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ABSTRACT  

 Background. Despite extensive research in the literature aimed at understanding the role 

of hypertension as a major risk factor for numerous leading causes of death in the United 

States, rates of this disease continue to rise. Recent findings suggest that antiseptic 

mouthwash use may increase blood pressure through elimination of oral bacteria that 

facilitate the enterosalivary nitrate-nitrite-nitric oxide pathway.  

Objective. The purpose of this randomized, controlled, crossover trial was to examine the 

effects of antiseptic mouthwash use and sodium intake on blood pressure and salivary 

nitrate levels in prehypertensive adults.   

Methods. Healthy adults (n=10; 47.3±12.5) with mildly elevated blood pressure (average 

baseline blood pressure of 114.9/75.2 mmHg) were recruited and were randomly 

assigned to a control condition, antiseptic mouthwash use, or antiseptic mouthwash use + 

consumption of three pickles per day (~6000 mg/day of sodium) for a total of 7 days. 

Given the crossover design of this study, participants adhered to a 1-week washout period 

between each condition and all participants received all three treatments. Findings were 

considered significant at a p-value of <0.05 and a repeated measures ANOVA test was 

used to compare change data of each condition.  

Results. Changes in systolic and diastolic blood pressure were not statistically significant 

(p=0.469 and p=0.859, respectively). Changes in salivary nitrite levels were not 

statistically significant (p=0.493). Although there appeared to be fluctuations in sodium 

intake between interventions, differences in sodium intake were not statistically 

significant when pickles were not accounted for (p=0.057).  
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Conclusion. Antiseptic mouthwash use did not appear to induce significant changes in 

systolic or diastolic blood pressure in this population.  
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CHAPTER 1 

INTRODUCTION 

According to the Centers for Disease Control and Prevention (CDC), currently 

one in three adults in the United States has hypertension (Fryar, Ostchega, Hales, Zhang, 

& Kruszon-Moran, 2017). Hypertension, or high blood pressure, is a major risk factor for 

both heart disease and stroke, which are leading causes of death in the U.S. and across the 

globe. Despite consistent efforts of health care providers to offer lifestyle 

recommendations and aggressive interventions with prescription medications, only about 

half (54%) of the 75 million people with hypertension in the U.S. have managed their 

high blood pressure (Fryar et al., 2017). Frequent blood pressure monitoring, both in the 

home and in the doctor’s office, along with adherence to hypertension guidelines by the 

patient and physician are essential in the proper management of high blood pressure. 

Unfortunately, hypertension remains prevalent among U.S. adults and recent data has 

shown an increase in high blood pressure during childhood and adolescence (Fryar et al., 

2017). Identifying behaviors that contribute to the onset of hypertension may provide 

insight into simple strategies that individuals can adopt as methods of blood pressure 

management.  

 It is well recognized in the scientific community that diet plays an important role 

in the prevention or promotion of hypertension and other chronic disease states. There is 

a general consensus in the literature that dietary sodium consumption is a significant 

contributor to the pathogenesis of hypertension, as well as a major risk factor for a 

number of other cardiovascular pathologies (Rust & Ekmekcioglu, 2016). It is estimated 

that dietary sodium consumption in the standard American diet ranges from 9 to 12 grams 
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per day, as compared to the World Health Organization’s (WHO) recommendation to 

limit consumption to 5 grams per day and the CDC’s recommendation to limit 

consumption to less than 2300 mg per day (Pilic, Pedlar, & Mayrommatis, 2016). Sodium 

homeostasis is regulated by the renin-angiotensin-aldosterone system (RAAS), a 

physiological mechanism of regulating sodium and water excretion or retention, causing 

an increase or decrease in blood pressure (Pilic et al., 2016). High sodium intake activates 

the RAAS, stimulating sodium and water retention and an increase in blood pressure 

(Pilic et al., 2016).  

There are also dietary sources of nutrients that contribute to a decrease in blood 

pressure. Recently, there has been an influx of data that supports the consumption of 

leafy green vegetables, specifically those with a high concentration of inorganic nitrate 

(NO3-) such as lettuce and beetroot, as beneficial to cardiovascular health (Mcdonagh, 

Wylie, Winyard, Vanhatalo, & Johes, 2015). Reduction of dietary NO3- to nitrite (NO2-) 

is facilitated by facultative anaerobic bacteria within the saliva and is further reduced to 

nitric oxide (NO) after swallowing via a variety of mechanisms (Hord, Tan, & Bryan, 

2009). Cardiovascular protecting effects are likely due to the vasodilating and blood flow 

regulating properties of NO once it has entered systemic circulation. This can lead to 

reductions in both systolic (SBP) and diastolic (DBP) blood pressure (Hord et al., 2009). 

However, evidence supporting the role of the oral microbiome in reducing inorganic 

NO3- to NO2- and NO indicates that the presence or absence of such bacteria may play a 

significant role in systemic blood pressure regulation (Bryan, Tribble, & Angelov, 2017). 

The elimination of oral bacteria through the use of antiseptic mouthwash may be 

contributing to increased blood pressure in susceptible individuals.  
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 Although epidemiological and correlational data exists in the literature to support 

the notion that antiseptic mouthwash use increases blood pressure, few trials have 

explored the link between mouthwash use on blood pressure and salivary nitrate levels. 

To date, a randomized clinical trial that explores this link in prehypertensive adults, while 

simultaneously placing participants on a sodium diet regimen, has not been conducted. 

More research is needed to establish the effects of both diet and mouthwash use on blood 

pressure regulation. It is possible that discoveries regarding the relationship between the 

oral microbiome and cardiovascular health may provide a new therapeutic target for 

blood pressure management and chronic disease prevention.  

Purpose of Study 

 The purpose of this randomized, controlled, crossover study was to examine the 

effects of antiseptic mouthwash use and sodium intake on blood pressure and salivary 

nitrate levels in a population of prehypertensive adults (>120/80 mmHg) from the 

Phoenix area.   

Research Aim and Hypotheses 

• Primary Aim: To determine the effect of antiseptic mouthwash use and sodium 

intake on blood pressure and salivary nitrate levels in prehypertensive adults from 

the Phoenix area.  

• Primary Hypotheses:  

o Antiseptic mouthwash use combined with a high sodium diet will increase 

blood pressure to a greater degree than mouthwash use alone in 

prehypertensive adults in the Phoenix area. 



  4 

o Antiseptic mouthwash use alone and combined with a high sodium diet will 

decrease salivary nitrate levels compared to baseline in prehypertensive adults 

in the Phoenix area. 

Definition of Terms 

• Hypertension: A state of abnormally high blood pressure, currently defined as a 

blood pressure higher than 130 (systolic) over 80 (diastolic) millimeters of 

mercury (mmHg) (American Heart Association [AHA], 2017).    

• Prehypertension: A state of elevated blood pressure ranging from 120-129 

(systolic) over greater than or equal to 80 (diastolic) millimeters of mercury 

(mmHg) and not currently on medications for blood pressure management (AHA, 

2017).   

• Nitrate (NO3-) / Nitrite (NO2-)/ Nitric Oxide (NO): Inorganic anions/signaling 

molecules involved in nitric oxide metabolism that influence a number of 

different physiological responses 

• Vasodilation: The dilation of blood vessels, which results in decreased blood 

pressure 

• Oral Microbiome: The collection of microorganisms that are found in the human 

oral cavity, which includes the lips, mucosa lining of the lips and cheeks, teeth, 

gums, mobile tongue, floor of the mouth below the tongue, and the hard palate or 

roof of the mouth  

Delimitations 

Participants who volunteered in this study were required to be healthy, non-

smoking adults over 30 years of age who have blood pressure greater than 120/80 mmHg 
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but are not currently taking blood pressure management medications. Also, those 

included had no recent antibiotic use, were not currently taking any other systemic 

medication other than a contraceptive pill and had no history or recent treatment of oral 

conditions such as gingivitis, periodontitis, or halitosis.   

Limitations 

• Subjects may not adhere to the prescribed mouthwash use or the dietary sodium 

intervention.  

• Self-reported dietary sodium intake may be inaccurate due to participant 

recording error.  
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CHAPTER 2 

REVIEW OF LITERATURE 

Hypertension has become one of the most important public health challenges in 

the United States (U.S.). According to the Centers for Disease Control and Prevention 

(CDC), 75 million Americans currently have high blood pressure (Fryar et al., 2017). 

This accounts for almost 30% of the population and approximately 1 in 3 adults. 

