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ABSTRACT

Machine learning has demonstrated great potential across a wide range of applications

such as computer vision, robotics, speech recognition, drug discovery, material science,

and physics simulation. Despite its current success, however, there are still two major

challenges for machine learning algorithms: limited robustness and generalizability.

The robustness of a neural network is defined as the stability of the network

output under small input perturbations. It has been shown that neural networks are

very sensitive to input perturbations, and the prediction from convolutional neural

networks can be totally different for input images that are visually indistinguishable

to human eyes. Based on such property, hackers can reversely engineer the input

to trick machine learning systems in targeted ways. These adversarial attacks have

shown to be surprisingly effective, which has raised serious concerns over safety-critical

applications like autonomous driving. In the meantime, many established defense

mechanisms have shown to be vulnerable under more advanced attacks proposed

later, and how to improve the robustness of neural networks is still an open question.

The generalizability of neural networks refers to the ability of networks to per-

form well on unseen data rather than just the data that they were trained on. Neural

networks often fail to carry out reliable generalizations when the testing data is of

different distribution compared with the training one, which will make autonomous

driving systems risky under new environment. The generalizability of neural networks

can also be limited whenever there is a scarcity of training data, while it can be ex-

pensive to acquire large datasets either experimentally or numerically for engineering

applications, such as material and chemical design.

In this dissertation, we are thus motivated to improve the robustness and gener-

alizability of neural networks. Firstly, unlike traditional bottom-up classifiers, we use

a pre-trained generative model to perform top-down reasoning and infer the label in-
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formation. The proposed generative classifier has shown to be promising in handling

input distribution shifts. Secondly, we focus on improving the network robustness

and propose an extension to adversarial training by considering the transformation

invariance. Proposed method improves the robustness over state-of-the-art methods

by 2.5% on MNIST and 3.7% on CIFAR-10. Thirdly, we focus on designing networks

that generalize well at predicting physics response. Our physics prior knowledge is

used to guide the designing of the network architecture, which enables efficient learn-

ing and inference. Proposed network is able to generalize well even when it is trained

with a single image pair.
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Chapter 1

INTRODUCTION

1.1 Machine Learning and Its Limitations

Neural networks have achieved much success over the past decades. They have

broken many records in computer vision (He et al., 2015; Szegedy et al., 2016; Xie

et al., 2017b), speech recognition(Graves et al., 2013; Amodei et al., 2016), natural

language processing (Kumar et al., 2016; Devlin et al., 2018), and control (Mnih

et al., 2015; Silver et al., 2017). Besides, it has also demonstrated great potential in

various engineering fields such as astronomy (Graff et al., 2014), molecule and drug

discovery (Gilmer et al., 2017; Chen et al., 2018), particle physics (Henrion et al., 2017;

de Oliveira et al., 2017), fault diagnosis and prognostics (Jia et al., 2016), material

and structure design (Cang and Ren, 2016; Cang et al., 2017; Sosnovik and Oseledets,

2017a), and fluid simulation (Tompson et al., 2016; Chu and Thuerey, 2017).

While deep neural networks have achieved near-human performance in almost

all machine perception tasks, it is found that these models can be very sensitive to

small but carefully designed input perturbations, as shown in Fig. 1.1. Such property

allows the attackers to fool a machine in targeted ways by reverse engineering the

inputs (Szegedy et al., 2013; Goodfellow et al., 2014b; Akhtar and Mian, 2018).

Recent studies have demonstrated attacks on different neural networks, for example,

in image classification (Nguyen et al., 2015; Moosavi-Dezfooli et al., 2016; Kurakin

et al., 2016a; Eykholt et al., 2018), detection and segmentation (Hendrik Metzen

et al., 2017; Xie et al., 2017a), image retrieval (Sharif et al., 2016), and reinforcement

learning (Huang et al., 2017b; Kos and Song, 2017). Furthermore, it has also been
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demonstrated that these attacks can be successful under real-world settings (Kurakin

et al., 2016b; Papernot et al., 2017; Athalye and Sutskever, 2017; Evtimov et al.,

2017), posing much threat to applications such as autonomous driving, surveillance,

and biomedical, where safety can be critical.

Figure 1.1: Limited Robustness of Neural Network under Adversarial Attack. Image
to the left is the original input, which will be classified correctly as a "panda" with
57.7% confidence. However, with very little additional noise added along the adver-
sarial gradient direction (plotted in the middle image), the perturbed image (plotted
in the right) will be classified into "gibbon" with 99.3% confidence. However, to hu-
man beings, the resultant adversarial image is not visually different to the original
image. Source: Goodfellow et al. (2014b)

Another limitation for neural networks is their generalizability can be limited. It

is known that standard neural networks have difficulties at generalization under input

distribution shifts (as shown in Fig. 1.2a). For example, neural networks can be diffi-

cult to recognize novel object sets correctly (Stringer and Rolls, 2002). Furthermore,

images composed of highly structured patterns outside the data distribution have be

manufactured to fool the networks (Nguyen et al., 2015). These findings raise the

concern that neural network based systems, autonomous driving vehicles for example,

does not perform well in new environment. The problem for generalizability can also

occur when the training set is small (as shown in Fig. 1.2b). Typically, in order to

generalize well, (a large amount of) data samples are required for neural networks to

fully cover the data distribution. Huge computer vision datasets have been created
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to this end: MNIST dataset (established in 1998) contains 70K handwritten digits

(Deng, 2012), ImageNet (established in 2010) consists of more than 14 million images

in 21k different classes (Deng et al., 2009). ModelNet (established in 2015) consists

of more than 127K CAD models from more than 600 different classes (Wu et al.,

2015). However, it can be very expensive either experimentally or computationally

to acquire dataset at large scale for engineering applications such as in the design of

drug, molecule, and material (Cang et al., 2018a).

Figure 1.2: Limited generalizability of Neural Networks under (a) data distribution
shift, and (b) limited data amount.

1.2 Research Tasks

To this end, we will explore three approaches to address the limitations of neural

networks in robustness and generalization. These approaches are listed bellow.

Task1: Build a Classifier based on Generative Model to handle distribution

shift. In this task, we design a classifier based on generative model for computer

vision related applications. Traditional feedforward neural network (for computer

vision) takes in an image, and output its predicted label after several convolutional

and fully connected layers. This process is essentially a bottom-up signal processing

approach. The concerns over the limited generalizability of neural networks have led
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Figure 1.3: Illustration of the Difference between Proposed Generative Classifier
and Traditional Feed Forward Classifier. Upper part illustrates the traditional feed-
forward classifier, which is bottom-up signal process. Bottom part illustrates proposed
generative classifier, which is top-down and involves inference.

to the question of whether semantic attributes or physical components of the input are

truly understood by feedforward, albeit deep, networks. Furthermore, recent work has

been shown that human vision follows a top-down fashion, and can perform reasoning

better (George et al., 2017). To this end, we investigate the possibility of using a

generative model to perform classification though a top-down reasoning approach,

as illustrated in Fig. 1.3. Specifically, we propose a conditional Variational Auto-

Encoder (c-VAE) that learns both the decomposition of inputs and the distributions

of the resulting components during training. During testing, the latent variables and

input label of the generator are jointly optimized to find the best match between the

given input and the output of the generator. The optimized label will be regarded

as the network prediction. This is consistent with human reasoning, as when we see

something we are not very familiar with, we will think hard in our brain if we have

seen it somewhere or not. We will show that this top-down reasoning approach is

able to handle data distribution shift better.
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Task2: Defend adversarial attacks through transformation-invariant Ad-

versarial training. In this task, we propose adversarial training with transfor-

mation invariant attack to defend adversarial attacks and improve model robust-

ness. Existing work has shown that adversarial attacks can also be vulnerable under

natural input transformations, and random transformations has been used to pre-

processing the input images to improve model robustness (Guo et al., 2017). It was

later shown, however, this approach creates a gradient obfuscation effect and can

be broken by transformation-invariant (robust) attacks (Athalye et al., 2018). The

feasibility of transformation-invariant (robust) attacks in real-world has been demon-

strated in (Athalye and Sutskever, 2017). On the other hand, experiments show that

adversarial training with an ensemble of different models can be used to effectively

avoid gradient obfuscation (Tramèr et al., 2017). Furthermore, independent work has

shown that human vision, which is robust to adversaries, is invariant to mild natural

input transformations (Ullman et al., 2016).

As illustrate in Fig. 1.4, different background color represents the data distribu-

tion of different classes, and the boundary represents the optimum decision bound-

ary. Transformation augmentation constraining the classifier with transformations of

inputs, by assuming that transformations preserve labels. Adversarial training con-

straining the classifier with ε-balls around data points, by assuming that labels are

preserved within these balls (Madry et al., 2017); Our approach is constraining the

classifier with both transformations and the transformed ε-balls.

Task3: Design data-driven models based on physics prior knowledge for

better generalization with small data. In this task, we propose a method to

incorporate the prior knowledge in physics to guide the designing of neural network

architectures and predict the physics response when training data is limited. Since
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Figure 1.4: Illustration of the Difference between different Training Methods: (a)
Vanilla, (b) transformation-invariant: constraining the classifier with transformations
of inputs, by assuming that transformations preserve labels, (c) adversarial training:
constraining the classifier with ε-balls around data points, by assuming that labels
are preserved within these balls; (d) proposed: constraining the classifier with both
transformations and the transformed ε-balls.

only limited information can be provided from the data side, extra information from

other sources would be necessary to address such problem. As depicted in Fig. 1.5, our

learning approach that takes the advantage of both physics understanding (in term

of physics relations) and new developments in data science. Unlike traditional neural

networks, proposed FEA-Net is learning framework specially designed to have physics

prior knowledge embedded in the network architecture. We first propose FEA con-

volution to model the governing Partial Differential Equations (PDEs) in mechanical

analysis, which links the Finite Element Analysis (FEA) formulation and its solu-

tion algorithms to the underlying mathematical representation of the convolutional

neural network. Secondly, we will turn the fix-point iterative solver into the form of

a convolutional neural network. Compared with purely physics based approach, our

method is more memory efficient. And compared with purely data-driven method,

our method is more data efficient.
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Figure 1.5: Illustration of Proposed Physics-guided Data-driven Learning.

1.3 Outline of the Dissertation

The rest of this dissertation is arranged as follows: The second chapter introduces

the technical background and related works on machine learning, generative models,

adversarial attack and defense, and machine learning for physics. In the third chap-

ter, we propose a novel classification algorithm based on generative models that can

classify objects outside of training distribution successfully. In the fourth chapter,

we propose transformation-invariant adversarial training to address the limitation

in robustness. In the fifth chapter, we focused on designing a network architecture

based on physics prior knowledge that has good generalizibility in predicting physics

response with limited training data. We conclude the dissertation in the sixth chapter.

7



Chapter 2

TECHNICAL BACKGROUND

2.1 Machine Learning

2.1.1 Neural networks

The very building block of neural network is called perceptron, which is inspired

by neuron cells in our brain. Neuron cells receive electric impulses through dentrites,

and these impulses will be combined and processed before sending out to other cells.

Likewise, as depicted in Fig.2.1, a perceptron takes in some values X, weight them

differently using W , apply a non-linear function f , and then output a new value Y .

Figure 2.1: Illustration of A Single Perceptron.

The training of a perceptron is often formulated as an optimization problem, which

is, finding the best weights W that minimize the difference between the true label

and the label predicted by perceptron:

W ∗ = arg max
W

(f(W · x)− y) (2.1)

where · denotes matrix vector production.
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Similar to our brain, where neuron cells are interconnected with each other, per-

ceptrons can also be grouped together and stacked upon each other to form a larger

and deeper structure (see Fig.2.2 for example). This structure is called Multi-Layer

Perceptron (MLP), which is also referred to as Neural Network (NN). Based on the

universal approximation theorem, given enough nodes, a two layered neural network

is capable of approximating any functions (Hornik, 1991a).

Figure 2.2: Example of A 4-layer MLP. It takes 8 variables as the input, and has
an output of 4 variables. (Figure adopted from Internet)

Training of a neural network can also be formulated into an optimization problem

similar to perceptron:

xi+1 = f(W i · xi), fori = 1, 2, ..., k

W ∗ = arg max
W

L(xk, y)
(2.2)

where W = {W 1,W 2, ...,W k}, k is the total number of layers, and W i is the weight

on each layer. L is a pre-defined loss function. Because the nested nature of neural

networks, Back-propagation, as a special case of chain rule for computing derivation,

has been proposed to solve Eq.2.2 efficiently (Rumelhart et al., 1985).

For more efficient learning of vision related problems, LeCun et al. (1989) proposed

Convolutional Neural Networks (CNN) by replacing some fully connected layers with
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Figure 2.3: Example of 2D convolutional neural network. (Figure adapted from
Internet.)

convolution. As shown in Fig.2.3, convolutions are done on the input image, followed

by down-sampling layers to reduce the resolution and thus the computation cost.

Finally, the feature maps are vectorized and feed to fully connected layers to obtain

the final output. Because CNN does not vectorize the original input image, the spatial

relationship between pixels in the input matrix can be preserved. Secondly, since the

weight matrix is shared across different locations, the number of unknown parameters

in the network can be efficiently reduced. CNN has shown to be very suitable for

various vision-based tasks like object recognition (LeCun et al., 1989; Krizhevsky

et al., 2012), detection (Girshick et al., 2014; Ren et al., 2015), generation (Radford

et al., 2015; Isola et al., 2017), and segmentation (Long et al., 2015; Ronneberger

et al., 2015).

Various optimization techniques have been specially designed to solve the opti-

mization problem Eq.2.2 and train neural network better (Duchi et al., 2011; Zeiler,

2012; Kingma and Ba, 2014). One of the most advanced optimizers is the Adap-

tive Moment Estimation (Adam) (Kingma and Ba, 2014), which is an optimization

method that adaptively computes the learning rates for each parameter. It estimates
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the first and second order moment (mean and variance) of the gradients respectively:

mt = β1mt−1 + (1− β1)gt

µt = β2µt−1 + (1− β2)g2
t

(2.3)

The updating rule for the variables of our interest is:

θt = θt−1 −
η√
ρ̂t + ε

m̂t (2.4)

where m̂t and ρ̂t are the estimated moment after correction:

m̂t =
mt

1− βt1

µ̂t =
µt

1− βt2

(2.5)

The default value for β1, β2, and ε are set to 0.9 , 0.999, and 10−8, respectively. It

has been shown empirically that Adam works very well in many cases and compares

favorably to other optimizers.

2.1.2 Deep generative models

A generative model is a model that generates a probabilistic distribution ap-

proximately matches with the data distribution. Notable generative models in the

field of comptuer vision include Restricted Boltzmann Machine (RBM) (Hinton and

Salakhutdinov, 2006; Lee et al., 2009), Variational Autoencoder (VAE) (Kingma and

Welling, 2013), PixelCNN (van den Oord et al., 2016a), Generative Adversarial Net-

work (Goodfellow et al., 2014a), among many others.

VAE approximates the data distribution by maximizing the variational lower

bound of the data log-likelihood (Kingma and Welling, 2013), and requires both

the prior and the output to be modeled as parametric families of distributions. Novel

extensions to VAE include DRAW (Gregor et al., 2015), which generates images by

incorporating a recurrent attention mechanism, conditional Variational Autoencoder
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(c-VAE), which performs segmentation and classification by incorporating image la-

bel into the model (Sohn et al., 2015), and disentangling CVAE (disVAE) (Yan et al.,

2016), which uses multiple networks to separate image foreground from background.

Another type of generative model is designed to model the data distributions

directly without any approximation. One notable example is PixelCNN (van den

Oord et al., 2016a), which models each pixel as conditioned on all other observed

pixels. The major shortage of these models is their high computational cost. Various

attempts, e.g., gates (van den Oord et al., 2016b), ResNet-style structures (Salimans

et al., 2017), and long-range spatial independency (Reed et al., 2017) have been made

to improve the computational efficiency of PixelCNN.

Instead of explicitly defining the density function, Generative Adversarial Network

(GAN) (Goodfellow et al., 2014a; Radford et al., 2015) and its many variants (e.g.,

(Chen et al., 2016a; Dumoulin et al., 2016; Zhu et al., 2017; Reed et al., 2016; Zhang

et al., 2016a)) inherently does so by finding the equilibrium of a min-max game

between a generator and a discriminator. The difficulty in finding a good Nash

equilibrium for GAN has led to many proposals of enhancements (Salimans et al.,

2016; Tolstikhin et al., 2017; Berthelot et al., 2017; Durugkar et al., 2016; Zhang

et al., 2016b; For and Tools, 2018), in particular for preventing mode collapse (Zhao

et al., 2016; Metz et al., 2016; Arjovsky et al., 2017; Ghosh et al., 2017).

In addition, hybrid models have been proposed to achieve better generation quali-

ties or specific goals: PixelVAE (Gulrajani et al., 2016) combines VAE and PixelCNN

to capture small details while uses fewer autoregression layers than PixelCNN. VAE-

GAN (Larsen et al., 2015) combines VAE with GAN to obtain a feature-wise error

measurement provided by the discriminator, resulting in generations with higher vi-

sual fidelity. Adversarial Autoencoder (AAE) (Makhzani et al., 2015; Makhzani and

Frey, 2017) replaces the KL divergence of autoencoder with GAN loss, so that it can
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handle discrete latent distribution.

2.2 Adversarial Attacks and Defense

It has been shown that neural networks can be very sensitive to input perturba-

tions, and even a very slight difference in the input can cause the prediction to be

different. This intriguing property has raised many interests on both attacking and

defending side.

2.2.1 Attack

Given (x, y) ∈ D as an image-label pair from a dataset D, a classifier f(·, θ) :

Rd → [0, 1]k with parameters θ maps input images to the softmax outputs, and a loss

function L(·, ·) : [0, 1]k × [0, 1]k → R, the untargeted attack can be formulated as the

problem of finding:

xadv = arg max
x′∈Nε(x)

L(y, f(x′, θ)) (2.6)

where Nε(x) is a Lp ball around x with radius ε. Different distance definition and

different ways to solve the optimization problem give birth to a wide variety of ad-

versarial attack methods. Attacks with p =∞ (Szegedy et al., 2013; Kurakin et al.,

2016b,c; Madry et al., 2017), p = 2 (Carlini and Wagner, 2017; Moosavi-Dezfooli

et al., 2016), p = 1 (Chen et al., 2017), and p = 0 (Su et al., 2017) have been

proposed.

