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ABSTRACT  

   

Non-Destructive Testing (NDT) is a branch of scientific methods and techniques 

used to evaluate the defects and irregularities in engineering materials. These methods 

conduct testing without destroying or altering material’s structure and functionality. Most 

of these defects are subsurface making them difficult to detect and access.  

SONIC INFRARED (IR) is a relatively new and emerging vibrothermography 

method under the category of NDT methods. This is a fast NDT inspection method that 

uses an ultrasonic generator to pass an ultrasonic pulse through the test specimen which 

results in a temperature variation in the test specimen. The temperature increase around 

the area of the defect is more because of frictional heating due to the vibration of the 

specimen. This temperature variation can be observed using a thermal camera.  

In this research study, the temperature variation in the composite laminate during 

the SONIC IR experimentation using an infrared thermal camera. These recorded data are 

used to determine the location, dimension and depth of defects through SONIC IR NDT 

method using existing defect detection algorithms. Probability of detection analysis is 

used to determine the probability of detection under specific experimental conditions for 

two different types of composite laminates. Lastly, the effect of the process parameters 

such as number of pulses, pulse duration and time delay between pulses of this technique 

on the detectability and probability of detection is studied in detail.  
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CHAPTER 1 

INTRODUCTION 

Mechanical equipment and components under various kinds of loads and damages during 

its life of operation. Most these damages and defects are subsurface (below the surface) 

and cannot be detected easily. There are inspection techniques which can be used to 

evaluate these components effectively. These inspection techniques come under the class 

of Nondestructive Testing (NDT) techniques. These methods not only locate defects in the 

component and but also their shape, size, depth etc. 

In our research, we analyze a nondestructive inspection method known as SONIC Infrared 

(IR) testing NDE method. SONIC IR comes under the category of ‘vibrothermography’ 

which is a non-destructive inspection method which analyses the heat produced by the 

damages in a component when an ultrasonic signal is applied to it.     

SONIC IR is an inspection technique that uses a short high frequency pulse which is 

applied at a convenient point on the surface of the component under study. The pulse 

typically ranges from 50 to 300ms and the frequency is of the range 20 to 40 KHz [1]. The 

pulse signal produces localized frictional heating near the defect area. The frictional 

heating is caused because the two surfaces of internal defects do not vibrate in unison when 

sound propagates through the component. Due to this frictional heating, the temperature 

near the defect area rises as compared to the other areas and this serves as the basis of this 

non-destructive method. The temperature rise is observed through an IR camera. The 

defects appear as bright spots against a dark background when seen through the IR camera. 
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1.1  

LITERATURE REVIEW 

SONIC IR method comes under the classification of Infrared thermography (IRT) 

nondestructive testing techniques. Infrared thermography is an accurate and quick 

nondestructive testing method widely used for inspection of mechanical components. 

Mechanical components undergo severe damages during their operation cycle which 

causes defects in the components. Most of these defects occur at subsurface levels of the 

components which are difficult to detect. IRT can be categorized into two categories: 

passive(stationary) and active(non-stationary) thermography [1].  

Active thermography involves using external excitation source like optical radiation(laser), 

electromagnetic stimulation (induced eddy current), ultrasonic waves to generate heat 

around the damage/defect area in the component resulting in a temperature increase which 

can be recorded with an IR camera [1]. Some of the active IRT methods for defect detection 

are reviewed and discussed in the next section. 

 

Optically Stimulated Thermography 

An optical heat source is used to generate thermal waves in this category of thermography. 

The most commonly used methods are Pulsed thermography (PT), Lock-in thermography 

(LIT), Step heating thermography (SHT), Long pulse thermography (LPT) etc. [1]. Some 

of these are discussed below: 
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1. Pulsed Thermography  

Pulsed Thermography (PT) uses a high intensity pulse of light to heat the surface 

of the test component via photothermal effect [1]. The duration of light pulse ranges 

from 0.1 to 50ms depending on the thermal properties of the component and the 

defect depth [1]. The temperature T at a depth d at a time t after a uniform impulse 

of energy Q is given by [1]: 

 

T =  
Q

2ζ√πt
e

−d2

4αt  

                                                                                                                               (1)                                         

 

ζ = Thermal effusivity of the material (W s1/2 m-2 K-1) 

α = Thermal diffusivity of the material (m2/s) 

 

2. Lock-in Thermography (LIT) 

An external periodic heat excitation is used to generate thermal waves in the test 

specimen [1]. The LIT method is less sensitive to the local variations of surface 

emissivity [1]. 

For a homogenous isotropic semi-infinite material with the surface being uniformly 

illuminated by a periodically modulated light beam with intensity qd, the 

temperature T at a depth d is given by [1]: 
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T =  
Q

2ζ√ω
e

−d
µ   e

j(ωt−
d
µ

)
 

(2) 

 

qd =  
Q[1 + exp(jωt)]

2
 

(3) 

 

ω = Angular modulation of the heat source 

µ = Thermal diffusion length of the material  

ζ = Thermal effusivity of the material (W s1/2 m-2 K-1) 

 

 

3. Step Heating and Long Pulse Thermography (SHT and LPT) 

In both SHT and LPT, a low intensity step-pulse heat source is applied for a long 

period of time typically ranging from milliseconds to few seconds, which enables 

a longer heating time to detect deeper defects in the test specimen [1]. In SHT, the 

data is recorded during the experimentation whereas in LPT the data is acquired 

during the cooling phase. The temperature T at the surface of the test specimen of 

depth D is given by [1]: 
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T =  
2Q

ζ
√

t

π
 [1 + √π ∑ 2ierfc (

nD

√αt
)

 ∞

n=1

] 

(4) 

 

ierfc(x) =
1

√π exp(−x2) − x. erfc(x)
 

 

(5) 

 

Ultrasonic Stimulated Thermography 

One of the shortcomings of optically stimulated thermography is its inefficiency in 

detecting in-depth defects and damages. Using external optical heat sources limits the 

detection of defects located beneath the surface of the test specimen.  

Ultrasonic stimulated thermography involves generating powerful vibrations of short time 

period in the test specimen causing frictional heating around the defects. The resulting 

temperature change on the surface of the specimen around the defect is detected using an 

infrared camera. Vibrations are produced in the test specimen using an ultrasonic 

transducer that is in contact with the surface of the component under testing. The frequency 

ranges from 15-50 kHz [1] and the duration of the pulse varies from 30 – 200ms [1]. 
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Xiaoyan Han et al. [2] reviewed the application of SONIC IR imaging for disbonds and 

delaminations in composites and use of broadband chaotic sound to eliminate artefacts 

resulting from acoustic interference. SONIC IR method has the capability of detecting tight 

disbonds that are usually not detectable using conventional thermography methods. The 

use of chaotic sound eliminates the acoustic mode patterns and interferences due to the 

heating of the specimen. 

X. Han et al. [3] studied the effect of structure and relative position of the sound source on 

the defects in SONIC IR testing method. From the study, it was observed that the acoustic 

behavior of composites is different from that of metals. The detectability of defects depends 

on the composite structure and relative locations between the ultrasound source and the 

defects. Due to attenuation of sound propagation in composites, time duration for the 

ultrasonic pulse signal is longer as compared to that for metal structures. Through this 

study, it was shown that SONIC IR imaging can be used for fast wide area inspection in 

composite structure and detect disbond in aircraft composite. 

 

Eddy Current Stimulated Thermography 

Eddy Current Stimulated Thermography (ECST) involves inducing eddy currents in a 

conductive material through a coil and the temperature due to induction heating is observed 

with an IR camera [1]. When eddy currents encounter a damage/defect in the material, it 

diverts and changes the direction of the current flow. This results in areas of increased and 

decreased eddy current density leading to relatively hot and cool areas [1]. High eddy 
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current pulse with frequency ranging from 150-450 kHz [1] is applied for period ranging 

from few milliseconds for high-conductivity materials like metals to few seconds for low-

conductivity specimens like plastics and carbon fiber reinforced plastic laminates.    

 

Defect Detection 

The main objective of this research is to detect defect in composite laminates through the 

SONIC IR NDT method. The research objectives include using existing algorithms for 

image processing and analysis models, analytical model for defect depth determination, 

determining the reliability of the SONIC IR method through the POD model and analyzing 

the process parameters of the experiment.  

Defect detection in thermal images is used to evaluate the effectiveness of an NDT method 

to detect the defects present in the component under study. Several research works have 

been conducted for the object detection in images.  

The algorithms for defect detection can be categorized into two categories namely 

nondedicated and dedicated algorithm. A nondedicated algorithm is not specifically used 

for thermal images while a dedicated algorithm is specifically used for thermal images. 

Thresholding is the most common method for object separation in images owing to its 

simplicity [4]. Most commonly the histogram of the image in thresholding method. If an 

image f(x,y) where f is the gray level of each pixel of the image is composed of a bright 

object on a dark background, a threshold T is determined from the gray level histogram of 

the image which separate the bright object from the dark background. 
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A thresholded image h(x,y) from an image f(x,y) can be defined as [4]: 

h(x,y) = 1 if f(x,y) > T 

h(x,y) = 0 if f(x,y) ≤ T 

If the gray-level histogram is determined for the entire image, then the threshold T is the 

global threshold level whereas if the threshold level is derived from an area of the image 

then it is referred as local threshold level [4].  

