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ABSTRACT 

Time series forecasting is the prediction of future data after analyzing the past data for 

temporal trends. This work investigates two fields of time series forecasting in the form of 

Stock Data Prediction and the Opioid Incident Prediction. In this thesis, the Stock Data 

Prediction Problem investigates methods which could predict the trends in the NYSE and 

NASDAQ stock markets for ten different companies, nine of which are part of the Dow 

Jones Industrial Average (DJIA). A novel deep learning model which uses a Generative 

Adversarial Network (GAN) is used to predict future data and the results are compared 

with the existing regression techniques like Linear, Huber, and Ridge regression and neural 

network models such as Long-Short Term Memory (LSTMs) models. 

In this thesis, the Opioid Incident Prediction Problem investigates methods which could 

predict the location of future opioid overdose incidences using the past opioid overdose 

incidences data. A similar deep learning model is used to predict the location of the future 

overdose incidences given the two datasets of the past incidences (Connecticut and 

Cincinnati Opioid incidence datasets) and compared with the existing neural network 

models such as Convolution LSTMs, Attention-based Convolution LSTMs, and Encoder-

Decoder frameworks. Experimental results on the above-mentioned datasets for both the 

problems show the superiority of the proposed architectures over the standard statistical 

models. 

 

 

 



ii 
 

DEDICATION 

This work is dedicated to my family, thesis advisors, mentors, and friends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGMENTS 

I would like to start by thanking my thesis advisor, Dr. Arunabha Sen for giving me the 

opportunity to work under him, for his guidance during the entirety of my thesis work 

which includes the intense technical discussions, the fundamental questions which made 

me see my problems or solutions from a different perspective and for the unconditional 

support. I would like to thank my thesis committee members Dr. Hasan Davulcu and Dr. 

Ayan Banerjee for their consent to be on my thesis committee and taking time out of their 

busy schedules to provide invaluable insights into my thesis. I am deeply indebted to my 

mentors Sandipan Choudhuri and Kaustav Basu for helping complete this thesis to fruition 

ever since I started working on my thesis in August 2018 and for all their suggestions with 

respect to the machine learning models that need to be used and for their tips in writing this 

thesis document. Lastly, I am grateful for having an extremely supportive family who 

supported me when I decided to pursue a thesis and my friends who were there during the 

tough and turbulent times, especially my roommates Aditya Chayapathy, Arpan Roy, 

Kausic Gunasekkar and Madhu Venkatesh, along with my friends Bosco Paul and John 

Santhosh, who all encouraged me and were there for me during the dark and tiring days. 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

    Page 

LIST OF TABLES …...…………………………………………………………………. vi 

LIST OF FIGURES …………………………………………………………………….. vii 

CHAPTER 

 1 Overview ….……………………………………………………………... 1 

I STOCK DATA PREDICTION 

 2 Introduction ……..……………………………………………………….. 5 

 3 Related Work …….………………………………………………………. 7 

 4 Datasets …..…………………………………………………………….. 10 

 5 Approach ….……………………………………………………………. 15 

 6 Experimental Results ………...…………………………………………. 26 

II OPIOID INCIDENT PREDICTION 

 7 Introduction ……..……………………………………………………… 42 

 8 Related Work …….……………………………………………………... 45 

 9 Datasets …..…………………………………………………………….. 47 

 10 Approach .....……………………………………………………………. 49 

 11 Experimental Results ………...…………………………………………. 59 



v 
 

CHAPTER              Page  

12  Thesis Conclusion ……...……………………………………………….............. 66 

REFERENCES …...…………….………………………………………………………. 68 

BIOGRAPHICAL SKETCH …………………………………………………………… 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

Table               Page 

1 RMSE Of All Models For All Companies For Next Minute Prediction ………... 28 

2 MAE Of All Models For All Companies For Next minute Prediction …………. 28 

3 RMSE Of All Models For All Companies For The Third-Day Prediction .....….. 29 

4 MAE Of All Models For All Companies For The Third-Day Prediction …….… 29 

5 RMSE Of All Models For All Companies For The Seventh-Day Prediction ...… 30 

6 MAE Of All Models For All Companies For The Seventh-Day Prediction ….... 30 

7 Time taken for Stock Price Prediction Models …………………….…………... 40 

8 Evaluation Results Of The Following Methods On Cincinnati Dataset ……..…. 59 

9 Evaluation Results Of The Following Methods On Connecticut Dataset …...….. 59 

10 Time taken for Overdose Location Prediction Models for Cincinnati Dataset ... 65 

11       Time taken for Overdose Location Prediction Models for Connecticut Dataset .. 65 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

Figure               Page 

1 Time Series Decomposition (Mathematica Stack Exchange 2019) ……………… 1 

2 GAN Model For Stock Data Prediction ………..……………………………….. 15 

3 LSTM Cell (LSTM Cell Image Wikipedia 2019) …………...…...……………... 18 

4 ReLU vs Leaky ReLU Functions (Leaky ReLU Image 2018) …...…...………… 21 

5 Closing Price Prediction For The Next Minute For JPM ……….………………. 31 

6 Closing Price Prediction For The Next Minute For VZ ……………………….... 32 

7 Closing Price Prediction For The Next Minute For MMM ……………………... 32 

8 Closing Price Prediction For The Next Minute For WMT ……………………… 33 

9 Closing Price Prediction For The Next Minute For AAPL ...…………………… 33 

10 Closing Price Prediction For 1000 Minutes Later For JPM …………………….. 34 

11 Closing Price Prediction For 1000 Minutes Later For CVX ……………………. 34 

12 Closing Price Prediction For 1000 Minutes Later For MMM ………………….. 35 

13 Closing Price Prediction For 1000 Minutes Later For WMT …………………... 35 

14 Closing Price Prediction For 1000 Minutes Later For AAPL …………………... 36 

15 Closing Price Prediction For 1000 Minutes Later For PG ……………………… 36 

16 Closing Price Prediction For 1000 Minutes Later For CSCO …………………... 37 



viii 
 

Figure               Page 

17 Closing Price Prediction For 1000 Minutes Later For AMZN …………………. 37 

18 Closing Price Prediction For 3000 Minutes Later For WMT …………………... 38 

19 Closing Price Prediction For 3000 Minutes Later For PG ……………………… 38 

20 Closing Price Prediction For 3000 Minutes Later For MMM ………………….. 39 

21 Closing Price Prediction For 3000 Minutes Later For CVX ……………………. 39 

22 Opioid Overdose Heatmap Of The US (Katz And Goodnough 2017) …………. 43 

23 GAN Model For Opioid Prediction …………...………………………………… 54 

24 Opioid Output Set 1 …………………………………………………………….. 60 

25 Opioid Output Set 2 …………………………………………………………….. 61 

26 Opioid Output Set 3 …………………………………………………………….. 62 

27 Opioid Output Set 4 …………………………………………………………….. 63 

28 Opioid Output Set 5 …………………………………………………………….. 64 

 

 



 

1 
 

Chapter 1 

OVERVIEW 

Time series data is a type of data indexed in time order, that is there is always some 

timestamp associated with every instance of data and if two instances of data are 

considered, one will always be in the past compared to the other. Time series forecasting 

is predicting the new values using a model trained on the old values in the time series (Time 

Series Wikipedia 2019). Time series data can be decomposed into four components which 

are (Jason Brownlee 2017): 

1. Level: The average value in the time series. 

2. Trend: The increasing or decreasing value in the time series. 

3. Seasonality: The repeating short-term cycle in the time series. 

4. Noise: The random variation in the time series. 

 

Figure 1. Time Series Decomposition (Mathematica Stack Exchange 2019) 
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Figure 1 shows the different components of time series data. Observed indicates the 

original observed data, trend represents the trend component, seasonal represents the 

seasonal component and random represents the noise and level components i.e. the 

remaining components after the trend and seasonal components are removed from the 

original time series data. By decomposing every time series into the four components, it 

becomes easier to analyze and forecast the data.  

Time series analysis is the analysis of the relationship between each instance of data in the 

time series data. Studying this relationship may yield many interesting relations between 

the different time steps considered. Time Series Forecasting is the use of this analysis to 

predict the data for future time instances. This amounts to predicting the future and if the 

predictions are accurate every person with this knowledge will prepare accordingly. For 

example, analyzing the temperature and humidity of the current day can give us a fair idea 

of how the weather will be the next day. If people see that the prediction of tomorrow’s 

weather is a thunderstorm then they will remember to bring an umbrella or plan our day 

accordingly. 

