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ABSTRACT

Graphs are one of the key data structures for many real-world computing applica-

tions such as machine learning, social networks, genomics etc. The main challenges of

graph processing include difficulty in parallelizing the workload that results in work-

load imbalance, poor memory locality and very large number of memory accesses.

This causes large-scale graph processing to be very expensive.

This thesis presents implementation of a select set of graph kernels on a multi-core

architecture, Transmuter. The kernels are Breadth-First Search (BFS), Page Rank

(PR), and Single Source Shortest Path (SSSP). Transmuter is a multi-tiled architec-

ture with 4 tiles and 16 general processing elements (GPE) per tile that supports a

two level cache hierarchy. All graph processing kernels have been implemented on

Transmuter using Gem5 architectural simulator.

The key pre-processing steps in improving the performance are static partition-

ing by destination and balancing the workload among the processing cores. Results

obtained by processing graphs that are partitioned against un-partitioned graphs

show almost 3x improvement in performance. Choice of data structure also plays an

important role in the amount of storage space consumed and the amount of synchro-

nization required in a parallel implementation. Here the compressed sparse column

data format was used. BFS and SSSP are frontier-based algorithms where a frontier

represents a subset of vertices that are active during the current iteration. They

were implemented using the Boolean frontier array data structure. PR is an iterative

algorithm where all vertices are active at all times.

The performance of the different Transmuter implementations for the 14nm node

were evaluated based on metrics such as power consumption (Watt), Giga Operations

Per Second(GOPS), GOPS/Watt and L1/L2 cache misses. GOPS/W numbers for

graphs with 10k nodes and 10k edges is 33 for BFS, 477 for PR and 10 for SSSP.
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Frontier-based algorithms have much lower GOPS/W compared to iterative algo-

rithms such as PR. This is because all nodes in Page Rank are active at all points

in time. For all three kernel implementations, the L1 cache miss rates are quite low

while the L2 cache hit rates are high.
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Chapter 1

INTRODUCTION

Graph processing is integral to a very large range of applications, including social

network analysis, data mining, machine learning, natural language processing etc. [?

], [7], [10]. Real-world graphs are massive and contain millions of vertices and edges.

The scale of these graphs poses hard challenges for efficient graph processing. In an

attempt to speed up processing, this thesis addresses the problem of implementing

several graph processing kernels on a parallel computing platform.

1.1 Challenges

Graph processing is a data-driven computation process. Since contemporary graph

data sets typically have millions of vertices and edges, the number of computations

that need to be performed are enormous. In addition, these graphs have sparse

connections between vertices and irregular relationship between nodes, thereby posing

serious challenges from an implementation perspective. Below we outline some of the

challenges:

1. Random access in graph processing: Graph algorithms typically have ir-

regular data access patterns [4]. Basically, the flow of data occurs through

edges, requiring pointer-chasing to destination vertices leading to random ac-

cess of memory. If the vertex property updates are made by iterating the edges

of the graph, then O(|E|) random read and/or random write accesses are likely

to occur. For large graphs, the number of random accesses is thus very high.

2. Imbalance in computation workload: Graph algorithms have low compu-
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tational to communication ratio. Typically, only a few instructions are executed

for each node. Every graph computation is based on tracing the incoming or

outgoing edges of the nodes and updating the property values. The work per

node is unbalanced making it challenging to efficiently parallelize graph pro-

cessing algorithms[12].

Figure 1.1: Challenges in Graph Processing (Adapted From [4])

3. Poor memory locality: In graph implementations, it is necessary to read/write

values of vertices associated with the edges being processed. Thus random ac-

cesses may be required to retrieve values from locations scattered in memory.

This results in poor spatial and temporal locality. Hardware caches are thus

not suitable for graph structures.

4. Memory-intensive: Graph traversals involve a very large number of mem-

ory accesses. Since memory locality is low, cache accesses become inefficient

and high latency memory accesses become significant in real-world graphs [14].

Graph algorithms are memory-bound [16], and memory is a bigger bottleneck

in parallel implementation due to multiple cores competing for bandwidth.

5. Large number of data-conflicts: In a parallel execution model, different

processing cores might face data conflicts when the node values are updated

simultaneously. When the number of nodes and edges in the graph is large,

2



Figure 1.2: Challenges in Graph Processing and Proposed Solutions

this becomes a major concern. The data conflict problem can be mitigated by

utilizing expensive synchronization mechanisms or effective partitioning of tasks

among the cores along with careful design of the data access pattern.

1.2 Problem Definition

Our goal is to combat the challenges of graph processing algorithms, namely the

presence of random accesses and data conflicts, imbalance in workload and poor

memory locality through a combination of algorithmic and architectural solutions.

These include utilizing a Compressed Sparse Column (CSC) data storage format,

designing a partitioning by destination scheme, implementing an edge-based workload

balancing algorithm and supporting multiple levels of memory hierarchy. Figure 1.2

summarizes the challenges and the techniques to mitigate them. We demonstrate

the use of these techniques in our implementation of graph processing kernels on a

multi-core architecture.

1.3 Existing Work

Parallel graph processing has been addressed by many researchers in recent years.

Pregel [13] is a vertex-centric framework which supports distributed graph processing.

It has been designed mainly for sparse graphs and utilizes a message-passing model.

The cost of communication is a major overhead in the case of dense graphs.
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GraphLab [11] is a vertex-centric shared-memory based graph analytics frame-

work. It supports a set of concurrent access models such as full consistency, edge

consistency and vertex consistency. The GraphLab abstraction helps express asyn-

chronous, dynamic, parallel-graph computation while still maintaining data consis-

tency. Distributed GraphLab [10] is an extension of the GraphLab model which is

designed to simplify large-scale graph data processing especially for machine learning

applications. It also includes fault-tolerant capabilities.

