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ABSTRACT  

   

Human-agent teams (HATs) are expected to play a larger role in future command 

and control systems where resilience is critical for team effectiveness. The question of 

how HATs interact to be effective in both normal and unexpected situations is worthy of 

further examination. Exploratory behaviors are one that way adaptive systems discover 

opportunities to expand and refine their performance. In this study, team interaction 

exploration is examined in a HAT composed of a human navigator, human photographer, 

and a synthetic pilot while they perform a remotely-piloted aerial reconnaissance task. 

Failures in automation and the synthetic pilot’s autonomy were injected throughout ten 

missions as roadblocks. Teams were clustered by performance into high-, middle-, and 

low-performing groups. It was hypothesized that high-performing teams would exchange 

more text-messages containing unique content or sender-recipient combinations than 

middle- and low-performing teams, and that teams would exchange less unique messages 

over time. The results indicate that high-performing teams had more unique team 

interactions than middle-performing teams. Additionally, teams generally had more 

unique team interactions in missions with novel degraded conditions than in missions 

without novel degraded conditions. Implications and suggestions for future work are 

discussed.  
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CHAPTER 1 

INTRODUCTION 

Autonomous technology is anticipated to span a wide range of application in 

future command and control systems (Endsley, 2015). However, as autonomous agents 

advance to fulfill more complex roles, human-machine interdependence shifts to 

resemble team-like relationships. Research has identified several requirements for 

autonomous machines to team with people (Groom & Nass, 2007; Klein et al., 2004; 

Johnson et al., 2014). For instance, an autonomous search and rescue robot may have the 

capacity to adjust its route planning to the constraints of a collapsed building, but the 

resulting behavior may be unexpected to human teammates. Coordinating an explanation 

for this unexpected behavior may require understanding a teammate’s expectations 

(Chakraborti et al., 2019) including what they would find appropriate for an explanation 

(Miller, 2018), and strategies for providing explanations. Alternatively, an autonomous 

combat vehicle may maneuver on a battlefield but be less capable of interpreting broad 

command intent (Woods et al., 2004). The autonomous combat vehicle’s rigidity may 

impose high levels of workload vehicle crews during unexpected events and may also 

result in counterintuitive vehicle actions. These examples highlight more fundamental 

challenges in human-agent teams which are different from all-human teams. 

  A discriminating factor in assessing a team’s effectiveness is the ability for the 

team to coordinate in new ways when perturbed, and return to previous levels of 

performance (Gorman et al., 2010). Team resilience is demonstrated in response to 

unexpected perturbations through coordinating a shared understanding of the event, re-

planning, and re-establishing common ground (Hoffman & Hancock, 2017). Insight into 
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the behaviors of high-reliability organizations has also led to an appreciation of how 

teams-level states of resilience may be cultivated proactively (Bowers et al., 2017). 

Team-level activities such as planning, leadership, and adaptation are all active processes 

that emerge from the dynamic interaction of teammates in their environments (Cooke et 

al., 2013). So although synthetic teammates may not be very resilient themselves, human- 

agent teams may overcome challenges, and perhaps in qualitatively different ways than 

all-human teams. 

Taking a systems perspective suggests that principles of adaptation in human-

agent teams may be similar to adaptation in other complex adaptive systems (Demir et 

al., 2018). Of particular interest in this research is how adaptive systems generate 

variation and utilize feedback. For instance, genetic variation in combination with 

environmental feedback explains adaptation in biological systems over time (Caporale & 

Doyle, 2013, p. 21). In teams, parallels may be identified in the ways that humans vary 

performance to meet the demands of everyday work (Hollnagel, 2013). Relying on an 

autonomous agent or human teammate during an unexpected event may be difficult when 

team interactions. Team interaction exploration may lead to the discovery and refinement 

of team coordination process (Gorman et al., 2010), and may be required in unexpected 

situations where process may not be specified in advance (Sarter et al., 1997). Team 

interaction exploration may also provide insight into how teams actively cultivate states 

of resilience as well as how teams develop solutions to novel challenges. The purpose of 

this study is to examine the relationship between team interaction exploration and 

performance in normal and unexpected situations in an aerial reconnaissance HAT. 
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CHAPTER 2 

BACKGROUND 

Human-Agent Teaming 

Since the advent of autonomous capabilities, systems designers have struggled 

with redefining automation’s role in sociotechnical systems. Questions regarding the role 

of automation have historically been addressed in models of function allocation, such as 

Fitts’s list (Fitts 1951, p. 10) and levels of automation (Parasuraman et al., 2000). 

Previous models have framed function allocation problems as understanding an agent’s 

capacities as functionally independent, while ignoring how agents provide capacity to 

each other through coordination. Interdependence between agents describes how 

collectives manage dependencies (Malone & Crowston 1994) which, may be essential for 

completing a team task or situationally opportunistic (Johnson et al., 2014). Trending 

approaches to function allocation reject notions that automation can ‘substitute’ work 

seamlessly and that humans should be taken out of the control loop (Bradshaw et al., 

2013). Some notable function allocation frameworks include adaptive automation 

(Parasuraman et al., 1992), mixed-initiative interaction (Allen et al., 1999), collaborative 

control (Fong et al., 2001) supervisory control (Sheridan & Parasuraman 2004), 

adjustable autonomy (Bradshaw et al., 2003), and coactive design (Johnson et al., 2014). 

Each framework addresses challenges related to introducing automation with complex 

cognitive capability and interdependence in automation.  

Artificial agents with degrees of decision-making capability or autonomy have 

recently become more prevalent in command and control systems (Cox, 2013). Some 

autonomous agents may also resemble a teammate more than tools or components of a 
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larger automated system. For instance, an autonomous agent could operate one or more 

remotely-piloted aerial vehicles while coordinating with humans in the loop (Ball et al., 

2009; Mercado et al., 2016). The agent’s activities constitute a collection of 

interdependent activities typically ascribed to a team-member role. In these cases, and 

particularly when autonomous agents possess decision-making authority in several 

essential tasks, the relationship between human and non-human agents is more 

appropriately classified as a human-agent team (HAT). HAT is actively advancing in 

command-and-control domains such as human-robot teams in disaster response 

(Chakraborti et al., 2019; Demir et al., 2018), autonomous personal assistants space 

exploration teams (Bradshaw et al., 2003), and various military applications (Brewer et 

al., 2018; McNeese et al., 2018; Endsley, 2015; Mercado et al., 2015). 

Demir and Cooke (2018) examined HAT by informing participant dyads that a 

third co-located teammate was a synthetic agent, when it was in fact a human. This study 

took place in a remotely-piloted aerial system synthetic task environment (RPAS-STE; 

see Cooke & Shope 2005), where participants formed teams to complete aerial 

reconnaissance missions in varied environmental conditions. They found that teams who 

were informed their third teammate was a synthetic pilot perceived less workload, gave 

more suggestions, and reported liking the pilot more than when participants were told 

their teammate was human. Other studies have explored coordination dynamics (Demir et 

al., 2019), team synchrony (Demir et al., 2017), and team situation awareness (Demir et 

al., 2017). In a recent study, inexperienced HATs with a synthetic pilot were compared to 

inexperienced all-human teams (i.e. control) as well as all-human teams lead by an 

experienced pilot (McNeese et al., 2017).  This study analyzed team performance, target 



  5 

processing efficiency, team situation awareness, and team verbal behaviors (e.g. status 

updates, inquiries) across five missions, and found that teams lead by an experienced 

pilot performed best, followed by all-human teams and HATs, which were not 

significantly different from each other. Additionally, synthetic teams requested more 

information, rather than providing information proactively.  

McNeese et al. (2017) noted that the synthetic teammate’s lack of anticipation of 

the informational needs of other teammates seemed to be reciprocated by human 

teammates. This is similar to Chiou and Lee’s (2016) findings in studying human-agent 

cooperation that participants were less cooperative with uncooperative agents in a 

resource exchange task. This study used a microworld task environment resembling a 

hospital scheduling scenario to test resource exchange strategies in human-agent 

interactions with varying levels of agent cooperativeness and temporal task demands. 