The two types of time series forecasting this thesis is dealing with are: 

1. Stock Price Prediction 

2. Opioid Incident Location Prediction 

The first part of the document discusses the Stock Data Prediction Problem. This problem 

tries to predict trends in the stock prices of ten companies such as Amazon, American 

Express, etc. found either in the NYSE or the NASDAQ stock market. Since the stock 

market data is a time series, this indicates that this data should have trend and seasonality 
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and by decomposing the ever-unpredictable stock market data into those two components 

then it is possible to predict the future prices. A novel deep learning model which uses a 

Generative Adversarial Network architecture is used and the results are compared with 

machine learning models involving Linear Regression, Huber Regression, Ridge 

Regression, Artificial Neural Networks, etc. Experimental results on the datasets of the ten 

companies for the proposed model versus the classic machine learning models shows the 

dominance of the proposed model. 

The second part of the document explains the Opioid Incident Prediction problem. This 

problem is trying to predict the location of the next opioid incidences on the map. The input 

dataset used was of the Cincinnati and the Connecticut opioid incident dataset. Heat map 

images were used as input to the Generative Adversarial Network model to predict the next 

locations of the opioid overdose incidents. The supremacy of the proposed model is evident 

when comparing the experimental results on both the Cincinnati and the Connecticut 

datasets for the proposed model and the existing models. 

 

 

 

 



 

4 
 

 

 

 

Part I 

Stock Price Prediction 

 

 

 

 

 

 

 

 

 

 



 

5 
 

Chapter 2 

INTRODUCTION 

The stock market has been around since the 17th century and it is one of the most mercurial 

entities in the world. The stock market is an aggregation of buyers and sellers of stock 

which represents ownership claims to various public companies or businesses (Stock 

Market Wikipedia 2019). Various people invest their money in companies they consider 

promising and get shares of the company in exchange. The share prices can either go up or 

down given time depending on the demand for that share. If people spend an amount more 

than the current share price to acquire the share, then the share price will increase. This 

generally implies the company is doing well and more people want to invest in the company 

as they believe that the share price will increase further. If people are selling their shares 

at a price lesser than the current share price, then the share price will drop. This generally 

implies that people do not believe that the company will perform well, and the share price 

will only fall further. If the share prices increase, the person can make a profit if he sells 

his shares of the company to someone willing to buy it at a higher price or hold onto the 

shares and wait for the price to appreciate. If the person is unlucky, the share prices might 

drop where he can either hold onto the stock expecting the prices to appreciate or sell the 

stocks expecting the price to depreciate further thereby making a loss but avoiding a bigger 

by selling the stocks at an even lower price. 

The mercurial aspect of the stock market is the unpredictability of the stock price of the 

companies as these prices are solely decided by how much people are willing to pay to 

purchase a share of the company. For human beings to invest in a company by buying their 

stock, the company needs to have a good reputation among the general public and if there 
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is any change in the way people view the company it can affect the stock price positively 

or negatively. Let’s call the event which brings about the change in the way people view 

the company and by extension a change in the stock price as trigger events. There are 

trigger events where we can expect a change in the stock price such as earnings calls, stock 

splits, mergers, and acquisitions, etc. But we have observed unexpected events trigger 

catastrophic changes in the stock prices of companies such as when Kylie Jenner tweeted 

"Sooo does anyone else not open Snapchat anymore? Or is it just me... ugh this is so 

sad," on February 23rd, 2018 and the market value of Snap Inc. plummeted 6% which 

equated to a $1.3 billion loss (Kaya Yurieff 2018). In the first case, we can anticipate the 

occurrences of the trigger events but in the second case, we cannot anticipate the events 

beforehand.  

A sudden change in the stock price can make people millionaires in an instant or can 

completely annihilate their life savings. Naturally, people will want to invest their hard-

earned money into companies which certainly will increase in price and reward them for 

having faith in that company. Due to the general interest in making a profit in the stock 

market, researchers have been trying for decades to predict the movements in the stock 

market but have been largely unsuccessful as there seem to be many factors affecting it 

which most researchers have not taken into consideration.  But with the advent of machine 

learning, researchers are having a lot more success in their predictions. With each new 

innovation in the machine learning world, we are getting closer to being able to accurately 

predict the trends in the stock market. 
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Chapter 3 

RELATED WORK 

Since the stock market involves a substantial amount of money flowing around and can 

make a person rich or poor in a fleeting amount of time, researchers have been trying to 

predict trends in the stock market using a machine learning since the early 1990s. There 

are various routes many researchers have chosen but all these routes can be classified under 

two main types of predictive analysis, which are: 

1. Stock Price Prediction: Trying to predict the next time interval’s stock price which 

effectively becomes a regression problem. 

2. Stock Direction Prediction: Trying to predict the direction in which the stock price 

will move in the next time interval i.e. the price increases, decreases or stays the 

same which effectively becomes a classification problem. 

Many scholars have attempted to use different regression techniques. The authors in (Roy 

et al. 2015) implemented a linear regression model where instead of employing the least 

square method they used Least Absolute Shrinkage and Selection Operator (LASSO) linear 

regression on the Goldman Sachs Group, Inc. (GS) on 3686 trading days (from May 4th, 

1999 to January 3rd, 2014). The authors in (Henrique et al. 2018) used Support Vector 

Regression (SVR) on Brazilian, American and Chinese stocks for both daily and up-to-the-

minute frequencies. The authors in (Gong et al. 2009) applied Logistic Regression on the 

three years (2005-2007) worth of stock data of the Shenzhen Development stock A (SDSA) 

from RESSAT Financial Research Database to predict the trends in next month’s stock 

price according to the current month’s stock price. The authors in (Khan et al. 2018) used 
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Robust Linear Regression on twenty years’ worth of NASDAQ stock exchange, New York 

stock exchange (NYSE), London Stock Exchange (LSE), Karachi Stock Exchange data to 

predict the stock price. 

Ever since online news and social media became popular and the companies started 

announcing important decisions on their websites or on their Twitter pages, people have 

tried to incorporate the online articles and social media messages as features in their 

prediction models. Many researchers have researched the effects of social media and online 

news articles on the stocks of companies. The authors in (Bollen et al. 2011) analyzed daily 

Twitter data to fetch the mood of the every message i.e. positive and negative moods 

measured in terms of 6 dimensions (Calm, Alert, Sure, Vital, Kind and Happy) to validate 

the effects it has on Dow Jones Industrial Average (DJIA). The authors in (Mao et al. 2012) 

incorporated tweets as an exogenous input to their linear regression predictive model to 

predict the S&P 500 closing prices. The authors in (Alostad et al. 2015) collected new 

articles about the companies in the DJIA to train their directional stock prediction system 

went on to prove that breaking tweet leads to a disruption in the direction of the stock price. 

Since the popularity of artificial neural network skyrocketed, savants have tried to create 

neural network models to try predicting the trends in different stock markets. The authors 

in (Gurusen et al. 2011) published a paper about their analysis on how a multi-layered 

perceptron, a dynamic artificial neural network and a hybrid neural network which uses 

autoregressive conditional heteroskedasticity (GARCH) to extract new input variables by 

comparing them across their Mean Square Error (MSE) and Mean Absolute Deviate 

(MAD) of the NASDAQ stock prices. The introduction of a new recurrent neural network 

called Long-Short-Term-Memory (LSTM) caused a storm in this field as this particular 
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neural network could “remember” the past, be it long term or short term. LSTMs were 

great for predicting time series data as they could pick up obscure features from time series 

data using their memory and were able to give amazing results in their predictions. Without 

hesitation, the researchers created models using LSTMs to predict trends in the stock data.  

The authors in (Roondiwala et al. 2017) created a model to predict NIFTY 50 stock prices 

using a Sequential model with two LSTM layers and two Dense layers and used Root Mean 

Square Error (RMSE) as the error metric. The authors in (Tan et al. 2019) proposed a 

tensor-based event-LSTM which performed on an entire year’s worth of data of the China 

Securities markets to predict stock data by combining the fundamental features used in 

stock prediction and the news articles. 

In 2014, Ian Goodfellow created the Generative Adversarial Network (GAN). The GAN 

uses a Generator-Discriminator model to train on the dataset. The inspiration to use a GAN 

in the model came from (Boris Banushev GAN model 2019), where a GAN with LSTMs 

as the Generator and Convolutional Neural Networks (CNNs) as the Discriminator on the 

Goldman Sachs stocks data was applied to a dataset with 112 features. 
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Chapter 4 

DATASETS 

The dataset for my research is the US Stock Market dataset to forecast the stock prices of 

10 companies from different industry sectors, nine of which belong to the Dow Jones 

Industrial Average (DJIA) index. The ten companies with their stock tickers are as follows: 

1. 3M (MMM) 

2. Amazon (AMZN) 

3. American Express (AXP) 

4. Apple (AAPL) 

5. Chevron (CVX) 

6. Cisco Systems (CSCO) 

7. J.P Morgan Chase (JPM) 

8. Procter & Gamble (PG) 

9. Verizon (VZ) 

10. Walmart (WMT) 

The data is fetched the site FirstRateData (FirstRateData 2019), which freely provides 

stock data of every minute starting from 9:30 am, July 6th, 2004 until 1:15 pm, March 28th, 

2019. These constituted over 1.4 million stock datapoints. As training and testing on over 

1.4 million data points would have been cumbersome, we considered the last 200,000 data 

points i.e. the minute data starting from 3:26 pm, September 6th, 2017 to 1:15 pm, March 

28th, 2019. For each time period, the data collected by the API has the following features, 

for the selected time interval: 
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1. Open: the opening stock price of the minute 

2. Close: the closing stock price of the minute 

3. High: the highest stock price of the minute 

4. Low: the lowest stock price of the minute 

5. Volume: the number of shares traded in the minute 

6. Number of trades: the number of trades occurred in the minute. One trade can have 

more than one share traded in it. 

