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ABSTRACT

The main objective of mathematical modeling is to connect mathematics with

other scientific fields. Developing predictable models help to understand the behav-

ior of biological systems. By testing models, one can relate mathematics and real-

world experiments. To validate predictions numerically, one has to compare them

with experimental data sets. Mathematical modeling can be split into two groups:

microscopic and macroscopic models. Microscopic models described the motion of

so-called agents (e.g. cells, ants) that interact with their surrounding neighbors. The

interactions among these agents form at a large scale some special structures such as

flocking and swarming. One of the key questions is to relate the particular interactions

among agents with the overall emerging structures. Macroscopic models are precisely

designed to describe the evolution of such large structures. They are usually given as

partial differential equations describing the time evolution of a density distribution

(instead of tracking each individual agent). For instance, reaction-diffusion equations

are used to model glioma cells and are being used to predict tumor growth. This

dissertation aims at developing such a framework to better understand the complex

behavior of foraging ants and glioma cells.
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Chapter 1

INTRODUCTION

Mathematical modeling is essential to connect applied mathematics and other

sciences such as biology, economy, technology, and engineering. Developing models

help in learning and making decisions about real-life problems (Perkins and Simmons,

1988). By observing various experiences and behaviors, mathematical models allow

predicting the actual world. From a statistical point of view, a model describes re-

lationships between dependent and independent variables. However, in biology, the

frontier between dependent and independent variables is often blurry. Testing predic-

tive models is a way to clarify whether strong correlations imply strong interactions

between variables (Hestenes, 2010).

To understand complex biological phenomena such as flocking and swarming, bi-

ologists often refer to positive and negative feed backs to model individual behaviors

(Cipresso, 2015). Such assumptions lead mathematically to some governing equa-

tions. Solving these equations (analytically or numerically) lead to some testable

predictions that can be compared to experimental data. We summarize the approach

in figure 1.1.

The parameters used in the models should have some experimental meaning that

will help to test some hypothesis and improve fitting the model with experimental

data (Carrington et al., 2005). Quantitative results can be compared by different

observational assumptions that will identify the strength or weakness of the model

(Judd et al., 2011). If the predicted results of a model and the experimental data are

close to each other, then the model can be considered a reasonable representation of

the system.
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Figure 1.1: Schematic Representation of a Typical Mathematical Modeling Process

Mathematical models can be split into two groups: Agent-Based Models (ABMs)

and Partial Differential Equations (PDEs). The split corresponds broadly to describe

microscopic and macroscopic behavior. An agent-Based Model deals with the motion

of each individual (referred here as agent). It is a (large) dynamical system which

can be either deterministic or stochastic. Interactions between particles with their

surrounding neighbors lead to change in their position and internal states (Barnes

and Chu, 2015) (Politopoulos, 2007). One of the advantage of ABMs is to allow a

larger spectrum of possibilities for modeling interaction among individuals. ABMs

can reproduce pattern formation such as flocking or swarming. Often these biological

abstractions permit researchers to analyze and explain these relationships. In this

thesis, it is of particular interest that ABMs can be used to describe ants and cancer

cells (chapter 2 and 3, resp.).

In chapter 2, we model ant foraging behavior process, i.e. ants moving back and

forth between the nest and food source. We have been provided experimental data

measuring the total flow of ants per second on a bridge where ants are crossing to
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collect food. Investigating the flow, one can realize that the shape of the evolution

curve increases to a maximum then start to decrease slowly over time. Therefore,

our primary purpose is to create a predictive model that will fit this behavior. We

develop a compartmental model to characterize the ant foraging dynamics. An ABM

is introduced for ant foraging where each ant has an internal state describing whether

it is in a foraging state or not. A loss function is used to estimate the best parameters

needed for the model to fit the data. When we compare the experiments and the

model, one can realize that, in the beginning the shape of the curves overlap, but

over time they start to diverge. So, an extended model to the dynamics was intro-

duced where the transition of ant foragers to non foragers is affected by the number

of foragers. In this case, we can observe that experiments and model predictions are

in better agreement, the predicted number of foraging ants almost overlaps the exper-

imental data. Therefore, the extended model captures better the temporal evolution

of the number of ant foragers.

Chapter 3 and 4 focus on glioblastoma which is the most aggressive and invasive

malignant tumor. In chapter 3, glioma cells are responsive for brain tumor. A bi-

ological in vivo experimental observation shows different shapes of cancer cells (i.e

circular and elliptical). Flock formation evolves only when cells are elongated. Such

elongation can increase and influence the overall tumor growth. Therefore, to analyze

how cancer cells manage to propagate throughout the organism system, we use ABMs

to describe the essential features of the cell. In particular, we introduce eccentricity

in the description of the cell. Adding this characteristic, we investigate how varying

the density affect pattern formation. When the density is high, a new structure is

noticeable, where cells move evenly in opposite direction to form a so-called stream.

In contrast to ABMs, Partial differential equations (PDEs) describe the time evo-

lution of distribution. Instead of tracking individual particles (i.e cancer cells), we
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are considering a mass. This macroscopic description is especially relevant when we

consider tumor growth since the number of cancer cells can reach millions, it is often

unpractical to keep track of the position of each cell. The macroscopic description is

sometimes more helpful to observe and predict pattern formation. For instance, the

investigation of reaction-diffusion equation is used to predict tumor growth.

In chapter 4, glioblastoma proliferates and spreads aggressively through the or-

ganism. The PDE mathematical model of reaction-diffusion was used to calculate the

two coefficients of proliferation and invasion for patients. Some data of pre-treatment

patients were shared with us, where they provided us the radius size of the tumor

using different types of MRI taken on two separate days for a patient. By using the

traveling wave solution and the steepness of the tumor (wave), one can estimate the

proliferation and diffusion for each patient only if we are provided with two time

points of imaging. Our main concern is to try to estimate these two parameters if we

are only provided with one time point imaging, since in this case, we cannot evaluate

the velocity. The hypothesis is to try to find a relationship (a strong correlation)

between the velocity and the center size of the tumor (i.e necrosis) to be able to

calculate these two parameters with one time imaging only.

4



Chapter 2

MODELING ANT FORAGING BEHAVIOR

2.1 Introduction

In nature, ants are able to optimize their foraging behavior in various environments

from going back and forth between the nest and the food source. They regulate their

foragers’ activities based on some outgoing and returning neighbors that interact with

them by positive and negative feedback (Robinson et al., 2009; Prabhakar et al., 2012;

Mersch et al., 2013). To study in more details this dynamics, Udiani et al. explain the

collective of foraging ants which is regulated due to the environmental perturbation

going from the nest to the food source and vice-versa (Udiani et al., 2015). As shown

in (Dussutour et al., 2004), bi-directional traffic flow of ants going from the nest to

the food source and vice-versa is influenced by several environmental factors. We

would like to explore if our simple model can reproduce the key features observed

experimentally.

As a source of inspiration, we use experimental data provided by Dussutour et al.

(see figure 2.1). They have conducted several experiments recorded ants crossing a

bridge to reach a food source. From these experiments, we observe that the flow of

ants over time first increases rapidly and then slowly decays.

Our main motivation is to develop a mathematical model that will qualitatively

predict the time evolution of the number of foragers as observed experimentally. We

start by building a compartmental model inspired by epidemiology study (SIR model)

It will contain three states inspired by the modeling of the diffusion of new products

(Fibich et al., 2012; Fibich, 2016).
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nest
food

bridge

Experimental setting

Figure 2.1: The Total Flow (in ants/second) of Ants Crossing the Bridge Back and

Forth from the Nest to the Food Source as a Function of Time (in seconds). The

Average of the Total Flow has been Plotted in Red by Using ‘loess’ Regression to Fit

a Smooth Curve from the Data Points

First, we investigate the compartmental model analytically, denoted NFD model,

and study its long-time behavior. We extend the model to incorporate a non-linearity

necessarily to model the slow convergence toward equilibrium. The extended dynam-

ics present some additional difficulties, in particular to characterize the stability of

the equilibria. But data-model comparison using Metropolis-Hastings algorithm sug-

gest that adding such non-linearity is necessarily to capture qualitatively the time

evolution of the flow observed experimentally.
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Then, we study a discrete version of the NFD model using Continuous-Time

Markov Chains. We analyze the convergence of the discrete model to its continuous

version and show the rate of convergence numerically. The discrete version of the

model allows introducing spatial components in the dynamics. In other words, each

ant could be described with a given location and velocity. We propose a simple model

describing both the evolution of forager back and forth to a nest. Finally, we propose

several methods to include congestion constraint in the dynamics.

2.2 Compartmental Model

We would like to model the evolution of the number of ant foragers over time. We

do not take into consideration the position of the ants in this section. Thus, we mainly

consider two quantities: the number of foragers and non-foragers. If one considers a

first-order model, the evolution of the number of foragers could only be monotone.

Indeed, we preserve the total number of ants, and therefore, there is only one degree

of freedom for the dynamics (see remark below). For this reason, we introduce three

states variables: an ant can be either Neutral, Foraging, or Deceptive. Thus, there are

two states for a non-foraging ant (Neutral and Deceptive). Similar to a Susceptible

SIR model (Hethcote, 2000), only Neutral ant can become forager whereas deceptive

ant needs first to become neutral before being forager once again. Thus, the evolution

of the behavior of an ant can be summarized in figure 2.2.

Remark 2.2.1 If we model the evolution of total foragers using only foragers F and

non-foragers N , a first-order model will give:

F ′ = g(F,N) , N ′ = h(F,N)

where g and h are two functions to be determined. However, since the total number

of ants denoted M must be preserved, we have: N(t) = M − F (t) and therefore the
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model reduces to:

F ′ = g(F,M − F ).

Since the differential equation is autonomous, F (t) will always be monotone for any

choice of function g.

2.2.1 NFD Model

We denote by N,F,D the number of ants which are (resp.) Neutral, Foraging,

and Deceptive. The total fixed number of ants is denoted M (i.e. M = N + F +D).

We choose for the transition rates the following expression (see Fig. 2.2):

• Neutral to Foraging: p + q F
M

where p > 0 is a constant (‘curiosity’) and q a

positive feedback (‘active recruitment’ ), the more Foraging ants, the higher the

rate,

• Foraging to Deceptive: constant rate λ > 0,

• Deceptive to Neutral: constant rate r > 0.

Notice that the transition rate from Neutral to Foraging depends on F , which implies

a non-linearity. According to these rates, we define our first model.

Definition 1 [NFD model] We consider the following dynamical system:

N ′ = −(p+ qF/M)N + rD (2.2.1)

F ′ = (p+ qF/M)N − λF (2.2.2)

D′ = λF − rD. (2.2.3)

To study the dynamical system, we start by introducing the notations:

x = N

M
, y = F

M
, z = D

M
.
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Neutral Foraging Deceptive

Figure 2.2: An Ant is in Three Possible States: Neutral, Foraging, or Deceptive. Over

Time, each Ant Passes from Neutral to Foraging Behavior and then Deceptive, and

the Circle Starts Again. Thus, the Model Requires Three Transition Rate

where the conservation of the mass gives x + y + z = 1. Thus, we can reduce the

dynamical system (2.2.1)-(2.2.3) to only two equations (see Fig. 2.3):

x′ = −(p+ qy)x + r(1− x− y) (2.2.4)

y′ = (p+ qy)x − λy (2.2.5)

Figure 2.3: Using the Conservation of the Mass, we can Reduce the Dynamical System

to a Two-Dimension Problem

Proposition 2.2.2 Denote Ω = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x + y ≤ 1}. The set Ω

is invariant, in other words, for any (x0, y0) ∈ Ω, the solution (x(t), y(t)) to (2.2.4)-

(2.2.5) remains in Ω for all t ≥ 0.
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Proof. We prove that the boundary of Ω forms a barrier for the dynamics (Hubbard

and West, 2013), in other words any solution starting at the boundary of Ω will go

towards the inside of Ω (see figure 2.3 - right). With this aim, we compute the scalar

product of d
dt

(x(t), y(t)) with the normal vector η of Ω. There are three cases to

consider:

If x = 0 and 0 ≤ y ≤ 1, then x

y


′

·

 1

0

 = x′ = r(1− y) ≥ 0.

If y = 0 and 0 ≤ x ≤ 1, then x

y


′

·

 0

1

 = y′ = px ≥ 0.

If x+ y = 1 , x ≥ 0 and y ≥ 0, then x

y


′

·

 −1/
√

2

−1/
√

2

 = (−x′ − y′)/
√

2 = λy/
√

2 ≥ 0.

Hence, any point (x, y) starting inside Ω cannot escape out of it. Therefore, Ω is an

invariant set. �

Proposition 2.2.3 There exists a unique equilibrium (x∗, y∗) to the dynamical sys-

tem (2.2.1)-(2.2.3) in Ω. Moreover, the equilibrium is asymptotically stable.

Proof. Solving y′ = 0 yields to x∗ = λy∗

p+qy∗ . Then, x
′ = 0 leads to:

−(p+ qy + r) λy

p+ qy
+ r(1− y) = 0 ⇒ P (y) = 0,

with P (y) = q(λ+ r)y2 + (pλ+ pr+λr− qr)y− pr. There exists two solutions y1 and

y2 satisfying: y1 < 0 and 0 < y2 < 1. Indeed, P is a parabola satisfying P (0) < 0

and P (1) > 0. Since y > 0, the equilibrium is given by: y∗ = y2.
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To study the stability of the equilibrium, denote the dynamical system (2.2.4)

(2.2.5) as: x

y


′

= F (x, y) with F (x, y) =

−(p+ r + qy)x− ry + r

(p+ qy)x− λy

 .
Taking the Jacobian of F gives:

DF (x, y) =

−(p+ r + qy) −r − qx

p+ qy qx− λ

 .
Notice that at equilibrium qx∗ = qλy∗

p+qy∗ < λ, so qx∗ − λ < 0.