 

Mehmet Sezgin and Bulent Sankur [5] categorized thresholding techniques into six types:  

1. Histogram shape-based thresholding method 

2. Clustering based thresholding method 

3. Entropy based thresholding method 

4. Object-attributed based method 

5. Spatial methods 

6. Local methods 

 

Otsu [6] proposed a thresholding method in which the threshold is selected by maximizing 

the between-class variances. Otsu presented a nonparametric and unsupervised method of 

automatic thresholding of images for image segmentation. This method is used to 

automatically select a threshold from a grey level histogram of the image using the 

discriminant analysis. The optimal threshold is determined by maximizing the discriminant 

measure or the measure of separability of the resultant classes in gray levels of the image.  
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Rosenfield and DelaTorre [7] proposed segmentation of image into gray level 

subpopulations is by selecting thresholds at the bottoms of valleys on the histogram. If the 

subpopulations overlap, valleys may not exist, but it is still possible to select thresholds at 

the shoulders of the histogram peaks. Both valleys and shoulders correspond to concavities 

on the histogram and the deepest concavity point becomes the candidate for selecting the 

thresholds. 

 

Kapur et al. [8] proposed an algorithm for selecting a threshold from the gray level 

histogram of an image using the entropy concept from information theory. In this 

algorithm, the foreground and background of the image are considered two different signal 

sources and when the sum of the two class entropies reaches it maximum, the optimum 

threshold is obtained. 

 

Tsai [9] used moment preserving principle for optimal threshold selection. Before 

thresholding the image, the gray level moments of the image are determined. The 

thresholds are then selected in such a way that the moments of the thresholded image are 

preserved.  

 

Niblack’s binarization method (NBM) is one of the oldest local binarization method [10]. 

In this method, the threshold value is determined by calculating the local mean and standard 
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deviation of pixels value in a local window of an image. The threshold formula used is 

defined as [10]: 

 

Td = u(x,y) + k * s(x,y) 

(6) 

where u (x, y) and s (x, y) are the local mean and standard deviation and k is an image 

dependent manually selected parameter (−0.2 for dark foreground and 0.2 for dark 

background). 

Due to the limitations of the non-dedicated algorithms for defect detection in thermal 

images, dedicated algorithms have been proposed and developed. 

Hamadani [4] used first-order statistics properties, mean, u, and standard deviation, s, to 

extract a bright object in a thermal image. The threshold level of an image of size M x N 

is given by [4]: 

T = k1 * u + k2 * s 

(7) 

u =
1

M ∗ N
∑ ∑ f(i, j)

N

j=1

M

i=1

 

(8) 

s = √
1

M ∗ N
∑ ∑(f(i, j) − u)2

N

j=1

M

i=1

 

(9) 
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Sapina [11] method includes using six textural features of an image based on the gray level 

co-occurrence matrices (GLCM) to segment the warm objects from the background of the 

image. The six textural features used are: maximum probability, uniformity of energy, 

inverse difference moment, contrast, variance and correlation. After obtaining the textural 

features images, further image processing is required to clearly separate the defects from 

the background.  

X. Maldague  et al.  [12] proposed an algorithm for defect extraction in infrared or low 

spatial content images. First, the potential defect locations are determined by spatial sorting 

of the pixels in decreasing order of their brightness. Pixel labeling is performed on the basis 

of the distance. The shape of the defect is obtained by gradually decreasing the threshold 

until it encounters a sudden increase in the number of pixels agglomerates, or an image 

boundary is encountered. 

 

Depth Estimation 

Many depth estimation methods have been proposed for determining the depth of the defect 

in the test specimen for the pulsed thermography NDE method. These methods involve 

using a specific characteristic time from the temperature decay curve and it is correlated to 

the depth of the defect. Some of the examples of these methods are peak contrast method, 

peak slope method, half rise method, half rise contrast method, early time method, absolute 

peak slope method, deviation time method, logarithmic first derivative half rise method 

and logarithmic peak second derivative time method. 

https://ieeexplore.ieee.org/author/37266668900
https://ieeexplore.ieee.org/author/37266668900
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For pulsed thermography, the temperature decay around the defect area as a function of 

time is defined as [14]: 

 

T(t) =
Q

ρCL
[1 + 2 ∑ exp (−

n2π2

L2
αt)

∞

n=1

] 

(10) 

Q = Input energy per unit area (J/m2) 

ρ = Density (kg/m3)  

C = Specific heat (J/kgK) 

α = Thermal diffusivity (m2/s) 

L = Sample thickness (m) 

 

The temperature contrast (ΔT) is defined as the difference between the temperature around 

the defect area (T) and temperature of the reference area of the test specimen (Tr). 

 

ΔT = T - Tr 

 

 

 

 

 



13 

 

1. Peak Temperature Contrast Method 

The temperature contrast is defined as [14]: 

 

ΔT = T - Tr 

 

ΔT =
Q

ρCL
[1 + 2 ∑ exp(−n2ω)

∞

n=1

] −
Q

ρCLr
[1 + 2 ∑ exp(−n2ωr)

∞

n=1

] 

 (11) 

ω =
π2αt

L2
 ;  ωr =

π2αt

Lr
2

 

(12) 

Due to 3D heat conduction effect, the temperature contrast first increases and then 

decreases with respect to time [14]. The time at which the thermal contrast reaches its 

maximum value is defined as the characteristic time. It was observed that this characteristic 

time is approximately proportional to the square of the defect depth.  

 

2. Peak Temperature Contrast Slope Method 

In this method, the characteristic time is defined as the time at which the first derivative of 

the temperature contrast reaches its peak value. The temperature contrast slope can be 

defined as [14]: 
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ΔT =
Q

ρCL
[1 + 2 ∑ exp(−n2ω)

∞

n=1

] −
Q

ρCLr
[1 + 2 ∑ exp(−n2ωr)

∞

n=1

] 

(13) 

Substituting  

z =
L

Lr
 

(14) 

 V =
TCLrρ

Q
 

(15) 

ΔV =  
1

z
− 1 + 2 ∑

e
−

n2ωr
z2

z
− e−n2ωr

∞

n=1

 

(16) 

d(ΔV)

dωr
= ∑ 2n2 (e−n2ωr −

e
−

n2ωr
z2

z3
)

∞

n=1

 

(17) 

The peak slope time Ts is approximately proportional to the defect depth and the 

proportionality constant does not depend on the defect size. Ts can calculated by equating 

the second derivative of equation (17) to 0. 

Ts =
3.64L2

π2α
 

(18) 
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3. Logarithmic Peak Second Derivative Method 

In Logarithmic Peak Second Derivative Method, the peak of the second derivative of the 

surface temperature of the specimen on a logarithmic scale is used to estimate the defect 

depth. The surface temperature of the test specimen is given by [14]: 

T(t) =
Q

ρCL
[1 + 2 ∑ exp (−

n2π2

L2
αt)

∞

n=1

] 

(19) 

The first derivative of the surface measured temperature is calculated as [14]: 

d(ln T)

d(ln t)
=

t

T
 
dT

dt
 

(20) 

The second derivative is calculated as [14]: 

d2(ln T)

d(ln t)2
=

t

T
 
dT

dt
−

t2

T2
(

dT

dt
)

2

+
t2

T

d2T

dt2
 

(21) 

dT

dt
= −

Q

ρCL

2ω

T
∑ n2e−n2ω

∞

n=1

 

(22) 

d2T

dt2
=

Q

ρCL

2ω2

T2
∑ n4e−n2ω

∞

n=1

 

(23) 

 



16 

 

Solving the above two equations, the second derivative peak time TP obtained is given by: 

TP =
L2

πα
 

(24) 

4. Least Squares Fitting Method 

J.G. Sun [15] proposed a theoretical heat transfer model for fitting the temporal data at 

each of the surface point. For the time between 0<t<tb, the temperature T is given by [15]: 

 

T(t) ≈ A [1 + 2 ∑ exp (−
n2π2

L2
αt)

∞

n=1

] − st 

(25) 

The slope s is determined by linear fitting of the experimental data in the time ta<t<tb. The 

time ta and tb are calculated as [15]: 

ta =
L2

2α
 ; tb = 3ta 

(26) 

 

Omar Obeidat et al. [16] developed a model that described the heat diffusion from the 

subsurface defect in a composite material using Green’s function procedure. The model is 

used to map some characteristic time quantities from the temperature time curve with the 

defect depth. The time quantities used are half-maximum power time, peak slope time and 

second derivative peak time. 
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Probability of Detection 

Probability of Detection (POD) is the study of reliability of an NDE method for detecting 

the defects present in a test specimen. 

Jun-zhen Zhu et al. [17] tested a set C45 ferritic steel plates with artificial fatigue cracks. 

The crack heating response increased with the increasing crack length and a linear 

relationship between the logarithmic form of heat response signal and the crack length was 

observed. Linear regression analysis and Wald method is used to estimate the POD 

function and its confidence bounds. The test provided a quantitative evaluation of the 

detection reliability in sonic infrared imaging. 

N Yusa [18] proposed a POD model to study the efficiency of NDE testing methods for 

detection of stress corrosion cracks appearing in the steam generator tubes of pressurized 

water reactors. Three-dimensional finite element simulations were conducted to determine 

eddy current signals due to stress corrosion cracks. The probabilistic nature of the NDE 

test is simulated by varying the electrical conductivity of the modelled stress corrosion 

cracking. A two-dimensional POD model is proposed which expresses the POD as a 

function of the depth and length of a crack. 