7. Weighted Average Price: the weighted average price of the stock in the minute 

Since the objective is to forecast minute stock prices, two additional features were 

considered: 

1. Volatility 

2. Percentage Change.  

Volatility is a metric which captures the stability of the stock price of a particular company. 

For instance, if the volatility is high, then the stock price is not stable and can be expected 

to fluctuate substantially. Lastly, the percentage change measures the change in closing 

and opening prices in that specific time interval. If the change is frequent and increasing, 

then it can be expected for the stock price to rise as the company is performing well. If the 

change is frequent and decreasing, then it can be expected for the stock price to fall, as the 

company is not meeting the mark in the eyes of its investors. Equations 1 and 2 denote how 

these metrics can be computed with the data obtained from our initial seven main features. 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝑉) =
(𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤) 

𝐿𝑜𝑤
𝑋100           (1) 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐶ℎ𝑎𝑛𝑔𝑒(𝑃𝐶) =
(𝐶𝑙𝑜𝑠𝑒 − 𝑂𝑝𝑒𝑛)

𝑂𝑝𝑒𝑛
𝑋100         (2) 

Using the libraries in Python, 11 new features were considered and those are as follows: 

1. Fast Fourier Transforms (FFT) with frequencies 10, 20 and 50. We have considered 

FFT so that we can capture several long-term and short-term trends by using 

different frequencies. The higher the frequency the closer it mimics the real stock 

data. We calculate the FFT using the fft() method in numpy. 

2. The Moving Average over the windows of sizes 480, 1440 and 3360. A window 

size of 480 indicates 480 minutes i.e. 8 hours or 1 trading day. Likewise, 1140 

indicates a 3-day period and 3360 indicates a 7 day period. The moving average 

helps cut out the noise in the stock price data. Since the average is captured over a 

window, it captures the trend perfectly and removes the noise at the same time. We 

calculated the moving average by finding the mean of the result of the rolling() 

method in the pandas library on the closing prices column. The window size is 

passed as a parameter. 

3. The Exponential Moving Average with Center of Mass 0.25 and 0.5. The 

exponential moving average is a type of moving average that places greater weight 

and significance on the more recent data points and this weight is called the center 

of mass. The exponential moving average was calculated by taking the mean of the 

result of the ewm() method of the pandas dataframe. The center of mass is passed 

as a parameter. 

4. The Moving Average Convergence Divergence (MACD). The MACD is a trend 

following momentum indicator that shows the relation between two moving 

averages i.e. the 26-period moving average and the 12-period moving average. 



 

13 
 

Traders use the MACD to decide when to buy and sell stocks by comparing it with 

the 9-period Exponential Moving Average also known as the MACD Signal Line. 

The MACD is calculated by subtracting the 26-period exponential moving average 

from the 12-period exponential moving average. The window size is passed as a 

parameter to the exponential weighted function in numpy (ewm() function). 

5. The upper and the lower Bollinger bands. The Bollinger bands are a technical tool 

used to detect if a particular stock is being overbought or oversold. If the price 

touches the upper band, it indicates that the stock is being overbought thereby 

triggering a sell signal. If the price touches the lower band, it indicates that the stock 

is being oversold thereby triggering a buy signal. We first calculated the 20-period 

moving average and the standard deviation of the 20-period moving average. The 

upper band was calculated by adding the 20-period moving average with the double 

of the standard deviation of the 20-period moving average. The lower band was 

calculated by subtracting double of the standard deviation of the 20-period moving 

average with the 20-period moving average. 

The 20 features that were taken into consideration are as follows: 

1. Open 

2. Close 

3. High 

4. Low 

5. Volume 

6. Number of trades 

7. Weighted Average Price 
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8. Volatility 

9. Percentage Change 

10. FFT with frequency 10 

11. FFT with frequency 20 

12. FFT with frequency 50 

13. Moving Average of the 1-day-period 

14. Moving Average of the 3-day -period 

15. Moving Average of the 7-day period 

16. MACD 

17. Upper Bollinger Band 

18. Lower Bollinger Band 

19. Exponential Moving Average with Center of Mass as 0.5 

20. Exponential Moving Average with Center of Mass as 0.25 

I ran my model on the dataset containing these 20 features and the approach and results are 

mentioned below. 
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Chapter 5 

APPROACH 

In this section, the problem of predicting accurate closing prices for the minute data is 

formalized. A novel deep neural network model has been developed which predicts the 

closing price for a given time instance in the future (which is denoted by look_forward) 

having observed (or learned from) the past data. In the following section, the procedure for 

the prediction of the closing price for the look_forward time instance with the 

aforementioned 20 features has been discussed. 

 

Figure 2: GAN model for Stock Data Prediction 
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Each company dataset is taken one by one as input. Min-max normalization is performed 

on the input. This input array is split into a training set and a testing set in the ratio 80:20. 

The first 80% of the day (in chronological order)  is used to train the model with no. of 

epochs as 2000, a batch size of 4096 and a sample interval of 50. 

The 20-feature input matrix is first multiplied with its transpose to create a 20x20 affinity 

matrix. The use of an affinity is well described by the authors of (Chuxu Zhang et al. 2018) 

who state that an affinity matrix captures the feature similarities and value scale 

correlations between two-time series and is robust to input noise at certain time series. This 

20x20 affinity is fed as input to the Generator. 

Figure 2 represents the structure of the model used to predict the closing stock prices. The 

model is inherently a Generative Adversarial Network (GAN). This GAN consists of a 

Generator and a Discriminator which trains each other to produce better results. To explain 

how a GAN works, consider a situation of cops trying to capture criminal having expertise 

in dealing with counterfeit notes. Consider the fraudsters to be the Generator and the cops 

to be Discriminator. The fraudsters create counterfeit money and start circulating them. 

The cops must learn to distinguish between fake notes and real notes. If the cops are having 

trouble distinguishing between the real and fake notes, then they must team up with the 

Bank (Ground Truth) and learn the subtle differences between them. Seeing that the cops 

have improved in identifying counterfeit notes then the fraudsters must up their game try 

producing better counterfeit notes, near indistinguishable from authentic currency. This is 

how a GAN works; the generator and discriminator are in this cat-and-mouse game which 

works on the principle of adversarial learning. The generator produces values which are 

then combined with ground truth values and the discriminator must try to discriminate 
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between the ground truth values and the generator values. If the discriminate cannot 

discriminate between the values, then the discriminator must reduce the value of the loss 

function through backpropagation and if it can, then the generator must use 

backpropagation to reduce its loss function. Both nets are trying to optimize a different and 

opposing loss function in a zero-sum game. A zero-sum game is the representation of a 

situation in which each participant's gain or loss of utility is exactly balanced by the losses 

or gains of the utility of the other participants i.e. the sum of the total gains of the 

participants and the negative of the total losses equate to zero (Zero-sum Game Wikipedia 

2019). As the discriminator changes its behavior, so does the generator, and vice versa. 

Their losses push against each other (SkyMind AI 2019). 

Here are a few terminologies used in the following section regarding the description of the 

different models: 

1. Sigmoid Activation Function: 

The sigmoid activation function is given by the formula: 

𝑓(𝑥) =
1

1+ e−x  (3) 

2. Long Short Term Memory Units (LSTMs): 

LSTMs are a type of Recurrent Neural Networks (RNN) that keeps track of Long 

Term memory and Short Term memory, unlike other neural networks that cannot 

“remember” input details. LSTMs take time and sequence into their account as they 

have a temporal dimension. This property of the LSTMs help in sentence 

translation, understanding videos and is effective in understanding time series data. 
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Figure 3: LSTM cell (LSTM cell Image Wikipedia 2019) 

An LSTM is composed of a cell (the memory part of the LSTM unit) and three 

gates, which regulates the flow of information inside the LSTM unit: an input gate, 

an output gate and a forget gate. The cell keeps track of the dependencies between 

the elements in the input sequence. The input gate controls the extent to which a 

new value flows into the cell, the forget gate controls the extent to which a value 

remains in the cell and the output gate controls the extent to which the value in the 

cell is used to compute the output activation of the LSTM unit. The activation 

function of the LSTM gates is the sigmoid function. There are connections into and 

out of the LSTM gates of which some are recurrent. The weights of these 

connections, which need to be learned during training, determine how the gates 

operate (LSTM Wikipedia 2019). 
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3. Convolutional Neural Networks (CNNs): 

CNNs are a type of neural network that takes an input dataset containing a matrix 

of values, applies a kernel or filter on the input matrix to capture the high-level 

features of the input dataset. This new matrix is then reshaped and fed to a neural 

network. The advantage of CNNs over other neural network is that is can easily 

capture the spatial relations between the input features because of the Convolution 

Phase. CNNs are extremely useful when the inputs are images as they can easily 

identify spatial relations in the images. 

