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ABSTRACT  
   

Essential knowledge of Co-continuous composite material properties are explored 

in this thesis. Mechanical characterization of these materials gives a detailed outlook to use 

them in design, manufacture and tailor make the products.  

Soft and hard polymer materials have extensive properties individually, but when 

combined to make a single structure, they give an exceptional combination of properties. 

In this study, Polymer materials used are in the form of Co-Continuous structures (i.e., both 

soft and hard polymers are continuous throughout the microstructure) fabricated into 

several microstructures namely, Simple Cubic (SC), Body-Centered Cubic (BCC) and Face 

Centered Cubic (FCC) shapes. An experimental process is designed and fine-tuned from 

existing methods to understand and record the mechanical response of these co-continuous 

polymers. Experimental testing is used to gather detailed information about several 

constituencies namely stress behavior and damage progression. A 3D imaging technique, 

Microtomography is used to visualize damage initiation and progression in the sample. 

Variations in energy absorption, fracture initiation and damage propagation in samples are 

observed and correlated analysis is performed to provide a logical explanation. 

Comparative studies are performed as well for different structures. 

Based on the Knowledge gained from the above study on co-continuous polymer 

composites, several conclusions are drawn, and future work directions are suggested.  
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CHAPTER – 1 

INTRODUCTION 

1.1 Composite Materials 

Materials are often chosen to fulfill requirements like in the areas of manufacturing 

as raw materials and in the structures for reinforcement. Not every material has the desired 

properties. Two or more material must be chosen to fulfill the requirements of the task at 

hand. But as the requirements became more demanding, scientific advancements have 

made the possibility of combining two or more materials chemically to get the materials 

with desired properties. These new materials are known as composites with components 

either metallic or nonmetallic.  

Composites are used in many areas and for many reasons, for example, one single 

composite part can replace many metallic parts. These metallic parts could take a lot of 

time and resources to acquire the shape of the desired part but in the case of composites, 

parts can be made into customized designs utilizing less time and resources. Flexural 

properties of Composite materials are better compared to metals. Composites are good 

dampers, able to reduce vibration and sound. 

Composite materials are heterogeneous which are made by combining two 

completely different material. Each individual material has its own set of properties, but 

when combined synthetically or chemically we will get properties that not seen in any of 

the individual materials. These materials can be tailor-made to complex parts, unlike 

metals. 
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1.2 Applications of Composite Materials 

It is important to list all the commercial and industrial applications of the 

composites.  

Aerospace 

Since composites are versatile materials, these are used in the aerospace industry. 

 Aircraft brakes, Heat pipes, joints, and holding equipment 

 Passenger doors, engine nacelle, slats, ailerons, spoilers, flaps, wing skin, fuselage 

skin, wingtips, horizontal and vertical stabilizers, undercarriage doors. 

 In case of the helicopters, rotor blades, stabilizers, fuselage, doors, cowling. 

Rockets and Launch vehicles 

Rocket motor cases, High-Temperature nozzles, Igniters, Nose cone, interstage 

structure, Equipment section, Aerodynamic fairings, Control Surfaces, Payload fairing and 

dispensers, Pressurized containers (fuel tanks latest research) 

Sports 

Tennis rackets, Golf balls, Surfing & Skating boards, canoes, Speed boats, climbing 

ropes, scuba diving tanks, race cars, baseball bats, skis, hockey sticks, Yachting rope, 

paddles, helmets and a lot more. 

Automotive 

Lightweight, Greater durability, corrosion, wear a& impact resistance. Drive shafts, 

fan blades and shrouds, interior panels, brake shoes, belts, and engine parts. Mirror & 

headlamp housings, radiator end caps, air filter housing, accelerating pedals, intake 
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manifolds, bumpers, fuel tanks. Motorcycle and automotive bodies, Bicycles, tire frames 

Railway carriages, truck body. 

Infrastructure  

Skeletal structures, Walls and panels, Doors, Windows, Ladders, Staircases, Water 

and chemical tanks, Cooling towers, Windmills, and turbines, Antenna dishes 

Industrial 

Drive shafts, Conveyer belts, Hoses and cables, Ropes, Tear and puncture 

resistance fabrics, Mandrels, Rotor vanes 

Medical 

Wheelchairs, Crutches, Hip joints, Dentistry, Surgical Equipment’s, Prosthetics 

and Artificial limbs, X-ray tables, Composite bolts used in bones, Exoskeletons, 

Biomedical implants 

Military 

Helmets, Bulletproof vests, Impact resistant vehicles, Portable bridges, Engine and 

equipment foundations, Rudders, Hovercrafts 

1.3 3D Printing (Additive Manufacturing) 

3D printing in other terms Additive manufacturing is a process which adds material 

to make components in successive patterns instead of removing material. It is an innovative 

manufacturing method that uses a 3D printer which runs on three axis system X, Y & Z. 

This is a technique where the material is deposited layer by layer then it is solidified to 

form a complete part. This process is completely computer controlled. This manufacturing 

process reduced the process time and labor, made the production of parts lot faster and 
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easier. Recent developments in this process made the possibility of printing of plastics, 

metallic powder, and the polymers. 

Traditional manufacturing methods evolved over time from hand-based 

manufacturing to fully automated process, such as machining, casting, forming, molding. 

For numerous reasons this process poses unacceptable constraints like fixtures, expensive 

tooling, need for assembly of complex parts. Even though they are fully automated they 

demand substantive manufacturing which results in almost 90 percent of the original block 

material as waste. In contrast to this, the 3D printing process can create parts by adding 

material. 

The entire 3D printing process from design to final product can be explained into 

three steps, Design, Slicing & Printing. 

First a 3D CAD (Computer Aided Design) model of the required component is 

created by using any CAD software available. Then that model further processed through 

Slicer software which slices the CAD model into thin layers of about 0.01mm thickness 

and generates G Code which is readable by 3D printer. Then the 3D printer used this G 

code and prints the designed component layer by layer. 

Advantages 

Customization of components, Feasibility of manufacturing more efficient designs 

light, strong and less assembly required, one machine with multiple productions of parts, 

Minimal material wastage, Complex geometries can be made, Parts ranging from Nano 

size to very large size can be manufactured, Rapid prototyping can be possible, 

Manufacturing speed is high, Decentralization , Reduced costs of production 

Disadvantages 
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Less Manufacturing jobs, Limited materials, Size of the parts manufactured, 

Copyright parts can be printed, Printing of dangerous material like weapons. 

There are numerous 3D printing techniques developed in the past few years after 

introducing this technology. Every technique has its own benefits, limitations, 

requirements, processing speeds and timing. Some of the 3D printing technologies along 

with some specifications are explained below. 

Several types of available 3D printing techniques are summarized with materials 

used in it in the following table 

Process Technology Materials used 

Material 

Extrusion 

Fused Deposition Molding 

(FDM) 

Thermoplastics (PLA, 

ABS) 

Eutectic metals, edible 

materials 

Granular or 

powder bed 

Direct Metal Laser Sintering 

(DMLS) 

Any metal alloy 

Electron beam melting (EBM) Titanium alloys 

Selective heat sintering (SHS) Thermoplastic powder 

Selective laser sintering (SLS) Thermoplastics, metal 

powders, ceramic 

powders 
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Powder-based and inkjet head 3d 

printing, plaster-based 3D 

printing (PP) 

Plaster 

Laminated Laminated object manufacturing 

(LOM) 

Paper, metal foil, plastic 

film 

Light 

polymerized 

Stereolithography (SLA) Photopolymer 

Digital light processing (DLP) Liquid resin 

Table 1.1: Types of 3D printing Technologies 

1.4 Applications of 3D printing Technology 

In the last decade, 3D printing has developed enough to replace all the crucial 

techniques until now used in many fields. It has the potential to be applied in the promising 

areas, mainly to say in the fields of manufacturing, medicine, industrial and lot more. Here 

quick points of the potential applications of 3D printing in these areas are specified. 