They found that humans tended to reciprocate the degree of cooperation exhibited by the 

agent, engaging in less resource sharing when interacting with the less cooperative agent. 

While coordinating via natural language texting may have more complex interaction 

dimensions than discrete resource exchanges, these findings taken together suggest that 

there may be a contagious effect of interaction style between computer agents and other 

teammates. Overall, HATs demonstrate potential but have shortfalls related to 

coordination flexibility and anticipation of teammate needs and cooperation. 

 

Team Cognition and Resilience 

Teams are preferred in organizations largely because they can adaptively solve 

problems (Cooke et al., 2013). However, not all problems are created equal. Many 
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problems may be well-adapted to, with pre-defined responses, such as contingency plans 

and standard operating procedures. By contrast, system complexity leads to a seemingly 

limitless supply of possible events that may occur unexpectedly. Woods (2018) proposed 

a theory of graceful extensibility to explain the tradeoff between refinement within a 

scoped boundary of performance or optimization and investing resources into extending 

capabilities near or at performance boundaries or resilience. According to the theory, an 

adaptive system models its own range of performance within the environment. It uses this 

model to allocate resources to fulfill specific capacities that increase fitness to the 

environment. In doing so, the system trades-off between allocating resources to increase 

fitness within the modeled boundary of performance and allocating resources to define 

and expand this boundary. Resilient systems extend their capabilities to manage 

surprising situations. 

Several team-level macro-cognitive activities have been associated with team 

resilience. These include anticipation, monitoring, planning, and learning (Bowers et al., 

2017; Hoffman and Hancock, 2017; Hollnagel, 2016). In a model of team resilience 

posited by Bowers et al., (2017) team resilience is described as a second-order emergent 

state, which is emergent from the combination of team states including cohesion, 

collective efficacy, culture, shared mental models, familiarity, and adaptability. Their 

model provides several processes that may enhance team resilience such as compensatory 

behavior, adaptability, and performance monitoring. Additionally, extensibility theory 

suggests that some mechanisms that aid in team resilience may also support the 

refinement of capabilities, whereas the allocation of resources through mechanisms may 
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fall on an optimality-resilience spectrum (Woods, 2018). In teams, team interactions may 

lead to the discovery of such opportunities through exploring new ways of interacting.  

Team Interaction Exploration 

Exploration is a phenomenon observed in search behavior of complex adaptive 

systems. In a review of exploration, Hills et al., (2015) identified patterns of exploration 

in human cognition, human behavior, and social problem solving. Specifically, they 

elaborate the tradeoff between exploration of potential resources and exploitation of 

resources that have been identified. Exploratory learning has been examined previously 

in teams (Kostopoulos, & Bozionelos, 2011, Kostopoulos et al., 2013). Kostopoulous & 

Bozionelos (2011) found that exploratory team learning may lead to the discovery of new 

capabilities, whereas exploitative learning refines the capabilities that are established 

within a team. This study developed a multiple-item survey to examine exploratory and 

exploitative learning in innovation teams. Additionally, they posited that psychological 

safety or the “shared belief that the team is safe for interpersonal risk taking” 

(Edmondson, 1999, p. 354) has been associated with exploratory learning in teams 

(Kostopoulos & Bozionelos, 2011). Psychological safety as a team state changes as a 

consequence of work system dynamics, as with other team states such collective efficacy 

(Bowers et al., 2017). As team interactions involving risk taking facilitate teamwork, 

team psychological safety may increase. Conversely, team interactions may lead to 

negative outcomes such as increased workload, miscalibrated trust, or reduced 

performance. Therefore, feedback on the consequences of team interactions plays a 

critical role in team interaction exploration, allowing for a deeper understanding of 

teamwork and the work system. 
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Promoting proactive interaction exploration with advanced autopilots has been suggested 

as a solution to automation surprise by improving mental models and developing a 

repertoire of interactions (Sarter et al., 1997). Considerable effort has also been put forth 

to develop explainable-artificial intelligence systems (Miller, 2018), which effectively 

allow users to explore system boundaries and calibrate trust in these system (Hoffman et 

al., 2018). Other instances of exploration include animal foraging (Hills et al., 2012), 

honeybee scouting (Beekman et al., 2007), and infant behavior (Gibson, 1988, p. 12-19). 

While research has considered team exploration in teams as a high-level learning 

strategy, there is a gap in team-level exploratory activities, such as team cognition. The 

exploration of team cognition may be assessed directly through team interactions (Cooke 

et al., 2013). Thus, this study defines exploratory team interactions as any team 

interaction unique to a team’s collective interaction history. Dimensions of team 

interactions refer to qualities such as number of recipients, content, pattern, and situation. 

Note that exploratory team interactions are distinct from team interactions facilitating an 

exploratory behavior strategy. Rather, exploratory team interactions are characterized by 

how the system of signals and feedback between teammates is explored in different 

situations. 

Exploring new ways of interacting as a team may have an underlying intention, 

such as increasing coordination flexibility or identifying a solution to a novel problem. 

Intentionality may suggest one or more agents are aware of constraints that affect the 

value of a particular team interaction. However, constraints in the environment may lead 

to unintentional novel variations in team interactions. For instance, under high-temporal 

demand, an operator may communicate more hastily and omit some information. 
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Importantly, team interaction exploration may have immediate effects, such as 

communicating the same information more efficiently or obtaining status information, 

and long-term effects (e.g. team-process learning) for both intentional and unintentional 

exploration.  

Team interaction exploration may support team resilience in a number of ways. 

For example, a team could use low-workload periods to develop and rehearse new 

contingency plans, elaborate team-level grounding, and participate in collective activities 

that build trust. There is evidence that teams who were able to coordinate in new ways 

were more effective in a command and control task with unexpected roadblocks (Gorman 

et al., 2010). Novel interactions may contribute to team situation awareness, particularly 

when coordinating the perception and response to off-nominal situations (Gorman et al., 

2006). Furthermore, Cooke et al., (2007) noted that “There appears to be a trade-off 

between training teams for repeated precision in an unchanging environment and training 

adaptive teams.” (p. 152). Dynamical analysis of teamwork has also identified that highly 

rigid and highly flexible teams were associated with worse team performance and that 

optimal performance was associated with metastable team coordination (Demir et al., 

2019). In dynamical systems, metastable states demonstrate a sustained equilibrium 

between stable and unstable dynamics rather than drifting toward either highly rigid or 

highly unstable equilibrium states (Kelso, 2002). For team interactions, more repeated 

team interaction patterns correspond with more stable dynamics, while more exploratory 

interaction patterns correspond with less stable dynamics. Team interaction, therefore, is 

a mechanism for teams to calibrate stability and maintain agility in addition to its 

primarily role as an active team-level cognitive process. 
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When considering the role of artificial agents in team interaction exploration, it is 

noteworthy that current agents have a much more limited capacity to explore new team 

interactions than humans. As autonomous systems interact with the environment, they 

may generate novel behaviors through responses to variations in situational constraints. 

Yet, current artificial agents have a limited capacity to understand  novel situations and 

adapt their coordination over time.  This is concerning for HAT co-adaptation as findings 

in the RPAS-STE showed that HATs developed less flexible interactions than human 

teams (Demir et al., 2019). Therefore, human adaptation to autonomous agents 

dynamically influences the agent’s interactions, and in turn the agent’s responses adjust 

to changing inputs. Team interaction exploration may be particularly relevant for HATs 

in mitigating these team dynamics and compensating for synthetic teammates’ lack of 

exploration.  