Additionally, hypertension has been strongly associated with the onset of various 

cardiovascular diseases and is one of the most crucial risk factors in the development of 

coronary artery disease, cerebrovascular disease, congestive heart failure, chronic kidney 

disease, and peripheral vascular disease (Institute of Medicine Committee on Public 

Health Priorities, 2010). As trends increase every year and the management of 

hypertension through pharmaceuticals continues to burden the lives of Americans, 

scientists have begun to discover a connection between the oral microbiome and blood 

pressure regulation. The oral microbiome and its role in nitric oxide homeostasis through 

the nitrate-nitrite-nitric oxide pathway has been linked to the management of 

hypertension (Bryan et al., 2017). The presence of such bacteria may play a role in the 

maintenance of normal blood pressure levels and serve as a potential therapeutic target 

for hypertension management (Bryan et al., 2017). More recently, it has been postulated 

that the elimination of oral bacteria through the use of antiseptic mouthwash products 

may be causing an increase in blood pressure (Bryan et al., 2017). Thus, the purpose of 

this four-week randomized, controlled, crossover trial is to examine the effects of using 

mouthwash on blood pressure and salivary nitrate levels. In order to support this study, 

topics that need to be explored include the cardiovascular mechanisms of hypertension, 
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the effects of dietary nitrates and nitric oxide on cardiovascular health, and the role of the 

oral microbiome in cardiovascular health management.  

HYPERTENSION 

Prevalence. According to the American Heart Association Guidelines published 

in 2017, hypertension is defined as having a systolic blood pressure equal to or greater 

than 130 mmHg and a diastolic blood pressure equal to or greater than 80 mmHg (AHA, 

2017). In 2014, the U.S. Department of Health and Human Services published data from 

the National Health and Nutrition Examination Survey (NHANES) that explored the 

prevalence and control of hypertension among adults in the United States. According to 

this survey, the total prevalence of hypertension among adults was 29% and continued to 

increase with age up to 64.9% in ages 60 and over (Fryar et al., 2017). There is 

substantial evidence in the literature supporting racial/ethnic, geographic, and 

socioeconomic disparities in the prevalence of hypertension in the U.S. adult population. 

Hypertension is lower among non-Hispanic white (28.0%), non-Hispanic Asian (24.9%), 

and Hispanic (25.9%) adults than in Hispanic black (41.2%) adults (Fryar et al., 2017). 

Over the last decade, the overall prevalence of hypertension has remained relatively 

unchanged, however, controlled hypertension has increased significantly to 53.0%, with 

adults aged 60 and over more likely to have controlled hypertension than adults aged 18 

to 39 (Fryar et al., 2017). Additionally, the prevalence of controlled hypertension was 

lower among non-Hispanic black (48.5%), non-Hispanic Asian (43.5%), and Hispanic 

(47.4%) adults and highest in non-Hispanic white (55.7%) adults (Fryar et al., 2017). 

Because hypertension significantly increases the risk of developing cardiovascular 

disease, a number of initiatives have been conceived to increase public awareness of the 
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importance of blood pressure control. One such initiative is Healthy People 2020, which 

aims to attain longer lives free of diseases that are preventable and often lead to 

premature death (Fryar et al., 2017). 

Healthy People 2020 Goals. Healthy People 2020 established hypertension goals 

for adults in the U.S. in an attempt to reduce the impact of hypertension on the risk for 

cardiovascular disease development. These goals include decreasing prevalence to 

26.9%, raising hypertension treatment to 69.5%, and raising hypertension control to 

61.2% (Egan, Li, Hutchison, & Ferdinand, 2014). Unfortunately, the feasibility of 

achieving these goals is questionable as the Healthy People 2010 goal of reducing 

hypertension prevalence to 16% was not achieved and higher hypertension control is not 

anticipated in the coming years (Egan et al., 2014). This is likely due to fewer resources 

and support for quality improvement in rural clinics and federally qualified health 

centers, as insurance and frequency of healthcare are among the strongest modifiable 

variables associated with untreated and uncontrolled hypertension (Egan et al., 2014).  

Etiology. Hypertension is often classified into one of two categories: essential 

high blood pressure or secondary high blood pressure. Essential hypertension refers to 

high blood pressure with no apparent cause and secondary hypertension refers to high 

blood pressure related to another health problem. Strong evidence suggests that 

hypertension is most often a result of an underlying condition, specific risk factors, or as 

a side effect to certain medications (AHA, 2017). Conditions commonly associated with 

high blood pressure include chronic kidney disease (CKD), diabetes, obstructive sleep 

apnea, hormonal imbalances (i.e. thyroid disorders, Cushing’s syndrome, 

hyperaldosteronism), and stress (AHA, 2017). Other risk factors include family history, 
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stiffening and narrowing of the arteries as a result of prolonged plaque build-up, 

race/ethnicity, overweight or obese weight status, alcohol and/or tobacco use, physical 

inactivity, and dietary sodium consumption. (AHA, 2017).   

Pathophysiology of Hypertension. The pathogenesis of essential hypertension is 

highly complex and involves the interaction and cooperation of multiple organ systems 

and biochemical pathways. Although there are many interrelated factors that may 

contribute to hypertension, those most commonly observed include dietary sodium 

intake, obesity, insulin resistance, the renin-angiotensin system, and the sympathetic 

nervous system (Beevers, 2001). Genetic predisposition may also be a contributing factor 

to the pathogenesis of hypertension (Beevers, 2001). 

Blood pressure is a product of cardiac output and total peripheral resistance to 

flow. Normal blood pressure maintenance depends upon controlled cardiac output and 

controlled peripheral resistance. Cardiac output refers to the amount of blood pumped by 

the heart through the circulatory system each minute and peripheral vascular resistance 

refers to the flow of blood in peripheral arterial blood vessels (Beevers, 2001). Peripheral 

vascular resistance is mediated by vasoconstrictors and vasodilators. Vasoconstrictors are 

compounds that facilitate the contraction and subsequent narrowing of the muscular wall 

of the blood vessels, and vasodilators are compounds that facilitate the dilation and 

subsequent widening of the muscular wall of blood vessels. Common vasoconstrictors 

include endothelin [ET], angiotensin II [Ang II], and catecholamines (Foëx & Sear, 

2004). Common vasodilators include nitric oxide [NO], prostaglandins, and kinins (Foëx 

& Sear, 2004).  
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Essential hypertension is usually caused by an imbalance in cardiac output and 

controlled peripheral resistance, most often as a result of normal cardiac output and 

increased peripheral vascular resistance (Beevers, 2001). However, it can result from 

both increased cardiac output and peripheral vascular resistance (Foëx & Sear, 2004). 

Dietary Sodium Intake. Development of hypertension is largely determined by 

the quality of dietary intake. Therefore, nutritional intervention is warranted as a valid 

preventive strategy against the spread of hypertension. The effects of nutrients and foods 

on hypertension risk are well established, specifically with regards to dietary sodium 

intake. Sodium is a key nutrient that plays specific physiological roles, such as muscle 

contraction, fluid balance, and proper nerve conduction. However, sodium consumed in 

excess can result in poor cardiovascular outcomes. Excessive dietary sodium intake is 

acknowledged as a major risk factor for numerous cardiovascular pathologies including 

chronic kidney disease, cerebrovascular accidents, and most notably hypertension. This 

section will briefly review evidence that links excess sodium consumption with 

hypertension and cardiovascular disease.  

In 2018, Dolmatova et al. explored the relationship between dietary sodium intake 

and hypertension among U.S. adults using NHANES data from 1999-2012. During this 

time, sodium intake was measured using 24-hour dietary recalls and was compared to 

adults greater than 20 years old who self-reported a diagnosis of hypertension. Over the 

13-year study period, it was observed that sodium consumption increased 14.2% among 

adults with hypertension and was most notable among Hispanic and African-American 

study participants (Dolmatova, Moazzami, & Bansilal, 2018). It was concluded that 

sodium intake increased significantly among those with hypertension and aggressive 
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approaches to reduce our national sodium consumption is needed. (Dolmatova et al., 

2018).  

Increased dietary sodium intake has been significantly associated with increased 

central systolic blood pressure and aortic stiffness in young and middle-aged adults, as 

shown in a 2017 study by Muth et al. This controlled feeding cross-over study included 

85 normotensive adults that received a 7-day low sodium diet intervention and 7-day high 

sodium diet intervention to assess effects of sodium intake on blood pressure and arterial 

stiffness. Findings indicated a significant increase in central systolic blood pressure in 

both the young and middle-aged groups after the high sodium diet intervention and 

increased forward and reflected wave amplitudes in the middle-aged group (Muth, Brian, 

Chirinos, Lennon, Farquhar, & Edwards, 2017). It was concluded that systolic blood 

pressure can be significantly impacted by increased levels of sodium consumption, 

specifically in adults 41-60 years of age (Muth et al., 2017).  

Reduced dietary sodium intake, particularly in conjunction with a diet high in 

fruits, vegetables, and low-fat dairy products, has been linked to a decrease in blood 

pressure. The Dietary Approaches to Stop Hypertension (DASH) diet was designed to 

treat and prevent the onset of hypertension through the consumption of nutrient-rich 

foods. The New England Journal of Medicine published a large study in 2001 that 

observed the effects of the standard American diet versus the DASH diet in 412 

participants. Findings indicated a significantly lower systolic blood pressure in those 

following the DASH diet, with a mean systolic blood pressure approximately 7.1 mmHg 

lower in participants without hypertension and 11.5 mmHg lower in participants with 

hypertension (Sacks et al., 2001). Researchers concluded that reduction of sodium intake 
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and DASH diet adherence lowers blood pressure substantially, with greater effects when 

adhered to in combination (Sacks et al., 2001).  