Vamsi Krishna Rentala et al. [20] proposed a model-based approach for evaluating the 

POD. The POD depends on factors such as material properties, geometry of the specimen, 

defect features, testing methods etc. Due to the number of factors affecting the POD, Model 

Assisted Probability of Detection (MAPOD) curves is used. In this research, MAPOD 

approach was studied with respect to selecting crack sizes distribution, censoring and 
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regression, estimation of distribution parameters. A COMSOL Multiphysics based FEM 

numerical model is developed to simulate ultrasonic response from a Ti-6Al-4V cylindrical 

block and validated experimentally. Individual ultrasonic response from various flat 

bottom hole defects was also generated using numerical model. Using the POD curve, the 

flaw size corresponding to 90% probability and 95% confidence is obtained. Also, it is 

observed that the POD value increased with an increase in decision threshold value. 

J. DiMambro et al. [21] of Sandia National Laboratories, Airworthiness Assurance, 

Albuquerque implemented two crack POD experiments to compare the reliability of 

SONIC IR Imaging and Fluorescent Penetrant Inspection (FPI) methods. Blind SONIC IR 

and FPI inspections are performed on titanium and Inconel specimens having statistically 

relevant flaw profiles. SONIC IR achieved higher POD for fatigue crack length of 0.04” 

and more. Cracks less than 0.04” are more likely to be detected by FPI but there is a high 

chance of false call rate. This indicates that FPI is not designed for detecting deep cracks 

and it is also responsive to other surface conditions (porosity, machine marks etc.). SONIC 

IR POD is dependent on the flaw size while it does not depend on flaw size in case of FPI. 

Also, the SONIC IR inspection does not affect the crack length. 
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1.2 

OBJECTIVE AND MOTIVATION 

Composite materials are widely used in automotive, energy, transportation and aerospace 

applications. Fiber-reinforced composites are used as the primary structural material in 

most of the applications. Although composite materials provide excellent strength to 

weight ratio and material performance, some internal defects like inclusions, porosity, 

delaminations may be present due to the production process. These defects and 

delaminations results in the reduction of material strength and reliability of the composite 

structure which leads to eventual failure. 

As these composite structures are expensive to manufacture, destructive technique is not 

economical to determine its reliability. The commonly used nondestructive testing methods 

used include pulsed thermography, magnetic particle testing, liquid penetrant testing, eddy 

current thermography, acoustic emission testing etc. SONIC IR testing comes under the 

classification of ultrasonic testing. 

SONIC IR testing is a relatively new technique that can detect flaws that are difficult to 

detect with other methods such as tightly closed cracks. It has a quick and simple 

methodology requiring less time for setup and testing as compared to other conventional 

methods. Not many studies have been conducted on this defect detecting method regarding 

its affordability, reliability and efficiency in detecting subsurface defects. SONIC IR has a 

lot of potential as a new nondestructive technique and studying it forms the primary 

motivation of this research work. 
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The objective of this study is to determine the accuracy of this method in detecting 

subsurface defect delaminations in aircraft grade composite laminates and comparing it 

with the ground truth. To determine the reliability of this method, the Probability of 

Detection of this method is analyzed taking in account the defect characteristics. And to 

find the effect of the process parameters on the output, detailed process parameter study is 

conducted. 
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1.3 

PROPOSED TASKS 

In this section, proposed tasks to be performed as a part of this research project are 

discussed. These tasks are discussed in detail in the different chapters of this research. 

1. Perform the experimentation and record the data (video) using the thermal infrared 

camera and the software packages. Export the data(video) as multiple images for 

image processing and analysis. Obtain the temperature data of the region of interest 

i.e. the defect area during the experimentation using the ResearchIR software 

package. 

2. The infrared thermal images obtained from the experimentation is used for thermal 

image analysis and processing. Both non-dedicated and dedicated algorithms are 

used for detecting the defect delaminations and compared to the ground truth. 

3. Use the temperature history of the composite laminate and the defect areas for 

determining the Probability of Detection (POD) of the NDT method. The POD 

analysis helps determining the reliability of the NDT method to detect defects with 

respect to some important parameters of the defects. 

4. The temperature-time curve will be used for the analytical study of determining the 

relationship between the defect depth and various time quantities. 

5. Determine the parameters of the experiment and study their effect on the defect 

detection accuracy and probability of detection. 
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CHAPTER 2 

DESIGN OF EXPERIMENT 

The equipment and components are used for the experimental setup are described below: 

1. Infrared Thermal Camera 

The thermal camera is used to detect and capture the temperature change on the 

surface of the composite laminate during the experimentation. The camera used for 

the study is the HIGH-RESOLUTION SCIENCE GRADE FLIR A655sc.Below 

are the specifications of the IR camera: 

Resolution  640 x 480 

Detector Type Uncooled Microbolometer 

Dynamic Range 16-bit 

Power 12/24 VDC, 24 W Absolute Max. 

Spectral Range 7.5 – 14.0 µm 

Operating Temperature Range  -15°C to 50°C (5°F to 122°F)  

Optional Temperature Range  Up to 2,000°C (3,632°F)  

Standard Temperature Range  (–40°C to 150°C) & (100°C to 650°C)  

Frame Rate [Full Window]  50 Hz  

Accuracy  ±2°C or ±2% of Reading  

NETD  <30 mK 

 

Table 1: IR camera specifications 
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Figure 1: Infrared Thermal Camera 

 

2. Ultrasonic Transducer 

A transducer is a device which converts one form of energy to another. In SONIC 

IR NDE, the transducer converts the electric pulse from the DC supply into sound 

waves that penetrate and travel through the composite laminate. This transducer 

comes under the classification of contact transducer as the transducer is used in 

direct contact with the test specimen. 

 

Figure 2: Ultrasonic Transducer 



24 

 

3. Multiplexer 

The multiplexer (MUX) is a combinational logic circuit designed to switch one of 

several input lines through to a single common output line. They operate like fast 

acting multiple position rotary switches controlling multiple channels one at a time 

to the output. 

For this experiment, USB controlled IA-3133-U2i multiplexer is used. It is a 32-

relay multiplexer. 

 

 

Figure 3: Multiplexer 

 

Aluminum extrusions, joints, nuts, BNC cables, wire strippers, tapes and other hardware 

tools are also required for connecting these components.  
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Software packages are used to control these devices and components during the 

experimentation. The software packages are listed below: 

 

1. LABVIEW 

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is used to 

design the circuit and the user control panel through which the user can control the 

number of ultrasonic pulses to be applied on the specimen, the duration of the pulse 

and the time delay between two consecutive pulses. 

 

2. FLIR ResearchIR  

ResearchIR is thermal analysis software package for FLIR thermal cameras. The 

software is used to control the thermal camera. The camera control functions 

include recording, image analysis and data-sharing. The user can control the 

recording start time, frame rate, resolution and the end time. Under the image 

analysis part, the software has features which shows the statistics of a specific 

region of the image (maximum and minimum temperature, mean temperature), 

temporal plots, histograms etc. It is through this software, the images recorded 

during the experiment is imported for further image processing and analysis. 
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Aluminum extrusions are used to construct the support structure for the ultrasonic 

transducer and the composite laminate. The aluminum extrusions are connected to each 

other perpendicularly to form a support structure for the ultrasonic transducer to be fixed 

to it so that it does not move from its position during operation. The composite laminate is 

fixed on a scissor jack lift so that it can be moved with respect to the ultrasonic transducer 

so that direct contact is maintained throughout the experimentation. The CAD model of the 

support structure is illustrated below: 

 

          

 

 

Figure 4: Aluminum Extrusion Support Structure 
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The following procedure is followed for the setting up the experiment: 

1. Connect the ultrasonic transducer to the ultrasonic generator. 

2. Connect the multiplexer with the ultrasonic generator as shown below: 

 

 

Figure 5: Connection between multiplexer and ultrasonic generator 

 

3. Connect the multiplexer with DC power supply via BNC cables, with computer via 

USB and press “output” botton on the DC power supply. Set the following values as 

given below: 

Multiplexer voltage : 24V 

Ultrasonic transducer voltage : 12V 
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Figure 6: Multiplexer , DC power Supply and Ultrasonic Generator 

 

4. One channel of the muliplexer can be controlled by the labview program. 

5. Setup the aluminum extrusions according to the CAD model in Figure 4 and install the 

composite laminate and ultrasonic transducer accordingly. 
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The complete experimental setup is illustrated below: 

 

 

 

Figure 7: Experimental setup schematic 

 

 

            

 

Figure 8: Experimental Setup 
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2.1 

TESTING PROCEDURE 

The following procedure is followed for the experimentation and recording of the data 

through the FLIR ReserachIR software: 

1. Use the LABVIEW program designed for this experimentation to set the number 

of pulses , pulse duration and the time delay between two consecutive pulses. 

2. Install the composite laminate on the jack lift and move until the tip of the ultrasonic 

transducer is in direct contact with it. 

3. Using the FLIR ResearchIR software, start recording the video through the infrared 

camera. 