GraphMat [18] is an efficient vertex programming, single-node, multi-core frame-

work. It maps vertex programs to generalized sparse matrix-vector calculations.

GraphChi [8] is a disk-based system which breaks a large graph into smaller parts

and incorporates parallel-sliding window method to implement very large graphs

on a personal computer. The parallel-sliding window results in fewer sequential

reads/writes enabling high performance.

GraphIA [9] is the first in-situ architecture for large-scale graph processing based

on DRAM. To make the system scalable, a scaling ring interconnection topology and

communication scheme have been devised. Interval-block partitioning method has

been employed to enable graph processing on multiple chips with balanced workload.

Tesseract [3] is a programmable accelerator for in-memory graph processing design.

It shows how graph processing challenges such as random accesses, poor memory

locality, memory access not being able to overlap with computation, can be addressed

through in-memory processing.

Graphicionado [6] presents a domain-specific accelerator for high-performance,

energy-efficient processing of a large set of graph algorithms. It is based on a vertex-

centric programming paradigm which makes efficient use of a specialized hardware

pipeline. To overcome high latency off-chip memory accesses, prefetching has been

incorporated.
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1.4 Thesis Contributions

This thesis presents an efficient implementation of several key graph processing

kernels on a re-configurable multi-core architecture, Transmuter, that was designed at

the University of Michigan. The architecture is modeled using the Gem5 simulator. It

is a multi-tiled architecture, where each tile consists of multiple processing elements.

The GPEs within a tile store local data in L1 cache banks while tiles share data

via the L2 data banks. Each processing element is an ARM core which implements

Thumb ISA.

The key elements of this work are: (i) graph pre-processing which involves static

partitioning by destination and balancing workload based on the degree of a node, (ii)

mapping of Breadth-First Search (BFS), Page Rank (PR) algorithm and Single Source

Shortest Path (SSSP) on Transmuter, and (iii) evaluation and analysis of performance

of the Transmuter implementations on graphs of varying sizes and sparsities.

Graph Pre-Processing: Partitioning and workload balancing are important

pre-processing kernels when mapping graph applications onto a parallel multi-core

architecture. The unpredictable nature of graphs, the large number of data conflicts

and poor memory locality problems can be mitigated when graphs are partitioned

efficiently. We also found that partitioning by destination scheme is a promising

solution to reduce the number of data conflicts. Since each processing core is assigned

a set of nodes, update of a destination node property avoids multiple processing cores

writing to the same node at the same time, and is hence desirable. In order to

distribute work equally between the processing cores, we implemented an edge-based

workload balancing scheme.

Mapping kernels on Transmuter: We selected a set of most commonly used

kernels in graph applications, namely BFS, PR and SSP. We implemented these ker-
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nels on Gem5 for a Transmuter configuration with 4 tiles and 16 processing elements

per tile. In order to reduce data conflicts and execution time overhead due to syn-

chronization mechanisms in parallel implementations, we implemented partitioning

by destination and evaluated the performance of the kernels. We implemented the

kernels using a frontier based approach. In such an approach, the destination vertices

from active nodes are traced and their node properties updated. High-level generic

pseudo-codes of the work carried out by processing cores for frontier-based kernels

such as BFS and SSSP as well as iterative kernels such as Page Rank have been

presented.

Performance evaluation: All Gem5 implementations have been evaluated for

14nm technology node with respect to time, Giga Operations Per Second(GOPS),

power consumption(W), GOPS/W and L1 and L2 cache hit rates. These performance

metrics have been analyzed for graphs of different sizes and sparsities. For a graph

with 10k nodes and 10k edges, GOPS/W numbers for BFS, PR and SSSP are 33, 477,

and 10, respectively. PR has a large number of computations per iteration, compared

to BFS and SSSP kernels, and hence its GOPS/W number is higher. The GOPS/W

for SSSP is much lower than BFS because in every iteration, only one node that has

minimum distance value is active and the neighboring nodes from only this node are

visited. The L1 hit rates are found to be close to 95% for BFS, about 75% for PR and

around 80% for SSSP. For all three implementations, the L2 hit rates are significantly

smaller at around 20%− 40%.

1.5 Thesis Organization

• Chapter 2 discusses graph concepts such as graph layouts, forward and back-

ward graph traversal schemes and the three kernels that have been mapped

on Transmuter. This chapter also talks about the graph partitioning scheme

6



employed and also how the workload is balanced among the processing cores.

A brief description of the Transmuter multi-core architecture has also been in-

cluded.

• Chapter 3: This chapter includes the detailed graph processing workflow from

generating random graphs to processing the kernels on Transmuter. Transmuter

configuration and pseudo code implemented by the local control processor and

the general processing units have also been explained.

• Chapter 4: This chapter discusses the performance results of the implementa-

tion of BFS, Page Rank and SSSP using a CSC data structure, with a Boolean

frontier array.

• Chapter 5: Chapter 5 summarizes the thesis and also presents work that will

be done in the near future.
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Chapter 2

BACKGROUND

A graph is defined as a set of vertices and edges, where V is the set of vertices

and an edge, which models the connection between two vertices, is represented by

E ⊂ V × V . This chapter introduces basics of graph processing. It starts with graph

layout in Section 2.1. The Compressed Sparse Row, Compressed Sparse Column and

Coordinate list based layouts, and the storage requirements for each of these layouts,

are discussed. Next, different types of graph traversals such as forward and backward

traversals are presented in Section 2.2. The three problems that have been mapped

onto Transmuter, namely BFS, PR and SSSP, are presented in Section 2.3. Graph

partitioning which is an essential step in graph processing, is introduced in Section

2.4. Finally, the Transmuter architecture is presented in Section 2.5.

2.1 Graph Layout

The way graphs are stored and the corresponding storage size, greatly influences

the performance of graph processing algorithms. Since real-world graphs are very

large in size and memory-bound, badly designed graph storage has an adverse ef-

fect on their performance. There are three common data-storage layouts for graphs:

Compressed Sparse Column (CSC), Compressed Sparse Row (CSR) and Coordinate

list (COO). The CSR and CSC formats provide an index into the edge list, allowing

efficient accesses to the neighboring nodes.