The input parameters to a Convolutional Neural Networks are as follows: 

a. No. of units 

b. Filter Size 

c. Stride Length 

d. Type of Padding 

Stride is the length by which the filter shifts over the image after every iteration. 

In many cases the user wants the output of the CNN layer to have the same 

dimensions as the input. In such cases, a padding of zeroes can be added around the 

output of the CNN layer. This is done by specifying the type of padding during 

initialization, where ‘same’ padding added a padding of zeroes around the output 

and ‘valid’ padding does not add any padding around the output. 

4. Convolutional LSTMs (ConvLSTMs): 

ConvLSTMs combines the concepts of Convolutions with LSTMs. The data is first 

scanned by the kernel or filter and this output matrix is reshaped and fed into LSTM 

layers. The advantage of using ConvLSTMs is that this neural network model 
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captures both the spatial (through the convolutions) and the temporal (through the 

LSTMs) relations between the different features (Xingjian et al. 2015). 

5. Dropout: 

A dropout layer is generally added into between other neural network layers to 

avoid overfitting. Dropout is a regularization method that approximates training 

many neural networks with different architectures in parallel. During training, some 

number of layer outputs are randomly ignored or “dropped out”. This has the effect 

of making the layer look-like and be treated like a layer with a different number of 

nodes and connectivity to the prior layer (Srivastava et al. 2014). This makes the 

training process noisy, forcing nodes within a layer to probabilistically take on more 

or less responsible for the inputs, thereby avoiding overfitting (Jason Brownlee 

2018). A dropout rate is specified by the user to specify the probability each node 

has to be dropped out of the network while training. 

6. Batch Normalization: 

Batch Normalization is a regularization technique used to improve the speed, 

performance, and stability of the neural network (Batch Normalization Wikipedia 

2019). It forces the model to converge faster by normalizing the distribution of the 

inputs layers (Ioffe et al. 2015). 

7. Attention: 

There may be cases that when predicting outputs using a neural network, some 

features will be more discriminating than the others. An attention layer will go 

through the input and output and assign weights to each feature thereby giving each 

feature a quantified value for the importance it has to the output.  
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8. tanh Activation function: 

The tanh activation function is given by the following formula: 

𝑓(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥 (4) 

9. Leaky ReLU Activation function: 

Leaky Rectifier Linear Unit (ReLU) Activation function is an activation function 

with the following formula: 

𝑓(𝑥) = {
𝛼𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
    (5) 

 

 

Figure 4: ReLU vs Leaky ReLU functions (Leaky ReLU Image 2018) 

The value of α is generally specified by the user. 

10. Mean Square Error (MSE) function: 

The MSE is a loss function given by the following formula (Isaac Changhau 2017): 

𝐿𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡𝑟𝑢𝑒

𝑖 −  𝑦𝑝𝑟𝑒𝑑
𝑖 )2

𝑛

𝑖=0
  (6) 
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11. Root Mean Square Error (RMSE) function: 

The RMSE is a loss function which is the square root of the MSE. The formula is 

as follows (Isaac Changhau 2017): 

𝐿𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡𝑟𝑢𝑒

𝑖 − 𝑦𝑝𝑟𝑒𝑑
𝑖 )2

𝑛

𝑖=0
  (7) 

12. Mean Absolute Error (MAE) function: 

The MAE is a loss function given by the following formula (Isaac Changhau 2017): 

𝐿𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡𝑟𝑢𝑒

𝑖 −  𝑦𝑝𝑟𝑒𝑑
𝑖 |

𝑛

𝑖=1
  (8) 

13. Wasserstein Distance function: 

The Wasserstein distance is the adversarial loss function used by our GAN model. 

It is a distance function defined between probability distributions where if we 

consider each probability distribution as a pile of dirt then is the minimum "cost" 

of turning one pile into the other, which is assumed to be the amount of dirt that 

needs to be moved times the mean distance it has to be moved. Because of the above 

analogy, this distance is also called the Earth Mover’s distance (Wasserstein 

distance Wikipedia 2019). The formula for Wasserstein loss is as follows, where 

ytrue is the ground truth and ypred is the predicted value: 

𝐿𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 =
1

𝑛
(𝑦𝑡𝑟𝑢𝑒 ∗ 𝑦𝑝𝑟𝑒𝑑) (9) 

14. Softmax Activation function: 

The softmax activation function is given by the formula: 

𝑓(𝑥) =
𝑒𝑥

∑ 𝑒𝑥𝑛
𝑖=0

  (10) 
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The structure of the Generator is as follows in the left to right order, with the input of step 

n+1 is the output of step n, unless mentioned otherwise: 

1. Two-Dimensional Convolutional LSTM Layer with 32 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding.  

2. Batch Normalization Layer 

3. Two-Dimensional Convolutional LSTM Layer with 64 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

4. Batch Normalization Layer 

5. Two-Dimensional Convolutional LSTM Layer with 128 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

6. Batch Normalization Layer 

7. Two-Dimensional Convolutional LSTM Layer with 256 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

8. Batch Normalization Layer 

9. The outputs from 2, 4, 6 and 8 are reshaped and concatenated to form a stack on 

top of each other to form a matrix. 

10. An attention layer is created by applying the mean function on the product of a 

Three-Dimensional Convolution with 1 unit, a 1x1x1 filter, a 1x1x1 stride, ‘valid’ 

padding and ‘softmax’ activation function. The input is the output from step 9. 

11. Two-Dimensional Convolution Layer with 512 units, a 3x3 filter, a 2x2 stride, and 

‘valid’ padding. 

12. Batch Normalization Layer 

13. Leaky ReLU Activation Layer with α = 0.2 
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14. Dropout with dropout rate = 0.3 

15. Two-Dimensional Convolution Layer with 256 units, a 3x3 filter, a 2x2 stride, and 

‘valid’ padding. 

16. Batch Normalization Layer 

17. Leaky ReLU Activation Layer with α = 0.2 

18. Dropout with dropout rate = 0.3 

19. Two-Dimensional Convolution Layer with 128 units, a 3x3 filter, a 2x2 stride, and 

‘valid’ padding. 

20. Batch Normalization Layer 

21. Leaky ReLU Activation Layer with α = 0.2 

22. Dropout with dropout rate = 0.3 

23. Two-Dimensional Convolution Layer with 64 units, a 3x3 filter, a 2x2 stride, and 

‘valid’ padding. 

24. Batch Normalization Layer 

25. Leaky ReLU Activation Layer with α = 0.2 

26. Dropout with dropout rate = 0.3 

27. Flatten 

28. Dense Layer of 100 units and of Leaky ReLU activation with α = 0.2 

29. Dense Layer of 1 unit with tanh activation. 

The outputs from the generator are mixed with the ground truth values and the 

Discriminator is trained using that. The structure of the Discriminator is as follows: 

1. Dense Layer of 1 unit and of Leaky ReLU activation with α = 0.2 

2. Dense Layer of 1 unit and of Leaky ReLU activation with α = 0.2 
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3. Dense Layer of 1 unit and of Leaky ReLU activation with α = 0.2 

4. Dense Layer of 1 unit and of tanh activation 

This is the model structure and the inputs are trained and tested on this structure. The loss 

function used in the GAN model is a combination of the adversarial loss function called 

Wasserstein distance function and the Mean Square Error Loss and is given by the formula: 

𝐿𝐺𝐴𝑁 = 0.6 ∗ 𝐿𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 + 0.4 ∗ 𝐿𝑀𝑆𝐸 (11) 

A combination of two loss functions is used because the Wasserstein loss calculates the 

distance between the two probability distributions but not how far apart the predicted 

values are. Hence MSE is also incorporated in the loss to account for how far apart the 

predicted values are. 