The first adversarial attack on convolutional neural networks is Fast Gradient

Signed Method (FGSM) (Szegedy et al., 2013). Based on L∞ distance measurement,

FGSM simplifies the optimization into a single step gradient descent:

xadv = x+ ε · sign∇xL(y, x, θ) (2.7)

Since only a single gradient computation is involved in FGSM attack, it can be very
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computationally efficient. In the meantime, FGSM is effective enough to destroy

vanilla neural networks without any defense mechanisms.

Based on FGSM, many other L∞ based attacks has been developed. For example,

instead of taking a single step towards the gradient direction, Basic Iterative Method

(BIM) is proposed to perform adversarial attack by performing gradient ascent. And

Kurakin et al. (2016b,c) further adds noise to the initial image in performing gradient

computation. Furthermore, Madry et al. (2017) utilized Projected Gradient Descent

with random perturbation to solver the optimization problem, which has shown to

be extremely successful in attacking neural networks. Instead of explicit gradient

computation, Uesato et al. (2018) adopted Simultaneous Perturbation Stochastic Ap-

proximation (SPSA) (Spall et al., 1992) to approximate the adversarial gradient and

is able to attack models with gradient obfuscation (Athalye et al., 2018).

Lots of adversarial attacks based on L2 distance have been proposed as well, such

as C&W (Carlini and Wagner, 2017) and DeepFool (Moosavi-Dezfooli et al., 2016).

And Elastic Net loss has also been adopted in Chen et al. (2017) for even better attack

performance. Furthermore, the extreme L0 based attack has been proposed, and

solved with evolutionary optimizer (Su et al., 2017). It is shown that, with adversarial

perturbation on as few as a single pixel can be sufficient to fool the network.

What’s more, it has been shown that adversarial attacks are transferable among

models with different architectures and even learning algorithms (Papernot et al.,

2016a), suggesting that a surrogate model can be used to perform adversarial attacks

on black-box models.

2.2.2 Defense

Various attempts have been made to defend adversarial attacks. Some of the most

popular approaches are: (1) To suppress the adversarial perturbation of the input.
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Figure 2.4: From Standard Optimization to Robust Optimization. Box denotes the
L∞ cube with length ε around the data point.

Examples include feature squeezing (Xu et al., 2017a), JPEG compression (Das et al.,

2018), denoising autoencoder (Gu and Rigazio, 2014) and its variants (Liao et al.,

2018). (2) To hide useful gradient information from the attacker. Examples include

thermometer encoding (Roy et al., 2018), defense distillation (Papernot et al., 2016c),

and random input transformation (Guo et al., 2017). (3) Adversarial training or

robust optimization (Kurakin et al., 2016b; Tramèr et al., 2017; Madry et al., 2017),

which formulates a minimax problem which targets the worst case performance of the

model under adversarial attack as illustrated in Fig. 2.4.

Purposefully or not, many existing defense methods results in gradient obfuscation

and their robustness is not reliable (Athalye et al., 2018). As a result, these models

can be either vulnerable to black-box attacks (Papernot et al., 2016a; Tramèr et al.,

2017) or easily defeated by tailored white-box attacks (Athalye et al., 2018). Robust

optimization, or adversarial training, remains to be one of the few defense mechanisms

that do not suffer from gradient obfuscation. Adversarial training can be formulated

as the following minimax problem:

min
θ

E
x,y∼D

[
max

x′∈Nε(x)
L(y, f(x′, θ))

]
(2.8)
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Recent work has shown that this minimax problem can be decoupled and solved

sequentially by first performing adversarial attack on the model then train the model

with adversaries (Kurakin et al., 2016b; Madry et al., 2017). Current best defense

method is PGD adversarial training (Madry et al., 2017) and TRADES (Zhang et al.,

2019b), which all comes from this formulation.

2.3 Physics Based Learning

People also started to explore the possibility to use deep neural networks to pre-

dict the physics to solve related engineering problems. Some of the seminal work has

investigated the application of deep learning in thermal (Sheikholeslami et al., 2019)

and fluid (Tompson et al., 2016; Chu and Thuerey, 2017) simulation, structure anal-

ysis (Wang et al., 2019; Finol et al., 2018) and optimization (Sosnovik and Oseledets,

2017b; Cang et al., 2018b), material property prediction (Bouman et al., 2013; Li

et al., 2019) and design (Bessa et al., 2017; Cang et al., 2018a), system monitoring

(Zhao et al., 2019) and calibration (Yao et al., 2019). Despite all these progresses in

deep learning; however, almost all neural networks suffer from one or many of the

following problems: (1) The model is not quite interpretable, which makes it difficult

to interpret what we have learned exactly and further verify the correctness of the

prediction. (2) The generalizability is limited, which means it is hard to predict the

system response when the training data is limited. (3) There is no guaranteed conver-

gence for traditional deep neural networks, which makes the network design difficult

and lots of trials would be needed.

Recent attempts have also been made to design more efficient data-driven models

for different physics problems, and several seminal works have been done to build

hybrid learning mechanisms with physics knowledge. The performance of FEA has

been enhanced by learning better integration rule (Oishi and Yagawa, 2017), or el-
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ement information (Capuano and Rimoli, 2019). These works use neural network

as a module under the FEA framework. Parallel works have been done to improve

the convergence and accuracy of finite difference analysis (FDA) solvers to initial

value problems (IVP) through learning the optimum filters (Hsieh et al., 2018), or by

building a hybrid model with ODE information hard-coded (Yu et al., 2018). Fur-

thermore, it has been observed that there exist some similarities between different

FDA solvers and some neural network structures (Lu et al., 2017b). Based on this

finding, (Long et al., 2018) proposed PDE-Net based on finite difference scheme and

reported promising result in system identification.
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Chapter 3

ROBUST CLASSIFICATION THROUGH GENERATION

3.1 Introduction

We demonstrate that a generative model can be designed to perform classifica-

tion tasks under challenging settings, including input distribution shifts, overlapping

objects, and adversarial attacks. Specifically, we propose a conditional variational

auto-encoder that learns both the decomposition of inputs and the distributions of

the resulting components. During test, we jointly optimize the latent variables of

the generator and the relaxed component labels to find the best match between the

given input and the output of the generator. The model demonstrates promising per-

formance at recognizing novel component combinations from a traffic sign dataset,

and overlapping components from the multiMNIST dataset. Experiments also show

that the proposed model achieves high robustness on MNIST and NORB datasets, in

particular for high-strength gradient attacks and non-gradient attacks.

Neural network architectures have been developed to achieve human-level perfor-

mance on standard vision tasks (He et al., 2015; Szegedy et al., 2016). However,

it is acknowledged that feedforward networks have a difficulty at generalization un-

der input distribution shifts, e.g., novel object sets (Stringer and Rolls, 2002) and

objects with overlaps (Sabour et al., 2017). Neuro-Evolution of Augmenting Topolo-

gies (NEAT) (Stanley and Miikkulainen, 2002), which evolves an image defined by

a compositional pattern producing network (CPPN) (Stanley, 2007) to maximize a

classification target. Furthermore, studies have shown that networks, even with high

standard test accuracy, can suffer from imperceptible adversarial attacks (Goodfellow
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et al., 2014b). While neither distribution shifting or adversarial attacks are common

cases in standard test environments for image classifiers (Papernot et al., 2016b; Lu

et al., 2017a), the demonstrated risk of existing models have raised concerns over their

real-world applications (e.g., autonomous driving and security surveillance) where

failed classification for a short amount of time can be catastrophic. Indeed, evidence

showed that state-of-the-art classification models have a drastically different accuracy

changing pattern than human beings in classifying image sequences with diminishing

details (Ullman et al., 2016), suggesting that the two have different feature learning

behaviors.

This concern over model generalizability and robustness is intrinsic to classifiers

that perform bottom-up signal processing. Alternative models that integrate bottom-

up processing with top-down reasoning through recursive inference have been stud-

ied (Chen et al., 2008; George et al., 2017). Of particular interest are recursive

compositional models (e.g., AND-OR templates (George et al., 2017)) that learn to

match deformable objects and infer graph states for detection and recognition. These

models take advantage of highly structured generators, e.g., by explicitly modeling

object edges and surfaces. However, the intrinsic trade-off between model and com-

putational complexity (for both model learning and recognition/classification) may

hamper their application to general inputs for which the recognition or classification

tasks depend on a richer set of features. With the rapid advance in generative models

(e.g. GAN (Brock et al., 2018), PixelCNN (Salimans et al., 2017), and VAE (Kingma

and Welling, 2013; Yan et al., 2016)), it is tempting to investigate top-down classi-

fication mechanisms that incorporate more flexible generators than compositional

models.

To this end, we present in this paper a classification algorithm where input images

are classified by minimizing the difference between the target image and the output of
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a customized variational auto-encoder. Following the argument that attribute recog-

nition is key to object classification (Farhadi et al., 2009; Lampert et al., 2009), we

focus on the classification of attributes, or more specifically, the existence of object

components from the input image, while assuming that the follow-up mapping from

these components to the object class is established. As shown in Fig. 3.1, the model

is built upon a variational auto-encoder whose decoder is composed of separate sub-

networks, where each attribute is associated with a sub-network. The model is trained

on a set of labeled images, e.g., traffic signs along with a binary encoding of their

symbolic components, to decompose and reconstruct image components correspond-

ing to the attributes through the sub-networks. When images have individual labels,

such as MNIST, our model is reduced to separate generative models trained for each

label. After the conditional generative model has been pre-trained, we jointly search

the latent variables and the label to find a generation that is similar to the input

the most. The label value after optimization can be used as the classification result.

Among all generative models, variational auto-encoder is chosen as an example to

perform classification.

The rest of this chapter is structured as follows: We first elaborate on the proposed

generative model, its loss design, training settings, and the classification algorithm

in Sec. 4.2. We verify the model in Sec. 3.3 through benchmark studies on MNIST,

smallNORB, and a customized traffic sign dataset. Sec. 3.3.3 discusses the connection

of this chapter to existing methods and future directions.
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Figure 3.1: Schematic of the Proposed Generative Model with Sub-networks Each
Generating Images Corresponding to an Image Component. Here, as an example, we
assume that there are a total of four components.

3.2 Classification through Generation

3.2.1 Generation

In this chapter, we customize a variational auto-encoder (VAE) to have multiple

sub-networks as its decoder (as shown in Fig. 3.1). VAE is chosen among all these

different generative models because of its simplicity and good convergence property.

Let n be the number of sub-networks, y be the image attributes (i.e., the binary

encoding of image components), xr and xf be the input and output images of the

network, respectively, and z be the latent variables. We have z = Enc(xr, θ) ∈

Rp as the encoder, and xf (z, y, φ) =
∑n

i yiDeci(zi, φi) as the decoder, where zi =

Enci(x
r, θ) ∈ Rp/n is the ith segment of z. θ and φ = {φi}ni=1 are weights for the

encoder and decoders, respectively. We note that a higher dimensional latent space

improves reconstruction performance, yet tends to cause mode collapse across sub-

networks, and vice versa.

Since the classification performance is sensitive to both the reconstruction quality

(as the classification decision is based on pixel matching) and the ability of image

decomposition achieved through the sub-networks (so that novel component combi-

nations can be correctly classified), a balance between the two performance metrics
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is required. These considerations lead to the following training loss, which will be

minimized through stochastic gradient descent:

l(θ, φ|D) =
∑

{xr,y}∈D

(
||xf (z, y, φ)− xr||22 + C · yTKL(z)

)
z = Enc(xr, θ, ε)

(3.1)

where KL(z) is the sub-network-wise KL divergence of the distribution of z.

3.2.2 Classification

We consider classification as an inverse problem of jointly finding z∗ and y∗ that

minimize the difference between the generated image xf and a target xr in the image

space:

z∗, y∗ = argminz∈Rp,y∈{0,1}nf(z, y)

f(z, y) ≡ ‖xf (z, y, φ)− xr‖2,

(3.2)

Note that Eq. (3.2) is a combinatorial problem, as an enumeration of the binary

attributes is needed. To reduce the computational complexity, we relax each attribute

to be continuous within [0, 1], so that the optimization problem differentiable and can

be solved efficiently through gradient descent and backpropagation. This process is

illustrated in Fig. 3.2. Furthermore, due to the non-convexity of the problem, we use

the encoded z from xr as the initial guess for faster search. y is initialized as a vector

of 0.5.

In addition, we observed that an object component absent in the input image can

be falsely introduced to the optimized xf to account for the adversarial noise added

to the image. To address this issue, we introduced a L1 penalty to regularize non-

zero attributes with weight c. The intuition is that a component should be discarded

(i.e., sub-network outputs suppressed) if its addition to the generated image does not

improve the reconstruction quality significantly. We also found that minimizing the
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Figure 3.2: Schematic of the Classification through the Pre-trained Generative
Model. The direction of the arrow corresponds to the direction of gradient flow
during testing.

image-wise difference after a sigmoid transformation d further improves the defense

performance. With these modifications, the classifier solves the following problem:

z∗, y∗ = argminz∈Rp,y∈[0,1]nf(z, y) ≡ ‖d(xf (z, y, φ))− d(xr)‖2 + c‖y‖1, (3.3)

where d(x) = sigmoid
(
β · x+ b

)
.

Upon convergence, z∗ and y∗ obtained via Eq. (3.3) will be passed through Al-

gorithm 1 to derive the classification result: First, if the lowest reconstruction loss

found f(z∗, y∗) is larger than a pre-set threshold l, the input image will be classified

as noise. This step filters out adversarial attacks using non-gradient methods. If the

image passes this filter, we apply two thresholds yl < yu to y∗: an element y∗i is set to

0 if y∗i < yl, and 1 if y∗i > yu. For the remaining elements of y∗ between yl and yu, we

will enumerate over all binary combinations of this subset to generate a candidate set

Y . We then compute z†(y) = argminz∈Rpf(z, y) for y ∈ Y and set the classification

result as y† = argminy∈Yf(z†(y), y). The hyperparameters (l, yl, yu, β, b, and c)

can be tuned using a small validation set of adversarial images through gradient and
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non-gradient attacks.

Algorithm 1: The proposed classification algorithm
input : Images x and the trained generative model

output : Predicted label y

parameter: (l, yl, yu, β, b, c)

1 Load a pre-trained generative model;

2 Pre-processed input image x̂ = d(xr);

3 Encode the pre-processed image ẑ = Enc(x̂);

4 Obtain z∗, y∗ and the minimum objective function value f(z∗, y∗) from

Eq. (3.3) with the initial ẑ and yi = 0.5

5 if f(z∗, y∗) < l then

6 Set yi = 0 for all y∗i < yl and yi = 1 for all y∗i > yu;

7 Set I = {i|y∗i ∈ [yl, yu]};

8 Enumerate over yi ∈ {0, 1} for i ∈ I to generate a candidate set Y ;

9 Compute z†(y) = argminz∈Rpf(z, y) for y ∈ Y ;

10 Find y† = argminy∈Yf(z†(y), y);

11 else

12 Return “Image does not belong to any known class."

13 end

3.3 Experiments and Results

In this section, we demonstrate the efficacy of our method through several exper-

iments. First, we test the perfromance of our algorithm on three datasets (MNIST,

smallNORB, and traffic signs) along with the binarization defense (Xu et al., 2017b)

under the simplest FGSM attacks with increasing perturbation levels. Secondly, we
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ask the network to perform classification with distribution shift in testing data, in

which cases the benchmarks completely fails. Examples on the traffic sign data and

CPPN MNIST samples were given to preliminarily validate of the capability of pro-

posed algorithm to handle data distribution shift.

3.3.1 Implementation details

Datasets: The proposed model will be tested on MNIST, NORB (LeCun et al.,

2004), multiMNIST (Sabour et al., 2017), and a Traffic Sign (TS) dataset. For NORB,

similar to Sabour et al. (2017), we downscale the image resolution to 48-by-48. The

multiMNIST dataset is synthesized by stacking two MNIST images into an image of

resolution 36-by-36, which will result in 80% overlap between two digits on average.

Every image label in multiMNIST has 2 ones and 8 zeros. A visualization of the

multiMNIST dataset can be found in Fig. 3.9. The TS dataset is prepared with affine

transformation to mimic traffic signs at different view angles. There are four different

types of images in the dataset: “left turn", “right turn", “no left turn", and “no right

turn". These images are in a resolution of 64-by-64, with examples visualized in

Fig. 3.8. There are four components for TS images to represent the components:

circle, slash, left arrow, and right arrow. For example, a “No right turn" image has

label [1, 1, 0, 1] since it has circle, slash, and right arrow.

Adversaries: We prepared adversarial images on MNIST and smallNORB with

FGSM attacks. Different noise levels (ε) were used to perform FGSM attacks on

images that can be classified correctly by the discriminative classifier. Pixel values

are bounded within [0, 1] after adversarial perturbations. If an adversarial image is

misclassified with a 90% confidence or greater, the attack is considered successful and

this adversarial image is included in the adversarial dataset. For MNIST, we generated

500 adversarial images for perturbations with magnitudes ε/C = 0.1, 0.2, 0.3, and 0.4,
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where ε is the L∞ norm of the attack vector and C is the averaged maximum pixel

value of the dataset (C = 1 for MNIST, MultiMNIST, and TS, and C = 0.82 for

smallNORB). For smallNORB, we generate 1700 adversarial images under all these

attack levels. For TS, we generated 600 FGSM images in total for ε = 0.06 and 360

FGSM images for ε = 0.59.

CPPN Samples: We evolve CPPNs using NEAT (Stanley and Miikkulainen,

2002) to create artificial CPPN images outside of the training data distribution. The

fitness of the evolution is defined as 1− ||ŷ − ytarget||, where ŷ is the classification of

the CPPN image by the discriminative model and ytarget is the target class. Evolved

images with fitness values over 0.9 are stored. Duplicated examples are removed. A

population of 50 CPPNs is used during the evolution. The CPPN comprises tangent,

hat, sine, inverse and rectified linear activation units. We generated 331 and 334

NEAT images for MNIST and TS respectively.

Generator: Different conditional VAEs are customized and trained for each

dataset. The number of sub-networks is equal to the number of total components

in the dataset, which is 10 for MNIST and multiMNIST, 5 for NORB, and 4 for TS.

The latent dimensions are 4, 64, and 4 for MNIST, smallNORB, and TS. The number

of sub-networks are 10, 5, and 3, correspondingly. Once the network has been trained,

it is expected to decompose the input object into different components. To demon-

strate the efficacy of the learning of decomposition, we visualize the latent space of

each sub-networks trained on different datasets in Fig. 3.3. It can be seen that the

decomposition has been done successfully as expected. One unexpected observation

from the results is that the model is able to remove data redundancy automatically,

which can be seen from the TS dataset: To recall, the first component of a TS image

represents the existence of a circle. Since the circle exists in all TS images, the learned

generative model combines the circle into the generation of the arrows and leaves the
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Table 3.1: Hyperparameters Settings Used in the Experiments

l yl yu β b c

MNIST 0.20 n/a n/a 5.0 -2.0 0.0001

smallNORB n/a n/a n/a 5.0 -2.0 0.0001

TS 0.25 0.6 0.7 7 -5 0.001

first sub-network blank.

