

5.2.4 Trade Diffusion Graph

The trade diffusion graph (Figure 5.1 (5)) is used to display the potential impact

of an anomaly in the trade network. When there is a sharp decrease or increase in

trade for a particular food product, it is tempting to think how such change could

be caused by or be causing the trade disruptions of other countries. For example,

when there is a sharp decrease in wheat export from China in 2004, many countries

experienced a sharp decrease in wheat import in the same year, analysts are interested

in knowing whether these countries are directly or indirectly affected by the export

drop of China. To explore such questions, we developed the trade diffusion graph,

which displays a directed acyclic graph (DAG) connecting the influencing countries

to the influenced countries in the same year. Building this graph requires two steps.

Step 1: Identifying source/target countries. Once an anomaly is selected, the list

of corresponding trade diffusion source/target countries is queried according to the

following rules:

• If the selected anomaly is a sharp decrease (or increase) in exports, the target

countries are identified with a sharp decrease (or increase) in imports in the

same year.

• If the selected anomaly is a sharp decrease (or increase) in imports, the source

countries are identified with a sharp decrease (or increase) in exports in the

same year.

The countries with sharp changes in exports are considered to be the sources of the

trade diffusion, while the countries with sharp changes in imports are considered to
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be the targets. The identified graph will have only one source/target (the selected

country) but multiple targets/sources (the identified countries).

Step 2: Identifying diffusion paths. A diffusion path, in our scenario, is defined

as a trade path from the source to the target with all links (export to import) that

have a higher dependency than a user-defined threshold. To determine if there is

such a link from country A to country B: country A may influence country B when

IA→B > ε, where ε ∈ [0, 1] is a user-defined threshold. The depth-first search is used

to retrieve these paths, and prune to only keep the paths from the source(s) to the

target(s). When the selected country is a source, a DAG starting from the selection

is obtained, and when the selected country is a target, a DAG ending to the selection

is obtained. The graph is drawn using Dagre Javascript library and Jünger and

Mutzel’s crossing minimization method [170], and the layout of the graph positions

the countries based on their topological orders to emphasize the flow of influences

from the source country(s)(left) to the target country(s)(right). The strength of

dependencies are encoded using the width of edges, and each node is labeled by the

flag of the corresponding country. Mousing over each country will highlight all the

paths between this country and the selected country. The selected country is colored

in orange and the other anomalous countries are colored in green. A slider is also

provided for interactive adjustment of the dependency threshold.

5.2.5 Clustering and Comparison

Our analysts wanted the ability to quickly explore similarities across trade and

triad profiles and cluster countries based on these attributes. They would like to see

if similar countries might have the same vulnerability in the trade network or may be

impacted by the same change happened in the network that could cause some social

instability.
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Figure 5.5: The Matrix View Showing the Triad Distribution for Each Country. Rows

in the Matrix Represent Triad Configurations and Columns in the Matrix Represent

Countries. Each Cell in the Matrix Represents the Triad Count for The Country. The

First Column in the Matrix Is the Currently Selected Country in the Map View. The

Other Columns Are Ordered Based on Their Vector Similarity to the First Column.

The Analyst Can Remove Some Triads (Rows) from the Matrix by Clicking on the

Triad on the Similarity Control Panel. Doing So Will Recompute the Vector Simi-

larities and Reorder the Matrix. The Bar Chart in the Bottom Shows the Instability

Measure (e.g. ACLED, GDP).

Scatter Plot. To enable further comparison and correlation analysis, a scatter plot

view (Figure 5.8 (3)) has been created displays the countries’ network attributes

versus ACLED counts, GDP, or GDP per capita. The analysts can use the selected

boxes next to each of the axes to toggle either the attributes or scales (linear, square

root, and log).

Clustering Visualization. This system has integrated a hierarchical clustering view

for interactive clustering analysis. The countries are clustered using a complete-link

hierarchical clustering algorithm. If the hierarchy is cut using a similarity threshold,
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the nodes whose minimum similarities are at least equal to the similarity threshold can

form clusters. The clusters are displayed in a dendrogram (Fig.5.6). In this view, the

clusters are represented by a box enclosing a set of rectangles, where each rectangle

represents a country. The internal nodes of the hierarchy are drawn above the boxes

with a similarity threshold at which the descendants will merge. The number next

to each box represents the minimum similarity of countries within the box, and the

number next to each internal node represents the minimum similarity of all countries

under this node. Initially, the clusters are formed according to a default threshold,

0.5. The analyst can drag the slider to change the similarity threshold or click on

a box or an internal node to expand or collapse the cluster. Clicking on any box

will expand the hierarchy by splitting the countries in this box into two clusters and

make the current box an internal node connecting these two clusters. Clicking on

an internal node will collapse the hierarchy by joining all the boxes below the node

into a larger box , and the internal node will be replaced by the newly created box.

The color in each of the internal rectangles encodes the value of either the GDP, the

GDP per capita, or the number of violent events in the country which the rectangle

represents. Clustering utilizes partner similarity or triad similarity.

Triad Similarity. This metric defines the country similarity by comparing their triad

profiles. A country’s triad profile is defined as a vector of the frequencies that the

country appears in each triad configuration. Thus, when using positional triad con-

figurations, the country’s triad profile is a 13× 1 vector where each entry represents

one frequency. The triad similarity of two countries is then defined as the vector sim-

ilarity of their triad profiles. We used Euclidean distance to calculate this similarity.

