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ABSTRACT

Conservation planning is fundamental to guarantee the survival of endangered species

and to preserve the ecological values of some ecosystems. Planning land acquisitions

increasingly requires a landscape approach to mitigate the negative impacts of spa-

tial threats such as urbanization, agricultural development, and climate change. In

this context, landscape connectivity and compactness are vital characteristics for the

effective functionality of conservation reserves. Connectivity allows species to travel

across landscapes, facilitating the flow of genes across populations from different pro-

tected areas. Compactness measures the spatial dispersion of protected sites, which

can be used to mitigate risk factors associated with species leaving and re-entering

the reserve. This research proposes an optimization model to identify areas to protect

while enforcing connectivity and compactness. In the suggested projected area, this

research builds upon existing methods and develops an alternative metric of compact-

ness that penalizes the selection of patches of land with few protected neighbors. The

new metric is referred as leaf because it intends to minimize the number of selected

areas with 1 neighboring protected area. The model includes budget and minimum

selected area constraints to reflect realistic financial and ecological requirements. Us-

ing a lexicographic approach, the model can improve the compactness of conservation

reserves obtained by other methods. The use of the model is illustrated by solving

instances of up to 1100 patches.
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Chapter 1

INTRODUCTION

Conservation planning is fundamental to guarantee the survival of endangered

species and preserve the ecological value of some ecosystems. Such planning increas-

ingly requires a landscape approach, integrating information across sites to inform

government and non-government organizations on the best sites to protect. This

approach is essential when accounting for rapidly changing environments, such as

urbanization, agricultural development, and climate change. The importance of con-

servation planning has been documented in the literature. Sanderson et al. (2002)

propose a conceptual model for conservation planning in which the authors focus

on a few species which have a large impact on the ecology for conservation and be-

lieve that meeting the requirements of these species will result in the conservation of

other species and the of the landscape as a whole. Fleishman et al. (2002) discuss

the importance of a concept of nestedness analysis in conservation planning, which

implies that, the nestedness of birds was not affected by the difference in area and

topology, where as the nestedness of butterflies were greatly affected by the difference

in area and topology. This throws light on the difficulties of a conservation plan-

ning problem and the importance of understanding how important nestedness is for

conservation planning. Haight and Travis (1997) propose a stochastic optimization

method for wildlife conservation planning that focuses on building a model with a

changing habitat size of species over time. They consider all the other attributes to

be constants.The objective of this problem was to determine how much of the existing

habitat has to be preserved and how much should be used for economic development.

A key component that makes landscape approaches challenging is inducing con-
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nectivity and compactness in protected areas. Connectivity allows species to travel

across protected areas whereas compactness measures how close the protected sites are

to each other. Williams and Snyder (2005) discuss about a shortest-path algorithm to

induce connectivity between fragmented landscapes. Jafari and Hearne (2013), Wang

et al. (2017), Jafari et al. (2017), Önal and Briers (2005) propose multiple models

based on mathematical programming to induce connectivity in conservation planning

problems.

Although a more difficult metric to express mathematically, compactness quanti-

fies the spread of the conserved areas and allows decision makers to identify landscape

configurations that, although connected, are undesirable. For instance, low-diameter

(bulky) circular areas are preferred over long and thin areas. Young (1988) reviews

eight metrics of compactness which can be potentially used in the conservation plan-

ning problems. Williams et al. (2005) discuss the importance of the spatial character-

istics of a reserve and reviews a few of the formulations. Emphasizing on reserve size,

reserve shape, reserve connectivity, number of reserves, reserve proximity and buffer

zones. Önal and Briers (2003), Jafari and Hearne (2013), Wang and Önal (2016) and

Önal et al. (2016) propose a metric of compactness based on the boundary, perime-

ter, total distance and distance to center respectively. We incorporate Önal et al.

(2016) in our research because of its computational performance, for comparison and

modeling.

