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ABSTRACT 

In nature, it is commonly observed that animals and birds perform movement-

based thermoregulation activities to regulate their body temperatures. For example, 

flapping of elephant ears or plumage fluffing in birds. Taking inspiration from the 

nature and to explore the possibilities of such heat transfer enhancements, 

augmentation of heat transfer rates induced by the vibration of solid and well as novel 

flexible pinned heatsinks were studied in this research project. Enhancement of natural 

convection has always been very important in improving the performance of the 

cooling mechanisms.  In this research, flexible heatsinks were developed and they were 

characterized based on natural convection cooling with moderately vibrating 

conditions. Vibration of heated surfaces such as motor surfaces, condenser surfaces, 

robotic arms and exoskeletons led to the motivation of development of heat sinks 

having flexible fins with an improved heat transfer capacity. The performance of an 

inflexible, solid copper pin fin heat sink was considered as the baseline, current industry 

standard for the thermal performance. It is expected to obtain maximum convective 

heat transfer at the resonance frequency of the flexible pin fins. Current experimental 

results with fixed input frequency and varying amplitudes indicate that the vibration 

provides a moderate improvement in convective heat transfer, however, flexibility of 

fins had negligible effects.   
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CHAPTER 1 

Introduction 

Enhancement of natural convection has been very important in improving the 

performance of the cooling mechanisms of various devices.[1]–[3] Research on various 

geometries and materials have led to today’s most optimised design of metal heatsinks 

that are used in electronics.[4]–[15] Many researchers have studied the effects of 

vibrations on the overall heat transfer in the cooling mechanisms. [1], [2], [15]–[27]  

Li et. al. developed a self-agitator for convective heat transfer enhancement by 

taking an inspiration from a wind induced vibrations of the grass blades.[19] Vast 

research is already been done on vibrating heat exchangers and it is safe to say that 

vibration induced heated surface could enhance heat transfer rates.[26][18] Though 

vibration in any rotating/moving instrument is considered as the inimical factor for 

causing damage, L. Cheng et. al. argued that the vibrations of the surfaces could 

enhance heat transfer in the heat exchangers.[26] Selimenfendigil et. al. provided a very 

important finding from their project that would play a very important role in this report; 

they showed that as the Youngs modulus of surface material decreases, the averaged 

Nusselt number increases thus improving the heat transfer by 66%.[28]  Prstic et. al. 

studied the effects of airflow over a heatsink inside an air duct and found that the flow 

bypass increases with increasing fin density and clearance and is found to be relatively 

insensitive to inlet duct velocity.[29] Flexible heat spreaders and heat sink sheets have 

been in use for over a decade. [22] The heat transfer rate through the thermal boundary 

layer increases when the hot surface is induced with vibrations.[22][24] At higher rates 

of vibrations the thermal boundary layer starts getting unstable. Fu et. al confirmed that 

higher the vibration of the wall, the greater the heat transfer rate. [30] Alben et. al. 
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claimed a 60% improvement in heat transfer rates when the air induced Poiseuille flow 

inside the channel becomes unstable. [31] Crittenden et al., Rips et al., Shoele and 

Mittal showed that forced convection can make the flexible fins vibrate and move, thus 

increasing the heat transfer by increasing turbulence and disturbing the thermal 

boundary layer. [8], [15], [32] 

Lee et. al. claimed that flexible flags clamped vertically in a channel flow could 

increase the heat transfer.[17][25] The use of vibrating reeds to induce vortex shedding 

with low pressure losses could improve heat transfer performance. [8][17][25] 

Similarly, Park et. al. investigated a self-oscillating inverted flag and its effect on the 

enhancement in heat  transfer; they found an increase in efficiency by a factor of 

1.2.[27] Rips et. al. studied a novel method that exploits flow-induced vibration for 

enhancing heat transfer in electronic cooling applications using coupled flow-

structural-thermal modelling.[8] The self-actuated fluttering reeds leads to the 

extraction of unused momentum from the flow and mix the cold core fluid with the hot 

fluid near the walls.[8] Introduction of the reed into the heat channel leads to an 

increase in the heat transfer rate by 30% for a fixed flow rate.[8] Go et. al. investigated 

the feasibility of heat transfer enhancement by implementing flow induced vibration in 

a micro-fin array. They found 5.5% enhancement in cooling rates.[3] Jamesahar et. al. 

worked on the unsteady natural convective heat transfer of an incompressible fluid in 

a square cavity which was divided into two triangles with the help of a very thin flexible 

thermal conductive membrane. They found that final shape of a flexible membrane 

plays an important role and the heat transfer from a flexible membrane was higher than 

that of a rigid membrane.[33] Khanafer compared the flow and heat transfer 

characteristics in a lid-driven cavity between flexible and modified geometry of a 

heated bottom wall. He found a substantial enhancement in heat transfer of 61.4% in 
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the case of flexible bottom wall as compared to a flat bottom wall case at Grashof 

number of  104 and Reynolds number less than 400.[2] Kumar conceptualized a novel 

method to eliminate the external pumps in the heat exchangers by dynamically 

deforming one of the walls; this led to increase in heat transfer coefficient with increase 

in the amplitude of deformation of the wall.[34][21] 

Toshio Aihara and Shigenao Maruyama carried out free convection and radiative 

experiments on dense pin fin arrays. They came up with correlations for calculating 

apparent emissivity an of the pin fin array and overall radiative heat transfer.[35] 

Vibration of heated surfaces can increase the heat transfer rates thus reducing the 

surface temperatures. In this research, vibration of heated surfaces lead to the 

motivation of development of flexible type heat sinks with potentially improved heat 

transfer capacity. Parameters that affect the heat transfer rates in the flexible heatsinks 

are also investigated.  

This report is divided into 6 chapters. Chapter 1 covers a brief introduction to 

the previous work done related to the effects of vibration and disturbance of thermal 

boundary layer on the overall heat transfer of the different surfaces and devices.  