By default, all entries in the triad profile are used for the similarity calculation. The

analyst can filter out some types of the triad configurations using the control panel
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Figure 5.6: The Clustering View Displays the Clusters of Countries in a Dendrogram.

Countries in a Cluster Are Grouped in a Box (1). Clicking on Any Box Will Break

the Cluster into Two Smaller Clusters. Clicking on Any Internal Node (2) Collapses

All Children. The Analyst Can Use the Slider (4) to Adjust the Similarity Threshold

for the Hierarchical Clustering. The Color of the Countries Encodes Their Selected

Stability Measure. By Clicking on the Setting Icon (3) at the Top Right Corner of

Each Box, the Analyst Can Choose Between Different View Options for the Fox. The

Box Can Change to a Histogram of the Stability Measure (5) or a Bar Chart That

Compares the Mean and the Standard Deviation of Every Triad Configuration (6).

(under the similarity control area) so that the similarity is calculated only on the

selected entries.

Trade Partner Similarity. This metric defines the country similarity by comparing

its most important trading partners in the network. Given country ci and cj, we can

define the set of their trade partners as Tci and Tcj , and then the partner similarity
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between these two countries can be defined as |Tci ∩ Tcj |. Interactive filters can be

employed such that Tci can represent only the N largest trade partners. In this way,

we can look for countries whose largest trade partners share a large set overlap.

Cluster Exploration. Detailed exploration of the grouped country in a box is avail-

able in this system. In the top-right corner of each, a configuration icon is found.

The analyst can click on the configuration icon to switch between three visualization

options for displaying the country cluster. The default is to list the countries, as dis-

played on the top of Figure 5.6. The second option switches this view to a histogram,

as shown on the lower left of Figure 5.6. It can be either the triad summary histogram

or the data summary histogram. In the data summary histogram, the violence count,

GDP or GDP per-capita of all countries within the cluster are summarized. In the

triad summary histogram, as shown in the lower right of Figure 5.6, each bar shows

the mean of the count of one type of triad configuration for all countries in the cluster.

The length of the green color area represents one standard deviation below the mean,

and the blue color area represents one standard deviation above the mean.

Triad-Country Matrix View In order to quickly compare triad profiles by country,

the triad profiles of each country are visualized in a matrix view (Figure 5.5). Each

column in the matrix represents a country and each row represents one triad config-

uration. Each cell in the matrix is colored based on the magnitude of the frequency

the country appears in the corresponding triad configuration. The color scale can be

toggled to range over the entire matrix (absolute) or be defined separately in each

column (relative). The first column (country) in the matrix is determined based on

the current selection of country in the map view, and the rest of the columns are

ordered based on the similarity between their triad vector and the triad vector in the

first column. The analyst can click on the similarity control panel to toggle between

positional triad profiles and grouped triad profiles. The analysts can also click on any
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triad figure on the similarity control panel to remove (or add back) the triad row from

(or into) the matrix, and the order of the columns will be recomputed each time the

analyst does so. The bottom of the matrix view shows the magnitude of the chosen

instability measure. The matrix can also be toggled to view the triad profiles for the

trade products instead of countries.

5.3 Usage Scenarios

Our usage scenarios were developed by our domain experts in political science and

sustainability. Training and paired analysis was used initially, and then experts took

our tool and integrated it into their current data analysis process. In this section,

the details on their findings are presented, and hypotheses generated when using this

visual analytics system are discussed.

5.3.1 2011 East Asia Drought and Flood

Thailand is a major rice exporter globally and is typically subject to severe flood-

ing. However, Thailand has recently suffered several years of extreme drought begin-

ning in 2011 [171]. Our analysts were interested in performing an exploratory analysis

focused on the global impacts of localized climate events. In our first case study, we

demonstrate how this tool was used to develop hypotheses about how changes in

Thailand’s rice exports might induce potential social unrest in Africa.

First, the analyst selected rice and Thailand. The line chart showed a significant

decrease in the quantity of rice exports in 2012 (Figure 5.1(1)). While this was not

surprising given Thailand’s agriculture disruption in 2011, it did establish that the

drought was followed by a drop in exports the following year. To see which countries

might be significantly impacted due to this export drop, the analyst clicked on the

anomaly dot on Thailand’s export line. Small multiple maps listed all countries

85



Figure 5.7: Comparison Between Niger (1) and Tunisia (2) on Each Country’s Import

Quantity of Rice. By Comparing Both Countries’ Major Exporters of Rice Using the

Choropleth Views (1a, 2a), It Can Be Seen that Niger Imports from a Wide Variety

of Countries Whereas Tunisia Imports Primarily from India and Pakistan. The Time

Series for Both Countries (1b, 2b) Show That Tunisia Had an Import Quantity Dip in

2012 While Niger Had No Such Disruption. At the Same Time, Tunisia Had a Sharp

Increase in Local Conflict Events. The Analyst Can Also Observe That Tunisia Had

Fewer Types of Triads Than Niger.

which also had significant drops in rice exports in 2012. On the trade diffusion graph

(Figure 5.1(5)), countries that experienced a decrease in rice imports were retrieved

and linked by their dependencies to Thailand. The resulting graph showed that some

countries, such as Niger, United States, India, China, and Vietnam, transferred this

impact to other trade partners but were not significantly impacted by Thailand’s rice

export shrinkage, while many other countries, marked with the green background,

suffered large decreases in import quantities of rice.