Figure 3.3: Sampling the latent space of each generator trained on (a) multiMNIST,
(b) TS, and (c) NORB. Each sub-network is dedicated to one component. Samples
of multiMNIST training images can be found in Fig. 3.9.

Hyper-parameters: The hyper-parameters for classification are tuned through

grid search based on the classification accuracy of validation samples randomly drawn

from the training datasets. The size of the validation set is 320 for all datasets. The

resulting hyper-parameters are summarizes in Tab. 3.1. Note that for MNIST and

smallNORB, the candidate set Y is directly formed as all one-hot labels. Since we

have not tested non-gradient attack on smallNORB, parameter l is not used in this

case.
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Figure 3.4: Examples of Succeeded Classification on FGSM Adversaries.

3.3.2 Results

Classification accuracy under FGSM attacks

We first compare our method with the binarization defense (Xu et al., 2017b) on

FGSM attacked MNIST samples in Tab. 3.2. It can be seem that the performance

of binarization drops quickly with increasing attack magnitudes, while the proposed

model is able to maintain high accuracy even under relatively high attack magnitude.

To further examine the cases where our model fails, we visualize the successfully

classified and misclassified FGSM samples under ε = 0.4 in Fig. 3.4 and Fig 3.5,

respectively. We note that many of the misclassified images are hard to be recognized

even for human beings.

Table 3.2: Comparisons between Baseline (Binarization) and the Proposed Method
on Robustness under FGSM Attacks with Increasing Perturbation Levels.

ε 0.0 0.1 0.2 0.3 0.4

MNIST baseline 0.97 0.95 0.90 0.76 0.51

MNIST proposed 0.95 0.87 0.91 0.87 0.82

NORB baseline 59.8 18.3 2.8 0.8 0.2

NORB proposed 87.1 61.9 40.1 24.6 18.8

An additional comparison is performed through church window plots for the stan-

dard feedforward classifier, the binarization defense, and our algorithm on sample
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Figure 3.5: Examples of Failed Classification on FGSM Adversaries. "x" denotes
the reconstruction error has exceeded the threshold, and the image is regraded as
noise.

images from MNIST and NORB in Fig. 3.6. The two dimensions of the plots are

the gradient direction of the correct label and a random orthogonal direction, both

derived by attacking the feedforward models. Each color represents a different label,

with the color at the origin the correct label. Perturbed images on the boundaries as

well as the misclassified images with the smallest perturbations are visualized. It can

been seen that after binary filtering, the model can still get confused even with small

noises, while the proposed method classifies robustly on these samples.

Classification of CPPN samples

While binarize defense almost fails in these cases, our proposed method is still able

to maintain satisfactory performance. If the classification result is different from the

targeted label with above 50% confidence, we will treat it as misclassified. Fig. 3.7 lists

samples of the CPPN images, their binarization, and the corresponding generations

for all three datasets we tested. We see that the feedforward classifier is fooled

completely by the CPPN images with consistently high confidence for the targeted

labels. And even after binarization, many CPPN images can still be misclassified

with high confidence. However, when it comes to proposed generative classifiers, it is

able to identify 90.6% and 100% CPPN samples on MNIST and TS dataset based on

the reconstruction error. This is because the generator is not trained on such highly
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Figure 3.6: Color images from left to right are the church window plots for feedfor-
ward classifier, the binarization defense, and proposed generative classifier. A sample
is drawn from MNIST (upper) and NORB (bottom) for demonstration. Adversarial
images on with the smallest perturbations that gets misclassified are plotted under-
neath.
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Figure 3.7: Examples of classification results from non-gradient (NEAT) attacks on
MNIST and TS. From top to bottom: CPPN images from NEAT, binarized images,
and generated images from the proposed method. For each image, we label them by
their classification from the feedforward classifiers and the corresponding confidence.

structured pattern, thus it won’t be able to reconstruct them out during testing phase

either. This leads to a high reconstruction error exceeds the pre-defined threshold.

And they will be classified into the noise category based on Algorithm 1.

Classification of novel objects

In this experiment, we first train our model on the TS dataset by only using images

from “left turn", “right turn" and “no right turn" categories. After the model is

trained, its performance will be evaluated on images from “No left turn" category.

This experiment is set up in a way that the network is asked to recognize novel

objects not included in the training set.

A traditional feedforward CNN classifier will completely fail under this setting,

where 99% of the “no left turn" images are classified as “left turn". This is due to

the fact that the classifier will associate the “left arrow" feature with the “left turn"

category during the training phase, and this correlation strongly affects the prediction

during the testing phase. In contrast, our proposed model learns to decompose the
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Figure 3.8: Classification Result on Novel Objects. Left: convergence of component
labels during the classification process, with ±3 standard deviation over all “no left
turn” test images. Right: the inputs (top), their sub-network generations (middle),
and the optimal final generations (bottom).

TS dataset into components after training (as shown in Fig. 3.8b), and by combining

these components together, it correctly recognizes 95% of all novel testing images.

Classification of overlapping objects

We now demonstrate that the proposed model is able to handle objects with large

overlap using the multiMNIST dataset. As shown in Fig. 3.3, the proposed model

learns the decomposition of individual digits successfully after training. Applying

the learned model to classifying the test dataset leads to a classification accuracy of

65.6%. Successful and failed test samples and their classification results are shown in

Fig. 3.9. While the accuracy on multiMNIST is lower than that of a CapsNet (95%)

(Sabour et al., 2017), investigation of the model performance shows that many of

the misclassified samples are truly difficult to be separated even for human beings. It

should also be noted that the accuracy of CapsNet is resulted from 60 million training

data, while our model successfully decomposes the learns the component-wise latent

spaces with only 128k data points. We expect improved classification accuracy by

increasing the capacity of the generative model.
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Figure 3.9: Examples of Classification Results on MultiMNIST. First row: input
test images. Second row: predicted images. L and P denotes ground truth and
predicted labels, respectively.

3.3.3 Discussion

The fundamental challenge towards robust and generalizable classification is the

lack of unsupervised prediction capability of existing data-driven methods, i.e., from

the given data points, we are not able to predict the subset of the image space

where data from each label should reside, leaving class boundaries of a feedforward

classifier incorrect or vulnerable to attacks. Existing adversarial training mechanisms

use the fact that vicinity of a given data point in the image space should possess

the same label, and push the class boundaries accordingly to defend attacks with

small perturbations. These, however, do not consider the fact that images with large

perturbations from the data points, can still be perceptually similar to these points.

The proposed method in this chapter can be considered as an attempt to infer class

labels far away from the data. The method is similar to K-nearest neighbour in that

the classification is performed based on minimum distances. However, instead of

measuring the distances to data points, we do so with the manifolds defined by the

generative models, thus leveraging the structure of the data.

While the presented experiments show promise of the proposed classification

method, following future works can be done to better characterize the applicabil-
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ity and limitations of the proposed method. (1) Deeper investigations are needed to

determine if measuring distances in certain feature space will be more effective than

in the image space, as suggested by Sabour et al. (2017). The fact that feedforward

classifiers can achieve high test accuracy suggests that they can map data points to a

feature space where a relatively simple classifier can be applied. Thus it will be inter-

esting to see if learning structures of data points in this feature space, instead of the

image space, can lead to more generalizable classifiers. (2) The proposed method still

requires training labels. Given existing learning mechanisms that perform clustering

and generation (e.g., infoGAN (Chen et al., 2016b)), it would be interesting to inves-

tigate how our algorithm can be integrated with such mechanisms. (3) Scalability to

rich datasets is a valid concern of the current model, as it will require a large number

of sub-networks when applied to datasets with a large range of objects and compo-

nents. One potential solution, as discussed in (George et al., 2017), is to build shared

lower-level layers across the sub-networks. (4) In addition, the proposed model used

a simple summation to assemble outputs from the sub-networks, which may fail to

work for cases where spatial overlap of object components should be considered. One

solution could be to introduce a depth variable to guide the assembly. The variable

will be modeled as an output of the decoder in addition to the sub-networks, and will

be optimized during classification.

3.4 Conclusions

In this paper, we investigate the utility of a tailored conditional variational au-

toencoder as a classifier, and test its generalizability and robustness under challenging

tasks. Results show that the proposed training and classification formulations lead to

promising performance: First, the model can recognize overlapping objects and novel

component combinations that do not exist in the training phase. Second, our model
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is able to defend against adversarial attacks well, in particular under higher attack

magnitudes and under none-gradient attacks.
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Chapter 4

ROBUST CLASSIFICATION THROUGH TRANSFORMATION

AUGMENTATION

4.1 Introduction

The vulnerability of neural networks under adversarial attacks has led to rapid

development of theories and algorithms on both attack side (Szegedy et al., 2013;

Kurakin et al., 2016b,c; Madry et al., 2017; Carlini and Wagner, 2017; Moosavi-

Dezfooli et al., 2016; Chen et al., 2017; Su et al., 2017) and defense side (Xu et al.,

2017a; Das et al., 2018; Gu and Rigazio, 2014; Liao et al., 2018; Roy et al., 2018;

Papernot et al., 2016c; Guo et al., 2017; Kurakin et al., 2016b; Tramèr et al., 2017;

Madry et al., 2017). However, most existing defense mechanisms are later shown

to be vulnerable under stronger attacks (Evtimov et al., 2017; Athalye et al., 2018).

Adversarial training through robust optimization remains to be one of the few defense

mechanisms that do not suffer gradient obfuscation, and so far adversarial training

with PGD attack achieves the best empirical robustness under l∞ attacks (Athalye

et al., 2018; Madry et al., 2017).

Existing work has revealed that adversarial attacks can become ineffective under

small natural image transformations, and therefore random transformations can be

used to pre-process the inputs and improve model robustness (Guo et al., 2017). It

was later shown, however, by aggregating attack losses from different transformations

together, the resultant adversarial image will not be affected under these transforma-

tions (Athalye et al., 2018; Dong et al., 2019). The feasibility of such transformation-

invariant attacks in real-world applications has also been demonstrated (Athalye and
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Sutskever, 2017). To our best knowledge, however, no existing defense approaches

explicitly tackle the transformation-invariant adversarial attacks.

It is further revealed in Tsipras et al. (2018) that there exists an intrinsic trade-

off between model robustness and standard accuracy, which may explain the limited

robustness currently achieved, e.g., on CIFAR-10 (Tsipras et al., 2018) and Ima-

geNet (Kurakin et al., 2016d). They also suggested suggested that model robustness

relies on the use of robust features, and that training driven by standard accuracy

tends to bias the model towards non-robust features (Tsipras et al., 2018). On

the other hand, experiments have shown that human vision, which is robust to ad-

versaries, is invariant to mild natural input transformations (Ullman et al., 2016).

Drawing on these findings, it is reasonable to question whether constraints on trans-

formation invariance may force image classifiers to learn and rely on robust features

only and, in turn, acquire better robustness.

This chapter is thus motivated to investigate the following hypothesis: Model ro-

bustness can be enhanced through training against transformation-invariant attacks.

As a preliminary study, we consider transformations including input cropping, ro-

tation, and zooming. We assume that under appropriate parameter settings, these

transformations are content preserving, i.e., the transformed images keep salient fea-

tures, and can still be correctly classified by human beings. We apply adversarial

training to the proposed model, and simulate transformation-invariant adversaries

during the attack phases of the training. A comparison between the proposed method

and the standard adversarial training is illustrated in Fig. 1.4.

Experiments on MNIST (LeCun et al., 1989) and CIFAR-10 (Krizhevsky et al.,

2014) lead to the following key findings:

1. Imposing transformation invariance on clean or adversarial training does not

improve model robustness;
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Figure 4.1: Schematic of the Proposed Learning Architecture

2. Adversarial training using transformation-invariant attacks significantly improves

the empirical model robustness from the state of the art (baseline model (Madry

et al., 2017)): 93.2% to 97.2% for MNIST, and 47.3% to 54.4% for CIFAR-10,

both on l∞ attacks with attack bounds ε = 0.3 and ε = 8/255, respectively.

3. The proposed learning architecture and training method significantly improve

learning efficiency from the state of the art.

4. The proposed method is more effective at learning robust features.

4.2 Proposed Method

As shown in Fig. 4.1, the proposed learning architecture passes an ensemble of

transformations of an input through copies of a shared convolutional neural network,

before aggregating the network outputs. Below we introduce the architecture and

implementation details.

Decision making Let the shared network be f(·, θ), and the set of input transfor-

mations be T . The probabilistic prediction of an input x follows:
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ypred =
1

|T |
∑
T∈T

f(T (x), θ). (4.1)

Aggregated loss The aggregated loss for data (x, y) is defined as:

J(x, y; θ) =
∑
T∈T

L(y, f(T (x), θ)) (4.2)

For classification tasks, L(·, ·) is the cross-entropy.

Adversarial training under robust attacks The training objective follows ro-

bust optimization, which is a min-max problem:

min
θ

E
x,y∼D

[
max

xadv∈Nε(x)
J(xadv, y; θ)

]
(4.3)

As discussed in Sec. 2.2.2, this minimax problem can be decoupled and solved se-

quentially. The inner maximization problem is an attack robust against all transfor-

mations, and is similar to the Expectation of Transformation (EoT) method (Athalye

et al., 2018; Athalye and Sutskever, 2017). However, to our best knowledge, EoT has

not yet been incorporated into adversarial training.

We use untargeted PGD attacks to approximately solve the inner maximization

problem in Eq. (4.3). The attack parameters for different dataset follows the baseline

model proposed in Madry et al. (2017), which are also summarized in Tab. 4.1.

Term a and t denote the step size and number of gradient descent steps in one attack,

respectively.

Network architecture Our network for MNIST and CIFAR-10 follow the wider

networks in Madry et al. (2017).
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Table 4.1: Hyper-parameters used for adversarial training.

Dataset ε a t

MNIST 0.3 0.01 40

CIFAR-10 8/255 2/255 7

Transformations The input transformations we tested in this chapter include crop-

ping, rotation, and zooming. For cropping, the configuration is shown in Fig. 4.2. The

number of crops in the case of CIFAR-10 is limited by the fact that we only have 8

GPUs in parallel, each of which handles one copy of the shared network. For rota-

tion, we use the built-in rotation function from TensorFlow. For zooming, we first

apply cropping and then rescale the image back to the original size through bilinear

interpolation.

Figure 4.2: Location and Size of the Crops for MNIST and CIFAR-10. Black dots
denote the center of the crops.

4.3 Results and Discussions

We first evaluate the empirical robustness of the proposed method against vari-

ous existing attacks with different transformation settings. We will focus on image

cropping as the transformation applied to the input, and show that with this simple

setting our model can already consistently outperform the state of the art on evalua-
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tion tasks. Mixed results from applying rotation and zooming will then be discussed.

We highlight that training the model with separated attacks for individual input

transformations is not effective. We perform a thorough investigation on whether

our method relies on gradient obfuscation in the second part. Lastly, attempts are

made to explain the performance gain from our model by showing that incorporating

transformation invariance in an adversarial training setting increases the probability

at learning robust features and dropping the non-robust ones.

4.3.1 Evaluation of empirical network robustness

White-box robustness The white-box robustness of our model is compared with

baseline approach on MNIST and CIFAR-10 under FGSM (Szegedy et al., 2013),

BIM (Kurakin et al., 2017), PGD (Madry et al., 2017), and C&W (Carlini and Wag-

ner, 2017) attacks. For fair comparison, we follow the parameters for adversarial

training in Madry et al. (2017) to train proposed model. The parameters for adver-

sarial attack in training is listed in Fig.4.1. The testing attack parameters for FGSM,

PGD, and BIM attacks also follow Tab. 4.1. For C&W attacks, we use learning rate

0.2 and 40 steps with a Lagrange multiplier of 1.0.

We compared our model with baseline model trained with standard optimization

and robust optimization. The white-box robustness for these models are summarized

in Tab. 4.2, together with accuracy on clean test data. With transformation-invariant

adversarial training, our model is able to achieve comparable or higher accuracy than

the baseline model both with and without adversarial training. More importantly,

our model is able to achieve significantly higher robustness under all tested attacks.

In particular, the proposed method improves white-box PGD robustness from 93.2%

to 95.7% on MNIST, and from 47.3% to 54.4% on CIFAR-10.

In addition, we test how robustness changes along with the number of iterations
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Table 4.2: Robustness on MNIST and CIFAR-10 Against White-box Attacks.
“None”: clean test accuracy, Bnat, Badv: Baseline model without and with adversar-
ial training; Pnat, Padv: Proposed model without and with transformation-invariant
adversarial training.

MNIST

attack None FGSM BIM PGD C&W

Bnat 98.9 7.0 0.0 0.0 3.2

Pnat(Ours) 99.3 5.7 0.8 0.5 20.8

Badv 98.4 95.2 92.5 93.2 91.7

Padv(Ours) 99.2 96.9 95.0 95.7 96.0

CIFAR-10

attack None FGSM BIM PGD C&W

Bnat 95.2 12.8 0.0 4.1 0.0

Pnat(Ours) 95.6 15.2 0.0 13.0 0.3

Badv 87.3 56.4 48.36 47.3 19.51

Padv(Ours) 87.9 59.4 52.9 54.4 22.89

(t) in PGD attacks. To do so, we increase t from 0 to 20 while fixing the attack bound

ε and the step size a, and compare the performance between Padv and Badv (Fig. 4.3).

The proposed model consistently out-performs the baseline. It should also be noted

that our model is comparable to TRADES Zhang et al. (2019b), although a more

rigorous comparison is needed (e.g., Zhang et al. (2019b) uses ResNet-18 for CIFAR-

10, while we followed the model in Madry et al. (2017)). Specifically, on CIFAR-10

with 20-step PGD and ε = 8/255, TRADES achieves robustness (clean accuracy) of

56.6% (84.9%) for 1/λ = 6 and 49.1% (88.6%) for 1/λ = 1. In comparison, our model

achieves a robustness (clean accuracy) of 50.3% (87.7%).

Furthermore, we compare the white-box robustness under PGD attacks beyond

the attack bounds ε used during adversarial training. For MNIST, we test ε ∈ [0, 1]
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Figure 4.3: Model robustness for a range of number of PGD steps.

where ε = 1 represents the maximal l∞ attack strength. For CIFAR-10, we test

ε ∈ [0, 35/255]. The comparisons are shown in Fig. 4.4. Still, the proposed method

exhibits consistently higher robustness than the baseline under all attack bounds.