The mathematical programming models available in the literature aim to design

single-component protected areas, where a component is a group of connected patches

that facilitate movement of wildlife. That is, models that can produce protected areas

with more than one connected component are ignored, although they may be desirable

given budget or landscape constraints (e.g., roads). Moreover, there are no available

models to effectively induce connectivity and compactness at the same time for more
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than one component. Although a few models exist in the literature that claim to solve

this variant of the conservation planning problem, we have produced counter examples

in which they fail. Because both connectivity and compactness matter in landscape

conservation, the focus of this research is to survey the existing methods and to build

an improved model that incorporates both criteria under multi-component landscape

conservation problems. We compare our proposed compactness metric with existing

metrics.

This paper is organized as follows, section 1.1 presents the review of the available

models for connectivity and compactness, while section 2.1 defines connectivity and

illustrates with an example what connectivity is. Section 2.2 defines compactness

and also provides visual examples to illustrate existing and new metrics. Chapter 3

introduces the mathematical programming model, we then introduce mathematical

models to solve the problem. Chapter 4 describes the proposed solution algorithm.

Chapter 5 presents our results and visual examples of the solution to the problem.

Finally chapter 6 discusses the future scope of our research.

1.1 Literature Review

We first reviewed Literature on Conservation Planning. Fleishman et al. (2002)

discuss the importance of a concept of nestedness analysis in conservation planning,

nestedness is a concept which states that the population density of species keeps de-

creasing as the distance from the reserve center, which implies that, the nestedness of

birds were not affected by the difference in area and topology, where as the nestedness

of butterflies were greatly affected by the difference in area and topology. This throws

light on the difficulties of a conservation planning problem and the importance of un-

derstanding how important nestedness is, for conservation planning, Sanderson et al.

(2002) propose a conceptual model for conservation planning in which the authors
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focus on a few species which have a large impact on the ecology for conservation and

believe that meeting the requirements of these species will result in the conserva-

tion of other species and the landscape as a whole, Önal and Briers (2005) discuss

a method of modeling a conservation reserve by minimizing the fragmentation(gap)

between two selected patches. Önal and Briers (2005) use the concept of graph to

implement the model proposed. Snyder et al. (2004) discuss a two-objective opti-

mization model to solve the habitat reserve planning problem. This literature give

us insight on conservation planning and how problems on conservation planning can

be tackled. There are many heuristic methods to solve a conservation planning prob-

lem, Csuti et al. (1997) compares five types of heuristic formulations which are four

variations of richness-based heuristics and two variations of rarity-based heuristics,

eleven variations of progressive rarity-based heuristic, simulated annealing and a lin-

ear programming-based branch and bound algorithm. Nalle et al. (2002) propose a

model whose objective function is to minimize the difference between weighted sum

of compactness and connectivity. The proposed model is solved using three heuris-

tics which are simulated annealing, tabu search with short-term memory and genetic

algorithm. Pressey et al. (1996) discuss and compare exact solution algorithms and

heuristics, when is it advisable to use them, their advantages and disadvantages.

Pressey et al. (1997) discuss two types of heuristic algorithms, Presence-absence al-

gorithm and Proportional area algorithm and present a comparative study of the

heuristics.

We then reviewed literature on connectivity, to see how it is modeled, and we

came across the following models: Jafari and Hearne (2013) discuss a flow based

network model to connectivity of reserves. Önal et al. (2016) discuss a method of

modeling connectivity using constraints that enforce selection of patches to form a

path from one selected patch to another selected patch. Önal and Briers (2005)
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discuss modeling connectivity by using an objective function to minimize the sum of

gaps between selected patches. Jafari et al. (2017) discuss a multi-period connected

reserve selection model for a cost-effective conservation problem. Carvajal et al.

(2013) discuss the importance of connectivity (contiguity) in landscapes and how

integer programming can be used to achieve it. We decided to use models Jafari and

Hearne (2013) and Önal et al. (2016).

We then reviewed literature on compactness. Young (1988) discuss 8 metrics of

compactness which can be used in conservation planning. There were a few other

papers with dealt with compactness, they were, Nalle et al. (2002) propose a model

whose objective function is to minimize the difference between weighted sum of com-

pactness and connectivity. The proposed model is solved using three heuristics which

are simulated annealing, tabu search with short-term memory and genetic algorithm.

Vanegas et al. (2010) reviews spatial optimization approaches using techniques as

heuristics, meta heuristics and mathematical programming and discuss the critical is-

sues in identifying contiguous and compact areas in digital geographical information.