• Coordinate List (COO): This format stores edges as a pair of source and

destination nodes. Every iteration involves traversal of edges to check if the

8



Figure 2.1: Example Graph Layouts

source node associated with an edge is active or not. If it is active, the node

property values are computed, and the destination nodes become the new set

of active vertices for the next iteration. In a parallel execution model, when

different cores process different partitions, processing multiple edges with the

same destination simultaneously result in an update of the same vertex property.

This results in data race condition that has to be taken care of.

• Compressed Sparse Row (CSR): CSR requires two arrays: (i) destination

indices array which store the destimation IDs and a (ii) row pointer array (row-
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ptr). Every index position in the rowptr array corresponds to a source node and

every entry in the rowptr array corresponds to the start index in the destination

indices array where the corresponding destination IDs are stored. When mul-

tiple processing cores update the same destination vertex property, there could

be a data-race condition, as in COO. To prevent data-race, synchronization

mechanisms such as mutex lock are required.

• Compressed Sparse Column (CSC): CSC also has two arrays (i) source

indices array whch store the source IDs and a (ii) row pointer array(rowptr).

Every index in the rowptr array corresponds to a destination node, and every

entry in the rowptr array corresponds to the start index in the source indices

array where the corresponding source IDs are stored. When using this format,

the algorithm traverses the destination vertices, retrieves active source node

properties sequentially by tracing the corresponding in-edges.

2.1.1 Graph Storage Size

CSR and CSC are more efficient in storing graphs in a compact format than the

COO format. CSR and CSC formats also provide some sequential accesses on the

indices array, which allows for better cache performance.

Storage required for a weight graph using CSR/CSC format is (number of nodes

* bytes required to store every element in the rowptr array) + (number of edges *

bytes required to store every element in the indices array) + (number of edges * bytes

required to store every element in the edge weights array). In comparison, the storage

required for a weighted graph using COO format is (number of edges * bytes required

to store every element in the sources array) + (number of edges * bytes required to

store every element in the destinations array) + (number of edges * bytes required

10



to store every element in the edge weights array). Consider an example,graph with

integer weights, 10, 000 nodes and 100, 000 edges. The CSR and CSC formats require

840 kB compared to 1.2 MB required by COO.

2.2 Graph Traversal

There are two different ways to traverse a graph when using the Compressed

Sparse Row (CSR) or the Compressed Sparse Column (CSC) format - forward (push)

and backward (pull).

• Forward (Push): This method of traversal iterates the frontier and pushes

the updated values computed in that iteration to all the target nodes by tracing

the out-edges from the active nodes. These target nodes are made active for

the next iteration. CSR format is suitable for forward traversal.

• Backward (Pull): Backward traversal scheme checks all the nodes in the

graph, traces the corresponding incoming edges, retrieves attribute values from

the active nodes, computes updated node values and the frontier for the next

iteration. CSC format inherently supports this mode of traversal.

In COO data format, processing multiple edges with the same destination vertices,

could result in data-race condition. Appropriate synchronization mechanisms should

be incorporated to prevent data-race hassles.

2.3 Graph Processing Kernels

Among the kernels found in applications, such as machine learning, graph statistics

and graph traversal, BFS, PR and SSSP are quite common. These form the core

building blocks in graph processing applications and are studied here.
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2.3.1 Breadth-First Search

Breadth-First Search (BFS) is a very popular graph search algorithm that is also

part of the Graph500 Benchmark. It starts from a given initial node and iteratively

visits unexplored neighboring nodes [19]. The predecessor of every node is updated.

This is done so as to be able to trace back the path to the source node. The BFS

algorithm is a frontier-based algorithm - where the frontier is a subset of vertices that

are active at any point in time. The active nodes in every iteration follow a wavefront

pattern originating from the initial start node. Every time an unexplored node is

encountered, this node is updated and becomes part of the new frontier.

2.3.2 Page Rank

It is one of the most popular problems which calculates the scores of websites

[2]. It is an iterative algorithm that ranks web pages based on a metric such as

popularity. Web pages are represented as vertices and hyperlinks are denoted as

edges. The algorithm calculates the probability that a walk through the hyperlinks

would end in a particular page. It is not a frontier-based algorithm; all nodes in the

graph are active at all points in time.

2.3.3 Single Source Shortest Path

Djikstra’s graph traversal algorithm is used for finding the shortest paths between

a source node and all other nodes in the graph [1]. In every iteration, the un-visited

node that is marked with the smallest distance is picked. Distance from this node

to all of its unvisited neighbors are calculated and the neighbor’s distance is updated

if the newly calculated distance is smaller. A node is considered visited after all

neighbors of this node are visited.
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Algorithm 1 Breadth-First Search Algorithm