Therefore Trace(DF (x∗, y∗)) < 0. Moreover, the determinant of DF (x∗, y∗) is pos-

itive. We deduce that the equilibrium is necessarily stable (node or focus) in Ω.

�

Following the proof, we have an explicit expression for the equilibrium. Introduc-

ing the coefficients:

α = q(λ+ r) , β = pλ+ pr + λr − qr , γ = pr,

we obtain the explicit expression:

F ∗ = M
−β +

√
β2 + 4αγ

2α , N∗ = λF ∗

p+ qF ∗/M
, D∗ = λF ∗

r
. (2.2.6)

Figure 2.4 below is the solution of the model using Runge-Kutta method of order

4 using a initial condition F0 = D0 = 0 and N0 = M = 100. We observe that the

solution converges to a stationary state that corresponds to the formula obtained in

(2.2.6).

2.2.2 Extended NFD Model

The convergence of the previous NFD model toward equilibrium is fast and does

not match over time the shape of the data curve introduced in 2.1. Therefore, to slow
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Figure 2.4: Numerical Solution (RK4) of the Dynamical System (2.2.1)-(2.2.3). The

Solution Converges to an Equilibrium. Parameters of the Simulation: ∆t = 10−2,

p = 0.1, q = 2, λ = 0.2, r = 0.3 and M = 100

down the convergence, we extend our NFD model. We start by exploring an extension

of the previous dynamics where the transition rate from Foraging to Deceptive does

also depend on the number of foragers: λ(1 − F
M

) (i.e. the more Foraging ants, the

lower the rate).

Definition 2 [Extended NFD model] We consider the following dynamical sys-

tem:

N ′ = −(p+ qF/M)N + rD (2.2.7)

F ′ = (p+ qF/M)N − λF (1− F/M) (2.2.8)

D′ = λF (1− F/M)− rD. (2.2.9)

To study the equilibrium of the dynamics, we proceed as before and start by using
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the conservation of mass (see Fig. 2.3) to reduce the dynamical system (2.2.7)-(2.2.9)

to only two equations:

x′ = −(p+ qy)x + r(1− x− y) (2.2.10)

y′ = (p+ qy)x − λy(1− y) (2.2.11)

Similarly to what we did in proposition 2.2.2, one can prove that Ω is also an

invariant set for the extended dynamics. We start by considering the existence of

equilibrium points based on some conditions.

Proposition 2.2.4 Let λc = r(p+q)
(p+q+r) . If λ < λc, then there exists a unique equilib-

rium point to the dynamical system (2.2.7)-(2.2.9) denoted as (x∗1, y∗1) that is asymp-

totically stable and an attractor. Whereas, if λ > λc, (x∗1, y∗1) is unstable and there

exists a second equilibrium point (x∗2, y∗2) in Ω.

Proof. • To study the equilibrium points (x∗, y∗) of the two dimensional system

(2.2.10) (2.2.11), solving y′ = 0 in (2.2.11) gives

x∗ = λy∗(1− y∗)
p+ qy∗

. (2.2.12)

Combining with x′ = 0, we deduce from (2.2.10) the equation:

−(p+ qy∗ + r)λy
∗(1− y∗)
p+ qy∗

+ r(1− y∗) = 0 ⇒ P (y∗) = 0.

We observe that P (1) = 0, so that y = 1 is a root of P . Indeed, a first equilibrium

point is at (x∗1, y∗1) = (0, 1). Therefore, we simplify P to get

P (y) = (y − 1)Q(y) where Q(y) = −qλy2 + (−pλ− rλ+ rq)y + rp.

Note that Q(0) = rp > 0, thus there exists two root solutions y1 and y2 for Q

satisfying: y1 < 0 and 0 < y2. Since y is defined on [0, 1] then we only consider
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looking at the existence of y2. Moreover, we have

Q(1) = r(p+ q)
(

1− λ

λc

)
where λc = r(p+ q)

(p+ q + r) .

Thus, if λ < λc we have that Q(1) > 0 and then y2 > 1 is none reachable. Whereas,

if λ > λc we have that Q(1) < 0 so that 0 < y2 < 1. Thus, in this case, there exists a

second equilibrium: (x∗2, y∗2) with x∗2 satisfying (2.2.12).

• To study the stability of the equilibrium points, denote the dynamical system

(2.2.10) (2.2.11) as: x

y


′

= G(x, y) with G(x, y) =

−(p+ qy)x+ r(1− x− y)

(p+ qy)x− λy(1− y)

 .
Taking the Jacobian of G gives:

DG(x, y) =

−(p+ qy + r) −qx− r

p+ qy qx− λ+ 2λy

 .
We start by looking at the stability of the equilibrium point (x∗1, y∗1) = (0, 1):

Trace(DG(x∗1, y∗1)) = −(p+ q + r) + λ,

Det(DG(x∗1, y∗1)) = −λ(p+ q + r) + r(p+ q).

For λ < λc, notice that λc = r(p+q)
(p+q+r) < r, so λ < r. Therefore the trace Trace(DG(x∗1, y∗1)) <

0. Moreover, the determinant Det(DG(x∗1, y∗1)) is positive. We deduce that the equi-

librium (x∗1, y∗1) is necessarily stable. Now to specify if it is a node or focus, we look

at

Det− T2

4 = −(p+ q)λ− 1
4[(p+ q)− (λ+ r)]2 < 0

which proves that (x∗1, y∗1) is a local stable node when λ < λc.

When λ > λc, the determinant Det(DG(x∗1, y∗1)) is negative. Therefore, (x∗1, y∗1) is

unstable saddle.
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• It remains to show that in the case λ < λc, the equilibrium (x∗1, y1∗) = (0, 1)

is an attractor. We use the Poincaré-Bendixson theorem (Arrowsmith and Place,

1992; Verhulst, 2006; Ciesielski, 2001) in dimension 2 knowing that Ω is an invariant

compact set. Any solution has to converge to either an equilibrium or a periodic

solution. Since there is only one equilibrium, we only have to rule out the convergence

toward a periodic solution. But if we suppose that such periodic solution exists in Ω

then it must contain an equilibrium point inside its orbit. However, there is only one

equilibrium and it is located at the boundary of Ω, therefore no orbit inside Ω can

contain it. �

Notice that we can not prove analytically the stability of the second equilibrium

(x∗2, y∗2) when λ > λc. But numerically it is clear that the equilibrium is asymptotically

stable as well as an attractor (see figure 2.5). In figure 2.6, we plot the bifurcation

diagram of the equilibrium points x∗ that satisfy equation (2.2.12) with respect to λ.

We fix the values of the parameters, p, q and r same as in figure 2.4. One can observe

that if λ < λc, only one solution exists and is stable at x∗1 = 0. Whereas, for λ > λc,

we have existence of two equilibrium points, where x∗1 is unstable but x∗2 is stable.

Although there is no simple expression for x∗2, one can find the transition curve when

x∗1 = x∗2. Indeed, we can solve analytically:

λ = λc ⇒ (p+ q)(λ− r) + rλ = 0

so that,
1
4(λ+ r)2 − 1

4(λ− r)2 + (p+ q)(λ− r) = 0.

Therefore we get the equation of a hyperbola which explains the shape of the contour

{x∗ = 0} in figure 2.6-right.
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Figure 2.5: Phase Portrait for the Dynamics (2.2.10)- (2.2.11) Depending on λ and

λc = r(p+q)
(p+q+r) . When λ < λc (left), the Dynamics Converge Toward the Attractor

(x∗1, y∗1) = (0, 1). Whereas when λ > λc (right), the Dynamics Converge Toward a

Second Equilibrium (x∗2, y∗2) inside the Domain Ω
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Figure 2.6: Left: The Bifurcation Diagram of the Equilibrium Points with Respect

to λ, where the Parameters p, r and q are Fixed and Equal to the Values in Figure

2.4. When λ ≤ λc, only One Solution Exists x∗1 = 0, and is Stable. Whereas, when

λ ≥ λc, we have Existence of Two Equilibrium Points, where x∗1 is Unstable but x∗2 is

Stable. Right: The Numerical Observation of the Equilibrium Point x∗, Depending

on λ and r
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2.2.3 Data-Model Comparison

We would like to put to the test the two different models proposed by performing

a qualitative comparison with the experimental data presented in figure 2.1. Unfortu-

nately, we only have partial information about the number of foraging ants since we

only have accessed to the flow measuring the amount of ants crossing the bridge per

unit time. However, it is expected that the flow is, in a first approximation, propor-

tional to the number of foraging ants (non-linear effects could make the relationship

more complicated).

To perform a data-model comparison, we consider the target function to match the

experimental average flow denoted Fexp (see the red curve in figure 2.1). We would

like to compare Fexp(t) with the prediction of the amount of foragers F (t) in our

models. We have to normalize each curve such that their maximum is 1 (otherwise

Fexp and F (t) have different units). We use as a loss function ` the mean-square

error:

` = 1
T

∫ T

0

∣∣∣∣∣ F(t)
‖F‖∞

− F (t)
‖F‖∞

∣∣∣∣∣
2

dt, (2.2.13)

where ‖f‖∞ = maxt |f(t)| and T is the total time of the experiment.

To minimize the loss function ` with respect to the four parameters θ = (p, q, r, λ),

we use the MetropolisâĂŞHastings (MH) Algorithm (Chib and Greenberg, 1995).

This algorithm is slow compared to the approach of the traditional gradient-descent

but it does not require to compare the gradient of the loss function `. Starting from

a given value for the parameters denoted θn = (pn, qn, rn, λn), we perturb their values

by adding a random variable: θ∗ = θn + εn. We then keep the updated parameters

(i.e. θn+1 = θ∗) depending on its performance `(θ∗) by comparing it to `(θn) (see

Algorithm 1). Note that the losses `(θn) could eventually increase with n which

allows the algorithm to not get stuck into local minimum. There are two hyper-
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parameters for the MH algorithm: the intensity of the noise applied to θn (denoted

σ) and the ‘temperature’ (denoted D) governing the acceptance rate when the loss

increases (taking D = 0 enforces a decay of the loss function).

Algorithm 1 Metropolis-Hasting
1: procedure Metropolis(θn, `n, σ,D)

2: θ∗ = θn + σεn

3: `∗ = `(θ∗)

4: if `∗ < `n then

5: Accepted: θn+1 = θ∗, `n+1 = `∗

6: else

U ∼ U [0, 1]

7: if U < exp(−(`∗ − `n)/D) then

8: Accepted: θn+1 = θ∗, `n+1 = `∗

9: else

10: Rejected: θn+1 = θn, `n+1 = `n

11: end if

12: end if

13: Return θn+1, `n+1

14: end procedure

We apply the MH algorithm to our dynamical systems (2.2.1)-(2.2.3) and (2.2.7)-

(2.2.9) starting with the same initial guess for the parameters. In figure 2.7-left,

one can observe that the loss function of the original model is minimized at around

` ≈ 4 whereas for the extended model the minimum is close to ` ≈ 1. Plugging

the parameters θ∗ that minimize the loss ` (resp. θNFD = (.12, .22, .045, .021) and

θext.NFD = (.16, .30, 0.022, 0.059)), we then plot the evolution of the curves F (t)
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over time for the two models and compare them with the (normalized) total flux in

figure 2.7-right. We notice that the NFD model converges quickly to an equilibrium,

whereas the extended NFD is able to capture the slow decay of the number of foragers.
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Figure 2.7: Left: Evolution of the loss function over the number of iterations by

using Metropolis-Hastings for the original dynamical system (2.2.1)-(2.2.3) and the

extended (2.2.7)-(2.2.9). The value that minimizes the loss function is lower in the

extended model than the original model. Right: The corresponding curves F (t) for

both models using as parameters the minimizers of the loss function `. We observe

that the extended dynamics is able to capture the slow decay of the number of foragers

2.3 Agent-Based Models

2.3.1 Continuous-Time Markov Chains

We would like to describe our previous dynamics as a discrete number of ants by

using a Continuous-Time Markov Chains (CTMC) model. The goal of this section is

to show that we can recover similar dynamics as the NFD dynamics (2.2.1)-(2.2.3) in

this setting. In particular, as the number of ants M growths, the discrete description

will converge toward the continuous model.
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We describe each ant with a state variable Si that can take 3 values: Si ∈ {1, 2, 3}

representing (resp.) Neutral, Foraging and Deceptive. Thus, the quantity N, F, D

are given by:

N(t) = #{Si(t) = 1}, F (t) = #{Si(t) = 2}, D(t) = #{Si(t) = 3}, (2.3.14)

where # represents the cardinal of a set. Notice that now N, F , and D can only take

discrete values. As for the ODE system, the evolution of Si over time depends on the

rates at which it changes from 1 to 2 (i.e. Neutral to Foraging), from 2 to 3 etc...We

use the same rates as for the ODE system (see Fig. 2.2). Mathematically, Si(t) is a

(jump) Markov process with generator (Norris, 1998):

G(t) =


−(p+ q F (t)

M
) (p+ q F (t)

M
) 0

0 −λ λ

r 0 −r

 (2.3.15)

where F (t) is given by (2.3.14). For instance, if Si(0) = 2, then Si will jump to 3

after a time T given by an exponential law T ∼ E(λ) (see Fig. 2.8).