The analyst then wanted to explore why some countries suffered from Thailand’s

rice export decrease more significantly than others. In particular, he wished to know
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if this might be related to their trade network structures. He clustered these countries

shown on the trade diffusion graph using triad similarity. The clustering result, with

a threshold of 0.5, is shown in Figure 5.1(4). A finding of interest to the analyst

is that the largest group (Tunisia, Niger, etc.) contains most of the countries that

were affected by Thailand’s drop in rice exports. When the analyst split the largest

grouping, he noticed that the remaining countries in the group were all the countries

that experienced the rice anomaly, except Fiji. By switching to view the average triad

profile in each cluster, the analyst noticed most of the variability among these clusters

came from the open triads (type 1 to 6 on Figure 5.2). Thus, the analyst then chose

to remove the closed triads in the clustering control panel and re-cluster the coun-

tries. He found that the countries with import anomalies were more tightly grouped

together. Looking at the trade diffusion graph again, the analyst quickly noticed

that countries that were initially out of the largest cluster had leverages on multiple

countries. For example, Pakistan, though marked with the green background, also

served as a transferring country in the network as it had multiple leverages on Iran,

Kuwait, and Tunisia, and it had a large amount of the Figure 5.2 type (2) open triad.

All the other anomalous countries had no leverages on other countries, and Fiji, along

with most other countries that were later separated from the largest group (Australia,

Cambodia, and Niger) only leveraged on one country in this graph, and this group

of countries had significantly less type (2) triads. These findings indicate that by

using triad profiles, it may be possible to group countries based on their leverage on

other countries. Our analyst noted that this can be a testable hypothesis for future

research.

Recalling that our analyst was interested in finding possible relationships between

a country’s trade network and its social stability, he decided to further explore Tunisia

and Niger which, in general, have local conflict problems. He sought to understand
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why Tunisia had an anomaly while Niger did not, and whether this anomaly could

be relevant to their local unrest events. The analyst clicked on these two countries to

check their import quantity and ACLED event line charts. As shown in Figure 5.7,

Tunisia had an import quantity dip in 2012 while Niger had no such disruption. At

the same time, Tunisia had a dramatically increased number of local conflict events,

and the ACLED line shows a sharp rise during 2011 and 2012. Although the exact

relationship between rice imports and local armed conflicts cannot conclusively be

determined here, it nevertheless provides evidence that these two variables may be

related, as their anomalies happened close in time.

To see how this is related to Niger’s and Tunisia’s rice trade, the analyst inspected

their worldwide import quantities. As shown in Figure 5.7, Tunisia imports most of

its rice from India and Pakistan, both of which are in the trade diffusion graph of

Thailand’s export cut. However, Niger imports rice from a wide number of countries,

including Brazil, Canada, and Australia, which are not all in the diffusion graph and

not shown in the small multiple maps (meaning they did not have significant drops in

rice exports). As such, having a wide trade network that does not connect in a single

trade diffusion path can increase a country’s resilience to agriculture disruption. It

may also enhance local stability, as Niger did not exhibit a significant social unrest

problem like those in Tunisia. Regarding triads, the analyst compared these two

countries on the scatter plot and their triad line charts. As expected, Tunisia had

fewer types of triads than Niger.

5.3.2 Sustainability - Food Insecurity and Political Instability

The second usage scenerio was provided by a domain expert in sustainability

who focused on using the system from the perspective of stakeholders in the interna-

tional development and aid community. In particular, he used the system to suggest
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Figure 5.8: Egypt Had a Sharp Increase in Cereal Import Value in 2011. This Figure

Shows (1) the Import Value Distribution of Egypt, (2) The Similar Countries Who

Had the Same Increase, (3) the Scatter Plot by ACLED and Import Value of Cereal

Among Africa Countries, and (4) the Time Series Indicating the Sharp Increase as

Well as the Negative Correlation Between Egypt’s Import Value and Its Stability

Index.

geographical regions where decision makers in his domain may want to focus their

attention. In this case, the analyst sought to identify potential hotspots of political

instability arising from food insecurity.

The analyst started by examining the country-product matrix and focused on

cereal (a proxy for wheat in this dataset). The matrix indicated that, for both

Mauritania and Cameroon, several correlations were detected between their cereal

trade measures and social unrest events (Figure 5.3). Knowing that Mauritania’s

main agricultural products are wheat, grain, and corn (part of the cereal category),

while Cameroon’s are coffee, sugar, and tobacco, but not cereal, the analyst expected

that Cameroon would rely more on imports of cereal than did Mauritania. To confirm

this, he looked at the line charts for cereal import values and quantities of both

countries and found that, on average, Cameroon’s import of cereal was twice that
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of Mauritania. Furthermore, the analyst found that, for Cameroon, during 2011

and 2012, the import value of cereal increased significantly, though the quantity

only slightly increased. This indicated a probable price increase in cereal, which

matched the global wheat price hikes in early August 2011 as wheat production and

markets were disrupted by natural disasters (e.g., 2010 Russian wheat crops were

lost in wildfires and led to decreases its 2010/2011 production and stock). Turning

specifically to wheat (a subcategory under cereal), the analyst found that Egypt

(a similar country pulled from the small multiple maps) experienced a significant

price increase for imported wheat. The line chart revealed that not only did Egypt’s

import value of cereal products exhibit high positive correlation with ACLED events,

but Egypt also had an uncharacteristic increase in cereal imports in 2011 followed by

an anomalous increase in ACLED events in 2013. This could suggest that the surge

of ACLED events were caused partly by rising food prices.