Team interaction exploration may be related to other relevant constructs in HAT, 

such as team trust, team situation awareness, and workload. Team trust was associated 

with high-performing HATs, whereas middle- and low-performing teams were less 

trusting (McNeese et al., 2019). Exploring interactions with a synthetic teammate may 

improve one’s understanding of teamwork with that agent, which may lead to more 

appropriate trust and reliance. For instance, exploring a request for information from the 

synthetic agent may indicate that the agent is unable to provide that information. This 

means that the requestor can find another way to access this information for when it is 

needed. Agent transparency of an intelligent decision-support agent was also associated 

with greater performance and trust in a multiple remotely-piloted aerial systems operation 

task (Mercado et al., 2016).  
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For each team member to have the appropriate situation awareness to perform in 

their role and in off-nominal situations, each role should obtain the information they need 

in a timely manner (Gorman et al., 2006). Measures that focus on team interactions may 

capture the processes that lead to emergent states of team situation awareness.  In the 

RPAS-STE, HATs that engaged in more ‘pushing’ than ‘pulling’ interactions had higher 

team situation awareness during roadblocks in a command-and-control task (Demir et al., 

2017). Pushing refers to the sender providing information to a recipient (e.g. status 

update, suggestion), while a pulling refers to the sender requesting information from the 

recipient. Team interaction exploration facilitates the discovery of ways to push and pull 

information and may be required for coordinating the perception and response to an 

unexpected event. Finally, team interaction exploration has relevant workload 

considerations. On the one hand, that all coordination has associated costs (Hoffman & 

Woods, 2011) means that exploring a team interaction with a low payoff may impose 

excessive workload or be distracting. Yet, gaining familiarity through team interaction 

exploration may reduce excessive workload proactively. Critical in managing 

coordination costs seems to be identifying what interactions are worth exploring in teams 

and when to explore them. 
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CHAPTER 3 

PROJECT OVERVIEW 

The aim of the current study is to examine team interaction exploration in HATs 

while working together in a dynamic and complex task environment. To examine the 

phenomena in a command and control team task, this study asked how exploratory team 

interactions affect team performance in an aerial reconnaissance task under normal and 

degraded conditions. Degraded conditions should require novel coordination, while 

normal conditions benefit from refined routine coordination. Additionally, exploration 

should become less common over time as relevant interactions for normal situations are 

discovered and repeated. However, given exploratory team interactions may correspond 

with novel situations, this effect might not hold for in missions with degraded conditions. 

The following was hypothesized:  

 

H1: High-performing teams will explore team interactions more than medium- and low-

performing teams. 

 

H2: Teams will explore more team interactions in missions with novel degraded 

conditions than in missions without novel degraded conditions. 

 

 

This study is part of a larger effort to develop a cognitively plausible synthetic 

teammate for a three-agent remotely-piloted aerial system (RPAS) ground crew (Ball et 

al., 2010). The synthetic teammate is fully capable of performance as the pilot role in 

normal conditions but considers only routine coordination needs. Several experiments 
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were previously conducted to test and validate the synthetic teammate under normal 

conditions. Because degraded conditions are common in dynamic command and control 

tasks, the current study is interested in how this human-agent team performs in normal 

and degraded conditions. The goal of the task was to capture good photos of target 

waypoints. To accomplish this, teams needed to navigate the RPAS through restricted 

zones while avoiding hazards (e.g. mountainous terrain or enemy waypoints). In a single 

mission, there are 11-12 target waypoints in total. Each agent was assigned to a specific 

role. The navigator plans a route and shares waypoint information with the pilot, who 

uses information received from teammates to fly the RPAS. The photographer negotiates 

RPAS settings with the pilot to take a photo and share feedback on progress with the 

team. The synthetic teammate assigned to the pilot role is capable of predetermined 

responsibilities, including requesting information from the navigator, maintaining the 

RPAS settings, and negotiating with the photographer. Teams interacted with each other 

via text-chat interface. 

 Seven degraded conditions were injected throughout ten missions to examine 

teamwork over time and in multiple sessions. Display failures affected either the 

photographer’s RPAS status information, the pilot’s RPAS status information, or the 

pilot’s airspeed and altitude. To overcome this degraded condition, teams needed to share 

status information with the teammate missing that information. Pilot failures were 

deficiencies in the synthetic agent’s comprehension of waypoint information resulting in 

either complete or partial misunderstanding and moving on without waiting for the 

photographer to take a photo. Overcoming these agent failures required participants to 

persistently share waypoint information for misunderstandings, or to direct the synthetic 
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teammate to return to the target waypoint when it moves on. Finally, the malicious cyber-

attack caused the synthetic agent to sabotage the mission by flying the RPAS to enemy 

territory and could be overcome by contacting intelligence (i.e. another confederate 

experimenter) After a baseline mission, a display failure and pilot failure were injected 

into missions around two target waypoints. By the end of Mission 4, the team will have 

been subjected to all six display and pilot failures. The malicious cyber-attack occurred in 

the final mission with the remaining 20-minutes of the mission.  
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CHAPTER 4 

METHODS 

Participants  

Forty-four participants were recruited from a large southwestern university to 

participate in this study. These participants were either undergraduate or graduate 

students, ranging in age from 18 to 36 (Mage = 23, SDage = 3.90), with 21 men and 23 

women. Participation required English fluency and normal or corrected-to-normal vision. 

Pairs of participants formed a team (22 teams) alongside a highly-trained confederate 

researcher who operated as the synthetic teammate remotely. Participants were assigned 

to either the photographer or navigator roles in the team, while the confederate took on 

the pilot role. Participants were informed that their third teammate was a synthetic agent, 

and never met the confederate researcher. 

Equipment and Materials  

The study took place in the Cognitive Engineering Research Institute’s RPAS-

STE (Synthetic Task Environment; Cooke & Shope, 2005). Participants were given 

“cheat sheets” that guided effective communication in the experiment. They were told 

this cheat sheet would be particularly useful given one of their teammates is a synthetic 

agent. The navigator also received waypoint signs, and the photographer received photo 

samples of ideal camera setting. Both participant workstations had one computer with 

two monitors for taskwork, and one computer and monitor for the chat system. 

Participant workstations were separated by a partition during the experiment. The pilot’s 

workstation had the same configuration but was located in a different room. Two 
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experimenter consoles were used to code team interactions in real-time, with a chat 

system computer for sending messages to the three team members from “Intel”.  

Procedure 

After consenting to take part in the study, participants were randomly assigned to 

a role and provided an overview of the task. Afterwards, participants completed a 25-

minute interactive PowerPoint training detailing the task, their role, and their teammates’ 

roles, followed by a 30-minute hands-on training mission guided by an experimenter. 

Teams participated in two sessions that occurred over a period of two days total, with 

four-missions in session one, and six-missions in session over two (10-missions total). 

Each mission lasted 40-minutes. There was a one- to two-week interval between sessions. 

Session one consisted of consent, training, followed by an initial mission with no 

degraded condition as a baseline condition, followed by a baseline measure of subjective 

workload. In the second session, the workload survey was administered again after the 

first mission. After each mission, participants were given a 15- minute break and offered 

water and snacks as needed. Participants received feedback on their individual and team’s 

performance which were present alongside high scores. Finally, after the final mission, 

participants were administered several surveys to gather information on participant 

demographics, measure interpersonal trust, and to measure anthropomorphism. After 

completing the surveys, participants were debriefed, compensated for their time, and 

thanked for participation. The events experienced by participants are summarized in the 

Table 1.  
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Table 1. Events experienced by participants. 