Fabrication methods of the heatsinks and steps taken to tackle unsuccessful bonding of 

a polymer to a metal were discussed in chapter 2. Chapter 3 discusses the arrangement 

of the experimental setup and data collection methods. Analytical methods and 

different models were compared in chapter 4. Results and Discussions are covered in 

chapter 5. This report is concluded with conclusions and future scope in chapter 6.   
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CHAPTER 2 

Fabrication Methods 

Fabrication of Heat sinks 

A 5 mm thick plate was cut into squares of 38 × 38 𝑚𝑚2. 3 holes were drilled 

through the 5 mm thick edge for possible thermocouple attachments. 121 number of 

2.5 mm deep and 1.78 mm diameter holes were drilled along one of the 38 × 38 𝑚𝑚2 

surfaces using a vertical milling machine to provide support to the individual pins. 1-

inch long pins were cut out of a 1.5 mm diameter copper wire and the ends were 

polished flat using 600 grit polishing paper on the polishing machine.   

PDMS (polydimethylsiloxane) also referred as silicones belong to the group 

organosilicones.[36] Silicones have a low toxicity, a low chemical reactivity and are 

thermally stable over a range of −100𝑜𝐶 to 250𝑜𝐶.  For fabrication of flexible pin fin 

joints, EcoFlex 00-30 with 50:50 ratios of part A and Part B were used. EcoFlex 00-30 

is stable in the range of−65𝑜𝐶 to 232𝑜𝐶 and cures within 4 hours.[37]  

A Plexiglass fixture was fabricated using laser cutting to keep pin fins positioned 

upright until EcoFlex 00-30 cures. Vacuum chamber was used to get rid of air bubbles 

before the EcoFlex 00-30 cures.   

3 types of flexible heat sinks were fabricated having same dimensions as that of 

a baseline rigid heatsink[38] but different compositions of bonding material in between 

the pins and the copper base plate. First type consisted of the bonding material made 

of pure EcoFlex 00-30, second type had  PDMS with Wakefield Type 120 Thermal 

interface material (TIM) [39]  and third type consisted of bonding material made of 

EcoFlex 00-30 and 15% Galinstan by weight[40]. The geometries of all 3 flexible heat 
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sinks were replicas of an original equipment manufacturer(OEM) made copper heat 

sink by Enzotech CNB-S1 [38].  

Table 1 Composition of the Heat Sinks 

Heat sink Surface treatment Silicone 

Composition 

Manufacturer 

Rigid Heat sink  N/A N/A Enzotech CNB-SI 

Flexible Heat 

sink 1 

(3-Trimethoxysilylproply) 

Diethylenetriamine- Tech-

95 

EcoFlex 00-30  Self-Fabricated 

Flexible Heat 

sink 2 

(3-Trimethoxysilylproply) 

Diethylenetriamine- Tech-

95 

Wakefield 

Type 120 + 

EcoFlex 00-30 

 Self-Fabricated 

Flexible Heat 

sink 3 

(3-Trimethoxysilylproply) 

Diethylenetriamine- Tech-

95 

15% Galinstan 

in EcoFlex 00-

30 

Self-Fabricated 
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A typical fabrication process of the flexible heat sinks is shown in the figure below. 

 

Figure 1(a) Copper Base plate and Pin fins (b) Treatment with (3-

Trimethoxysilylproply) Diethylenetriamine- Tech-95 (c) Plexiglass fixture                       

(d) Enzotech CNB S1 Rigid Heat Sink and Flexible Heat Sink 1 (e) final product 

(Flexible heat sink 2)   

Figure 1 (a) shows the different parts of a typical flexible heatsink before 

assembly. All the parts were fabricated manually in the lab. The parts were washed in 

distilled water and ethanol and blow dried to get rid of oils and dust. Figure 1 (b) shows 

the treatment of all the parts with silane coupling agent called (3-

Trimethoxysilylproply) Diethylenetriamine – Tech 95. Silane coupling agents are 

usually deposited through any alcohol; ethanol in this case.[41]. Once the surfaces were 

treated with silane coupling agent, they were allowed to dry and 1:1 Ecoflex 00-30 

(a) (b) 

(d) 

(c) 

(e) 
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(and/or TIM or LM) was applied on the upper surface of the copper base plate. The pin 

fins were inserted in the holes using the Plexiglass fixture shown in the Figure 1(c) and 

the whole assembly was allowed to cure overnight.  Once the Ecoflex 00-30 was cured, 

the fixture was removed, and the final product was obtained as shown in Figure 1(d). 

Figure 1(e) shows side by side comparison of the flexible heatsink and the standard 

OEM made Enzotech CNB S1 rigid heatsink.      

Bonding of pin fins with the base plate was a very critical step in the overall 

fabrication process because the polymer bonds would fail if the metal surfaces were 

not treated with silane coupling agents. Moreover, excess use of silane coupling agents 

would cause EcoFlex 00-30 to form a thick slimy polymer layer which would never 

cure causing failed bonds. For a perfect consistency of the cured Ecoflex 00-30, the 

surface treatment process played a critical role. During the treatment, the concentration 

of the silane coupling agent in ethanol was kept below 2% and the temperature was 

fixed to 60𝑜C. The metal parts were kept in this chemical mixture for 20 to 30 mins. 

The working of the silane coupling agent is discussed in the following section 

 

 

 

 

 

 

 

Baseline Heatsink 

Enzotech CNB S1 

Flexible Heatsink 1 

EcoFlex 00-30 

Flexible Heatsink 2 

Wakefield type 120  

& Ecoflex00- 30   

Flexible Heatsink 3 

Galinstan  

+ EcoFlex 00-30 

Figure 2 Different heatsinks and their bond compositions 
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Bonding of copper with silicone  

Silane coupling agents are the group of silanes that promote adhesion or bonding 

between dissimilar materials i.e. bonding of organic polymers to inorganic 

substrates.[42]–[44] To form a strong, durable bond between copper surface and 

Silicone, a silane coupling agent was used. (3-Trimethoxysilylproply) 

Diethylenetriamine- Tech-95 [45] was used to form a silane layer on the copper surface 

through the process of hydrolysis with the help of ethanol at elevated temperatures of 

about 40𝑜 − 50𝑜𝐶.  This silane layer formed a strong bond with copper substrate and 

silicone. A typical working of a silane coupling agent is shown in the figure below. 