Next, our domain expert chose to explore what other countries also experienced

a sudden increase in cereal imports in 2011. He did this by clicking the anomaly

indicator on the import value time series, which loaded a list of countries on the

small multiple map view. The domain expert immediately noticed Algeria on the

list, whose import value also had a high positive correlation with ACLED events

(shown by the mini correlation bar underneath the map). Scrolling down the list, the

analyst also noted Lebanon and Yemen, both of which experienced uprisings during

this time. The analyst moved these countries to the top of the list by clicking on the

checkbox on the top left corner of their maps and compared their cereal exporters. He

noticed that all four countries imported wheat from a majority of the same exporters,

with the exception that Algeria was less reliant on Russia. The domain expert then

switched the target of correlation comparison to the stability index and found that

Egypt, Yemen, and Lebanon all had a strong negative correlation with the stability
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index, while Algeria did not. These findings suggest that the sudden increase in the

import value negatively correlates with stability for Egypt, Lebanon, and Yemen and

that this negative correlation might be due to the similarity of their import patterns.

In addition, their triad profiles have a similar distribution and all show that triad

type (5) and (1) are the most common.

Finally, our domain expert chose to explore which other countries had cereal

trade structures similar to that of Egypt. His presumption was that if such countries

substantially share the same global structure for wheat trade, they may be at risk

for episodes of political instability similar to those witnessed in Egypt. Therefore,

the analyst performed a clustering on trade partner similarity and found that Egypt,

Libya, Tunisia, and Algeria were clustered together (Figure 5.6).

In assessing the veracity of these suggested focal countries, our analyst noted that

in 2011, civil war erupted in both Syria and Libya, with Lebanon becoming engulfed

in the Syrian conflict by 2012. Internal rifts also escalated into civil war in Yemen in

2014, while in 2013 the Council on Foreign Relations reported that the risk of political

instability in Jordan had reached its highest level in over 40 years [172]. Additionally,

Algeria and Tunisia experienced political unrest to varying degrees during this same

time frame. While appearing to support the notion that the tool’s trade similarity

analysis may accurately focus a user’s attention, our domain expert also cautioned

that these examples are admittedly anecdotal. Both our experts found that the tool

provided unique capabilities for hypothesis generation that were unavailable through

their current workflow; however, the ability to couple this with analyses for hypothesis

testing was further requested.
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5.4 Discussion

In this case study, a visual analytics system for spatiotemporal trade network

analysis is demonstrated. This system focuses on network feature analysis and enables

users to quickly identify temporal anomalies within these features as well as correlate

these features to country level stability indicators. By linking multisource data for

exploration, this system enables users to explore and develop complex hypotheses.

While several visual analytics systems have explored trade network analysis, this

system focuses specifically on integrating triad analysis with other metrics to provide

novel insights.

This system has been designed and evaluated through collaboration with domain

experts from the Global Security Initiative and the School of Politics and Global

Studies at Arizona State University. Examples ranged from exploring theories of

Capitalist Peace to food insecurity and instability cascading through the trade net-

work. Our partners found that the anomaly detection provided them with a clever

means of identifying regions and time periods of interest, and while they relied on

their own domain knowledge as a starting point, they noted that they planned to do

further exploration to see what other hypotheses might be developed with a deeper

dive into unexplored anomalies. Both the clustering view and the small multiples

anomaly view were key features in their analytic process; however, both analysts

noted that the framework could only support exploratory data analysis.

Reflecting on the design of the system, there are a variety of challenges that must

still be addressed. Given the highly multivariate nature of the data, and the need

to identify lags/leads in conjunction with potential network disruptions, numerous

anomalies are detected. It is unlikely that the initial analysis step in the visual ana-

lytics process will be completely sufficient for discovering unexpected patterns. While
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our designs attempted to provide an overview of anomalies through a country-product

matrix view, new visualization designs should focus on improving the overview, as

well as combining a suite of analytic methods that can vote on most likely anomalies.

Here, the tradeoff of reducing the number of anomalies for exploration versus missing

an event needs to be considered. The limitations of choropleth maps in our design

is also noted. While these maps directly support analysts with a familiar structure,

the sheer number of countries and trade goods that exist in the dataset limits their

functionality. Again, these maps provide an overview and serve the analyst well

for filtering; however, new views that can highlight multivariate trade over should

also be explored. Sankey diagrams may serve as an alternative, or dynamic network

visualization techniques (e.g. [173]) may be advantageous.

The current limitation of this system is that it still falls short in identifying spuri-

ous correlations. While the system can provide many useful clues about the interde-

pendency of trade between countries and the effect of such interdependency on social

stabilities, it does not provide a way to justify the findings and exclude other possible

explanations. The analyst must rely on external sources to verify the results. The

next case study explores extension of the system to support identification of spurious

correlation, and new interactions and views are developed to support this task.
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Chapter 6

SPATIOTEMPORAL TRADE NETWORK ANALYSIS – A CASE FOR

ADDRESSING SPURIOUS CORRELATION

The previous case study mainly focuses on visualizing correlations; however, lit-

tle attention focused on identifying spurious correlations. Spurious correlations arise

when two variables appear to be correlated given the observation but are not intrin-

sically related. In this case, the correlation is either a product of coincidence or due

to the confounding bias (Section 2.2). Spurious correlation is a common challenge in

data analysis. For example, economic data from 1875 to 1914 shows a positive corre-

lation between tariff rate and economic growth. However, a close examination of the

data reveals that the result is heavily distorted by three high tariff and high growth

countries at that time: Argentina, Canada, and, to a lesser extent, the United States.