      Session 1           Session 2 

Mission Events Mission Events 

-- Welcome 
Consent 
Physiological sensor setup 
Briefing 

5 Pilot airspeed and altitude status 

failure on 2nd target 
Pilot moving on failure on 4th target 

0 Hands-on training -- NASA-TLX survey 
Trust survey 

1 No failure 6 Pilot full comprehension failure on 

2nd target 
Photographer status failure on 4th 

target 

-- NASA-TLX survey 7 Pilot status failure on 1st target 
Pilot moving on failure on 3rd target 

2 Photographer status failure on 2nd 

target 
Pilot full comprehension failure on 4th 

target 

8 Pilot partial comprehension failure on 

1st target 
Pilot airspeed and altitude failure on 

3rd target 

3 Pilot moving on failure on 2nd target 
Pilot status failure on 4th target 

9 Photographer status failure on 3rd 

target 
Pilot moving on failure on 5th target 

4 Pilot airspeed and altitude status 

failure or 1st target 
Pilot partial comprehension failure on 

3rd target 

10 Pilot airspeed and altitude status 

failure on 2nd target 
Pilot partial comprehension failure on 

4th target 
Malicious cyber-attack during last 20-

minutes 

-- One- to two- week interval -- Trust survey 
Anthropomorphism  survey 
Demographics  survey 
Debrief 
Compensation 

 

Measures 

The current study considers measures of target, mission, and roadblock 

performance as well as team interaction exploration. Additionally, other data were 

recorded but not considered in this study. Team process measures of situation awareness, 
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verbal behaviors, process ratings, and communication flow were captured. Physiological 

measures of facial expression, heart rate (ECG), and electrical brain activity (EEG) were 

recorded. Finally, the post-test consisted of measures of interpersonal trust (Mayer et al., 

1995), anthropomorphism, workload (NASA-TLX; Hart & Staveland, 1988) and 

demographics questions. 

Target processing efficiency.  The time spent to photograph a target waypoint 

was calculated by subtracting points for each second within a target radius from 1000, 

and subtracting an additional 200 points for missed targets. Higher scores meant less time 

to process a target waypoint (Cooke et al. 2007). 

Mission performance. Mission performance was a composite score based on 

weighted measures. Listed in order of relative weight, they are time spend in warning 

states (1), time spent in alarm states (2), number of missed or slow photographs of 

priority target waypoints (3), and number of missed or slow photographs of target 

waypoints (4). The mission performance score starts at 1000, and points are lost based on 

these measures. 

Roadblock performance. The number of successfully overcome degraded 

conditions was summed for each mission. 

Team Interaction Exploration. Unfamiliar teams have relatively ill-defined 

mental models of teamwork beyond the scope of training, standard operating procedures, 

and general models of the team’s capacity to communicate. However, for interactions that 

are untested, there is always a degree of uncertainty that they will be understood and 

achieve its intended effect.  In this study, text-chat was the only way teammates could 

interact with each other. Therefore, team interaction exploration was operationalized as 
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any team interaction that is unique in content, sender, or recipient. Other team interaction 

dimensions (e.g. patterns, meaning) are also relevant, but out of the scope of this study.  

A text-message with the same content may be more useful to one teammate than 

another, as role changes the information that is valuable for particular team members. For 

instance, the navigator sending waypoint information to the photographer in addition to 

the pilot. While the photographer normally does not need this information from the 

navigator, being copied on waypoint information might help the photographer negotiate 

with the pilot and plan ahead. Additionally, the photographer might reciprocate by 

copying the navigator on instances of airspeed negotiation with the pilot. This may allow 

the navigator to anticipate changes in temporal demands. The synthetic pilot’s limited 

language capabilities also suggest that more complex or novel interactions may not be 

interpreted in the way it is intended. To complicate this matter, the synthetic pilot does 

not facilitate closed-loop communication by confirming understanding.  

There would be substantial noise introduced to the measurement of team 

interaction exploration from unique content related to the routine coordination of target 

waypoints (e.g. target waypoint names, airspeed and altitude settings). Thus, the measure 

of team interaction exploration excluded routine coordination events. Team interaction 

exploration was measured for each chat messaged exchanged across all missions. 

Analysis  

Teams were grouped by performance in normal and degraded conditions by using 

K-means clustering. Two teams were excluded from the clustering analysis due to 

measurement error and extremely low levels of performance respectively. The result of 

this clustering method are described in McNeese et al., (2018). From these clusters, one 
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team was excluded due to missing text-communications from Mission 2 for a total of 19 

teams (N = 19). Three clusters (K = 3) described as low- (N = 7), middle- (N = 7), and 

high-performing (N = 5) teams were formed. Although the clustering method groups 

teams by relative similarity, understanding how these teams were different across specific 

performance variables is relevant for interpreting the results of further hypothesis testing. 

One-way ANOVAs were used to describe the cluster differences (ɑ = 0.05). LSD post-

hoc comparisons report 95% confidence intervals for this analysis.  

Following the analysis of performance by cluster, groups were compared by their 

use of unique communication unrelated to routine target coordination. Additionally, the 

within-subjects variable mission and its interactions with the cluster variable were also 

compared for these dependent variables. Thus, a 3 x 10 cluster x mission ANOVA was 

conducted with post-hoc comparisons to test the hypotheses. The Greenhouse-Geisser 

correction was used for violations of sphericity for repeated measures. Because these 

comparisons explore a novel and potentially interesting interaction metric with a low-

sample size and high across team variability, an ɑ-level of p < 0.10 was used (Cooke et 

al., 2007, pp. 46). LSD post-hoc comparisons report 90% confidence intervals with 

computed family-wise alpha. Data were analyzed in SPSS and visualized in R-Studio 

utilizing the ‘ggplot2’ and ‘dplyr’ packages. 
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CHAPTER 7 

RESULTS 

Clustering Comparisons 

Levene’s test indicated that the error variances of each performance variable were 

not significantly different. There was a significant effect of cluster on the variables 

mission performance, F(2, 16) = 26.882, p < 0.001, η2 = 0.771, target processing 

efficiency, F(2, 16) = 15.591, p < 0.001, η2 = 0.661, and overcome roadblocks, F(2, 16) = 

7.877, p = 0.004, η2 = 0.496 (Figures 1-3). For mission performance, high-performing 

teams scored higher than middle- and low-performing teams. Both high- and middle-

performing teams had greater target processing efficiency than low-performing teams. 

Finally, high-performing teams overcame more roadblocks on average than low-

performing teams. Overall, these results indicate that high- and middle-performing teams 

had similar target processing efficiency scores and overcome roadblocks but were 

differentiated by their overall mission performance. Low- and middle-performing teams 

had similar mission performance scores. A summary of these results is provided in Table 

2 and Table 3. 
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Figure 1. Mission performance by cluster. Error bars are 95% CI means. 

 

 
Figure 2. Target processing efficiency by cluster. Error bars are 95% CI means. 
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Figure 3. Overcome roadblocks by cluster. Error bars are 95% CI means. 

 

Table 2. Summary of one-way ANOVAs comparing clusters by performance.  

IV DV F P-value (α = 

.05) 
Effect Size 

(η2) 
Interpretation 

Cluster Mission performance 26.882 p = 0.001 0.771 H > M, L 

Cluster Target processing 

efficiency 
15.591 p = 0.001 0.661 H, M > L 

Cluster Overcome roadblocks 7.877 p = 0.01 0.496 H, M > L 

 

Table 3. Mean ±95% CI and standard deviation of performance variables for low- (LP), 

middle- (MP), and high-performing (HP) teams. 

Cluster Mission Performance Target Processing Efficiency Overcome Roadblocks 

LP 275.37  ±39.207, 42.393 828.89 ±19.231, 20.794 1.145 ±0.295, 0.319 

MP 302.792  ±18.238, 19.720 897.581 ±21.953, 23.737 1.429 ±0.275, 0.297 

HP 381.278  ±40.727, 32.8 904.365 ±17.499, 14.093 1.8 ±0.227, 0.183 
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Team Interaction Exploration 

Clusters exchanged significantly different numbers of unique messages outside 

routine coordination, F(2, 16) = 3.540, p = .053, η2 = 0.307. High-performing teams 

exchanged more unique non-coordination messages than middle-performing teams. 

 There was also a significant effect of mission on the number of exploratory team 

interactions exchanged, F(9, 10) = 9.161, p < 0.001, η2 = 0.364. Mission 1 had more 

unique messages than Missions 4-9. Mission 2 and Mission 4 had more unique messages 

than Mission 5-8. Mission 3 also had more unique messages than Mission 2 and Missions 

4-9. Therefore, with the exception of Mission 10, teams exchanged more unique 

messages outside of target waypoint coordination in the first session than in the second 

session. Means, 90% confidence intervals, and standard deviations for these post-hoc 

analyses are provided in Table 4 and Table 5. 
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Figure 4. Average unique messages by cluster. Error bars are 90% CI means. 
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Figure 5. Average unique messages by mission. Error bars are 90% CI means. 