4. Apply the ultrasonic wave through the LABVIEW program immediately after 

starting the recording. Keep a note of the following: 

a) Keep the camera perpendicular to the surface of the composite laminate. 

b) Make sure the temperature of the surface of the specimen before the testing 

should be around the minimum value/room temperature. 

c) Glue a piece of wooden plate on the composite laminate at the location where 

the tip of the transducer touches the laminate. This ensures that the transducer 

does not damage (burn) the composite laminate in case the experiment 

parameters are incorrect. 
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d) Ensure that the ultrasonic transducer is completely insulated from the 

aluminium support structure during its operation or else it will result in short 

circuit. 

e) Don’t let the ultrasonic transducer burn the specimen. 

5. Manually fix the minimum and maximum temperature in the ResearchIR software 

so that the warm objects in the image are clearly visible. 

6. After the experimentation , export the video as multiple images using the software 

features shown below: 

7. Store the images in the computer and use it for the image processing and further 

analysis. 
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2.2 

RAW EXPERIMENTAL DATA 

Using the thermal camera and ResearchIR software package, the change in the surface 

temperature of the composite laminate is recorded. After the NDE experiment, the video 

recorded during the experimentation is exported as multiple images which will be used for 

further image analysis and processing in the later sections of this research. 

The software package has various features through which we can analyze the video 

recorded during the testing. The primary data required is the temperature – time curve of 

the different defect delaminations in the composite laminate to study the temperature 

change for the time ultrasonic pulse is applied to the composite laminate. 

The software also allows to determine the temperature statistics for the entire period of 

experimentation of the entire image and for some specific areas of the image. For 

determining the temperature statistics of a specific region of the image, the Region of 

Interest (ROI) tool is used. The ROI tool enables the user to draw a region which can be a 

shape of choice (rectangle, circle etc.) over the area of interest of user defined size. The 

user can simply view the temporal plot (temperature-time curve), histogram, statistical 

temperature data for that region at any point of time in the experimentation.  

The procedure for obtaining the experimental data is described below: 

1) Setup the experimental setting as described in the previous section. Also, set the 

values of the process parameters as required in the LABVIEW program. 
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2) Start recording the video using the Research IR software package and then start the 

experiment. This includes using the LABVIEW program to start the ultrasonic 

pulse signal. 

3) After the experiment ends, the video can be saved in the computer. 

4) Open the video file using the ResearchIR software package. 

5) The temperature at any point on the image and at any time can be obtained by the 

position the cursor at the desired position. 

6) Using the ROI tool draw the region around the defect area as visible in the image 

at a suitable time. 

7) Using the Statistics Viewer feature, the temperature statistics can be obtained for 

each of the ROI area in the image. 

8) Using the Temporal Plot feature, the temporal plot (temperature-time curve) for 

each of the ROI area in the image can be obtained and exported as an excel 

datasheet also for further analysis. 

       

Figure 9: Temporal Plots 
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2.3 

PROBABILITY OF DETECTION (POD) 

In deterministic analysis, the defect size/dimension or defect characteristic detected 

through the SONIC IR testing is always a single value. In probabilistic approach, the defect 

characteristic is estimated to be a range following an assumed distribution. In practice, the 

defect characteristics like size, depth etc. are always probabilistic in nature. The ability to 

detect defects using a non-destructive method is quantified using a statistical parameter 

called “Probability of Detection (POD)”. Simply put, POD is the probability of detecting a 

detect of a size/characteristic. POD is used to quantify the reliability of the NDT method.  

In this study, two types of composite laminates with defect delaminations of different 

length and at different depths of the laminate have been used to evaluate the relationship 

between the POD function and the defect features under given experimental conditions. 

Through the experiment, the thermal response signal of different defects is determined. 

Thermal response signal can be defined as the maximum temperature difference between 

the defect area and the background area. Based on this data, the POD model is defined and 

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of the POD 

model. Also, the confidence bounds of the POD curve is determined to obtain important 

defect characteristics.   

For the D type composite laminate, the diameter of the circular defect and side length of 

the rectangular defects is considered as the defect dimension ‘a’ for the study since all the 

three defects are present at the same depth.  



35 

 

 

 

Figure 10: D type composite laminate 

 

Below is the data observed from the SONIC IR experiment. 

 

Defect Dimension (a), mm Response Signal, (oC) 

12.7 mm  1.7 

25.4 mm 4.2 

50.8 mm 5.1 

 

Table 2: Response Signal Data 
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The POD function can be obtained from the relationship between ‘a’ and ‘ar’. As we can 

observe from the above graphs, the linear relation between the response signal and defect 

dimension can be expressed as [17]: 

 

ln(ar) = βo + β1ln(a) + ε 

(27) 

ar = Response Signal (oC) 

a = Defect dimension (mm) 

βo = Intercept of the regression line  

β1 = Slope of the regression line  

ε = Error term  

The values of βo, β1 are calculated using Maximum Likelihood Estimation (MLE). Using 

linear regression analysis, we can observe that ε follows normal distribution with zero mean 

value and standard deviation τ.  

The POD for defect of length a is given by [17]: 

 

POD(a) = Φ (
ln(a) − µ

σ
) 

(28) 

µ = mean value of the log defect length 

σ = standard deviation value of the log defect length 
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µ =
ln(ath) – βo 

 β1 
 

(29) 

σ =
τ 

 β1 
 

(30) 

 

The term ath is called the response signal decision threshold value. When the response 

signal ar of a defect is greater than ath, it is considered a defect.  For this calculation, the 

value of ath is equal to 1.5 oC. 

Using Maximum Likelihood Estimation, a random variable X is defined, which follows a 

standard normal distribution [17]:  

 

X =
ln(ar) − (βo + β1ln (a))

τ
 

 (31) 

The probability density function (PDF) of X is given by [17]: 

 

ϕ(X) =
1

√2π
exp (

−X2

2
) 

(32) 
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The likelihood function is [17]:  

L = ∏
1

τ
ϕ(xi)

n

i=1

 

(33) 

Log of the likelihood function is given by [17]:  

 

ln(L) = −nln(τ) −
1

2τ2
∑[ln(ari) − (βo + β1ln (ai))]

n

 

(34) 

n is the number of defects in the composite laminate. 

 

The MLE of the POD function are given by the equations given below [17]: 

 

∂ln(L)

∂βo
=  

1

τ
∑ Xi

n

i=1

= 0 

(35) 

∂ln(L)

∂β1
=  

1

τ
∑ ln(ai) Xi = 0

n

i=1

 

(36) 

∂ln(L)

∂τ
=  

1

τ
(−n + ∑ Xi

2

n

i=1

) = 0 

(37) 
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Solving the three equations above, 

βo = -1.365302 

β1 = 0.7925 

τ = 0.16744 

 

POD(a) = Φ (
ln(a) − µ

σ
) 

 

µ =
ln(ath)  −  βo 

 β1 
=  

ln(1.5) − (−1.365302)

0.7925
= 2.2344 

σ =
τ 

 β1 
=

0.16744

0.7925
= 0.21166  

 

a = 12.7 mm 

POD(a = 12.7) = Φ (
ln(a) −  µ

σ
) = Φ (

ln(12.7) −  2.2344

0.21166
) = Φ(1.4518) = 0.92647 

a = 25.4 mm 

POD(a = 25.4) = Φ (
ln(a) −  µ

σ
) = Φ (

ln(25.4) −  2.2344

0.21166
) = Φ(4.7299) = 0.9999 

a = 50.8 mm 

POD(a = 50.8) = Φ (
ln(a) −  µ

σ
) = Φ (

ln(50.8) −  2.2344

0.21166
) = Φ(8.005) ≅ 1 

 



40 

 

 

Figure 11: POD Curve for D type Laminate 

The lower 95% confidence bound of the POD curve is determined to find the following 

parameters of the defects:  

1. a90/95  

a90/95 is defined as the defect depth which can be detected with a 90% probability within 

the confidence bound of 95%. 

2. a50  

a50 is defined as the defect depth which can be detected with a 90% probability. 

3. a90  

a90 is defined as the defect depth which can be detected with a 95% probability. 
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Using the POD curve, we can obtain the value of a50, a90, a90/95.  

From the POD curve above, 

a50 = 9.35 mm  

a90 = 12.3016 mm  

a90/95 = 13.292 mm  

 

For the E type laminate, the defects are present different depths of the composite laminate. 

In this case, the defect depth is considered as the main parameter for the study. 