Obesity. Epidemiological data indicates a strong relationship between obesity and 

hypertension. In combination, they are associated with high morbidity and high mortality 

rates. Prevalence of high blood pressure among obese people is greater than 60%, and 

accounts for 78% of incident hypertension in men and 64% in women (Demarco, Aroor, 

& Sowers, 2014). Hypertension prevalence also increases with BMI and is displayed in 

both men and women (Demarco et al., 2014). Progression from a state of normal blood 

pressure to one of hypertension is likely due to a combination of lifestyle, environmental, 

dietary, and genetic factors. However, the link between increased blood pressure with 

obesity is largely associated with excess weight gain. It is estimated that for every 5% 

increment in weight gain, the risk of developing high blood pressure increases between 

20-30% (Demarco et al., 2014). An excess of visceral adipose tissue commonly seen in 

obese patients can lead to insulin and leptin resistance, which has also been associated 

with an increased risk for hypertension development and will be discussed further below.   

Insulin Resistance. Metabolic abnormalities often co-exist with hypertension 

development. One such abnormality is insulin resistance, which can be defined as the 

inability of insulin to properly regulate glucose uptake and utilization by our cells. Insulin 

resistance typically precedes hypertension and decreases in arterial wall elasticity have 

been observed in patients who are insulin resistant (Wang, Han, & Hu, 2017).  

The state of glucose metabolism is reflected from fasting insulin concentrations, 

and hyperinsulinemia is often used as a biomarker of insulin resistance. In a meta-

analysis involving 10,230 patients with hypertension identified from a total pool of 
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55,059 patients, Wang et al. observed the relationship between insulin resistance and risk 

of hypertension. Findings from this meta-analysis suggest that fasting insulin 

concentrations and insulin resistance is associated with an increased risk of high blood 

pressure in the general population (Wang et al., 2017). It was concluded that early 

intervention of insulin resistance may serve as a tool in identifying patients at high risk 

for hypertension development (Wang et al., 2017).  

Renin-Angiotensin System. The renin-angiotensin system (RAS) serves as a 

feedback mechanism that regulates sodium balance and extracellular fluid volume. Renin 

is a hormone responsible for converting angiotensinogen to angiotensin I (Ang I). Ang I 

is rapidly converted to Ang II, a vasoconstrictor mentioned previously that promotes 

blood vessel constriction and a subsequent increase in blood pressure (Yim & Yoo, 

2008). Ang I is converted to Ang II by angiotensin converting enzyme (ACE). Ang II 

also stimulates the release of aldosterone, a hormone secreted from the adrenal glands 

that promote sodium and water retention (Yim & Yoo, 2008). Ang II and aldosterone 

work in combination to raise blood pressure. Inappropriate activation of RAS serves as an 

essential mechanism for development of hypertension, and introducing an anti-RAS 

regimen is often used as a therapeutic technique to lower blood pressure (Yim & Yoo, 

2008). This class of medications is known as the ACE inhibitors, with examples 

including enalapril, lisinopril, and ramipril (Yang & Xu, 2017).  

Sympathetic Nervous System. The sympathetic nervous system (SNS) also plays 

an important role in maintaining normal blood pressure. When the SNS is activated, it 

can cause arteriolar constriction and arteriolar dilation that leads to short-term alterations 

in blood pressure levels (Beevers, 2001). This usually occurs in response to physical 
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activity or increased stress levels. It remains unclear if the release of epinephrine and 

norepinephrine during this response plays a role in essential hypertension development, 

however medications that hinder the SNS response have been shown to provide 

therapeutic effects in lowering blood pressure (Beevers, 2001).  

Lifestyle Modifications and Pharmacotherapies. Hypertension is currently 

managed through lifestyle changes and medications. Lifestyle changes that are often 

recommended include following the DASH diet, decreasing sodium consumption, 

maintaining a healthy weight, maintaining a regular physical activity regimen, and 

limiting or eliminating alcohol and tobacco use (AHA, 2017). 

 Medications approved to treat hypertension fall into the following categories: 

thiazide diuretics, ACE inhibitors, Angiotensin II receptor blockers (ARBs), and calcium 

channel blockers. Thiazide diuretics act on the kidneys to stimulate sodium and water 

elimination by inhibiting reabsorption of sodium and chloride ions, which subsequently 

reduces blood volume (Musini, Gueyffier, Puil, Salzwedel, & Wright, 2017). ACE 

inhibitors, as mentioned previously, block the conversion of Ang I to Ang II, thereby 

relaxing blood vessels through decreased cardiac output and blood vessel resistance 

(Musini et al., 2017). ARBs block the activation of Ang II after it has already been 

formed, which reduces production and secretion of aldosterone and causes vasodilation 

(Musini et al., 2017). Calcium channel blockers relax muscle cells of the blood vessels by 

reducing the contraction force of the heart and reducing aldosterone production, which 

also causes vasodilation (Musini et al., 2017).  

Hypertension in Developing Countries. Hypertension continues to be a 

significant burden on populations around the world. Data from various national surveys 
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now supports the finding that there has been a considerable increase in cardiovascular 

disease globally, with hypertension being the most common (Tibazarwa & Damasceno, 

2014). It is likely that the increasing prevalence of hypertension is due to increased 

urbanization, leading to a shift to poor dietary habits and increased social stress levels 

(Ibrahim, 2018). In addition to urbanization, developing countries have a number of other 

risk factors associated with hypertension including high rates of illiteracy, poverty, poor 

dietary choices, poor access to adequate healthcare, and high costs of pharmaceuticals 

(Ibrahim, 2018). Additionally, priority is often given to more acute illnesses, prevention 

of dangerous infectious diseases, and maternal and fetal health rather than to the 

prevention of chronic disease development (Ibrahim, 2018). While hypertension 

prevalence was almost unfounded among developing countries in 1940, it is now 

estimated that most of the global burden of hypertension occurs in developing countries 

that account for over 80% of the world’s population (Ibrahim, 2018). It is essential in the 

coming decades that governments, along with the appropriate outreach organizations, 

work to provide preventive programs aimed at educating the public about modifiable risk 

factors for hypertension. According to a study published in the Journal of Hypertension 

in 2009 that aimed to review the quantitative differences in hypertension prevalence and 

treatment of hypertension in developed versus developing countries, scientists found that 

the prevalence, treatment, and control of hypertension in developing countries are now 

comparable to that of developed countries (Pereira, Lunet, Azevedo, & Barros, 2009). 

Unfortunately, it is expected that prevalence of hypertension in developed countries will 

decrease with a simultaneous increase in hypertension prevalence in developing countries 

in the coming years (Pereira et al., 2009). 
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NITRIC OXIDE 

History and Discovery. Nitric oxide (NO) was first discovered in 1772 by Joseph 

Priestly as a simple and colorless gas consisting of one oxygen atom and one nitrogen 

atom (Yetik-Anacak & Catravas, 2006). In the 1980’s, scientists began to investigate the 

mechanism of blood vessel dilation as a method of blood pressure control. While Robert 

Furchgott was studying the effects of acetylcholine on vasodilation, he discovered that 

blood vessel relaxation only occurred in the presence of endothelium-derived relaxing 

factor (EDRF) when the endothelium was intact (Furchgott & Zawadzki, 1980). EDRF, 

which promotes smooth muscle cell relaxation, was later proved to be NO (Yetik-Anacak 

& Catravas, 2006). This discovery revolutionized cardiovascular biology and provided 

new potential strategies for blood pressure management. 

Function. NO is a signaling molecule that is involved in many physiological 

processes. It plays a pivotal role in the regulation of blood flow through the blood vessels 

and regulation of the cardiovascular system. Although NO also plays essential roles in 

maintaining healthy immune and nervous systems, this section will focus on NO’s 

involvement in the vasculature.  

 There are three layers that make up the components of the vascular wall of blood 

vessels: the internal layer of endothelial cells, the medial layer composed of vascular 

smooth muscle cells, and the tunica externa, also called the adventitia (Zhao, Vanhoutte, 

& Leung, 2015). The intimal layer of endothelial cells lines the interior surface of all 

blood vessels and is the primary barrier between blood flowing through the vessel’s 

lumen and other tissues (Zhao et al., 2015). The endothelium releases endothelium-

derived NO, which plays a critical role in regulating blood vessel diameter (Zhao et al., 
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2015). The medial layer of smooth muscle cells functions to regulate the constriction and 

dilation of the vasculature through mechanical or pharmacological stimulates (Zhao et al., 

2015). The external adventitia functions to maintain cellular adherence to the surrounding 

tissues and provide a means of signal trafficking between the blood vessel and the 

surrounding organ (Zhao et al., 2015).  