Figure 2.8: Illustration of the Poisson Process Si(t) with Transition Rates Given by

Figure 2.2

Remark 2.3.1 We have only described the evolution of a single ant i looking at the

stochastic process Si(t). To fully describe the system, we would need to introduce
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the vector of all ants:

S(t) =



S1(t)

S2(t)
...

SM(t)


. (2.3.16)

One could write a generator for this vector.

Numerically, we approximate the jump process by a discrete Markov chain (Norris,

1998). Introducing a small time step ∆t and supposing Si(0) = 1. The probability P

of the jump of Si after a time ∆t is approximated by:

P (Si " jumps from 1 to 2 over "[0,∆t]) ≈ 1− exp(−(p+ F/M)∆t),

or in other words

P (Si(∆t) = 2 |Si(0) = 1) ≈ 1− exp(−(p+ F/M)∆t).

Similarly, we have:

P (Si(∆t) = 3 |Si(0) = 2) ≈ 1− exp(−λ∆t),

P (Si(∆t) = 1 |Si(0) = 3) ≈ 1− exp(−r∆t).

Note that the smaller ∆t is, the smaller the probability will be to jump. Moreover,

it is only an approximation as the stochastic process Si(t) could jump twice over a

period [0,∆t]. However, the probability that two jumps occurs on such time interval

is of the order O(∆t2).

To illustrate the Markov process, we run simulations using the same parameters

as in figure 2.4. In figure 2.9-left, we run one simulation with M = 100 ants and plot

the evolution of the number of Neutral, Foraging and Defective ants. In contrast with

the ODE system (2.2.1)-(2.2.3), the curves fluctuate due to the finite number of ants
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M . To reduce these fluctuations, we perform 50 simulations in fig. 2.9-right and plot

the average, denoted 〈N〉, 〈F 〉 and 〈D〉. The width along the curves corresponds to

the standard deviation. The results are now in good agreement with the solution of

the ODE system (see Fig. 2.4).
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Figure 2.9: Left: The Evolution of N, F, D (2.3.14) from the Simulation of the Jump

Process with Generator (2.3.15) for M = 100 Ants and Similar Parameters as in

Fig. 2.4. Right: Averaging of 50 Simulations Along with the Standard Deviation

As we observe in figure 2.9, the evolution of N, F and D has qualitatively the

same behavior as the ODE system (see fig. 2.4). We would like to analyze furthermore

the agreement and discrepancy between the two dynamics, one being deterministic

(ODE) and the other one stochastic (Markov process).

We notice that the ODE system has a scaling property. If (N(t), F (t), D(t)) is

a solution to (2.2.1)-(2.2.3) with a total of M ants, then for any scalar α > 0, then

(αN(t), αF (t), αD(t)) is the solution with αM ants, since:

(αF )′ = αF ′ = α
(
(p+ qF/M)N − λF

)
= (p+ αqF/αM)αN − λαF.

We can proceed similarly for N(t) and D(t). As a result, varying M has no effects

on the proportions N(t)/M , F (t)/M and D(t)/M . However, increasing M will have

an impact on the stochastic process.
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To analyze how the total number of ants M impacts on the stochastic process, we

run several simulations with various M . In figure 2.10-left, we plot the evolution of

F (t) for four values of M . We observe that the fluctuation reduces as M increases

and the curves converge toward the solution of the ODE. To investigate further this

convergence, we measure the average error between the stochastic and deterministic

solution:

ErrorF = 1
T

(∫ T

0
|F (t)− Fstoc(t)|2 dt

) 1
2

. (2.3.17)

We introduce similar error function for N and D and denote the total error:

Error = ErrorN + ErrorF + ErrorD. (2.3.18)

In figure 2.10-right, we plot the total error depending on M . We observe that the

decay is of the order O(1/
√
M) as one could expect from the Central Limit theorem

(Darling et al., 2008).
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Figure 2.10: Left: Number of Foraging Ants Varying M . Fluctuation Reduce as the

Total Number M Increases. Right: The Average Error Between the ODE and the

Stochastic Process (2.3.18) Depending onM . The Decay is of the Order of O(1/
√
M)
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2.3.2 Spatial Model

We would like to add spatial position into the model. Each ant i has now a

position vector xi(t) ∈ R2. Denote by A the position of the nest, and B the position

of the food source. Foraging ants are going back and forth between A and B at a

constant speed c, thus:

x′i = c ω(xi) + σẆi, (2.3.19)

where σ is the noise intensity, Wi a Brownian motion, and ωi is the direction of either

nest or the source:

ωi = A− xi
|A− xi|

or ωi = B − xi
|B − xi|

Each time the ant reaches its target, nest or food source (resp. A and B), the target

direction is updated (A becomes B and vice-versa). Numerically, an ant reaches its

target if it is at a distance less than a fixed radius R from the target. In the case

where an ant is Neutral or Deceptive, the motion is simply a diffusive process:

x′i = σẆi, (2.3.20)

there is no more incentive to go to a specific target. A schematic representation of

the model is given below in figure 2.11.

A B

Nest Food source
foraging

neutral
deceptive

Figure 2.11: Schematic Representation of the Spatial Model of Ants. Foraging Ants

(in Red) are Moving Back and Forth Between the Nest and the Food Source. Neutral

and Deceptive are Moving Randomly
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To investigate numerically the model, we look at the simulations at two different

time (see figure 2.12). The parameters p, q, r and λ are as previously, whereas c = 10

and σ = 0.2. The nest is located at the origin A = (0, 0) and the food source is at the

right side at B = (50, 0). The radius of both the nest and food source is estimated

as R = 1. In figure 2.12, initially, the ants are all distributed in the nest. They start

to spread slowly (see fig.2.12-left). As time evolves, ants will spread first toward the

food source (x-direction) but also in the y-direction due the diffusion process (see

fig.2.12-right).
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Figure 2.12: Simulation of the Model at two Different Time. Initially, the Ants are all

Distributed in the Nest. As Time Evolves, Ants will Spread First Toward the Food

Source (x-direction) but also in the y-Direction due the Diffusion Process

For local interaction between ants, we use the evolution strategy Si of an ant i as

defined previously in the Poisson process (see equation 2.3.14). We determine at each

time step fi the number of foraging , and ℵi the total number of neighbors nearby

ant xi where ℵi = ni + fi + di. We count the neighbors fi and ℵi by looking at the

strategy of the ants that are within the radius of interaction d of ant xi. Note that,

by counting fi and ℵi, one can observe that the number of its neighborhood includes
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itself (see figure 2.15-left).

fi(t) = #{j | Sj(t) = 2 and |xj − xi| ≤ d}, (2.3.21)

ℵi(t) = #{j | Sj(t) ∈ {1, 2, 3} and |xj − xi| ≤ d}. (2.3.22)

Remark 2.3.2 We notice that there is a relationship between d and q. When d is

very small (resp. very large), the average of evolution of N , F , D over 50 simulation

of the local interaction will be similar to the standard dynamical ODE when q = 0

(resp. q = 2). The values of the other parameters used are similar to figure 2.4, the

noise and speed are taken as σ = 0.6 and c = 5cm/s (resp.) (see figures 2.13 - 2.14).

When d = 0, no neighbors are around so that fi = ℵi = 0 (i.e qfi = 0 by looking

at the local model), therefore the foragers will not interact with each others so that

the curiosity coefficient q = 0. On the other hand, when d is large, local neighbors

foragers are going to be equal to the entire followers fi = F , therefore, q = 2 in this

case like the original model.
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Figure 2.13: Left: The Average of Evolution of N, F, D of 50 Simulation of the Local

Interaction with d = 0.1. Right: The Evolution of N, F, D of the Dynamical System

with q = 0
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Figure 2.14: Left: The Average of Evolution of N, F, D of 50 Simulation of the Local

Interaction with d = 10. Right: The Evolution of N, F, D of the Dynamical System

with q = 2

2.3.3 Congestion Effect

Finally, we would like to discuss how to implement a congestion effect on the

dynamics. When the density is high, ants have to slow down, i.e. the speed c is a

(decaying) function of the density. Therefore, we propose two ways to incorporate

congestion constraint.

A first possibility is to have the speed of each ant ci depends on ℵi the number of

neighbors around it within the distance d, so that

ci = c(ℵi), (2.3.23)

where c(·) is a decaying function (see figure 2.15). The function is maximum when

there is no neighborhood around it (i.e ℵi = 1).

Another possibility is to incorporate stopping time (Göttlich et al., 2017): ants

stop once they hit each other. Thus, the speed c has to take two values: 0 when it

stops and c when it moves. This behavior can be modeled introducing a stochastic

process Zi with two possible values 0 and 1, meaning that the ant is (resp.) at rest

or moving. We assume that c is 5 cm/s, so that the actual speed of an ant is then
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Figure 2.15: Left: The Neighbors ℵi = 5 of Ant xi within the Radius of Interaction

d. The Number of Neighborhood around xi Includes Itself. Right: The Speed of an

Ant with Respect to the Number of Ants in its Neighborhood

given by:

ci = c · Zi. (2.3.24)

The evolution of the process Zi depicted in figure 2.16-left will depend on two rates:

λ1→0 and λ0→1 describing (resp.) the rate at which an ant stop and re-start. These

rates must also depend on the number of neighbors where λ1→0 and λ0→1 should be

(resp.) increasing and decreasing functions of ℵi (figure 2.16 -right).

time
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Figure 2.16: Left: The Stochastic Process Z Encodes when an Ant is Moving (i.e.

Z = 1 Means Free Ride) or Resting (i.e. Z = 0). Right: The Rates λ0→1 (Ant is at

Rest then Moves) and λ1→0 (Ant Moves then Stops) Depend on the Number of Ants

ℵ Nearby
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2.4 Conclusion

We performed a data-model comparison using experimental data collected by

Dussutour et al. At first we started by observing the experimental behavior of ants

going back and forth from the nest to the food source through a bridge. Our main

intention was to build a model that could fit the data of the average curves of the total

flow over time. Then, we tried to estimate the parameters needed by minimizing a

loss function between the model and the data. The results suggest that the extended

model provides a much better fit to the data curve than the original model. We then

used the mean field approximation to show that the dynamics could be approximated

by a Continuous Time Markov Chain and investigate numerically how increasing the

number of ants reduces the fluctuation.

To further improve the comparison between model and data, we would like to use

more experimental information such as the number of ants moving from the nest to the

food source and vice-versa. Such information will provide the number of foragers at

the food source and therefore it would be possible to have a more accurate comparison

between the model and the experiments.

Another challenge will be to incorporate the ant spatial positions into the data-

model comparison. However, it is experimentally extremely time consuming to track

each ant, although modern automatic tracking techniques could alleviate this work

(as long as the density of ants is not too large).

29



2.5 Appendix

We explain how to simulate a stochastic process S(t) with the following generator

(Norris, 1998):

G(t) =


−a(t) a(t) 0

0 −b(t) b(t)

c(t) 0 −c(t)

 (2.5.1)

where a, b, c are positive functions.

• For each time step ∆t,

– estimate the probability p that S jumps over the time interval ∆t:

p = 1− exp(G(S, S)∆t),

– with probability p

S −→


S + 1 if S = 1 or S = 2

1 if S = 3.

Remark 2.5.1 We will have to generate where we usually ended up with. But here

we have no choice, we will only jump from 1 → 2, 2 → 3, and 3 → 1
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Chapter 3

MODELING GLIOMA CELLS USING ELLIPSES

Abstract

Modeling cancer cells is essential to better understand the invasive nature of glioma

cells. Our goal is to study how the morphology of the cell influences the formation of

so-called flock or stream formation. It has been observed experimentally that streams

increase the speed of the overall tumor growth. We propose an original agent-based

model modeling each cell as an ellipsoid and we show that by stretching the cells, one

can increase stream formation.

A systematic numerical investigation of the model in R2 is performed and we

deduce a phase diagram of the dynamics. Moreover, we study the effect of the density

and show that, in contrast to classical model of flocking, increasing the density tends

to reduce the formation of flocks. Preliminary work in R3 show that the dynamics

tend to similarly generate streams when the density is large.

3.1 Introduction

Primary brain tumor is one of the most common causes of cancer related to death.

The key to develop successful cancer therapy is to understand the essential mecha-

nisms by which individual cancer cells manage to develop and spread throughout the

organism. Of particular interest is the study of the morphology of the cells and how it

could lead to different macroscopic behaviors (e.g. stream formation, diffusion behav-

ior). Streaming promotes, facilitates, and influences the increased speed of the overall

tumor growth. This raises the question on how does the cell morphology influence

the pattern formation of the overall dynamics. This question is difficult to answer as
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we rarely have access to the time evolution of the cell in vivo.

Modeling could provide a partial answer as it allows to explore various scenarios

(Deisboeck and Couzin, 2009; Ribba et al., 2004; Anderson and Quaranta, 2008; Har-

pold et al., 2007). In particular, agent-based models (microscopic level) are convenient

to include essential features of cell behavior (i.e. motility, cell-cell interaction) as it

is used for various other so-called self-organized dynamics (e.g. pedestrians (Mous-

said et al., 2012), birds (Ballerini et al., 2008), and fish (Couzin et al., 2005)). To

investigate the role of the cell morphology, we will model cells as ellipses or ellipsoids.