Önal et al. (2016) and Wang and Önal (2016) propose a model that minimizes the

sum of distance between patches and centers of the reserves. Önal and Briers (2003)

discuss a metric of compactness, boundary, the smaller the value of the boundary,

the more compact is the landscape. Their mathematical program involves minimiz-

ing the sum of parcel boundaries and the boundaries of the patches that are part of

the landscape boundaries. Intuitively, packing more patches, while minimizing the

boundary length produces more compact shape. Jafari and Hearne (2013) defined

compactness as the perimeter of the reserve. They calculate the perimeter by adding

the perimeter of the selected patches and subtracting the length of the shared edges

between selected patches. The objective is to minimize the perimeter in order achieve

better compactness. Intuitively, minimizing the perimeter also maximizes the length
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of shared edges between selected patches, which results in better compactness.

The motivation for our research is the inability of the existing metrics to resolve

situations of ties between landscapes. Existing metrics result in same values for com-

pactness measure for two landscapes with different configurations. In such situations,

selecting the better of the landscapes becomes a concern, visual judgment cannot be

quantified and will not be consistent. To tackle this issue, we design a metric, along

with the existing metrics, that is capable of resolving ties and improving compactness

of the landscape.
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Chapter 2

LANDSCAPE CONNECTIVITY AND COMPACTNESS

2.1 Connectivity

The importance of connectivity has been emphasized in the literature of landscape

conservation and habitat restoration. Carvajal et al. (2013) discusses the importance

of connectivity (contiguity) in landscapes and how integer programming can be used

to achieve it. Connectivity can be defined, in a simply way, as the existence of a

path from every patch to every other patch in the protected landscape. Connectivity

ensures the movement of animals from one patch to another in the reserve, which

allows short and long term dynamics due to change in weather, seasons, and other

ecological processes. Önal et al. (2016) mentions two types of connectivity, structural

connectivity and functional connectivity. Structural connectivity is when one can

travel from one patch to another patch in the protected landscape by only moving

on the protected patches. Functional connectivity is when the species can traverse

between one patch to another patch in the protected landscape without necessarily

traversing the protected patches physically. Connectivity has been implemented using

various techniques for a single connected reserve. Williams and Snyder (2005) uses

multiple shortest path method to enforce connectivity whereas, Jafari and Hearne

(2013) suggests a method using a network flow approach to impose connectivity for

n, where n is the number of protected reserves to be selected. This multi-component

structure is also achieved by Önal et al. (2016) whose model enforces the selection of

at least one neighbor of a selected patch which is closer to the center, which induces

the existence of a path from the selected patch to the center of the protected area.
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In this paper, we use the connectivity model in Önal et al. (2016) because of its

computational performance.

(a) Disconnected/Fragmented Landscape (b) Connected/contiguous Landscape

Figure 2.1: Landscape Connectivity

Figure 2.2: Patterns and their meaning

Figure 2.1(a) illustrates a landscape that is not connected, and where there is no

path from one patch to any other patch using only selected patches. Figure 2.1(b)

represents a landscape which is connected, containing a path from each patch to every

other patch in the selected area. Figure 2.2 depicts the meaning of the patterns used

in the figures to depict the landscape.

2.2 Compactness

The efficient design of a reserve not only depends on how well it is connected,

but also on other spatial attributes. Williams et al. (2005) discuss the importance of
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the spatial attributes like size, proximity, number of reserves, connectivity and shape.

Our focus in this paper is on reserve shape and in particular on compactness. Young

(1988) lists eight measures of compactness, which are:

• Visual test, which greatly depends on an individuals perspective of compactness.

• Roeck test, which focuses on the ratio of the area selected to the area of the

smallest circle enclosing the selected area, closer the ratio is to 1, more is its

compactness.

• Schwartzberg test, defined as the ratio of adjusted perimeter to the perimeter

of a circle whose area is equal to the area of the selected landscape.

• Length-width test, which is the ratio of the length and width of the largest

rectangle that can be draw such that it touches all the 4 sides of the selected

landscape, the closer the ratio is to 1, the more compact the landscape is.