The labor-scarce, land-abundant nature of these countries made their governments

more reliant on tariffs for revenue, yet the economic structure of these countries led

to high growth regardless of the tariffs [174]. Disregarding these underlying facts in

the data can lead to an unreliable conclusion on the relationship between the tariff

rate and economic growth, which may generate more erroneous results if extrapolated

to other scenarios. The difficulty of detecting spurious correlations stems from the

fact that they can not be identified based on observations alone (Section 2.2), and

typically, some background knowledge is needed to judge the truthfulness of the cor-

relations. In the tariff example, one needs to understand the nature of governance and

the economic structures of the countries to be able to explain the underlying mecha-

nisms that led to the correlation between tariff rate and economic growth. However,

such background knowledge is not always straightforward. For a large exploratory
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analysis, the analysts may discover pairs of relationships that interest them, but lack

the necessary background knowledge to scrutinize these relationships. In this case, it

is desirable to provide the analysts with some indication regarding the potential spu-

riousness (or the lack of) to help analyze relationships. This case study extends the

visual analytics system in the previous case study to provide utilities to directly iden-

tify spurious correlations. The extended visual analytics system leverages Bayeisan

networks to generate causality hypothesis based on observations, and these hypothesis

are matched against the correlations to identify potential spuriousness. Several visual

analytics components are developed to help the analysts discover and inspect poten-

tial spurious correlations. The country-product correlation matrix view described

in Section 5.2.1 is updated to highlight the spurious/non-spurious correlations indi-

cated by the Bayesian network model. The causal path view is developed visualize

the Bayesian network model to help analysts understand the rationale that leads to

the indicated spuriousness/non-spuriousness. Several interactions are developed to

allow adjustments of the Bayesian network model. The following sections will discuss

the design and implementation of the extended visual analytics system, along with

the details of each visual analytics component.

6.1 Design Requirements

One design challenge of this visual analytics system stems from the size and com-

plexity of the data, as the analysts need to sift through a large set of detected correla-

tions to discover the ones that interest them. At the same time, the analysts have to

make sure the chosen correlations are not spurious. The sheer quantity of the detected

correlations makes it unrealistic for the analysts to manually inspect each correlation

for spuriousness; therefore, automatic algorithms are required. The Bayesian net-

work model can generate causal hypotheses based on the data, which can be matched
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against the detected correlations to identify spuriousness. These causal hypothesis

are more reliable than correlations, but they still require additional inspection. This

visual analytics system needs to facilitate the identification of spurious correlations

through the usage of Bayesian networks, and, at the same time, provide utilities for

inspection and manipulation of the Bayesian network models. Based on these discus-

sions, several design requirements are summarized, and again, these are all related to

the components of the proposed visual analytics framework in Chapter 3.

R1 The system needs to provide an overview of detected correlations between the

trade attributes and social stabilizes to assist the exploration on the correlations

(Ch. 3: C1, C3).

R2 The system needs to identify potential spurious correlations and highlight these

spurious correlations (Ch. 3: C1, C4).

R3 The system needs to reveal why some correlations are identified as spurious by

the automatic model (Ch. 3: C4, C5).

R4 The system needs to allow the analysts to adjust the output of the model

through interactions (Ch. 3: C6).

6.2 Causality Modeling

One way to identify spurious correlations is to check the correlations against the

edges in graphical causal models. These models can be conveniently trained using

Bayesian networks, and many methods have been developed to extract causal re-

lationships from data. As mentioned in Chapter 2, Bayesian networks are directed

acyclic graphs (DAGs) that represent conditional dependencies (or the lack of) among

variables, which can often be interpreted as causal relationships. To learn Bayesian
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networks from data, there are two steps: structural learning and parameter esti-

mation. The structure learning part in this case uses the blip library [175], which

implements a score based approximation method [22]. The method searches the opti-

mal structure by incrementally building the DAG using a greedy algorithm, where all

possible structures are organized as a k-tree with bounded-treewidth, and the graph

is built from the bottom up through searching for the parent sets that maximize the

score. This allows the method to efficiently learn structures for very large networks,

e.g. it takes about 20 seconds to train a network with about 3000 variables by setting

the max treewidth to be 4, which is inconceivable for any standard structure learning

algorithms. With the structure at hand, the parameters of the network can then be

estimated with the standard MLE approach [69]. This Bayesian network learning

method has two limitations that can influence our treatment on both the input and

output: 1) The method only works with discrete Bayesian networks, so the input

data needs to be discretized. The resulting Bayesian network will also only reflect

the dependencies of the discretized data. 2) Bayesian networks learned from data are

inherently ambiguous, and the structure learning algorithm will most likely settle to

a local optimal; therefore, the result can only be treated as an approximation. These

limitations impose some additional challenges on the interpretation and manipulation

of the models, but the efficiency of the learning algorithm enables training on very

large data, which is very suitable for this case study.