Such model assumption is common in the study of bacteria, for instance viscoelastic

ellipsoids have been used in (Palsson and Othmer, 2000) or self-propelled spheres in

(Menzel and Ohta, 2012) (see also (Li et al., 2017; Chen et al., 2012; Pletjushkina

et al., 1994; Xiong et al., 2010; Balagam et al., 2014; Ariel et al., 2013)). One of

the specificity of our work is to study the effect on the density, while the dynamics

are in a regime near a non-overlapping constraint. Our main finding is to show that

the morphology of the cell influences the pattern formation of the tumor and how

stretching the cells (ellipsoid shape) can increase stream formation.

The agent-based model proposed in this work contains essentially two mechanisms:

i) self-propulsion, ii) cell-cell avoidance due to non-overlapping constraints. But since

the cells have an ellipsoid shape, cell-cell avoidance lead to two effects: repulsion and

steering. The larger the eccentricity of the cell, the larger the effect of the steering.

In contrast to classical model of flocking (Cucker and Smale, 2007; Vicsek et al.,

1995), in our model cells do not take into account the velocity of their neighbors.

First, we investigate numerically in R2 how the eccentricity enhances the formation

of flocks (i.e. all the cells moving in the same direction) using as an indicator the

so-called polarization of the configuration. Surprisingly when eccentricity becomes

too large, flocks become less likely to occur. Then, we study how the density affects
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the dynamics by increasing the number of cells. Since we do not suppose a mean-

field type interaction (there is no averaging in the interaction), increasing slightly the

density could lead to drastic change (Cho et al., 2007). In our dynamics, we observe

the emergence of streams when the density is larger, meaning that cells are aligned

but not necessarily moving in the same direction. Streams are measured using the

nematic average where we identify a vector ω and its opposite −ω.

Beside the influence of the morphology of the cell, the other key component of the

dynamics is the strength of both the repulsive effect and the steering effect which are

determined by the two coefficients α and β (resp.). One could think that increasing

steering effect (i.e. β larger) would enhance alignment and therefore lead to flocks or

streams. Our numerical investigation reveals that this is not the case. In particular

at large density, it is only in the regime where β is small that a flock or a stream could

emerge. This result seems counter-intuitive but we have to emphasize that the align-

ment in our dynamics is only indirect, cells do not perceive each other velocity. Thus,

it is an interplay between space constraint and steering that lead to the emergence of

a stream or flock. Increasing one effect does not necessarily enhance alignment.

Although most of our simulations are done in dimension 2, we provide some pre-

liminary results in R3. Stream formation is more challenging to observe in R3 since

cells avoiding each other are no longer moving aligned or in opposite direction as

in R2. However, our simulations show that stream formation do still occur in R3

providing that we maintain a large density of cells in the domain.

The complexity of the dynamics shows that it is difficult to predict a priory effect

of each mechanism. Therefore, it would be of great interest to try developing a multi-

scale approach to study the dynamics from a macroscopic viewpoint (Lowengrub

et al., 2009; Saut et al., 2014; Deisboeck and Stamatakos, 2010). Moreover, if one

would like to perform data-model comparison (Swanson et al., 2003; Hawkins-Daarud
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et al., 2013), most of the experimental observations are at a macroscopic scale. Thus,

investigating the partial-differential equation associated with the dynamics (Morale

et al., 2005; Filbet et al., 2005; Peruani et al., 2008) could provide a way to bridge

this gap.

The paper is organized as follows: we first present the agent-based model in section

3.2, then we study how the cell morphology influences the dynamics in section 3.3.

A systematic numerical investigation of the model in R2 varying two key parameters

is performed in section 3.4 which produces several phase diagrams of the dynamics

at various density. We explore the model in R3 in section 3.5 and draw a conclusion

and future work in section 3.6.

3.2 Agent-Based Model

We propose an agent-based model to describe the motion of individual cancer cells.

The dynamics combine cell-motility (i.e. self-propulsion) and cell-cell interaction (e.g

repulsion or adhesion). Specifically, we consider N cells described with a vector

position xi ∈ Rd with d the spatial dimension (d = 2 or 3), moving with velocity cωi

where c > 0 is the speed (supposed constant) and ωi ∈ Sd−1 the velocity direction.

The main novelty of the model is to consider an elliptic or ellipsoid shape for the cell.

Thus, we consider two axis denoted a and b for (respectively) the major and minor

axis (see figure 3.1-left). As two cells cannot occupy the same spatial position, cells

will push each other if they are too close. Thus, we define an interaction potential Vi

between cells that measures the tension exerted on cell i generated by the surrounding

cells:

Vi =
N∑

j=1, j 6=i
Φ(r2

ij) with r2
ij =

∣∣∣∣∣〈xj − xi, ωi〉
a

∣∣∣∣∣
2

+
∣∣∣∣∣〈xj − xi, ω⊥i 〉

b

∣∣∣∣∣
2

. (3.2.1)
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The quantity rij is referred to as the normalized distance between the membrane of

cell i and the position of cell j. For instance, if a = b we recover that rij is simply the

norm ‖xj − xi‖/a. The modification takes into account that the cell is more sensible

to obstacle in front rather obstacle on the side. The model is defined in R2 (i.e. d = 2)

but it can be generalized in R3 defining rij as followed:

r2
ij = 1

b2

(
‖xj − xi‖2 − e2

[
(xj − xi) · ωi

]2)
(3.2.2)

where e ∈ (0, 1) is the eccentricity of an ellipse defined as e =
√

1− b2

a2 .

To prevent overlapping, the function Φ has to be singular at the origin. We choose

the following smooth function with compact support (see figure 3.1-right):

Φ(s) =


1
s

exp
(
−1
1−s

)
if 0 < s < 1

0 if s ≥ 1.
(3.2.3)

As rij decreases, Φ increases resulting into repulsion. We have now defined all the

quantities required to define our agent-based model.

Definition 3 Consider (xi, ωi) ∈ Rd × Sd−1 for i = 1..N and the dimension space

d = 2 or d = 3. The self-propelled dynamics are defined as:

ẋi =
self-propulsion︷︸︸︷

c ωi −
repulsion︷ ︸︸ ︷
α∇xi

Vi (3.2.4)

ω̇i = −βPω⊥i (∇ωi
Vi)︸ ︷︷ ︸

steering

(3.2.5)

where α, β and c are positive constant, Vi is the tension defined in (3.2.1) and Pω⊥i =

Id−ωi⊗ωi is the projector operator onto the the normal plane to ωi (it ensures that

ωi stays of norm 1).

In order to reduce the tension generated by neighboring cells, a cell can either

move away (i.e. repulsion effect) or change its direction (i.e. steering effect). Both
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Figure 3.1: Left: A cell i is Described by its Position xi, Orientation ωi and its Elliptic

Shape Determined by the Two Morphological Components a and b. Right: Function

Φ Relies Spacing Between Cell rij (3.2.1) into Tension that Generates Repulsion when

Two Cells Touch each Other

maneuvers are pondered by the coefficients α and β representing the strength of each

effect. Using the expression of Vi (3.2.1), one can deduce an explicit expression of

the dynamics (see appendix 3.7.1). Notice that if the cell has a circular shape (i.e.

a = b and the eccentricity e = 0), its orientation will remain constant i.e. ω̇i = 0.

Indeed, if that case, turning will have no effect on the reduction of the tension Vi.

Thus, steering effects could only occur when a 6= b.

Remark 3.2.1 Notice that rij cannot be considered a distance between cells i and j

as it is not symmetric (i.e. rij 6= rji in general). Thus, the influence of the cell i on j

is in general different from the cell j on i (i.e Φ(r2
ij) 6= Φ(r2

ji)).

The interaction would be symmetric if the repulsion was proportional to the over-

lapping of the two cells i and j. However, computing such overlapping is rather

difficult for ellipse (details can be found in(Hughes and Chraibi, 2012)). Moreover,

we would have to perform such computations for all the pairs (i, j) and at each time
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step. Our model simplification allows to bypass this difficult.

3.3 Morphological Influence

3.3.1 Eccentricity Induces Alignment

Our first investigation of the agent-based model (3.2.4)-(3.2.5) is concerned with

the impact of the morphology of the cell on the global behavior of the dynamics. As

stated above, cells have perfect rounded shape when the two parameters a and b are

equal (i.e. eccentricity e is zero) whereas they have elliptic or ellipsoid shape when

a > b (i.e. e > 0). We are going to vary the eccentricity e and measure how this

change affects the cell distribution.

But before varying the morphological parameters a and b, there are several other

parameters to be determined in our dynamics. When it is possible, we use experimen-

tal values that have been qualitatively estimated in vivo. For instance, it has been

observed that glioma cell size varies in between 5µm to 20µm for their diameter and

their speed varies around 10µm/h (Baker et al., 2014a). However, some parameters

cannot be infer from experimental observations such as the strength of the repulsion

α and the steering β. A more detail investigation of these two parameters will be

conducted in the next section. For now, we fix their values as indicated in table 3.1.

We perform the simulation in a square domain Ω = [0, L] × [0, L] with peri-

odic boundary conditions. For the initial condition, the position of the N particles

{xi}i=1...N are distributed uniformly in Ω and their direction {ωi}i=1...N are taken ran-

domly on the unit circle S1. In figure 3.2, we draw the final configuration of the dynam-

ics after T = 1000 unit time for two types of cells: circular shape (a = b = 4µm, e = 0)

and elliptic shape (a = 5.5µm, b = 3µm, e = .84). We observe that elliptic cells have

formed clusters moving in the same directions while circular cells have no particular
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Diameter cell (front/back) 2a 8− 14µm

Diameter cell (side) 2b 6− 8µm

Motility c 10µm/h

Length domain Ω L 300µm

Number of cells N 1000

Cell-cell repulsion Φ eq. (3.2.3)

Strength repulsion α 40µm2/h

Strength steering β 1h−1

Table 3.1: Parameters Used for the Simulations of Figures 3.2 and 3.4

spatial organization.

3.3.2 Statistical Characterization

To further investigate the dynamics, we introduce several statistics to characterize

the emergent behavior.

Definition 4 Consider a velocity distribution {ωi}i=1..N ⊂ Sd−1. We denote by ψ

the polarization:

ψ = 1
N

∣∣∣∣∣
N∑
i=1

ωi

∣∣∣∣∣ . (3.3.1)

Similarly, we define the nematic polarization (Li et al., 2017):

γ =
√
〈cos(2θi)〉2 + 〈sin(2θi)〉2 (3.3.2)

where θi is the angle between the direction ωi and the horizontal axis and 〈.〉 denotes

the averaging over the indices i (i.e. 〈cos(2θi)〉 = 1
N

∑N
i=1 cos(2θi)).

We say that the configuration is in a flocking configuration (i.e. cells moving in

the same direction) when the polarization ψ is close to 1. Notice that the nematic
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Figure 3.2: Snapshot of the Simulation of the Model Starting from a Uniform Distri-

bution. After t = 1000 Unit of Time, Circular Cells (a = b = 4µm, e = 0) do not Form

any Flocking Pattern (Left) whereas Elliptic Cells (a = 5.5µm, b = 3µm, e = .84)

Move in a Common Direction (Right)

polarization γ will be also close to 1 in this case. We say that the configuration is in

a stream formation (i.e. cells directions are parallel but not necessary moving in the

same direction) when only the nematic polarization γ is close 1.

Remark 3.3.1 The nematic polarization can be generalized in higher dimension (see

appendix 3.7.2).

The previous statistics only involve the velocity of the cells ωi. We propose a third

statistics to also characterize the spatial configuration.

Definition 5 Consider a spatial configuration {xi}i=1...N ⊂ Rd and a fixed radius R.

We say that cell i is linked to cell j if the distance between the two particles is less
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than R. This defines a relationship (i.e. i ∼ j) with i 6= j defined:

i ∼ j if and only if ‖xj − xi‖ ≤ R. (3.3.3)

Clusters Ck are defined as the connected components for this relationship: two cells

i0 and j0 belong to the same cluster if there exists particles i1, . . . , ik (a path) such

that

i0 ∼ i1, i1 ∼ i2, · · · , ik ∼ j0. (3.3.4)

The cluster size |Ck| denotes the number of cells belonging in the cluster Ck. The

average cluster size |C| is defined as the expected cluster size |Ck| over all the positions:

|C| = 1
N

N∑
i=1
|C(xi)|, (3.3.5)

where C(xi) denotes the cluster containing the cell i.

We illustrate the three statistics used in figure 3.3.

flock stream clusters

Figure 3.3: The Statistics Used to Characterize the Dynamics: The Polarization ψ

(3.3.1), the Nematic Polarization γ (3.3.2) and the Clustering (3.3.3)-(3.3.4)

In figure 3.4 - left, we measure the value of the polarization ψ over time for

different shapes of the cells by varying the coefficients a and b. When the cells have

a circular shape (a = b = 4µm, e = 0), the polarization ψ remains close to zero
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Figure 3.4: Polarization ψ (3.3.1) over Time while Varying the Eccentricity of the Cell

e. Ellipsoid Cells that Align will Lead to an Increase of ψ Close to its Maximum 1. For

the Circular Cells (Blue Curve), the Polarization Remains very Low as no Streams

Emerge from the Dynamics (Left). The Polarization ψ over Eccentricity e During

the Final Time t = 1000 of the Left Figure will Form a Parabola. By Increasing the

Eccentricity, there is no Fundamental Impact on the Polarization Coefficient of the

Cells ( Right)

for all time whereas it increases up to a maximum close to 1 when the eccentricity

is greater than zero. The relation between eccentricity and polarization is however

non-trivial: increasing the eccentricity does not necessarily lead to large polarization.