 

 

Figure 12: E type composite laminate 
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Defect Depth (d), µm Response Signal, (oC) 

0.296 7.1 

0.296 3.9 

0.592 3.1 

0.888 4 

1.184 2.8 

1.48 1.9 

 

Table 3: Response Signal Data 

The linear model given below can be used for the POD analysis: 

ln(ar) = βo + β1ln(d) + ε 

d = Defect Depth (µm) 

Similar to the POD analysis for the D type composite laminate, values of the parameters 

can be obtained by solving the equations given below: 

∂ln(L)

∂βo
=  

1

τ
∑ Xi

n

i=1

= 0 

∂ln(L)

∂β1
=  

1

τ
∑ ln(ai) Xi = 0

n

i=1

 

∂ln(L)

∂τ
=  

1

τ
(−n + ∑ Xi

2

n

i=1

) = 0 
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βo = 1.1587 

β1 = -0.61354 

τ = 0.19316 

For this case ath = 1.8 oC 

 

µ =
ln(ath)  −  βo 

 β1 
=

ln(1.8)  −  1.1587

−0.61354
= 0.9305 

 

σ =
τ 

 β1 
=

0.19316

0.61354
= 0.314822  

 

d = 0.296 mm  

POD(d = 0.296) = Φ (
ln(d) −  µ

σ
) = Φ (

ln(0.296) –  0.9305

−0.314822 
) = Φ(6.82) ≅ 1 

d = 0.592 mm 

POD(d = 0.592) = Φ (
ln(d) −  µ

σ
) = Φ (

ln(0.592) –  0.9305

−0.314822 
) = Φ(4.62) = 0.9999 

d = 0.888 mm 

POD(d = 0.888) = Φ (
ln(d) −  µ

σ
) = Φ (

ln(0.888) –  0.9305

−0.314822 
) = Φ(3.3) = 0.99957 

d =1.184 mm 

POD(d = 1.184) = Φ (
ln(d) −  µ

σ
) = Φ (

ln(1.184) –  0.9305

−0.314822 
) = Φ(2.419) = 0.992 



44 

 

d =1.48 mm 

POD(d = 1.48) = Φ (
ln(d) −  µ

σ
) = Φ (

ln(1.48) –  0.9305

−0.314822 
) = Φ(1.710) = 0.956 

 

 

 

Figure 13: POD Curve for E type laminate 

 

From the POD curve, 

d99 = 1.2154 mm 

d99 is defined as the defect depth which can be detected with a probability of 99%. 
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CHAPTER 3 

DEFECT DETECTION ALGORITHMS 

Image analysis and processing is used to extract and identifying objects and patterns in the 

image. Image analysis involves the conversion of features in the image into quantitative 

data.  

The main objective of this non-destructive testing is to identify the defects and 

delaminations present in the composite laminate. To distinguish the defects from the 

background of the thermal image obtained from IR camera, we use thermal image analysis. 

Thermal image analysis includes algorithm which is used to detect the location and 

characteristics of the defect. 

The algorithms for defect detection are categorized into two categories: nondedicated and 

dedicated algorithms. A nondedicated algorithm is an algorithm which is not specifically 

designed for defect detection in thermal images, whereas a dedicated algorithm is an 

algorithm which is specifically designed to work on a thermal image. In the next two 

sections, some of the existing dedicated and non-dedicated algorithms are discussed and 

used for thermal image processing. 

 

The exact defect location and the dimensions of the composite laminates are illustrated in 

the figure below: 
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Figure 14: D type composite laminate 

 

a: Diameter of the circle 

b: Side Length of the square located at 7” from the bottom of the laminate 

c: Side Length of the square located at 3” from the bottom of the laminate 

d: Distance between the center of the circle and the bottom of the laminate 

e: Distance between the center of the 1” square and the bottom of the laminate 

f: Distance between the center of the 2” square and the bottom of the laminate 

 

a 

b 

c 

d 

e 

f 
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Figure 15: E type composite laminate 

 

A: Side Length of the square located at 11” from the bottom of the laminate 

B: Side Length of the square located at 7” from the bottom of the laminate 

C: Diameter of the circle 

D: Side Length of the square located at 11” from the bottom of the laminate  

E: Side Length of the square located at 7” from the bottom of the laminate  

F: Side Length of the square located at 3” from the bottom of the laminate 

A 

B 

G 

C 

H 

I 

D 

E 

F 
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G: Distance between the center of the 1” square and the bottom of the laminate 

H: Distance between the center of the 2” square and the bottom of the laminate 

I: Distance between the center of the circle” square and the bottom of the laminate 

 

The infrared images of the composite plate during the SONIC IR testing captured by the 

IR camera are shown below: 
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Figure 16: Thermal images obtained throughout the experimentation 

 

Note: The bright area in the lower part of the image represents the actuation area where 

the sonic pulse is applied therefore the temperature increase is maximum in that region. 

It can be observed that the thermal images get blurrier as the heating time increases. The 

optimal time at which the defects can be obtained accurately is between 10 s to 18 s.  

The thermal image analysis will be conducted on the images below: 

 

         

Figure 17: Thermal IR Images 
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3.1 

NON-DEDICATED ALGORITHMS 

 

1. Otsu Algorithm 

According to Otsu’s method, the threshold is selected by maximizing the between-class 

variances. 

Let F = {f1, f2, f3,….,fMxN} represent the gray level image of size M x N where fi ϵ 

[1,2,….,L-1] is the gray value of the ith pixel of the image [14] . If the number of pixels 

with gray level g is f(g), then the probability of occurrence of gray level g is given as [14]: 

 

p(g) =
f(g)

M x N
 , g = 0,1,2, … . . , L − 1 

(38) 

The average gray level of the entire image is [14]: 

 

µT = ∑ g. p(g)

L−1

g=0

 

(39) 

Dividing the pixels of the image into two classes (object and background or background 

and object) [14]: 

C0 = {0, 1, 2, 3,.……, T} 

C1 = {T+1, T+2,……,L-1} 

(40) 
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T is the threshold value. 

The probabilities of these two classes are [14]: 

 

p0(T) = ∑ p(g)

T

g=0

 

(41) 

p1(T) = ∑ p(g)

L−1

g=T+1

 

(42) 

The mean value of each class is computed as [14]: 

 

µ0(T) = ∑
g. p(g)

p0(T)

T

g=0

 

(43) 

µ1(T) = ∑
g. p(g)

p1(T)

L−1

g=T+1

 

(44) 

Also, 

p0(T)µ0(T) + p1(T)µ1(T) = 1 

(45) 

The between class variance of C0 and C1 is [14]: 

σB
2 (T) =  p0(T)[µ0(t) − µT]2 + p1(T)[µ1(t) − µT]2 = p0(T)µ0

2(T) + p1(T)µ1
2(T) 

(46) 
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Therefore, the optimal threshold is calculated as [14]: 

T∗ = arg max0<t<L−1σB
2 (T) = arg max0<t<L−1p0(T)µ0

2(T) + p1(T)µ1
2(T)  

(47) 

For D type composite laminate, 

         

      Figure 18: Original thermal image              Figure 19: Histogram of the thermal image 

     

       Figure 20: Processed Thermal Image                        Figure 21: Contour image 
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Dimension (mm) Ground Truth (mm) Image Analysis Value (mm) Error % 

a 12.7 -  

b 25.4 27.5661 8.53 

c 50.8 49.0064 3.53 

d – 6.35 273.5 - - 

e – 12.7 165.1 156.2286 5.37 

f – 25.4 50.8 52.09 2.54 

 

Table 4: Comparison of analysis values and ground truth 

 

Note: The exact location of the centroid of the defect areas cannot be determined 

accurately. Therefore, the distance from the lower edge of the defects are considered for 

comparison. 

As observed, the circular defect of diameter 0.5’’ cannot be detected using this method. 

 

For E type composite laminate, 

 

             

       Figure 22: Original Thermal Image           Figure 23: Histogram of the thermal image 
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       Figure 24: Processed Thermal Image                         Figure 25: Contour image 

 

Dimension (mm) Ground Truth (mm) Image Analysis Value (mm) Error % 

A 25.4 25.116 1.11 

B 50.8 47.84 5.83 

C 12.7 - - 

D 25.4 35.98 41.65 

E 25.4 26.91 5.94 

F 25.4 20.93 17.6 

G – 12.7 266.7 215.28 19.28 

H – 25.4 152.4 107.64 29.37 

I – 6.35 69.85 - - 

 

Table 5: Comparison of analysis values and ground truth  

 

As observed, the circular defect of diameter 0.5’’ cannot be detected using this method. 
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2. Tsai Algorithm 

This is an algorithm based on the moment-preserving principle [9]. The gray level moments 

of the input image are calculated. The thresholds are selected such that the moments of the 

thresholded image are preserved. 

For an image f with n pixels, the gray level for the pixel located at (x,y) is denoted by 

f(x,y). The image is thresholded into two-pixel classes: the below-threshold pixels and 

above-threshold pixels. The ith moment of image f is given by [9]: 

mi =  
1

n
∑ ∑ fi(x, y)      , i = 1,2,3,4 … .

yx

 

(48) 

Moment can be calculated from the gray level histogram of the image as [9]: 

mi =  
1

n
∑ nj

j

(zj)
i
 

=  ∑ pj

j

(zj)
i
 

(49) 

nj is the number of pixels in the image f with gray value zj. The value of m0 is assumed to 

be 1. Image f has pixels which has only two gray values: z0 and z1 and z0 < z1. Threshold 

value is selected such that if all the below-threshold gray values are replaced by z0 and 

above-threshold gray values are replaced by z1, then the first three moments of image f are 

preserved and a bilevel image g is obtained [9]. 



56 

 

If p0 and p1 denote the below-threshold pixels and above threshold pixels in the image f, 

the first three moments of g are [9]: 

mi
′ = ∑ pj(zj)

i
 , i = 1,2,3

1

j=0

 

(50) 

Preserving the first three moments in g implies [9]: 

mi = mi’,    i = 1,2,3 

(51) 

p0 + p1 = 1 

(52) 

The equalities which is obtained through the above equalities are [9]: 

 

p0z0
0 + p1z1

0 = m0 

 

p0z0
1 + p1z1

1 = m1 

 

p0z0
2 + p1z1

2 = m2 

 

p0z0
3 + p1z1

3 = m3 

(53) 
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Solving the above 4 equations, the values of p0, p1, z0 and z1 is determined.  