 Within the blood vessel wall, NO is produced primarily through the endothelial 

nitric oxide synthase (eNOS) pathway, which will be discussed in detail in the next 

section. NO’s primary role of vascular homeostasis and vasodilation is facilitated by its 

continuous low-level release from the endothelium (Bondonno, Croft, & Hodgson, 2016). 

This release of NO diffuses into the underlying smooth muscle cells, activating guanylate 

cyclase (sGC) that catalyzes the conversion of guanosine triphosphate into cyclic 

guanosine monophosphate (cGMP) (Bondonno et al., 2016). cGMP activates protein 

kinase G (PKG) and phosphorylates various downstream cellular targets that lower 

calcium concentrations, thereby promoting vascular relaxation and vasodilation 

(Bondonno et al., 2016). Decreased production and bioavailability of NO can result in 

different cardiovascular pathologies, most notably hypertension and atherosclerosis 

(Bondonno et al., 2016). In addition to vasodilation and maintenance of vascular tone, 

NO also inhibits proliferation and migration of smooth muscle cells, enhances endothelial 

cell proliferation, suppresses platelet aggregation, and prevents adhesion of leukocytes 

and monocytes to the endothelium (Lei, Vodovotz, Tzeng, & Billiar, 2013).    

Production Pathways. There are two primary pathways that exist to produce NO 

that impact vasculature regulation. These pathways include the classical endothelial nitric 

oxide synthase (eNOS) pathway in which NO is produced from L-arginine and the more 
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recently discovered nitrate-nitrite-nitric oxide pathway as a method of enterosalivary 

nitrate metabolism.  

 eNOS is expressed in the endothelial cells in order to maintain blood vessel 

dilation, control blood pressure, and exert vasoprotective effects on the vascular wall. 

This isoform of NOS is primarily responsible for the production of NO that regulates 

vascular function (Zhao et al., 2015). L-arginine is the most well-known substrate for 

NOS and requires several co-factors in order to catalyze NO production, these including 

tetrahydrobiopterin (BH4), flavin mononucleotide, flavin adenine dinucleotide, 

calmodulin, and heme (Zhao et al., 2015). The NOS-catalyzed reaction from L-arginine 

to NO is found below:  

 

2 L-arginine + 3 NADPH + 3H+ + 4O2  ® 2 citrulline + 2NO + 4H2O + 3NADP+ 

 

eNOS can be initiated in both calcium-dependent and calcium-independent 

mechanisms, which are activated by a variety of different stimuli such as shear stress, 

acetylcholine, bradykinin, and histamine (Zhao et al., 2015). Acetylcholine, bradykinin, 

and histamine are all agonists that increase calcium concentration within the cell, which 

binds to calmodulin to promote electron flux from the reductase domain of the enzyme to 

the oxygenase domain to produce NO (Zhao et al., 2015). eNOS can also be 

phosphorylated without an increase in calcium concentration, which facilitates the same 

electron flux from the reductase to oxygenase domain (Zhao et al., 2015).  
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Figure 1. Endothelial Nitric Oxide Synthase Activation (Zhao et al., 2015) 
 

This pathway can decline with age as the enzyme becomes less functional over time. A 

decrease in functionality can also occur due to physical inactivity, tobacco use, and poor 

diet (Zhao et al., 2015).   

Polymorphisms in the eNOS gene do exist, and can influence regulation of blood 

pressure, vasodilation, and vascular tone. A recent meta-analysis consisting of over 

63,000 subjects explored the correlation between the G894T and T-786C eNOS single 

nucleotide polymorphisms (SNP) that have previously been associated with an increased 

risk for hypertension (Xie, Shi, Xun, & Rao, 2017). Findings from the study suggest that 

the G894T and T-786C SNPs had a significant correlation with an increased risk for 

hypertension, especially for essential hypertension and gestational hypertension (Xie et 

al., 2017).  
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 The other pathway is the enterosalivary nitrate-nitrite-nitric oxide pathway, which 

is more recently discovered and is dependent on oral nitrate-reducing bacteria. It was 

previously believed that nitrate and nitrite were inert end-products of NO derived from 

the eNOS pathway, however inorganic dietary nitrate and nitrite consumption is now 

considered to be another significant origin of exogenous NO that is bioavailable and can 

participate in various vasoactive signaling processes (Koch, Gladwin, Freeman, 

Lundberg, Weitzberg, & Morris, 2017). Nitrate from dietary sources requires an initial 

reduction to nitrate by a nitrate reductase enzyme that mammals do not produce on their 

own (Bryan et al., 2017). In the oral cavity, commensal facultative anaerobic bacteria 

serially reduce dietary nitrate to nitrite and NO, which provides the human host with 

bioactive form of NO that can be used downstream for vasodilation and blood vessel 

relaxation (Bryan et al., 2017). This bacterial nitrate reduction pathway will be discussed 

in further detail below. 

Dietary Nitrate Sources. Over recent years, dietary nitrate consumption has 

become increasingly popular due to its effects on blood vessel dilation and exercise 

performance through the nitrate-nitrite-nitric oxide pathway (Lidder & Webb, 2013). 

Current known benefits of dietary nitrate consumption include a reduction in blood 

pressure, platelet aggregation inhibition, preservation of adequate endothelial function, 

and enhanced exercise performance in already healthy individuals (Jones, 2014). Newer 

studies are also beginning to reflect reduction in arterial stiffness, inflammation, and 

intimal thickness, as well as protection against ischemia-reperfusion injury as further 

benefits of dietary nitrate consumption (Lidder & Webb, 2013). Dietary nitrates are found 

to be particularly high in the Mediterranean and Japanese traditional cuisine, which 
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include high amounts of green leafy vegetables (Lidder & Webb, 2013). The 

consumption of lettuce, spinach, and other green leafy vegetables has been associated 

with a reduction in myocardial infarction incidence, coronary heart disease, and stroke 

(Lidder & Webb, 2013).  

 It is currently estimated that 85% of dietary nitrate consumed comes from 

vegetables and the remaining 15% comes from our drinking water (Lidder & Webb, 

2013). Vegetables with the highest nitrate content include spinach, lettuce, radish, 

beetroot, and Chinese cabbage (Lidder & Webb, 2013). The nitrate content of vegetables 

can be largely influenced by environmental/agricultural factors such as humidity, 

temperature, sunlight exposure, water content during growth, nitrogen fertilization and 

fixation, and genetic factors such as nitrate reductase activity (Lidder & Webb, 2013). 

This section will explore the substantial evidence in the literature that indicates dietary 

nitrate consumption exhibits protective cardiovascular effects.  

 McDonagh et al. observed the effects of dietary inorganic nitrate supplementation 

on nitrate metabolism and subsequent blood pressure response in ten healthy 

normotensive adults. All subjects consumed equal doses of nitrate from concentrated 

beetroot juice, non-concentrated beetroot juice, a solid beetroot flapjack, a soluble 

beetroot crystal drink, and a control drink. Blood pressure, salivary nitrate/nitrite levels, 

and urinary nitrate/nitrite levels were measured before and after ingestion at various time 

increments. Results indicated that the concentrated beetroot juice was most effective in 

reducing blood pressure, however all conditions achieved elevated plasma nitrite 

concentrations (McDonagh, Wylie, Webster, Vanhatalo, & Jones, 2018).  
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 In a 2012 double-blind, randomized, crossover study by Kelly et al., effects of 

short-term dietary nitrate supplementation in older adults on blood pressure, O2 uptake 

kinetics, muscle function, and cognitive function was studied. The study included 12 

healthy, older adults that consumed either a nitrate-rich concentrated beetroot juice or a 

nitrate-depleted beetroot juice placebo for a total of 3 days. Blood pressure and plasma 

nitrite levels were measured before and after the intervention. Plasma nitrite levels were 

significantly increased after nitrate supplementation, and systolic and diastolic blood 

pressure were both significantly reduced (Kelly et al., 2012). There was also a speeding 

effect of nitrate supplementation on VO2 response time (Kelly et al., 2012). Findings 

from this study suggest that dietary nitrate can reduce blood pressure and improve 

oxygen uptake kinetics in healthy older adults.  

 Liu et al. explored the relationship between dietary nitrate consumption and 

arterial stiffness and blood pressure in 26 healthy adults aged 38-69 in a randomized 

controlled crossover trial. Two energy-matched meals were given to the subjects in 

random order that contained high levels of nitrates from spinach or low nitrates as a 

control meal. There was a significant increase in salivary nitrate and nitrite 

concentrations after the spinach meal (Liu et al., 2013). Additionally, significant results 

for higher artery elasticity, lower systolic blood pressure, and lower pulse pressure were 

observed after the spinach meal (Liu et al., 2013).  

 In 2016, Jonvik et al. assessed the impact of different nitrate-rich vegetables on 

blood pressure and plasma nitrate/nitrite concentrations in healthy adults. Using a semi-

randomized crossover design, this study included 18 participants that consumed different 

beverages that contained equal concentrations of nitrates: beetroot juice, an arugula salad 
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beverage, and a spinach juice. Increases in plasma nitrate and nitrite concentrations and 

reductions in blood pressure were observed after consumption of all beverages, indicating 

that ingestion of various nitrate-rich vegetables can all be effective in improving 

cardiovascular health (Jonvik, Nyakayiru, Pinackers, Senden, JC van Loon, Verdijk, 

2016).  