 

Table 4. Means, 90% confidence intervals, and standard deviation for team interaction 

exploration frequency between clusters. 

Cluster Low-performing Middle-performing High-performing 

Mean 36.486 22.483 45.583 

90% CI 4.527 3.275 5.397 

SD 18.987 12.678 20.893 

 

Table 5. Means, 90% confidence intervals, and standard deviation for team interaction 

exploration frequency by missions. 

Mission 1 2 3 4 5 6 7 8 9 10 

Mean 42.842  36.474 42.421  36.421 29.632  30.474 28.158 26.105 32.158  44.684  

90% CI 5.382 10.195 11.921 8.372 6.322 9.270 9.524 8.934 11.064 11.153 

SD 11.167 21.151 24.733 17.36 13.116 19.234 19.760  18.535 22.955 23.140 
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CHAPTER 8 

DISCUSSION 

The results of this study should be considered in the context this synthetic task 

environment, the synthetic pilot’s capabilities, and the qualities of team clusters that were 

compared. The simulated aerial reconnaissance task, without roadblock injects, is 

relatively similar throughout each mission. Target waypoints have similar constraints 

with varying parameters, and each role workflow follows a similar routine. Changing 

constraints introduced by display failures, pilot failures, and malicious cyber-attacks 

affect the team’s capacity to effectively respond. For display failures, solutions involved 

exchanging status information that was not normally involved in routine team 

interactions. By contrast, pilot failures and malicious attacks benefit from well-calibrated 

mental models of the synthetic teammate at normal capacity. The synthetic pilot normally 

has access to relevant status information and generates a range of communications via a 

rules-based script. It also has a few notable coordination pitfalls, such as failing to 

confirm understanding (i.e. closed-loop communication), insensitivity to subtle indicators 

of a teammate’s status, or lack of anticipation. A human pilot would have been more 

capable to fulfill these aspects of teamwork and discover novel ways to coordinate. 

Overcoming roadblocks in this task meant precisely that for the navigator and 

photographer.  

Although team clusters were grouped by ordinal levels of performance, ANOVAs 

for each performance variable provide foundation for a more qualitative descriptions of 

between-group differences. High-performing teams had about the same target processing 

efficiency and number of overcome roadblocks as middle-performing teams. However, 
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middle-performing teams had relatively similar mission performance as low-performing 

teams. This result suggests that for middle-performing teams, maintaining the same level 

of performance under local goals as high-performing teams incurred greater costs to 

global mission objectives. Mission performance, as a composite of task-relevant 

parameters, reflects a team’s performance holistically compared to single-component 

measures of efficiency and overcome roadblocks.  

This study’s primary hypothesis was that high-performing teams would have a 

greater number of exploratory text-chat messages than middle- and low- performing 

teams. The result showed that high-performing teams exchanged more exploratory 

messages than middle-performing teams. This result is interesting for a number of 

reasons. For one, there was no significant difference in the number of exploratory team 

interactions between high-performing teams and low-performing teams. It may be that 

the content or timing of low-performing teams’ interaction exploration led to worse 

performance. For instance, the navigator sending waypoint information for standard 

waypoints might be considerably detrimental for target processing efficiency and overall 

mission performance. Conversely, high-performing teams may have been more strategic 

by exploring team interactions after coordinating the photograph of a target waypoint. 

Individuals in teams may have also interpreted environmental feedback inaccurately, 

leading to team interaction exploration that were irrelevant or counterproductive.  

Another interesting component of this result is that middle-performing teams had 

explored team interactions least among the clusters. This demonstrates that the 

association between the frequency of explored team interactions and team performance 

may have a nonlinear relationship. Similar to previous findings in this task environment 
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(Demir et al., 2017), flexibility in HATs may not always translate to team effectiveness, 

particularly with regards to consistently accomplishing routine tasks. Middle-performing 

teams may have achieved adequate levels of target processing efficiency without 

exploring interactions over time. This pattern is consistent with the notion that focusing 

on routine performance only may lead to brittleness during unexpected events (Cooke et 

al., 2007). An alternative explanation for the effect of exploratory interactions on team 

performance in novel and degraded conditions might be that a third mediating variable is 

generating both phenomena, such as trust. The association between high team 

performance and team interaction exploration may explain recent findings in the same 

task environment that high-performing teams had high team trust (McNeese et al., 2019). 

That is, team interaction exploration may have facilitated trust calibration over time.  

The second hypothesis was that teams would have more novel chat-messages in 

missions with degraded conditions than in missions without degraded conditions. This 

hypothesis was supported by the repeated measures ANOVA indicating more unique 

messages in the first session with the exception of Mission 10. Teams had larger amounts 

of unique text-chat messages in missions with novel degraded conditions than in missions 

with repeated conditions. Given Mission 1 is the beginning of the team’s interaction 

history, more unique messages would be expected and not explained by degraded 

conditions as this was the baseline condition.  

An alternative explanation for this result may be that teams exploring interactions 

less over time which may also be attributable to process learning over time. That is, as 

teams explored interactions, they identified effective interactions and repeated them. 

However, this explanation does not hold for Mission 10, which had a malicious attack 
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and similar numbers of unique messages as Mission 1. Given that the task-environment 

placed the team in a relatively narrow range of tasks and situations, these results may not 

generalize to team tasks involving more diverse situations, such as victim identification 

following a natural disaster, or movement to contact on a battlefield. Additionally, 

because the agent was not designed with the capability to explore novel interactions, and 

participants were encouraged to provide details to the agent without misspellings, team 

interaction exploration may be different as expectations of the synthetic agent’s 

capabilities are calibrated.  

Further research could use real-time or interaction-based measures of these 

constructs, such as trust, cohesion, and flexibility to assess the relationship between these 

variables. Indeed, dynamical measures have been applied to human-agent teaming to 

model team performance (Demir et al., 2018) and capture team flexibility (Demir et al., 

2019). The pattern-level of team interaction exploration could be used to elaborate this 

finding in terms of when teams explore, for how long, and with what level of 

predictability. Furthermore, it may also be relevant to view exploratory interaction 

dynamics at the system-level (Grimm et al., 2018). Assessing the states of other system 

components could show their relationship with team interaction exploration, and perhaps 

reveal a larger pattern of system-level exploration. Qualitative methods may also be 

applied in the form of content analysis grounded in activities associated with team 

resilience in existing literature such as anticipation and team situation awareness. 
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CHAPTER 9 

LIMITATIONS 

Considering a text-message as exploratory with a binary categorical code has 

relatively low-resolution in capturing team interaction exploration. In reality, team 

interactions involve several dimensions that would require a more complex and rigorous 

codification to understand in depth (McQueen et al., 1998). For instance, patterns of team 

interactions over time may also have exploratory and exploitative (i.e. repeating prior 

patterns) qualities. Furthermore, interactions may exploit models of teamwork while 

having minor exploratory qualities, or vice versa. Further content analysis, such as 

assessing exploratory verbal behaviors (Demir et al., 2016) or theme identification of 

task, teamwork, and team resilience related content may also elaborate the findings in this 

study. The sample size in this study was relatively low in this study, leading to reduced 

power. To compensate for this, p-values of p <  0.10 were considered significant in the 

analysis of exploratory team interactions at the cost of increased type-I error rate. 

Notably, effect sizes were large for both the clustering (η2 = 0.307) and mission effects (η2 

=  0.364), suggesting both variables affected team interaction exploration as operationally 

defined in this study substantially.  
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CHAPTER 10 

CONCLUSION 

As a team explores interactions, they may find opportunities to expand and refine 

teamwork. This can have immediate and long-term consequences for team effectiveness. 