 

Figure 3 Working of a typical Silane Coupling Agent for bonding an organic Polymer 

with an inorganic metal substrate[43] 
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CHAPTER 3 

Experimental Setup and Data Collection techniques 

Experimental Setup:  

 

Figure 4 : 3D visualization of the experimental setup arrangement. Note: horizontally 

arranged Heatsinks. 

The experimental setup for testing the heatsinks consisted of a Circuit Specialists 

variable voltage Variac Transformer of input 110 V AC 60 Hz, a Stanford Research 

Systems PTC 10 Programmable Temperature Controller for data collection from 4 T 

type thermocouples and a denture shaker table with fixed frequency of 60 Hz and 

variable amplitudes.    

The experimental setup consisted of a copper block of 38 × 38 × 60 mm with 

holes drilled for resistance heater to supply a constant heat flux, thermocouples for 

temperature measurement and mounts to secure heat sink from any motion. The setup 

is shown in detail in the following figure.  

Heat Sink 

Programmable Temperature Controller 

Insulation 

Denture Shaker Table 

Transformer 
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Figure 5: (a) Exploded view of the experimental setup; (b) Locations of different 

thermocouples indicated by T# and Resistance Heater indicated by RHr 

The entire setup was covered with Plexiglass sheets to prevent unnecessary drafts 

of air from the movements in the surrounding.  

T type thermocouples have range around -200 to 400𝑜𝐶 and accuracy of ± 1o𝐶 

Hence T type thermocouples were used for temperature measurements. 3 T type 

Insulation  

Clips  

Heat Sink 

Copper block  

T3 

T2 

T1 

RHr 

(a) 

(b) 
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thermocouples were located inside the copper block and 1 T type thermocouple was 

used to measure ambient temperature. 

Data Collection:  

Each heatsink was supplied with 10 W power through the resistance heater and 

allowed to reach its maximum temperature (or within the range of ± 1𝑜𝐶). Once the 

maximum temperature was reached, the shaker table was turned on and the heatsinks 

were allowed to vibrate and to reach their steady state temperature. Each test was 

conduced minimum 3 times for each of the 4 settings of the amplitude of the shaker 

table.  The run time for each test was around 8 hours/test.  

For data collection, T type thermocouples were connected to Stanford Research 

Systems PTC10 programmable temperature controller. This controller had a provision 

to measure up to 4 thermocouple readings. The Programmable Temperature Controller 

creates the separate data files in format ‘.PTC’ for each thermocouple. These ‘.PTC’ 

files were combined into one file and converted to ‘.csv’ and ‘.xlsx’ files using a 

software called PTCfileConverter.  These .xlsx and .csv files were used for further data 

analysis. 

The figure below shows the drop in temperature due to the vibrations generated 

by the shaker table. The power supplied to the heatsinks through the Variac 

Transformer was kept constant (10 W) throughout the test and for each of the tests.  
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Figure 6 : A typical Thermal-Vibration test reading 

In the above plot, part (a) indicates the steady state temperature 143𝑜𝐶 of the 

heatsink. Part (b) indicates the point at which the shaker table was turned on and 

vibrations began at 60 Hz. It was observed that the heatsink experienced drop in the 

temperature. Part (c) shows the new steady state reached by the heatsink when the 

shaker table was running. Part (d) indicates the temperature of the 

surrounding/ambient.     

 

 

 

 

 

(b) 

(c) 

(a) 

(d) 
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The tests were conducted in the following manner:  

Table 2 : Number of Heatsink tests 

Heatsink Shaker table Setting  Tests per setting Total Tests 

Flexible Heatsink 1 

(PDMS interface)  

Low Amplitude 3 12 

Medium Amplitude 

High Amplitude 

Very High Amplitude 

Flexible Heatsink 2 

(PDMS + TIM) 

Low Amplitude 3 12 

Medium Amplitude 

High Amplitude 

Very High Amplitude 

Flexible Heatsink 3 

(PDMS + LM) 

Low Amplitude 3 12 

Medium Amplitude 

High Amplitude 

Very High Amplitude 

Rigid Heatsink 

Enzotech CNB-S1 

Low Amplitude 3 12 

Medium Amplitude 

High Amplitude 

Very High Amplitude 

Total Tests 48 

 

During theoretical calculations, the properties of copper were assumed to be close 

to C11000.[46] CoolProp library was used to evaluate thermophysical properties of the 

fluids in MATLAB codes.[47]     
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Vibrations: 

The motion that repeats itself after an interval of time is called vibration. During 

vibrations the potential energy of the system is transferred to a kinetic energy and 

kinetic energy is transfer to potential energy alternately. The energy is dissipated in 

each cycle of vibration when the system is damped.[48] An external source of vibration 

is necessary to maintain the steady state vibrations. The vibrations are classified as 

follows:  

Free vibration: When the system is left to vibrate on its own after an initial 

vibration then the vibration is known as free vibration. In this case, no external force 

acts on the system.  

Forced vibration:  When the system is forced with an external periodical force, 

the resulting vibrations in the system is termed as forced vibrations.      

The amplitude and frequency of vibration in a structure are controlled by the two 

factors: the excitation applied and response of the structure to that particular excitation. 