For instance, the polarization with eccentricity e = .89 is significantly smaller than

with eccentricity e = .84.

To further investigate the relationship between polarization and eccentricity, we

plot in figure 3.4 - right the polarization at the final time for several experiments

(changing the seed for the initial condition) and various eccentricity e. We then

perform a local regression (‘loess’ method) to estimate the expected polarization ψ as a

function of e. We observe that increasing the eccentricity e leads to larger polarization
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up to e ≈ .7 but then the polarization quickly decays for larger eccentricity.

3.3.3 Indirect Alignment

In classical models flocking (Vicsek et al., 1995; Cucker and Smale, 2007), each

individual has access to the velocity of its neighbors. By relaxing its own velocity

toward the average velocity of its neighbors, a flock emerges. However, in the agent-

based model proposed (3.2.4)- (3.2.5), the cell i has no knowledge of the velocity of

any of its neighbors, i.e. ωj is not used to define the evolution of (xi, ωi). Therefore, it

is unclear at first why the dynamics proposed could generate similar flocking patterns.

To provide a partial answer, we provide a linear perturbation analysis of the model

with respect to the eccentricity in the case of solely only two cells i and j. Let’s denote

θij the angle between the direction of the cell ωi and the relative position vector xj−xi

(see figure 3.5). Thus, one can write ωi = (cos θij, sin θij)T using the basis {ωi, ω⊥i }.

In particular,

ω′i = (− sin θij, cos θij)T θ′ij = ω⊥i θ
′
ij.

We deduce using the formulation (3.7.4) that:

θ′ij = β
2e2

b2 Φ′(r2
ij)xijyij.

where xij = 〈xj − xi, ωi〉, yij = 〈xj − xi, ω⊥i 〉. Moreover, elementary geometry shows

that xij = |xj−xi| cos θij and yij = |xj − xi| sin θij and thus:

θ′ij = C sin 2θij , with C = β
e2

b2 Φ′(r2
ij)|xj − xi|2. (3.3.6)

Notice that C ≤ 0 since Φ′(r2
ij) ≤ 0. As a consequence, if i and j stay close enough

(e.g. r2
ij < 1), there are two stable equilibria for θij at ±π/2. Sketching the phase

diagram in figure 3.5 indicates that ωi will rotate toward the stable equilibrium to

align with (xj − xi)⊥. By a similar argument, ωj will be orthogonal to xi−xj as well.
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Therefore, instead of a direct alignment between ωi and ωj, we have an indirect

alignment: both vectors will align with (xj − xi)⊥. Notice that this indirect form

of alignment allow for the two vectors ωi and ωj to be negatively aligned, i.e. ωi =

−ωj which could lead to streaming formation. Moreover, in higher dimension, since

(xj − xi)⊥ is an hyperplane, it is unclear whether such dynamics will also generate

flocking or stream patterns.

stable equilibrium

unstable equilibrium

Figure 3.5: Indirect Alignment of Two Cells i and j. Both Cell i and j will Rotate

to Align with the Orthogonal Vector to (xj−xi)

3.4 Density Effect

In the previous section, we have investigated how the cell morphology (i.e. a, b)

could favor the emergence of flocking patterns (i.e. cells moving in the same direction).

Our formal analysis show that we could also observe stream formation (i.e. cell moving

in opposite direction). In this section, we will show that such stream formations do

emerge in a certain regime. We need for that to investigate the dynamics when we

vary the parameters α (strength repulsion), β (strength steering) and N (density).

We will fix the shape of the cells with a = 5.5µm and b = 3µm as they are the most

common values experimentally. The range of the parameters are given in the table
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3.2.

Diameter cell (front/back) 2a 11µm

Diameter cell (side) 2b 6µm

Motility c 10µm/h

Length domain Ω L 300µm

Number of cells N 1000− 2000

Cell-cell repulsion Φ eq. (3.2.3)

Strength repulsion α 10− 200µm2/h

Strength steering β .1− 10h−1

Table 3.2: Parameters Used for the Simulations of Figures 3.6- 3.14

3.4.1 Emergence of Streams

To illustrate the formation of streams in the dynamics (3.2.4)-(3.2.5), we perform

simulations in the regime: α = 100, β = .1 (strong repulsion, low steering). In

figure 3.6, we plot a snapshot of three simulations where we increase the density from

N = 1000 to N = 2000 at t = 1000 unit of time. We color code the cells depending

on their orientation: we determine the nematic average direction Ωnem (3.7.2) (see

appendix 3.7.2) and then color each cell i in blue if 〈ωi,Ωnem〉 > 0 and in red if

〈ωi,Ωnem〉 < 0.

We notice that when the number of particles is low with N = 1000 (figure 3.6 -

a), almost all the cells are perfectly aligned in the same direction leading to a flocking

configuration. The evolution of the polarization ψ given in figure 3.7 confirms this

observation since ψ becomes close to 1 for N = 1000. As we increase the density with

N = 1500 (figure 3.6 - b), we observe that number of cell moving in the opposite

direction becomes larger making the polarization decay to only ψ = .2. Finally in the
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case where N = 2000 (figure 3.6 - c), the number of cells moving in opposite direction

become balanced and we observe the formation of a stream where the flow inside the

domain is bidirectional. Indeed, the polarization ψ is close to zero for N = 2000

whereas the nematic polarization γ is around .9.

3.4.2 Local Minimum for the Energy

We conclude that increasing the density of cells is the underlying mechanism for

stream formation. However, one has to notice that we always use as initial configu-

ration random configurations for the velocities ωi. If one would start from a perfect

flock with no overlapping (i.e. ωi = Ω for all i and rij > 1 for all i, j), then the

configuration will stay in the same configuration, it will be simply transported with a

constant velocity. Thus, we will not observe the formation of a stream even at large

density (e.g. N = 2000). In other words, flocking configuration can be as a globally

stable configuration. In contrast, in a stream formation, the cells at the frontier be-

tween the regions moving in opposite direction are in an unstable equilibrium (see

figure 3.5). However, if the steering coefficient β is small enough, streaming config-

uration can be maintained, the physical constraint of non-overlapping (through the

repulsion α) prevent the cells to turn.

Another formal justification of the emergence of stream comes from the total

potential energy V (3.2.1):

V =
N∑
i=1

Vi =
N∑

i,j=1, j 6=i
Φ(r2

ij), (3.4.1)

with rij given by (3.2.1). The dynamics (3.2.4)-(3.2.5) is a gradient descent of the

potential V (i.e. x′i = −α∇xi
Vi, ω

′
i = −βPω⊥i (∇ωi

Vi)) combined with a free transport

part (i.e. x′i = cωi). The gradient descent decays the potential V whereas the free

transport could either increase or decrease V . But as we increase α, the dynamics
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Figure 3.6: Snapshots of the Simulation of the Dynamics at t = 1000 Unit Time for

Various Cell Densities (N = 1000, 1500 and 2000). Red Cells are Moving in Opposite

Direction to the Blue Cells. Flocking Appears when the Density is Low (a) but then

the Dynamics Start to Converge to Stream Formation as we Increase the Density (c)
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c
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Figure 3.7: The Polarization ψ, and the Nematic Polarization γ are Represented

for the Previous Cases in Figures 3.6. When Flocking Formation Appears, ψ and γ

Converge Approximately to 1 over Time. When Stream Emerges, ψ ≈ 0, and γ ≈ 1

become more likely to stuck into local equilibrium (i.e. stream). The perturbations

from the free transport part of the dynamics are insufficient to move the configuration

away from a local equilibrium (see fig. 3.8).

3.4.3 Phase Diagram

We have identified so far two types of configurations: flocking when the cells

are aligned (i.e. ψ ≈ 1 (3.3.1)), and streaming when the cells are moving in opposite

direction (i.e. γ ≈ 1 (3.3.2) and ψ � 1). The convergence of the dynamics toward one

of these configurations depend on the density N (figure 3.6) and on the parameters

α and β. We would like to study the effects of repulsion and alignment (i.e the

coefficients α and β resp.) for the three distinct cases of N .

With this aim, we fix the shape of the cells (a = 5.5µm and b = 3µm) as mentioned

previously and we make a systematic analysis by varying continuously α ∈ [0, 200]

and β ∈ [0, 10]. For each value of α and β, we perform 5 simulations and compute

several statistics after t = 1000 unit of time. For instance, we plot in figure 3.9
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Figure 3.8: Sketch Representation of the Potential Energy V (3.4.1) over the Con-

figuration Space {(xi, ωi)}i=1,...,N . Stream can be Seen as Local Equilibrium whereas

Flock are Global Equilibrium. When the Parameter α (Repulsion) is Increased, the

Stream Configuration Become more Stable

the polarization ψ depending on α and β in the case N = 1000. The scatter plot

represents all the data points (αj, βj, ψj). Notice that for a given set (α, β) we find

different polarization ψ due to the randomness of the initial condition. We represent

as a surface the average polarization 〈ψ〉 computed from the 5 final configurations with

similar parameters (α, β). To reduce the fluctuation, we estimate a local averaging

(‘loess’) in figure 3.9 which makes possible the estimation of smooth region where

the polarization ψ is higher than a given threshold. Regarding of using averaging or

smoothing, we observe that the polarization is surprising small when β is large and

α small. There is also another region where the polarization decays when α is large

and β is small.

A better visualization is to draw the polarization ψ as a heat-map depending on

α and β (figure 3.10-left). Thanks to the smoothing, we can also estimate contours

at different thresholds (ψ = .5 and ψ = .8). We proceed similarly with the nematic
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polarization γ (3.3.2) in figure 3.10-right. We notice that in contrast to the polariza-

tion ψ, the nematic polarization remains large even when β is small and α is large.

Indeed, it is the regime where we observe the formation of streams.

Finally, we also use a third statistics to characterize the configuration using the

average clusters size |C| (3.3.5). We use the radius R = 10µm to define the clusters

(i.e. two cells are connected if their distance ‖xj−xi‖ is less than 10µm). The average

size cluster |C| is then estimated in figure 3.11. We observe two regions: cluster sizes

are (relatively) smaller when α is small and independent of β. Thus, the repulsion α

governs the formation of clusters.

We combine the three statistics (polarization ψ, nematic polarization γ, cluster

size) to create a phase diagram in the parameter space (α, β). Three regions are

delimited:

i) flocking: {α, β such that ψ > .8},

ii) streaming: {α, β such that γ > .7 and ψ < .8},

iii) scattering: {α, β such that |C| < 600}.

The results are given in figure 3.12. For most of the parameters α and β, the dynamics

converge to a flock.

Performing a similar investigation for N = 1500 and N = 2000 lead to drastically

different results. The regions where flocking occurs are more narrow (figure 3.13-

a). But surprisingly stream formation is still occurring for all values of α as long as

the steering coefficient β is small enough (figure 3.13-b). Only the cluster formation

through the statistics |C| remain similar (see figure 3.13-c) as in the case N = 1000.

As a result, the phase diagrams for N = 1500 and N = 2000 contain large region

unidentified as either flock or stream (figure 3.14). Notice that increasing density
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does not penalize the formation of stream in the region where β is small and α is

large.

3.5 Dynamics in 3D

We would like to finally study the dynamics (3.2.4)-(3.2.5) in R3. In contrast to the

2D case, the indirect alignment (see section 3.3.3) lead to various possible equilibria.

Indeed, two nearby cells i and j must have their velocity ωi and ωj orthogonal to

(xj − xi). In R2, we conclude that ωi = ωj or ωi = −ωj at equilibrium. But this is

no longer the case in R3. Therefore, it is unclear if the dynamics will produce flock

or stream.

Diameter cell (front/back) a 11µm

Diameter cell (side) b 6µm

Motility c 10µm/h

Length domain Ω L 70µm

Number of cells N 1000− 2000

Cell-cell repulsion Φ eq. (3.2.3)

Strength repulsion α 100µm2/h

Strength steering β .1h−1

Table 3.3: Parameters Used for the Simulations in R3 (Figures 3.15-3.16)

Another difference in R3 is that the nematic polarization γ is no longer defined.

However, we have already provided an alternative in appendix 3.7.2 using the quantity

J (3.7.1). We also use a smaller domain for our simulation in order to keep the same

density as in R2 (maintaining a similar ratio “volume occupied/volume domain”)

thus we reduce the size of the box to L = 70µm. Otherwise, the other parameters

are similar to the previous simulations (see table 3.3), in particular we use α = 100
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α, β Using the Smooth Estimation from Figure 3.9-right. The Contour ψ = .8 will

be Used to Determine the Region when the Dynamics Generate Flock. Right: We

Perform a Similar Analysis as the Left Figure Using the Nematic Polarization γ
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Figure 3.12: Combining the Results of the Figures 3.10 - 3.11, we Create a Phase

Diagram Consisting of Three Regions for the Configuration: Flocking (ψ > .8),

Streams (γ > .7 and ψ < .8) and Scattering (|C| < 600)
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Figure 3.13: a) Average Polarization ψ for Various Parameters α and β with N = 1500
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Figure 3.14: Phase Diagram when the Total Number of Cells N is 1500 (Left) and

2000 (Right). As we Increase the Density, the Regions for Flocking Configurations

Drastically Reduce. However, Streams still Form when β is Small

and β = .1 to be in the regime more susceptible of stream formation (at least in R2).

First, we investigate with N = 1000 cells (low density). We plot the final config-

uration at t = 1000 unit times starting from two different initial conditions in figure

3.15. As in the previous figure, we color code the cells depending on their orientation

to help visualize cells moving in opposite direction. We observe the formation of a

flock (figure 3.15-top left) and of a stream (figures 3.15-top right). Note that even

when the flock develops (top left), few isolated cells are still moving in opposing di-

rection of the flow. Thus, both flock and stream configuration could emerge when

the density is low.