Team effectiveness means performing tasks to achieve primary goals and adaptation to 

complex problems which that have not been prespecified. Rare and unexpected events 

occur in the real world and these events may compromise safety if unanswered or may 

represent undetected opportunities. Teams may work together for extended periods of 

time without experiencing events that require team resilience. However, a good team 

recognizes the need to be resilient and works collectively to cultivate such a state, even in 

the absence of challenges. Team interactions affect team resilience for better or for 

worse, but for most teams, there is wide array of possible team interactions that have 

value and have never been explored. The findings in this study suggest that team 

interaction exploration is a potentially interesting metric to assess HAT resilience.  

The capacity for humans to explore team interactions, and intentionally utilize 

feedback from the environment, may not be paralleled by machines for some time. Thus, 

there are several questions remaining about the role of autonomous agents in exploratory 

team interactions. For one, what is the role of machine learning in exploring team 

interactions with these agents? Consequences such as unintended machine learning co-

adaptation as a result of human exploration may reduce the effectiveness of human 

exploratory behavior patterns. If machine learning algorithms could distinguish between 

exploratory and exploiting team interactions, they may avoid adapting their model of 

teamwork to include these interactions. Alternatively, agents with the capacity to explore 
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interactions with human teammates could improve the agent’s ability to predict its human 

teammates and improve team flexibility. It is worth considering if artificial agents should 

explore team interactions, given their capacities of sensing and interpreting information. 

Complex and dynamic environments will pose constraints to teams that are not 

immediately sensible to the autonomous agent. This study showcases team interactions in 

situations where human teammates were the only agents who could troubleshoot 

problems. In general, the lack of awareness in a synthetic agent suggests that it would 

also have difficulty effectively judging how the cost or benefit of an exploratory 

interaction. Thus, a more appropriate solution to highly rigid HATs may be to encourage 

proactive team interaction exploration in future training interventions or through interface 

designs. 

 



  34 

REFERENCES 

Allen, J. E., Guinn, C. I., & Horvitz, E. (1999). Mixed-initiative interaction. IEEE  

Intelligent Systems and their Applications, 14(5), 14-23. 

 

Beekman, M., Gilchrist, A. L., Duncan, M., & Sumpter, D. J. (2007). What makes a  

honeybee scout?. Behavioral Ecology and Sociobiology, 61(7), 985-995. 

 

Bowers, C., Kreutzer, C., Cannon-Bowers, J., & Lamb, J. (2017). Team resilience as a 

second-order emergent state: A theoretical model and research directions. 

Frontiers in psychology, 8, 1360. 

 

Bradshaw, J. M., Hoffman, R. R., Woods, D. D., & Johnson, M. (2013). The seven  

deadly myths  of" autonomous systems". IEEE Intelligent Systems, 28(3), 54-61. 

 

Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., ... &  

Van Hoof, R. (2003). Adjustable autonomy and human-agent teamwork in 

practice: An interim report on space applications. In Agent autonomy (pp. 243-

280). Springer, Boston, MA. 

 

Brewer, R. W., Cerame, E., Pursel, E. R., Zimmermann, A., & Schaefer, K. E. (2018,  

July). Manned-Unmanned Teaming: US Army Robotic Wingman Vehicles. In 

International Conference on Applied Human Factors and Ergonomics (pp. 89-

100). Springer, Cham. 

 

Caporale, L. H., & Doyle, J. (2013). In Darwinian evolution, feedback from natural  

selection leads to biased mutations. Annals of the New York Academy of Sciences, 

1305(1), 18-28. 

 

Chakraborti, T., Sreedharan, S., Grover, S., & Kambhampati, S. (2019, March). Plan  

explanations as model reconciliation. In 2019 14th ACM/IEEE International 

Conference on Human-Robot Interaction (HRI) (pp. 258-266). IEEE. 

 

Chiou, E. K., & Lee, J. D. (2016). Cooperation in human-agent systems to support  

resilience: A microworld experiment. Human factors, 58(6), 846-863. 

 

Cooke, N. J., Gorman, J. C., Myers, C. W., & Duran, J. L. (2013). Interactive team  

cognition. Cognitive science, 37(2), 255-285. 

 

Cooke, N. J., Gorman, J., Pedersen, H., Winner, J., Duran, J., Taylor, A., ... & Rowe, L.  

(2007).  Acquisition and retention of team coordination in command-and-control. 

COGNITIVE ENGINEERING RESEARCH INST MESA AZ. 

 

Cooke, N. J. & Shope, S. M. (2005). Synthetic task environments for teams: CERTT’s  



  35 

UAV-STE. Handbook on Human Factors and Ergonomics Methods (46-1-46-6). 

Boca Raton, FL: CLC Press, LLC.  

 

Cox, M. T. (2013). Goal-driven autonomy and question-based problem recognition. In  

Second Annual Conference on Advances in Cognitive Systems 2013, Poster 

Collection (pp. 29-45). 

 

Demir, M., Likens, A. D., Cooke, N. J., Amazeen, P. G., & McNeese, N. J. (2019). Team  

Coordination and Effectiveness in Human-Autonomy Teaming. IEEE 

Transactions on Human-Machine Systems, 49(2), 150-159. 

 

Demir, M., McNeese, N. J., & Cooke, N. J. (2017). Team situation awareness within the 

context of human-autonomy teaming. Cognitive Systems Research, 46, 3-12. 

 

Demir, M., McNeese, N. J., & Cooke, N. J. (2018). The Impact of Perceived  

Autonomous Agents on Dynamic Team Behaviors. IEEE Transactions on 

Emerging Topics in Computational Intelligence, 2(4), 258-267. 

 

Demir, M., McNeese, N. J., & Cooke, N. (2018, January). Team synchrony in human- 

autonomy teaming. In AHFE 2017 International Conference on Human Factors 

in Robots and Unmanned Systems, 2017 (pp. 303-312). Springer. 

 

Edmondson, A. (1999). Psychological safety and learning behavior in work teams.  

Administrative science quarterly, 44(2), 350-383. 

 

Endsley, M. (2015). Autonomous horizons: System autonomy in the air force–a path to  

the future (volume i: Human autonomy teaming). US Department of the Air 

Force, Washington. 

 

Fitts, P. M. (Ed.) (1951). Human engineering for an effective air-navigation and traffic- 

control system. Washington, DC: National Research Council.  

 

Fong, T., Thorpe, C., & Baur, C. (2001). Collaborative control: A robot-centric model  

for vehicle teleoperation (Vol. 1). Pittsburgh: Carnegie Mellon University, The 

Robotics Institute. 

 

Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and  

the acquiring of knowledge. Annual review of psychology, 39(1), 1-42. 

 

Grimm, D., Demir, M., Gorman, J. C., & Cooke, N. J. (2018). Systems Level Evaluation  

of Resilience in Human-Autonomy Teaming under Degraded Conditions. In 2018 

Resilience Week (RWS) (pp. 124-130). IEEE. 

 

Gorman, J. C., Cooke, N. J., & Amazeen, P. G. (2010). Training adaptive teams. Human  

Factors, 52(2), 295-307. 



  36 

 

Gorman, J. C., Cooke, N. J., & Winner, J. L. (2006). Measuring team situation awareness  

in decentralized command and control environments. Ergonomics, 49(12-13), 

1312-1325. 

 

Groom, V., & Nass, C. (2007). Can robots be teammates?: Benchmarks in human–robot  

teams. Interaction Studies, 8(3), 483-500. 

 

Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal foraging in semantic memory. 

Psychological review, 119(2), 431. 

 

Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & Cognitive Search  

Research Group. (2015). Exploration versus exploitation in space, mind, and  

society. Trends in cognitive sciences, 19(1), 46-54. 

 

Hoffman, R. R., & Hancock, P. A. (2017). Measuring resilience. Human factors, 59(4),  

564-581. 

 

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for Explainable  

AI: Challenges and Prospects. arXiv preprint arXiv:1812.04608. 

 

Hollnagel, E. (2012). A tale of two safeties. Nuclear Safety and Simulation, 4(1), 1-9. 

 

Hollnagel, E. (2009). The four cornerstones of resilience engineering. In Resilience  

Engineering Perspectives, Volume 2 (pp. 139-156). CRC Press. 