[49] The main sources of excitation are wind, shocks, earthquakes, external sources 

such as imbalanced machinery etc. And the response of the structure depends on the 

natural frequency of the structure and inherent level of damping. Though the vibrations 

are considered undesirable in most of the structures due to the generation of dynamic 

stresses and strains leading to fatigue failures, these heat sinks are designed purposely 

to vibrate at maximum amplitudes at their resonance frequencies. 
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MATLAB Image Detection Technique:  

MATLAB was used to characterize vibrations of the shaker table and heat sinks.  

Image analysis technique was used to track the change in motion of pins in each of 

images captured by the high-speed camera.  

Photron Fastcam Mini UX 100[50] was used to capture the vibrations of the pin 

fins of the heat sink and the vibrations of the shaker table. With a well-adjusted lighting, 

a single reading with 500 images were captured at 5000 fps. The distances in the image 

were calibrated using known distances such as the diameter of the pin fin. The time 

interval between two images were calculated using the following relation. 

𝑇𝑖𝑚𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑜𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠

𝐹𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑
 

The time interval between 2 corresponding images was 1/5000 second for a 5000-

fps setting. 

A function was written in MATLAB to track the centroid of an area of the object 

(Pin fins, shaker table base) in a manually defined region of interest in the images. This 

function was semi-automatic i.e. information such as region of interest was entered into 

this function manually. Region of interest was selected strategically in such a manner 

that it would track the motion of a single object in the image.  

The high-speed camera captures a monochrome black and white image in the 

RGB format. The RGB image captured by the high-speed camera was converted into a 

grayscale image. The region of interest was selected manually using rectangular region 

and stored as a new binary image. The grayscale image was converted into a binary 

image too. The two binary images were compared using a logical AND operator. This 

method proved successful in retaining the features/objects in the region of interest and 
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deleting the objects outside the region of interest. Centroid of an area in the region of 

interest was tracked for each image to store the X displacement and Y displacement. 

MATLABs image batch processing application was used to run this function on 

every image in a single reading. The X and Y displacements of the centroid of an area 

were imported in the workspace and plotted against time using a separate code.    

The region of interest was fixed for every image in one reading. One drawback 

of this method was that, due to the moving objects in every image, some images had 

unwanted objects entering in the region of interest. To tackle this issue, the region of 

interest was chosen such that the area of unwanted objects in the region of interest 

would not exceed the area of the object to be tracked. Using a filter, the unwanted areas 

in the region of interest were removed. This was done to ensure that the MATLAB 

function tracks only the centroid of the largest area in the region of interest.       
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A typical data extraction process is explained using the following flow chart:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capture images using a high-speed 

camera at 4000 or 5000 fps.  

Use MATLAB code no. 1 to define amount of 

threshold applied to the binary image and region 

of interest and store the threshold value and 

coordinates of in the workspace.  

Copy the coordinates of the ROI and 

threshold value from the workspace to the 

MATLAB function and save it.   

Use image batch processing app from 

MATLAB apps to process the images of one 

reading and extract the coordinates of the 

centroid in the workspace. 

Use MATLAB code 2 to plot the X and Y 

displacements against time.   
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Figure 7 : Working of the MATLAB Code: To get rid of unwanted data from the Image. 

(a) Original image, (b) Binary Image, (c) definition of Region of interest, (d) Logical 

AND operation performed on image b and image c, (e) Dilation of edges and selection 

of largest area, (f) Fill holes. 

The above figure demonstrates the steps taken by the MATLAB code to extract 

desired area from the given image. These 6 steps are implemented on all the images in 

a particular reading. Using known parameters such as the diameter of the pin fin, 

distances are calibrated, and the centroid of the desired area is tracked and plotted as 

shown in the figure 6 to study the characteristics of pin fin vibrations. 

The distance between two adjacent images could be used to calibrate time and 

the distance between two adjacent troughs could be used to measure one complete 

oscillation.  

Figure 8: Processed images indicating movement of a flexible pin 

(a) (b) (c) 

(d) (e) (f) 
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Image analysis technique is a faster way to accurately to track x displacements 

and y displacements of the pin fins. The output of the code could be plotted as follows.  

 

Figure 9 : A typical high-speed camera reading when the shaker table is activated. 

This plot indicates that the motion of the pin is not perfectly perpendicular to the 

y axis. The pin fin vibrates in x and y axis or axis of vibration is tan−1 (
𝑦

𝑥
) = 76.26𝑜   to 

the x axis for the first period and 65.10 for the second period. This indicates that the 

pins are tracing an elliptical path. It can also be observed that the vibration of the pins 

is not perfectly uniform.   
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CHAPTER 4 

Analytical Study 

Natural Frequency of a flexible pin fin. 

To calculate the free natural vibrations of the flexible pins, the pin was left from 

a specific amplitude and allowed to vibrate own until it became stationary. The image 

analysis technique explained above was used to track the centroid of the area.   

Here edge detection method was implemented. Threshold filtering, Sobel 

approximation, Prewitt approximation and Canny approximation were implemented 

for edge detection as necessary according to the lighting setup and gradient for each 

test. [51]–[61] 

 

Figure 10: Working of the MATLAB Code: (a) Original image, (b) Original image 

converted to a binary image, (c) Region of interest defined, (d) Logical AND operation 

performed on image 2 and image 3 to get rid of unwanted data from the image, (e) 

Dilation of edges and selection of largest area (f) Fill holes if any.    

(a) (b) (c) 

(d) (e) (f) 
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The output of the above code was used to track the tip of the pin fin and it was 

observed that the pin fin perfectly traced a damped oscillation. The output of the code 

was plotted as follows: 

 

Figure 11 : A typical reading obtained from a high-speed camera 

Reference books on vibrations were used to characterize these vibrations.[48], 

[49], [62]–[64] The logarithmic decrement denoted by 𝛿 is represented by the following 

equation: 

𝛿 = 𝐼𝑛 (
𝑥(𝑡)

𝑥(𝑡 + 𝑇𝑑)
) 

(1) 

Where 𝑥(𝑡) is position of the tip of the pin at time 𝑡 and 𝑇𝑑is the period of 

oscillation. The displacement of oscillation is given by the following equation:  
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𝑥(𝑡) = 𝐴𝑒−ζωn𝑡sin (𝜔𝑑𝑡 + 𝜙) (2) 

Where A is the amplitude of vibration, 𝜁 is the dimensionless damping ratio, 𝑡 is 

the time-period, 𝜙 is the possible phase shift, 𝜔𝑛is the undamped natural frequency and 

𝜔𝑑is the damped natural frequency. 