The situation is different when we increase the density with N = 1500 and N =

2000, we only observe the formation of streams (see figures 3.15-bottom). Similar

to the situation in R2, increasing the density reduces the possibility for the cells to

rotate and therefore streams are more likely to occur. Plotting the time evolution

of both the polarization ψ and nematic polarization J in figure 3.16 confirms our

observation. The quantity J always converge to 1 whereas the polarization ψ stays
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low except when N = 1000.

3.6 Conclusion

We have proposed an agent-based model describing the motion of cancer cells and

study the emergence of pattern formations. In our model, the morphology of the cells

played a key role since eccentricity allows the cells to align (indirectly) to each other

and eventually form a flock or a stream. The emergence of such configuration is also

governed by other parameters (α, β) as well as the density. Several phase diagrams

summarizing the effects of these parameters are estimated for various density. In

contrast to mean-field type models, the density drastically changed the dynamics and

flocking configurations became more spare as the density increases.

There are several extensions that will be interesting to pursue. For instance, it

will be interesting to mix cells with different morphological shapes (i.e. with different

values for a and b) since not all the cells are identical (see for instance (Kansal et al.,

2000)). Or we could also have the shape of the cells evolving over time that could

even lead to a birth/death process. But increasing the density is also challenging

numerically as the dynamics become singular when two cells overlap which is more

likely with a birth process. To avoid this complication, one could look for a continuous

description of the dynamics through a Partial Differential Equation (PDE) (Morale

et al., 2005; Filbet et al., 2005; Peruani et al., 2008). Such PDE description might

provide some hindsight about the emergence of flock or stream in certain regimes

(e.g. α� 1, β � 1).
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Figure 3.15: Snapshots of Simulation in R3 at t = 1000 Unit Time with Number of

Particles N Equal to 1000 (Top), 1500 and 2000 (bottom). Flocking and Streaming

Appear when the Number of Particles is Low Depending on the Initial Condition

(top Left and Top Right (resp.)). Whereas only Stream Emerges when the Number

of Particles is Higher, N Equal 1500 and 2000 (Bottom - Left and Right (resp.)). We

Color Code the Cells in Blue or Red Depending on the Direction in Comparison to

the Nematic Average (see Appendix 3.7.2)
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Figure 3.16: The Evolution of the Polarization ψ and the Nematic Polarization J

for the Simulations Presented in Figure 3.15. When the Number of Particle is Low

(N = 1000), Flock and Stream Emerge Depending on the Initial Condition Leading

to an Average Value for ψ is around 0.6 and J Close to 1. However, for Larger Density

(N = 1500 and N = 2000), only Streams Emerge since the Polarization ψ is Low and

the Nematic Polarization J is Close to 1

3.7 Appendix

3.7.1 Explicit Expression of the Agent-Based Model

Model in R2

We would like to provide an explicit expression of the dynamics (3.2.4)-(3.2.5) by

computing explicitly the gradient of the potential∇xi
Vi and∇ωi

Vi. We first introduce

the local coordinates:

xij = 〈xj − xi, ωi〉, yij = 〈xj − xi, ω⊥i 〉 (3.7.1)

where ω⊥i is the orthogonal vector of ωi. Simple computations show that:

∇xi
xij = −ωi , ∇xi

yij = −ω⊥i , ∇ωi
xij = xj − xi , ∇ωi

yij = −(xj − xi)⊥.
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We deduce that:

∇xi
Vi =

∑
j 6=i

Φ′(r2
ij)∇xi

r2
ij = 2

∑
j 6=i

Φ′(r2
ij)
(
xij∇xi

xij
|a|2

+ yij∇xi
yij

|b|2

)

= −2
∑
j 6=i

Φ′(r2
ij)
(
xij
|a|2

ωi + yij
|b|2

ω⊥i

)
, (3.7.2)

which provides an explicit expression to estimate x′i in (3.2.4). To estimate ω′i in

(3.2.5), we compute similarly:

∇ωi
Vi = 2

∑
j 6=i

Φ′(r2
ij)
(
xij∇ωi

xij
|a|2

+ yij∇ωi
yij

|b|2

)

= 2
∑
j 6=i

Φ′(r2
ij)
(
xij(xj − xi)
|a|2

− yij(xj − xi)⊥
|b|2

)
.

Using the explicit expression of the projection operator Pω⊥i = Id−ωi⊗ωi, we deduce:

Pω⊥i (xj − xi) = yij · ω⊥i and Pω⊥i

(
(xj − xi)⊥

)
= xij · ω⊥i . (3.7.3)

Thus,

Pω⊥i (∇ωi
Vi) = 2

∑
j 6=i

Φ′(r2
ij)
(
xijyij · ω⊥i
|a|2

− yijxij · ω⊥i
|b|2

)

= 2
∑
j 6=i

Φ′(r2
ij)xijyij

(
1
|a|2
− 1
|b|2

)
ω⊥i

= −2e2

b2

∑
j 6=i

Φ′(r2
ij)xijyij ω⊥i . (3.7.4)
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Model in higher dimension

In higher dimensions, i.e. R3, we cannot define anymore the local coordinate yij since

ω⊥i is now an hyperplane. However, we can still define xij = 〈xj − xi, ωi〉 and we will

use the second formulation for rij (3.2.2). Some elementary computations show that:

∇xi

[
(xj − xi) · ωi

]2
= 2

[
(xj − xi) · ωi

]
(−ωi) = −2xijωi,

∇ωi

[
(xj − xi) · ωi

]2
= 2

[
(xj − xi) · ωi

]
(xj − xi) = 2xij(xj − xi).

We deduce:

∇xi
Vi =

∑
j 6=i

Φ′(r2
ij)∇xi

r2
ij

= 1
b2

∑
j 6=i

Φ′(r2
ij)
(
∇xi
‖xj − xi‖2 − e2∇xi

[
(xj − xi) · ωi

]2)

= 1
b2

∑
j 6=i

Φ′(r2
ij)
(
2(xi − xj) + 2e2xijωi

)
.

Similarly, we have:

∇ωi
Vi =

∑
j 6=i

Φ′(r2
ij)∇ωi

r2
ij

= 1
b2

∑
j 6=i

Φ′(r2
ij)
(
∇ωi
‖xj − xi‖2 − e2∇ωi

[
(xj − xi) · ωi

]2)

= 2e2

b2

∑
j 6=i

Φ′(r2
ij)xij(xi − xj).

Using that the projector operator Pω⊥i = Id− ωi ⊗ ωi, we deduce:

Pω⊥i (xj − xi) = (xj − xi)− [(xj − xi) · ωi] · ωi = (xj − xi)− xij · ωi

Thus,

Pω⊥i (∇ωi
Vi) = −2e2

b2

∑
j 6=i

Φ′(r2
ij)xij ((xj − xi)− xij · ωi) .

Notice that in any dimension, if the cell i has a circular shape (i.e. a = b and the

eccentricity becomes e = 0), then ω̇i = −βPω⊥i (∇ωi
Vi) = 0. Thus, the dynamics will

have no effect on the orientation of the cell.
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3.7.2 Nematic Average Velocity

Flocking pattern is primary described using average velocity from which we deduce

the polarization of the flock. Denoting (ωi)i=1..N the velocity of all the cells, the

average velocity 〈ωi〉 and polarization ψ are given by:

〈ωi〉i = 1
N

N∑
i=1

ωi and ψ = |〈ωi〉i|.

However, for streaming formation, it is more difficult to define the average nematic

velocity or the average nematic direction. With this aim, we need to introduce an

optimization problem. For instance, the direction of the average velocity can be seen

as the maximization of:

max
Ω∈Sd−1

1
N

N∑
i=1
〈ωi,Ω〉.

By Cauchy-Schwarz inequality, the maximizer Ω∗ must be in the direction of the

average 〈ωi〉i. We would like to define similarly the average nematic direction as the

direction Ωnem that maximizes the function:

J(Ω) = 1
N

N∑
i=1
〈ωi,Ω〉2. (3.7.1)

Notice in particular that J(Ω) = J(−Ω).

Nematic average in R2

Denote θi the angle between the velocity ωi of the cell i and the horizontal axis. Also,

define the angle θ̄ of the maximizer Ωnem with respect to the x-axis. Notice that:

max
Ω ∈ S1

J(Ω) = max
Ω ∈ S1

1
N

N∑
i=1
〈ωi, Ω〉2 = max

θ

1
N

N∑
i=1

cos2 (θi − θ) .
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To maximize J , we must solve ∂J(θ̄)
∂θ

= 0. We find:

∂J(θ̄)
∂θ

= 1
N

N∑
i=1

2 cos
(
θi − θ̄

)
sin

(
θi − θ̄

)
= 1
N

N∑
i=1

sin
(
2
(
θi − θ̄

))

= 1
N

N∑
i=1

[
sin (2θi) cos

(
2θ̄
)
− cos (2θi) sin

(
2θ̄
) ]

= 〈sin (2θi)〉i cos
(
2θ̄
)
− 〈cos (2θi)〉i sin

(
2θ̄
)
.

Therefore, ∂J(θ̄)
∂θ

= 0 leads to:

〈sin (2θi)〉i
〈cos (2θi)〉i

=
sin

(
2θ̄
)

cos
(
2θ̄
) .

This motivates the following definition.

Definition 6 The nematic average direction Ωnem is defined as:

Ωnem = (cos θ̄, sin θ̄) with θ̄ = 1
2 arctan

(
〈sin (2θi)〉i
〈cos (2θi)〉i

)
. (3.7.2)

Remark 3.7.1 If we denote the nematic average:

unem =
(
〈cos(2θi)〉i, 〈sin(2θi)〉i

)T
(3.7.3)

the nematic polarization defined in (3.3.2) is given by γ = |unem|. This formula is

similar to the expression of the usual polarization ψ giving as the norm of the average

velocity |〈ωi〉i|.

Nematic polarization in higher dimension

Note that the previous section is only applicable in R2 since we use polar coordi-

nates. To find the maximizer Ω∗ of J (3.7.1) in higher dimension, we introduce the

Lagrangian:

L(Ω, λ) = J(Ω)− λg(Ω)
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with g(Ω) = |Ω|2 − 1. The maximizer Ωnem must be a critical point to L which leads

to the existence of a Lagrange multiplier λ∗ satisfying:

∇ΩJ(Ω∗) = λ∗∇Ωg(Ω∗) ⇒
2
N

N∑
i=1
〈ωi,Ω∗〉ωi = 2λ∗Ω∗

⇒ 1
N

N∑
i=1

[ωi ⊗ ωi]Ω∗ = λ∗Ω∗.

Denoting the matrix A = 1
N

∑N
i=1[ωi ⊗ ωi], we deduce that λ∗ and Ω∗ are eigen-

value/eigenvector of A. Therefore, J is maximized at the eigenvector Ω? that is

associated to the largest eigenvalue of the matrix A.

Remark 3.7.2 A is a positive semi-definite matrix, so the maximized quantity J is

recognized as a Rayleigh quotient (Horn and Johnson, 2012).

Remark 3.7.3 In dimension larger than 2, the nematic average vector unem (3.7.3)

is no longer defined. Thus, we cannot define nematic polarization as γ = |unem|.

Instead, we can use as statistics the value of J at the maximizer Ωnem. Similarly, we

find that J(Ωnem) is close to 1 when the vectors form a stream.

Moreover, in R2, we observe that the nematic polarization γ and J(Ωnem) are

related to each other since:

J(Ω∗) = 1
N

N∑
i=1
〈ωi, Ω〉2 = 1

N

N∑
i=1

cos2(θi − θ̄) = 1
2N

N∑
i=1

(
1 + cos

(
2(θi − θ̄)

))
= 1

2 + 1
2〈cos(2(θi − θ̄))〉i = 1

2 + 1
2
[
〈cos(2θi)〉i cos(2θ̄) + 〈sin(2θi)〉i sin(2θ̄)

]
= 1

2 + 1
2 |unem|

since unem and the vector (cos 2θ̄, sin 2θ̄)T are parallel. Thus:

J(Ω∗) = 1
2 + 1

2γ ⇒ γ = 2J(Ω∗)− 1.

Therefore, using γ or J(Ω∗) provide similar information about the nematic alignment

of the cells. However, the advantage of J(Ω∗) is to generalize in any dimensions.
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Chapter 4

NECROTIC HYPOTHESIS INVESTIGATION

4.1 Introduction

Glioblastoma Multiforme (GBM) is the most aggressive and highly invasive pri-

mary brain tumor in adults (Boyle et al., 2008). It is a high grade stage IV cancer,

and accounts for 60% to 70% of all malignant glioma (Baker et al., 2014b; Alvord,

1995; Harpold et al., 2007). Despite aggressive treatment, nearly all cases recur af-

ter six to seven months. The median of survival is approximately twelve to fifteen

months.

Figure 4.1: The Frontal Lobe of a Brain Showing the Most Aggressive Brain Tumor,

Glioblastoma Multiforme (GBM)

GBM is known for two terms, the proliferation and the invasion (Harpold et al.,

2007). The proliferation is defined in terms of aggressiveness of the rapid evolution

and growth of cancer cells, and the invasion, in terms of the high velocity of the
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disease spread via movement.