Every hyperparameter in this structure has been selected after running the model in 

multiple iterations with different sets of hyperparameters. The above final set of 

hyperparameters is the set that produces the best results.  
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Chapter 6 

EXPERIMENTAL RESULTS 

The schematic diagram is given in Figure 2. Root-mean-squared (RMSE) and mean-

absolute errors (MAE) are used as evaluation metrics for comparing the above-mentioned 

techniques with our proposed model. The results are divided into the following predictions: 

1. Prediction for the next minute (1-time instance later) 

2. Prediction for the third day (1000-time instances later) 

3. Prediction for the seventh day (3000-time instances later) 

The results of the GAN models were compared against the classic Linear regression 

technique, the classic Huber regression technique, the classic Ridge regression technique 

and a classic LSTM model. Here are the explanations for the regression techniques used: 

1. Linear Regression: 

Linear regression is a regression technique which models the relationship between 

a dependent variable and one or more independent variables using a linear approach 

i.e. one tries to fit a straight line with minimum distance between all the points 

formed by the dependent and the independent variables. Therefore, one can use the 

equation of this line to predict new values of the dependent variables given the 

independent variables. In the case of the Stock Data Prediction Problem, we 

consider the closing price to be the dependent variables and the other features to be 

the dependent variable, thereby trying to fit a line to be able to predict future closing 

price values. The loss function used for Linear Regression is the Mean Square 

Error. 
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2. Huber Regression: 

Huber regression is a type of Robust Regression. Robust Regression is a regression 

technique which is insensitive to outliers and can identify outliers and fit a line 

across all the points created by the dependent and independent variables with least 

error. This is done by having by either setting a threshold δ in the loss function 

where if it crosses the set threshold then the effect on the overall fitting of the line 

is reduced. Huber regression uses Huber loss as its loss function which is given by 

the following formula: 

𝐿𝐻𝑢𝑏𝑒𝑟 = {

1

2
(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑)2, |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑| ≤ 𝛿

𝛿|𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑|  −
1

2
𝛿2 , |𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑| > 𝛿

 (12) 

 

3. Ridge Regression: 

Ridge Regression is a regression technique that assumes that the data suffers from 

multicollinearity i.e. existence of near-linear relationships among the independent 

variables. When multicollinearity occurs, least squares estimates are unbiased, but 

their variances are large so they may be far from the true value. By adding a degree 

of bias to the regression estimates, ridge regression reduces the standard errors 

thereby hoping that the net effect will be to give estimates that are more reliable 

(NCSS 2019). The loss function is as follows where λ is set by the user: 

𝐿𝑅𝑖𝑑𝑔𝑒 = 𝐿𝑀𝑆𝐸 + 𝜆 ∗ (𝑠𝑙𝑜𝑝𝑒)2 (13) 

The comparative study results are presented in Table 1 to Table 6. There are 6 tables, 2 for 

each prediction group. Each prediction group will have a table depicting RMSE values and 

a table depicting MAE values.  
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Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

0.172 1.496 0.052 0.027 0.109 0.064 0.138 0.078 0.036 0.057 

Huber 

Regression 

0.419 1.814 0.085 0.056 0.135 0.112 0.189 0.093 0.048 0.073 

Ridge 

Regression 

0.172 1.496 0.052 0.027 0.109 0.064 0.138 0.078 0.036 0.057 

LSTM 11.032 463.160 1.118 0.899 6.991 3.653 16.188 4.952 3.750 11.552 

GAN 

Model 

0.052 3.386 0.087 0.176 0.045 0.024 0.044 0.223 0.031 0.031 

Table 1: RMSE of all models for all companies for next minute prediction 

Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

0.051 0.601 0.028 0.014 0.035 0.029 0.073 0.020 0.014 0.023 

Huber 

Regression 

0.254 0.846 0.058 0.034 0.057 0.075 0.112 0.031 0.025 0.036 

Ridge 

Regression 

0.051 0.601 0.028 0.014 0.035 0.029 0.072 0.020 0.014 0.023 

LSTM 8.157 364.526 0.731 0.588 5.668 2.821 12.359 3.865 3.050 9.723 

GAN 

Model 

0.032 1.613 0.060 0.042 0.026 0.020 0.030 0.155 0.021 0.024 

Table 2: MAE of all models for all companies for next minute prediction 
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Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

3.078 42.140 1.364 0.894 1.696 1.207 3.203 1.180 0.771 1.145 

Huber 

Regression 

3.592 39.555 1.258 0.991 1.691 1.367 3.045 1.273 0.885 1.125 

Ridge 

Regression 

3.078 42.140 1.364 0.894 1.694 1.207 3.203 1.180 0.771 1.145 

LSTM 29.890 445.790 2.306 1.444 6.887 2.085 15.927 5.154 3.757 11.518 

GAN 

Model 

0.513 8.614 0.250 0.191 0.272 0.188 0.507 0.247 0.127 0.176 

Table 3: RMSE of all models for all companies for the third-day prediction 

Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

2.263 28.640 0.965 0.575 1.162 0.886 2.554 0.840 0.583 0.833 

Huber 

Regression 

2.440 26.981 0.898 0.641 1.151 1.045 2.435 0.892 0.615 0.798 

Ridge 

Regression 

2.263 28.640 0.965 0.575 1.161 0.886 2.555 0.840 0.583 0.833 

LSTM 23.798 357.325 1.802 1.112 5.496 1.534 12.257 3.971 3.076 10.117 

GAN 

Model 

0.371 5.733 0.170 0.090 0.194 0.143 0.405 0.160 0.091 0.129 

Table 4: MAE of all models for all companies for the seventh-day prediction 
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Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

5.900 61.301 2.295 1.395 2.341 1.854 5.601 1.758 1.255 1.563 

Huber 

Regression 

6.728 56.044 2.041 1.203 2.414 1.986 5.278 1.854 1.265 1.687 

Ridge 

Regression 

5.900 61.301 2.294 1.400 2.342 1.854 5.577 1.757 1.255 1.562 

LSTM 10.757 440.954 11.210 2.048 6.886 12.901 15.728 5.255 3.823 11.540 

GAN 

Model 

1.140 12.033 0.457 0.192 0.443 0.405 0.795 0.341 0.233 0.282 

Table 5: RMSE of all models for all companies for the seventh-day prediction 

Method AAPL AMZN AXP CSCO CVX JPM MMM PG VZ WMT 

Linear 

Regression 

4.310 49.886 1.887 1.060 1.763 1.445 4.484 1.282 0.939 1.181 

Huber 

Regression 

4.239 45.912 1.672 0.922 1.731 1.515 4.129 1.301 0.905 1.208 

Ridge 

Regression 

4.310 49.886 1.887 1.060 1.764 1.445 4.472 1.281 0.940 1.179 

LSTM 7.748 353.705 9.985 1.526 5.566 11.463 12.240 4.052 3.109 10.184 

GAN 

Model 

0.895 9.473 0.361 0.148 0.356 0.312 0.615 0.244 0.176 0.212 

Table 6: MAE of all models for all companies for the seventh-day prediction 
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Figure 5 to Figure 21 show all the closing price vs time graphs containing the ground truth 

plots in blue and the plot of the predicted values in orange. These figures contain the plots 

for predictions of the closing price for the next minute, 1000 minutes later and 3000 

minutes later from the current minute. 

 

Figure 5: Closing Price Prediction for the next minute for JPM  
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Figure 6: Closing Price Prediction for the next minute for VZ 

 

Figure 7: Closing Price Prediction for the next minute for MMM 
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Figure 9: Closing Price Prediction for the next minute for WMT 

 

Figure 9: Closing Price Prediction for the next minute for AAPL 
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Figure 10: Closing Price Prediction for 1000 minutes later for JPM 

 

Figure 11: Closing Price Prediction for 1000 minutes later for CVX 
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Figure 12: Closing Price Prediction for 1000 minutes later for MMM 

 

Figure 13: Closing Price Prediction for 1000 minutes later for WMT 
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Figure 14: Closing Price Prediction for 1000 minutes later for AAPL 

 

Figure 15: Closing Price Prediction for 1000 minutes later for PG 



 

37 
 

 

Figure 16: Closing Price Prediction for 1000 minutes later for CSCO 

 

Figure 17: Closing Price Prediction for 1000 minutes later for AMZN 
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Figure 18: Closing Price Prediction for 3000 minutes later for WMT 

 

Figure 19: Closing Price Prediction for 3000 minutes later for PG 
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Figure 20: Closing Price Prediction for 3000 minutes later for MMM 

 

Figure 21: Closing Price Prediction for 3000 minutes later for CVX 
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Table 7 shows the average model training time and the average time taken to test one 

sample for the model for Linear regression, Huber regression, Ridge regression, LSTM and 

the Stock GAN model. The average time in both cases were calculated by measuring the 

time taken for all ten companies for all the three prediction types (next minute, 1000 

minutes later and 3000 minutes later) and averaging them out. The training time was 

calculated by measuring the time taken for the model to train on the training set. The time 

taken to test 1 sample was calculated by dividing the time taken to test for the entire test 

set by the number of samples in the test set. 