Manufacturing field: Product development, Rapid manufacturing & prototyping, Mass 

customization & production, Jigs, and fixtures 

Medical Applications: Surgical & Medical devices, Bio Printing, Pills 

Industrial Applications: Apparel (3D printed clothing), Jewelry and art, Automotive 

industry, Construction, Firearms, Robots and computers 
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CHAPTER – 2 

BACKGROUND AND TESTING FACILITIES 

2.1 Background 

Polymer materials are mainly used because of their processability, design 

flexibility, availability and more importantly lightweight. However, when compared to 

other material like metals these materials exhibit less suitable mechanical properties. One 

way to improve the properties of polymers is to add a high modulus reinforcement phase 

to make a polymer composite. This will give rise to a peculiar polymer structure which 

exhibits not only structural rigidity but also have an exceptional combination of the 

properties of both material phases in it. 

Dr. Lifeng Wang (Wang, Lau, Thomas, & Boyce, 2011)[1] is one of the researchers 

who worked on one of these peculiar polymer structures which is co-continuous polymer 

structure which have superiority of the properties compared to normal composites and the 

3d printed materials. This newly proposed design has high energy absorption, stiffness, and 

strength. Generally, when composite material is subjected, there might be a possibility of 

cracks or defects formation inside the structure. Then under the continuous loading, the 

transfer of loading between the material phases is not possible, that results in the 

progression of the damage. But in the co-continuous polymer structures, made from 

materials which have completely different properties support each other, in certain stages 

the load transfer is a possibility in between the phases, which results in the restriction of 

crack or damage propagation by allowing the sample to provide more stiffness.  

Now the major point of concern is that the mechanical response of these type of 

morphologies and the state of the structure after the investigation.  
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2.2 Purpose of the Thesis 

Cellular material optimization for different loading conditions has enabled the 

development of the lattice structures, which is based on the repetition of the architecture of 

the unit cell. High-end applications of the materials included in the fields of aeronautics, 

medicine with the tradeoff between strength and stiffness which enabled the production of 

lightweight structures. Lattice structures provide the possibility of studying them as 

material on classical mechanics basis. Study over the lattice structures provides a basic 

understanding of the behavior as well as provides the necessary information on 

manipulating the properties in the macroscale structure of the material. 

This thesis aims to achieve the full understanding of the material behavior in the 

form of co-continuous polymer structures, in order to customize and tailor make the 

products needed based on the requirement at hand. Here the analysis of the base level 

patterns is necessary to fully grasp the knowledge of the mechanical response of each 

sample in the form of a different design. 

This investigation is done on three different types of lattice structures, these are 

simplest and most commonly found structures in materials. Simple Cubic (SC), Body-

Centered Cubic (BCC) and lastly Face Centered Cubic (FCC). Generally, these lattice 

structures are mainly discussed in the basic chemistry as the Bravais lattices or crystal 

structures which are usually a cubical crystal system where the unit cell is in the shape of 

a cube. Here different types of these crystal structures are SC, BCC, and FCC. SC has a 

cubic void at the center with one atom at each corner. BCC has one atom at the center of 

the cube and with one at each corner. FCC has the atoms placed on each face of the cube 
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along with each one at the corner. Study on this lattice structure provides basic information 

about the change in local properties deformation and the damage. 

 

Fig 2.1: Lattice Structures SC, BCC, and FCC 

The approach of this study is completely based on an experimental investigation in 

order to determine the mechanical behavior of the samples which are fabricated using 3D 

printing technique in a unique structure which is co-continuous structure using polymer 

materials in the form of lattice structures. Here the important thing to be noted that the 

mechanical testing is performed to gather the required information on the samples used.  

Micro Tomographic method is a 3D imaging technique, which is used along with 

the mechanical testing of samples that reveals the behavior of the material like the 

progression of deformation in the structure of the sample internally. The non-uniform strain 

distribution within the structs of a single cell, that is completely affected by the material 

phase inside of the sample. Here the stress distribution is not completely homogeneous 

because of the localized collapse mechanism or vice versa. Here in this sample where the 

transition between the two regions was smoother, this gives the concept of co-continuous 

composites. 

Samples are fabricated using the Connex 500 printer. Detailed information on the 

properties of materials used for the sample printing is explained later in this chapter. 
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2.3 Sample Fabrication and Material properties 

Samples that are used in this study are 3D printed using the Connex500, which is a 

multi-material 3D printer. Two different polymer materials are used to print these samples. 

VeroWhite an acrylic based glassy polymer and Tango plus a hyperelastic material simply 

elastomer. These two materials are used to print the samples in the shape of lattice 

structures, namely Simple cubic (SC), Body-centered Cubic (BCC) and Face-centered 

Cubic (FCC). These lattice structures are in the form of cubes. All these samples are in the 

form of a cube with dimensions of 15mm X 15mm X 15mm 

 

Fig2.2: Samples used for testing 

2.3.1 Materials and their properties 

VeroWhite is also known as a Polyjet material because this is widely used in the 

Polyjet 3d printing machines. This material is opaque with high resolution, gives a smooth 

surface finish of the parts. 
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      Rubbery Elastomer                        Glassy Polymer                  co-continuous composite       

           Tangoplus                                     VeroWhite                             Polymer structure       

Fig 2.3: Morphology of the sample 

Some of the mechanical properties of this material are sated below 

 

Tensile Strength 50 MPa 

Modulus of elasticity 2.5 GPa 

Percentage of elongation at break 10 to 25 

Flexural strength 93  MPa 

Density 1174 kg/m3 

Impact strength (notched) 24 J/m 

 

Table 2.1: VeroWhite Material properties 

“All this data is taken from the manufacturer documentation for this material”. 

Benefits of using this material are it is opaque and have high detail on final parts. 

This material is rigid and durable, also great for molds and patterns. Also widely used in 

the presentation models. 
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Tangoplus is one of the tango materials which are known for their hyperelastic 

nature. This material is well suited to be used in the Polyjet printing machine. Tangoplus 

is a clear and translucent material, this comes in a variety of colors like grey and black. 

This material is well suited in the applications of damping, making gaskets, overmolds, etc. 

Some of the mechanical properties of this material are as stated below. 

 

Tensile Strength 1.45 GPa 

Tensile tear resistance 20 lb/in 

Percentage of elongation at break 218 

Modulus of elasticity 20% strain 0.1 MPa 

Density 1141 kg/m3 

Shear modulus 0.213 MPa 

 

Table 2.2: Tango Plus Material properties 

“All this data is taken from the manufacturer documentation for this material” 

Benefits of using this material are to simulate rubber parts, bumpers, and buttons. 

Parts made using this material have high resolution,  perfect for testing because this 

material has excellent flex memory and allows the shortening of product design life cycle. 

When we talk about materials, we must discuss the properties of them like 

elasticity, plasticity and other properties exhibited by the material under loading conditions. 

Here various properties are discussed which are exhibited by the materials used for making 

the samples for this study. 
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First, VeroWhite which is a glassy polymer exhibits properties like elasticity, 

plasticity before failure. Mainly this material is considered to be viscoelastic material. 

Elasticity means the tendency of a material to return to its original shape without 

undergoing any permanent deformation under marginal allowed loading. When the forces 

are removed the material will return to its original shape or state. 

Plasticity, means, the permanent deformation of the material once it crossed its 

elastic limit. After removal of load also the material does not return to its original state. 

Numerous polymers which appear to be solid shows behavior between those of 

liquids and solids under stress, they also show continuous liquid like deformation while 

under loading condition, this deformation tends to change the structure. These materials 

are often termed as Viscoplastic materials 

Second, Tango plus is a rubbery polymer behaves as hyperelastic material. This 

material has very little plastic region compared to the glassy polymer. 

Hyperelasticity of a material can also be said as the material having very high 

elastic nature compared to normal elastic materials. As tested, this material has high flex 

memory which enables it to return to its original shape in a certain time span, say almost 

immediately after removal of load without showing any traces of permanent deformation.  

2.4 Laboratory Equipment 

For the testing purpose of the samples, two different types of equipment available 

in the laboratory are used. One is for testing of samples and another one is for scanning of 

the tested samples. 
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2.4.1 MTS Machine 

Electromechanical loading system by MTS is used for the testing of samples. This 

machine can apply about 10KN of loading. It can be used to study the fatigue analysis of 

samples along with pure tension and compression tests. It can apply to load on the sample 

and record the values of stress, strain, percentage of compression as well as the 

displacement or deformation of the sample. The only tradeoff to get these values is to give 

proper dimensions of the sample into the software.  