Since the aggressiveness and spread of GBM usually differ in an extremely het-

erogeneous manner across patient, we will study the net rates of diffusion D and

proliferation ρ of different patients. We will start by introducing two models, PI and

PIHNA, that we used during our study to calculate the D and ρ terms. Then, we will

explain the six types of MRI that we will use to calculate the invisibility index (D/ρ).

Under the PI model, the velocity will asymptotically approach the radial growth ve-

locity v = 2
√
Dρ by using two pretreatments imaging points. By combining, these

two equations with two unknowns, we will be able to calculate D and ρ.

The usual methods require two time points imaging to estimate the velocity. By

having only a single time point of imaging, we can only estimate D/ρ, so our hopes

that we could calibrate both D and ρ from one single day. Hence, our necrotic

hypothesis, was to see if the size of necrosis relative to the rest of tumor can be used,

as a surrogate of the velocity ,to estimate the patient-specific rates of net proliferation

ρ and invasion D.

4.2 Models

4.2.1 Proliferation Invasion (PI) Model

The mathematical model for the PI model is the regular reaction diffusion equa-

tion, (Kot, 2001):

Rate of change of glioma cell density︷︸︸︷
∂n

∂t
=

Net diffusion︷ ︸︸ ︷
∇ · (D(x)∇n) +

Net proliferation︷ ︸︸ ︷
ρn(1− n

k
) (4.2.1)

The PI model describes the rate of change of the concentration of the glioma cells

n = n(x, t) in position x at time t (cells/mm3), based on the two net rates: the

invasion or diffusion (D) (mm2/year) and the proliferation or growth (ρ) (1/year).
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k is the tumor cell carrying capacity (cells/mm3). The ratio D/ρ is related to the

degree of invasion which is also called the invisibility index. Since PI model is portrays

of the spread of the glioma, so we will be looking for a traveling wave solution which

in this case, the model will be similar to the Fisher’s equation. This yields to the

same predictable pattern for Fisher’s equation of linear radial growth that we usually

observe in low and high grade of gliomas. Hence, the velocity of growth predicated

by this equation related to the velocity of radial growth Kot (2001) will be v = 2
√
Dρ

(Appendix 4.6.1).

In the PI model, the tumor cells proliferate at a constant rate which is indepen-

dently of the availability of nutrients and the cell population is the same type. In the

next section, the PIHNA model is built upon the logical extension of the PI model.

4.2.2 Proliferation Invasion Hypoxia Necrosis Angiogenesis (PIHNA) Model

The PIHNA model incorporates nutrient availability and oxygenation by using the

vasculature (v) and angiogenic (a) (which is the development of new blood vessels)

factors. In this model, the tumor cell populations are partitioned into three different

classes which are the well-oxygenated, the deficiency of oxygen, and the dead cells,

called respectively, the normoxic (c), hypoxic (h) and necrotic (n) tumors cells.
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The mathematical model of PIHNA is represented with these equations:

∂c

∂t
=

Net dispersal of normoxic glioma cells︷ ︸︸ ︷
∇ · (D(1− T )∇c) +

Net proliferation of normoxic glioma cells︷ ︸︸ ︷
ρc(1− T )

+
Conversion of hypoxic to normoxic︷ ︸︸ ︷

γhV −
Conversion of normoxic to hypoxic︷ ︸︸ ︷

βc(1− V )

−
Conversion of normoxic to necrotic︷ ︸︸ ︷

αnnc

(4.2.2a)

∂h

∂t
=

Dispersal of hypoxic glioma cells︷ ︸︸ ︷
∇ · (D(1− T )∇h) −

Conversion of hypoxic to normoxic︷ ︸︸ ︷
γhV

+
Conversion of normoxic to hypoxic︷ ︸︸ ︷

βc(1− V ) −
Conversion of hypoxic to necrotic︷ ︸︸ ︷
αhh(1− V ) + αnnh

(4.2.2b)

∂n

∂t
=

Conversion of hypoxic, normoxic and vasculature to necrotic︷ ︸︸ ︷
αhh(1− V ) + αnn(c+ h+ v) (4.2.2c)

∂v

∂t
=

Dispersal of vasculature︷ ︸︸ ︷
∇ · (Dv(1− T )∇v) +

Net proliferation of vasvulature︷ ︸︸ ︷
µ

a

Km + a
v(1− T )

−
Conversion of vasculature to necrotic︷ ︸︸ ︷

αnnv

(4.2.2d)

∂a

∂t
=

Diffusion of angiogenic factors︷ ︸︸ ︷
∇ · (Da∇a) +

Net production of angiogenic factors︷ ︸︸ ︷
δcc+ δhh

−

Net consumption of angiongenic factors︷ ︸︸ ︷
qµ

a

Km + a
v(1− T )− ωav −

Decay of angiogenic factors︷︸︸︷
λa

(4.2.2e)

where the vessel efficiency is V = v
(c+h+v) and T = (c+h+v+n)

k
, such that k is the

carrying capacity (cells/mm3). In addition, the normoxic cells proliferate at a rate

ρ (1/year) and invade at a rate D (mm2/year), while the hypoxic cells only invade

and necrotic cells which are considered dead just take up place. Also, αn (1/year)

is the rate at which the cells undergo necrosis when in contact with necrotic cells,

γ (1/year) and β(1/year) are the maximum conversion rates between the hypoxic

to normoxic cells and vise versa respectively. When the oxygen levels fall too low,

the hypoxic cells will become a necrotic cells at a rate αh (1/year). Both hypoxic
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and normoxic cells produce some tumor angiogenic factors at a rate of δh (1/year)

and δc (1/year), respectively, with δh > δc. The vasculature cells dispersal rate

is Dv (mm2/year) and proliferation rate is µ (1/year). The angiogenic factors are

consumed by the vasculature for both vasculature proliferation with rate q ((1/year)

and for regular vasculature maintenance with rate ω (1/year). Once the angiogenic

factors are produced by cells, they disperse in the tissue at a rate Da (mm2/year)

and decay at a rate λ (1/year). For more details about this model, a good referral

will be (Swanson et al., 2011).

This mathematical PIHNA model has seventeen unknown parameters, which are

difficult to estimate and may be estimated separately at best. The values of the

parameters in our case will be derived from the work done by Levine et al. (2001,

2011); Mac Gabhann and Popel (2004); Serini et al. (2003); Sherratt and Murray

(1990). We will be using some previous work that showed that a marked quantitative

heterogeneity in the net rates of proliferation ρ and invasion D, within the grade IV

of GBM (Harpold et al., 2007).

4.3 Estimating Diffusion Coefficient D and Proliferation Rate ρ

The Proliferation Invasion (PI) model is a Patient-Specific virtual control model

that we are aware of which provide some clinically valuable metrics for diffusion and

treatment response. The two net parameters of invasion D and proliferation ρ can

be calculated for an individual patient by providing only two time point imaging

pre-treatment of Magnetic Resonance Imaging (MRIs).

4.3.1 Magnetic Resonance Imaging (MRI) of the Bain

There are six types of MRI that we used during our process which are T1-weighted,

T1-Gd, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), T0 and T0-Gd.
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T1-weighted MRI imaging is usually infused with Gadolinium (Gd) which is a non-

toxic paramagnetic contrast enhancement agent. Gd enhanced a bright white signal

in the blood vessels which makes it easier to visualize the MRIs. In the case where

we add Gd, the MRI of T1 will be called T1-Gd. When injecting Gd during a scan

on T1-weighted images, the Gd will pass through the blood-barrier barium (BBB)

and will breakdown in the vasculature structure. Usually, in a normal brain, there

is no infiltration of Gd through out BBB. But in a malignant tumor, due to the

immature and malformed of the blood vessels in the tumor, the BBB will break and

the gadolinium will leak into the surrounding tissue.

Necrosis {
{T1Gd  

{T2/FLAIR

Figure 4.2: Different Proportions of MRI Abnormalities Depending on the Tumor’s

Metabolic Demands

According to Mayo-Clinic, T0 and T0-Gd are some measurements that are not

usually used outside the Lab. They assume that the dark center surrounding within

the T1-Gd regions will show the necrotic tissue which is the T0 and in case of bright-

ness it will be T0-Gd.

Once BBB is broken and the blood vessels are malformed, the water starts in-
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creasing around the cells and bypassing into the tissue, as edema. T2-weighted (T2)

and FLAIR MRI will reveal the increase of the concentration of water or edema which

is contained around the tumor cells. Note that T2 and FLAIR images are both indi-

cating edema, so we treat them as interchangeable with preference given to FLAIR.

Therefore, the different proportions of MRI will be resumed as see in figure 4.2.

All these different types of MRI will be used to give us the radii of the sizes of

the tumors, which will be needed in the next section to calculate D and ρ from the

PI model.

4.3.2 Patient-Specific Virtual Controls

The velocity used by the data was the average velocity:

vave = v̄ = R(t2)−R(t1)
t2 − t1

= 1
t2 − t1

∫ t2

t1
v(s)ds (4.3.3)

where R is the mean size of the tumor in millimeter (mm) at time ti in years. The

two velocities needed to be calculated were T1-Gd and T2/FLAIR. If the size of

the tumor was estimated using FLAIR for first and last day for the patient, we will

calculate the velocity using only FLAIR measurement, in other words we did not use

T2 measurement. On the other hand, if we have only access to one measurement with

FLAIR, we used T2 to obtain the measurement on the other day, and we will ignore

the velocity in this case. If we do not have access to any measurements with FLAIR

on the first and last day, but we do with T2, then we will calculate the velocity using

only T2 measurement. Notice that we always chose the first and last day for the MRI

sizes and volumes, ignoring measurement in between these two dates.

Once we have an estimation of the average velocity (using both T1-Gd and

T2/FLAIR) for each patient, we equated our result to the previous velocity of the PI
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model writing:

vave = 2
√
Dρ. (4.3.4)

Since we have two estimations of vave (using either T1-Gd or T2/FLAIR), we have

two possible choices for equation (4.3.4). Note also that this equation is not sufficient

to estimate D and ρ. We need another equation.

Based on previous results from PNT Lab, a specific function called DpCal was

created to calculate the invisibility index D/ρ by using two different MRI sizes which

are T1-Gd and T2/FLAIR images:

D

ρ
= DpCal(R1, R2). (4.3.5)

Combining (4.3.4) and (4.3.5), we obtain an estimation of D and ρ for each patient.

Since we had two different dates for the MRI (first and last day), we had two

estimation for D/ρ using either first or last day. We ended up with two equations

which are T1-Gd or T2/FLAIR velocities and D/ρ from the first day and from last

day with two unknowns for each patient. For each patient, it turn out to be up-to

four possible combinations for D and ρ from the PI model.

4.4 Necrotic Investigation

4.4.1 Necrotic Hypothesis

Based on some previous results Swanson (2000), Dalrymple et al. (1994), Kelly

(1993), Kelly et al. (1987), the density of cells at the edge of the tumor as seen on T1-

Gd and T2/FLAIR images correspond to an 80 % and 16% of the carrying capacity

k respectively (see figure 4.3). Therefore, the relationship between these two radii

describes the steepness of the tumor cell profile or the shape of the traveling wave

which is related to D/ρ (fig 4.3).
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While we can get the net invasion rate D and the net proliferation rate ρ for

patients with two time points imaging by combining the two equations (4.3.4) and

(4.3.5), we can not get both D and ρ if there is only one time point of imaging since

we can not estimate the radial velocity. In this case, we will only be able to find the

shape of the wave profile by using equation (4.3.5). By looking at figure 4.4, we can

see that it is possible to have tumors with different velocities (slow or fast) but with

the same shape. Since the size of the necrosis found by T0 image is less than the

size of the tumor calculated in T1-Gd (see figure 4.2), then we can presume that the

necrosis is located on the hill of the wavefront. Therefore, the necrotic hypothesis is

to try to find if the size of the tumor T0 in combination with the other tumor sizes

(see figure 4.4) will at a single time point serve as a surrogate for the radial velocity

so that we can calculate D and ρ. So, we could hopefully say of tumors with the same

shape, but different sizes of necrosis, which one was growing faster.

To investigate the necrotic hypothesis, we were given some data, that will help us

explore more some alternative options.

4.4.2 Data Given

The data given were all pre-treatments and approved prior to May 4th 2016.

It included 219 unique patients, with an identity patient number to each one and

with 563 unique times imaging for all of them. Each patient had different types

of MRI taken on different dates. Note that we considered that all the volumetric

measurements (mm3) of the MRIs given are converted to spherically so that the radii

sizes of the tumors needed was calculated by using the spherical volume:

Volume = V = 4
3πr

3 (4.4.6)

Based, on the data given, there were always three patients off limit that were
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Figure 4.3: Pre-Treatments Time Points Images of T1Gd and T2/FLAIR, Used to

Approximate the Correspond to an 80 % and 60% Tumor Cell Density Threshold Re-

spectively. The Steepness of the Wave can be Estimated by Calculating the Relative

Invasiveness D/ρ by using T1Gd and T2/FLAIR Images

ruining the linear regression lines. One of them, the tumor was growing around 2500

mm/year. We did study more the necrotic hypothesis by examining and studying

different plots that will be discussed in the next section.