The threshold value is defined as the p0-tile of the histogram of the image f [9]. The value 

of threshold T can be calculated as [9]: 

p0 =
1

n
∑ nj

zj≤T

 

(54) 

For D type composite laminate, 

           

       Figure 26: Original Thermal Image                Figure 27: Processed Thermal Image 

 

Figure 28: Contour Image 
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Dimension Ground Truth (mm) Image Analysis Value (mm) Error % 

a 12.7 - - 

b 25.4 31.395 23.6 

c 50.8 56.511 11.2 

d – 6.35 273.5 - - 

e – 12.7 165.1 165.112 0.0073 

f – 25.4 50.8 52.09 2.54 

 

Table 6: Comparison of analysis values and ground truth 

 

For E type composite laminate, 

          

        Figure 29: Original Thermal Image             Figure 30: Processed Thermal Image 

 

Figure 31: Contour Image 
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Dimension Ground Truth (mm) Image Analysis Value (mm) Error % 

A 25.4 29.9 17.71 

B 50.8 50.83 0.059 

C 12.7 - - 

D 25.4 - - 

E 25.4 35.88 41.25 

F 25.4 25.116 1.11 

G – 12.7 266.7 215.28 19.28 

H – 25.4 152.4 101.66 33.29 

I – 6.35 69.85 - - 

 

Table 7: Comparison of analysis values and ground truth 

 

3. Niblack Thresholding Algorithm 

Niblack Thresholding Algorithm (NBM) is the one of the oldest local thresholding 

algorithms. Most of the global thresholding algorithms are not able to preserve the minute 

details of the image in the segmentation process. NBM was proposed to preserve the minute 

details at a local level introducing the concept of local window rather than global 

thresholding. The threshold value T can be defined as [10]: 

 

T = µ(x,y) + k*σ(x,y) 

(55) 

µ(x,y) is the local mean value of the gray level and σ(x,y) is the local standard deviation 

value of the gray value for a particular local window of the image. k is an image dependent 
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manually selected parameter. For dark foreground the value of k is considered -0.2 and for 

0.2 for dark background. Selecting the value of k manually is one of the drawbacks of this 

method. 

For D type composite laminate, 

 

               

        Figure 32: Original Thermal Image              Figure 33: Processed Thermal Image 

 

 

Figure 34: Contour Image 
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Dimension (mm) Ground Truth (mm) Image Analysis Value (mm) Error % 

a 12.7 - - 

b 25.4 18.837 25.84 

c 50.8 43.953 13.48 

d – 6.35 273.5 - - 

e – 12.7 165.1 75.348 54.36 

f – 25.4 50.4 52.09 2.54 

 

Table 8: Comparison of analysis values and ground truth 

 

It can be observed that the contour image has a lot of noise which reduces the accuracy of 

the method. 

 

For E type composite laminate, 

 

       

         Figure 35: Original Thermal Image           Figure 36: Processed Thermal Image 
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Figure 37: Contour Image 

 

Dimension Ground Truth (mm) Image Analysis Value (mm) Error % 

A 25.4 25.116 1.11 

B 50.8 47.09 7.3 

C 12.7 - - 

D 25.4 31.395 23.6 

E 25.4 25.116 1.11 

F 25.4 18.837 25.84 

G – 12.7 266.7 226.044 15.24 

H – 25.4 152.4 75.348 50.56 

I – 6.35 69.85 - - 

 

Table 9: Comparison of analysis values and ground truth 

 

It can be observed that the contour image has a lot of noise which reduces the accuracy of 

the method. 

 



63 

 

3.2 

DEDICATED ALGORITHMS 

1. Hamadani Algorithm 

Hamadani [4] proposed an algorithm based on the statistical properties of the thermal 

image. The mean value µ and standard deviation σ of the gray level of the image is used to 

obtain the threshold value. The threshold value T for an image f of size M x N is given by 

[4]: 

T = k1 * µ + k2 * σ 

 

(56) 

µ =  
1

M ∗ N
 ∑ ∑ f(i, j)

N

j=1

M

i=1

 

(57) 

 

σ =  √
1

M ∗ N
 ∑ ∑(f(i, j) − µ)2

N

j=1

M

i=1

 

(58) 

 

The values of k1 and k2 are selected manually. Generally, for low resolution images k1=1 

and k2 = 1 and for higher resolution images k1 = 1 or 1.5 and k2 = 2 yields good results [4]. 

This algorithm is not automatic as the values of k1 and k2 are selected manually. 
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For D type composite laminate, 

             

        Figure 38: Original Thermal Image                Figure 39: Image for k1 = k2 = 0.5 

      

          Figure 40: Image for k1 = k2 = 1                  Figure 41: Image for k1 = k2 = 1.5 

      

         Figure 42: Image for k1 = k2 = 2                   Figure 43: Image for k1 = k2 = 2.5 
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It can be observed that the most accurate result is obtained for k1 = k2 = 1.5. 

 

 

Figure 44: Contour Image for k1= k2 = 1.5 

 

Dimension (mm) Ground Truth (mm) Image Analysis Value (mm) Error % 

a 12.7 - - 

b 25.4 23.8602 6.063 

c 50.8 47.0925 7.29 

d – 6.35 273.5 - - 

e – 12.7 165.1 165.112 0.0073 

f – 25.4 50.4 52.09 2.54 

 

Table 10: Comparison of analysis values and ground truth 
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For E type composite laminate, 

         

           Figure 45: Original Thermal Image          Figure 46: Image for k1 = k2 = 0.5 

        

             Figure 47: Image for k1 = k2 = 1             Figure 48: Image for k1 = k2 = 1.5 

        

               Figure 49: Image for k1 = k2 = 2           Figure 50: Image for k1 = k2 = 2.5 
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It can be observed that the most accurate result is obtained for k1 = k2 = 1.5. 

 

 

Figure 51: Contour Image for k1= k2 = 1.5 

 

Dimension (mm) Ground Truth (mm) Image Analysis Value (mm) Error % 

A 25.4 23.92 5.83 

B 50.8 47.84 5.83 

C 12.7 - - 

D 25.4 28.704 13 

E 25.4 23.92 5.83 

F 25.4 11.96 52.91 

G – 12.7 266.7 215.28 19.28 

H – 25.4 152.4 101.66 33.29 

I – 6.35 69.85 - - 

 

Table 11: Comparison of analysis values and ground truth 
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2. Sapina Method 

This method of image analysis comes under the category of dedicated algorithms which is 

exclusively used for object detection in thermal images. This method uses textural features 

based on the co-occurrence matrix for distinguishing the warm objects and the background 

in infrared images. The co-occurrence matrix is a second order statistical method which 

characterizes the spatial interrelationships of the gray levels in an image [11]. This matrix 

is used in texture modelling and classification in many applications [11].  

The values of the co-occurrence matrix elements present relative frequencies with which 

two neighboring pixels separated by a distance d appear on the image, where one of the 

pixels has gray level i and the other has j. This matrix is symmetric and is a function of the 

angular relationship between two neighboring pixels. 

According to the research in [11], the non-normalized frequencies Pij of the co-occurrence 

matrices for a defined area M x N of the whole image, distance d and angles quantized at 

45o intervals can be defined as [11]: 

P (I, j, d, 0o) = # { ((k,l),(m,n)) ϵ (MxN)x(MxN) : k-m=0 , | l-n | =d , I(k,l)=I, I(m,n) = j }  

(59) 

P (I, j, d, 45o) = # { ((k,l),(m,n)) ϵ (MxN)xMxN) : (k-m=d, l-n=-d) or (k-m=-d, 1-n=d), 

I(k,l)=I,  I(m,n) = j }                                                                                                             

(60) 

P (I, j, d, 90o) = # { ((k,l),(m,n)) ϵ (MxN)x(MxN) : | k-m | = d, l-n=0 , I(k,l)=I, I(m,n) = j }  

(61) 
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P (i, j, d, 135o) = # { ((k,l),(m,n)) ϵ (MxN)x(MxN) : (k-m=d, l-n=d) or (k-m= -d, I-n= -d), 

I(k,l) = i, I(m,n) =j }                                                                                                            

(62)                                                                                      

# denotes the no. of elements in the set. 

 

Using co-occurrence matrix for defining the following textural features given below [11]: 

 

1. Maximum Probability 

maxij(Pij)                   

(63)                                

2. Uniformity of Energy 

∑    ∑ Pij
2

ji

 

(64) 

3. Inverse difference moment of order k 

∑    ∑
Pij

λ

|i − j|k

ji

 

(65) 

4. Contrast 

∑  

i,j

|i − j|k (Pij)
λ
 

(66) 
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5. Variance 

(∑(i − µi)
2

i

∑ Pij

j

) (∑(j − µj)
2

j

∑ Pij

i

) 

(67) 

6. Correlation 

∑    ∑
(i − µx)(j − µy)Pij

σxσy
ji

 

(68) 

µx and µy are mean values  

µx = ∑ i

i

∑ Pij

j

 

(69) 

µy = ∑ j

j

∑ Pij

i

 

(70) 

σx and σy are standard deviation values 

σx = ∑(i − µx)2

i

∑ Pij

j

 

(71) 

 

σx = ∑(j − µy)
2

j

∑ Pij

i

 

(72) 
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The infrared images of the two types of composite laminates obtained from the SONIC IR 

experiment has 256 gray levels. To reduce the time of computation, the gray level is 

reduced to 64. In both the cases, angle = 45o and the horizontal and vertical displacement 

are dx = 1 and dy = 1. Below are the images for both the composite laminates: 

 

For D type composite laminate, 

 

Figure 52: Maximum Probability 

 

Figure 53: Contour Image for Maximum Probability 
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Figure 54: Uniformity of Energy 

 

 

Figure 55: Contour Image for Uniformity of Energy 

 

 

Figure 56: Inverse difference moment of order k 
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Figure 57: Contour Image for Inverse difference moment of order k 

 

 

Figure 58: Contrast 

 

 

Figure 59: Contour Image for Contrast 
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Figure 60: Variance 

 

 

Figure 61: Contour Image for Variance 

 

 

Figure 62: Correlation 
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Figure 63: Contour Image for Correlation 

 

As observed from the above images, the correlation textural feature contributes the highest 

in differentiating the defects in the image. 