The Bayesian networks obtained from the the previously mentioned learning method

reveal the dependency structure along with the conditional probability distribution

(CPD) of each variable involved [21, 22]. However, the strength of each edge in the

network is not directly available. This introduces a problem when one tries to in-

terpret and visualize the edges as causal relations, as thinking about the strength

of causal effects is an essential part of human reasoning. One way to compute the
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Figure 6.1: The System Workflow.

strength of causal relations is to use partial correlation [75], but it only works with

continuous data; therefore, it can potentially introduce some discrepancy with the

learning method used. This case study uses a method based on mutual informa-

tion [176], where the strength of edge X → Y is calculated as

w(X, Y ) =
∑

k∈Ω(Z)

P (k)
∑
i

P (Xi)
∑
j

P (Yj | Xi,k) log
P (Yj | Xi,k)

P (Yj | k)

where Z = {Z | Z ∈ parents of Y ∧Z 6= X} and Ω(Z) is all possible combinations of

values of Z. Note that this measure does not distinguish between positive and negative

influence, thus the sign of w(X, Y ) is estimated using the correlation between these

two variables.

6.3 Visual Analytics Components

The goal of the visual analytics system is to extend the system in Chapter 5 to

accommodate the requirements in Section 6.1. The extensions primarily serve to
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support the identification and examination of spurious correlations. Figure 6.1 illus-

trates the workflow of the system. The extended visual analytics system leverages the

Bayesian network model discussed in Section 6.2 to detect potential spurious correla-

tions, and the country-product correlation matrix view in Section 5.2.1 is extended to

include visual encoding that set apart the spurious correlations from the non-spurious

ones. The benefit of having this view is to allow the analysts to quickly locate the

spurious/non-spurious correlations of interest for further inspection (R1, R2). The

analysts can further scrutinize the indicated spurious/non-spurious relationships by

examining the causal path view, which displays the causal edges connected to the

selected relations within the Bayesian network. This view reveals the rationale that

leads to the indicated spuriousness/non-spuriousness, which helps the analysts to

judge whether the indicated spuriousness/non-spuriousness is correct by inspecting

the causal edges (R3). To support the analysts inspecting the causal edges, the

system also provides some contextual information, such as the temporal trends of

variables on both end of the causal relations and the ACLED events of the related

countries (R3). The analysts are able to modify the causal models based on their

judgments on the causal relations using a set of interaction provided by the system:

removing/adding variables, removing causal edges, and setting the variable to a fixed

value (R4). Upon reviewing the updated model, the analysts can make decisions on

whether the selected correlation is truly spurious, and the correlation matrix can be

updated accordingly. The following subsections discuss each visual analytics compo-

nent in the system.

6.3.1 Correlation Matrix

The correlation matrix view in this case study is an extension to the country-

product correlation matrix view described in Section 5.2.1. The previous country-
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(a) The previous correlation matrix. (b) The updated correlation matrix.

Figure 6.2: The Correlation Matrix.

product correlation matrix view (Figure 6.2(a)) visualizes the number of detected

correlations between the trade attributes and the social stability measure for each

country-product pair. However, many of the detected correlations may be spuri-

ous, which makes it less efficient to locate interesting country-product pairs. In

this case study, the correlation matrix view (Figure 6.2(b)) incorporates the results

from the Bayesian network model to highlight the potentially spurious correlations.

This matrix view displays the correlation between a selected trade measure (im-

port/export in this case study) and the social stability measure for each country-

product pair. The rows in this matrix represent the countries, and the columns

represent the food product categories. Each cell represents the correlation between

the ordered pair (C,P, V ) and the stability measure of the corresponding coun-

try, where C ∈ the set of all countries, P ∈ the set of all product categories, and

V ∈ {import, export}. The Bayesian network model can be trained for every ordered

pair (C,P, T ), together with the stability measure, but the analysts can also choose
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a subset of the ordered pairs. The presence/absence of an edge between any ordered

pair (C,P, T ) and the stability measure in the Bayesian network model can be used

to determine whether the correlation between the ordered pair and the stability mea-

sure is spurious, e.g. the absence of the edge indicates spuriousness. The information

regarding spuriousness/non-spuriousness will be encoded in the matrix cells.

The cell in the matrix is colored in a diverging scale, with red representing negative

correlations and blue representing positive correlations. The spurious/non-spurious

of the correlations are encoded by the shape of cell:

• If the model indicates a true causal relationship between any of the ordered pair

(C,P, T ) and the stability measure, the corresponding cell in the matrix will be

drawn as a shape.

• If the model indicate an absence of causal relationship but correlation is de-

tected, the correlation is labeled as spurious and the corresponding cell is drawn

as a shape.

• If the model can not determine if the correlation is spurious, the cell is drawn

as a shape.

• Cells with no detected correlations are drawn using the symbol.

The cells in the matrix are ordered in a way that the cells with non-spurious corre-

lations are shifted to the top left corner, and the rest of the cells are ordered based

on the magnitude of the correlations. The cells with larger correlations are shifted

to the top left corner to be emphasized. The analysts can decide to order the cells

based on either the positive or negative magnitude of the correlations. The ordering

algorithm used here is the same as the one in Section 5.2.1 [167]. It is worth noting

that the spuriousness/non-spuriousness indicated in the matrix can only be treated
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Figure 6.3: The Causal Path View.

as hints to guide further analysis, the analyst must investigate the rationale behind

these indications, and this can be done by clicking on the cells of the matrix to bring

up the causal path view.