 Kapil et al. observed the blood pressure lowering effects of dietary nitrate in 

hypertensive patients in a randomized, double-blind, placebo-controlled study in 2015 as 

a follow-up to a study that demonstrated reductions in blood pressure after single dose 

dietary inorganic nitrate administrations in normotensive healthy volunteers. This study 

included 68 hypertensive adults that received daily nitrate supplementation in the form of 

beetroot juice or a placebo drink given as a nitrate-free beetroot juice. Clinic, ambulatory, 

and home blood pressure recordings were taken to assess changes in the nitrate group 

compared to placebo. Findings indicated an average blood pressure reduction of 7.7/2.4 

mmHg in the clinic, 7.7/5.2 mmHg ambulatory, and 8.1/3.8 mmHg at home (Kapil, 

Khambata, Robertson, Caulfield, Ahluwalia, 2015). Additionally, arterial stiffness was 

reduced by an average of 0.59 m/s and endothelial function was improved by 20% in the 

nitrate group (Kapil et al., 2015). This provided some of the first evidence of positive 

cardiovascular effects after dietary nitrate supplementation in a hypertensive population.  

 This trend was observed again in a 7-day, double-blind, randomized, placebo-

controlled, crossover trial by Kerly et al. in 2018. In this study, all subjects had treated, 

uncontrolled hypertension. Participants also received either a nitrate-rich beetroot juice or 

a nitrate-depleted beetroot juice for a total of 7 days, with ambulatory blood pressure 

taken before and after each condition. The nitrate group demonstrated significantly 



  24 

increased plasma nitrite concentrations and significantly decreased 24-hour systolic and 

diastolic blood pressure compared to the placebo group (Kerley, Dolan, James, & 

Cormican, 2018). This data supported the existing evidence that dietary nitrate 

supplementation can induce an anti-hypertensive effect in patients with uncontrolled 

hypertension.  

 In another randomized, placebo-controlled, crossover study, Raubenheimer et al. 

investigated the effects of a nitrate-rich beetroot juice versus a nitrate-depleted beetroot 

juice on blood pressure, hemostasis, and vascular inflammation markers in 12 healthy 

older adults between 51-71 years. As in previous studies, significant increases in plasma 

nitrate/nitrites and significant decreases in systolic and diastolic arterial blood pressure 

were observed in the nitrate group (Raubenheimer et al., 2017). In this study, blood 

coagulation and vascular inflammation markers were also observed after the intervention 

and found reduced blood monocyte-platelet aggregation, reduced CD11b-expressing 

granulocytes, and slightly increased numbers of CD14++ and CD16+ monocytes after the 

nitrate-rich beetroot juice consumption (Raubenheimer et al., 2017). These findings 

suggest that dietary nitrate supplementation may also have an effect on platelets and 

various immune cells that result in decreased vascular inflammation (Raubenheimer et 

al., 2017).  

 It is important to note the distinction between plant-based and animal-based 

nitrates. Recent evidence has suggested that dietary nitrate consumption from processed 

meats has been linked to an increased risk for heart disease and various cancers of the 

digestive tract while nitrate-rich vegetables have been linked to improved cardiovascular 
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functioning (Bedale, Sindelar, Milkowski, 2016). These opposing views have sparked 

controversy regarding the perceived health benefits of increased nitrate consumption. 

 Nitrates and nitrites are commonly added to cured and processed meats such as 

bacon, salami, sausages, and other sandwich meats as a preservative. This is done in an 

effort to halt bacterial growth and maintain the freshness of food (Gassara, Kouassi, Brar, 

& Belkacemi, 2015). In contrast, leafy green vegetables are naturally high in nitrates. 

Dietary nitrate sources are reduced to nitrites by commensal bacteria that exist as part of 

the oral microbiome. These nitrites travel to the stomach, where they can then be 

converted into bioavailable NO or combine with secondary and tertiary amines to 

produce N-nitroso compounds (Gassara et al., 2015). These N-nitroso derivatives have 

further been linked to a wide range of cancers, thus indicating a potential harmful effect 

of nitrate consumption (Gassara et al., 2015). It is believed that dietary nitrate from plant 

sources contributes significantly to NO formation, whereas dietary nitrate from animal 

sources can combine with proteins and heme present in meat, leading to higher 

production rates of N-nitroso derivatives (Bedale et al., 2016).  

ORAL MICROBIOME 

Complexity of Microbial Composition. The oral microbiome is extremely 

complex and is comprised of various colonies of bacterial species that reside on our teeth, 

tongue, cheeks, tonsils, and other physical structures of the mouth. The human 

microbiome has received significant attention in recent times, however the focus has 

remained largely on gastrointestinal microbiota. Evidence continues to emerge regarding 

the composition of the oral microbiome and its role in human health.  
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Microbe discovery began in the 1700s, however oral bacteria first became 

apparent when Antonie van Leeuwenhoek examined dental plaque through a microscope 

and identified the first microorganisms of the mouth (Gao, Xu, Huang, Jiang, Gu, & 

Chen, 2018). With technological advances in microscopy, knowledge on the oral 

microbiome has significantly expanded and oral microorganisms have been found to 

colonize a variety of habitats within the oral cavity. The average adult oral cavity 

contains between 50 to 100 billion bacteria, contributing to an approximate 700 

predominant oral bacterial species (Krishnan, Chen, & Paster, 2017). This estimation 

comes largely from culture-independent molecular studies, and the majority of oral 

bacterial taxa have not yet been grown in vivo (Krishnan et al., 2017).  

The oral microbiome is especially unique because the bacteria are easily 

accessible and understanding their interactions with microbiomes in other locations of the 

body can expand upon existing data that supports it role in health improvement. The oral 

microbiome has been known to influence various factors associated with human health 

and can be influenced by time, age, diet, and extreme environmental exposure. Several 

studies discussed below elaborate on these factors.  

In 2014, Costello et al. examined the variation in bacterial communities in 

different bodily habitats across space and time. The researchers surveyed bacteria from 

27 different sites in 9 healthy adults across four different time periods. It was determined 

that bacteria are personalized, and that compositional variation is systematic across 

different habitats within the body (Costello, Lauber, Hamady, Fierer, Gordon, & Knight, 

2009). These patterns suggest there are a variety of implications for medical practice, in 



  27 

both therapies and preventive strategies, related to the functions of habitat-specific 

microbial species. (Costello et al., 2009). 

Bacterial colonies have also been shown to be quite diverse among different age 

groups. In a comparative study of oral bacterial composition from healthy females 

selected at ages 8, 28, and 56, it was determined that colonization of specific bacterial 

species differed in different age groups (Anukan & Agbakoba, 2017). This study revealed 

that varying bacterial organisms may be associated with health and disease across the 

lifespan (Anukan & Agbakoba, 2017).  

Lassalle et al. explored the relationship between commensal bacterial balance and 

pathogen load linked to diet in a population of hunter-gatherers and traditional farmers. 

Saliva samples were obtained from three different hunter-gatherer and farmer populations 

from different communities. Findings revealed that transitions in diet from different 

communities are likely a contributing factor to the emergence of oral pathogens that play 

a role in certain disease states (Lassalle et al., 2017).  

In 1976, Brown et al. observed the effects of extreme environmental influence on 

intraoral microbial populations. Oral health factors were assessed from Skylab mission 

crew members before and after their flights. Pre-flight and post-flight samples of 

microbial populations indicated that specific anaerobic microflora (Streptococci, 

Neisseria, Lactobacilli, and Enteric bacilli) all demonstrated significant elevations, 

suggesting that extreme environment exposure can influence microbial populations 

within the oral cavity (Brown et al., 2976).  

Oral microbial dysbiosis has also been linked to a number of whole-body 

systematic diseases. Because the oral cavity serves as the initial point of entry to the rest 
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of the gastrointestinal and respiratory tract, it has been associated with a number of 

gastrointestinal diseases including inflammatory bowel disease, liver cirrhosis, and 

various gastrointestinal cancers (Gao et al., 2018). There is also emerging evidence that 

links oral microbiomes to the health of the nervous system, with connections to 

Alzheimer’s disease risk and other forms of dementia (Gao et al., 2018). Endocrine 

system diseases such as diabetes, polycystic ovary syndrome (PCOS), complications due 

to infertility, obesity, chronic low-grade inflammation, and insulin resistance have also 

been shown to be correlated to significant shifts in oral bacterial composition (Gao et al., 

2018). Additionally, the oral microbiome is strongly linked to a variety of immunity 

functions and has been implicated in disorders such as rheumatoid arthritis and human 

immunodeficiency virus (HIV) (Gao et al., 2018). Although there is evidence to support 

the role of the oral microbiome in a variety of physiological systems, the primary interest 

of the oral microbiome in the following sections will be its implications to the 

cardiovascular system.  