4.4.3 Data Analysis

At first, we tried to find a relationship between the velocity using either T1-Gd or

T2/FLAIR and the size of T0-Gd in combination with the rest of the tumors which

are T0-Gd size, T0-Gd size over T1-Gd size, and T0-Gd size over T2/FLAIR size

which were taken on the first and last day. Plotting these first graphs were essentially

seeing if it would be as simple as the velocity would be related to something of the
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Figure 4.4: The Edge of T0 Image Gives the Size of the Tumor (Necrosis) in Relative

to the Rest of the Tumor can be Used to Substitute the Velocity of the Wavefront

(as Slow or Fast), so we can Estimate the Patient Specific Rates of Net Proliferation

ρ and Invasion D. The Colors are Related to the MRI Images in Figure 4.2

necrosis directly. By looking at all these graphs, there was not an obvious predictive

pattern. We display one example of these graphs, in figure 4.5, the plot of the velocity

using T1-Gd versus (T0-Gd size/T1-Gd size) on first and last day. As we can observe

that few patients were off limit in the figure (a), so we had to zoom the graph to be

able to see in figure (b) if there is any strong correlation.

Then, we wondered if maybe the predictive relationship would be different de-

pending on the shape of the tumor which is given by D/ρ. After examining, the 24

scatter plots between D/ρ and the velocity where the colors of the dots were based

on the associated sizes, we were not able to find any strong pattern. In figure 4.6, we

demonstrated one of the scatters, which shows D/ρ from last day versus (the velocity

using T1Gd) and the color dots are (T0Gd size/T1Gd size from last day). We didn’t

see any strong correlation, in the scatters as well. Note that, some white dots are

shown in figure 4.6, which means that T0-Gd size is not measured during that day,

or T0-Gd size and T1-Gd size are taken on different dates so we can’t find the ratio
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Figure 4.5: The Velocity Using T1Gd vs (T0Gd size/T1Gd size) Taken on First and

Last day

of T0-Gd/T1-Gd size.

In other words, the first set of plots were seeing if a single variable regression

which is the associated size in our case would be enough for the velocity. The second

set was seeing if we used two variables ( D/ρ and the associated sizes) if we could

find a good regression.

We also tried one step further, we keep the same scatters but we batched the

T2/FLAIR sizes of the tumor in groups of 5 mm. Our prediction were that once we

arrange the T2/FLAIR sizes in groups we tried to see if the predictive relationship

actually needed a third variable which is the T2/FLAIR size. Again, we didn’t see

any pattern or strong correlation (see figure 4.7 which is a particular example where

T2/FLAIR size were between 20 - 25 mm ).

Therefore, they provided me a look up table by using the parameters values by

previous work for the PIHNA model to calculate D and ρ for each patient. Our

presumptions were that the sets of four combinations between D and ρ of the PI and
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Figure 4.6: The Scatter Showing (D / ρ from Last Day) vs (the Velocity Using T1Gd)

and the Color Dots are (T0Gd Size/T1Gd Size from Last Day)

PIHNA model were supposed to give us a positive correlation. Regrettably, we were

not able to find a strong positive correlation between D or ρ of PI and PIHNA model.

An example of one of these plots where graphed in figure 4.8, where it is noticeable

that the linear regression does not show a strong correlation between D using the

look up table (PIHNA model) and D from the previous explanation in PI model.

4.5 Conclusion

Our analysis reveal that the necrotic investigation using only a single day image

was insufficient to estimate the diffusion rate D and the proliferation rate ρ. Our

initial assumption was to surrogate the combination of the necrosis size with the

rest of the tumors to estimate the radial velocity and deduce the rates D and ρ.

However, our analysis did not show strong correlation between necrotic size and

tumor velocity. This can be explained by the strong heterogeneity of cancer type

among patients. Moreover, it would be helpful to perform an error analysis of the
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same type of MRI measurements by comparing successive MRI taken on the same

day for the same patient. We would have an estimation of the variation that might

exceed the accuracy needed to estimate the rates D and ρ.

4.6 Appendix

4.6.1 Explicit Expression of the Velocity of the PI Model

Under the PI model, equation (4.2.1), the velocity should asymptotically approach

to v = 2
√
Dρ. Assume D is a constant and x is in R. To simplify equation (4.2.1),

we will do some change of variables:

u = n

k
, τ = ρt, y =

√
ρ

D
x. (4.6.7)

So we can reduce our PI equation to

∂u

∂τ
= ∂2u

∂y2 + u(1− u). (4.6.8)

We are trying to model the spread of cells, we will look at a traveling wave equation,

where we will assume that the wave is moving to the right. Let z = y − cτ where c

is the positive speed of the wave. Thus, u(y, τ) = φ(y− cτ) = φ(z). By transforming

our PDE to ODE, we will get:

φ′′ + cφ′ + φ(1− φ) = 0. (4.6.9)

By writing the previous equation as a system, we will obtain the following:
φ′ = w

w′ = φ′′ = −cw − φ(1− φ).
(4.6.10)

Solving φ′ = 0, and w′ = 0 leads to two equilibrium points (0,0) and (1,0). To

study the stability of the equilibrium, denote the system (4.6.10) as: φ

w


′

= F (φ,w) with F (φ,w) =

 w

−cw − φ(1− φ)

 .
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Taking the Jacobian of F gives:

DF (φ,w) =

 0 1

−1 + 2φ −c

 .
At (1,0), the Jacobian will give a negative trace and negative determinant. By Routh-

Hurwitz criterion, the equilibrium (1,0) is a saddle point. On the other hand, at (0,0),

by solving the characteristic equation of the Jacobian which is λ2 + cλ + 1 = 0, we

will get

λ = −c±
√
c2 − 4

2 . (4.6.11)

Therefore, if 0 < c < 2, we have a stable focus, and if c ≥ 2, so we have a stable

node. To ensure that φ > 0 (so u > 0), we need (0,0) to be a stable node. Hence,

c ≥ 2 is necessary condition for the travel wave. So the minimum wave speed for the

traveling wave is at cmin = 2

2 = cmin = dy

dτ
=

√
ρ
D
dx

ρdt
= 1√

ρD

dx

dt
(4.6.12)

If the initial propagating wave with speed c > 2 is specified, the speed will change

into the minimum value c = 2 (Gazdag and Canosa, 1974). Hence, v = dx
dt

= 2
√
Dρ.
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Chapter 5

CONCLUSION

The overall focus of this dissertation has been based on developing microscopic and

macroscopic models to explain the observation of some biological in vivo experiment

and to fit some natural science data. The application of different models was given

in each chapter to illustrate the overall understanding of complex biological phenom-

ena. Each chapter provides some unique contribution to the growing field of applied

mathematical modeling.

The novelty of these chapters is the connection that links the global umbrella.

Chapters 2 and 3 describe the development of ABMs of individual particles (ants and

glioma cells (resp.)) that clarify the biological clarification of experiments. Whereas,

chapter 4, illustrate how data can be used to calculate parameters; through PDE

models, to try to find a strong correlation between two quantities. In addition, chap-

ters 3 and 4, study brain tumor while using microscopic and macroscopic models

(resp.).

In chapter 2, ant foragers are able to navigate a path by going back and forth

from the nest to food source through a bridge. According to the data provided to us,

one can observe that the evolution of the total flow on the bridge increases to reach a

peak then starts to decrease slowly. Our main intention was to predict a model that

will fit the data curve. We developed compartmental models with three stages. The

latter model is an extended dynamic from the first one. We compare the shape of the

curve of the number of foragers of the two models with the data. One can realize that

the extended model will fit much better over time with the data than the previous

one.
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Chapter 3 focuses on modeling glioma cells which are responsive for brain tumor.

Experimental observation show that these cells have different shapes, and this might

lead to different macroscopic behaviors such as stream and flock formation. To explore

how cancer cells manage to spread throughout the organism, an agent-based model

was introduced to describe the essential features of the cell (e.g. motility, cell-cell

interaction). Depending on the shape of the cells, the stream formation can increase

and influence the overall tumor growth. We investigate how the density affects these

pattern formation.

In chapter 4, glioblastoma is the most aggressive tumor that proliferates and

spreads through the organism. The data that was provided to us helped us calculate

the two coefficients of proliferation and invasion, with two time imaging, by using the

reaction diffusion model, which help us calculate the velocity by using the traveling

wave solution. Our main goal was to try to find if it is possible to estimate these

two coefficients with one time imaging only. Therefore, based on some previous

assumptions, we investigated that by trying to see if there is any correlation between

the central size of the tumor and the velocity.

In addition, in the appendix, we explained the comparison of Verlet and Cell-

linked methods. In our numerical code, in chapters 2 and 3, we used Cell-linked to

calculate the number of neighbors around each ant, and glioma cell (resp.) within a

specific radius. Verlet method evaluates the number of neighbors, by constructing a

list of neighboring for each particles in the system. Instead of computing the distance

between all the ants on every time steps, Cell-linked method will split the domain to

cell grids and locate the particles in every cell. Then, it will calculate the number

of neighbors only by counting the number of particles in the cell neighbors that are

within the radius provided. Therefore, one can conclude, that with a large number

of particles, and small radius, Cell-linked method will be more efficient to calculate
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the number of neighbors.
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APPENDIX A

VERLET VS CELL LINKED FOR CHAPTER 2 AND 3
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An improved method to calculate the number of neighbors in an algorithm is
necessary to avoid some unnecessary distance interaction calculations and to reduce
the computational time to perform simulations (Yao et al., 2004). By assuming the
number of particles is N , in a squared box of length L = 1, we will chose random
numbers and compare the time needed for the two methods denoted as Verlet list
and Cell linked list. At a fixed time t, the Verlet method is construct such as for a
particle i, it will compute all the neighbors which are within the radius R, and will
stock them in a neighboring list. On the other hand, the Cell linked method will
partition the domain into several artificial cells of length dx and locate the ants in
numbered cells at a fixed time. Then, for a particle i in cell m, it will list all the
neighbors that are in the cells around cell m which are within the radius R ≤ dx.

Comparison of Verlet List vs Cell Linked
The idea of Verlet algorithm is to create a list of neighboring for each particle in the
system at a fixed time. In the algorithm, for each particle i, it will construct a list
of all the indices j, where the distance between i and j is less or equal to the radius
R, i.e d(i, j) ≤ R. We know for N particles, the computational time operations for
the Verlet method will be of order N2, since the distances of all the pairs need to be
calculated. While varying the number of particles N between [10, 1000], and fixing
the radius R = 1

64 , we observe that the time elapsed vs N for Verlet list and O(N2)
are identical (see figure A.1).
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Figure A.1: Computational Time of Verlet and O(N2) vs the Number of Particles N
with Radius R = 1

64 . One can Observe that the Time Elapsed for Both are Identical,
which Satisfies the Order of Verlet List

The concept behind the Cell linked list algorithm is that, during a fixed time at
the beginning of a simulation, the domain will be partitioned to indicate cells of length
dx. After that, it will assign based on the position of each particle i, the number of
the cell in which this particle is placed in it. Therefore, the list of cell neighbors will
be created for each particle i located in cell m, by finding the distance of i and all
the other particles located in the cells around cell m to be less than or equal to the
radius R. Note that R should always be ≤ dx. The number of operations for the Cell
linked list is of order N times the average number of particles inside the cells, i.e c,
around particle i within radius R, hence the scale is of O(cN).

By comparing the computational time of Verlet List vs Cell Linked List with
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different number of particles N , we can see that for small numbers of particles N <
100), the Verlet list algorithm is more efficient. On the other hand, for larger N , the
time consuming for the Cell linked list will be more efficient (see figure A.2). Hence,
for large number of particles, Cell Linked method will save more time to calculate the
neighboring list.
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Figure A.2: Computational Time Verlet and Cell Linked vs the Number of Particles
N with Radius R = 1

64 . When the N < 100 Verlet List is more Efficient, whereas for
N > 100, Cell Linked is

In addition, we can see that these two methods also depend on the radius R. If
we vary N ∈ [10, 1000] in the box, and take different values for R, such as 1

64 ,
1
4 ,

1
2 ,

one can deduce that Cell Linked method becomes slower as we increase the value of
R (see figures A.3, A.4 -left). Ultimately, this is happening because the grid is not
small enough when R is increasing, so that every particle is a neighbor of the others,
hence, we come back to the same reasoning of figure A.2, where in this case the Verlet
method will be more efficient.

Moreover, if we fix the number of particles to N = 1, 000, and plot the compu-
tational time of Verlet list and Cell linked when the radius R ∈ [0, 0.6], we can see
that, as R increases, Cell-linked method becomes less efficient than Verlet Method
(see figure A.3 - right.). Also, we can see in figure A.4 - right, that at R = 1

4 , Verlet
and Cell linked method overlapped which satisfies that intersection point shown in
figure A.3 - right.

In conclusion, for large number of particles N , and for small radius R, we can
see that the computational time of the Cell linked method is more efficient than the
Verlet Method. In our studies in the previous chapters, since the number of ants and
cancer cells is large but the radius of interaction is small, then the neighbor list of
the Cell linked method will be much better and faster to perform all the calculations
needed.
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Figure A.3: Computational Time of Verlet and Cell Linked vs the Number of Particles
N with Radius R = 1

64 (Left) and with R = 1
4 (Right). When the Radius is Close

to Zero, one can Observe that Cell Linked Method is more Efficient, whereas by
Increasing R = 0.25, the Two Method will have the Same Elapsed Time
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Figure A.4: Computational Time of Verlet and Cell Linked vs Number of Particles N
with Radius R = 1

2 (Left). Computing the Time of the Two Methods while Varying
the Radius R Between [0, 0.6] with Number a Fixed Number of Particles N = 1000
(Right). When we increase R to 0.5, Verlet List Method will be more Efficient in this
Case. By Fixing the Number of Particles and Comparing the Two Method vs R, it
is Observed that at R ≈ 0.25 where the Elapsed Time Cross Between the Two
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