• Taylor’s test, which is very similar to Schwartzbern test, but it considers the

ratio of the difference in the number of reflexive and non reflexive angles to the

sum of the total number of angles.

• Moment of Inertia test, describing the geographical center and the value of the

moment of inertia at that point, smaller the value of the moment of inertia at

the geographical center, the better is its compactness.

• Boyce-Clark test, which is the average percentage difference between the radial

distance and the average distance of the edges from the center of gravity, the

closer it is to 0, the more compact is the landscape.

• Perimeter test, as the name suggests, the smaller the sum of the perimeter of

all the selected areas, the better is its compactness.
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The work of Young (1988) illustrates that compactness is a measure that does

not have an exact definition. There are many ways in which compactness can be

interpreted. Using visual inspection, any landscape that is close to a perfect shape

(circle, square) is more compact with respect to other which is not that close to a

perfect shape (circle, square). Önal and Briers (2003) defined compactness using a

matrix called boundary, the smaller the value of the boundary, the more compact

is the landscape. Their mathematical program involves minimizing the sum of par-

cel boundaries and the boundaries of the patches that are part of the landscape

boundaries. Intuitively, packing more patches, wile minimizing the boundary length

produces more compact shape. Wang and Önal (2016) define another metric for

compactness which is the total sum of the distances between selected patches and

the center of the reserve. A center patch is the patch which has the least sum of

distances to all the other patches in the reserve. They considered a grid landscape,

and define two kinds of distances, one is structural and the other functional. For

our research we considered the structural distance only because it is directly related

to the landscape shape. The structural distance between two patches is the number

of patches used to connect them i.e. number of patches between them. This makes

the structural distance between two adjacent patches to be equal to zero. According

to Önal et al. (2016) the smaller the sum of the total distance, the more compact

is the landscape. Intuitively, having patches close to the reserve center is better for

compactness. Jafari and Hearne (2013) defined compactness as the perimeter of the

reserve. They calculate the perimeter by adding the perimeter of the selected patches

and subtracting the length of the shared edges between selected patches. The objec-

tive is to minimize the perimeter in order achieve better compactness. Intuitively,

minimizing the perimeter also maximizes the length of shared edges between selected

patches, which results in better compactness. Önal et al. (2016) defined compactness
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in the same way as in Wang and Önal (2016), minimizing the sum of total distance

from the selected patches to the reserve center.

Figures 2.3(a) and 2.3(b) illustrates two landscapes with seven selected patches.

For these landscapes, Table 2.1(a) shows the compactness measures according to Önal

and Briers (2003), Jafari and Hearne (2013), Wang and Önal (2016) and Önal et al.

(2016). All the metrics result in the same value of compactness for both landscapes

even though both the landscapes have different configurations. In this case, the

distance to the center was calculated as the number of patches between the center and

the patch under consideration. Moreover, since the landscapes are grids, we assume all

patches are of the same dimensions (1 × 1 unit). This assumption is made to simplify

the explanation of the different metrics and for the purpose of comparison. There

are other cases where all metrics are the same. By visual inspection, the landscape

in Figure 2.3(b) is more compact that the landscape in Figure 2.3(a) because of the

presence of the patch with only one neighbor in the reserve, which we call leaf patch.

In this case, individuals visiting that patch have a higher chance to leave the reserve

compared to boundary patches in Figure 2.3(b).

(a) Landscape configuration 1 (b) Landscape configuration 2

Figure 2.3: Landscape Compactness

Figure 2.3(a), shows that the leaf patch is the reason for the landscape in Figure

2.3(a) not to have a perfect compact shape. Our definition of leaf patch is specific
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Pattern Figure 2.3(a) Figure 2.3(b)

Boundary

(Önal and Briers (2003))
12 12

Perimeter

(Jafari and Hearne (2013))
20 20

Total Distance

(Wang and Önal (2016))
2 2

Distance to center

(Önal et al. (2016))
2 2

Leaf 1 0

Table 2.1: Metric comparison

to a grid discretization of the landscape, because a patch can have between two and

four neighbors and all patches have identical dimensions. For any landscape, can be

generalized to k neighbors.