Input: Partitioned graph Gp(i) = (Vi, Ei) for i = 0,1,2.....p-1; p : no. of

partitions

Output: Breadth-First traversal path for any given node

num nodes visited← 0

while num nodes visited ≤MAX NODES TO V ISIT do

for dest ∈ partition range do

for src index← ind ptr[dest] to ind ptr[dest+ 1] do

src← edges[src index]

if frontier[src]is true and bfs pred[dest] = −1 then

bfs pred[dest]← src

frontier[src]← 0

frontier[dest]← 1

Increment num nodes visited by 1

end

end

if num nodes visited reaches MAX NODES TO V ISIT or none of

nodes active then

Quit

end

13



Algorithm 2 Page Rank Algorithm

Input: Partitioned graph Gp(i) = (Vi, Ei) for i = 0,1,2.....p-1; p : no. of

partitions Output: Page rank value for every node

num iterations← 0

while num iterations ≤MAX ITERATIONS do

for dest ∈ partition range do

for src index← ind ptr[dest] to ind ptr[dest+ 1] do

src← indices[src index]

Update node property[dest] to

node property[dest] + (node property[src]/out degree[src])

end

end

Increment num iterations by 1

end

2.3.4 Termination Condition

With millions of nodes and edges in real-world graph data sets, it is impractical

to terminate the algorithm only after processing the entire graph. So, the most

commonly used termination conditions are when the number of nodes visited reaches

a certain number, or when the current frontier nodes do not have any children, or

the number of iterations reaches a fixed value, or difference between the updated

destination property and the original value is less than 5%.
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Algorithm 3 Single-Source Shortest Path algorithm

Input: Partitioned graph Gp(i) = (Vi, Ei) for i = 0,1,2.....p-1; p : no. of

partitions

Output: Find the shortest distance of nodes from source

Initialisation: All nodes set to ’unvisited’

Frontier array to 0 except frontier[START NODE] = 1

Vertex prop to infinity except vertex prop [source node] to 0

num nodes visited← 0

while num nodes visited ≤MAX NODES TO V ISIT do

Pick node with minimum vertex prop

for dest ∈ partition range do

for src index← ind ptr[dest] to ind ptr[dest+ 1] do

if frontier[src]is true then

New vertex prop[dest] = vertex prop[src] + edge value[dest]

if new vertex prop[dest] ≤ vertex prop[dest] then

vertex prop[dest] = newvertex prop[dest]

end

end

Increment num nodes visited by 1

end
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2.4 Graph Partitioning

An important pre-processing step in parallelizing graph processing problems is

graph partitioning. This step enables the whole graph to be distributed across mul-

tiple processing cores. The graph partitioning step allows for efficient use of local L1

caches and also reduces synchronization overhead.

2.4.1 Partitioning by source/destination

Graphs can be partitioned based on the vertex list or edge list. Vertex list parti-

tioning results in some edges being spread out and thus the edges may cross partitions.

This requires additional synchronization mechanisms when processing these edges.

Alternatively, one can divide the edge list to balance workload amongst the process-

ing elements. Since, computations performed in many graph kernels are proportional

to the number of edges processed, we choose to implement edge-list based partitioning

scheme. Here the edges in a graph G(V,E) are split into K non-overlapping partitions

by P = Pi, i=0, 1, 2... k-1, P ⊂ E and
⋃k−1

i=0 Pi = E for all i and Pi ∩Pj = ϕ for all

i 6= j.

Graphs can also be partitioned by source or destination [17].

1. Partitioning by source: All the destination nodes corresponding to the outgoing

edges of a vertex are grouped. Gsource
p =

(
V,
{

u,v
}
ε G·E ; v ε P

)
2. Partitioning by destination: All the source nodes corresponding to the incoming

edges of a vertex are grouped. Gdestination
p =

(
V,
{

u,v
}
ε G·E ; u ε P

)
Partitioning by source: This scheme results in the set of source nodes in a

partition being unique. In other words, no two partitions have the same source node.

However, the same destination nodes can be part of multiple partitions. In the ex-

ample shown in Fig.2.2, source nodes with IDs 0,2,4,6,7 and 8 are grouped. It can
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Figure 2.2: Partitioning By Source

be seen that destination node 1 is present in source 0 as well as source 2 partitions.

In a parallel implementation, where each core is assigned one of these partitions, all

out-going edges corresponding to the partition’s source nodes are processed. The

source vertices can be usually accessed in a sequential manner when using the CSR

format. Multiple edges with the same destination vertices could result in properties

of the same vertex being updated. This results in data race condition, which in turn

necessitates the use of mutex and lock.

Partitioning by destination: Each partition is grouped by destination nodes and

so no two partitions share the same destination node. In the example shown in Fig.

2.3, destination nodes with IDs 0,1,2,3,5,7 and 8 are grouped. It can be seen that

the source node 7 is present in multiple partitions with destination node 0, 1 and 2.

Partitioning by destination scheme allows node property update without the need to

use additional synchronization overhead such as mutex and lock. Graphicionado[6]
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Algorithm 4 Edge-Based Partitioning By Destination And Workload

Balancing

Input : Graph G = (V,E)

Output : Partitioned graph Gp(i) = (Vi, Ei) for i = 0,1,2.....p-1; p : no.

of partitions

i← 0

in edges in partitioni ← 0

avg edges per partition← num edges/num GPEs

foreach v ∈ V do

in edges in partitioni ← in edges in partitioni + in degree[v]

if in edges in partitioni > avg edges per partition then

i← i+ 1

in edges in partitioni ← 0

Add vertex v to partition i

end

adopts this partitioning method to ensure each partition can be fitted to the scratch-

pad memory.

2.4.2 Edge-load balancing

In this thesis, an edge-load balancing scheme has been implemented in the graph

pre-processing step. Here every partition has an approximately equal number of

edges while still keeping destination by partition in-tact. As shown in the example

shown in Fig.2.4, if there are 4 processing elements(GPEs) and total number of edges

in the graph is 11, then the number of edges that each GPE processes is 11/4 = 3,
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Figure 2.3: Partitioning By Destination

approximately. Thus, GPEs 1 and 2 are assigned multiple destinations for processing.