This machine applies Electromechanical loading on the sample. It has loading lever 

which is attached to the crosshead that moves vertically up and down to apply tension and 

compressive loading. Two vertical stands like structures on the machine have screw heads 

which control the motion of the crosshead. The following picture shows the MTS system 

used for testing the samples for this study. 

 

Fig 2.4: MTS Machine (Electromechanical Loading system) used for testing 
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Here in response to the given inputs into the software, the testing is performed on 

the samples. Here, Test works are the controlling software used to operate the machine as 

well as to test the samples. This software is provided along with the machine. 

 

Fig 2.5: Testworks software input window 

Here in this software, all the required parameters are given as inputs. Like sample 

dimensions, test speed which was chosen to be 5mm/min based on the trial testing on the 

samples, displacement limits, and one important input is the hold time after reaching the 

intended displacement, this is given to stabilize the stress values inside the sample after 

reaching the limited displacement point without giving any noise in the output data. In this 

panel, the dials at that bottom indicate Load in kN, Crosshead position, these values are set 

to zero or can say adjusted to zero before testing is started. Then all the other values are 

cross-checked before testing is initiated.  
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2.4.2 Micro CT machine 

Hereafter the testing’s are done using MTS machine, samples immediately 

transferred into the Micro CT machine which used x-ray as an energy source to scan the 

sample and give the detailed information about the sample in 3D model with all the internal 

features. Here this x-ray tomography machine produces  2D shadow images of the 

complete 3D internal structure of the sample which is scanned without sample preparation 

or chemical fixation.  

The process of operating this machine to scan the sample explained later in this 

chapter. 

 

Fig 2.6: Micro CT machine 

This machine is manufactured and distributed by Bruker. The sample is held onto 

the sample holder. The problem is that the sample holder absorbs the x-rays, so the sample 

must be placed above the holder. For that a special type of clay is used to make the sample 

stick to the sample holder, the only problem is that the clay absorbs the x-rays in the process 

of scanning, so to avoid the loss of features of the sample in contact with the clay, a layer 

of thermocol is placed in between the clay and sample, then a thin plastic film is wrapped 

around it to hold sample firmly. After all these steps are done sample is placed inside the 
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machine. Skyscan is the controlling software used to operate, scan and generate the results 

in this machine. 

2.4.2.1 Micro CT machine Scanning procedure 

Micro CT imaging process gives the detailed imaging of the internal structure of 

the specimen without damaging it. This process is done in four steps, scanning, 

reconstruction, visualization and animation. The machine is capable of HD, 2K, 3K, and 

4K scanning to give high-quality images and videos as explained earlier. But the time 

consumption to complete the process is very high.  

Here, the collected samples were carefully placed onto the sample holder and then 

in the machine by following the proper procedure for the safety of the equipment because 

the hardware and the sensors in the machine are complex and too fragile. Once the initial 

process is done the moved onto the next step of setting up the scanning parameters in the 

software. Step by step process of complete scanning procedure is as follows.  

First, an x-ray is warmed up which usually takes about 15 min. Then the screen 

capture option is turned on so that the camera inside the staging area captures the sample 

that can be seen on the screen. Now Sample is set onto the screen then checked for rotation 

to make sure that the sample is at the exact center. After that zoom in of the sample is 

checked. If the sample is overly zoomed in, the sensors might collide with the sample while 

scanning. Now the resolution is selected, and also appropriate filter is selected to energize 

the x-rays to get highly detailed images after scanning. But for the materials I am using for 

scanning filter is not needed. Once this step is done sample is moved down so that there is 

nothing showing up on the screen. Now for the next step, flatfield correction is turned off 

and intensity is checked by right clicking mouse on the screen. Average value chowing 
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must be in between 58 to 62. If not, this can be adjusted using scanning modes option in 

the options menu. After getting intended value flatfield modes are turned on then updated 

into the software. Once the update is done with the latest settings, flatfield correction is 

turned on. This time average intensity value must be in between 86 to 90. It will show a 

close value to 88. Then after this moving onto the final step in the scanning process is 

initiating the scan itself. After selecting the option, it will ask to save the file and select the 

directory to save it. Then we must select the average rotation speed, which determines the 

rotation of the sample to get the highest possible resolution images as output. Once all the 

settings are given, then scanning is initiated. On an average, the scanning process is 

dependent on rotation speed, as lower the rotation speed, the longer it takes to scan the 

sample. For the value i used, scanning took about 8 to 10 hours for each sample. The same 

value is used for all the samples. Once the scanning is done then proceeded to the next step 

which is Reconstruction. 

The scanning process produces images with some irregularities like misalignment 

of the layers scanned, rings on the images because of the minor irregularities in the layers 

of the sample. By using the reconstruction step these errors are corrected. Once done with 

all these steps, reconstruction is initiated, which reconstructs the whole sample by applying 

all these corrections to all the layers. usually, this process takes about 4 to 6 hours 

depending on the scanning resolution. Once this step is done then moved onto the third 

step which is visualization. Images produced by the reconstruction step are stacked in this 

step and the 3D model of the sample can be formed. Or in the simple file used to make the 

3D model of the sample. This step usually takes about 1 to 2 hours. Then lastly moved onto 
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the animation step where we can combine the files and see the 3D configuration of the 

sample scanned. 

In the final step, which is Animation, files generated by visualization are loaded, 

the software stocks every file in a sequence and generated a perfect 3D model of the 

sample. We can adjust color and opacity to make the features more noticeable. This process 

usually takes about 25 to 40 min of time to complete. The complete scanning process takes 

about  48 to 56 hours, which completely depend on the resolution of the images which we 

choose to get as output for each sample. 

By understanding the full functionality and procedure to operate these specific machines, 

the experimental design to perform the testing is carried on. 
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CHAPTER – 3 

DESIGN OF EXPERIMENTAL PROCESS 

To study the behavior of the samples, the mechanical analysis must be done. To 

observe the nature of the sample under loading conditions, two different types of testing 

processes were assumed. The detailed explanation of the processes is given further in this 

chapter. The laboratory equipment explained in the earlier chapter is used for the testing of 

the samples and to acquire detailed imaging to visualize the internal structure. 

3.1 Experimental Design 

In general, variation in the behavior of these samples might be observed under the 

conditions they put up to. Here three samples have different morphologies, so common 

understanding is that the change in the structure and the response they give for different 

testing’s will be variant. To get full information on the behavior of the samples, the testing 

process is divided into two modules. One to get the general idea of how it is reacts to the 

test and then using the results acquired from the testing as inputs for final testing of the 

sample. Then the final stage is imaging. The process followed for this analysis is 

completely sequential.  
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Fig 3.1: Flowchart showing Complete experimental procedure 

3.2 Static Analysis Process 

The testing process is carefully designed so that the data gathered from it is 

accurate. Here the first static analysis is performed on the sample by giving necessary 

inputs into networks software.  

Samples were measured for the dimensions that must be given as one of the inputs 

in the software. Here to test the samples Testworls4 is used, which is controlling software 

of the MTS machine used. Here for the initial test, sample holder distance on the machine 

is adjusted to that of the sample size, then given the inputs as stated below.  
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Test Procedure 0 

Platen separation load 4.448 N 

Platen separation speed 10 mm/min 

Platen separation & Sample 

Height 

15mm 

Number of cycles 1 

Test speed 10mm/ min 

Displacement 1 12mm 

Hold time 2 sec 

Displacement 2 5 mm 

Hold time 2 sec 

Endpoint breaking 0 

Cycle saving frequency 1 

Save the first cycle yes 

Save the last cycle yes 

 

Table 3.1: Static analysis input parameters into test works software 

Here predefined process for the compression testing is already recorded in the 

software. Based on the sample dimensions and the output requirements the steps in this 

process are slightly modified to fit the need. The complete process is tailored down to the 

steps shown above. In the process, the test procedure is the constant number given in the 
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software to recognize the saved testing process. Platen separation load is also the initial 

load for the software to counter the weight of the loading lever and the support structure. 