Figure 4.4: Model robustness for a range of attack bounds. The attack bounds used
for training are marked as black vertical lines.

Sensitivity of hyper-parameters on white-box robustness We study the in-

fluence of the number of input crops and the crop size on model robustness using

MNIST: For the former, we fix the cropping size to 20 and vary the number of crops
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from 1 to 64. The locations of crops are shown in Fig. 4.1b. For the latter, we fix

the number of crops to 9 and vary the size of the crops from 12 to 24. Both training

and test use ε = 0.3. The white-box PGD accuracy of these models are summarized

in Tab. 4.3.

Table 4.3: Parametric Study on the Number of Crops and the Crop Size Used in
the Proposed Model

cropping size 12 16 20 24 28

clean testing 11.3 98.6 99.2 99.1 98.4

PGD white-box 11.1 94.2 95.7 94.9 93.2

number of crops 1 4 9 36 64

clean testing 98.3 99.0 99.2 99.2 99.2

PGD white-box 92.1 95.1 95.7 96.1 96.1

It can be seen that increasing the number of crops helps to improve both clean

and adversarial accuracy, with diminishing effect. On the other hand, a sweet spot

exists for the crop size: Larger cropping sizes tend to improve clean test accuracy,

yet inevitably lead to reduced number of crops and robustness, while making the

size too small will reduce the clean test accuracy significantly, which upper bounds

the robustness. For the remaining experiments, we use 9 crops each with size 20 for

MNIST and 8 crops with size 28 for CIFAR-10.

Effect of transformation ensemble on model robustness To better under-

stand the effect of transformation ensemble on model robustness, we further conduct

an ablation study where we remove the ensemble effect during training and test phases

separately and monitor how the robustness changes in each of the cases.

No ensemble in the test phase: Here we train the model as proposed, and test the

white box robustness of each individual network copies in the ensemble. The copies
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Figure 4.5: White-box Robustness of Individual Network Copies Within the En-
semble Under PGD Attacks. Locations in the grid correspond to cropping locations.

are only different in their input transformation layers. The robustness of individual

copies range from 88.7% to 95.3% on MNIST, and 52.6% to 54.1% on CIFAR-10

(Fig. 4.5). These values are lower than the robustness with ensemble (95.7% and

54.4%), suggesting that ensemble is effective during test.

No ensemble in the training phase: We now investigate the effect of the ensemble

in adversarial training on model robustness. Specifically, we remove the influence of

ensemble on the generation of adversaries, in which case the training becomes stan-

dard adversarial training with training data replaced by their cropped copies. When

using nine cropping windows, this leads to a 9-fold data augmentation. During adver-

sarial training, this experiment setting results in adversaries that are not necessarily

transformation invariant. In the test phase, we perform the same ensemble operation

as in Eq. (4.1). On MNIST, these settings lead to a model robustness of 93.4% and

clean test accuracy of 98.7%, which is comparable to baseline and worse than the

proposed.

This experiment reveals the critical role of transformation-invariant attacks in im-

proving robustness from standard adversarial training. We conjecture that when the

model is attacked by individual transformations, the resulting adversaries may lead to

contradictory gradient directions for model refinement, i.e., refining the model with
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respect to attacks for one particular transformation may not help (or even worsen)

the robustness under other transformations.

Effect of rotation and zooming Investigation on the effect of input rotation and

zooming leads to mixed results, which is listed in Tab. 4.4. On MNIST, rotation

yields more robust models while zooming does not; on CIFAR-10, model robustness

improves with mild rotation angles (maximum 4 degrees); yet larger angles (maximum

30 degrees) and zooming show limited effects. It is worth noting that combining

different transformations may lead to extra improvement in robustness. Specifically,

we tested the combination of two models on MNIST, trained separately with cropping

(cropping size of 20, 9 crops) and rotation (4 orientations). The model reaches 97.2%

white-box robustness, while the individual models have 95.7% with cropping and

95.5% with rotation.

Table 4.4: Robustness and standard accuracy of models trained on transformation-
invariant attacks. Baseline robustness (standard accuracy) is 93.2 (98.4) on MNIST
and 47.3(87.3) on CIFAR-10.

MNIST

|T | 1 4 9

cropping 92.1 (98.3) 95.1 (99.0) 95.7 (99.2)

rotation 93.3 (98.7) 95.5 (99.1) 96.1(99.3)

zooming 90.7 (99.2) 91.5 (98.5) 93.6 (99.2)

CIFAR-10

|T | 1 4 8

cropping 45.1 (80.5) 53.3 (83.1) 54.4 (87.9)

rotation 46.5 (78.6) 54.4 (86.8) 53.8 (87.8)
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Challenge with rotation and zooming on CIFAR-10: It is interesting to note that

rotation augmentation on CIFAR-10 only works well under small rotation angles. The

robustness and standard accuracy will be reduced to 48.1% and 78.9% if we increase

the maximum rotation angle from 4 degrees to 30 degrees. We conjecture that this is

because larger rotation leads to an increased number of robust features for CIFAR-10

(e.g., the same image patterns of different angles). With the fixed network capacity,

this may lead to unsuccessful learning. Such phenomenon, however, does not have

significant influence on the robust features on MNIST (which are strokes of different

orientations, see Fig. 4.10), and thus allows a network with fixed capacity to perform

relatively equally across cropping, rotation, and zooming. We thus believe that in-

creasing the network capacity or building in rotation invariance may help improving

the robustness and accuracy at a larger rotation angles, but this investigation will be

left as future work due to the resultant high training costs.

Convergence issue with saturation: A recent study discovered the sensitivity of

model robustness to input distribution (Ding et al., 2018). Inspired by this discovery,

we tested the effect of saturation on model robustness in the original input space.

However, our current implementation of robust adversarial training with image sat-

uration suffers from explosion of the adversarial gradient, which is intrinsic to the

transformation. A smooth approximation of the saturation operation needs to be

introduced before a proper evaluation of its effect on model robustness can be per-

formed.

Learning efficiency We train the proposed and baseline models with increasing

training data sizes and compare model robustness and accuracy along the data size.

We still use the PGD attacks with parameters from Tab. 4.1 for training. A compari-

son of the robustness of obtained models is shown in Tab. 4.5. It can be seen that our
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models consistently achieves higher robustness with different amount of training data.

Or in other words, proposed model require less training data for the same robustness

or accuracy levels.

Table 4.5: Comparison on learning efficiency. A: clean test accuracy, R: white-box
robustness under PGD attacks

MNIST

|D| 0.3k 1k 3k 10k 30k 60k

A(Badv) 91.7 96.6 96.5 97.8 98.5 98.4

A(Padv) 93.4 96.3 97.6 98.5 98.8 99.2

R(Badv) 35.0 73.6 80.5 86.7 88.0 93.2

R(Padv) 68.2 82.6 89.0 93.7 95.6 95.7

CIFAR-10

|D| 0.3k 1k 3k 10k 30k 60k

A(Badv) 43.1 52.2 62.5 73.2 80.0 87.3

A(Padv) 43.3 55.0 67.4 72.1 80.2 87.9

R(Badv) 10 12.8 21.4 33.1 45.3 47.4

R(Padv) 12.7 17.6 27.2 37.2 47.8 54.5

4.3.2 Gradient obfuscation

We have shown that our model achieves high white-box robustness. However,

as discussed in Athalye et al. (2018), intentionally or not, many models are based

on gradient obfuscation (shattering, masking, and explosion/vanishing) and their

robustness is not reliable. We first note that the proposed model does not create

shattering since it has no randomness, and does not create gradient explosion or

vanishing since it does not contain long recurrence. In the following, we investigate

whether gradient masking exists in our model with black-box attacks, non-gradient
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based attacks, and visualization of the loss landscape.

Black-box attack Models with gradient masking tend to have very low black box

robustness. To investigate the black-box robustness of the proposed model, we per-

form PGD attacks on four source models to generate adversarial samples: Bnat, Badv,

Pnat, and Padv. We again use ε = 0.3 and ε = 8/255 for MNIST and CIFAR-10,

respectively. These samples are tested on different models, and the results are sum-

marized in Tab. 4.6. The rows and columns correspond to different test and source

models, respectively. Diagonal elements are the white-box accuracy. It can be seen

that proposed model achieves some improvements under all tested black-box attacks

as well.

Table 4.6: Robustness on MNIST and CIFAR-10 against black-box PGD attacks

MNIST

Bnat Pnat Badv Padv worst case

Bnat 0.0 8.8 85.6 94.8 0.0

Pnat(Ours) 39.3 0.6 63.6 89.5 0.6

Badv 96.7 96.5 93.2 95.5 93.2

Padv(Ours) 97.9 97.4 98.2 95.7 95.7

CIFAR-10

Bnat Pnat Badv Padv worst case

Bnat 0.0 0.2 79.8 68.0 0.0

Pnat(Ours) 0.0 0.2 81.1 69.7 0.0

Badv 86.1 86.1 47.4 66.9 47.4

Padv(Ours) 86.2 86.3 69.5 54.4 54.4
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Figure 4.6: Network Robustness Under SPSA Attack.

None-gradient based attacks We tested the performance of Badv and Padv under

white-box SPSA attacks Uesato et al. (2018). Since SPSA uses estimated gradient

instead of direct differentiation, it is less likely to be affected by gradient masking.

The performance comparison of proposed model with baseline model is shown in

Fig. 4.6. It can be seen that the proposed method consistently out-performs the

baseline under different SPSA iteration and batch size, which again indicates that

the proposed model does not rely on gradient masking.

Loss landscape As discussed in (Athalye et al., 2018), models with gradient obfus-

cation, i.e., gradient masking, shattering, and explosion or vanishing, can be attacked

by tailored attacks. Our model does not create shattering since it has no randomness;

it also does not create gradient explosion or vanishing since it does not contain long

recurrence. In this experiment, we visualize the loss landscapes around random test

points to check if gradient masking effects exists or not. As shown in Fig. 4.7, the

gradient landscapes are informative and smooth. Therefore, the reported robustness

does not rely on gradient obfuscation and the improvements are reliable.
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Figure 4.7: Loss landscapes around random test samples on MNIST (top row) and
CIFAR-10 (bottom row). ε1 is the adversarial gradient direction and ε2 is a random
direction orthogonal to the adversarial gradient.

4.3.3 The influence of input cropping-invariant attacks on the learning of robust

features

From the experiments we observe that cropping is effective as an input trans-

formation at improving model robustness. In the following, we provide preliminary

explanations to this finding through two toy cases inspired by (Tsipras et al., 2018):

1) We use a Gaussian data model to show that using cropped inputs for adversar-

ial training leads to a higher probability of both dropping non-robust features and

learning robust ones; 2) we then conduct a binary classification task on digits “5” and

“7” from MNIST, and empirically show that incorporating cropping leads to more

successful learning of robust features.

Preliminary analysis of the proposed method A binary classification task :

Consider a data model consisting of input-label pairs (x, y) sampled from a distribu-
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tion G:

y
u.a.r∼ {−1, 1}, xi

i.i.d.∼ N (ηiy, 1), (4.4)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2, and ηi ∈ [0, 1]

represents the correlation between xi (the ith element of x) and y. We consider a linear

classifier with parameters w, f(x) := sign(wTx). With regularization, adversarial

training solves:

min
w:||w||2≤1

max
||δ||∞≤ε

ED
[
max(0, 1− ywT (x+ δ))

]
. (4.5)

From Tsipras et al. (2018), the solution to Eq. (4.5) follows a simple rule: With a

finite dataset D drawn from G, if |ED[yxi]| ≥ ε, wi is assigned a non-zero weight, or

otherwise wi is zero. See Fig. 4.8a for an example. When D is infinite, we derived the

true robust features R := {xi|ηi ≥ ε}. Without loss of generality, we will consider

η1 = 1 and η2 = η3 = ... = ηd+1 = η < ε in the following analysis.

Robust features under the proposed model : We consider a simple aggregation over

transformations T := {Tk}Kk=1, which leads to the classifier f(x) := sign(θT z), where

z := (1/K)
∑K

k=1 Tk(x), and Tk(x) is the kth transformed feature. Let zi be the ith

element of z. With input cropping, we have zi = (1/K)
∑

j∈Ni xj, where Ni is a

set of image pixels for the ith aggregated feature. For simplicity, we assume that

Ni = {i, i + 1, ..., i + K} for i = 1, ..., d + 1 − K. This makes N1 the only set that

contains x1 (the robust feature). We have the following distribution in the aggregated

feature space:

z1 ∼ N (ρ,
1

K
), zi

i.i.d.∼ N (ηy,
1

K
), ∀i ≥ 2, (4.6)

where ρ = y(1+(T−1)η)
K

. When ρ ≥ ε, and under infinite data size, adversarial training
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leads to θ1 = 1 and all other weights as 0s. Thus z1 is the robust (aggregated) feature.

Distribution of sample means : Denote the sample means of the correlations as

η̂i for xi, and γ̂i for zi. Under a finite data size N , η̂i and γ̂i follow the following

distributions:
η̂1 ∼ N (y,

1

N
), η̂i

i.i.d.∼ N (ηy,
1

N
), ∀i ≥ 2,

γ̂1 ∼ N (ρ,
1

NK
), γ̂i

i.i.d.∼ N (ηy,
1

NK
), ∀i ≥ 2,

(4.7)

Effectiveness of dropping non-robust features : The probabilities of correctly drop-

ping a non-robust feature are Φ((ε−η)N) and Φ((ε−η)NK) before and after applying

the transformation, respectively, where Φ is the cumulative distribution function for

N (0, 1). Since ε − η > 0 for non-robust features and the number of transformations

K > 1, the transformation improves the effectiveness of dropping non-robust features.

Effectiveness of learning robust features : The probabilities of correctly learning

the robust feature are p(η̂1 > ε) = 1−Φ((ε−1)N) and p(γ̂1 > ε) = 1−Φ((ε−ρ)NK)

before and after applying the transformation, respectively. We can derive from here

that p(η̂1 > ε) < p(γ̂1 > ε) iff

2 logK +Nh(ρ) > 0, (4.8)

where h(ρ) = ε2(K − 1) + (ρ2K − 1)− 2ε(ρK − 1) is a quadratic function of ρ. Given

K, ε, and ρ, Eq. (4.8) sets a condition on N for which a model that incorporates

transformation will have a higher probability of correctly extracting the robust fea-

ture. Specifically, we can derive the following conclusions: (1) When ρ is close to 1,

p(η̂1 > ε) < p(γ̂1 > ε) for any N > 0. We can show in particular that when ρ = 1,

ε2(K − 1) + (ρ2K − 1)− 2ε(ρK − 1) = (K − 1)(1− ε)2 > 0, (4.9)

thus any N > 0 satisfies Eq. (4.8). (2) For ρ ∈ [1/K, ρ∗], where ρ∗ is the larger root

of h(ρ) = 0, p(η̂1 > ε) < p(γ̂1 > ε) if

N <
−2 logK

h(ρ)
. (4.10)
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This preliminary analysis shows that the probability for learning an aggregated feature

with high correlation (e.g., a set of neighbouring pixels that are unique to one class) is

higher than that for learning an individual feature with equally high correlation (with

the label). On the other hand, for aggregated features that are moderately correlated

with the label (e.g., a pixel unique to a class surrounded by noises), there is an upper

bound on the data size for which incorporating transformation in adversarial training

will gain an advantage.

Empirical examination Here we formulate a binary classification problem using

digits “5” and “7” from MNIST. We use a cropping size of 26 and a model that

aggregates 9 cropped inputs. Correlation values for all features with and without

cropping are computed (Fig. 4.8a). With ε = 0.2 and all training data (10k in total),

the robust features are identified for a linear model defined on the original images

and a separate linear model defined on the features aggregated from cropped images.

The resultant categorization of robust and non-robust features is considered as the

ground truth.

We then perform the same computation on random batches of the data (400

for each), mimicking adversarial training under small dataset. For each batch, the

learned robust features are recorded. By combining results from 200 random batches,

we compute the percentage of batches that each feature is being correctly classified

as robust or non-robust. A comparison is shown in Fig. 4.8b. The model with input

cropping achieves higher success rate at learning robust features and dropping non-

robust ones: Without cropping, there are 16 robust features not always regarded as

robust, and 32 non-robust features regarded as robust in some cases. With cropping,

these numbers reduce to 9 and 10, respectively.
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Figure 4.8: (a) Correlation of each feature to labels w/ and w/o cropping aggrega-
tion. Dots are classifier weights derived from adversarial training based on Eq. (4.5).
(b) The ratio that a feature is regarded as robust across 200 random batches. Dashed
lines in black and yellow separate robust and non-robust features for models w/ and
w/o cropping aggregation, respectively. The ideal ratio curve would be constantly 1
to the left of the dashed line and 0 to the right.

Network Visualization Lastly, we qualitatively evaluate the efficacy of our model

at learning robust features, by considering such features as human-interpretable image

patterns. We first visualize the adversarial gradients from Pnat and Padv in Fig. 4.9.

The result shows that incorporating cropping invariance alone does not yield mean-

ingful adversarial gradients. However, combined with adversarial training, the adver-

sarial gradients become interpretable.

We further investigate network filters from MNIST. Consistent with (Madry et al.,

2017), the first-layer filters for baseline model are sparse. In comparison, our model

increases the number of non-zero filters from 3 to 22. Considering that these filters

serve as denoisers with learned thresholds, more filters would allow richer information

to be passed to the next layer of the network. We also compare the second-layer filters

from baseline and our model in Fig. 4.10. Our model is able to produce more human-

interpretable strokes, which may explain its improvement in robustness.
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Figure 4.9: Visualization of adversarial gradients. Images from top to bottom are
random clean samples, adversarial gradients from Pnat, and those from Padv.

Figure 4.10: Visualization of the second-layer filters from networks trained on
MNIST ( left: baseline, right: proposed). The proposed method is able to learn
more meaningful strokes.

4.4 Related Work

Random input transformation Guo et al. (Guo et al., 2017) proposed using ran-

dom transformations to pre-processing the input images to improve model robustness.

It was later shown, however, that this approach creates a gradient masking effect and

can be broken by robust attacks (Athalye et al., 2018). Unlike (Guo et al., 2017),

we consider the transformation as part of our model during the adversarial training
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process.

Bag of features Studies on bag of features (BoF) (Csurka et al., 2004; Jurie and

Triggs, 2005; Zhang et al., 2007; Brendel and Bethge, 2018) proposed the aggrega-

tion of clusters of local image features for classification. While our model also takes

in multiple inputs as in BoF models, we assume that these images are all content

preserving, and do not rely on an aggregation for classification.