Leaf is a metric to enhance the compactness attained by other metrics or to break

the ties when there is no difference using other metrics (as in Table 2.1(a)). The

reason of this is that the leaf metric by itself cannot induce compactness (for instance

two rectangular shapes of size 2 × 3 and 3 × 3 patches have zero leaves but one

is clearly more compact). We illustrate the use of our leaf metric by extending the

formulation in Önal et al. (2016) because of its computational performance. As we

will discuss later, any metric can be extended with our leaf metric.
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Chapter 3

MATHEMATICAL PROGRAMMING MODELS

To model the landscape connectivity and compactness problem, we initially adopted

the formulation from Jafari and Hearne (2013) for connectivity alone. After tests

and further literature review, it was evident that the formulation for connectivity

and compactness put together by Önal et al. (2016) performed better in terms of

solution times and compactness metric, in comparison to connectivity formulation in

Jafari and Hearne (2013). We first describe the formulation proposed in Önal et al.

(2016) which we modify to focus only on its properties to induce structural (spatial)

connectivity.

3.1 Baseline Model (Önal et al. (2016))

The objective function in Önal et al. (2016) focuses on minimizing the sum of the

total distance between selected patches and the center of the connected component.

The original formulation included constraints to incorporate a minimum level of habi-

tat quality in the resulting reserve. We decided not to use these constraints, as they

are irrelevant when enforcing the spacial properties of the reserve, and only focus on

the quality of the selected patches. Instead, we added a budget constraint to reflect

the financial aspect in conservation planning decisions. This is similar to other works

such as Beyer et al. (2016) state, where they minimize the total cost of planning units,

which captures the capital investment factors involved in buying/protecting patches.

In our formulation, we define sets S as the set of all patches available, and Nj as

the set of all neighboring patches of patch j ∈ S. The parameters in our formulation

included dki, the distance between patch k and patch i for k, i ∈ S, and with dkk =

13



0; n, the maximum number of connected components (reserves) allowed; m, the

maximum number of nodes that can be attached to the center patch of each reserve, a,

the minimum area to be protected/selected; b, the budget available for land purchases;

ci, the cost of buying/protecting patch i ∈ S; and ai, the area of patch i ∈ S. Our

formulation has two sets of decision variables, xki is a binary variable which denotes

the decision of buying/protecting a patch or not, note that xkk also determines if

patch k is a center. The indices of the x variables indicate whether patch i and patch

k are bought/protected (e.g., xki = 1). Moreover, they determine whether patch k is

the center of the connected component where i is located. On the other hand if xki

equals zero, it implies that at least one of the conditions mentioned is not satisfied

(i.e., i is not purchased, k is not purchased, or i is not in the connected component

whose center is k. The mathematical model for the modified Önal et al. (2016) is

presented in (3.1)-(3.9).

min
∑
i∈S

∑
k∈S

dkixki (3.1)

s.t.
∑
i∈S

∑
k∈S

cixki ≤ b (3.2)

∑
k∈S

xki ≤ 1, ∀i ∈ S (3.3)

∑
k∈S

xkk ≤ n (3.4)

∑
{i∈S, i 6=k}

xki ≤ mxkk, ∀k ∈ S (3.5)

∑
i∈S

∑
k∈S

aixki ≥ a (3.6)

xki ≤ xkk, ∀i ∈ S, ∀k ∈ S (3.7)

xkj ≤
∑

{i∈Nj , dkj > dki}

xki, ∀j ∈ S, ∀k ∈ S, k /∈ Nj, j 6= k (3.8)

xki ∈ {0, 1}, ∀i ∈ S, ∀k ∈ S (3.9)
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The objective of this model is to minimize the sum of total distances between the

patches and their respective center, which captured (3.1). This objective induces com-

pactness in the selected landscape. Constraint (3.2) is the budget constraint, which

imposes an upper bound on the total cost of buying/protecting patches.Constraints

(3.3) enforce that a patch i can be selected and attached to at most one center. Con-

straint (3.4) reflects that not more than n reserves/components, are allowed in the

solution. In other words, this constraint restricts the maximum number of center

patches that can be selected to be no more than n. Constraints (3.5) enforce the con-

dition that, if a patch k is selected as a center, then no more than m other patches

can be attached to it. It also imposes the condition that if a patch is not selected as

a center, then no patch should be attached to it. Constraint (3.6) imposes minimum

area required to be protected. This is a very important constraint because, without

Constraint (3.6) the problem will have an optimal objective function value of zero. For

a grid landscape, this constraint reduces to a cardinality constraint that restricts the

minimum number of patches to be selected. Constraints (3.7) enforce the condition

that a patch i cannot be attached to a center patch k if k is not bought/protected.