 

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., Van Riemsdijk, M. B., &  

Sierhuis, M. (2014). Coactive design: Designing support for interdependence in 

joint activity. Journal of Human-Robot Interaction, 3(1), 43-69. 

 

Kelso, J. S. (2002). The Complementary Nature of Coordination Dynamics: Self- 

organization and Agency. Nonlinear Phenomena in Complex Systems, 5(4), 364-

371. 

 

Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich, P. J. (2004). Ten  

challenges for making automation a" team player" in joint human-agent activity. 

IEEE Intelligent Systems, 19(6), 91-95. 

 

Kostopoulos, K. C., & Bozionelos, N. (2011). Team exploratory and exploitative  

learning: Psychological safety, task conflict, and team performance. Group & 

Organization Management, 36(3), 385-415. 

 

Kostopoulos, K. C., Spanos, Y. E., & Prastacos, G. P. (2013). Structure and function of  

team learning emergence: A multilevel empirical validation. Journal of 

Management, 39(6), 1430-1461. 



  37 

 

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM  

Computing Surveys (CSUR), 26(1), 87-119. 

 

McNeese, N. J., Demir, M., Cooke, N. J., & Myers, C. (2018). Teaming with a synthetic  

teammate: Insights into human-autonomy teaming. Human factors, 60(2), 262-

273. 

 

MacQueen, K. M., McLellan, E., Kay, K., & Milstein, B. (1998). Codebook development 

for team-based qualitative analysis. CAM Journal, 10(2), 31-36. 

 

Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., & Procci, K. (2016).  

Intelligent agent transparency in human–agent teaming for Multi-UxV 

management. Human factors, 58(3), 401-415. 

 

Miller, T. (2018). Explanation in artificial intelligence: Insights from the social sciences.  

Artificial Intelligence. 

 

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels  

of human interaction with automation. IEEE Transactions on systems, man, and 

cybernetics-Part A: Systems and Humans, 30(3), 286-297. 

 

Sarter, N. B., Woods, D. D., & Billings, C. E. (1997). Automation surprises. Handbook of  

human factors and ergonomics, 2, 1926-1943. 

 

Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction. Reviews of  

human factors and ergonomics, 1(1), 89-129. 

 

Woods, D. D. (2018). The theory of graceful extensibility: basic rules that govern  

adaptive systems. Environment Systems and Decisions, 38(4), 433-457. 

 

Woods, D. D., Tittle, J., Feil, M., & Roesler, A. (2004). Envisioning human-robot  

coordination in future operations. IEEE Transactions on Systems, Man, and 

Cybernetics, Part C (Applications and Reviews), 34(2), 210-218. 

 

Woods, D., & Wreathall, J. (2003). Managing risk proactively: The emergence of  

resilience engineering. Columbus: Ohio University. 

 

 

 



  38 

APPENDIX A 

MATERIALS AND EQUIPMENT 



  39 

Effective Communication Reference Guides: reference guides (Figure 1 and 2) were 

provided in the participants’ workstations. They were told that following this reference 

guide would help them communicate effectively with their synthetic teammate. 

Effective Communication – DEMPC 
This effective communication cheat shows you how to communicate effectively 

with the synthetic agent. Be sure that you send information in a simple way as 
demonstrated below, and avoid sending unnecessary information to other team 
members as one of them is a synthetic teammate. 

A good way to achieve effective communication is to communicate using 
messages that are unambiguous and concise, without being cryptic. As the DEMPC, you 
are responsible for communicating information about the sequence of waypoints that 
are to be visited, to the AVO, during the course of a 40 minute mission. For each 
waypoint, you should communicate the name and type of the waypoint. You should 
also communicate any airspeed or altitude restrictions. Finally, you should 
communicate the effective radius. Here is a sample text message that communicates all 
this information: 
 

DEMPC to AVO: The next waypoint is H-area. It is a target. The airspeed restriction is 
from 50 to 200 knots. There is no altitude restriction. The effective radius is 5 miles. 
 

The first sentence identifies and names the waypoint. The second sentence 
specifies the type of the waypoint. The third sentence specifies the airspeed restriction. 
The fourth sentence notes that there is no altitude restriction. The last sentence 
conveys the effective radius. All this information is needed by the AVO to perform his or 
her piloting task. 
Other examples to report the current status of the UAV: 
 

DEMPC to AVO: The current distance from H-AREA is 4.5, and the current bearing is 250. 
 

DEMPC to AVO: The current altitude for H-AREA is 2500. The current airspeed for H-
AREA is 250. 
 

For the purposes of this experiment, you should not assume that the AVO and PLO are 
native speakers of English. There may be limitations in their understanding of English. 
For this reason, you should avoid highly cryptic and esoteric language. For example, the 
above information could have been provided as: 
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DEMPC to AVO: H-area=target. A=50-200. No alt. restr. R=5. 
 

Besides avoiding cryptic and ambiguous language, it is best to convey all the information 
in a single message. If this is not done, then messages from the PLO to the AVO may 
interrupt your message and cause confusion. For example, consider the following 
sequence of messages sent to the AVO: 
 

DEMPC to AVO: The next waypoint is SEL. It is an exit. 
PLO to AVO: Raise altitude above 3000. 
DEMPC to AVO: There are no restrictions. 
 

If the PLO’s message is about the current waypoint H-area, and not the next waypoint 
SEL, then the AVO may be confused and assume that the altitude restriction applies to 
SEL. If so, the AVO will be further confused by the next message stating there are no 
restrictions.  
 

Figure 6. Navigator reference guide for effective communication. 

Effective Communication – PLO 

This effective communication cheat shows you how to communicate effectively with the 
synthetic agent. Be sure that you send information in a simple way as demonstrated 
below, and avoid sending unnecessary information to other team members as one of 
them is a synthetic teammate. 
 

A good way to achieve effective communication is to communicate using messages that 
are unambiguous and concise, without being cryptic. As the PLO, you are responsible for 
communicating information about the photo restrictions for each target waypoint that 
is to be visited, to the AVO, during the course of a 40 minute mission. For each target 
waypoint, you should communicate the name of the waypoint and the photo restriction. 
Here are a couple of sample text messages that communicate this information: 
 

PLO to AVO: Raise altitude above 3000 feet for H-area. 
 

PLO to AVO: Lower altitude below 3000 feet for F-area. 
 

You are also responsible for notifying the AVO when a photo has been taken. Here’s a 
sample: 
 

PLO to AVO: Got the photo. Let’s go. 
 

You may also want to encourage the AVO to go faster so more photos can be taken: 
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PLO to AVO: Go faster. 
 

In some circumstances (e.g. when waypoints are close together), you may need more 
time to take a photo, in which case you may want to communicate the opposite: 
 

PLO to AVO: Go slower. 
 

If you fail to get a photo of a target waypoint, you may need to request that the AVO 
return to the waypoint: 
 

PLO to AVO: Go back to H-area. 
 

Other examples to report the current status of the UAV: 
 

PLO to AVO: The current distance from H-AREA is 4.5, and the current bearing is 250. 
 

PLO to AVO: The current altitude for H-AREA is 2500. The current airspeed for H-AREA is 
250. 
 

For the purposes of this experiment, you should not assume that the AVO and DEMPC 
are native speakers of English. There may be limitations in their understanding of 
English. For this reason, you should avoid highly cryptic and esoteric language. For 
example, the photo restriction could have been provided as: 
 

PLO to AVO: A>3000 

 

Figure 7. Photographer effective communication cheat sheet. 
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APPENDIX B 

ROADBLOCKS 
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Display failure II 

 

Photographer’s upper screen during normal 

conditions. 

Photographer’s upper screen during 

automation failure I 

Figure 8 The photographer’s screen before and after display failure I. 

 

 

  

    Pilot’s upper screen during normal 

conditions. 

Pilot’s upper screen during automation   

failure II. 

Figure 9. The pilot’s screen before and after display failure II. 
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Display failure III 

 

   

Pilots’s upper screen during normal 

conditions. 