 

Figure 12: blue line indicating logarithmic decrement 

Substituting 𝑥(𝑡) in the logarithmic decrement  

𝛿 = 𝐼𝑛 (
𝑥(𝑡)

𝑥(𝑡 + 𝑇𝑑)
) = 𝐼𝑛 (

𝐴𝑒−ζωn𝑡sin (𝜔𝑑𝑡 + 𝜙)

𝐴𝑒−ζωn(𝑡+𝑇𝑑)sin (𝜔𝑑𝑡 + 𝜔𝑑𝑇𝑑 + 𝜙)
) = 𝐼𝑛𝑒𝜁𝜔𝑛𝑇𝑑

= 𝜁𝜔𝑛𝑇𝑑 

(3) 

Further evaluating  

𝛿 = 𝜁𝜔𝑛𝑇𝑑 =
2𝜋𝜁

√1 − 𝜁2
  

(4) 

Which gives  

𝑒−ζωn𝑡  
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𝜁 =
𝛿

√4𝜋2 + 𝛿2
 

(5) 

The damped natural frequency is given by the following equation:  

𝜔𝑑 = 𝜔𝑛√1 − 2𝜁2 (6) 

Analytical model of a pin fin:  

The flexible pin fin can be modelled as a uniform circular cross section beam 

with one end spring hinged and the other end connected to a translational spring. Work 

on these problems were previously carried out by various researchers. In this report, 

Chun’s model and Zhong et. al. model will be used.   

Maurizi et. al. proposed a study to deal with the free vibration of a beam hinged 

at one end by a rotational spring and a translational spring at the other end. [65] 

 

 

 

Figure 13: Cantilever beam with one end connected to a rotational spring and other 

end connected to a translational spring 

The differential equation for the free vibrations of a uniform cantilever 

beam is given as  

 𝐸𝐼
𝛿4𝑦

𝛿𝑥4
+ 𝑚

𝛿2𝑦

𝛿𝑡2
= 0   

(7) 

Here, EI is the modulus of flexural rigidity of the beam, y is the deflection of the 

beam, m is mass per unit length, x is the distance from the spring-hinged side and t 

represents time.   

L 

Kr Kt
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This is subjected to the following boundary conditions, 

At x=0, 

𝑦(0, 𝑡) = 0, 𝐾𝑟  
𝛿𝑦(0, 𝑡)

𝛿𝑥 
= 𝐸𝐼

𝛿2𝑦(0, 𝑡)

𝛿𝑥2 
 

(8) 

At x= L, 

𝛿2𝑦(𝐿, 𝑡)

𝛿𝑥2
= 0, 𝐸𝐼 

𝛿3𝑦(𝐿, 𝑡)

𝛿𝑥3 
= 𝐾𝑡𝑦(𝐿, 𝑡) 

(9) 

𝐾𝑟 and 𝐾𝑡 are the rotational and translational spring constants respectively.  

Following separation of variables, one could assume the following form of solution,  

𝑦(𝑥, 𝑡) = ∑ 𝐺𝑛(𝑥)𝑇(𝑡)

∞ 

𝑛=1

 
(10) 

𝐺𝑛(𝑥) is the n th mode of natural vibration and  

𝐺𝑛(𝑥) = 𝐴𝑛cos (𝐶𝑛𝑥) + 𝐵𝑛𝑠𝑖𝑛(𝑐𝑛𝑥) + 𝐶𝑛𝑐𝑜𝑠ℎ(𝑐𝑛𝑥) + 𝐷𝑛𝑠𝑖𝑛ℎ(𝑐𝑛𝑥) ,  (11) 

𝐶𝑛
4 = (

𝑦𝑛

𝐿
)

4

= 𝜔𝑛
2 (

𝑚

𝐸𝐼
)   

(12) 

Substituting 𝐺𝑛(𝑥) in 𝑦(𝑥, 𝑡) and later in the boundary conditions one could 

obtain a system of linear homogenous equations which could be converted into the 

following frequency equation: 

(
𝐸2𝐼2

𝐾𝑟𝐾𝑡𝐿4
) (𝐶𝑛𝐿)4 [𝑠𝑖𝑛(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) − sinh(𝐶𝑛𝐿) cos (𝐶𝑛𝐿)]

− (
𝐸𝐼

𝐾𝑡𝐿3
) (𝐶𝑛𝐿)3[𝑐𝑜𝑠(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) + 1]

− (
2𝐸𝐼

𝐾𝑟𝐿
) (𝐶𝑛𝐿)[𝑠𝑖𝑛(𝐶𝑛𝐿) sinh(𝐶𝑛𝐿)]

− [𝑠𝑖𝑛(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) − sinh(𝐶𝑛𝐿) cos (𝐶𝑛𝐿)] = 0   

 

 

 

 

 

(13) 
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The natural frequency for the 𝑛𝑡ℎ mode is given as,  

𝑓𝑛 =
𝐶𝑛

2𝐿2

2𝜋
√

𝐸𝐼

𝑚𝐿4
   

(14) 

K. R. Chun modelled a beam with one end hinged with a rotational spring and 

the other end free. [66] 

 

 

 

For a simple torsion (rotational) spring-end and free end system the above 

equation (15) reduces to,  

(
𝐾𝑟𝐿

𝐸𝐼
) (

1

(𝐶𝑛𝐿)
) [𝑐𝑜𝑠(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) + 1] − [𝑠𝑖𝑛(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿)