 

Dimension Ground Truth (mm) Image Analysis Value (mm) Error % 

a 12.7 - - 

b 25.4 25.116 1.118 

c 50.8 50.232 1.118 

d – 6.35 273.5 - - 

e – 12.7 165.1 113.022 31.543 

f – 25.4 50.4 52.09 2.54 

 

Table 12: Comparison of analysis values and ground truth 

 

 

 

 



76 

 

For E type composite laminate, 

 

Figure 64: Maximum Probability 

 

 

Figure 65: Contour Image for Maximum Probability 

 

 

Figure 66: Uniformity of Energy 
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Figure 67: Contour Image for Uniformity of Energy 

 

 

Figure 68: Inverse difference moment of order k 

 

 

Figure 69: Contour Image for Inverse difference moment of order k 
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Figure 70: Contrast 

 

 

Figure 71: Contour Image for Contrast 

 

 

Figure 72: Variance 
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Figure 73: Contour Image for Variance 

 

 

Figure 74: Correlation 

 

 

Figure 75: Contour Image for Correlation 
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As observed from the above images, the correlation textural feature contributes the highest 

in differentiating the defects in the image. 

Dimension Ground Truth (mm) Image Analysis Value (mm) Error % 

A 25.4 37.674 48.32 

B 50.8 50.232 1.11 

C 12.7 - - 

D 25.4 37.674 48.32 

E 25.4 37.674 48.32 

F 25.4 25.116 1.11 

G – 12.7 266.7 219.765 17.6 

H – 25.4 152.4 106.743 29.96 

I – 6.35 69.85 - - 

 

Table 13: Comparison of analysis values and ground truth 

Below is the comparison of the above discussed image processing methods: 

Algorithm/Method Computation Time (secs) Average Error % 

 D type E type D type E type 

Otsu Method 0.734 3.094 4.99 17.25 

Tsai Method 0.372 0.475 9.34 16.10 

Niblack Method 1.100 6.089 24.05 17.82 

Hamadani Method 2.49 7.49 3.975 19.42 

Sapina Method 412.51 397.74  9.08 27.82 

 

Table 14: Comparison of analysis values and ground truth 
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Note: For Hamadani and Sapina method, the given computation time is calculated for 

obtaining all the thermal images.  

 

It should be noted that the observations are specific to the test specimen used, the 

orientation of the composite laminate and experimental environment. One side of the 

laminates is smooth and the other side is relatively rough. The above observations and 

calculations are obtained by observing the rough side of the laminates. If the composite 

laminates are flipped and the complete experimentation is carried out, the obtained images 

are blurry and distorted due to excess noise in the image. Therefore, for this 

experimentation the laminates should be installed so that the rough surface is observed 

through the IR camera.  
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3.3 

DEPTH ESTIMATION 

Damages and defects are generally located at a depth from the surface of a component. 

Determining the depth of the defect is one of the most important aspect of an NDE testing. 

The above algorithms used for defect detection in the thermal images, the x and y 

coordinates of the defects in the composite laminate are determined. In this section, an 

analytical method of determining the depth of the defect is discussed. The temporal plot 

(temperature-time plot) of the defects is used in this method. The relation between the depth 

of the defect and time quantities from the temporal plot is studied and used for determining 

the defect depth. 

We define three quantities in the temperature-time curve and its derivatives and map them 

to the defect depth. The three time quantities are: 

1. Half – maximum power time (tH): This is defined as the time at which the 

temperature-time curve reaches half maximum power i.e. 
1

√2
 of the peak 

temperature of the temporal plot. 

2. Peak slope time (tP): This is defined as the time at which the first derivative or the 

slope of the temperature-time curve reaches the maximum value. 

3. Second derivative peak time (tS): This is defined as the time at which the second 

derivative of the temperature-time curve reaches the maximum value. 
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The E type composite laminate is analyzed for depth profiling as the defects are located 

at different depths. 6 defects are present in the composite laminate and the respective 

half maximum power time, peak slope time and the second derivative peak time are 

recorded during the experiment are given below: 

Defect Depth 

(mm) 

 Half Maximum 

Power Time tH (sec) 

Peak Slope Time 

tP (sec) 

Second Derivative 

Peak Time tS (sec) 

0.296 14 11.5 0.997 

0.59 14.6329 12.32 1.558 

0.88 15 12.08 5.598 

1.184 15.52 12.76 6.517 

1.482 (circle) 17.0033 14.04 6.477 

1.482 17 14.04 7.596 

 

Table 15: Time quantities for defects at different depths 

 

From the previous depth estimation methods for different NDE methods reviewed from the 

literature review, the time quantities are observed to be directly proportional to the value 

of depth squared of the defect. 

The time quantities are plotted against the value of depth squared and using linear 

regression analysis the relationship between them is determined.  

For the half maximum power time, the linear relation is determined to be  

                                                   tH = 1.353d2 + 13.95                                                     (73) 
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Figure 76: Depth Squared vs Half Maximum Power Time 

 

The R2 value of the linear regression is 0.978 which indicates a good correlation between 

the data points and the linear fitting function. 

Half Maximum 

Power Time tH (sec) 

Theoretical 

Defect Depth (mm) 

Experimental 

Defect Depth (mm) 

14 0.296 0.1922 

14.6329 0.59 0.71 

15 0.88 0.881 

15.52 1.184 1.077 

17.0033 1.482 (circle) 1.5095 

17 1.482 1.5014 

 

Table 16: Comparison of theoretical and experimental defect depths 
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For the peak slope time, the linear relation is determined to be  

                                                   tP = 1.11d2 + 11.494                                                     (74) 

 

Figure 77: Depth Squared vs Peak Slope Time 

The R2 value of the linear regression is 0.9304 which indicates a good correlation between 

the data points and the linear fitting function. 

Peak Slope Time 

tP (sec) 

Theoretical 

Defect Depth (mm) 

Experimental 

Defect Depth (mm) 

11.5 0.296 0.0735 

12.32 0.59 0.8625 

12.08 0.88 0.7265 

12.76 1.184 1.0679 

14.04 1.482 (circle) 1.5144 

14.04 1.482 1.5144 

 

Table 17: Comparison of theoretical and experimental defect depths 
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For the second derivative peak time, the linear relation is determined to be  

                                                   tS = 2.763d2 + 1.556                                                     (75) 

 

Figure 78: Depth Squared vs Second Derivative Peak Time 

The R2 value of the linear regression is 0.8074 which indicates a good correlation between 

the data points and the linear fitting function. 

Second Derivative 

Peak Time tS (sec) 

Theoretical 

Defect Depth (mm) 

Experimental 

Defect Depth (mm) 

0.99 0.296 - 

1.558 0.59 0.0269 

5.598 0.88 1.2095 

6.517 1.184 1.3399 

6.477 1.482 (circle) 1.3345 

7.596 1.482 1.4785 

 

Table 18: Comparison of theoretical and experimental defect depths 
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CHAPTER 4 

PROCESS PARAMETER STUDY  

 

Parameters of an experiment are defined as the characteristics or the factors of an 

experiment which affects its output or the efficiency of the output. For this experiment, 

there are 3 parameters which can be numerically defined, and we intend to investigate its 

effect on the output. The parameters are defined below: 

1) Number of pulses  

The number of ultrasonic pulses which are applied to the specimen in given time. 

2) Pulse Duration (ms) 

Pulse duration is defined as the time duration for which the ultrasonic signal is 

applied to the specimen. 

3) Time Duration between Pulses (ms) 

This is defined as the time delay between two consecutive pulses applied to the 

specimen. 

 

 

 

 

 

 

 

Figure 79: Graphical representation of the ultrasonic pulse signal 

 

Pulse duration(ms) 

Time duration between pulses(ms) 
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From chapter 3.2, it can be observed that the Hamadani method for image analysis is the 

most accurate for detecting and locating the defects in the composite laminate. Hamadani 

method is used for comparing the results for different process parameters. The value of k1 

and k2 is selected as 1.5 for accuracy. The dimension of the square defect with 1’’ side 

length will be anlayzed for different values of the process parameters. 

 

 

 

Figure 80: Ground Truth Dimension 

 

Also, the effects of process parameters on the probability of detection of the defects present 

in the D type composite is also analyzed and discussed. 
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1. Number of Pulses 

For analyzing the effect of the number of ultrasonic pulses during the experiment on the 

temperature increase, we will set the following parameters as given below: 

Pulse duration: 200ms 

Time delay between the pulses: 250ms 

For this study, the effect of these parameters on the detection of defects in the D type 

composite laminate and the probability of detection of these defects is analyzed and 

compared.  