Method Training Time Time for testing 1 sample 

Linear Regression 0.2740 s 1.0548 x 10-7 s 

Huber Regression 15.1724 s 1.2273 x 10-7 s 

Ridge Regression 0.1445 s 1.0637 x 10-7 s 

LSTM 56 min 0.1 s 

GAN 2 hrs 34 min 0.3 s 

Table 7: Time taken for Stock Price Prediction Models 

The deep learning models were trained on an 8-core processor with Tesla V-100 (16GB 

variant) GPU for 4000 epochs with a batch size of 1024, whereas the regression models 

were trained on a Dell Inspiron 7559 with 16 GB RAM. 
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Part II 

Opioid Incident Location Prediction 
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Chapter 7 

INTRODUCTION 

Opioids are highly addictive drugs often prescribed by doctors to be used as painkillers. 

According to the statistics provided by the Centers for Disease Control and Prevention 

(CDC), for the year 2017 around 68% of the more than 70,200 drug overdose deaths in 

2017 involved an opioid, and on an average, 130 Americans die every day from an opioid 

overdose (CDC 2017). This number has increased by 12.5% as compared to the year 2016, 

which led the US government to declare this epidemic as a public health emergency in 

October 2017. Blue Cross Blue Shield stated in their 2017 report (BCBS 2017) that 21% 

of their commercially insured members filled at least one Opioid prescription in 2015. 

Their data show that members with an Opioid Use Disorder (OUD) diagnosis grew to 

493% from 2010 to 2016.  

The impact of the opioid epidemic is becoming progressively worse despite all the efforts 

of the government and the governmental agencies involved. Researchers in the medical 

and analytical domains are inspecting methods where meticulous analysis of relevant data, 

may provide some useful insights into the epidemic where relevant data may comprise of 

prescription patterns of health care professionals such as doctors, dentists, nurses, etc. 

Predictive analytics of opioid consumption patterns of patients, time and locations of 

opioid-related incidences, etc. can play an important role in combating the opioid epidemic 

by providing decision-making tools to stakeholders at various levels ranging from the 

health care professionals to the policymakers to the first responders. The insights obtained 

after analysis of such data can be taken into consideration while formulating response at 

multiple levels. Although a few health insurance companies and data analytics firms have 
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examined this important issue, analytical research findings from the analysis of publicly 

available Opioid data are sparse. 

Heat maps (hot spots) of opioid incidences are created by the government and NGOs to 

visualize the impact of the Opioid epidemic. Oftentimes, these maps are created using past 

data of overdose cases. Opioid incidence heat maps generated using the past opioid 

incidents data would be beneficial in aiding these aforementioned stakeholders to visualize 

the profound impact of the epidemic, but such heat maps created using the past data only 

help in providing retrospective information and may not be useful for preventive action in 

the current times or the foreseeable future. An example of an opioid incident heat map is 

shown in Figure 22. 

  

Figure 22: Opioid Overdose Heatmap of the US (Katz and Goodnough 2017) 
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Policy makers, law enforcement agencies, etc. analyze these heat maps to gain insights into 

the spread of the epidemic, over a geographical area. Resource allocation decisions, such 

as the establishment of new Medication Assisted Treatment (MAT) centers, stocking up 

on Naloxone doses, organizing rehabilitation programs, etc. are often based on the analysis 

of Opioid incidence hot spots, obtained from previous data. As mentioned before, the post-

fact generation of heat maps provides respective authorities with only retrospective 

information. It may not be as useful for preventive action, in the current or subsequent 

timeframe. It will be of benefit to these professionals, if they are provided with the 

analytical tools to predict the heat map for the upcoming timeframe (week, month, year, 

etc.), by analyzing historical heat maps. 

In the second part of this thesis, a novel deep neural network architecture is presented, 

which learns the subtle spatiotemporal variations in Opioid incidences data and accurately 

predicts future heat maps. The two datasets considered for evaluating the efficacy of the 

model are: 

1. The Cincinnati Heroin Overdose Dataset 

2. The Connecticut Drug-Related Death Dataset. 
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Chapter 8 

RELATED WORK 

The medical domain has been meticulously studying the effect of opioids on human beings 

for some time. The effectiveness and the harms of long-term opioid therapy for chronic 

pains in adults were studied by the authors of (Chou et al. 2015) with evaluated evidence 

on it. The authors of (Bohnert et al. 2011) studied the correlation of the maximum 

prescribed daily opioid dose and dosing schedules with the risk of opioid overdose death 

amongst patients with cancer, chronic pain, acute pain, and substance use disorder. The 

authors of (Cicero et al. 2017) performed a systematic literature review, using a qualitative 

approach to examine the development of an Opioid-use disorder from the point of initial 

exposure. 

In the analytics and machine learning domain, a substantial amount of work has been going 

on with respect to the opioid problem. The authors of (Mackey et al. 2017) studied illegal 

sales of prescription opioids on Twitter. The authors of (Rice et al. 2012) developed a 

model to identify patients at risk for prescription opioid abuse, using drug claims data. The 

use of machine learning techniques for surveillance of drug overdose was studied by the 

authors of (Neill et al. 2018). The application of deep neural networks, such as recurrent 

neural networks, for classifying patients on opioid use was illustrated by the authors of 

(Che et al. 2017). The authors of (Acion et al. 2017) highlighted the use of machine learning 

and deep learning for predicting substance use disorder treatment success. Even the data 

science researchers from IBM Research and experts at Watson Health have started 

applying data analytics and machine learning techniques to combat the opioid problem 

(IBM 2017). 
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The problem of capturing underlying patterns in time sequences has been a long-standing 

problem in the field of Computer Vision. Recently, generating future patterns have been 

studied by various research group  such as (Isola et al. 2017), (Johnson et al. 2016), 

(Nyugen et al. 2017) and (Han Zhang et al. 2017) The authors in (Junbo Zhang et al. 2017) 

have developed spatiotemporal residual networks for crowd flow prediction. 

Predictive analysis of opioid incidences involves drawing inferences from a large set of 

features, many of which are difficult to identify and procure. In order to circumvent this 

overhead, we propose a methodology to predict the future hot spots (heat maps) by looking 

at hot spots of the previous months. The future hot spot prediction task requires a deep 

understanding of the trajectory of the previous incidence locations. We extend the concept 

presented by (Srivastava et al. 2015) to capture this property by modeling our framework 

on an encoder-decoder architecture, consisting of time-distributed convolutional layers. 

We transform the given task into a supervised-learning problem by sequencing monthly 

opioid-incidence heat maps into fixed-length spatiotemporal representations and utilize 

them to predict heap maps for the subsequent months. 
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Chapter 9 

DATASETS 

The model takes past daily heat maps as input and predicts the heat map for the subsequent 

day. We have tested the efficacy of our model on two publicly available Opioid incidence 

datasets: 

1. The Cincinnati Heroin Overdose dataset: 

The Cincinnati dataset (CD) has been launched by the City of Cincinnati and 

contains detailed information regarding an Opioid-related incident in Cincinnati, 

such as location (latitudinal and longitudinal coordinates), time, EMS response 

type, neighborhood, etc. that require an EMS dispatch (45 features in total). This 

dataset contains incidences ranging from January 2016 till the present day. As of 

May 21, 2019, there are 7191 recorded Opioid incidences spanning 1235 days, 

spread across the neighborhoods of the city.  

 

2. The Connecticut Drug-Related Death dataset: 

The Connecticut Accidental Drug (Opioid) Related Death dataset (CN) is very 

similar to the Cincinnati Dataset.  Every row in the Connecticut Dataset denotes an 

Opioid-related incidence (death in this case) and contains 32 features for each death 

- sex, race, age, city/county of residence, city/county of death, latitude/longitudinal 

information, etc. This dataset is not updated as regularly but has 1612 mortality 

records.  
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Both datasets offer a plethora of features, but to generate the heat maps from these past 

data datasets we were primarily interested in three main features: 

1. Latitude of Opioid Incident Occurrence 

2. Longitude of Opioid Incident Occurrence 

3. Date of Opioid Incident Occurrence 

With these three features, we were able to generate the past data heat maps for every day 

in each of the datasets i.e. 1235 heat maps for the Cincinnati Dataset and 1612 heat maps 

for the Connecticut Dataset. 
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Chapter 10 

APPROACH 

In this section1, the problem of predicting accurate heat maps of the future is formalized. 

To generate the heat map for a particular region over a specified timeframe, the latitudinal 

and longitudinal information present in the datasets have been utilized. A model which 

predicts the heat map for the subsequent day, having observed (or learned from) the past 

data has been developed. The procedure for the generation of the incidence heat maps for 

the Cincinnati dataset only, as the procedure is replicated in a similar manner for the 

Connecticut dataset has been discussed.  