Test speed is controlled by giving the input to test speed. Then the displacement 1 and 2 

are the limits given for the loading anvil to move. Here for the static loading purpose only 

displacement 1 taken into consideration. Hold time is the amount of time the anvil rest after 

reaching the intended displacement. Here frequency is set to 1. Last commands are given 

to save the cycles and the data recorded during testing.  

Since here the testing on the samples are done for measuring the sample braking 

load and deformation, data is collected slowly until the sample is completely crushed. Here 

in this testing, we can observe the change in structure based on the data acquired. Like the 

start of breaking point, stages of breaking of samples. The important observation is, 

completely different behavior shown by these three samples. 

Here properties of the sample like stress and strain are calculated using formulae 

σ = 
  

………………………….(1) 

ε = …………………………………………..(2) 

Experimental load over cross-sectional area of the sample gives Stress value, then 

the change in length or deformation in the sample to the original length gives strain 

values. 

Structural sustainability and integrity might depend on the deformations inside and on the 

stress induced because of loading. So static analysis alone is not sufficient, so a different 

method is opted to test these parameters. 
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3.3 Multicycle Analysis Process 

The process to test the samples under multiple cycles to see how the sample reacts 

is carried out by using the results got from the static analysis. The main points considered 

are breaking displacement. Here the breaking displacement is considered, where the sample 

transitions into the plastic region from the elastic region. Here these values are different 

for these three samples. Now, the strain is calculated based on the deformation values 

gathered then the 90 percent of that strain value is considered as the input for the next stage. 

Simple, 90 percent of the deformation value at first yield point is considered, the reason is 

to keep the sample sin elastic region while testing. 

While performing the trial testing on the sample the hold time on the sample is 

tested, for zero seconds of the hold time, the stress value seemed to be a bit considerate, to 

avoid that and to visualize the stress stabilization at that maximum point, hold time of 1sec 

given for loading and unloading limits. Then comes the main point where this testing is 

performed by assuming two different criteria, a low multicycle analysis which is for 50 

cycles and high multicycle analysis which is for 500 cycles. After performing the 50 cycles 

on each sample it is observed from the images that the damage inside the sample is not 

initiated which doesn’t help to record the behavior of the sample, so 500 cycles are opted 

by allowing the sample to rest between the testing’s to observe the sample relaxation. The 

process is completely identical to static analysis with minor changes in it as stated below. 

Test Procedure 0 

Platen separation load 4.448 N 

Platen separation speed 10 mm/min 
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Platen separation & Sample Height 15mm 

Number of cycles 50 or 500 

Test speed 5 mm/ min 

Displacement 1 90 Percent of deformation at first 

yield point 

Hold time 1 sec 

Displacement 2 0.2 mm 

Hold time 1 sec 

Endpoint breaking 0 

Cycle saving frequency 1 

Save the first cycle yes 

Save the last cycle yes 

 

Table 3.2: Multicycle analysis input parameters into test works software 

Here for two criteria of this module, all other inputs are the same except a number 

of cycles. Test speed is chosen to be 5 mm/min after observing the minimal change of stress 

values for the test speeds of 5mm/min and more. After fully understanding the processes 

in the software, necessary inputs are given and testing on the samples is carried out by 

gathering the data. Necessary values are analyzed using proprietary software and plotted. 

For the final step, imaging is carried out on the samples immediately after the testing is 

done. Acquired the imaging data and presented all these results in the later chapters. 
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CHAPTER – 4 

STATIC ANALYSIS RESULTS  

A testing process designed in the previous chapters was followed and completed. 

This testing is purely compressive. The sample is small, so custom platens to hold the 

sample on the MTS machine is not designed. The sample is placed onto the machine as 

shown below. 

 

Fig 4.1: Sample placement on MTS machine for testing 

Loading is applied to the sample and continued until the point where the sample 

started to fall apart, observed the variations in the data displayed on the computer screen. 

Terminated the process when sample is almost crushed. Then the imaging process is 

initiated to record the structure of the sample after testing. 
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Fig 4.2: BCC structures after testing 

 

Fig 4.3: FCC structures after testing 

  

Fig 4.4: SC structures after testing 
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Detailed explanation about the behavior of the samples given later in the chapter. 

The results from the testing gave the information like the peak load of the samples at the 

break, peak height along with the percentage of compression at each displacement point 

recorded.  

4.1 Data Analysis and Results discussion 

The present analysis is involved in the inspection of the behavior of the samples 

under the static loading. Here the data is collected after the testing and sorted out for the 

required values and generated the plots showing the variation of required quantities.  

4.1.1 Load vs Deformation 

Applied load on the samples resulted in the deformation and finally failure of the 

sample. Different morphologies of these samples show variations in the behavior under 

loading. 

 

Plot 4.1: Load vs Deformation plot for all samples 

It is noticeable that the SC sample is showing high response to the loading 

compared to other samples. Here transition of SC sample from elastic deformation to 

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7

L
oa

d
 (

N
)

Deformation (mm)

SC BCC FCC



  29 

plastic deformation happened at 1.29 mm of deformation under loading of 5756.4 N of 

loading. But for BCC this transition started earlier at 0.955mm at a load of 3728.29 N, even 

after this transition sample continued to show response to applying load until the point 

where the load on the sample reached 3836.41 N while showing the deformation of 2.55 

mm where it is considered the complete crushing load of the sample. For FCC sample 

transition point is at the deformation of 0.85 mm at the loading of 2059 N, same as BCC 

this sample also showed response until it reached the load of 3673 N with deformation of 

5.5mm this point is considered as complete crushing load.  

The area under load vs displacement curve represents the amount of energy 

absorbed while testing of the sample. The simple cubic sample shows the highest energy 

absorption capability out of all three samples. Glassy polymer inside the SC sample is 

axially oriented in the loading direction, this type of arrangement supports the compressive 

loading, so this might be the reason for SC sample to provide such higher energy 

absorption. Unlike SC, loading carried inside FCC and BCC structure may be due to 

bending or shear deformation due to which it shows lower energy absorption. 

4.1.2 Stress vs Strain 

From the testing data, stress and strain values were extracted, calculated and 

plotted to show the response of the samples under compressive loading. 
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Plot 4.2: Stress vs Strain plot for all samples 

This figure shows the mechanical response of the glassy polymer/elastomer co-

continuous structure under compressive loading in terms of stress and strain. From the 

curves, we can see the yielding points and the strain hardening. For simple cubic there is 

minimum strain hardening phase then failure after the second yielding point, for BCC after 

the first yielding point it has longer strain hardening phase, this might be due to the shear 

forces acting in the sample due to loading. Lastly, for FCC sample the strain hardening 

phase is largest comparatively of SC and BCC. This might be due to the closely packed 

material phase involved in sharing the incoming load throughout the structure. Even though 

it has the largest strain hardening state, this sample also damaged through shear 

deformation just as BCC nut unlike to SC which is broke because of the buckling in the 

plastic phase. 

The area under this curve represents the energy absorbed before breaking which 

gives modulus of toughness. So, in the same as load-displacement curve, here simple cubic 
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showing highest toughness modulus compared to other samples probably because of the 

same reasons stated above.  