Bacterial Nitrate Reduction. One specific function of oral bacteria is to facilitate 

the conversion of dietary nitrate to nitrite in the mouth, a component of the nitrate-nitrite-

nitric oxide pathway that has recently gained substantial recognition in the literature for 

its importance in cardiovascular health maintenance. Though the classical nitric oxide 

synthase/L-arginine pathway has been traditionally viewed as the primary method of NO 

production for the purpose of regulating blood flow and blood vessel dilation, studies are 

now showing that dietary nitrate consumption can be converted into nitrite by oral 

bacteria that is later reduced to a bioavailable form of NO (Bryan et al., 2017). This 

bacterial reduction through the nitrate-nitrite-nitric oxide pathway further facilitates 
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vasodilation and subsequent reductions in both systolic and diastolic blood pressure 

(Bryan et al., 2017).  

 In order for nitrate consumed through the diet to become bioavailable, it must first 

be reduced to nitrite and later reduced to NO. Humans lack the specific reductase 

enzymes capable of catalyzing this reduction (Bryan et al., 2017). Instead, this process is 

performed by facultative anaerobic bacteria present in the saliva (Bryan et al., 2017). 

Although almost 75% of nitrate ends up being excreted in the urine, there is still 25% that 

remains concentrated in saliva that can be reduced by the commensal bacteria colonizing 

the oral cavity (Lundberg, Weitzberg, & Gladwin, 2008). Salivary nitrate is reduced to 

nitrite through a two-electron reduction by nitrate reductase enzymes that occurs during 

anaerobic respiration of facultative anaerobic bacteria in the oral cavity (Bryan et al., 

2017). This process is detailed in the figure below:  

 

 

 

  

 

 

 

 

 

 

Figure 2. Bacterial Reduction of Nitrate (Bryan et al., 2017) 
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 Analysis of bacterial communities from samples of tongue scrapings have 

identified 14 bacterial species with the highest rates of nitrate reduction activities: 

Granulicatella adiacens, Haemophilus parainfluenzae, Actinomyces odontolyticus, 

Actinomyces viscosus, Actinomyces oris, Neisseria flavescens, Neisseria mucosa, 

Neisseria sicca, Neisseria subflava, Prevotella melaninogenica, Prevotella salivae, 

Veillonella dispar, Veillonella parvula, and Veillonella atypica (Bryan et al., 2017). Of 

these species, Veillonella species from the tongue scraping samples were found to have 

the highest nitrate reducing effects (Bryan et al., 2017).  

Eradication of Nitrate-Reducing Bacteria through Mouthwash Use. The 

cardiovascular protective effects of nitrate consumption and the method by which dietary 

nitrate is converted to a bioactive form of NO has been discussed in detail. NO 

homeostasis achieved through increased dietary nitrate consumption has been linked to 

reductions in blood pressure, vascular immunity, and vascular regeneration in healthy and 

hypertensive adults. However, the absence of commensal oral bacteria that facilitate 

nitrate reduction to NO may eliminate these beneficial effects. The eradication of these 

bacteria through mouthwash use may hinder the nitrate-nitrite-nitric oxide pathway and 

result in increased blood pressure. Therefore, reconsidering mouthwash use may be a 

potential therapeutic target in the efforts toward reducing the exceedingly high rates of 

hypertension. This section will present findings from the limited research available 

regarding mouthwash use and vascular health.  

 In 2009, Petersson et al. observed that gastroprotective and blood pressure 

lowering effects of dietary nitrate consumption were abolished when treating animal 

models with an antiseptic mouthwash. In this study, rats were given nitrate-supplemented 
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drinking water and were sprayed twice daily with a commercial antiseptic mouthwash. 

Rats sprayed with the antiseptic mouthwash displayed a drastic reduction in viable 

nitrate-reducing oral bacteria and had significantly less circulating NO levels (Petersson 

et al., 2009). Additionally, decreases in blood pressure that were seen previously with 

nitrate supplementation were absent in the mouthwash-treated rats (Petersson et al., 

2009). These results suggested that antiseptic mouthwash use may interrupt the effects of 

dietary nitrate consumption and thus cause an increase in blood pressure (Petersson et al., 

2009).  

 A similar study by Woessner et al. was performed in humans in 2015 in which 

resting blood pressure, plasma nitrate concentrations, and salivary nitrate concentrations 

were observed in normotensive adults using increasing strengths of mouthwash after a 

dietary nitrate load. Commercially available mouthwashes (Listerine, Cepacol, and 

Chlorhexidine) were compared to a control (water). This study included 12 normotensive 

healthy males that consumed nitrate-rich beet juice, and then gargled with the assigned 

mouthwash 15 minutes later. Concentration measures were then observed every hour for 

4 hours. Plasma and salivary nitrate levels increased above baseline after consumption of 

the beetroot juice, however mouthwash treatment appeared to inhibit the effect of the 

nitrate-nitrite-nitric oxide pathway and revealed subsequent responses in resting blood 

pressure (Woessner, Smoliga, Tarzia, Stabler, Bruggen, & Allen, 2016). The stronger 

mouthwashes (Chlorhexidine and Cepacol) showed significant inhibition of plasma and 

saliva nitrate concentration rise and led to higher systolic blood pressure readings 

(Woessner et al., 2016). This study demonstrated the significant role of the nitrate-nitrite-
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nitric oxide enterosalivary pathway and the capability of antiseptic mouthwash to hinder 

its blood pressure lowering effects.  

 Bondonno et al. observed the effects of antibacterial mouthwash use on oral 

nitrate reduction and blood pressure in a population of hypertensive adults. In this study, 

15 hypertensive men and women with a mean age of 65 years participated in a 3-day 

crossover trial in which they were instructed to use an antibacterial mouthwash followed 

by measures of salivary nitrate, salivary nitrite, plasma nitrite, and blood pressure. 

Compared to the control group, significant decreases in oral nitrate to nitrite reduction 

and salivary nitrite levels were observed (Bondonno et al., 2015). Additionally, 

significant increases in systolic blood pressure were seen at an average of 2.3 mmHg but 

changes in diastolic blood pressure were not observed (Bondonno et al., 2015). Findings 

suggest that interrupting the nitrate-nitrite-nitric oxide pathway through mouthwash use 

was associated with a small increase in blood pressure in a population of hypertensive 

adults (Bondonno et al., 2015).  

 In 2017, Mitsui and Harasawa observed the effects of other antibacterial 

treatments in addition to mouthwash on salivary nitrate concentrations and the nitrate-

reducing capacity of oral bacteria. This study involved 12 participants that mouth-washed 

with an essential oil blend, povidone-iodine, 0.0025% chlorhexidine, or water as a 

control. After mouth washing, participants consumed 110 mg of nitrates by eating 100 g 

of lettuce. Saliva collections were taken at 1, 5, and 10-hour intervals to assess bacterial 

species present and salivary nitrate concentrations. Results indicated that the essential oil, 

povidone-iodine, and water treatments had little effect on nitrate concentration, however 
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Veillonella dispar populations were significantly inhibited following the chlorhexidine 

wash (Mitsui & Harasawa, 2017).  

 Sundqvist et al. examined the effects of antiseptic mouthwash use on oral 

bacterial nitrate conversion to nitrite, resting metabolic rate, plasma nitrite, and blood 

pressure in a 2016 randomized, double-blind, crossover study. In this study, the sample 

was comprised of 17 female participants who were healthy and normotensive, with a 

mean age of 23 years. Participants received two separate 3-day interventions in which 

they consumed a low-nitrate diet and rinsed daily with either a chlorhexidine mouthwash 

or a placebo mouthwash. 24-hour ambulatory blood pressure was measured along with 

blood, urine, and saliva samples after each intervention. Results indicated that the 

chlorhexidine treatment reduced oral nitrate to nitrite conversion but exhibited no 

significant effects on resting metabolic rate or blood pressure (Sundqvist, Lundberg, & 

Weitzberg, 2016). It was concluded that mouthwash use, although effective in decreasing 

nitrate to nitrite bacterial conversion, was not associated with resting metabolic rate or 

blood pressure changes in healthy normotensive females (Sundqvist et al., 2016).  

CONCLUSION 

 The U.S. is currently experiencing high rates of hypertension that are expected to 

increase in the coming years. Hypertension is a health concern that has been associated 

with significant increases in the risk for development of cardiovascular disease, heart 

attack, and stroke. Addressing the current hypertensive crisis is essential. Simple and 

effective strategies for the average individual to prevent and reduce high blood pressure 

need to be further studied.  
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 Mouthwash use has been associated in some cases, primarily those who are 

already hypertensive, with increases in blood pressure and decreases in healthy 

cardiovascular biomarkers such as plasma nitrate and NO. There may be cause for 

discouraging the continued use of antiseptic mouthwash in susceptible individuals. 