Imposing these constraints at the same time as constraints (3.5) produce a tighter

formulation. Constraints (3.8) enforce connectivity, in each connected component. It

states that if patch j is selected, then at least one neighboring patch i (i.e., i ∈ Nj)

should be selected such that the distance of patch i to the center k is less than the

distance of patch j to the center k. Finally, constraints (3.9) impose the variable type

constraint.

The modified version of the model in Önal et al. (2016) in (3.1)-(3.9) can produce

landscapes with contiguous reserves/components, as shown in Figure 3.1. This is

incorrect because both the components are connected to each other and then they

cannot be treated as two different reserves. As a result, the model conveniently
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selects the centers and produces a very optimal value of the objective function. We

point out that this issue is not due to the absence of the functional connectivity

constraints, or the addition of the budget constraint because those are not required

to enforce connectivity or compactness in the landscape. In order to fix this, we

propose an additional set of constraints to the existing model, which we call separation

constraints.

Figure 3.1: Landscape Configuration

3.2 Baseline Model with Separation Constraints

This model consists of (3.1) to (3.9) and the following constraints.

xki + xlj ≤ 1, ∀j ∈ S, ∀i ∈ S, ∀k ∈ S, ∀l ∈ S, k 6= l, i ∈ Nj, i 6= j (3.10)

Constraints (3.10) state that, two neighboring patches i and j (i.e., i ∈ Nj)

cannot be purchased and connected to two different center patches k and l respec-

tively. This ensures that if two neighboring patches i and j are bought/protected then

they will be attached to the same center patch k. This fixes the issue identified in

the Baseline Model. However, the number of constraints (3.10) may be prohibitively

large. To overcome this situation, we propose a cutting plane algorithm that only

adds constraints (3.10) when needed.
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3.3 Leaf

The motivation for the Leaf metric is the inability of other metrics to detect

compact configurations like those in Figure 2.4 and Figure 2.5. From Table 2.1 we

have that, the only metric that identifies the more compact landscape is the Leaf.

We implement the leaf metric as a mathematical programming model, to incorporate

the results from other compactness models, that uses an epsilon constraint approach

(Chankong and Haimes (2008)). We represent the leaf metric in the objective function

with other metrics used as constraints. We first solve the modified model in Section

3.2, then use the objective function (3.1) as a constraint with an upper bound of δ∗, the

optimal objective value obtained. Note that this strategy prevents any deterioration

in the total distance to center patches. Although here we focus on improving the

distance to center compactness metric, our models can be extended to other metrics.

We define the leaf with a decision variable wi where i ∈ S. If patch i is a leaf, then

wi equals one. If patch i is not a leaf, then wi equals zero. The formulation for the

Leaf Model is the following.

min
∑
i∈S

wi (3.11)

∑
i∈S

∑
k∈S

dkixki ≤ δ∗ (3.12)

2
∑
k∈S

xki -
∑
j∈Ni

∑
k∈S

xkj ≤ wi, ∀i ∈ S (3.13)

wi ≤
∑
k∈S

xki, ∀i ∈ S (3.14)

wi ≥ 0, ∀i ∈ S (3.15)

xki ∈ {0, 1}, ∀i ∈ S, ∀k ∈ S (3.16)

Equation (3.11) is the objective function of the Leaf Model, which focuses on

minimizing the total number of leaves in the landscape. Constraint (3.12) avoids the
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deterioration of the objective function value from Section 3.2. Constraints (3.13) de-

termine if a patch is a leaf of not. If a patch i is protected/bought (i.e.
∑

k∈S xki = 1)

and only one of its neighbor is also protected (i.e.,
∑

j∈Ni

∑
k∈S xkj = 1), then patch

i is a leaf (i.e. wi = 1). If patch i is not selected or if more than one neighbors are

selected, then the left hand side is non-positive and wi = 0. This is specific to a grid

landscape. Constraints (3.14) state that a patch cannot be a leaf if it is not connected

to any center patch. This constraint is necessary because, from computational expe-

rience, it tightens the formulation and helps in better bounds for the linear relaxation

of the problem. Constraints (3.15) are the variable type constraints, which state that

wi is non-negative. Note that because of (3.14) and (3.15), w-variables will take only

binary values although they are allowed to be continuous.