6.3.2 Causal Path View

The causal path view (Figure 6.3) visualizes the Bayesian network (or the subset

of) in a node-link diagram, in which the nodes represent the variables and the edges

represent the causal relations. The Bayesian network trained from the data can

potentially contain thousands of variables, which can create significant visual cluster

if the entire network is displayed at once. The causal path view searches through

the network and only displays the edges that are relevant to the selected correlation.

This makes it easier to investigate the reason behind the indicated spuriousness/non-

spuriousness of the correlation.

When the analysts click on a cell in the correlation matrix, it will bring up the

the causal path view which draws the sub-network that contains the chains of the

edges connected to the two variables of the corresponding correlation. These paths

are extracted using a depth-first search starting from the two variables. When the

correlation is indicated as non-spurious, the causal path view shows the path that goes
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through the two variables of the correlation, along with the branches that connect to

the path. This path reveals the causal edges related to the correlation, which provides

the analysts some context to help understand the correlation. When the correlation

is indicated as spurious, i.e. there is no causal edge connecting the two variables of

the correlation, the causal path view may show the back-door path connecting the

two variables. The back-door path is the path that introduces the confounding bias

between the two variables, as discussed in Section 2.2. The existence of the back-

door path may be the reason why the model thinks the detected correlation is not a

consequence of causation. By examining the causal edges on this path, the analysts

can better understand the rationale that leads to the indicated spuriousness, and

subsequently make better judgments on the validity of the indications.

To help the analysts examine the causal edges, the causal path view uses several

visual encodings to highlight the attributes of the causal edges. The width of the edge

encodes the strength of the causal relation, where the strength is calculated using a

method based on mutual information [176], as described in Section 6.2. The color of

the edges indicate whether the causal influence is positive or negative, with red being

negative and blue being positive. The sign of the causal inference is estimated using

the sign of the correlation between the two variables. To make it easier to track the

causal paths, the layout of the causal path view positions the nodes and edges in a way

that emphasizes the flows of influences across the variables, by displaying the causal

paths as flows starting from the left most nodes and ending at the right most nodes.

This layout is computed using the Dagre Javascript library, which is based on a series

of algorithms such as layered drawing [177] and edge-crossing minimization [170].

To illustrate the usage of the causal path view, an example is shown in Fig-

ure 6.3, which displays the back-door path between Egypt’s “cereal import quantity”

and Egypt’s “social stability”. Referring back to the usage scenario shown in Sec-
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tion 5.3.2, the analysts discovered a connection between Egypt’s wheat import and

social stability. The analyst may be interested in inspecting whether the correlation

between Egypt’s wheat import and social stability is spurious. In this case study,

there is a detected correlation between Egypt’s “cereal import quantity” and Egypt’s

“social stability”, as indicated by the correlation matrix. However, the Bayesian net-

work model suggests a lack of causal relation between these two variables, which may

possibly be explained by the presence of the back-door path. By closely examining

back-door path, the analysts noticed Egypt’s “cereal import” and “social stabilty”

are ultimately confounded by Belgium’s “stabliity”. The fact that Belgium’s “stabil-

ity” positively influences Egypt’s ”stability” may be justifiable given their close trade

relationship. But the long path from Belgium’s “stability” to Egypt’s “cereal import”

looks much more suspicious, especially given that the causal strength from Rwanda’s

“stability” to Egypt’s “cereal import” is low. To inspect the validity of the causal

relations, the analysts need more information, and some of them can be provided by

the system.

6.3.3 Context of Relationship

The causal relationships shown in the causal path view can only be treated as

an approximation, as discussed in Section 6.2. As such, it is necessary to check the

validity of the edges in the causal path. This task is supported by providing some

context of the causal relations. In this case study, the contextual information is

visualized in two views: the trend comparison view and the event list.

Trend Comparison

By clicking on one edge in the causal path view, a trend comparison view will be dis-

played. The trend comparison view compares the time series of two related variables
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Figure 6.4: Trend Comparison.

to examine how these two variables are correlated. In this view, the time series of the

two variables are displayed together with their scales adjusted to fit the same space.

The analysts can examine how closely these two lines align with each other over dif-

ferent time period to determine how likely the correlation occurs by mere chance.

For example, the trend comparison in Figure 6.4 shows that Rwanda’s stability has

been improving consistently, which is not surprising considering Rwanda’s rapid eco-

nomic growth in recent years. However, the trend of Egypt’s cereal import is less

stable, although it does align well with Rwanda’s stability during the period between

2006 and 2011. Looking at the choropleth map view (described in Section 5.2.3), it

can be shown that Egypt has no imports from Rwanda, while significant portion of

Rwanda’s cereal import comes from Egypt. This may suggest that the causal relation

from Rwanda’s stability to Egypt’s cereal import may not be true.

Event List

Besides comparing the trends of two variables, it is also helpful to list the ACLED

events of the countries related to the two variables. These lists of events can be

displayed by brushing on the trend comparison view, and the lists contains events

of the countries occurred within the time range selected by the brush, sorted by a

chronological order. These events provide helpful information when the corresponding
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Figure 6.5: Variable Selection.

temporal trends are about social stability. The analysts may also find related events

across the two lists to solidify their beliefs on the corresponding causal relations.

6.3.4 Model Tuning

Upon investigating the causal relations in the Bayesian network model, along with

the context of relationships provided by the system, the analysts may find certain

causal relations in the model disagreeable. And when such situation arises, it is

natural for the analysts to demand the capability to modify the model in order to

make causal relations in the model better aligned with the analysts’ own judgments.