2.4.3 Static and Dynamic Partitioning

There are two different ways to partition graph in the pre-processing step - Static

Partitioning and Dynamic Partitioning.

Static Partitioning: This partitioning scheme splits the whole graph into par-

titions once in the pre-processing step. These sub-graphs are delegated to each GPE

and every GPE works on the same partition the entire time. This thesis implements

static partitioning.

Dynamic Partitioning: This is a much more sophisticated method of graph

partitioning. Unlike static partitioning, this scheme looks at the frontier array after

every round of processing and based on the number of nodes that are active, the nodes

are re-distributed. It has the overhead of partitioning after every single iteration and

communication of partitioned graph to the processing elements.
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Figure 2.4: Edge-List Based Workload Balancing

2.5 Multicore Architecture - Transmuter

Transmuter is a coarse-grained, reconfigurable architecture designed at the Uni-

versity of Michigan by Subhankar Pal and others. It consists of multiple in-order

General-Purpose Processing Elements (GPE) organized into tiles and a memory-

crossbar hierarchy connected to a DDR 3 memory controller. Fig. 2.5 shows the

different components of Transmuter. They are as follows:

General-Purpose Processing Element (GPE): A GPE is a single-issue, 4-

stage, in-order core that is optimized for energy-efficient computation. It has signifi-

cantly lesser silicon footprint and has lower power consumption than modern proces-

sors. This allows Transmuter to be built with many such cores. Each GPE executes

instructions in ARM Thumb ISA. They do not support SIMD vector instructions

but have a Floating Point Unit, capable of executing single-precision floating-point

operations.
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Figure 2.5: Transmuter Architecture (adapted from [15])

Local Control Processor: The GPEs within a tile are managed and scheduled

to work through the Local Control Processor(LCP). Each LCP has the same micro-

architecture as GPE and also executes instructions from the Thumb ISA.

Work/Status Queue: Every tile has a set of hardware FIFO work queues

through which 32-bit packets are pushed to the GPEs by the LCP. These work queues

are private to every GPE. Data can be pushed to or popped from the work queue

using a single load, store instruction. The load is blocked if the queue is empty and

similarly store is blocked when the queue is full.

Reconfigurable Cache: The architecture has two levels of reconfigurable data
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Figure 2.6: Work Queue/Status Queue

cache (R-D cache) banks - L1 and L2. Every level consists of an SRAM memory

array connected to the control units. They can operate in the following modes:

1. Cache: Every SRAM memory bank functions as a traditional write-back cache

with LRU replacement policy.

2. Scratchpad: The SRAM memory bank can be configured as software-managed

scratchpad.

Reconfigurable Crossbar: An m × n crossbar allows for m requesters access

to n resources. The crossbars within a tile (L1) and outside the tiles (L2) supports

the following modes of reconfiguration.

• ARBITRATE: If two or more requesters try to the same resource, the crossbar

grants only one of them access using a Least-Recently Granted (LRG) policy.

This is the traditional crossbar configuration where a penalty for arbitration is

incurred for each access and requests to the same memory bank get serialized.

• TRANSPARENT: In this mode, requester i has direct access to its correspond-

ing resource. GPEs can access adjacent (private) memory banks with no arbi-

tration latency.

• ROTATE: The crossbar port connections rotate through a set of pre-programmed

patterns that define static links between a requester and a resource.
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Sychronization ScratchPad: Transmuter has a global scratchpad memory for

synchronization. This allows for the implementation of software coherence and stan-

dard primitives such as locks, condition variables, barriers, and semaphores. Most

algorithm implementations only need to use barriers for synchronization before and

after a kernel and the need to synchronize during execution can usually be avoided.
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Chapter 3

GRAPH PROCESSING ON TRANSMUTER

3.1 Transmuter Configuration

The Transmuter configuration used in the thesis has 4 tiles with 16 GPEs per tile.

Each GPE in a tile has L1 memory bank of size 4 kB and so a total of 4 kB ×16= 64

kB per tile. Each tile has L2 memory bank of size 64 kB and a total of 256 kB across

4 tiles. While the L1 and L2 memory banks can operate in the cache or scratchpad

mode, we choose to use the cache mode. We use unified-shared cache configuration

for both L1 and L1 caches. In this mode of operation, all the GPEs in a tile and

all tiles see L1 and L2 R-DCache banks as shared cache banks; the corresponding

reconfiguration crossbar is set to Arbitrate mode. When many hardware units request

access to the same resource, requests get serialized. The priority amongst these

requesters is handled using a LRG (Least Recently Granted) policy. The overhead

of arbitration process is one clock cycle. Transmuter configuration parameters have

been listed in Table 3.1.

Real-world graphs have unpredictable accesses to data at different points in time.

So use of shared cache mode and storing graphs using CSC or CSR formats help

improve cache performance. In the CSC format, access to the rowptr array is random

while source indices are accessed sequentially. The sequential access aids in better

management of cache data by providing spatial locality when obtaining data from

neighbours of a particular node.

In the cache configuration, each memory bank is used as a non-blocking, write

back cache with LRU(Least Recently Used) replacement policy. The caches must
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General Processing Element(GPE) 1-issue, 4-stage, in-order CPU @ 1.0 GHz

Number of GPEs per tile 16

Number of tiles 4

Number of L1 cache banks per tiles 16

Total number of L2 cache banks 4

Size of L1 cache bank 4 kB

Size of L2 cache bank 256 kB

L1 configuration Unified shared-cache

L2 configuration Unified shared-cache

Main memory size 4 GB

Work/Status queue 32 b 4-entry FIFO buffer

Sync SPM 16 kB, 1-ported

R-DCache (per bank) CACHE mode: 4 kB, 4-way set-associative, 1-ported

Table 3.1: Transmuter Configuration Parameters

be flushed after every round or phase of computation to make sure data in different

memory hierarchies are consistent.