The advantage of using an epsilon-constraint approach is that, a weight can be

added to the value of δ∗ to generate various scenarios to balance the leaf and the total

distance to center metrics.
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Chapter 4

SOLUTION APPROACH

We followed a lexicographic approach to induce compactness into a landscape. There

are two objectives, the first one being minimizing the total distance to the center

from the modified Önal et al. (2016). The second objective to minimize the number

of leaves. In our solution approach we first solve the modified Önal et al. (2016) model,

then its optimal objective function is added as a constraint to the leaf problem. Then,

we solve the leaf problem.

We also use a cutting plane algorithm while solving the leaf problem given the

large number of Constraints (3.10). We implemented out algorithms using Julia 1.0.3,

because our solution efficiency lies greatly on the callback abilities of the platform.

Julia has the capability to implement a callback function to modify the problem while

its being solved without having to re-start the problem after the addition of a new

constraint. The cutting plane algorithm proves to be very useful in our case because

of the large number of constraints (3.10) to be added, thus adding them all at once

will slow down the solution algorithm. To avoid this, constraints are added only in

case of a violation.

4.1 Solution Algorithms

Algorithm 1 describes a cutting plane algorithm to dynamically impose the sep-

aration constraint in (3.10). Line 1 calculates the distance between patches k and

i which is needed for (3.8). Line 2 solves model (3.1)-(3.9) and obtains an optimal

solution. Line 3 defines set α, which is an index set containing the variable indexes

for all patches violation (3.10). Line 4 defines a while loop which runs as long as the
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set patches violating the separation condition is non-empty. Line 5 contains an inner

loop which runs for every element in set α. Line 6 indicates the addition of the sepa-

ration constraint.Line 8 indicates the model to be solved with the added constraints

and obtain a solution to the decision variables. Line 9 recalculates set α. Line 11

returns the optimal solution values for the decision variables.

Algorithm 1: Cutting Plane Algorithm for model (3.1)-(3.10)

1 Pre-calculate dki;

2 Solve model (3.1)-(3.9) and obtain a solution x
∆
= [xki] ;

3 Calculate α = {(i, j, k, l), j ∈ Ni, xji = xlj = 1, k 6= l};

4 while α 6= {∅} do

5 forall (i, j, k, l ∈ α) do

6 Add xki + xlj ≤ 1;

7 end

8 Solve model (3.1)-(3.10) and obtain a solution x
∆
= [xki] ;

9 Calculate α = {(i, j, k, l), j ∈ Ni, xji = xlj = 1, k 6= l};

10 end

11 Return x
∆
= [xki]
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Chapter 5

COMPUTATIONAL RESULTS

In this chapter, we present the results the proposed model on landscapes of up to

1100 patches, with randomly generated attributes. Section 5.1 presents our instance

generation procedure. Section 5.2 illustrates the results that can be obtained with

our models as well as a comparison of the performance with other metrics.All of our

models were implemented using Julia 1.0.3 and Gurobi 8.1 solver on a intel i5 2.50

GHz processor and 8.0 GB RAM.