4.2 Microtomography Images and Discussion 

Images are gathered after static analysis to visualize the damage pattern inside due 

to compressive loading. 
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Fig 4.5: Microtomography images of SC sample 

Here each image with the number on it shows the damage in different layers in the 

sample from the top surface to the bottom surface, light grey color represents Plastic phase 

in the material which is VeroWhite and the dark grey color represents elastomer phase 

which is Tangoplus. From these images, it is evident that damage inside the sample is 

catastrophic since the sample is tested till is completely fallen apart. Here from image 1 is 

closer to the layer on which load is applied and the breaking in the sample started there, as 

the continued, images 2, 3, 4 shows the signs of heavy damage inside not only on single 

location but damage in multiple locations on the same layer. Now from images 5 to 8, the 

damage increased and the separation between phases happened completely with small 

strands of material in between, from last four images, the sample almost in two pieces as 

there is no linking strands in between. This mainly happened due to the bucking of the 

plastic phase as it is aligned in the same axis as loading. So purely compression resulted in 

the plastic phase to completely fail and separate the sample. 
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Fig 4.6: Microtomography images of BCC sample 

From the top layer, the damage almost started near the edges of the sample. from 

the images 1 to 4, the damage seems to be moving closer towards the center and from 

images 5 to 10 the damage is spreading towards the corners that indicated the damage is 

not in the axis of loading. From these images, we can say that the damage inside the sample 

is almost angular to the loading axis which states that the deformation in the sample is 

purely shear. 
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Fig 4.7: Microtomography images of FCC sample 

From the images 1 to 4 it is observed that the damage initiated near the edges and 

slowly progressed towards the center, but the damage is consistent, unlike SC and BCC in 

which damage is in random locations. From the rest of the images, the damage inside the 

sample continues to spread almost in evenly and the break patterns appear that separated 

the phases inside the sample which are closely packed compared to BCC and SC. This 

morphology of FCC sample resulted in the sharing of incoming load in between the strands 

of plastic phase, that gave out drastic failure all over the sample, this might result in giving 

the superior stress values than BCC whose structure is not as densely packed as FCC. It is 

also clear that this sample also underwent purely shear deformation because of the loading 

applied to it. 

Here the damage mechanism in the samples are understood and the necessary 

values are gathered. So, this investigation can be moved to the next step. 
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CHAPTER – 5 

MULTICYCLE ANALYSIS RESULTS  

As explained in earlier chapters, to understand the behavior of the samples from 

mechanical testing, static analysis is not enough so the multicyclic procedure is designed 

and samples are tested. Results gathered from the static analysis, mainly deformation is 

taken into consideration for multicycle analysis by altering the number of cycles.  

5.1 Data analysis and Results for 50 cycles 

First, the testing is performed for 50 cycles to generate information about the 

behavior of samples. Data gathered from the testing, extracted and calculated the necessary 

values then plotted. 

5.1.1 Stress vs Number of cycles 

Here, the SN curve is plotted for the values gathered from testing, for all the 

samples. Multicycle testing is performed, so that the variations in the stress is observed 

while testing.  

Form the plot below it is observed that the samples are showing the sudden decline 

in stress in the initial stages of cyclic loading this might be because of the plastic 

deformation in the sample, then the stress levels are  linearly declining because of the 

elastic phase in the sample which restricts the plastic phase inside of the sample. FCC 

sample shows higher stress levels than BCC because of the load distribution inside the 

sample through the phases is not same and the reason is that these two samples undergo 

shear deformation under loading and the energy absorbed during loading is completely 

different depending on the microstructure of the sample. 
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Plot 5.1: SN plot for 50 Cycles 

5.1.2 Stress vs Strain 

 

Plot 5.2: Stress-Strain plot for 50 cycles 

From the Stress strain plot for the samples under 50 cycles, it is observed that the 

SC sample showing the maximum response to load when compared to other samples BCC 

and FCC. The area under the stress-strain curve shows the modulus of toughness, so from 

the plot, it is evident that SC sample providing the highest toughness. Even though the 
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energy absorption for the other samples is less compared to SC they also show fair 

toughness. 

5.1.3 Imaging of samples 

Samples are scanned for the traces of damage due to low cyclic loading 
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Fig 5.1: 3D scanning images of SC sample for 50 cycles 

From the above images, images 1 to 8 shows signs of damage inflicted because of 

the low cyclic loading, that is different layers of the sample, from top surface to the bottom 

surface in random locations.  
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Fig 5.2: 3D scanning images of BCC sample for 50 cycles 

For BCC sample, the imaging results show no sign of damage initiation. Images 1,  

to 8 taken from different locations on the sample, it is observed that the sample is fine 

without any damage.  
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Fig 5.3: 3D scanning images of FCC sample for 50 cycles 

For FCC sample It’s the same case as BCC there are no signs of damage to be seen 

in the imaging.  

Unlike SC in which there is damage but minimal, BCC and FCC samples did not 

show any damage for 50 cycles testing. 

5.2 Data analysis and Results for 500 cycles for SC sample 
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Once all the necessary calculations and results are gathered for the 50 cycles testing, 

it was clear that the behavior of the samples is not clear enough to understand. So, the 

testing process is altered to perform high cyclic loading to perform a proper analysis. 

Testing for 500 cycles is performed and data is gathered for analysis. 

 

Plot 5.3: SN plot of SC sample for 500 to 1500 cycles 

One of each sample is put up to multi cyclic loading testing with time lapses in 

between. Same as in the 50-cycle analysis, the degradation in the stress initially is due to 

the deformations in the plastic phase but as the testing is progressed, the elastic phase 

constraints the plastic phase. A table is provided for the time lapse of the samples between 

the testing’s at room temperature. 
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4000 10 
4500 10 

 

Table 5.1: Time lapse between the tests of SC sample 

For the first three tests of the SC sample as the above plot showed the stress 

degradation is almost the same as 50 cycle analysis. And the time lapse between the 

testing’s is one day. After the third test sample is allowed to rest for seven days and the 

results are quite peculiar. the sample gave a reasonable response, but because of the time 

constraint of the testing process, all the other testing on the SC samples are carried out with 

one day of time lapse. 

 

Plot 5.4: SN plot of SC sample for 2000 to 4500 cycles 

Now for the stress-strain behavior of the SC sample for different tests, it is observed 

From the plot that as the sample is subjected to continuous loading under cyclic analysis, 

it is not affecting the stress value that much, even though the slope of the curve decreasing 

as the tests, the peak stress values seems to be maintained consistently in the first three 

tests with one day of relaxation time. 
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Plot 5.5: Stress-Strain plot of SC sample for 500 to 1500 cycles 

From the below plot it is observed in the decrease of stress peak value for every 

other test. Overall peak stress values of the sample for different tests can be seen in the 

plot. 

 

 

Plot 5.6: Stress-Strain plot of SC sample for 2000 to 4500 cycles 
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Plot 5.7: Peak stress degradation of SC sample for 500 to 4500 cycles 

As a linear regression is performed to state the decreasing trend in the stress 

values. From the experimental data, stiffness is calculated and estimated the regression. 

This is calculated by taking the slope of load vs deformation curve. The regression is 

quite a lot. 

 

Plot 5.8: Stiffness reduction of SC sample for 500 to 4500 cycles 

Now, from the images of the sample that was gathered from 3D scanning, we can 

visualize how the damage is initiated and progresses in the sample. 
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5.2.1 Imaging of SC sample  
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Fig 5.4: 3D scanning images of SC sample for 500 cycles. 

Here each image represents one layer inside the sample. In these images, Light grey 

color represents the elastomer phase which Is Tangoplus and the Dark grey represents the 

Plastic phase which is Vero white. Here Image 1 is the close top layer of the sample where 

there is no sign of damage. From images, 2 to it is observed that the damage inside the 

sample is slowly initiated near to the edges of the sample but in random locations. These 

are voids between the phases of the sample. from the rest of the images, we can observe 

the damage inside the layers of the sample. It is clear that the damage is slightly initiated 

inside of the sample under 50 cycles but most importantly it is in the plastic phase of the 

sample. 
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Fig 5.5: 3D scanning images of SC sample for 1500 cycles. 

As the same sample has been put up to continuous loading, the damage inside of it 

is continued to increase. From the images 1 to 4, observe the damage is still maximum at 

the edges of the sample, from images 5 to 10 the damage is increased by breaking up the 

plastic phase and separating them. Images 11 and 12 shows the layers closer towards the 

base where there is no damage. Damage is continuously progressing and breaking the 

sample apart. As same as before, this damage is inside of the plastic phase. 
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Fig 5.6: 3D scanning images of SC sample for 3500 cycles. 

The same sample is subjected to 500 cycles multiple times, from the images 2 to 4 

it is observed the one small part of the sample is almost separated due to breaking. From 

images 5 & 6 the damage initiation in other locations but closer to the edges is seen. From 

images 7 through 12, it is observed that the damages inflicted near to the edges is making 

the sample to break apart. Damage inside the sample is slowly progressing towards the 

center.   