− sinh(𝐶𝑛𝐿) cos (𝐶𝑛𝐿)] = 0 

(16) 

Where , 𝐼 =
𝜋𝑑4

64
= 3.727 × 10−13  𝑚4 , 𝐸 = 117 × 109 𝑃𝑎,   𝐿 = 25.4 ×

10−3𝑚, 𝑚 = 𝜌𝐴 = 0.0194 𝐾𝑔/𝑚 

𝑓𝑛 =
(𝐶𝑛𝐿)2

2𝜋
√

𝐸𝐼

𝑚𝐿4
  

(17) 

Zhong et. al. used a similar concept in their model to evaluate equivalent stiffness 

of flexible supports on the MEMS cantilever-based supports. [67] 

 

 

 

L Kr

L 

Kr

Kt

Figure 14: Cantilever beam connected to a rotational spring 
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According to Zhong’s model, the governing deflection of the cantilever beam 

could be expressed as,  

𝐸𝐼
𝛿4𝑦

𝛿𝑥4
+ 𝑚

𝛿2𝑦

𝛿𝑡2
+

𝐸𝐴

2𝐿

𝛿2𝑦

𝛿𝑥2
∫ (

𝛿𝑦

𝛿𝑥
)

2

𝑑𝑥 + 𝑐
𝐿

0

𝛿𝑦

𝛿𝑡
 = 𝐹𝑐𝑜𝑠(Ω𝑡)  

 

(18) 

Where 𝑦 = 𝑦(𝑥, 𝑡), Ω = 2πn; n= frequency of vibration (Hz)  

Subjected to the following boundary conditions: 

At x = 0 

𝐸𝐼
𝛿2𝑦

𝛿𝑥2 − 𝐾𝑟
𝛿𝑦

𝛿𝑥
= 0, and −

𝛿

𝛿𝑥
(

𝛿2𝑦

𝛿𝑥2) − 𝐾𝑟𝑦 = 0 (19) 

 At x = L 

𝛿2𝑦

𝛿𝑥2 = 0, and 
𝛿

𝛿𝑥
(

𝛿2𝑦

𝛿𝑥2) = 0 (20) 

 The algebraic system of equations for the resonance frequencies are as follows:  

|

|

√𝜔 𝛼𝑅 −√𝜔 𝛼𝑅

𝛼𝑇 −𝜔
3
2 𝛼𝑅 𝜔

3
2

𝑐𝑜𝑠√ω

𝑠𝑖𝑛√ω

𝑠𝑖𝑛√ω

−𝑐𝑜𝑠√ω

−𝑐𝑜𝑠ℎ√ω

𝑠𝑖𝑛ℎ√ω

−𝑠𝑖𝑛ℎ√ω

𝑐𝑜𝑠ℎ√ω

|

|
= 0 

(21) 

Where, 𝛼𝑅 =
𝐾𝑟𝐿

𝐸𝐼
 and 𝛼𝑡 =

𝐾𝑡𝐿3

𝐸𝐼
 and 𝜔 =2πfn,  fn = resonance frequency (Hz)  

From image analysis the values of natural frequency of the pin fin for mode 1 

was calculated. Using these natural frequency values, one could calculate stiffness of 

the bonding structure which depends on the geometry and material properties.  

For example,  

Figure 15 : Cantilever beam with the end connected to a rotational spring and a 

translational spring.  
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For Maurizi’s model,  

(
𝐾𝑟𝐿

𝐸𝐼
) (

1

(𝐶𝑛𝐿)
) [𝑐𝑜𝑠(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) + 1] − [𝑠𝑖𝑛(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿)

− sinh(𝐶𝑛𝐿) cos (𝐶𝑛𝐿)] = 0   

 

(22) 

This equation as multiple solutions. One way to extract required solution from 

this equation is substituting this equation as a function and plotting it for various values 

of 𝐶𝑛𝐿. 

𝑓(𝐶𝑛𝐿) =  (
𝐾𝑟𝐿

𝐸𝐼
) (

1

(𝐶𝑛𝐿)
) [𝑐𝑜𝑠(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) + 1]

− [𝑠𝑖𝑛(𝐶𝑛𝐿) cosh(𝐶𝑛𝐿) − sinh(𝐶𝑛𝐿) cos (𝐶𝑛𝐿)]  

 

 

(23) 

Plotting 𝑓(𝐶𝑛𝐿) 

 

Figure 16: Solution of f(CnL) at various CnL values 
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For first mode 𝐶𝑛𝐿 = 0.2599, at stiffness 2.615 N/mm.  

𝑓𝑛 =
(𝐶𝑛𝐿)2

2𝜋
√

𝐸𝐼

𝑚𝐿4
= 24.98𝐻𝑧  

Similarly, for Zhong’s model,  

|

|

√𝜔 𝛼𝑅 −√𝜔 𝛼𝑅

𝛼𝑇 −𝜔
3
2 𝛼𝑅 𝜔

3
2

𝑐𝑜𝑠√ω

𝑠𝑖𝑛√ω

𝑠𝑖𝑛√ω

−𝑐𝑜𝑠√ω

−𝑐𝑜𝑠ℎ√ω

𝑠𝑖𝑛ℎ√ω

−𝑠𝑖𝑛ℎ√ω

𝑐𝑜𝑠ℎ√ω

|

|
= 0 

(24) 

Substituting this equation as a function of 𝜔 

|

|

√𝜔 𝛼𝑅 −√𝜔 𝛼𝑅

𝛼𝑇 −𝜔
3
2 𝛼𝑅 𝜔

3
2

𝑐𝑜𝑠√ω

𝑠𝑖𝑛√ω

𝑠𝑖𝑛√ω

−𝑐𝑜𝑠√ω

−𝑐𝑜𝑠ℎ√ω

𝑠𝑖𝑛ℎ√ω

−𝑠𝑖𝑛ℎ√ω

𝑐𝑜𝑠ℎ√ω

|

|
= 𝑓(𝜔) 