3.2 Graph Processing Overview

Figure 3.1 details the workflow for processing graphs on Transmuter. The steps in

this workflow consists of generating a random graph using the Python Random Graph

Generation tool, the graph pre-processing step and graph processing on Transmuter.

The random graph generation step takes as input configurable parameters such

as number of nodes, number of edges, the file format of the output. The output edge

list file is used as input to the pre-processing step. The pre-processing step performs

partitioning by destination and balancing workload based on edges. Transmuter

graph processing involves initialisation of data structures, assigning of partitions to

the GPEs, and then processing by the GPEs.
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Figure 3.1: Graph Processing Workflow

3.2.1 Random Graph Generation

The first step of graph processing is to generate a random graph. Python Random

Graph Generator [5] was used to generate a graph. It generates graphs with different

parameters such as number of nodes, minimum number of edges per node, maximum

number of edges per node, minimum edge weight value, maximum edge weight value

and the file format of the output edge list.

3.2.2 Graph Pre-Processing

The pre-processing steps involve taking the edge list file generated by the random

graph generator tool to form the graph data structure, followed by static partitioning

by destination and also workload balancing.

Forming graph data structure from edge list file: The edge list generated by
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the random graph generator tool is used as an input to the graph processing step.

The tool generates a text file in Comma-Separated Values of source node, destination

node and edge weight. Every line in the edge list file corresponds to an edge in the

graph. Python Pandas package is used to read the input graph file and convert to

Scipy-based CSC format.

Partitioning by destination and edge load balancing: Static partitioning by

destination scheme has been implemented. Note that CSC format inherently supports

partition by destination. To achieve edge load balancing, the in-degree for every

vertex is computed and number of edges each GPE should process is computed. The

assignment is done such that the number of edges in each partition is close to each

other in the destination-based partition. By assigning equal workload to each GPE,

the stall time to hit the global barrier after every iteration is minimized.

3.3 Data Structure

Compressed Sparse Column(CSC) format involves use of 3 data structures :

1. Row pointer array: This is an unsigned integer array with the size equal

to one more than number of nodes in the graph. Every index in this array

corresponds to the destination node value. Each element in this array holds

the value of starting index of in-edges with respect to the destination node.

Accesses to this array are random.

2. Source indices array: This is also an unsigned integer array which holds

the source nodes correspond to incoming edges of the destination nodes. All

source vertices for a particular destination node are stored consecutively and

are accessed sequentially.

3. Edge weight value array: This is an array of type float. Every value corre-
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sponds to the edge weight value.

Apart from the above data structures, the following arrays are also used:

4. Vertex list: This float array holds the property value for every node. Based

on the algorithm being processed, this could be the distance value of a node in

the case of BFS algorithm, or page rank of a node for Page Rank algorithm.

5. BFS Predecessor array: Breadth-First Search algorithm requires the BFS

path of a node from a given start node to be stored. The BFS predecessor array

also helps in checking if a particular node has already been visited or not.

6. Frontier: Frontier array can be implemented in 2 ways - as a Boolean array

and a variable sized array.

• Boolean array: In the Boolean array mode, every node is assigned a ’1’ or

’0’ based on whether it is active or not. For BFS algorithm, every round

of processing requires an update of the frontier array. frontier(i) = 1, if

node i is active

• Dynamic-sized workqueue: An array is used to store the indices of the

active nodes. In most graph processing cases, the number of active nodes

is only about 5-10% of the total number of nodes in the graph. So the

storage overhead of this data structure is significantly lower.

3.4 GPE Processing

In frontier-based kernels, in every computation round, the frontier identifies the

active nodes in the current iteration. Neighbours of the active nodes are visited by

traversing the edges and an algorithm-specific update function is computed. At the

end of every round of graph processing, a new frontier is calculated. The nodes whose
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properties were updated in the current iteration become active nodes in the next

iteration. These series of steps for every iteration are performed until the frontier

is empty or a termination criterion is met. In a bulk synchronous parallel model

of implementation, there is a synchronization step where processing of all GPEs is

stalled until all the computing nodes reach the end of one round of iteration. This is

done to make sure operation of all cores are synchronized and updates done by each

computing node during an iteration is available for the next iteration. BFS and SSSP

are frontier-based algorithms

In our implementation, the LCP is responsible for scheduling work to the GPEs.

It assigns partitioned graphs to each GPE. The LCP pseudo-code is described in

Algorithm 5.

The GPEs work on the partition assigned to it. For frontier-based kernels like

BFS and SSSP, the current frontier is checked to trace the destination nodes, their

properties are updated and the frontier for the next iteration is computed. A generic

algorithm for the implementation of any frontier-based algorithm on Transmuter has

been described in Algorithm 6.

Iterative kernels like Page Rank do not work based on a frontier. All nodes

are active in all iterations and the node property values of all nodes are computed

during every round of processing. The pseudo-code for iterative kernels is explained

in Algorithm 7.

The destination property update varies for different kernels.

• BFS: Since BFS is a traversal algorithm, in order to be able to trace the path

from a node upto the source node, the predecessor node for every vertex is

recorded as the property of a node.

Vbfs predecessor = Vsource (3.1)
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Algorithm 5 LCP Pseudo-Code

Input: Entire graph G = (V,E)

Output: Assigning work to GPEs

Read the CSR/CSC data structures of the partitioned graph from

Python-generated pre-processing file.