However, more research needs to be conducted to observe the effects of commercially 

available mouthwash products on cardiovascular health. Additionally, the potential to 

target the enterosalivary nitrate-nitrite-nitric oxide pathway could provide useful 

therapeutic strategies as we continue the search for sustainable methods of reducing rates 

of hypertension.  
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CHAPTER 3 

METHODS 

Participants 

Participants included adults, age >30 years, with mildly elevated blood pressure. 

Inclusion criteria for blood pressure was relaxed due to recruitment difficulties in order to 

ensure adequate study participation. Subjects were recruited from the Arizona State 

University (ASU) community for this seven-week mouthwash and sodium intervention. 

Participants were required to be adults who were generally healthy and free of any 

chronic disease (heart disease, renal disease, liver disease, stroke, or diabetes), non-

smoking, and taking no systemic medication other than a contraceptive pill. Participants 

were excluded if they had any recent antibiotic use or a history and/or recent treatment of 

any oral health conditions such as gingivitis, periodontitis, or halitosis. 

Recruitment 

Subjects were recruited via ListServs provided by ASU, verbal announcements 

throughout the nutrition department, electronic messages, and posted paper flyers. During 

the recruitment phase, subjects who expressed interest in the study were emailed a brief 

survey regarding their demographics, blood pressure, their current oral hygiene routine, 

and their use or non-use of mouthwash products. The completion of this survey 

determined whether the individual would be eligible to participate in the intervention. 

Subjects that met inclusion and exclusion criteria were scheduled for their first screening 

visit.  

Study Design 
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This study was a randomized, controlled, crossover trial with a total of 10 

participants. The participants were randomized via simple randomization to receive 

treatments A, B, and C in a random order, with each treatment lasting one week followed 

by a one-week washout period. Treatment A was the control and consisted of no 

prescribed mouthwash use or sodium intervention. Treatment B consisted of mouthwash 

use alone with no sodium intervention. Treatment C consisted of mouthwash use paired 

with a high sodium diet of at least 6 grams of sodium per day. The mouthwash used 

during Treatments B and C was Cepacol Mouthwash, an over-the-counter antibacterial 

mouthwash containing the active ingredient cetylpyridinium chloride. This active 

ingredient has been shown to target the bacterial membrane walls of oral bacterial most 

similarly to Chlorhexidine, a prescription-strength mouthwash (Woessner et al., 2016). 

Participants were instructed to brush their teeth twice per day in the morning and in the 

evening, followed by rinsing with the mouthwash for at least one minute. Participants 

were instructed to refrain from using any sonic or high-speed electric toothbrushes during 

the duration of the trial. During the high sodium treatment, participants were instructed to 

consume two Best Maid pickles per day, each containing 2760 mg of sodium totaling 

approximately 6000 mg of added sodium, in addition to the prescribed mouthwash use.  

In addition to the three treatments, participants were instructed to reduce their 

sodium intake the day before they came in for testing of blood pressure and salivary 

nitrate levels. They were instructed to remain sedentary on the morning of testing and 

refrain from consuming caffeine prior to testing. Participants were allowed to consume a 

light breakfast consisting of plain or buttered toast, or a small bowl of cereal with milk. 
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Outcome measures included blood pressure and salivary nitrate levels. These measures 

were analyzed to determine if there was an effect on the dependent variables. 

Study Protocol 

The screening visit with participants occurred prior to the start of the trial. All 

individuals participating in the study signed the consent form and anthropometric 

measurements for blood pressure, body weight, height, body mass index (BMI), and 

waist circumference were obtained. Prior to measuring blood pressure, individuals were 

advised to relax for 10 minutes and fully empty their bladder. Blood pressure 

measurements were taken three times using a calibrated blood pressure cuff. The blood 

pressure readings were then averaged and recorded. This method was used during all 

blood pressure measurements throughout the trial. Height was measured using a 

freestanding height rod. Waist circumference was measured around the umbilicus using a 

research-grade tape measure. Additionally, participants completed a validated food 

frequency questionnaire assessing sodium intake to discern their current average sodium 

consumption (Charlton, Steyn, Levitt, Jonathan, Zulu, & Nel, 2008).  

 After this screening visit, participants underwent a two-week washout period 

where they were instructed to remove mouthwash from their current oral hygiene routine. 

During this two-week washout period, participants came in two more times to record 

additional blood pressure readings that were then averaged and used to obtain an accurate 

baseline blood pressure measurement.  

 After the two-week washout period, participants began following their assigned 

treatment and followed up at the end of each week to measure their blood pressure and 

salivary nitrate levels. In addition, food frequency questionnaires were completed to 
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assess for sodium intake at each visit. Participants were incentivized by receiving a $50 

Amazon gift card at the end of the study for their participation.  

Laboratory Analysis 

Salivary nitrate concentrations were measured using a commercially available 

Nitric Oxide Assay Kit Catolog No. EMSNO. Participants provided saliva samples at the 

beginning and end of each treatment week. Saliva was analyzed for nitrite concentration 

in a two-step process: converting nitrate to nitrite using nitrate reductase followed by the 

addition of a Griess Reagent to convert nitrite into a purple azo compound whose 

absorbance can be used to obtain a photometric measurement of nitrite concentration.   

Statistical Analysis 

Data was interpreted by the Statistical Package for Social Sciences (SPSS Version 

25 for Mac, 2017) and reported as mean ± standard deviation. Because the sample size is 

less than 50, the Shapiro Wilks test was used to assess the data for normality. If normality 

assumption was not met (p > 0.05), data was transformed using log or square root 

transformation. For comparison of means, a repeated measure analysis of variance 

(ANOVA) test was used to assess relationships. If the data were unable to be log or 

square root transformed, the non-parametric Wilcoxon sign-rank test was conducted. The 

results were analyzed to determine if statistical significance (defined as a p < 0.05) was 

present.   

 

 

 

 



  39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Methodology Timeline 
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CHAPTER 4 

RESULTS 

A total of 40 people responded to the online recruitment questionnaire and 

indicated interest in study participation. Of the 40 interested subjects, 15 were excluded 

due to age restrictions and 2 were excluded due to recent history of an oral condition. 

Inclusion criteria for blood pressure was relaxed due to recruitment difficulties in order to 

ensure adequate study participation. Of the remaining eligible respondents, a total of 10 

subjects were scheduled to meet for the initial screening visit and enrolled in the trial. 

There were no participants who withdrew throughout the duration of the study. Thus, a 

total of 10 participants completed the 7-week intervention. Baseline characteristics were 

measured at the initial screening visit and included age, weight, height, waist 

circumference, body mass index (BMI), blood pressure, and dietary sodium intake. At 

baseline, blood pressure did not correlate with age, weight, height, waist circumference, 

or BMI so it was not necessary to control for these variables. Baseline characteristics are 

summarized in Table 1 and are provided as mean±SD. Pre, post, and change data for each 

outcome measure are presented as mean±SD for the control, mouthwash, and mouthwash 

+ pickles intervention weeks. Change data for each outcome were normally distributed 

and were compared between groups using repeated measures ANOVA.  
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Table 1. Subject Characteristics and Demographics (n=10) 

 

               Mean±SD                Minimum      Maximum   
Gender M/F  1/91     
 
Age (years)  47.3±12.5 37 64  
 
Weight (kg)  66.7±13.2 50.2 93.7  
 
Height (cm)  162.0±7.7 153.0 175.0  
 
Waist Circumference (cm)  83.2±9.4 70.5 95.3  

Body Mass Index (kg/m2)  25.4±4.4 20.9 32.5  
 
Average Baseline Systolic Blood Pressure  
(mmHg)  114.9±12.5 95.7 138.0  
 
Average Baseline Diastolic Blood Pressure 
(mmHg)  75.2±9.1 62.3 92.0  
Average Baseline Daily Sodium Intake 
(mg)  2638.4±1426.6 855 5024  

1. Data represented as a number. 

 

Blood Pressure  

It was hypothesized that blood pressure would increase from baseline after 

mouthwash use and that blood pressure would increase to a greater degree after 

mouthwash use combined with high sodium intake than mouthwash use alone. When 

comparing the effects of the mouthwash and mouthwash + pickles conditions, there were 

no statistically significant differences in systolic or diastolic blood pressure (p=0.468 and 

p=0.859, respectively), as outlined in Table 2. Given these findings, the hypothesis was 

not supported.  
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Table 2. Pre, Post, and Change Values in Systolic and Diastolic Blood Pressure During 
Control, Mouthwash, and Mouthwash + Pickles Phases of the Study1 (n=10) 
      

  Pre  Post Change  Change 

         Mean±SD   p-value 

Systolic Blood Pressure 
(mmHg)  
Control  113.3±11.9  118.1±13.9 4.8±11.5  0.468 
 
Systolic Blood Pressure 
(mmHg)  
Mouthwash  117.0±12.3 116.2±16.2 -0.8±6.9   
 
Systolic Blood Pressure 
(mmHg)  
Mouthwash + Pickles  116.3±10.8 117.0±12.0 0.7±7.6   
 