At this point, by observing the images above we can say that the internal structure 

of the sample is under soon to experience a catastrophic failure.  

5.3 Data analysis and Results for 500 cycles for BCC sample 

Same as the SC sample, the static analysis did not provide enough information on 

the BCC sample. So, the testing process is altered, and 500 cycles method is performed on 

the same sample multiple times with time lapse between testing’s. sample relaxation 

allowed for BCC is completely different when compared to SC and FCC samples. As 

mentioned in the table below, first 500 cycle test was performed and allowed the sample 

to rest for 4 days at room temperature, then 6 days after next test and at last 10 days then 

13 14 
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perfumed final testing. Because of the time constraint continuous testing’s were not 

performed and the change in peak stress values is also minimal compared to SC sample.  

Test (Cycles) Relaxation time 
(days) 

500  

1000 4 

1500 6 

2000 10 

 

Table 5.2: Time lapse between the tests of BCC sample. 

From the repeated testing on the same sample, data is gathered and analyzed. 

Results were plotted. 

 

Plot 5.9: SN plot of BCC sample for 500 to 2000 cycles 
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stress stabilizing because of the elastomer phase. The relaxation did not show that many 

variations in the stress values. Now let’s see the stress strain behavior of the sample. 

 

Plot 5.10: Stress-Strain plot of BCC sample for 500 to 2000 cycles 

From the above plot, it is observed that BCC sample does not have that much 

energy absorption capacity as SC sample. but the peak stress values for each test seems to 

be dropping but very minimal. Peak stress regression is also calculated for BCC sample. 

 

Plot 5.11 : Peak Stress regression of BCC sample for 500 to 2000 cycles 
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Stiffness of the sample describes the resistance offered by it under loading to resist 

deformation. Here based on the experimental data stiffness is calculated for this sample. 

linear regression performed to show the overall behavior, it is showing a decreasing trend. 

 

Plot 5.12: Stiffness regression of BCC sample for 500 to 2000 cycles 
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5.3.1 Imaging of BCC sample  

  

  

  

Fig 5.7 : 3D scanning images of BCC sample for 500 cycles. 

It is observed from the images that, even though the sample is put to cyclic loading 

for 500 cycles, there is no trace of damage initiation in the structure. 
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Fig 5.8: 3D scanning images of BCC sample for 1000 cycles. 

From image 1, it is observed that there is no damage closer to the top surface of the 

sample. from images 2 to 4 there is a small sign of damage as a small void highlighted with 

a circle in the images. Due to the continuous application of loading, slowly sample starting 
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to take damage. From images 5 and 6 these small cracks can be seen in multiple locations. 

Even though there is a sign of damage, it is minor. 

  

  

     

Fig 5.9: 3D scanning images of BCC sample for 1500 cycles. 
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From the images 1 to 3, a small crack is observed, but as we move towards the 

center of the sample cracks formed at random locations in the sample which resulted in the 

minor separation of two phases in the sample. We can see the signs of damage that are 

visible inside the BCC structure highlighted in the circle. This damage is responsible for 

the stiffness regression as well as the peak stress regression in the sample. 

5.4 Data analysis and Results for 500 cycles for FCC sample 

As stated in the earlier results, high cyclic loading is opted to gather more data on 

the sample behavior. Tests were performed, data is gathered and analyzed, results were 

plotted. Here for the testing purpose, different relaxation time for the sample is considered 

which is completely different from SC and BCC sample. 

Test (Cycles) Relaxation time 
(days) 

500  
1000 1 
1500 1 
2000 1 
2500 2 
3000 1 
3500 1 
4000 10 

 

Table 5.3: Time lapse between the tests of FCC sample. 
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Plot 5.13: SN plot of FCC sample for 500 to 2000 cycles 

Here from the plot, it is observed that peak stress values are close even though the 
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Plot 5.14: SN plot of FCC sample for 2500 to 4000 cycles 

Let’s observe the stress-strain behavior of the sample, which allows us to 

understand the energy absorption capability of the sample under continuous loading. 

 

Plot 5.15: Stress-Strain plot of FCC sample for 500 to 2000 cycles 
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is represented by the area under the curve is also decreasing with every consecutive test. 

this trend is continued for the rest of the results also. 

 

Plot 5.16: Stress-Strain plot of FCC sample for 2500 to 4000 cycles 

Peak stress regression is also plotted for the FCC sample to visualize the decrease 

in the stress values with every consecutive test. 
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Plot 5.17: Peak stress regression of FCC sample for 500 to 4000 cycles. 

Stiffness regression also calculated from the experimental values and plotted as 

follows. 

 

Plot 5.18: Stiffness regression of FCC sample for 500 to 4000 cycles. 
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the sample decreased drastically this is due to the damage inside of the sample due to 
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Now, from 3D scanning image so the FCC sample, we can visualize how the 

damage is initiated and progresses in the sample. 
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5.4.1 Imaging of FCC sample 

  

  

  

Fig 5.10: 3D scanning images of FCC sample for 500 cycles. 
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From the images, it can be observed that during the initial testing, there are no 

signs of damage in the structure of the sample. 
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Fig 5.11: 3D scanning images of FCC sample for 2000 cycles. 

From the image 1, there is no trace of crack. But from images 2 to 4 we can see 

small cracks appeared randomly highlighted in a circle. These cracks are progressing as 

the loading cycles are continuing. From the images 5 & 6 cracks are clearly visible because 

the separation between the phases is increasing with every cycle. From images 7 & 8, these 

layers are closer to the bottom of the sample have a minimum sign of visible cracks. So, 

We can say that a fair amount of damage inside the sample like cracks and small voids are 

observed. 
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Fig 5.12: 3D scanning images of FCC sample for 3000 cycles. 

From the images 1 through 10 we can observe the cracks are becoming more and 

more visible, this is due to the continuous application of load resulted in the deformations 

inside of the sample that led to the separation of phases. Since the load distribution inside 

the FCC is more efficient than BCC and SC the damage is seen all over the layer of the 

sample, unlike BCC and SC. From the images, more damage inside the sample is observed 

as the volume of cracks increased compared to last imaging. 

5.5 Image Processing 

Experimental investigations into the damage progression of the composite samples 

indicated a growth of voids in the sample with cycle time. An automated algorithm was 

developed to approximate the loss in area through voids to compare the damage 

progression in the BCC, FCC and SC samples. The images for this task were obtained 

through a micro-CT scanner, which captured images top-down through the thickness of the 

sample. 

5.5.1 Methodology: 

The process flow chart for the method is described below. 

9 10 
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Fig 5.13:  Overview of the algorithm to approximate void area 

Images altered using algorithm are shown below following on above mentioned steps 
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Fig 5.14:  Overview of the images analysis to filter void area 
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1. Image preprocessing: RGB to Grayscale conversion and down-sampling 

Each image from the dataset is imported serially and first converted into grayscale. 

The images are also resized to half their original size, as highly detailed (5K resolution) 

images extracted unwanted edges while processing with the Canny detector. Images of 

different resolutions would require different hysteresis thresholds. By down-sampling all 

the images down to a resolution of approximately 360x360, a standard technique of setting 

the Canny hysteresis threshold was possible. 

2. Image binarization 

Optimal threshold selection from the gray level histogram was accomplished using 

Otsu’s binarization technique[22], a nonparametric algorithm. The reason why this method 

was hypothesized to work well was the clear distinction between void and material 

(background) pixels. This would lead to a well-defined boundary between the histogram 

intensities of the voids and the material. The threshold value returned by this algorithm was 

then used on the Canny edge detector algorithm [23] as: 

𝑇1 = 0.5 ∗ 𝐼 …………………….(3) 

𝑇2 = 𝐼 ………………………..(4) 

where T1 and T2 are the hysteresis thresholds and I is the threshold intensity returned 

by the Otsu algorithm. 