(25) 

Plotting  𝑓(𝜔) 

 

Figure 17: Solution of f(𝜔) at various values of 𝜔 
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For the stiffness 2.615 N/mm it was observed that the flexible pin vibrates at   

𝜔4 =  157.913
𝑟𝑎𝑑

𝑠
 

𝑓𝑛 =
𝜔

2𝜋
= 25.13 𝐻𝑧 

Setting the stiffness value 2.615 N/mm following results,  

 

Table 3 : Difference between Maurizi's Model and Zhong's Model 

Model Stiffness K = Kr = Kt  Natural frequency 

Maurizi’s model 0.00262 N/m 25.0 Hz 

Zhong’s model 0.00262 N/m 25.1 Hz  

Experimental Value - 25.1 Hz 

 

Heat Transfer model 

Natural Convection:  

Horizontally Pin fin heatsinks can be modelled as a vertical plate and horizontal 

cylinders. Calculations were done using MATLAB. CoolProp was used to obtain fluid 

properties at varying temperatures.   

The total heat dissipation of the heat sink is usually done as follows 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑝𝑙𝑎𝑡𝑒 + 𝑄𝑝𝑖𝑛𝑠 = (ℎ𝑝𝑙𝑎𝑡𝑒𝐴𝑝𝑙𝑎𝑡𝑒 + 𝜂𝑝𝑖𝑛𝑠ℎ𝑝𝑖𝑛𝑠𝐴𝑝𝑖𝑛𝑠)(𝑇𝑠 − 𝑇𝑎𝑖𝑟)   (26) 

 

Efficiency of the pin is given by  
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𝜂𝑝𝑖𝑛 =
tanh(𝑚𝐿)

𝑚𝐿
 

(27) 

Where  

𝑚 = √
4ℎ𝑝𝑖𝑛𝑠

𝐾𝑐𝑢𝑑
    

(28) 

Nusselt number is defined using following equation: 

𝑁𝑢 =
ℎ𝐿

𝐾𝑎𝑖𝑟   
 

(29) 

Nusselt number for a vertical plate is obtained by the following equation[68][69],  

𝑁𝑢𝑝𝑙𝑎𝑡𝑒 = 0.825 +
0.387𝑅𝑎

1
6

(1 + (
0.492

𝑃𝑟
)

9
16

)

8
27

 

Where,  

(30) 

𝑅𝑎𝑝𝑙𝑎𝑡𝑒 =
 𝑔𝛽(𝑇𝑠 − 𝑇𝑎𝑖𝑟)𝐿𝑐

3

𝜈𝛼
  

(31) 

 

Nusselt number for a horizontal pin fin is given as[68][69]: 

𝑁𝑢𝑝𝑖𝑛 = 0.6 +
0.387𝑅𝑎

1
6

(1 + (
0.559

𝑃𝑟
)

9
16

)

8
27

 

(32) 

Where,  

𝑅𝑎𝑝𝑖𝑛 =
 𝑔𝛽(𝑇𝑠 − 𝑇𝑎𝑖𝑟)𝐿𝑐

3

𝜈𝛼
 

(33) 

Plugging 32 and 30 in 29, one could get the value to h for the pin fin and the base plate.  
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The above method of calculating h for single pinfin and multiplying by total number 

of pin fins to obtain overall heat transfer is termed as traditional method in this report.   

Joo et. al. argued and claimed[70] that  

ℎ𝑝𝑖𝑛 =
𝑆ℎ𝑆𝑣

𝜋𝑑𝐿

(4𝑆ℎ𝑆𝑣 − 𝜋𝑑2)

48

𝜌𝑓𝐶𝑝𝑔𝛽𝜂𝑓𝑖𝑛(𝑇𝑏 − 𝑇𝑎𝑖𝑟)

𝜈𝑓
   

(34) 

Table 4: Comparison between the traditional method and Joo's observation 

Method of calculation Calculated 𝑸𝒕𝒐𝒕𝒂𝒍 Experimental 𝑸𝒕𝒐𝒕𝒂𝒍 

Traditional method 42.8 W 10.2 W 

Joo’s Model 10.3 W 10.2 W 

 

The traditional method does not consider the effects the densely packed pin fins hence 

overestimates the heat transfer. Joo’s Model considers the array of pin fins as densely 

packed porous medium. [70] Thus it obtains fairly accurate results.  

Vibration induced Forced Convection:  

Robert Lemlich conducted a series of tests on electrically heated wires[16] and 

he approximated Nusselt number relation of horizontally heated wires as follows: 

𝑁𝑢 = [0.75 +
0.0022(𝑅𝑒2.05(𝛽Δ𝑇)0.33)

𝑃𝑟1.54𝐺𝑟0.41
] [0.63 + 0.35(𝐺𝑟 × 𝑃𝑟)]  

(35) 

Here 𝑅𝑒 =
𝑉𝐷

𝜈
 

The velocity of the pin fins was calculated using the relation 𝑉 = 2𝐴𝑓𝑛  

Where 2A is the peak-to-peak amplitude of vibration and 𝑓𝑛 is the frequency of 

vibration.  
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Using above analytical models one could predict the change in temperature at varying 

heat transfer.  

 

Figure 18 Prediction of Temperature difference with respect to heat transfer 

From the above figure, it could be observed that the predicted thermal resistance 𝑅 =

Δ𝑇

𝑄
 is in the range of 10.8 K/W to 3.1 K/W for range of input shaker table amplitude of 

0 to 1 mm. 
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CHAPTER 5 

Results and Discussion 

Effect of vibration on thermal Resistance:  

Experimental data is shown in the plots below. 