Diastolic Blood Pressure 
(mmHg)  
Control  74.6±8.8 75.9±10.5 1.3±8.8  0.859 
 
Diastolic Blood Pressure 
(mmHg)  
Mouthwash  75.1±11.3 74.9±13.2 -0.2±5.7   
 
Diastolic Blood Pressure 
(mmHg)   
Mouthwash + Pickles    75.2±8.2 76.7±8.6 1.5±9.4    

2. Data are the mean±SD; p-value represents repeated measures ANOVA for change data between treatments. 

 

 

Salivary Nitrite Concentration 

 It was hypothesized that salivary nitrite levels would decrease from baseline after 

mouthwash use. When comparing change data between conditions, there were no 

statistically significant differences in salivary nitrite concentrations during the study 

(p=0.493), as outlined in Table 3. Given these findings, the hypothesis was not supported.   
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Table 3. Pre, Post, and Change Values in Salivary Nitrate and Nitrite Levels During 
Control, Mouthwash, and Mouthwash + Pickles Phases of the Study1 (n=10) 
      

  Pre  Post Change  Change 

                 Mean±SD   p-value 

 
Salivary Nitrite 
Concentration (µmol/L) 
Control  665.63±564.28 553.96±304.84 -111.67±419.20  0.493 
 
Salivary Nitrite 
Concentration (µmol/L)  
Mouthwash  558.97±260.85 593.18±260.69 34.21±254.08   
 
Salivary Nitrite 
Concentration (µmol/L) 
Mouthwash + Pickles    505.76±299.91 575.92±253.63 70.16±291.82    

 

 

Sodium 

 Sodium intake was assessed throughout the study via the Sodium Food Frequency 

Questionnaire. Dietary sodium intake was estimated at baseline and before and after each 

intervention. There appeared to be a significant increase in sodium intake during the 

mouthwash + pickle intervention (p=0.000), however sodium intake did not appear to 

change significantly throughout the study when the pickles were not accounted for.  
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Table 4. Pre, Post, and Change Values in Daily Sodium Intake During Control, 
Mouthwash, and Mouthwash + Pickles Phases of the Study1 (n=10) 
 

      

  Pre  Post Change  Change 

       Mean±SD   p-value 

 
 
Daily Sodium Intake 
(mg) 
Control  1750.9±987.6  1453.6±929.0 -297.3±272.6  0.000 
 
Daily Sodium Intake 
(mg) 
Mouthwash  1366±781.4 1364.2±821.9 -2.4±427.0   
 
Daily Sodium Intake 
(mg) 
Mouthwash + Pickles   1768.0±1094.8 7669.7±793.5 5901.7±622.3    

1. Data are the mean±SD; p-value represents repeated measures ANOVA for change data between treatments. 
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CHAPTER 5 

DISCUSSION 

 This 7-week randomized, controlled, crossover trial sought to examine the effects 

of antiseptic mouthwash use and sodium intake on blood pressure and salivary nitrate 

levels in a population of prehypertensive adults. Repeated measures ANOVA was used to 

compare change data for each outcome measure. Due the nature of the crossover design 

protocol, all subjects received both of the intervention conditions and the control 

condition of the trial. All subjects also adhered to a 1-week washout period between each 

treatment.  

Blood Pressure 

This study concluded that there was no significant change in systolic or diastolic 

blood pressure from the start to the end of each intervention (p=0.468 and p=0.859, 

respectively). This finding suggests that antiseptic mouthwash use may not induce 

hypertensive effects in this population. These findings align with previous research in 

normotensive adult populations. In a similar study with a crossover design, results in a 

population of normotensive female participants indicated that while mouthwash use 

reduced oral nitrate to nitrite conversion, there were no significant changes in systolic or 

diastolic blood pressure (Sundqvist et al., 2016). The present study did use an older 

population than Sundqvist et al. (mean age of 47.3±12.5) and study interventions were 

increased from 3 days to 7 days. In contrast, other studies performed in hypertensive 

populations did have results that indicated mild systolic blood pressure elevations 

following the use of antiseptic mouthwash (Woessner et al., 2016). Additionally, 

frequency of tongue cleaning has been shown to impact the composition of the human 
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tongue microbiome and enterosalivary circulation of nitrate. According to a 2019 study, 

tongue cleaning frequency did serve as a predictor of increases in systolic blood pressure 

induced by chlorhexidine mouthwash use (Tribble et al., 2019), however frequency of 

tongue cleaning was not taken into account throughout the duration of the present study. 

To date, there is also evidence in the literature to support the enhancement of flow-

mediated vasodilation through upregulation of the eNOS pathway following vinegar 

(acetic acid) intake. In a 2010 study, researchers examined the effect of acetate on eNOS 

in human umbilical vein endothelial cells and found that phosphorylated eNOS was 

significantly increased following acetate exposure and maximum forearm blood flow in 

response to shear stress was also increased following vinegar administration compared to 

placebo (Sakakibara et al, 2010). These results suggest that in the present study, acetic 

acid-induced eNOS phosphorylation following vinegar consumption from the pickles 

may have contributed to an upregulation of flow-mediated vasodilation and therefore 

counteracted any systolic blood pressure increasing effects following mouthwash use. 

Further, it is important to note that in the present study inclusion criteria were relaxed to 

allow for adequate participant recruitment. Consequently, blood pressure of study 

participants more closely reflected normotensive values (mean blood pressure of 

114.9/75.2 mmHg) than studies that demonstrated blood pressure changes in a 

hypertensive population.  

Salivary Nitrite Concentration  

 Contrary to what was hypothesized, there was no significant change in salivary 

nitrite concentration from the start to the end of each intervention (p=0.493). These 

findings were not in alignment with previous research in which researchers observed 
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decreases in salivary nitrite concentration following treatment with mouthwash. In a 2016 

study, researchers observed a stepwise reduction in plasma and salivary nitrite following 

the introduction of increasing strengths of mouthwash after a dietary nitrate load from 

beet juice (Woessner et al., 2016). It is important to note that this study was acute and 

observed salivary nitrite concentrations each hour over a total duration of four hours. 

However, in a 3-day randomized controlled crossover trial following hypertensive men 

and women, treatment of antibacterial mouthwash use did result in significant decreases 

in oral nitrate to nitrite reduction, indicating a trend towards reduced salivary nitrite 

concentrations and subsequent increases in blood pressure (Bondonno et al., 2015). 

Frequency of tongue cleaning may have also been a factor in enterosalivary circulation of 

nitrate and nitrite due to changes in microbial composition within the mouth. Oral 

microbial communities have the capacity to supplement host nitric oxide production 

through the enterosalivary nitrate-nitrite-nitric oxide pathway. Increased tongue cleaning 

may result in reduced production of bacterial nitrite reductases and thus contribute to 

changes in oral nitrite concentration (Tribble et al., 2019), however as stated previously 

this was not accounted for in the current study.  

Strengths  

 There were several notable strengths of the present randomized controlled 

crossover study. Strengths of this study include the crossover design in which participants 

act as their own control and allowed the researcher to assess within-subject changes 

following each of the three treatment conditions. Participants were asked to comply with 

a washout phase between each treatment condition, allowing adequate time to return to 

baseline blood pressure and salivary nitrate levels in order to enhance accurate 
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comparison between treatment conditions. Participants were provided with calendars to 

track adherence to the study protocol, which indicated 100% participant compliance for 

twice daily mouthwash use and consumption of the high-sodium pickles. Additional 

strengths include exclusion of subjects currently taking antihypertensive medications and 

those who have recently taken or are currently taking antibiotics. Research in the 

literature has confirmed that antihypertensive medication use will interfere with blood 

pressure readings and antibiotic use may impact composition of oral microbiome and 

influence bacterial nitrate conversion in the mouth (Bryan et al., 2017).  

Limitations 

 Consistent with all research, inherent limitations did exist in this study. During 

this research trial include the small sample size of only 10 subjects, which may have 

lacked sufficient power to produce statistically significant results. Sodium intake was 

monitored using a self-reported food frequency questionnaire and therefore, is subject to 

biases such as participant recording error. Additionally, frequency of tongue cleaning was 

not monitored throughout the duration of the study and has been shown to influence 

systolic blood pressure readings and composition of the oral microbiome. Future research 

seeking to assess the effects of mouthwash use on blood pressure may benefit by 

recruiting a population of prehypertensive and hypertensive individuals with a blood 

pressure ranging from 120/80 mmHg to 140/90 mmHg, obtaining a 24-hour urine 

collection to more accurately assess sodium status, collecting data on participant weight 

each week to more closely monitor fluid status, and recruiting a larger sample of 

participants to ensure the study is adequately powered in order to produce statistically 

significant results.  
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Conclusion 

 The results of this randomized controlled crossover trial suggest that twice daily 

use of an over-the-counter strength antiseptic mouthwash rinse does not significantly 

increase systolic or diastolic blood pressure or induce significant changes in salivary 

bacterial nitrate to nitrite reduction. Significant increases in sodium consumption were 

observed following pickle consumption (~6000 mg of added sodium per day), however 

this did not seem to induce significant changes in blood pressure or salivary nitrite 

concentrations.  
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