Ensemble adversarial training Attacks from an ensemble of black-box models

have been used to effectively avoid gradient masking in one-step adversarial train-

ing (Tramèr et al., 2017). While our model also uses an ensemble of attacks, these

attacks are white-box and multi-step. Importantly, these attacks do not cause gradi-

ent masking.

4.5 Limitations and Future work

Limitations Computational cost : The proposed model requires higher computa-

tional cost due to the computation of transformation-invariant attacks. As the effec-

tiveness of the proposed method is positively correlated with the number of transfor-

mations (shown experimentally in Tab. 4.3 and theoretically in Sec. 4.3.3 for image

cropping), the success of the method depends on the availability of parallel GPUs for

computing attack gradients. Due to this limitation, our experiments on the restricted

ImageNet dataset (Tsipras et al., 2018) have so far achieved limited success. Specifi-

cally, with cropping size 168 and four crops, the proposed model achieves 92.83% and

96.93% for robustness and standard accuracy, which are comparable to 92.75% and

96.83% for baseline model. We hypothesize that increasing the cropping size and the

number of crops will further improve the model robustness.
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Verification : Existing formal verification (Katz et al., 2017) and certification (Xu

et al., 2009; Wong and Kolter, 2018; Wong et al., 2018) methods rely on the linearity

of the decision function. Our model aggregates softmax outputs (Eq. (4.1)), which

makes existing tools not directly applicable. It will be necessary to investigate whether

the aggregation can be performed before softmax.

4.6 Conclusions

In this chapter we investigated a learning architecture that incorporates input

transformations into adversarial training, and showed that the model (1) achieves

better empirical robustness than the state of the art on MNIST and CIFAR-10, (2)

is more data efficient, and (3) is more effective at extracting robust features, by using

image cropping as an ensemble of transformations. Importantly, we showed that while

constraining the model to be transformation invariant (through data augmentation)

does not help improve model robustness, incorporating transformation-invariant at-

tacks in training plays a critical role in achieving this goal. The proposed model is

computationally more costly than standard adversarial training. The generalization

of the success from cropping to other transformations is currently limited, potentially

due to the limited capacities of the tested models.
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Chapter 5

PHYSICS-GUIDED DATA-DRIVEN MODEL FOR EFFICIENT MECHANICAL

RESPONSE PREDICTION

5.1 Introduction

Machine learning has achieved great success in computer vision (Krizhevsky et al.,

2012), speech recognition(Amodei et al., 2016), natural language processing (Devlin

et al., 2018), and control (Silver et al., 2017) with huge amount of training samples.

Inspired by these success, deep neural networks have also been widely used to solve

problems in physics recently (Sheikholeslami et al., 2019; Tompson et al., 2016; Chu

and Thuerey, 2017; Wang et al., 2019; Finol et al., 2018; Sosnovik and Oseledets,

2017b; Cang et al., 2018b; Bouman et al., 2013; Li et al., 2019; Bessa et al., 2017;

Cang et al., 2018a; Zhao et al., 2019; Yao et al., 2019). However, deep neural networks

suffer from poor generalizability when the training data is limited. In the meantime,

large dataset can be difficult or expensive to obtain for many engineering applications

(Cang et al., 2018a). Our main objective of this chapter is to accurately predict the

response of a physics system based on limited observed data. In this chapter, we

designed convolutional neural networks to model the physics from response to loading

and vise versa with the prior knowledge in physics.

Unlike previous approaches, an integration between purely data-based and physics-

based model is considered in this chapter. As illustrated in Fig. 1.5, our prior knowl-

edge in physics principles is used to guide the designing of data-driven model struc-

tures, and the problems on both ends can be mitigated in this way. Specifically, we

use the prior knowledge in FEA and its numerical solvers to design the structure of
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the proposed FEA-Net: (1) Inspired by FEA and its local support property, we first

design FEA convolution operation that is physically meaningfully. (2) Based on FEA

convolution, we design a framework for learning and inference for higher efficiency

and accuracy.

Different network structures are designed to maximize the performance of both

training and inference: (1) The network is designed to reversely map the system

response to its corresponding loading at the training stage. This mapping is extremely

simple, which makes the network training very computationally efficient. It can be

very accurate at the same time, which enables the learning to perform well on even a

single training data point, i.e. to perform one-shot learning. Depending on the extent

of the physics prior, either network filters or physics parameters can be learned. (2)

We construct another network to map the system loading to response by re-using the

convolution operations from the training stage. The structure of the inference network

is backed up by fix-point iterative solvers and thus have theoretical convergence w.r.t

network depth.

As a summary, FEA-Net has the following advantages over traditional purely

data-driven models:

• The filters of FEA-Net are physically meaningful. Thus, FEA-Net is inter-

pretable and we can infer the physics knowledge from the trained network.

• FEA-Net is more generalizable, and can perform single-shot learning with only

a single image pair.

• FEA-Net has guaranteed prediction accuracy convergence w.r.t. network depth.

• Furthermore, the proposed method is a general framework and more advanced

network structures like multi-grid can be added easily.
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And when compared with purely model-based approach, it has the following advan-

tages:

• FEA-Net doesn’t require the physics model.

• FEA-Net consumes far less memory, and can be easier to be parallelized on

GPU devices.

• FEA-Net is much easier to extend to other problems. For example, the same

architecture can be easily adapted to solve problems with different physics field

and spatial dimensions.

An outline of the paper is as follows: Sec.5.2 formulates the problem and reviews

some of the related work on both deep learning and computational mechanics side. In

Sec.5.3, we introduce the FEA convolution and extend it to handle multi-physics and

multi-phase problems. Based on FEA convolution, we design FEA-Net structure for

multi-physics (homogeneous thermoelasticity) and multi-phase (bi-phase elasticity)

in Sec.5.4. Numerical examples are given in Sec.5.5. Sec.5.6 concludes the paper.

5.2 Preliminaries and Background

5.2.1 Problem formulation

To start with, we make the following assumptions: (1) All observations are in

image form. This assumption makes the use of convolutional neural networks as

data-driven model possible. (2) Consider linear physics only. We start with simpler

linear physics first, as it is easier to prove the convergence of the proposed algorithm.

Similar idea is also adopted in Kawaguchi (2016); Hsieh et al. (2018). Future work

will extend this framework to non-linear physics.

We state our general goal as: Build a model to predict the system response when
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Figure 5.1: (a) Solution domain Ω with boundary condition. (b) Load/ response
heatmap can be viewed as images. (c) Image pixels and their coordinate system.

a new loading image is given, given a dataset D that contains observed loading image

V ∈ R(N,N,P ) and response image U ∈ R(N,N,Q) pair. N is the spatial resolution

of the images, P and Q are the number of input and output channels for loading

and response images respectively. More specific problem definitions will be given in

Sec. 5.4.1 and Sec. 5.4.2.

In the rest of this paper, we assume that the solution domain Ω is 2D and square-

shaped as depicted in Fig. 5.2.1a. There can be multiple different physics field in

Ω, which can be expressed as several different heatmaps (Fig. 5.2.1b). And these

heatmaps can be viewed as a multiple channel image, as shown in Fig. 5.2.1c. For

example, we have three channels for thermoelasticity problems: x- and y- directional

displacement (or force) and temperature (or heat flux).

5.2.2 Neural networks

A L-layer (fully connected) neural network is a function

y(x|W ) = fL(WL, ...f 2(W 2, f 1(W 1, x))) (5.1)

with parameters W = {W 1,W 2...WL} and input x. The function f is called activa-

tion function, which acts on all components of the input vector. During the training

phase, the network weights are determined by minimizing the difference between net-

work output and observations. It is found that, given enough nodes, neural networks
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with non-linear activation function have the potential to approximate any compli-

cated functions (Hornik, 1991b). However, how to design the network to be more

efficient for different problems is always an open question.

A plethora of research has been done to design more efficient and effective neural

networks among deep learning and computer vision communities. Some of the biggest

breakthroughs can be summarized as: (1) Replacing some fully connected layers with

convolutions (LeCun et al., 1989) (as shown in Fig. 5.2a). In this way, Convolutional

Neural Network (CNN) mimics the human visual system and captures the spatial

correlations better. It has shown to be very suitable for various vision-based tasks like

object recognition (LeCun et al., 1989; Krizhevsky et al., 2012), detection (Girshick

et al., 2014; Ren et al., 2015), generation (?Isola et al., 2017), and segmentation

(Long et al., 2015; Ronneberger et al., 2015). (2) The invention of residual networks

(ResNet) (He et al., 2016). Through the short-cut residual connections, Res-Net style

network can avoid the notorious “gradient vanishing” problem and make the training of

network with thousands of layers possible. Compared with previous neural networks,

ResNet and its various extensions (Huang et al., 2017a; Xie et al., 2017b) can almost

always achieve better convergence and higher accuracy. (3) The development of one-

shot learning algorithms (Fei-Fei et al., 2006; Santoro et al., 2016). Based on either

Bayesian theory (Fei-Fei et al., 2006) or external network memory and attention

mechanism (Santoro et al., 2016), these models can be very data efficient and partially

mitigates the need for big data for network training.

Shown in Fig. 5.2b, Fully Convolutional Network (FCN) is a special type of CNN

that only contains convolutional operations (Long et al., 2015). It takes in images as

input and outputs another image of the same resolution with per-pixel label. Since

only convolution operation is involved, FCN is very computationally efficient and

can handle inputs of arbitrary size. FCN is designed to perform pixel-wise labeling,
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Figure 5.2: (a): CNN, (b): FCN (figure adopted from Ren et al. (2015))

and has shown to be very powerful in semantic segmentation (Long et al., 2015;

Ronneberger et al., 2015).

5.2.3 Finite Element Analysis

As a quick review, the core idea behind Finite Element Analysis (FEA) is to

approximate the potential field with piece-wise lower-order functions (Hughes, 2012).

In practice, it involves discretizing the solution domain with smaller meshes, which

transforms the original PDE into a system of linear equations:

K · u = v (5.2)

where v and u are the vectors of system loading and response on the FEA nodes,

and K is the global stiffness matrix which is obtained by assembling all individual

element stiffness matrices Ke:

Ke =

∫
∆

BTCBdΩ (5.3)

where C is the constitutional matrix depends on the material property, B is the

geometry matrix decided by the element shape and order, and ∆ is the finite element.
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While numerous numerical solvers exist for solving Eq. (5.2), most of them involves

iteratively computing the residual (Yang and Mittal, 2014):

r = v −K · u (5.4)

As an example, the simplest Jacobi solver has the following form:

ut+1 = ωD−1 · rt + ut (5.5)

where ω is a hyper-parameter, and D is the diagonal part of matrix K.

5.3 FEA Convolution

This section is organized into the following parts: We start by introducing the

FEA convolution to model PDE for homogeneous material, and generalize it to han-

dle multi-physics problems in Sec. 5.3.1. Proposed FEA convolution is then further

extended to multi-phase problems in Sec. 5.3.2. How the gradient of FEA convolution

can be obtained is discussed in Sec. 5.3.3.

5.3.1 FEA convolution for multi-physics problem

For physics process, its system loading and response need to satisfy some under-

lying PDE. Based on finite element analysis, there exists a ”local support property”:

The loading at any node is related to only the response at its surrounding nodes.

Thus, in image space, any pixel value in image V is only related to the pixel val-

ues in U at its neighboring region. This relationship is formalized into the following

theorem:

Theorem 1. The mapping from system response image U ∈ R(N,N,Q) to system load-

ing image V ∈ R(N,N,P ) can be modeled with a convolution operation for homogeneous

material:

V = W ~ U (5.6)
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Figure 5.3: (a) The response of node(i, j) (plotted in red) is affected by the loading
on the nodes of the four surrounding elements only. (b) Node numbering convention
for a element.

where ~ and W ∈ R(R,R,P,Q) denotes the convolution operator and filter, and R can

be any odd number larger than 3.

Proof. We give the proof with single input and output component (P = Q = 1), which

can be extended to other cases naturally. Under FEA perspective, the relationship

between U and V can be defined by Eq. (5.2), with element stiffness matrix defined

in Eq. (5.3). It is worth noting that, if the physics problem is unchanged and the

material is homogeneous everywhere, then its constitutional matrix C will be the

same for all elements. Furthermore, if the mesh is uniform and of the same order,

then the shape matrix N will be the same as well. Under these hypotheses, the

element stiffness matrices Ke will be the same everywhere.

As an example, we use the simplest 4 node linear element to discretize the un-

derlying PDE in this paper. Following the numbering convention in Fig. 5.3, such

discretization will lead us to a system of linear equations:

Vij = Ke1
13 · Ui+1,j−1 +Ke1

23 · Ui+1,j +Ke1
33 · Ui,j +Ke1

43 · Ui,j−1

+Ke2
14 · Ui+1,j +Ke2

24 · Ui+1,j+1 +Ke2
34 · Ui,j+1 +Ke2

44 · Ui,j

+Ke3
11 · Ui,j +Ke3

21 · Ui,j+1 +Ke3
31 · Ui−1,j+1 +Ke3

41 · Ui−1,j

+Ke4
12 · Ui,j−1 +Ke4

11 · Ui,j +Ke4
32 · Ui−1,j +Ke4

42 · Ui−1,j−1

(5.7)

where e1 to e4 denotes the four neighbouring elements of node(i, j) as Fig. 5.3a shows.

The subscript of the element stiffness matrix goes from 1 to 4, which corresponds to

66



the node index inside a particular element as Fig. 5.3b shows.

By comparing Eq. (5.6) and Eq. (5.7), we can obtain a 3-by-3 FEA convolution

kernel W explicitly:

W =


Ke

42 Ke
32 +Ke

41 Ke
31

Ke
43 +Ke

12 Ke
11 +Ke

22 +Ke
33 +Ke

44 Ke
34 +Ke

21

Ke
13 Ke

23 +Ke
14 Ke

24

 (5.8)

Moreover, based on the formulation of higher-order elements, we can easily obtain

the analytical expression of larger FEA convolution kernels. For example, a 5-by-

5 kernel can be obtained with second-order elements, and a 7-by-7 kernel can be

obtained with third-order elements.

In the rest of this paper, we assume that the filters are obtained from linear

element and with spatial size 3 by 3. The terms in W all have their physics meaning.

For example, W22 (and W11) represents the loading at a particular pixel, when there

is only a unit response at that pixel itself exist (or the upper left of that pixel).

The convolution kernel can be obtained in a closed-form if the physics is perfectly

known, otherwise we will need to learn it from data. In Sec. 5.5, we will verify

the proposed kernel and learning approach by comparing the learned filter with its

analytical value. Below we give examples of the analytical FEA convolution kernel

for some known physics problems.

Example 5.3.1. The expression of W for thermal conduction problems is:

W tt =
κ

3


1 1 1

1 −8 1

1 1 1

 (5.9)

where κ is the thermal conductivity coefficient.
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The derivation of this kernel is in Appendix A.1. It is interesting to note that W tt

is actually a Laplacian filter. The reason for this is that the governing equation for

thermal c onduction is Laplacian (Poisson) equation.

Example 5.3.2. The convolution for elasticity has two input and output channels,

representing the x- and y- directional components of loading and response respectively.

The interactions from the same input and output channels are:

(
W xx

)T
= W yy =

E

4(1− ν2)


−(1− ν/3) −2(1 + ν/3) −(1− ν/3)

4ν/3 8(1− ν/3) 4ν/3

−(1− ν/3) −2(1 + ν/3) −(1− ν/3)

 (5.10a)

where E and ν are Young’s modulus an Poisson’s ratio respectively. And the coupling

terms between the two channels are:

W xy = W yx =
E

2(1− ν)


1 0 −1

0 0 0

−1 0 1

 (5.10b)

The derivation of these kernels is included in Appendix A.2. Again, FEA convo-

lutional kernel for elasticity also has many interesting properties: The non-coupling

terms are symmetric along both axis, and they are just rotated versions of each other.

The coupling terms are diagonally symmetric with many zeros, because axial loading

does not cause any shear effects for homogeneous material.

Example 5.3.3. The analytical FEA convolution kernel for the coupling effect between

thermal and elasticity is:

−(W xt)T = W yt =
αE

6(1− ν)


1 4 1

0 0 0

−1 −4 −1


W tx = W ty = 0

(5.11)
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where α is the thermal expansion coefficient.

The derivation of this kernel is included in Appendix A.3. Since the coupling

between thermal and elasticity is a one-way coupling, W tx and W ty are all zeros.

Example 5.3.4. The dynamics of thermoelasticity can be expressed into a convolution

form of: 
V x

V y

V t

 =


W xx W xy W xt

W yx W yy W yt

W tx W ty W tt

~


Ux

Uy

U t

 (5.12)

This can be obtained by simply combining Example 5.3.1 to Example 5.3.3 to-

gether. Both input and output image has three channels, which corresponds to x-

and y-directional mechanical component and thermal component. And the overall

filter for the coupling field is a tensor with dimension R(3,3,3,3).

5.3.2 FEA convolution for multi-phase problem

Now we demonstrate how this idea can be extended to multi-phase problems.

Without loss of generality, we use bi-phase elasticity as an example. A binary-valued

image H is first introduced to represent the material phase. The pixel value of H

represents which material phase exists at the specific spatial location (element). The

resolution of H is set to N − 1 by N − 1, as the number of elements is one less than

the number of nodes in FEA with linear element.

For bi-phase elasticity, the loading image V ∈ R(N,N,2) would be related to both the

response image U and the phase image H. We define FEA convolution for bi-phase

material as:

V = Θ(ρ)⊗ (U,H) (5.13)

where ⊗ and Θ ∈ R(2,P,Q,S,S) are the FEA convolution operator and kernel for bi-

phase elasticity. For 2D elasticity, we have P = Q = 2, which represents the x- and
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y- component. And for linear element we have S = 4, which represents there are four

nodes in each element. And Θ is further assumed to be a depended on some physics

hyper-parameters, e.g. ρ = {E, ν} for elasticity.

Following the numbering convention in Fig. 5.3, with four-node linear finite ele-

ment of the same size, the relationship between phase, response, and loading images

can be obtained with FEA as:

V q
ij =

1∑
h=0

(
Ce1
hijp · (h+ (−1)hHi,j−1) + Ce2

hijp · (h+ (−1)hHi,j)

+Ce3
hijp · (h+ (−1)hHi−1,j) + Ce4

hijp · (h+ (−1)hHi−1,j−1)
) (5.14)

where e1 to e4 still denotes the four neighbouring elements of node(i, j) as Fig. 5.3a

shows. h is either 0 or 1, representing which material phase is under consideration.