The following data was recorded for the experiment: 

 

No. of Pulses Pulse Duration (ms) Time Delay between Pulses (ms) 

10 200 250 

15 200 250 

20 200 250 

25 200 250 

30 200 250 

40 200 250 

 

Table 19: Process Parameters Values for Number of Pulses 
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Ground Truth Number of Pulses Image analysis value Error % 

 

 

25.4 mm 

10 21.976 mm 13.48 

15 25.116 mm 1.11 

20 28.255 mm 11.24 

25 31.395 mm 23.6 

30 31.395 mm 23.6 

40 - - 

 

Table 20: Comparison of dimension error for different number of pulses 

 

 

 

Figure 81: Number of pulses vs Error % 
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Figure 82: POD Curves for different number of pulses 

 

 

2. Pulse Duration 

For analyzing the effect of the pulse duration during the experiment on the temperature 

increase, we will set the following parameters as given below: 

No. of Pulses: 10 

Time delay between the pulses: 300ms  

Note: The time delay between the pulses should always be greater than the value of pulse 

duration. 
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The following data was recorded for the experiment: 

 

Pulse Duration (ms) No. of Pulses Time Delay between Pulses (ms) 

230 10 300 

240 10 300 

250 10 300 

260 10 300 

270 10 300 

280 10 300 

 

Table 21: Process parameters values for pulse duration 

 

 

Ground Truth Pulse Duration Image analysis value Error % 

 

 

25.4 mm 

230ms 25.116 mm 1.11 

240ms 25.116 mm 1.11 

250ms 25.116 mm 1.11 

260ms 25.116 mm 1.11 

270ms 25.116 mm 1.11 

280ms 25.116 mm 1.11 

 

Table 22: Comparison of error for different pulse durations 
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Figure 83: Pulse Duration vs Error % 

 

 
Figure 84: POD Curves for different pulse durations 
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3. Time delay between Pulses  

For analyzing the effect of the time delay between two consecutive pulses during the 

experiment on the temperature increase, we will set the following parameters as given 

below: 

No. of Pulses: 10 

Pulse Duration: 200ms  

The following data was recorded for the experiment: 

 

Time Delay between Pulses (ms) No. of Pulses Pulse Duration (ms) 

300 10 200 

310 10 200 

320 10 200 

330 10 200 

340 10 200 

350 10 200 

 

Table 23: Process parameters values for time delay between pulses 
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Ground Truth Time delay between pulses Image analysis value Error % 

 

 

25.4 mm 

300ms 21.976 mm 13.48 

310ms 23.86 mm 6.06 

320ms 21.976 mm 13.48 

330ms 21.976 mm 13.48 

340ms 20.093 mm 20.89 

350ms 20.72 mm 18.42 

 

Table 24: Comparison of error for different time delay between pulses 

 

 

 

Figure 85: Time delay between pulses vs Error % 
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Figure 86: POD Curves for different time delays between pulses 
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4.1 

DISCUSSION 

a) Number of pulses (N) 

For the percentage error in the dimension of the defect, as the trend of the graph in 

figure 81 indicates, as the number of pulses applied increases, the error percentage 

of the dimension first decreases then increases as the number of pulses increases. It 

can be observed that the trend of the graph is not monotonic. This is because 

initially when the number of pulses reaches 15 from 10, due to higher pulses applied 

in a period of time, the temperature increase is higher resulting in a more accurate 

than for 10 pulses. As the number of pulses increase, the energy absorbed by the 

composite laminate increases. This energy is also absorbed by the impurities and 

discontinuities formed during the manufacturing process of the composite laminate 

resulting in temperature increase in other areas of the composite laminate other than 

the defect areas. Also due to thermal diffusion effect between the defect and non-

defect area, the error percentage of dimension increases with increasing pulses. 

After a certain number of pulses, the temperature variation throughout the 

composite laminate remains approximately the same as it can be observed from the 

graph. 
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              N = 10                                   N = 15                                 N = 20  

         

              N = 25                                   N = 30                                 N = 40  

Figure 87: Thermal images for increasing number of pulses 

 

For the probability of detection, it can be observed from the POD curves that for 

the defects with diameter 0.5’’ and side length 1” the POD decreases with 

increasing the number of pulses. Whereas for the defect with side length 2”, the 

POD remains unaffected by the number of pulses applied to the specimen. 
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b) Pulse Duration 

For the percentage error in the dimension of the defect, as the trend of the graph in 

figure 83 indicates, as the duration for which the ultrasonic pulse is applied 

increases, the accuracy of detection remains unaffected as the pulse duration 

increases.  

                     

                 230ms                                240ms                                 250ms  

       

               260ms                                  270ms                                 280ms  

Figure 88: Thermal images for increasing pulse duration 

 

For the probability of detection, it can be observed from the POD curves that for the defects 

with diameter 0.5’’ the POD decreases with increasing the pulse duration. Whereas for the 

square defects with side length 1” and 2”, the POD is approximately the same and remains 

unaffected by the duration of pulse applied to the specimen. 
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c) Time delay between pulses  

For the percentage error in the dimension of the defect, as the trend of the graph in 

figure 85 indicates, as the time delay between pulses increases the error percentage 

of defect detection does not follow a trend. The mean error is 14.3 % and standard 

deviation of 4.66. This indicates that the increase in time delay between pulses does 

not have a substantial effect on the average error percentage of dimension. 

 

                       

                  300ms                               310ms                                 320ms  

            

                   330ms                                340ms                               350ms  

Figure 89: Thermal images for increasing time delay between pulses 
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For the probability of detection, it can be observed from the POD curves that for all 

the defects is approximately equal except for the case when the time delay between 

two consecutive pulses is 330ms.  

Analyzing all the process parameters, the optimum result is achieved for the 

following values of the process parameters: 

1) Number of Pulses: 10  

2) Pulse Duration: 230ms – 260ms 

3) Time delay between pulses: 330ms 
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CHAPTER 5 

CONCLUSION 

Using SONIC IR NDT enables the detection of subsurface defects present in the composite 

laminates using infrared cameras. Through the experimentation, it can be concluded that 

the SONIC IR NDT method is quick, has relatively easier setup and gives accurate results. 

The primary objective of this research is to use SONIC IR to detect the location and depth 

of subsurface defects in the composite laminate through the investigation of existing image 

processing and analysis algorithms. The algorithms are compared based on computation 

time and accuracy with respect to the defect location and dimension. Observing the results 

for all the image processing algorithms, the most accurate and quick results are obtained 

using Hamadani method (dedicated algorithm) with an average accuracy of 3.975 % for D 

type composite laminate and 19.42 % for E type composite laminate. It should be noted 

that none of the algorithms discussed were able to detect the circular defect of diameter 

0.5’’ in both D and E type of composite laminate. The depth of the defects is estimated 

using time quantities from the temporal history of the defects through linear regression. 

Half maximum power time gives the most accurate results as compared to peak slope and 

second derivative peak time. Probability of detection is observed to increase with 

increasing defect side length and decreases as the defect depth increases. 

Lastly, the effect of the three process parameters namely number of pulses applied, pulse 

duration and time delay between consecutive pulses on the defect detection accuracy and 

probability of detection is analyzed and discussed. 
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CHAPTER 6 

FUTURE WORK 

1. Use of inverse heat conduction framework for 3D reconstruction of the damages in 

the composite laminate. This method provides a more accurate representation of 

the defect delaminations in the specimen. 

2. Further investigation on two-dimensional probability of detection (POD) for 

defects considering the length and depth of the defects resulting into a more 

accurate POD analysis. 

3. Using Green’s function procedure to derive the relationship between the 

temperature profile and the input parameters of the experiment to obtain a 

theoretical model and compare it with the linear regression models for depth 

estimation of the defects. 

4. Investigating more process parameters, for example, the frequency of ultrasonic 

pulse, orientation of the composite laminate on the defect detection and the 

probability of detection of defects thereby increasing the accuracy of the NDT 

method. 
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APPENDIX A 

COMPOSITE LAMINATE SPECIFICATIONS 
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For this study, two types of composite laminates with pre-inserted delaminations at 

different depths are used. The details of the composite laminates and the delamination 

defects are given below: 

Uni-directional carbon: Toray, T700G-12K-31E/#3900  

Epoxy-glass tabs: 1/8 inch or 1/16-inch FR-4 e-glass pressed laminate at the gripping area 

Adhesive: Hysol EA9360 

Size: 7’’ x 14’’ 

The composite laminate specifications are given below: 

 

Layup  No. of Layers Delamination 

[902/+452/-452] s D 12 Inserted Teflon delaminations at the middle layer 

[902/+452/-452] s E 12 Inserted Teflon delaminations between layers 

 

Table A.1: Composite Laminate Specifications 
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Layup: D  

 

 

 

 
 

 

Figure A.1: Delamination inserted at middle layer for layup D (unit: inch) 
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Layup: E  

 

 

 

 
 

 

Figure A.2: Delamination inserted between different layers (unit: inch) 

 

The composite laminate has 12 layers. The Figure A.2 illustrates the location and depth 

of the defects in the composite laminate. 

 

Between 

2nd and 3rd layers 

 Between 

10th and 11th layers 

 

Between 

6th and 7th layers 

 

 Between 
4th and 5th layers 

 

Between 
8th and 9th layers 

Between 

10th and 11th layers 

 