For the Cincinnati dataset, we construct CD' (CD' ⊂ CD), by extracting latitudinal and 

longitudinal information. A tuple CD'{d,x,y} contains three entries, where d ∈ {1,..,1235}, 

denotes the day and {x, y} represents the latitudinal and longitudinal coordinates 

respectively. Similarly, for the Connecticut dataset, we generate CN'{d,x,y} where d ∈ 

{1,..,1612} using the same method. For each value of d, a gray-scale image HMd (heat map 

for day d) is generated by plotting the latitudinal and longitudinal coordinates {x,y}. HMd 

has intensities ranging between [0,255], with 255 in locations where maximum incidences 

have occurred and 0 in locations with no incidence data. All plots have been plotted on a 

predefined scale space, scaled to the Cincinnati land area.  

Given a set of heat map images HMd of n consecutive days, the objective is to predict the 

heat map for the subsequent day. Due to resource limitations, we could only consider n 

1The following section’s contents were taken from the paper “Predicting Future Opioid Incidences 

Today” by Sandipan Choudhuri, Kaustav Basu, Kevin Thomas and Arunabha Sen, for which I was 

the third author. The paper is currently on Arxiv at http://arxiv.org/abs/1906.08891. 

 

http://arxiv.org/abs/1906.08891
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(where 2 ≤ n ≤ 8) consecutive days, for capturing the spatial and temporal dependencies of 

Opioid incidences. 

The proposed task of predicting future hot spots can be formulated as a supervised learning 

problem. More formally, a training data-label pair is represented as a stacked volume of 

the n heat maps {HM't,HM't+1,...,HM't+n-1} corresponding to images of n consecutive days 

as input, and the HM't+n
th image as the train label, where, 1≤ t ≤ s and s ≤ |HM'| - n - 1. 

Here, s controls the train-test split and is based on the cardinality of HM'. The value of s is 

based on the respective dataset and is explained in the subsequent paragraphs. Given 

missing data i.e. if there are no incidences reported for a day, the corresponding heatmap 

is a blank image of zero values. 

For testing, given a stack <HM't,HM't+1,..., HM't+n-1> of n consecutive heat-maps, the 

model will output the heat map HM't+n for the (t+n)th day. Here, (s+1) ≤ t ≤ |HM'| - n. As 

mentioned earlier, to capture the dependency of incidence counts on varying scales of daily 

information, we worked with large values of n (2 ≤ n ≤ 8) and found n = 6 to be optimal.  

A novel deep neural network to solve the above-mentioned problem. The proposed learning 

task can be modeled under a Generative Adversarial Learning framework that handles 

spatiotemporal data. Consequently, we construct a model comprising of Attention-Based 

Stacked Convolutional LSTMs as the generative model G to predict heatmap for the next 

time-frame. The discriminative model D is based on the CNN architecture and performs 

convolution operations on the input heatmap in order to estimate the probability whether a 

sequence comes from the dataset or is produced by G. We use an adversarial loss to train 

the combined model (G and D). The prime intuition behind using this loss is that it can 

simulate the operating zones of incidences through historically available indicator data. 
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However, in practice, minimizing adversarial loss alone cannot guarantee to satisfy the 

predictions. G can generate samples that can confuse D without even being close to the 

actual distribution of future heatmaps. In order to tackle this problem, we propose a 

prediction error loss that minimized the L1-distance between the actual and generated 

samples. The model is trained using a joint loss function formed by the combination of 

adversarial and prediction error losses. 

For the Cincinnati Heroin Dataset CD, the first 800 heat maps are used for training. The 

remaining 435 heat maps are used for testing. Similarly, for the Connecticut dataset, the 

first 1200 heat maps are used for training and the remaining 412 heat maps are used for 

testing. We trained our algorithm with a set of n values (n = {1,2,3,4,5,6,7,8}) and found 

n=7 to yield the minimum mean-squared error on the testing data of both datasets. The 

testing data heat maps for both datasets start from January 14th, 2017. 

Here are a few terminologies used in the following section regarding the description of the 

different models: 

1. Encoder-Decoder Framework: 

The Encoder-Decoder framework is a neural network divided into two parts i.e. the 

encoder (which is a neural network where the number of units in every hidden layer 

is lesser than the number of units in the input layer) and a decoder (which is a neural 

network where the number of units in every hidden layer is greater than the number 

of units in the input layer). When combined, the encoder-decoder framework aims 

to efficiently represent the initial input i.e. can map the input into a new input space. 
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2. Max Pooling: 

Max pooling is a sample-based discretization process which is used to down-sample 

an input representation, reducing its dimensionality and allowing for assumptions 

to be made about features contained in the sub-regions binned. This is done in part 

to help over-fitting by providing an abstracted form of the representation. As well, 

it reduces the computational cost by reducing the number of parameters to learn 

and provides basic translation invariance to the internal representation. Max 

pooling is done by applying a max filter to (usually) non-overlapping subregions 

of the initial representation (Max Pooling 2019). 

3. Scalar Exponential Linear Unit (SELU) Activation function: 

The SELU activation function is given by the formula: 

𝑓(𝑥) = 𝜆 {
α(𝑒𝑥 − 1), 𝑥 < 0

𝑥, 𝑥 ≥ 0
  (14) 

The 𝜆 and the α are fed as input to the function.  

4. Transposed Convolution Neural Network (ConvTranspose): 

Transposed Convolution is used to conduct up-sampling. For example, in a CNN 

layer, the input is of size 4x4, filter size of 3x3, a stride of 1x1 and no padding; we 

will get an output of size 2x2. If the need arises to up-sample the 2x2 matrix into 

the 4x4 matrix, Transposed Convolution is used. 

We evaluate the performance of the proposed method on both datasets (Cincinnati and 

Connecticut), with three other standard machine-learning techniques: 

 

 



 

53 
 

1. Convolutional LSTMs (ConvLSTMs): 

A classic five-layer ConvLSTM model with Global Average Pooling as the last 

layer. 

2. Attention-based ConvLSTMs (Att-ConvLSTMs) (A variant of the model present 

by (Byoen et al. 2018)): 

The layers used in the Att-ConvLSTM model is as follows: 

a. Two-Dimensional Convolution LSTM Layer with 64 units, a 3x3 filter, a 

1x1 stride and ‘same’ padding. 

b. Max Pooling with a 2×2 filter 

c. Two-Dimensional Convolution LSTM Layer with 128 units, a 3x3 filter, a 

1x1 stride and ‘same’ padding. 

d. Max Pooling with a 2×2 filter 

e. Two-Dimensional Convolution LSTM Layer with 256 units, a 3x3 filter, a 

1x1 stride and ‘same’ padding. 

To highlight the degree of importance that the features from each time-frame 

exhibit, we weigh each feature map using a softmax attention layer. Scaled 

Exponential Linear Unit (SELU) is used as the activation function in each 

convolutional block.  

3. Time-Distributed version of Convolution Encoder-Decoder Framework built upon 

the UNet++ model (Zhou et al. 2018) (TD Conv-Env-Dec): 

A classic Encoder-Decoder framework which takes the time distributed heat maps 

as input and produces future heat maps as output. 
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As these architectures have different input configuration specifications, the input stacks of 

heat-maps are configured specifically for each model. For Convolutional-LSTMs and TD-

Conv-Enc-Dec, the input stack of heat-maps is scaled in the range [0,1]. For our approach, 

we utilize the Wasserstein distance as the adversarial loss function. To ensure stability in 

the training process, the input stacks are scaled within the range [-1,1].  

 

Figure 23: GAN model for Opioid Prediction 

The learning task can also be modeled on an encoder-decoder framework TD-Conv-End-

Dec, that handles data of different temporal scales. The architecture should be able to 

bridge the semantic gap between feature maps generated from temporal data.  

(Ronneberger et al. 2015) and (Drozdzal et al. 2016) systematically investigated the 

importance of skip connections to capture semantic links between feature maps. We build 

our model on UNet++, an encoder-decoder architecture with nested skip-pathways, 

proposed by (Zhou et. al.) As our input data is a stack of time-dependent images, we use a 
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series of nested time-distributed dense convolutional blocks. The nested skip pathways 

over the time-distributed convolutional layers aid in reducing the semantic gap between 

feature maps of the encoder and decoder, prior to feature-fusion. This is followed by 

aggregation of feature-information from n different temporal-scales (n=6), where we 

employ global average-pooling over the flattened output of the last convolutional layer. 

Feature-reshaping is performed over the output of the global-pooling layer to generate the 

heat map. 

For the proposed model, `RMSProp' is used as the model optimizer instead of the standard 

gradient descent optimizer because RMSProp optimizer allows us to have a higher learning 

rate to converge to the global minima faster and making sure we do not overshoot the global 

minima because it restricts the oscillations in the vertical direction (Rohith Gandhi 2018). 

Learning rate set to 0.00005. Our model is trained for 1500 epochs with a batch size of 8.  