And Chijp is obtained from U and W as:

Ce1
hijp =

Q∑
q=1

(
W hpq

31 · U
q
i+1,j−1 +W hpq

32 · U
q
i+1,j +W hpq

33 · U
q
i,j +W hpq

34 · U
q
i,j−1

)
(5.15a)

Ce2
hijp =

Q∑
q=1

(
W hpq

41 · U
q
i+1,j +W hpq

42 · U
q
i+1,j+1 +W hpq

43 · U
q
i,j+1 +W hpq

44 · U
q
i,j

)
(5.15b)

Ce3
hijp =

Q∑
q=1

(
W hpq

11 · U
q
i,j +W hpq

12 · U
q
i,j+1 +W hpq

13 · U
q
i−1,j+1 +W hpq

14 · U
q
i−1,j

)
(5.15c)

Ce4
hijp =

Q∑
q=1

(
W hpq

21 · U
q
i,j−1 +W hpq

22 · U
q
i,j +W hpq

23 · U
q
i−1,j +W hpq

24 · U
q
i−1,j−1

)
(5.15d)

The FEA convolution for bi-phase material is illustrated in Fig. 5.4. The filter Θ

is applied to both a 2-by-2 region in H and a 3-by-3 region in U at the same location.

Similar to conventional convolution, the filter will be shifted by one pixel every time

and applied to different regions of the images. For homogeneous material, Eq. (5.14)

will be reduced to Eq. (5.6) by setting H ≡ 1.
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Figure 5.4: Illustration of the Bi-phase FEA Convolution. Both H and U is involved
in FEA convolution. While Θ is fixed, H and U involved in the computation will be
shifted by 1 pixel each time.

Example 5.3.5. The bi-phase FEA convolutional kernel Θ for elasticity can be ob-

tained by splitting the element stiffness matrix (which can be found in Eq. (A.12) in

the Appendix):

Θh00 =
Eh

12(1− ν2
h)



−2νh + 6 −νh − 1 νh − 1 2νh

−νh − 1 −2νh + 6 2νh νh − 1

νh − 1 2νh −2νh + 6 −νh − 1

2νh νh − 1 −νh − 1 −2νh + 6


(5.16a)

Θh11 =
Eh

16(1− ν2
h)



−2νh + 6 2νh νh − 1 −νh − 1

2νh −2νh + 6 −νh − 1 νh − 1

νh − 1 −νh − 1 −2νh + 6 2νh

−νh − 1 νh − 1 2νh −2νh + 6


(5.16b)

where Eh and νh represents the Young’s Modulus and Poisson ration for different

material phases. And the coupling filters between different input and output channels
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are:

Θh01 =
Eh

8(1− ν2
h)



νh + 1 1− 3νh −νh − 1 3νh − 1

3νh − 1 −νh − 1 1− 3νh νh + 1

−νh − 1 3νh − 1 νh + 1 1− 3νh

1− 3νh νh + 1 3νh − 1 −νh − 1


(5.17a)

Θh01 =
Eh

8(1− ν2
h)



νh + 1 3νh − 1 −νh − 1 1− 3νh

1− 3νh −νh − 1 3νh − 1 νh + 1

−νh − 1 1− 3νh νh + 1 3νh − 1

3νh − 1 νh + 1 1− 3νh −νh − 1


(5.17b)

5.3.3 Gradient of FEA convolution

Since FEA convolution for thermoelasticity is actually a standard multi-channel

convolution, standard deep learning packages like Tensorflow 1 can be directly used to

obtain its gradient and to perform back-propagation (Rumelhart et al., 1988). How-

ever, the gradient for bi-phase FEA convolution in Eq. (5.13) needs to be explicitly

defined for efficient computation.

Since V is a function of U , E and Θ (or its physical parameter ρ) in bi-phase

convolution, there will be three different partial derivatives w.r.t. V needs to be

computed. Based on Eq. (5.14), the gradient of the output V w.r.t. input U can be

derived as:

∂V

∂U q
ij

=
1∑

h=0

( P∑
p=1

∂Ce1
hijp

∂U q
ij

· (h+ (−1)hHi,j−1) +
P∑
p=1

∂Ce2
hijp

∂U q
ij

· (h+ (−1)hHi,j)

+
P∑
p=1

∂Ce3
hijp

∂U q
ij

· (h+ (−1)hHi−1,j) +
P∑
p=1

∂Ce4
hijp

∂U q
ij

· (h+ (−1)hHi−1,j−1)
)

(5.18)

1https://www.tensorflow.org/
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where:

∂Ce1
hijp

∂U q
ij

=Θhpq
31 · V̂

p
i+1,j−1 + Θhpq

32 · V̂
p
i+1,j + Θhpq

33 · V̂
p
i,j + Θhpq

34 · V̂
p
i,j−1 (5.19a)

∂Ce2
hijp

∂U q
ij

=Θhpq
41 · V̂

p
i+1,j + Θhpq

42 · V̂
p
i+1,j+1 + Θhpq

43 · V̂
p
i,j+1 + Θhpq

44 · V̂
p
i,j (5.19b)

∂Ce3
hijp

∂U q
ij

=Θhpq
11 · V̂

p
i,j + Θhpq

12 · V̂
p
i,j+1 + Θhpq

13 · V̂
p
i−1,j+1 + Θhpq

14 · V̂
p
i−1,j (5.19c)

∂Ce4
hijp

∂U q
ij

=Θhpq
21 · V̂

p
i,j−1 + Θhpq

22 · V̂
p
i,j + Θhpq

23 · V̂
p
i−1,j + Θhpq

24 · V̂
p
i−1,j−1 (5.19d)

And V̂ is the gradient propagated to this FEA convolution during backpropagation,

if there are several FEA convolutions stacked upon each other. The value of V̂ is set

to 1 if there is no external gradient passing in.

The gradient of the output V w.r.t. to the material phase H in Eq. (5.14) is

relatively simpler:

∂V

∂Hij

=
1∑

h=0

P∑
p=1

(
Ce1
hijp(h− (−1)h) · V̂ p

i,j−1 + Ce2
hijp(h− (−1)h) · V̂ p

i,j

+Ce3
hijp(h− (−1)h) · V̂ p

i−1,j + Ce4
hijp(h− (−1)h) · V̂ p

i−1,j−1

) (5.20)

Recall that we have assumed that the physics interaction W is related to a set of

hidden physics parameters ρ ∈ RQ, then the gradient of the output F in Eq. (5.14)

w.r.t. to ρ can be obtained as:

∂V

∂ρ
=

1∑
h=0

N∑
i=1

N∑
j=1

P∑
p=1

(∂Ce1
hijp

∂ρ
· (h+ (−1)hHi,j−1) +

∂Ce2
hijp

∂ρ
· (h+ (−1)hHi,j)

+
∂Ce3

hijp

∂ρ
· (h+ (−1)hHi−1,j) +

∂Ce4
hijp

∂ρ
· (h+ (−1)hHi−1,j−1)

) (5.21)

where:

∂Ce1
hijp

∂ρ
=

P∑
p=1

(∂Θhpq
31

∂ρ
· V̂ p

i+1,j−1 +
∂Θhpq

32

∂ρ
· V̂ p

i+1,j +
∂Θhpq

33

∂ρ
· V̂ p

i,j +
∂Θhpq

34

∂ρ
· V̂ p

i,j−1

)
(5.22a)
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∂Ce2
hijp

∂ρ
=

P∑
p=1

(∂Θhpq
41

∂ρ
· V̂ p

i+1,j +
∂Θhpq

42

∂ρ
· V̂ p

i+1,j+1 +
∂Θhpq

43

∂ρ
· V̂ p

i,j+1 +
∂Θhpq

44

∂ρ
· V̂ p

i,j

)
(5.22b)

∂Ce3
hijp

∂ρ
=

P∑
p=1

(∂Θhpq
11

∂ρ
· V̂ p

i,j +
∂Θhpq

12

∂ρ
· V̂ p

i,j+1 +
∂Θhpq

13

∂ρ
· V̂ p

i−1,j+1 +
∂Θhpq

14

∂ρ
· V̂ p

i−1,j

)
(5.22c)

∂Ce4
hijp

∂ρ
=

P∑
p=1

(∂Θhpq
21

∂ρ
· V̂ p

i,j−1 +
∂Θhpq

22

∂ρ
· V̂ p

i,j +
∂Θhpq

23

∂ρ
· V̂ p

i−1,j +
∂Θhpq

24

∂ρ
· V̂ p

i−1,j−1

)
(5.22d)

If nothing is known about the underlying physics, we can just set ρ to Θ itself. If we

have some prior knowledge on the underlying physics, for example we know it is an

elasticity problem, then the computation of ∂Θ/∂ρ can be obtained from Eq. (5.16)

and Eq. (5.17). Furthermore, if we know the material is homogeneous, Eq. (5.18) to

(5.21) can be largely simplified into the gradient of conventional 2D convolutions.

5.4 FEA-Net

This section is divided into to parts, where we build FEA-Net for multi-physics

and multi-phase problems respectively. To maximize the efficiency, different network

architectures are designed for learning and inference: We model the inverse mapping

from system response to its corresponding loading during the training stage, and

another network architecture is built to map the system loading to response during

the inference stage.

5.4.1 FEA-Net for Multi-physics Problems

We use homogeneous thermoelasticity as an example to demonstrate how to design

the learning and inference architecture for multi-physics based on the FEA convolu-

tion. For thermoelasticity, V ∈ R(N,N,3) (and U ∈ R(N,N,3)) has three channels: x-
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Figure 5.5: Learning Architecture for Homogeneous Thermoelasticity.

and y- directional mechanical loading (response) and heat flux (temperature). As

defined in Eq. (5.12), the mapping from U to V is a convolutional operation:

V = W ~ U := f1(U,W ) (5.23)

with W ∈ R(3,3,3,3). This relationship can be further expressed with a single layer

network with linear activation as illustrated in Fig. 5.5. The input and output to the

network are the response image U and the predicted loading image V respectively.

Given a training dataset D, the optimum filter W can be obtained by minimizing

the difference between the observed system loading V and the predicted loading:

W ∗ = arg min
W

E(V,U)∼DL
(
V, Ṽ

)
(5.24)

where Ṽ = f1(U,W ) is the network prediction, L(·, ·) : R(N,N,3) × R(N,N,3) → R

is a pre-defined loss function, which is chosen as the L2 norm in this paper. FEA

convolution will extract the information of the governing PDE during training.

Once FEA convolution has been trained, we can use it to construct the mapping

from V to U and predict the system response when a new loading is applied. The
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core idea is to transform the iterative solvers (as in Eq. (5.4)) into a convolutional

network based on the FEA convolution. We will demonstrate with the basic Jacobi

solver (as in Eq. (5.5)) for its simplicity; however, it is worth noting that the proposed

method can be applied with other more advanced iterative solvers as well.

Physically, the diagonal matrix D in Eq. (5.5) corresponds to the interaction

between U q
ij (response component q at node(i, j)) and V q

ij (loading component q at

node(i, j)). Under the FEA convolution perspective, this interaction can actually be

expressed in the termW xx
22 ,W

yy
22 , orW tt

22 for thermoelasticity. Thus, the matrix-vector

production D−1 · x can be reformulated into an element-wise production P ∗X, with

∗ denotes the element-wise operator.

We further define boundary condition operator B, which specifies the Dirichlet

boundary condition on Γ. What it does is to reset the value u on Γ to ground-truth.

By substituting Eq. (5.6) into Eq. (5.5) and apply the boundary condition operator,

we have:

Ut+1 = B
(
ω ∗ P ∗ (V −W ~ Ut) + U t

)
(5.25)

The details can be found in Appendix Appendix B. Because most of the computation

of Eq. (5.25) lies in computing the FEA convolution, it can be viewed as stacking

FEA convolutions upon each other. By setting the initial guess U0 = V , Eq. (5.25)

can be further visualized as a convolutional neural network (as in Fig. ??).

The resultant network architecture is similar to both Fully Convolutional Network

(FCN) (Long et al., 2015) and the cutting-edge densely connected ResNet (Huang

et al., 2017a), as it is composed of only convolutions and has "short-cuts" across

different layers. Similar to FCN, since no fully connected layer is involved, FEA-Net

can handle inputs of different size without any problem. Most importantly, aside from

the similarity on the surface, physics knowledge is inherently embedded in FEA-Net.

Since FEA-Net is designed based on the fix-point iterative solver, so it has certifiable
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convergence w.r.t. network depth during inference.

Proposition 1. The output of the inference network will converge to the ground-truth

with increasing network depth, if the network filters have been learned accurately.

Proof. See Appendix B for proof details. Numerical examples can be found in

Sec. 5.5.3.

Proposition 2. The network filters can be learned accurately with a single image

pair, if there is no linear correlation between different channels in the training loading

images.

Proof. See Appendix C for proof details. Numerical examples can be found in

Sec. 5.5.1.

Putting Proposition 1 and Proposition 2 together, it can be seen that our model

is able to perform inference with certifiable convergence with a single training image

pair.

5.4.2 FEA-Net for multi-phase problems

From Sec. 5.3.2, we know that the system loading image V , response image U ,

and phase image H should satisfy the following relationship:

V = Θ(ρ)⊗ (U,H) := f2(U,H, ρ) (5.26)

where Θ is the FEA convolutional filter for bi-phase material, which is parametrized

by the physics parameters ρ. Depending on the availability of the training dataset,

three different learning problems can be formulated:

Problem 5.4.1. Assume that the material property ρ is known, we wish to learn the

material phase image H based on the observed system loading and response pair

(V, U).
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This particular situation can happen when the material properties of each phase

can be obtained from historical database or from experimental testing, such as inden-

tation testing. The micro-structure information is unknown. This training process

can be formulated into an optimization problem:

H∗ = arg min
H

E(Vi,Ui,ρi)∼D1L
(
Vi, f2(ρi, H, Ui)

)
(5.27)

where D1 is the training set that contains the loading and response pair obtained

with the same material phase.

Proposition 3. The material phase H can also be correctly learned in any sub-region

Φ ⊂ Ω, as long as the material property ρ is known and (V, U) image pair has been

observed in Φ.

Proof. See Appendix D.1 for proof details. Numerical examples can be found in

Sec. 5.5.2.

Problem 5.4.2. Assume the material phase information H is known, we wish to learn

the material properties information ρ based on the observed system loading and re-

sponse pair (V, U).

This particular situation can happen when the material micro-structure informa-

tion is observed from measurements, such as optical imaging and scanning electron

microscope imaging. However, the material properties of each phase are unknown.

Such training process can be formulated as another optimization problem:

ρ∗ = arg min
ρ

E(Vi,Ui,Hi)∼D2L
(
Vi, f2(ρi, H, Ui)

)
(5.28)

where D2 is a different training set, which contains the loading, response, and material

phase pair obtained under the same material property.
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Proposition 4. Given material phase image H, only a single image pair (V, U) is

needed to estimate the material property correctly on both phases, as long as: (1) H

contains both phases, and (2) V has none-zero value

Proof. See Appendix D.2 for proof details. Numerical examples can be found in

Sec. 5.5.2.

Problem 5.4.3. Assume that we know the loading and response (V, U), and we wish

to estimate both material property and phase together.

The joint estimation of both material phase and property can be formulated as:

ρ∗, H∗ = arg min
ρ,H

E(Vi,Ui)∼D3L
(
Vi, f2(ρ,H, Ui)

)
(5.29)

This is a more difficult problem, and we will empirically show that it is also solvable

under our framework.

Furthermore, we can put some constraints on the training process if we know

which physics parameters are involved. As the simplest example, if we roughly know

the range of the physics parameter ρ, we can perform projected gradient descent by:

ρ = clip(ρ, ρl, ρu) (5.30)

where ρl and ρu are the lower and upper bound of ρ. If we have a better prior

knowledge of the distribution of material property, we can have a tighter constraint

to make the training even more efficient.

The inference network structure for multi-phase problems can also be obtained

from Eq.(5.5). By subtracting the diagonal terms from Θ, the expression of P for

bi-phase material can be obtained as:

Pijn = 1/
1∑

h=0

(
Θhpq

33 · (h+ (−1)hHi,j−1) + Θhpq
44 · (h+ (−1)hHi,j)

+Θhpq
11 · (h+ (−1)hHi−1,j) + Θhpq

22 · (h+ (−1)hHi−1,j−1)
) (5.31)
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Similar to multi-physics problems, by substituting Eq. (5.13) and Eq. (5.31) into

Eq. (5.5) we will have the convolutional form of the Jacobi solver:

Ut+1 = B
(
ω ∗ P ∗

(
V −Θ⊗ (Ut, H) + U t

)
(5.32)

As with Eq. (5.25), certifiable convergence w.r.t. network depth can also be obtained

with Eq. (5.32).

5.5 Experiments and Results

This section is arranged as follows: In the first three parts, we verify our learning

algorithm for different problems in multi-physics and multi-phase, as well as the

convergence of our inference architecture. In the fourth and fifth part, our method is

compared to purely data-based and physics-based model respectively.

5.5.1 Verification of learning on multi-physics

We verify if the proposed method can learn physically meaningful filters correctly

for multi-physics problem in this subsection. The training data is generated with

different material properties: We have Young’s modulus E ranging from 0.1 TPa to 0.4

TPa, Poisson ratio ranging from 0.2 to 0.35, thermal conductivity from 10W/(m ·K)

to 14W/(m·K), thermal expansion ratio from 11/◦C to 15/◦C. The material property

used to generate training data is also used to obtain the reference filter value based

on Eq. (5.9) to Eq. (5.12). The network is randomly initialized, and trained with a

single image pair.

It is observed that the training of all networks is converging well, and the loss

value is approaching zero with relative L2 error less than 1e − 5. We show three

examples of the network filters obtained with different training data in Tab. 5.1. The

learned W xx
11 , W

xy
11 , W tx

11 , W xt
11 is listed with their reference value. Still, the value of
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Table 5.1: Examples of the learned filter elements with different training data.

Physical parameters
Filter Reference Predicted

E(TPa) ν κ(W/(m ·

K))

α(10−5/◦C)

0.23 0.289 11.82 12.92

W xx
11 -56.7054195 -56.7053258

W xy
11 40.4512309 40.4511605

W tx
22 -0.159391382 -0.159391115

W tt
11 -4.56652389 -4.56652390

0.196 0.299 12.97 12.96

W xx
11 -48.3777489 -48.3777004

W xy
11 34.8800133 34.8799752

W tx
11 -0.150795392 -0.150795228

W tt
11 -5.26968980 -5.26968981

0.228 0.273 12.92 11.82

W xx
11 -55.8988893 -55.8988283

W xy
11 39.1483937 39.1483472

W tx
11 -0.168541618 -0.168541427

W tt
11 -5.91251479 -5.91251480

these filter elements is getting very close to the reference value.