Such modifications often alter the conditional probability distributions (CPDs) of

the variables, which directly result in changes in causal strengths. Sometimes, these

modifications may also alter the structure of the network, which subsequently changes
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the indications on spuriousness/non-spuriousness in the correlation matrix view. This

system provides three types of adjustments to the model:

• Variable Selection

It is very common for the analysts to have some preferences over what variables

should be included in the Bayesian network model, either because they have

some domain knowledge about the importance of variables, or because they

want to limit the scope of the model to prevent the model from becoming

overly complex to interpret. This variable selection process can take place before

training the model, and it can also be performed after examining the existing

model when the analysts feel the initial choices of variables are not optimal.

Changing the choice of variables will result in a change in the optimal structure

of the Bayesian network model. The system provides a tool to allow the analysts

select the variables, as shown in Figure 6.5, in which the analysts are able to

drag the tags to filter the countries, product categories, and import/export.

• Edge Deletion

When the analyst decides that an edge in the model is unreasonable, s/he

can remove the edge, which subsequently changes the conditional probability

distribution of the related variables. This modification may result in a change

in causal strengths, as these causal strengths are calculated based on the CPDs

(described in Section 6.2), and these changes in causal strengths are reflected

in the causal path view.

• Value Selection

As for discrete Bayesian networks, it is possible to set a variable to a fixed

value to observe its effects on the surrounding sub-network. Doing so effectively
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removes the incoming causal edges to this variable, and it also changes the CPDs

of the variables on which this variable has an influence, which subsequently

changes the causal strengths of the related edges. The benefit of this operation

is to enable the exploration on the effects of value assignments, which can help

the analysts better understand the causal phenomenon in the model.

These model adjustments provide a means for the analysts to inject their domain

knowledge into the model. By enabling interactions on the view and providing imme-

diate feedback to these interactions, this visual analytics system allows the analysts

to explore and experiment the effects of the model adjustments, which helps the

analysts to develop a better understanding of the causal model. Based on these un-

derstandings, along with their own domain knowledge, the analysts can potentially

make better judgments on the spuriousness/non-spuriousness of the correlations.

6.4 Discussion

This case study develops a visual analytics system to assist the identification of

spurious correlations during the exploration of a large spatiotemporal dataset. The

Bayesian network model is incorporated for the automatic discovery of spurious corre-

lations, and several visual analytics components are developed to assist the inspection

of the model output. Interactions on the model is developed to assist the manipula-

tion of the model as the means to inject domain knowledge into the model. These

interactions also facilitate the understanding of the model output. Some contextual

information is also provided to assist the inspection of the model. The understandings

developed through the inspection of the model output can be used to justify/invalidate

the indicated spuriousness of the correlations.

Identification of spurious correlation is a very difficult problem, and this case

study does not seek a perfect solution to this problem. The proposed visual analytics
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system only provides a means for hypothesis generation, and, in order to reliably

identify spurious correlations, more rigorous scientific testing is required. It needs

to be pointed out that this visual analytics system has not been evaluated based on

usage scenarios or user studies. Future research can be directed to evaluating the

effectiveness of this visual analytics systems at identifying spurious correlations. It

is also notable that for causal hypothesis generation, changes in conditions over time

cannot be ignored, and volatility in observational data can result in inconsistent causal

models across different time steps. To address this issue, models that take into account

temporality can used, such as the dynamic Bayesian network model [178]. Visual

analytics can also be used to tackle this issue; for example, Bayesian network models

trained over different time steps can be visualized and compared to help develop

understanding on the temporal evolution of models. These can all be potential future

improvements for this visual analytics system.
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Chapter 7

CONCLUSION

This thesis develops a visual analytics framework for correlation and causality

analysis in which visual analytics methods are used to support a series tasks includ-

ing the exploration of data, feature engineering, correlation inspection, as well as

examination and manipulation of causal models. Three case studies are conducted to

demonstrate the effectiveness of this visual analytics framework. The first case study

focuses on the exploration, linkage, and annotation of multiple media sources to ex-

plore drivers of discourse, in which a visual analytics based semantic matching scheme

is used to extract relevant documents from media streams, and the Granger causality

is applied to identify media drivers. The second case study focuses on enabling the

users to understand how trade relationships impact local vulnerabilities over time in

a global trade dataset, where visual analytics methods are integrated with correlation

analysis and anomaly detection for pattern analysis and hypothesis generation. The

third case study focuses on the identification of spurious correlations in which the

visual analytics framework is used to facilitate exploration and manipulation of data

and causal models. Each of these three case studies develops a visual analytics sys-

tem for a domain specific problem guided by the proposed visual analytics framework,

and the strengths and limitations of each system has been discussed. Currently, there

are two notable limitations in these visual analytics systems. First, the semantic

matching method proposed in the first case study is keyword based, which ignores

the semantics capturable from the syntactic structures of sentences. Some natural

language processing techniques such as the semantic role labeling [179] can be used to

generate knowledge graphs from text documents [180], and these knowledge graphs
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can be incorporated into a visual analytics system for semantic extraction in a large

document collection. Second, the visual analytics system proposed in the third case

study has not been evaluated for its effectiveness, and the evaluation can be done

using a user study. Based on these discussions, my future work can be directed to-

wards semantic extraction on text data and evaluations for the effectiveness of visual

analytics on causality analysis.
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