Assign the partitions to GPEs

• Page Rank: In this simplified version of Page Rank, the rank of every destina-

tion node is updated in every iteration by utilizing the rank value of its source

node and the out-degree of the source node [6].

Vrank = Vrank +
∑

U |(U,V )∈E

Urank

Udeg

(3.2)

• Single Source Shortest Path: The shortest distance to reach the node from

the source node is updated as part of destination property update step[6].

min
U |(U,V )∈E

(Vdist, Udist + Eweight(U, V )
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Algorithm 6 Kernel Pseudo-Code For Frontier-Based kernels

Input: Partitioned graph and CSR/CSC data structures

For each active vertex v

If number of nodes visited not reached user-specified value

For each vertex v in partition, iterating indices array

If corresponding source active and node not visited

Read source, edge value or node degree, if necessary

Update destination property

Make destination node active for next iteration

Make current active node inactive for next iteration

Increment number of nodes visited by 1

Algorithm 7 Kernel Pseudo-Code For Iterative kernels

Input: Partitioned graph and CSR/CSC data structures

For each active vertex v

If number of iterations not reached user-specified value

For each vertex v in partition, iterating indices array

Read source, edge value or node degree, if necessary

Update destination property

Increment number of iterations performed by 1
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Chapter 4

RESULTS

We present the Transmuter implementation results on graphs of varying sizes and

sparsities. Sparsity of a graph can be viewed as the average degree of every node in the

graph. Graph size can be varied by altering the number of vertices and edges present

in the graph. The metrics to evaluate performance on Transmuter are execution time,

Giga Operations Per Second(GOPS), power consumption(W), GOPS/W and the L1

and L2 cache hit rates.

4.1 Calculation of performance metrics

The statistics file generated by Gem5 are used for obtaining the GPE-wise L1

cache hit rates, tile-wise L2 cache hit rates, the number of operations, total execution

time etc. The power consumption values are obtained for 14nm using a script designed

by Siying Feng from the University of Michigan.

A summary of the procedure to calculate power is as follows: Static power is

computed by summing up the static power of the individual Transmuter components.

Dynamic power is calculated by dividing the total dynamic energy of the system by

the total execution time.

For ARM cores, the data used are the static and dynamic power of its online spec-

ification (40 nm) scaled to 14 nm. The dynamic energy is calculated by multiplying

the given dynamic power with the number of active cycles.

For re-configurable caches, the static power and energy per transaction are gen-

erated using CACTI model for 14 nm node. The dynamic energy is computed by

multiplying energy per transaction with the total number of accesses obtained from
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the input statistics file.

For re-configurable crossbars, the dynamic energy is calculated in the same way

as the re-configurable caches. All muxes and memory controllers are modeled as

re-configurable crossbars and the scratchpads are modeled as re-configurable caches.

The performance is measured in the following way:

GOPS = committed ops/(sim secs ∗ 109); (4.1)

committed ops and sim secs are obtained from GEMV stats file. committed ops

correspond to number of operations executed and sim secs refer to the execution

time for processing.

4.2 Partitioning by destination results

To study the importance of partitioning a graph, BFS was implemented with and

without partitioning on Transmuter. In this experiment, the graphs were represented

in the COO data format. Transmuter configuration was 2 tiles with 4 GPEs per

tile, 4 kB per L1 cache bank, 4 kB per L2 cache bank and 8 kB of synchronization

scratchpad.

Figures 4.1 and 4.2 present results with and without partitioning for graphs with

100 nodes and 100 edges, and 100 nodes and 200 edges, respectively. We see that

processing of un-partitioned graphs takes about 3x more than a graph that has been

partitioned by destination. This happens because update of destination property in

the case of un-partitioned graph leads to large number of data conflicts since the

same destination node property could be updated by different processing cores. To

avoid this, synchronization mechanisms such as mutexes have to be used which cause a

significant overhead and consume about 20% of the total execution time per iteration.

Thus, further graph processing in this thesis has been performed on graphs that are
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Figure 4.1: Comparison Of Execution Times For BFS On Graphs With And Without

Partitioning by Destination. |V | = 100, |E| = 100

Figure 4.2: Comparison Of Execution Times For BFS On Graphs With And Without

Partitioning by Destination |V | = 100, |E| = 200
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statically partitioned by destination.

4.3 Breadth-First Search Algorithm

Breadth-First Search (BFS) is a frontier-based algorithm - the number of nodes

active at any point in time depends on the frontier state at that time. Graph pro-

cessing happens only on the frontier nodes. BFS is performed until the number of

nodes visited reaches a user-specified value.

BFS has been implemented using a Boolean based frontier array. The storage

space required for Boolean frontier array is equal to the number of nodes in the

graph. Every element corresponds to the node being inactive or active in the current

iteration.

Figure 4.3 shows the execution time, GOPS, GOPS/W and L1 and L2 cache

access data for BFS implementation on different graph sizes. It can be observed that

as the graphs get more and more dense, the GOPS numbers increase. For instance

|V | = 10k, then as |E| increases from 10k to 50k, the GOPS increases from 33.66 to

51.04. As the graphs become more dense, every node has a lot more edges to process

in every iteration and so the GOPS numbers increase.

From the L1 and L2 cache data, it can be observed that the L1 cache performance

is superior an average hit rate of 95 to 97% as shown in Fig. 4.3. This indicates that

most of the data required by all the GPEs in every tile are fetched and reused as

much as possible causing minimum number of L1 misses. However, the L2 hit rates

are quite low.

To improve the cache performance, a prefetcher can be utilized which will re-

trieve the data from main memory into the caches much before the data is required.

Prefetching is a common solution to boost L1 and L2 hit rates. We project that the

use of a prefetcher is likely to increase the number of sequential data accesses to the
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Figure 4.3: Breadth-First Search Algorithm Execution Results For Frontier-Based

Implementation

sources/destination indices array, visited array and the work queue array.