3. Extract edges from grayscale image 

Edges from the grayscale image were extracted using the Canny edge detector. The 

Canny edge detector works as follows:[24] 
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Fig 5.15: Canny edge detector algorithm 

Edge detection involves finding differences in intensity gradients between neighboring 

pixels. The grayscale image is therefore smoothed by Gaussian blurring, using a 5x5 kernel. The 

matrix equation for a 5x5 kernel is given by: 

H =
( ∗)

e
( ) ( )

 ; 1 ≤ i, j ≤ 5 …………….(5) 

where σ ∗  is the std. deviation of the normal distribution centered at (0,0). 

After blurring the image, the next step is to calculate the gradients of the image. 

The gradients are calculated using the Sobel operator, with kernel size 3. The image is 

convolved with two Sobel filters GX and GY to detect edges in the X and Y directions 

respectively.  

G =
−1 0 1
−2 0 2
−1 0 1

   and G =
1 2 1
0 0 0

−1 −2 −1
 

The magnitude of the gradient and the direction are then calculated: 

|G| =  G + G  ……………………………..(6) 

θ =  tan  ……………………………….(7) 
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The next step after finding the edges is the non-max suppression of pixels, a method 

to suppress the values with the lowest pixel intensities. The non-max suppression algorithm 

returns the pixel with the highest intensity from the edge matrix by evaluating the pixels 

that fall along the gradient direction obtained from the above equations. 

The final step in the Canny edge detection process is the hysteresis thresholding 

step, where the pixels are categorized as strong, weak or irrelevant depending on whether 

they are above or below the threshold. The pixels in between the threshold are filtered 

(weak edges) as follows: If a weak edge pixel is surrounded by at least 1 strong pixel, then 

it is converted into a strong pixel.  

4. Extract boundary contour from extracted edges 

The external boundary contour needs to be extracted to find the approximate area of 

the sample. To do this, the contours were sorted by decreasing area, and the largest contour 

was used as the boundary contour. 

5. Extract contours from binary image 

The contours were also extracted from the binary image by deploying the canny edge 

detector followed by contour extraction. The method used for contour extraction did not 

get rid of the hierarchies in the contours, thereby preserving both parent and child contours.  

6. Iterate on contours extracted from binary image to check for voids 

The contours extracted from the binary image were then analyzed individually to check 

for voids inside the sample. This was done by filtering through each contour and first 

checking whether it was internal to the boundary. A contour is defined to be internal to 

another if all the points of the first contour lay inside the parent contour. Since the image 

was binary, most of the voids were converted into pixels of intensity 0. The algorithm then 
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checked whether the current contour had greater than 15% of its interior pixels as 0. If it 

did, then this contour was considered a void, and the area of the contour was added to the 

void area.  

 Samples of gathered images with recorded void areas for all samples are shown as 

follows. 
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Fig 5.16: Contours extraction from SC sample images 
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Fig 5.17: Contours extraction from BCC sample images 
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Fig 5.18: Contours extraction from FCC sample images 

 

5.5.2 Results: 

Results are generated by using the developed algorithm, in terms of pixels for all 

the available scanned images in the database. Void area progression in terms of pixels for 

every cycle is plotted to visualize the damage extension in the sample due to continuous 

change in loading on the sample. 

 

Plot 5.19: Void area increase in SC sample 
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Plot 5.20: Void area increase in BCC sample 

 

Plot 5.21: Void area increase in FCC sample 
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phases is seen. But in other samples there is steady increase of the voids as the tests 

progressed. 

If we take a closer look into the damage inside the sample in multiple layers, 

inconsistency in the damage progression is observed. Each image extracted from the 

imaging process is considered a single layer for this analysis. 

 

Plot 5.22: Damage variation inside of SC sample for 500 cycles 

 

Plot 5.23: Damage variation inside of SC sample for 1500 cycles 
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Plot 5.24: Damage variation inside of SC sample for 3500 cycles 
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Plot 5.25: Damage variation inside of BCC sample for 500 cycles 

 

Plot 5.26: Damage variation inside of BCC sample for 1000 cycles 

 

Plot 5.27: Damage variation inside of BCC sample for 1500 cycles 
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Plot 5.28: Damage variation inside of FCC sample for 500 cycles 

 

Plot 5.29: Damage variation inside of FCC sample for 2000 cycles 
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Plot 5.30: Damage variation inside of FCC sample for 3500 cycles 

here from this damage analysis the amount and the progression of the damage inside of the 

sample is quantitively recorded.  
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CHAPTER – 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The behavior of three co-continuous composite polymer structures studied under 

static loading gathered the results and visualized the damage pattern and the properties 

change in the sample mainly stress. From the images, FCC and BCC structures have purely 

shear deformation because the damage incurred in these samples are exactly 45 degrees in 

the direction of load applied. But for the simple cubic sample, the damage is in the direction 

of the loading axis, this is because of the alignment of the plastic phase in the same axis as 

loading that resulted in the pure compression behavior of sample, that generated buckling 

in the plastic phase resulting in the separation of elastomer and plastic phase with inflicting 

lot more damage compared to BCC and FCC. 

The multi-cycle analysis is opted to study by forcing the samples into extreme 

conditions since the static analysis is not enough to record the behavior of the sample. from 

this, it is observed that the SC sample behaves differently than BCC and FCC. Stiffness 

regression is also one way to quantify the amount of damage in the sample, which was 

provided for all the samples based on experimental data. 

This current study is also focused on validating the experimental results using 

imaging, all the samples are 3D scanned in Micro CT machine, to visualize the change in 

the internal structure of the sample after continuous testing. From the images, it is observed 

the damage criteria and pattern inside the samples. An effort was made by the images 

processing to calculate the pixel volume by excluding the damaged area inside of it. Results 

were showing the same periodic behavior as calculated from the experimental results. 
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Addition to the work done, images gathered from the scanning process are 

quantitively analyzed using an algorithm developed to detect the voids in the sample to 

show the damage initiation, progression in one sample and all samples in comparison. As 

far the SC sample shows the progressively huge damage compared to other samples. Also, 

the damage inside the sample from top layer to bottom layer us also not consistent. Based 

on the results gathered, the hypothesis made earlier might be one of the reason and the 

other reason might be the manufacturing of the samples did not result in the proper 

structural integrity which resulted in the uncommon and non-monotonic damage patterns 

in the samples. Further study needed to study all these effects in detail. 

6.2 Future work 

As this study is completely focused on the mechanical characterization of the co-

continuous polymer composites, there are some possible extensions adding onto this as 

future work. 

Lattice structures have the tendency to behave differently when they are loaded on 

different slip planes that is different faces depending on the built of internal structure. So, 

potential add to the future study is to analyze the behavior of these samples by loading 

them un different slip planes and validate to see the behavior is same or different. 

The algorithm used for the quantitative analysis of the gathered images is not 

powerful enough to capture the smallest amount of details like hairline cracks and 

millimeter sized cracks from the images. So, another potential addition for the future work 

is to intensify the work to make the algorithm more sophisticated to detect even this cracks 

and many other without avoiding any. For now, the main focusing aspects that has to be 

added to validate the experimental results are stated below. 
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6.2.1 FEA Analysis 

The analysis carried out in the experimental processes can be extended to 

simulations. Computer generated a 3D model of these co-continuous morphologies are 

being developed to analyze and characterize them based on multiple scenarios.  

 

Fig 6.1: BCC 3D CAD model for FEA simulations 

 

Fig 6.2: SC 3D CAD model for FEA simulations 
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6.2.2 Material calibration 

The present study involved in the usage of polymer materials that highly shows 

non-linear behavior under mechanical loading. There are no theories to explain this 

phenomenon. There are some predefined models which are highly suited to explain and 

predict the nonlinear behavior of the polymers. A special software named “MCall” stands 

for material calibration distributed by Veryst materials can be used to analyze these 

materials using the already predefined material models in the Veryst material database. A 

sample calibration has been done to understand the prediction of the nonlinear behavior of 

the samples that are used for this study. 

An input file is prepared by using the experimental data and loaded into the 

software. The appropriate material model is selected from the database and the calibration 

is performed. Sample plots are shown below. 
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Plot 6.1: Material  calibration of samples 

Here in this plot red line shows the imported experimental data and the blue line 

shows the calibrated data using the existing material model in the material database.  