Another comparison is made by fixing the material property and vary the initial-

ization. The result is shown in Tab. 5.2. It can be seen that the reference filter has

very nice symmetry property. More importantly, for all the random loading/ response

data pair, the learned filter is matching with the reference value very well.

The previous two experiments verify the correctness of Proposition 2. In the third

experiment, we test how the training algorithm performs if the premise is violated.

The loading we applied to generate training data is shown in Fig. 5.6, where two

loading channels can be correlated. This violates the premise of Proposition 2 (see
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Table 5.2: Comparison on the reference value of the network filter W xx with pre-
dictions on 100 random loading images.

Filter Reference
Prediction

mean std

W xx
11 -52.2454463 -52.24507827 0.00147689

W xx
12 22.19275595 22.19259812 0.00062905

W xx
13 -52.2454463 -52.24509037 0.00144434

W xx
21 -126.68364854 -126.68278956 0.00347672

W xx
22 417.96357038 417.96069933 0.01163251

W xx
23 -126.68364854 -126.68276882 0.00357171

W xx
31 -52.2454463 -52.24508064 0.00149684

W xx
32 22.19275595 22.19259831 0.0006441

W xx
33 -52.2454463 -52.24508812 0.0014402

Appendix C for more details). Although it is difficult to visually tell that the response

data has a linear correlation, it is in fact rank deficient. Our network is still able to

minimize the loss on such data; however, the learned filter can be different every time

depending on the initialization. An easy way to mitigate this problem to always apply

random loading to obtain the system response. Another alternative solution is to add

more prior knowledge to the network, for example, the relationship between network

filters and physics parameters (as with solution to Problem1).

5.5.2 Verification of learning on multi-phase

In this part, we first verify that learning of material phase and property as well

as inference works well under a wide range of different settings like learning rate,

initialization, and problem complexity. The constrain in Eq. (5.30) is set to E ∈

(0, 0.5)TPa and ν ∈ (0, 0.5). Note this is a very loose constrain that could be satisfied
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Figure 5.6: An example of the loading and response image pair that will fail the
proposed training. First and second rows are loading response images. First to last
columns are different channels for x-directional y-directional and thermal components.

by almost all known material. We define the relative estimation error of a variable x

as:

ε =
|xpred − xref |2
|xref |2

(5.33)

Problem1: Material phase estimation

We first show how our method performs in solving Problem 5.4.1 with different com-

plexity of material phase. Circular inclusions of different size, shape, and location are

used in this experiment, as shown in Fig. 5.7a. All phase images H in this experiment

are at a resolution of 50 by 50. The inclusion has a Young’s modulus of 0.241TPa

and a Poisson ratio of 0.36. The second material has a Young’s modulus of 0.2TPa

and a Poisson ratio of 0.25. As discussed in Sec. 5.4.2, FEA-Net should be able to

perform one-shot learning, so only a single loading/ response image pair is used for

training in this experiment. The training data is generated with FEA.

We initialize the network filter Θ with ground truth material property ρ, while it’s

material phase H is initialized randomly. We use Adam optimizer (Kingma and Ba,

2014) with a learning rate of 10−2 to run Eq. (5.27). The convergence of the training

process is visualized in Fig. 5.7b. For all phase configurations considered, starting

from random initials, the estimated material phase is converging as the training it-

eration increases. The caption shows the relative phase estimation error ε, which is
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Figure 5.7: Learning convergence of material phase with different inclusions. (a):
material phase ground truth (b): predicted phase at different iteration starting from
random initialization.

dropping below 0.25% for all phase configurations.

A second experiment is designed to further evaluate the influence that image

resolution and learning rate has on material phase estimation. The single inclusion

material shown in Fig. 5.7 is used here, with image resolution goes from 25 to 50

and 75. The learning rate used is either 10−1 or 10−2. We use “SS” to abbreviate

small image resolution and small learning rate, “ML” to abbreviate medium image

resolution and large learning rate, and so on.

We initialized the material phase image H randomly. The convergence of the

network training loss and the prediction error in the material phase is shown in

Fig. 5.8. It can be seen that the training is successful under all these settings. And

a larger learning rate tends to increase the speed of convergence, with a side effect of

a relatively larger error rate. This is because larger learning rate will make it harder

to converge to the global optimum. Another observation is that, the material phase

information is getting much harder to be estimated correctly when the resolution
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Figure 5.8: Material Phase Estimation with Different Resolution and Learning rate.
(a): Convergence of the loss. (b): Convergence of the prediction error.

is increased. This is because the search space is getting significantly larger when

we increase the image resolution, thus making the optimization problem much more

difficult.

Problem2: Material property estimation

We first test how the learning of material property performs with random initializa-

tion. Again, only a single image pair is used for training. The data is generated

with the single circular inclusion phase configuration (as shown by Fig. 5.7a) under a

resolution of 50-by-50. The material properties are 0.241TPa, 0.36 and 0.2TPa, 0.25

for inclusion and exclusion material.

We initialize a total of 100 different network copies, with E ranges from 0 to 0.5

TPa and ν ranges from 0 to 0.5 for both phases. Adam optimizer with a learning rate

of 10−3 is used to run Eq. (5.28). It is worth noting that the training is converging

across all 100 samples, which demonstrate that our algorithm is robust towards dif-

ferent initialization. The convergence of one randomly picked network is visualized in

Fig. 5.9, where the training process is very stable and all parameters are converging

within 150 iterations.
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Figure 5.9: Convergence of Different Material Properties. Reference solution is
marked with dashed lines.

Furthermore, we test the robustness of our training algorithm with data obtained

from different material properties. We fix inner material property to be E = 0.2TPa

and ν = 0.25, and the surrounding material is set to have E vary from 0.05 TPa

to 0.441 TPa and ν vary from 0.1 to 0.4. A total of 25 different data points are

generated in this way. We initialize the network with ground truth material phase,

material property of 0.01TPa and 0.1 for both phases. Again, Adam optimizer with

a learning rate of 10−3 is used to run Eq. (5.28). The training is converging for all

training data to an error rate below 1%, suggesting that our method is very robust

in predicting material properties.

86



Problem3: Joint material phase and property estimation

In this part, we assume both the material phase and property is unknown and will

estimate them from the loading/ response pair. Material phase images from Fig. 5.13a

are used to generate the training data. Inclusion (and exterior material) has Young’s

modulus of 0.241 TPa (and 0.2 TPa) and a Poisson ratio of 0.36 (and 0.25).

The network is initialized with random phase matrix H with value continuously

ranging from 0 and 1. Young’s modulus and Poisson ratio for both materials are

also randomly initialized from 0 to 0.5. For optimizer, we choose truncated Newton’s

method, and constrain Young’s modulus to between 0 to 0.5 TPa and Poisson ration

between 0 to 0.5. The termination criteria of the optimizer is set to whenever the

gradient is less than 1e-9. Line search is used to determine the optimum step size.

The learned material phase and property are shown in Fig. 5.10 and Tab. 5.3,

respectively. Yellow and blue color in Fig. 5.10 represents different material phases.

It is interesting to see that the color for inclusions and exclusion in Fig. 5.10 can

shuffle (case 6 for single inclusion, and almost all cases for three inclusions). In

the meantime, their estimated material properties for two phases are also shuffled in

Tab. 5.3. This is because shuffling the phase and material property together actually

corresponds to exactly the same physics problem. In other words, they are equally

good solutions to the optimization problem, and the original problem does not have

a unique solution.

The estimation for Young’s modulus is very accurate. The average error rate is

0.3% and 2.5% for different materials. The error on the Poisson ratio is larger, espe-

cially on two inclusions. This can be improved by an extra round of post-processing:

Initialize the network again with binarized predicted material phase image, and solve

Problem 5.4.2 again to focus on learning the material property.
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Table 5.3: Learned material properties with random initializations. The reference
material property is (0.241 TPa, 0.36) and (0.2 TPa, 0.2) for both phases. inc1 to
inc3 denotes different number of inclusions in the material, which can be seen from
Fig. 5.10.

Young’s Modulus ( TPa) Poisson Ratio
H
HHH

HHH
HHH

Init.

Est.
Material 0 Material 1 Material 0 Material 1

in
c1

case1 0.241 0.197 0.362 0.241

case2 0.241 0.191 0.362 0.212

case3 0.241 0.189 0.361 0.203

case4 0.241 0.191 0.361 0.214

case5 0.241 0.192 0.362 0.215

case6 0.190 0.241 0.205 0.360

in
c2

case1 0.241 0.204 0.275 0.294

case2 0.241 0.203 0.274 0.295

case3 0.241 0.204 0.275 0.294

case4 0.241 0.203 0.274 0.294

case5 0.241 0.204 0.275 0.294

case6 0.241 0.203 0.275 0.294

in
c3

case1 0.198 0.241 0.241 0.363

case2 0.242 0.196 0.364 0.234

case3 0.200 0.242 0.250 0.364

case4 0.196 0.244 0.234 0.371

case5 0.193 0.234 0.221 0.373

case6 0.197 0.244 0.239 0.372
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Figure 5.10: Visualization of the Estimated Phase Obtained from Joint Optimiza-
tion of Material Phase and Property. Different columns are obtained from different
random initialization. Yellow and blue color denote material phase 0 and 1 respec-
tively. The predicted material property corresponding to these material phases are
listed in Tab. 5.3.

5.5.3 Verification of response prediction

In this subsection, we demonstrate that the response prediction for multi-physics

and multi-phase is converging w.r.t. network depth. From Sec. 5.5.1 and Sec. ??

we have seen that FEA-Net is capable to learn either physically meaningful filters or

physics parameters robustly and accurately. Based on this, we investigate the con-

vergence of the inference architecture of FEA-Net by assuming that the convolutional

kernel has been learned correctly.

For multi-physics problem, we use material property at: E = 0.212TPa, ν =

0.288, κ = 16W/(m · K), and α = 1.2e−5/◦C to generate the reference response.

For multi-phase problem, the second material property is set at E = 0.23TPa and

ν = 0.275. On the other hand, based on these physics parameters, the reference

network filters can be obtained based on Eq. (5.9) to Eq. (5.12) for thermoelasticity

, and Eq. (5.16), Eq. (5.17) for bi-phase elasticity.

Since only convolution operation is involved in FEA-Net, it is able to handle inputs
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Figure 5.11: Visualization of FEA-Net inference output. Different rows corresponds
to x- and y- directional response. From left to right columns are the network input
and output at 10th, 100th, 500th, and 4000th layers.

of different resolutions. Thus, we also test the inference performance with loading

image of resolution 25 and 50. The predicted response at different network layers

is visualized in Fig. 5.11a and Fig. 5.11b for thermoelasticity and bi-phase elasticity

respectively. It can be seen that they are all converging well, and there is no visual

difference between FEA-Net prediction at 4000 layers and ground truth for these

cases.

We further visualize the convergence of the network prediction error w.r.t. the

network depth in Fig. 5.12. Interestingly, the loading image at a lower resolution

is converging much faster than its higher resolution counterpart. It is conceivable

that predicting the response at a higher resolution is a harder task. We expect

improvements can be made in at least three aspects: (1) Use larger filter size, which

covers a larger region and has a larger receptive field. This is analogous to using

higher-order finite elements as discussed in Theorem 1. (2) Form FEA convolution
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Figure 5.12: Error convergence for bi-phase elasticity and homogeneous thermoe-
lasticity coupling under resolution of 25 and 50.

block with several layers of FEA convolution layers, and use it to replace the current

single FEA convolution. Stacking several convolutions together also leads to a larger

receptive field. (2) Building better network architectures based on more advanced

solvers like multi-grid. The multi-grid network tends to converge much faster, as it

computes the response at different resolutions.

5.5.4 Comparison with deep neural networks

In this section, we compare FEA-Net with data-driven approaches in predicting

homogeneous elasticity problems. Because FCN can handle image input of different

resolution, it is used as the benchmark for comparison. As the simplest example, we

train both networks on single-phase elasticity and ask it to make a prediction when

a new loading is applied.

Dataset and network setup

To compare the data efficiency, our training set only includes 4 loading and response

image pairs obtained from numerical simulation under different loading conditions. As
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Figure 5.13: Visualization of training and testing data. (a): Training set at a
resolution of 12 by 12. (b): Testing data at resolution 12 by 12. (c): Testing data
at resolution 60 by 60. Loading is applied uniformly along the x direction only, with
locations visualized as the white regions in the plot.

shown in Fig. 5.13a, the white lines in the first row are the locations where a uniform

x-directional force is applied. The second and third rows are the displacement along

with x and y directions respectively. Different columns correspond to different training

data pair. The material used to generate these data pairs has an elasticity modulus

of 0.2 TPa and Poisson’s ratio of 0.25. To thoroughly investigate the generalization

capability of different models, we created four different testing cases. These testing

set are are shown in Fig. 5.13b and Fig. 5.13c, which is composed of different loading

conditions and image resolutions. Learning on such few amount of data can be a very

challenging task for purely data-driven approaches like FCN, but can be handled by

proposed FEA-Net.

The benchmark FCN model takes in the system loading image and outputs the

predicted response image. As shown in Fig. 5.14, it has 7 layers: The first layer

has 2 input channels and 64 output channels, the middle 5 layers have 64 input

and 64 output channels, and the output layer has 64 input channels and 2 output

channels. The filter size is kept as 3x3, which is the same as FEA-Net. ReLU

activation is applied after every layer except the last one. Under such setting, the

network contains over 4k filters and 186k trainable variables. The training objective

of FCN is to minimize the predicted response with the reference system response. We
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Figure 5.14: Architecture of the baseline FCN model. It has 7 convolutional layers
and a forward pas has a total of 20k convolutional operations.

build this network in Tensorflow and train it with Adam optimizer (Kingma and Ba,

2014).

The training architecture of FEA-Net is still one layer, with response image as

input and loading image as output. The inference architecture of FEA-Net we used

has 5k layers, each layer has 4 filters, which also leads to a total of 20k convolution

operations.

Experiment results

We train both FEA-Net and FCN with Adam optimizer till converge. The conver-

gence of their loss for the first 400 iterations is shown in Fig. 5.15a. Note that the

magnitude of the loss is not directly comparable, since FEA-Net is defined on the

difference between reference loading and predicted loading while FCN is defined on

the difference between reference response and network predicted response. However,

while FCN is still not converging at 400 iterations with a learning rate of 10−3, FEA-

Net is converging around 150 steps under the same learning rate. And if we further

increase the learning rate for FEA-Net to 10−2, it is able to converge within 20 steps.

And similar to training traditional neural networks, there is also a trade-off in learn-

ing rate. With larger learning rate the algorithm will learn faster, while able to learn

more stable at a smaller learning rate.

Another major difference is that, while the filters from traditional convolutional

neural networks like FCN is totally not interpretable, proposed FEA-Net is designed
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Figure 5.15: (a) Convergence of the training loss for FCN with learning rate 10−3

and FEA-Net with learning rate 10−2 and 10−3. (b) Convergence of the network
training in material property estimation with random initialization. Reference value
is E = 0.2 and ν = 0.25. (The value of E is scaled by 1e− 12)

to have physics knowledge embedded and we can infer the physics parameters from

its filters. As shown in Fig. 5.15b, FEA-Net successfully learns the correct physics

parameters under different learning rate. Similar to the convergence of the loss value,

there is also a trade-off between estimation accuracy and learning speed.

Once the network has been trained, we can use it to predict the response image

given a new testing loading image. A visual comparison between FCN and FEA-Net

is shown in the second and third columns in Fig. 5.16. It can be seen that FCN is able

to predict the first testing case well, which shows that our FCN model is reasonable

and its training is successful. However, FCN is not able to make correct predictions

for all other testing cases which are getting more and more different than the loading

images. Although it seems that FCN is getting the correct trend, its prediction is

still far away from the ground truth. Such result suggests that there is a big problem

with the generalizability of FCN. We also visualize the prediction of FEA-Net with

5000 layers in the fourth and fifth columns in Fig. 5.16. It can be seen that there

is almost no visual difference between the network predictions and the ground truth.

That is to say, proposed model can generalize well with limited training data.
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Figure 5.16: Comparison of the network prediction from FCN and FEA-Net. Top to
bottom rows corresponds to different test loading cases and the predictions. Loading is
applied uniformly along the x direction only. Two columns in each section correspond
to x and y directional components.

Table 5.4: Comparison on Memory Usage. n is the resolution.

Problem
thermal elasticity bi-phase elasticity thermoelasticity

2D 3D 2D 3D 2D 3D 2D 3D

FEA 152n2 440n3 304n2 1320n3 304n2 1304n3 456n2 1760n3

Proposed 8n2 +

72

8n3 +

216

16n2 +

288

24n3 +

1944

24n2 +

288

32n3 +

1944

24n2 +

648

32n3 +

3456

Ratio 19.0 55.0 19.0 55.0 12.7 40.8 19.0 55.0

5.5.5 Comparison with FEA

We derive the memory consumption for FEA-Net and traditional FEA in solving

bi-phase elasticity problem. In this subsection, we use n to denote the resolution

of the loading image. The memory consumption for traditional FEA is estimated

by considering only the storage for the sparse representation of the stiffness matrix
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K and the loading vector. The loading will be stored with double-precision floating

numbers (8 bytes), which costs 8 ∗ 2 ∗ n2 byte memory as each node has two loading

components. And since the bandwidth of the stiffness matrix for 2D elasticity is

roughly 18, it requires 18∗8∗n2 byte to store the values of stiffness matrix with sparse

representation. Besides, an additional 18 ∗ 4 ∗ 2 ∗ n2 byte memory is needed to store

the row and column index of the sparse matrix with unsigned long int. Summing

them together, FEA requires 304n byte memory in total. On the other hand, the

convolutional filter is shared across all layers in FEA-Net and only very few amount

of memory is needed. We estimate the cost for FEA-Net as the storage needed for the

filter W (which is 4 ∗ 9 ∗ 8 byte), loading image with 2 channels (8 ∗ 2 ∗ n2 byte), and

the phase image (8 ∗ n2 byte). Summing them together, FEA-Net requires 24n+ 288

byte memory in theory, which is 12.7x less than FEA. The benefit in storage saving

can be more significant for 3D problems or problems involving in multi-physics where

the bandwidth of the stiffness matrix is larger. For example, the bandwidth of the

stiffness matrix is increased to 81 for 3D thermal problems, the memory savings can

be 1/55 with the proposed method. A list of the comparison is given in Tab. 5.4 on

the memory consumption of different situations.