4.4 Page Rank Algorithm

Page Rank (PR) is an iterative algorithm where all nodes are active in all iterations

and the rank for every node is calculated. This is not a frontier-based algorithm,

like BFS. The termination condition used for this algorithm is when the number of

iterations processed reaches a user-defined value.

Figure 4.4 shows the execution time, GOPS, GOPS/W results for implementing

PR on different graph sizes. Similar to BFS results, it can be observed that as graphs

get more and more dense, the GOPS/W numbers increase. The reason being, as the

graphs become more dense, every node has a lot more edges to work on and so the

GOPS increase.

It can also be seen that GOPS and the GOPS/W numbers for PR are much higher
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Figure 4.4: Page Rank Algorithm Execution Results

than that for the BFS algorithm. This is because BFS is a frontier-based algorithm

- at any point in time only a fraction of nodes are active and graph computations

are performed only on these active/frontier nodes. In contrast, for PR, all nodes are

processed every time and their properties updated. Also, PR computes the rank for

every node which involves floating point values.

4.5 Single-Source Shortest Path algorithm

The Single-Source Shortest Path (SSSP) algorithm involves computing the dis-

tance of all nodes in the graph from a given source node. A frontier Boolean array is

used to keep track of the node with minimum distance value in every iteration. The

neighbours of the unvisited node with minimum distance value are traversed and the

distance property values are updated for these neighbouring nodes.
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Figure 4.5: Single-Source Shortest Path Execution Results

The GOPS and GOPS/W numbers are presented in Figure 4.5. These numbers are

a lot smaller than BFS and PR. This is because in this algorithm, only the node

which has minimum distance value in the entire graph is active during any iteration.

This causes the utilization of the processing cores to drop compared to BFS and PR

kernels. A much more efficient implementation would be to have each tile process

different shortest paths with different start nodes.

From the results, it can be observed that the L1 hit rate is between 81 to 87%,

which is lower than BFS and PR. As the density of graphs increases, the L1 and L2

hit rates tend to increase. This shows that as graphs become more dense, the number

of vertices that a node is connected to, is higher. Spatial and temporal locality of

sequential access of neighbouring nodes in CSC format might be the reason for the

increased L2 hit rate.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The work focuses on an efficient implementation of three popular graph kernels,

namely Breadth-First Search (BFS), Page Rank (PR) and Single Source Shortest Path

(SSSP) on a multi-core architecture, Transmuter, that was developed at the University

of Michigan. The challenges in graph computations such as imbalance in workload,

presence of random accesses and memory-intensive operations, poor memory locality

and large number of data conflicts have been addressed by partitioning by destination,

balancing workload, utilizing the CSC data format and having multiple levels of

memory hierarchy.

All three implementations use a static partitioning by destination scheme coupled

with equal distribution of the workload in the pre-processing step. Splitting the graph

into disjoint destination-based partitions and having the processing cores perform

computation on these smaller sub-graphs improve both cache performance and reduce

the data conflicts. For instance, BFS on a graph that has not been partitioned

by destination takes 3x more execution time than a partitioned graph. Balancing

workload by assigning similar number of edges to the cores ensures effective utilization

of the cores, thus improving execution time.

We evaluated the performance of the kernels using multiple metrics including

GOPS/W. We found that kernels with more number of computations per iteration

have higher GOPS/W number. Thus, Page Rank algorithm which involves computing

rank values for all nodes in the graph at all times, exhibits a higher GOPS/W. For
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instance, for graphs of sizes ranging from 5000 to 20000 nodes, it achieves 400 to 900

GOPS/W. In contrast, BFS and SSSP have significantly lower GOPS/W. SSSP has

the lowest GOPS/W, due to the fact that only one node with the minimum distance

from the source is active in any iteration.

Transmuter supports a multi-level memory hierarchy which helps in reducing the

frequent high latency accesses to the main memory and thus improving execution

time. Our analysis shows that BFS exhibits high L1 cache hit rates of about 95% for

a Boolean array-based frontier implementation. The L2 hit rates are however very

low (≈ 20%) and can be possibly improved through efficient prefetching. PR and

SSSP also have fairly high L1 hit rates (75%− 85%) but low L2 hit rates.

5.2 Future Work

The work presented in this thesis is an initial exploration of graph processing

implementations on a parallel multi-core architecture.

• The frontier-based version suffers from high storage since the frontier array

is as large as the number of nodes in the graph. For large graphs, this can

be a significant concern. The work queue based implementation makes use

of an integer array which stores the IDs of the nodes that are active. Since

the number of active nodes is quite small, the storage requirement of such a

scheme is significantly reduced. A work queue based method can be employed

for Breadth-First Search. The processing performance when a prefetcher takes

advantage of the sequential accesses inherent in CSC data structure can also be

studied.

• While a static partitioning scheme was used in this thesis, a dynamic parti-

tioning scheme can be employed which splits the graph consisting of active
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nodes into partitions at the end of every iteration. This makes sure that for

a frontier-based algorithm such as BFS and SSSP, all the GPEs that perform

graph processing do not have inactive nodes in its partition resulting in workload

imbalance.

• The performance of graph processing kernels for CSR, CSC and COO layouts

differ based on the size of frontier and sparsity of graph. Switching between

these layouts dynamically has the potential to improve performance and effi-

ciency. Such a study has to be conducted.

• The performance of the graph processing kernels is also a function of the parti-

tioning kernels, sparsity of the frontier array, etc. Based on size of the frontier,

switching dynamically between data structures and partition mechanism can

have a profound impact on the performance. This needs to be investigated as

well.
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