6.2.3 Characterization of 3D printed Metal sample 

A new study is soon initiated in the group, in the material which is 3D printed using 

a special stainless-steel alloy which is Stainless Steel 316L. This Sample is fabricated into 

dog bone shape,  to the dimensions that can fit inside the Micro CT machine, since this 

machine is also capable of Performing MTS operations. The main purpose of this study 

would be analyzing the sample behavior under loading and visualizing the effects of voids 

that are formed during fabrication. Sample scanning images of this sample are presented. 

 

Fig 6.3: 3D printed Stainless Steel 316L alloy sample 
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Fig 6.4: Micro CT imaging showing the voids in different layers of dogbone sample 
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APPENDIX A 

MICROSOFT VISUAL STUDIO CODE DEVELOPED AND USED FOR 

THE IMAGE ANALYSIS   
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# Import libraries - Install using pip 
import numpy as np  
import cv2 
import argparse 
import statistics 
import matplotlib.pyplot as plt 
import os  
from imutils import paths 
# construct the argument parse and parse the arguments 
ap = argparse.ArgumentParser() 
ap.add_argument("-i", "--images", required=True, 
 help="path to input directory of images") 
args = vars(ap.parse_args()) 
area = [] 
# Iterate through each image in the directory 
for imagePath in paths.list_images(args["images"]): 
    # Extract filename from full image path 
    base = os.path.basename(imagePath) 
    fileName = os.path.splitext(base)[0] 
    # Load image and resize it 
    im=cv2.imread(imagePath) 
    width_orig, height_orig = im.shape[:2] 
    print("Width, Height of original:", width_orig, height_orig) 
    im=cv2.resize(im, None, fx=0.5, fy=0.5) 
    width_mod, height_mod = im.shape[:2] 
    print("Width, Height of resize:", width_mod, height_mod) 
    # Convert BGR to Grayscale 
    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 
    overlay = gray.copy() 
    overlay_interior = gray.copy() 
       blur = cv2.GaussianBlur(gray, (1,1), 0, None, 0) 
    cv2.imshow("Blurred", blur) 
        # Calculate and plot histogram of gray image 
    hist = cv2.calcHist(gray, [0], None, [256], [0,256]) 
    plt.hist(im.ravel(),256,[0,256]); plt.show() 
      # Blur image 
    kernel = np.ones((9,9), np.float32)/25 
    blur = cv2.filter2D(gray, -1, kernel) 
     # Feature Extraction 
    ret, binary = cv2.threshold(gray, 30, 255, 
cv2.THRESH_BINARY|cv2.THRESH_OTSU) 
    # ret, binary = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY) 
    # Edge Extraction using Canny Edge Algorithm 
    canny = cv2.Canny(gray,0.5*ret, ret) 
    # Black canvas images for outputs 
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    img_black = np.zeros_like(canny) 
    img_allContoursBlack = img_black.copy() 
    img_externalContour_damage = img_black.copy() 
    img_largestContour_damage = img_black.copy() 
    img_selectedContours = np.zeros_like(canny) 
    ''' 
    cv2.imshow("Gray", gray) 
    cv2.imshow("Binary", binary) 
    cv2.imshow("Canny", canny) 
    ''' 
    # Morphological operation - Dilate the edges  
    kernel = np.ones((2,2),np.uint8) 
    dilate_canny = cv2.dilate(canny,kernel,iterations = 3) 
    # Extract outer boundary contour from dilated image 
    _, boundarycontours,_ = cv2.findContours(dilate_canny, cv2.RETR_EXTERNAL, \ 
    cv2.CHAIN_APPROX_NONE)     
    # Extract contours from binary image 
    _, contours,_ = cv2.findContours(binary, cv2.RETR_TREE, \ 
    cv2.CHAIN_APPROX_NONE) 
    cv2.drawContours(overlay, contours, -1 , 255 , 1) 
    cv2.drawContours(img_allContoursBlack, contours, -1, 255, 1) 
    # cv2.imshow("All Contours", img_allContoursBlack) 
    # Extract the largest contour from the boundarycontours list 
    boundaryContoursSorted = sorted(boundarycontours, key=lambda x: 
cv2.contourArea(x, True))     
    largestBC = boundaryContoursSorted[0] 
    largestBC = np.intp(largestBC) 
    cv2.drawContours(img_black, largestBC, -1 , 255 , 1) 
    ''' 
    cv2.drawContours(overlay, secondLargestContour, -1, 155, 1) 
    cv2.imshow("boundary contour", img_black) 
    cv2.imshow("contours", overlay) 
    ''' 
    areaContour = [] 
    # Damaged contours 
    _,boundaryContours_damage,_ = cv2.findContours(img_allContoursBlack, 
cv2.RETR_EXTERNAL, \ 
        cv2.CHAIN_APPROX_NONE) 
    cv2.drawContours(img_externalContour_damage, boundaryContours_damage, -1, 255, 
1) 
    boundaryContoursSorted_damage = sorted(boundaryContours_damage, key=lambda 
x: cv2.contourArea(x, True))     
    largestBC_damage = boundaryContoursSorted_damage[0] 
    largestBC_damage = np.intp(largestBC_damage) 
    cv2.drawContours(img_largestContour_damage, largestBC_damage, -1, 255, 1) 
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    cv2.drawContours(overlay_interior, largestBC_damage, -1, 255, 1) 
    ''' 
    cv2.imshow("largest contour damage", img_largestContour_damage) 
    cv2.waitKey(0) 
    areaContour.append(-cv2.contourArea(largestBC_damage, True)) 
    print(-cv2.contourArea(largestBC_damage, True)) 
    ''' 
    # Iterate on contours from binary image to check for voids 
    for i,c in enumerate(contours): 
        numZeros = 0 
        num255 = 0 
        numPoints = 0 
        relFreqZeros = 0 
        interior_intensities = [] 
        img_singleContour = np.zeros_like(gray) 
        inside = 0 
        void = 0 
        for j in c: # Check whether the contour is inside the boundary 
            if cv2.pointPolygonTest(largestBC, (j[0][0], j[0][1]), False) == -1: 
                # print("Outside") 
                inside = 0 
                continue 
            else: 
                # print("Inside") 
                inside = 1 
        if inside == 1: 
            cv2.drawContours(img_singleContour, contours, i, color=255, thickness=-1) 
            # cv2.imshow("single contour", img_singleContour) 
            # cv2.waitKey(0) 
            pts = np.where(img_singleContour == 255) 
            interior_intensities.append(binary[pts[0], pts[1]]) 
            interior_intensities = np.array(interior_intensities, dtype=np.uint8) 
            # print(interior_intensities) 
            numZeros = (interior_intensities==0).sum() 
            # print("Number of 0 pixels:", numZeros) 
            num255 = (interior_intensities == 255).sum() 
            # print("Number of 255 pixels:", num255) 
            numPoints = len(interior_intensities[0])      
            # print("Total number of pixels:", numPoints)  
            relFreqZeros = numZeros/numPoints 
            relFreq255 = num255/numPoints     
            if relFreqZeros > 0.15: 
                cv2.drawContours(overlay_interior, c, -1, 255, 1) 
                areaContour.append(cv2.contourArea(c,True)) 
                # print(-cv2.contourArea(c,True)) 
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    area.append(sum(areaContour)) 
    # cv2.imshow("Interior contours", overlay_interior) 
    # cv2.waitKey(0) 
    # Save output images to file (contour overlay and binary) 
    cv2.imwrite("D:/data/rahul/madhava/madhavaImages/BCC1500_1/" + fileName + 
"_contours.jpg", overlay_interior) 
    # cv2.imwrite("D:/data/rahul/madhava/madhavaImages/BCCL/" + fileName + 
"_allContours.jpg", overlay) 
    cv2.imwrite("D:/data/rahul/madhava/madhavaImages/BCC1500_1/" + fileName + 
"_binary.jpg", binary) 
    # cv2.imwrite("D:/data/rahul/madhava/madhavaImages/originals/" + fileName + 
"_gray.jpg", gray) 
np.savetxt("BCC1500_1.csv", area, delimiter="\n") 
 

-Credits to Rahul Rathnakumar for algorithm 