The structure of the Generator is as follows: 

1. Two-Dimensional Convolutional LSTM layer with 16 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

2. Batch Normalization Layer 

3. Two-Dimensional Convolutional LSTM layer with 32 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

4. Batch Normalization Layer 

5. Two-Dimensional Convolutional LSTM layer with 64 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

6. Batch Normalization Layer 
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7. Two-Dimensional Convolutional LSTM layer with 128 units, a 3x3 filter, a 1x1 

stride and ‘same’ padding. 

8. Batch Normalization Layer 

9. Attention Layer 

10. Two-Dimensional Transposed Convolutional Neural Network layer with 128 

units, a 3x3 filter, a 1x1 stride and ‘same’ padding. 

11. Batch Normalization Layer 

12. Leaky ReLU Activation Layer with α = 0.2 

13. Dropout with dropout rate = 0.3 

14. Two-Dimensional Transposed Convolutional Neural Network layer with 64 units, 

a 3x3 filter, a 1x1 stride and ‘same’ padding. 

15. Batch Normalization Layer 

16. Leaky ReLU Activation Layer with α = 0.2 

17. Dropout with dropout rate = 0.3 

18. Two-Dimensional Transposed Convolutional Neural Network layer with 32 units, 

a 3x3 filter, a 1x1 stride and ‘same’ padding. 

19. Batch Normalization Layer 

20. Leaky ReLU Activation Layer with α = 0.2 

21. Dropout with dropout rate = 0.3 

22. Two-Dimensional Transposed Convolutional Neural Network layer with 16 units, 

a 3x3 filter, a 1x1 stride and ‘same’ padding. 
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The structure of the Discriminator is as follows: 

1. Two-Dimensional Convolutional Neural Network layer with 16 units, a 3x3 filter, 

a 1x1 stride and ‘same’ padding. 

2. Batch Normalization Layer 

3. Leaky ReLU Activation Layer with α = 0.2 

4. Dropout with dropout rate = 0.25 

5. Two-Dimensional Convolutional Neural Network layer with 16 units, a 3x3 filter, 

a 1x1 stride and ‘same’ padding. 

6. Batch Normalization Layer 

7. Leaky ReLU Activation Layer with α = 0.2 

8. Dropout with dropout rate = 0.25 

9. Two-Dimensional Convolutional Neural Network layer with 16 units, a 3x3 filter, 

a 1x1 stride and ‘same’ padding. 

10. Batch Normalization Layer 

11. Leaky ReLU Activation Layer with α = 0.2 

12. Dropout with dropout rate = 0.25 

13. Two-Dimensional Convolutional Neural Network layer with 16 units, a 3x3 filter, 

a 1x1 stride and ‘same’ padding. 

14. Batch Normalization Layer 

15. Leaky ReLU Activation Layer with α = 0.2 

16. Dropout with dropout rate = 0.25 

17. Flatter Layer 

18. Dense 
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This is the model structure and the inputs are trained and tested on this structure. The loss 

function used in the GAN model is a combination of the adversarial loss function called 

Wasserstein distance function and the Mean Square Error Loss and is given by the formula: 

𝐿𝐺𝐴𝑁 = 0.6 ∗ 𝐿𝑊𝑎𝑠𝑠𝑒𝑟𝑠𝑡𝑒𝑖𝑛 + 0.4 ∗ 𝐿𝑀𝑆𝐸 (15) 

A combination of two loss functions is used because the Wasserstein loss calculates the 

distance between the two probability distributions but not how far apart the predicted 

values are. Hence MSE is also incorporated in the loss to account for how far apart the 

predicted values are. 

Every hyperparameter in this structure has been selected after running the model in 

multiple iterations with different sets of hyperparameters. The above final set of 

hyperparameters is the set that produces the best results. 
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Chapter 11 

EXPERIMENTAL RESULTS 

The schematic diagram is given in Figure 21. Mean-squared (MSE) and mean-absolute 

errors (MAE) are used as evaluation metrics for comparing the above-mentioned 

techniques with our proposed model. The results are presented in Table 8 and Table 9. 

Twenty-five daily Opioid incidence predictions for the Cincinnati and Connecticut datasets 

are illustrated in Figure 24 to Figure 28. The left column indicates the ground truth images 

for the respective daily incidences. The right column images are the predicted heat maps 

for the corresponding days. Greater the intensity, greater the likelihood of Opioid 

incidences occurring in that geographical area.  

Method MSE MAE 

ConvLSTM 0.0628 0.0083 

Att-ConvLSTM 0.04256 0.0062 

TD-Conv-End-Dec 0.0562 0.0075 

GAN model 0.03371 0.0057 

Table 8: Evaluation Results of the following methods on Cincinnati dataset 

Method MSE MAE 

ConvLSTM 0.0583 0.0081 

Att-ConvLSTM 0.0415 0.0067 

TD-Conv-End-Dec 0.0517 0.0073 

GAN model 0.0309 0.0052 

Table 9: Evaluation Results of the following methods on Connecticut dataset 
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Figure 24: Opioid Output Set 1 
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Figure 25: Opioid Output Set 2 
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Figure 26: Opioid Output Set 3 



 

63 
 

 

Figure 27: Opioid Output Set 4  
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Figure 28: Opioid Output Set 5 
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Table 10 and Table 11 shows the average model training time and the average time taken 

to test one sample for the model for ConvLSTM, Att-ConvLSTM, TD-Conv-End-Dec and 

the Opioid GAN models for both the Cincinnati and Connecticut datasets. The training 

time was calculated by measuring the time taken for the model to train on the training set. 

The time taken to test one sample was calculated by dividing the time taken to test for the 

entire test set by the number of samples in the test set. 

Method Training Time Time for testing 1 sample 

ConvLSTM 4 hrs 32 min 0.3 s 

Att-ConvLSTM 5 hrs 13 min 0.4 s 

TD-Conv-End-Dec 6 hrs 58 min 0.7 s 

GAN model 8 hrs 3 min 0.7 s 

Table 10: Time taken for Overdose Location Prediction Models for Cincinnati Dataset 

Method Training Time Time for testing 1 sample 

ConvLSTM 5 hrs 48 min 0.3 s 

Att-ConvLSTM 6 hrs 27 min 0.4 s 

TD-Conv-End-Dec 8 hrs 34 min 0.7 s 

GAN model 9 hrs 6 min 0.7 s 

Table 11: Time taken for Overdose Location Prediction Models for Connecticut Dataset 

All the models were trained on an 8-core processor with Tesla V-100 (16GB variant) 

GPU for 4000 epochs with a batch size of 1024. 
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Chapter 12 

THESIS CONCLUSION 

In this thesis document, I investigated time series analysis and time series forecasting using 

novel deep learning methods in two cases, which are as follows: 

1. Stock Data Prediction 

2. Opioid Incident Prediction 

In the first case of Stock Data Prediction, a state-of-the-art deep learning architecture using 

a Generative Adversarial Network (GAN) has been presented for the prediction of the 

closing price of the stock. The Discriminator train the Generator using the input data with 

20 features. The performance of the model was compared to the performance of three 

regression models i.e. Huber regression, Linear regression, and Ridge regression; as well 

as an LSTM model. The performance metrics used for comparison were Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE). It is evident from the results that for the 

next minute prediction, the GAN model results were comparable to the regression models 

and beats the LSTM models; but for the third-day prediction and the seventh-day 

prediction, the GAN model trumps all the regression models and the LSTM models by 

quite a margin. With respect to train and test time, the regression techniques are faster than 

the deep learning models due to the relative simplicity of regression over deep learning. If 

the deep learning techniques are compared, then the GAN model takes a longer time to 

train and test than the LSTM model but the testing times are relatively close compared to 

the training time. The GAN model does take a longer time to train and test but does give 

better results in most cases. 
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In the second case of Opioid Incident Prediction, a novel deep learning architecture using 

a GAN has been presented for the generation of future heat maps, by analyzing past Opioid 

incidences, for the Cincinnati and Connecticut datasets. The input heat maps were 

generated using the latitude and longitude coordinates in the dataset and were associated 

with the attached date. The performance of the model was compared to existing works 

using Convolutional LSTMs (ConvLSTMs), Attention-based ConvLSTMs and Encoder-

Decoder frameworks. Even with a small dataset, it has been observed that the predictions 

provided by the model are accurate and are better than the existing models. The 

performance metrics used were Mean Square Error (MSE) and Mean Absolute Error 

(MAE). With respect to the training times, the GAN model takes the longest time to train 

compared to the other three models. With respect to the testing times, the ConvLSTM and 

Att-ConvLSTM models are relatively faster but the times of the TD-Conv-End-Dec model 

is comparable to the GAN model. The GAN model does take a longer time to train (and 

test in some cases) but does give better results. 
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