 

Figure 19 : Thermal Resistance of Rigid Heatsink Enzotech CNB-S1. [ The error bars 

were calculated using 1 standard deviation]  

In the above plot, blue ticks indicate thermal resistance during the steady 

nonvibrational case of natural convection.  Red ticks show the steady thermal 

resistances during the active steady vibrations using the shaker table.    
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Figure 20 : : Thermal Resistance of Flexible heatsink 1 (PDMS). [ The error bars 

were calculated using 1 standard deviation] 

 

Figure 21 : Thermal Resistance of Flexible heatsink 2 (PDMS + TIM). [ The error 

bars were calculated using 1 standard deviation] 
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Figure 22 : Thermal Resistance of Flexible heatsink 3 (PDMS + LM). [ The error 

bars were calculated using 1 standard deviation] 

The blue markers indicate the thermal resistance of the heatsink during the natural 

convection i.e. the static no-vibration case and the red markers indicate thermal 

resistance during vibration induced forced convection. According to the experimental 

results, 23% decrease in the thermal resistance of the Flexible heatsink 1 was observed 

at the largest value of amplitude while 24% decrease in the thermal resistance as 

observed in Flexible heatsink 2 at the largest value of amplitude. 27% decrease in the 

thermal resistance was observed in the Flexible heatsink 3.   While 28% decrease in 

thermal resistance was observed in the case of Rigid Enzotech CNB S1 at the largest 

vibration amplitude.  
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 It can be observed that the drop in thermal resistance of all the Flexible heatsinks 

is less than the rigid heatsink thermal resistance drop. This can be due to the lower 

amplitudes of vibration of the flexible pin fins. Using image analysis technique it was 

observed that the flexible pin fins were vibrating at much lesser amplitudes than the 

input amplitudes of the shaker table.  

The thermal resistance was calculated using the Temperatures obtained from the 

thermal tests.  

 

Figure 23 : Experimental results vs Predicted Results, Note: Error bars were 

calculated using 1 standard deviation. 

The experimental and analytical models are in good agreement with each other.  

It can be observed that there is large variation in calculated data due to the fluctuations 
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in thermocouple readings during the vibration test as compared to the natural 

convection tests.  

Natural Frequency of pin fins:  

Using the method discussed in chapter 4, following results were obtained:  

Table 5 : Natural Frequency of the pin fins calculated using high speed camera and 

MATLAB image analysis technique 

Heatsink 𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝑫𝒂𝒎𝒑𝒆𝒅 𝑵𝒂𝒕𝒖𝒓𝒂𝒍 𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 

Flexible 

Heatsink 1 

𝜔𝑛 = 159.97 𝑟𝑎𝑑/𝑠 𝜔𝑑 = 154.13 𝑟𝑎𝑑/𝑠 

𝐹𝑛 = 25.46 𝐻𝑧 𝐹𝑑 = 24.53 𝐻𝑧 

Flexible 

Heatsink 2 

𝜔𝑛 = 138.85 𝑟𝑎𝑑/𝑠 𝜔𝑑 = 128.30 𝑟𝑎𝑑/𝑠 

𝐹𝑛 = 22.09 𝐻𝑧 𝐹𝑑 = 20.41 𝐻𝑧 

Flexible 

Heatsink 3 

𝜔𝑛 = 146.8 𝑟𝑎𝑑/𝑠 𝜔𝑑 = 142.00 𝑟𝑎𝑑/𝑠 

𝐹𝑛 = 23.37 𝐻𝑧 𝐹𝑑 = 22.60 𝐻𝑧 

Note: The values indicated in the above table may have around ±10% error. 

It could be said that all the Flexible Heatsinks had natural frequencies in the range 

of 20 Hz to 30 Hz. The shaker table vibration frequency was limited to 60 Hz which, 

in some cases, made the flexible pins vibrate at much lower amplitudes than the input 

amplitudes from the shaker table.       

The relation between the stiffness of material forming the bond between pin fins 

and the copper base plate and their natural frequency is shown in the plot below. 
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Figure 24 : Effect of bond material stiffness on the natural frequency of the pin fin 

Maurizi’s model was implemented in figure 22 to track the relation between the 

rotational stiffness of the material and the natural frequency of the pin fin.  
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CHAPTER 6 

Conclusion and Future Scope 

Conclusion:  

It can be concluded that the vibration plays a significant role in decreasing the 

thermal resistance of the heatsinks. It was observed that amplitudes of vibration played 

a key role in determining the thermal resistance of the different heat sinks. As the 

amplitude of vibrations increased at a constant frequency, 2 - 3 K/W reduction in 

overall thermal resistance was observed.  At 60Hz of frequency of vibration, rigid heat 

sink had a lower resistance than the flexible heat sinks because the flexible heat sinks 

were observed to be vibrating at lower amplitudes than the rigid heat sink. This can be 

due to the fact that flexible heatsinks were not vibrating at resonance frequency. The 

natural frequencies of all the flexible heatsinks were in the range of 20 – 30 Hz while 

the input shaker table frequency was fixed to 60 Hz. This indicates that the flexible 

heatsinks were vibrating with phase difference above 90o with respect to the shaker 

table. Due to the limitation of the shaker table, the effects of variable frequencies of 

vibrations could not be explored in detail.   

Future Scope:  

A light weight setup with lighter heating element can to be fabricated and used 

with piezo transducers. Heat sink with very few pin fins and light weight plate (surface) 

heater can be used to perform future tests. Tactile transducers capable of working at 

lower variable frequencies can be used to fabricate a custom shaker table. Tactile 

transducers usually work with standard audio jack. This could facilitate the use of 

Wolfram Mathematica to generate the audio sin signals of any frequency using its audio 

signal processing.   
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By observing the trend of the rigid heatsink thermal resistance, it can be clearly 

observed that thermal resistance of a device is a function which is inversely 

proportional to the amplitude of vibrations.  

These tests are expected to generate results at various frequencies of vibration 

thus throwing some light on the effects of flexible heat sink vibrations at resonance 

frequency. These tests are expected to generate lowest thermal resistances at resonance 

frequencies.   
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