We further use a real-world problem to compare the memory consumption of the

proposed method with FEA. We have a pipeline system installed between the year

1949 to 1961, and wish to analyze its micro-structure to monitor its health conditions.

As in (Dahire et al., 2018), it is known to us that the pipeline is composed of two

phases, ferrite and pearlite. Since we know the material property and wish to learn its

phase from loading/ response data, this fails into Problem 5.4.1 discussed in Sec. 5.4.2.

The loading and response image pairs we used has a resolution of 150, which is shown

in the first and second columns in Fig. 5.17. The learned phase images for different

samples are shown in the third column of Fig. 5.17. And the reference phase images
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Figure 5.17: Estimated phase of the pipeline samples. The first column shows the
loading image, with the response image on different samples shown in the second
column. The third and fourth column shows the learned material phase and phase
obtained form SEM scan.

obtained from Scanning Electron Microscope (SEM) are shown in the last column of

Fig. 5.17. The learned material phase images and reference ones match very well with

each other.

The peak memory consumption of the proposed method under our Tensorflow

implementation is shown in Fig. 5.18. It can be seen that the proposed method

has larger memory consumption a lower DOF, which is caused by the overhead of

Tensorflow implementation. However, as DOF increases, the memory consumption of

our implementation is approaching the theoretical bound. And our method will start

to consume less memory than the baseline lower bound starting from 3 million DOF.

As for the cost in computational time, if sparse matrix-vector production is used,

the complexity for traditional FEA should be the same to FEA-Net. However, since

convolution can be implemented very efficiently on GPU, there could be an improve-
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Figure 5.18: Comparison on Memory Cost with Standard FEA. Red and black
dashed lines are the estimated lower bound of the memory consumption. Blue curve
is the peak memory consumption of our model obtained from experiment.

ment on the time consumption considering the benefit from the hardware side.

5.6 Discussion and Conclusion

Motivated by the success and limitations of both data-driven models and physics-

based models, we present a hybrid learning approach to predict the physics response

with limited training data samples. The proposed method is a very flexible model,

which can have different physics prior knowledge added easily. It has good inter-

pretability, as the network filters are designed to reflect the PDE behind the physics

behavior. Theoretical analysis and empirical experiments have shown that the pro-

posed method is very data efficient in learning and has good convergence at predicting

both multi-physics and multi-phase problems.

Furthermore, there are many interesting directions worth pursuing based on this

study: (1) By setting the second material to have zero mechanical property, the

proposed method can handle topology optimization. (2) More efficient inference ar-

chitectures can be built with more advanced solvers like multi-grid. (3) Multi-grid

solvers can be used to model material homogenization at a different scale such as
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in (Liu et al., 2019). (4) Extending current networks to non-linear to model the

non-linearity in the material property. (5) Use larger convolution filters or more con-

volutional layers for higher efficiency. (6) Incorporate graph convolutions to handle

irregular mesh.

99



Chapter 6

CONCLUSION

6.1 Summary

In this dissertation, we explored two major issues of neural networks: robustness

and generalizability. Three ideas were tested to solve these problems: generative

model, transformation-invariant adversarial training, and utilizing prior knowledge in

physics.

We first designed a classifier based on the generative model, which partially ad-

dresses both problems in robustness and generalizability. A customized conditional

Variational Auto-Encoder is tailored as a classifier, and tested its generalizability

and robustness under challenging tasks. Results showed that the proposed algorithm

leads to promising performance: First, the model can recognize overlapping objects

and novel component combinations that do not exist in the training phase. Sec-

ond, our model is able to defend against adversarial attacks well under higher attack

magnitudes.

Then we proposed transformation-invariant adversarial training on feed forward

classifiers, and improved the robustness over state-of-the-art algorithms. We investi-

gated the effectiveness of a specific set of transformations. The results showed that

the resultant model improves empirical robustness over standard adversarial training

without gradient obfuscation effects, and can be more data efficient than baseline

model.

Lastly, we introduced physics-guided learning and built a network that generalizes

very well in predicting physics response with limited samples. A general framework
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was proposed to integrate physics prior knowledge into a data-driven approach based

on FEA theory. As shown by examples in elasticity, proposed hybrid method is

generalizable even with very limited data samples, and has certifiable convergence

compared with purely data-driven approaches.

6.2 Future Work

For the generative model, it is worth considering: (1) Sharing the features across

different sub-networks, which has the potential to speed up the network training and

inference speed, (2) Using more powerful generators, which will be able to cover more

complicated data distributions (3) Testing its performance on larger datasets such as

CelebA or ImageNet.

For transformation invariant adversarial training, improvements can be made in

the following aspects: (1) Using the idea in YOPO (Zhang et al., 2019a) to further

improve training speed, by re-using the adversarial gradients of the upper layers of

the network. (2) Learning the optimum natural image transformations with Spatial

Transformer Network instead using a pre-defined set of transformations.

There are many interesting directions worth exploring with physics-guided learn-

ing: (1) By setting the second material to have zero mechanical property, the proposed

method can handle topology optimization. (2) More efficient inference architectures

can be built with more advanced solvers like multi-grid. (3) Multi-grid solvers can

be used to model material homogenization at a different scale such as in Liu et al.

(2019). (4) Extending current networks to non-linear to model the non-linearity in

the material property. (5) Use larger convolution filters or more convolutional layers

for higher efficiency.
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We derive the analytical form of the FEA convolutional kernels for different physics
problems in this appendix. The geometry matrix B in Eq. 5.3 has an expression of:

B = LN (A.1)

where L is differential operator.
For simplicity, we choose ∆ to be the simplest linear element in Eq. 5.3, which

makes N has the form of:

N =
1

4
[(1− ξ)(1− η) (1 + ξ)(1− η) (1 + ξ)(1 + η) (1− ξ)(1 + η)] (A.2)

For thermal and elasticity problems, we have:
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 (A.4)

And the constitutional matrix C differs for different problems.
Once we have B and C defined, we can compute each term of the element stiffness

matrix by integrating Eq. 5.3. The integral has relatively simple forms in many cases,
and analytical solutions can be directly obtained. We use K̂ to represent the element
stiffness matrix in this appendix to avoid duplication in notation.

A.1 Thermal problem

Thermal problems are governed by Poisson equation:

κ(u,xx + u,yy) = v (A.5)

where u and v denotes temperature and heat flux, and κ is the heat conductivity
ratio.

The matrix C has expression:

C =

[
κ 0
0 k

]
(A.6)

By substituting Eq. A.1 and Eq. A.6 into Eq. 5.3, we have:

K̂ =
1

16

∫ 1

−1

∫ 1

−1

[
−(ξ − 1)2 − (η − 1)2 ξ2 + η2 − 2y ξ2 − η2 − 2 ξ2 + η2 − 2ξ

ξ2 + η2 − 2η −(ξ + 1)2 − (η − 1)2 ξ2 + η2 + 2ξ ξ2 + η2 − 2

ξ2 − η2 − 2 ξ2 + η2 + 2ξ −(ξ + 1)2 − (η + 1)2 ξ2 + η2 + 2η

ξ2 + η2 − 2ξ ξ2 + η2 − 2 ξ2 + η2 + 2η −(ξ − 1)2 − (η + 1)2

]
dξdη

(A.7)
This integration can be computed analytically:

K̂ =
κ

6

−4 1 2 1
1 −2 1 2
2 1 −4 1
1 2 1 −4

 (A.8)
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By further substituting to Eq. 5.8, we have the FEA convolutional kernel for the
thermal problem:

W tt =
κ

3

[
1 1 1
1 −8 1
1 1 1

]
(A.9)

A.2 Elasticity problem

Because both the loading and response for 2D elasticity have both x and y com-
ponent, the FEA convolution filter W ∈ R(3,3,2,2) which has 2 input channels and two
output channels.

2D plane elasticity problems are governed by the following equilibrium equation:

C∇2u+ b = 0 (A.10)

where u is the temperature and b is the body force. The matrix C for plane elasticity
has expression:

C =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (A.11)

By substituting the constitutional matrix C in Eq. A.11 and the geometry matrix B
in Eq. A.3 into Eq. 5.3, we can obtain the corresponding element stiffness matrix:

K̂ =
E

16(1− ν2)
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(A.12)

where the first and second half of the rows (and columns) corresponds to x di-
rectional response (and loading). We will start by considering only the relationship
between x directional loading and x directional response by extracting the entries
from the upper-left section of the matrix:

K̂xx =
E

16(1− ν2)
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3
ν −4
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ν − 4 4

3
ν − 4 8

3
ν
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3
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ν −4

3
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8
3
ν 4

3
ν − 4 −4

3
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3
ν

 (A.13)

Based on Eq. 5.8, we can find the FEA convolutional kernel for x directional loading
and response:

W xx =
E

4(1− ν2)

[ −(1− ν/3) 4ν/3 −(1− ν/3)
−2(1 + ν/3) 8(1− ν/3) −2(1 + ν/3)
−(1− ν/3) 4ν/3 −(1− ν/3)

]
(A.14)
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Similarly, the relationship between x directional loading and y directional response
Wxy can be obtained from the upper right section of Eq. A.12, the relationship between
y directional loading and y directional response W yy can be obtained lower right
section, and the relationship between y directional loading and x directional response
W yx can be obtained from the lower-left section. Since similar approach is used, we
skip the repeated derivation and give their expressions directly:

W xy = W yx =
E

8(1− ν)

[
1 0 −1
0 0 0
−1 0 1

]

W yy =
E

4(1− ν2)

[−(1− ν/3) −2(1 + ν/3) −(1− ν/3)
4ν/3 8(1− ν/3) 4ν/3

−(1− ν/3) −2(1 + ν/3) −(1− ν/3)

]

W yy =
E

4(1− ν2)

([−1 −2 −1
0 8 0
−1 −2 −1

]
+
ν

3

[
1 −2 1
4 −8 4
1 −2 1

])
(A.15)

A.3 Thermoelasticity problem

The equilibrium equation of the coupled thermoelastic problems can be expressed
as the following tensor form:

1

2
Eijkl(uk,lj + ul,kj)− Eijklαδkl∆T,j + bi = 0 (A.16)

where u is the displacement and b is the external body force. α is the thermal expan-
sion coefficient of the isotropic materials. Eijkl is the elastic tensor. By discretization,
the matrix form of finite element analysis can be obtained,[

Ku Kut

0 Kt

] [
u
T

]
=

[
F
Q

]
(A.17)

The non-coupled stiffness matrix Ku and Kt are the same as previous ones. Only
the coupling term Kut is shown here,

K̂ut =
αE

16(ν − 1)

∫
∆



(ξ − 1)(η − 1)2 −(ξ + 1)(η − 1)2 (η2 − 1)(ξ + 1) −(η2)(ξ − 1)
(ξ − 1)2(η − 1) −(ξ2 − 1)(η − 1) (ξ2 − 1)(η + 1) −(ξ − 1)2(η + 1)
−(ξ − 1)(η − 1)2 (ξ + 1)(η − 1)2 −(η2 − 1)(ξ + 1) (η2 − 1)(ξ − 1)
−(ξ2 − 1)(η − 1) (ξ + 1)2(η − 1) −(ξ + 1)2(η + 1) (ξ2 − 1)(η + 1)
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dΩ

(A.18)
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After integration on [-1,1], we have:

K̂ =
αE

6(1− ν)



−2 −2 −1 −1
−2 −1 −1 −2
2 2 1 1
−1 −2 −2 −1
1 1 2 2
1 2 2 1
−1 −1 −2 −2
2 1 1 2


(A.19)

where odd and rows corresponds to x and y directional elasticity response. By ex-
tracting the entries from the odd rows, the relationship between x directional loading
and heat flux can be obtained:

K̂xt =
αE

6(1− ν)

−2 −2 −1 −1
2 2 1 1
1 1 2 2
−1 −1 −2 −2

 (A.20)

Based on Eq. 5.8, we can find it FEA convolutional kernel:

W xt =
αE

6(1− ν)

[−1 0 1
−4 0 4
−1 0 1

]
(A.21)

Similarly, the FEA convolutional kernel for the relationship can be obtained as:

W xt =
αE

6(1− ν)

[
1 4 1
0 0 0
−1 −4 −1

]
(A.22)
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We use u∗ (and û) to denote the part where its value is known (and unknown).
In this way, Eq. 5.2 can be split as:[

K00 K01

K10 K11

] [
û
u∗

]
=

[
v∗

v̂

]
(B.1)

The boundary condition operator B is defined as:

B
[
u1

u2

]
=

[
u1

u∗

]
(B.2)

which makes:

B

([
K00 K01

K10 K11

] [
u1

u2

])
=

[
K00 K01

0 I

] [
u1

u∗

]
(B.3)

This is equivalent to solving:[
K00 K01

0 I

] [
û
u∗

]
=

[
v∗

u∗

]
(B.4)

It is obvious that Eq. B.1 and Eq. B.4 actually have the same solution. Thus, FEA-Net
will have exactly the same convergence as the numerical solver to its corresponding
FEA problem.
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The objective of training FEA-Net on linear physics boils down to learning the
filter W given observed (V , U) pair:

arg min
W

‖W ~ U − V ‖2
2 (C.1)

Since convolution operation is a linear operation, Eq. C.1 is essentially a linear regres-
sion problem. For thermoelasticity, it can be decomposed into three different learning
problems:

arg min
Wxx,Wxy ,Wxt

∥∥W xx ~ Ux +W xy ~ Uy +W xt ~ U t − V x
∥∥2

2
(C.2a)

arg min
W yx,W yy ,W yt

∥∥W yx ~ Ux +W yy ~ Uy +W yt ~ U t − V y
∥∥2

2
(C.2b)

arg min
W tx,W ty ,W tt

∥∥W tx ~ Ux +W ty ~ Uy +W tt ~ U t − V t
∥∥2

2
(C.2c)

Consider optimizing Eq. C.2a for example, this optimization problem is equivalent
to finding the least mean square solution of:

W xx ~ Ux +W xy ~ Uy +W xt ~ U t = V x (C.3)

which can actually be re-organized into a matrix form:

U · −→w = −→v (C.4)

where U ∈ R(n2,27) and −→w ∈ R(27,1) are in the form of:

U = [Ux,Uy,Ut] (C.5a)

−→w = [
−→
wx,
−→
wy,
−→
wt]T (C.5b)

and their components have an expression of:

−→
wx = [W xx

11 ,W
xx
12 ,W

xx
13 ,W

xx
21 ,W

xx
22 ,W

xx
23 ,W

xx
31 ,W

xx
32 ,W

xx
33 ] (C.6a)

Ux = [Ux
i−1,j−1,U

x
i−1,j,U

x
i+1,j,U

x
i,j−1,U

x
i,j,U

x
i,j+1,U

x
i+1,j−1,U

x
i+1,j,U

x
i+1,j+1] (C.6b)

There is a total of 27 variables to be learned from Eq. C.4. There are two conditions
to ensure the problem is well defined: (1) The number of rows is larger or equal to
27. This means that we need to have the image resolution at least 6-by-6. (2) The
coefficient matrix U is column-wise full rank.

Lemma 2. If different loading channels are linearly dependent, U matrix will not be
row-wise full rank.
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Proof. We start by assuming there exists such linear dependence:

V x = c1V
y + c2V

t (C.7)

Substituting it into the relationship between loading images and response images in
Theorem 1:

W xx ~ Ux +W xy ~ Uy +W xt ~ U t = c1

(
W yx ~ Uy +W yy ~ Uy +W yt ~ U t

)
+c2

(
W tx ~ Ux +W ty ~ Uy +W tt ~ U t

)
(C.8)

after simplification we have:

(W xx − c1W
xy − c2W

xt) ~ Ux + (W yx − c1W
yy − c2W

yt) ~ Uy

+(W tx − c1W
ty − c2W

tt) ~ U t = 0
(C.9)

which can be further re-organize into matrix form:

U · −→c = 0 (C.10)

where:

c = [
−→
wx − c1

−→
wy − c2

−→
wt,
−→
wx − c1

−→
wy − c2

−→
wt,
−→
wx − c1

−→
wy − c2

−→
wt]t (C.11)

Thus, matrix U has column-wise correlation and is not of column-wise full rank.

For thermoelasticity specifically, we have W xt = W yt = 0 and the condition for
rank deficiency in Lemma 2 can be further simplified. Since

−→
wt = 0, as long as

V x = c1V
y, the system U will have multicollinearility. Physically, that means we can

not have the loading pointing towards one direction in obtaining the training data.
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APPENDIX D

LEARNING WITH MULTI-PHASE RELATED PROOF
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D.1 Estimating material phase

From Eq. 5.14 we can see that Eq. 5.26 is a linear function of H if the other vari-
ables (ρ, V , U are known). Furthermore, Eq. 5.27 will become a quadratic program-
ming problem if L2 error measurement is used. Thus, the solution to Problem 5.4.1 is
unique. Since the governing PDE is the same everywhere in Ω, the objective Eq. 5.27
also holds for any Φ ⊂ Ω. Thus, the material phase in Φ can be obtained from:

H∗(q) = arg min
H

f(ρ,H, V (q), U(q)) (D.1)

This means that the learning of material phase can be successful for arbitrary image
size.

D.2 Estimating material property

It is obvious that both material phases need to get present in the phase image H,
otherwise the other material property will not get involved in the optimization. Now
we prove the second condition on V . We can see that f is a function that is linearly
related to the FEA convolution kernelW . Furthermore, as can be seen from Eq. 5.10a,
Eq. 5.10b for homogeneous material and Eq. 5.16, Eq. 5.17 for bi-phase material, the
Young’s modulus E term can be extracted from the convolutional kernel. In other
words, for elasticity problems, Eq. 5.26 is decomposible w.r.t. Young’s modulus E:

V = f2(U,H,E, ν) = E · f̂2(U,H, ν) (D.2)

If we have V ≡ 0, there will be two possible solutions: E ≡ 0 or f̂(U,H, ν) ≡ 0. Thus,
we need to have V (q) has non-zero value(s) in order to learn the correct solution.

Learning material property with Eq. 5.28 can be very data efficient: (1) Suppose
the material is homogeneous, we have ρ ∈ R2 for elasticity problems. In this case,
the optimization problem will be well defined if the number of constraints is larger
or equal to 2. (2) Suppose that there exist two phases. In this case, we have ρ ∈ R4

for elasticity problems. Thus, the resolution of V needs to be larger than 2x2, and at
least one element needs to be non-zero. In either case, only a single loading-response
pair can be sufficient to define the optimization problem.
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