5.1 Instance Generation

We solve instances ranging from 100 patches (10 × 10 grid) to 1100 patches (25 ×

44 grid). We considered only grid landscapes in order to be able to obtain comparable

results with the Önal et al. (2016). We generate the cost of buying a patch using a

uniform random function ranging between 10 to 15 (random values). The distance

(adjacency) matrix was pre-generated, where the distance between patches k and

i is the number of patches between them. The budget was randomly given using a

predetermined 30% of the cost of purchasing the minimum area of protected landscape

required, the area of the patches were considered to be 100 units2 each (10 × 10

units). We first illustrate the need of the separation constraints (3.10) by comparing

results of the model (3.1)-(3.9) with the model (3.1)-(3.10) and then describe the

results for an instance minimizing the number of leaves.
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5.2 Illustrative Examples

This section presents the results of our models on a few randomly generated

instances. We use an instance with 200 patches and a minimum required area was

7500 sq. units. The budget is set to $1000 and the maximum number of allowed

reserves to two. The solution obtained for models (3.1)-(3.9) and (3.1)-(3.10) on this

instance are depicted in Figures 5.1(a) and 5.1(b). The coloured patches (yellow and

green) are the selected patches. Both problems led to an objective function value

of 212 units. The models in (3.1)-(3.9) is solved in 3.2 seconds, whereas the model

(3.1)-(3.10) required 102 seconds and 2686 Constraints (3.10) added to solve. Figure

5.1(a) shows that the reserves are connected to each other meaning that the distance

to the center should have been calculated using only one center. To avoid this, the

separation constraints have to be added to the problem. Figure 5.1(a) represents the

solution of the model (3.1)-(3.10). It is clear that the reserves are not connected to

each other, solving the issue.

(a) Baseline Model (b) Baseline Model with Separation

Constraints

Figure 5.1: Landscapes I

Next we solved an instance to illustrate the use of the Leaf Model. We con-

sidered the same instance as before, with 200 patches and a minimum area to be
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purchased/protected as 7500 sq. units, with a budget $1000 and the maximum num-

ber of allowed reserves is two. The optimal objective to model (3.1)-(3.10) is 212

units and the selected patches are shown in Figure 5.2. The optimal objective value

obtained for the model (3.11)-(3.15) with δ∗ = 212 is equal to one, whereas the model

in (3.1)-(3.10) produced seven leaves. The results are depicted in the Figures 5.2 (a)

and 5.2 (b).

(a) Baseline Model with Separation

Constraints

(b) Leaf Model

Figure 5.2: Landscapes II

It is also seen from Figure 5.2 (a) and 5.2 (b) that, visually landscape in Figure 5.2

(b) is more compact than the one that is in the Figure 5.2 (a). According to Young

(1988), the better the landscape resembles a perfect figure, more compact it is. This

is the case with the landscape in Figure 5.2 (b) when compared to the landscape in

5.2 (a).
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Instance

No.
No. Of Patches Budget Area

Time

to Solve(sec)

Baseline Model

with Separation

Constraints

Leaf Model

1 200 600 4000 5 35

2 400 800 8000 24 3065

3 500 1000 10000 61.97 1615

4 625 1400 12500 189.9 1753.93

5 800 1900 16000 345.1 2855

6 900 2200 18000 391.53 4030.53

7 1000 2500 20000 450.72 5800.93

8 1100 2500 21000 400.18 5153.59

Table 5.1: Results

Table 5.1 depicts the results of the solution times for various instances of the model

(3.1)-(3.10) and model (3.11)-(3.15). Instances beyond 1100 patches consumed more

than 7200 sec to solve, and thus we did not report their results.

24



Chapter 6

FINAL REMARK AND FUTURE WORK

This thesis proposes a framework to solve the problem of landscape connectivity and

compactness in conservation planning. This problem was formulated as a mixed inte-

ger problem, incorporating techniques like lexicographic approach, epsilon constraints

and using the callback feature of Julia. We have built a new metric of measurement

for compactness which we call by the name Leaf, and also to fix the issue with the

modified version of the model in Önal et al. (2016). We built an algorithm to imple-

ment this model and tested it for real-life size instances and solved it in a reasonable

time. In the future, better algorithms can be developed to solve larger instances in

reasonable times. Also we came up with an idea for extended the concept of com-

pactness to irregularly shaped landscape with patches which do not have a regular

shape. This we call as the density metric. In the future we plan to develop this metric

and be able to implement it to solve larger instances of irregularly shaped landscapes.

We have done some literature on this, Elzinga and Hearn (1972) talks about method

which uses the concept of minimum covering sphere to model compactness with the

help of decomposition algorithm, we believe will be of a great help to us in modeling

the density metric.
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