Pilot’s upper screen during automation 

failure   III. 

 

Figure 10. The pilot’s screen before and after display failure III. 
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APPENDIX C 

OTHER MEASURES 
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Verbal behavior 

 Each chat message was coded as one or more verbal behavior which characterize 

relevant team interaction themes for team coordination. The verbal behaviors were 

general status update, inquiries to others, suggestion to others, planning ahead, positive 

communication, negative communication, unclear communication, repeated request, 

anthropomorphism, or objectifying behavior. 

TEAM BEHAVIOR DEFINITIONS 

 
These buttons are used to indicate the type of communication for the 

message currently under review. More than one behavior may be selected per 
message. Not all messages will have an applicable coding, and therefore use of 
these buttons is not required to record a message. 

Context of the situation and surrounding messages is important. Many 
messages may easily become negative communications if the team is not 
working together well. On the flipside, something may appear negative when it 
was intended to be helpful. Think about each message in context, on a case-by-
case basis. 
 

  
 
Negative Communication (a disadvantageous communication) 

• Argue 
o A text fight between teammates, likely due to conflicting goals. 
o Note:  arguments can take place in a constructive manner with a 

reasonable resolution, and may not be considered negative 
communications (possibly better considered a negotiation). 

• Specific to chat conditions 
o Lag in response – PLO asks a question that is not answered until 

multiple unrelated texts have been posted. 
o Incorrect destination – excluded an intended recipient from a 

message 
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• Criticism 
o Note: Properly constructive criticism would be positive 

communication. 
o Note: Also, any kind of non-constructive criticism is negative 

communication 

• Wrong Destination 
o Note: Sometimes a message does not get sent to the correct 

destination, and the participant resends the message. This may 
appear to be a repeated message when in reality it is not (though it 
would be a negative communication), so make sure all instances 
have the same recipients. 

 
Positive communication (an advantageous communication) 

• Help out 
o PLO tells DEMPC, “Please give next target info to AVO.” 
o Note: This can also be done out of exasperation, which might be 

considered negative, so pay attention to context. 

• Acknowledge members’ speech 
o “Roger that.” 
o “Okay” 

 

• Giving praise 
o Good job guys! 

• Clarification 
o AVO asks DEMPC to clarify what was meant in a previous 

message. 
o Note: This can also be done out of exasperation, which might be 

considered negative, so pay attention to context. 
 
Repeated Requests 

• Same info or action requested two or more times 
o PLO asks repeatedly for information needed to take a photo. 

 
Unclear Communications 

• Misspellings, ambiguous terms, experimenter cannot understand 
 
General Status Update 

• Inform others of current status 
• AVO tells PLO “I am at 2500 feet now.” 

 
Inquiry About Status of Others 

• Inquire about current status of others 
o DEMPC asks AVO “How are we doing on our heading/fuel etc.” 

• Express concern 
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o DEMPC asks AVO “Are we headed to the next target? We appear 
to be off course.” 

 
Planning Ahead 

• Anticipate next steps 
o AVO asks DEMPC, “Where are we going after LVN?” 
o Note: Asking the above question might not be considered planning 

if they are currently ready to move on to the next point. 

• Creating rules for future encounters 
o AVO says to PLO “If you notice me flying to high or fast, or just right 

for pictures let me know so I can remember the speed and altitudes 
you prefer.” 

 
Suggestions to Others 

• Make suggestions to other members 
o DEMPC tells AVO to increase speed in route to targets and slow 

down upon arrival. 
 

Anthropomorphism 

• Referring to the synthetic teammate with qualities usually described for 
human.   

o Using gendered pronouns (him/her) 
o Attributing human physical characteristics (AVO, what do you see, 

feel etc.), use emotional pleas toward AVO (please etc). 
 
Objectify 

• Referring to the synthetic teammate with qualities usually described for 
objects.  

o Using genderless pronouns (it), emotionless pleas (straightforward 
commands). 
 

Figure 11. Reference guide for verbal behaviors. 

Process ratings  

 Process ratings subjectively assess the quality of team situation awareness, 

decision making, and communication on a scale of 0 to 4. A score of zero represented 

critical, negligent, or controlling team behavior, while a four represented clear 

acknowledgement, accurate sharing, and mutual awareness of critical information. 
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RECORDING PROCESS RATING 
 

 

MAKING THE PROCESS RATING 

 

The process rating is made only once per photographable target. MAKE THE PROCESS RATING 

AFTER THE TEAM HAS LEFT THE RADIUS OF THE TARGET.   Once a team has visited and left a 

target, you can rate process at that point.  If a team visits a target more than once, rate process for the 

FIRST visit to the target only.  You can always make a comment if the team visits the target more than 

once. Both the talking AND the non-talking experimenter will make individual process ratings, and both 

will have a process rating window on their screens. Both are expected to look at context before making 

their rating.   

 

When you click the button to make your rating it is automatically written to the output file. 

 

DETERMINING THE PROCESS RATING 

The experimenters should independently rate the team’s process at each target.  The non-talking 

experimenter should fill in the rating in the coordination log while the talking experimenter has their own 

process rating window.  The rating is made on a scale from 0 to 4 where 0 = poor process and 4 = excellent 

process. 

 

Team process is about the team's teamwork behavior.  This rating is the experimenters’ impression of the 

team's process as a whole.  Note that process measurement is distinct from performance measurement; a 

team can say and do all the right things, but still perform poorly due to weak knowledge, lack of skill, evil 
gnomes, etc. (i.e. A team can have a great process, but a terrible performance score).  Likewise a team can 

have poor process but accidentally produce a high score. 

 

Our index of team behavior comes to us in the chat log.  To make your decision about whether or not the 

team is making “good” actions at each target, consider things like: 

a. How is the team communicating and coordinating? 

b. Is the team making good decisions? 

c. Does the team have good situation awareness behaviors? 

Below are some definitions and examples of things you might look for. 

 

Some Definitions 

Communication is how well the team speaks to one another.  Good communication involves clarity, 

acknowledgement, questioning as necessary, and messages that are not too terse or too wordy.   

 

Coordination has to do with passing information in a timely and adaptive manner; getting the right 

information to the right person at the right time. 

 

Decision Making at the team level in the UAV task at a target waypoint primarily happens through AVO-

PLO negotiation - jointly deciding on the best airspeed and altitude.   

 

Situation Awareness at the team level in the UAV task at a target waypoint has to do with noticing change 

in the environment.  At a target waypoint it could be a change in UAV positioning, unusual restrictions, or 

new camera settings.  Through communication the new event is shared. 

 

  For example, asserting or failing to assert critical information when deciding whether or not to skip a 

target, would go under "Decision making." Calling each other names would go under "Communication and 

Coordination".  Arguing in circles is "Decision making," but arguing slowly is "Communication." 
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Again, "Situation Awareness Behaviors" can be measured as a form of communication. But it is 

specifically content-oriented communication about the immediate environment. Conveying good or poor 

understanding of the immediate past, present, or near future all represent "Situation Awareness behavior." 
 

Communication and Coordination Examples     
4 - Made clear acknowledgement when an important fact was passed 

3 - Compensated or clarified when a team member performed their job poorly 

2 - Failed to acknowledge when an important fact was passed             

1 - Failed to get better understanding from confusing, unclear, or incomplete communication 

0 - Criticized or did nothing when a team member performed their job poorly 
 

Team decision-making Examples      

4 - Asserted accurate and critical counter-arguments when making decisions 

3 - Argued logically, or with smooth resolution (esp. at waypoints). 

2 - Failed to assert or they asserted wrong facts (e.g. "we can skip this target, because it's not 

priority")                            

1 - Bickered or got bogged down by arguing (esp. at waypoints) 

0 - One member in control, over-asserts for selfish goals 
 

Team situation awareness behaviors Examples 
4 - Team made sure that everyone knew about upcoming targets (e.g. stated that a target was 

approaching AND acknowledged the statement) 

3 - Asserted accurate information about the immediate situation  

2 - Asserted inaccurate information about the immediate situation 

1 - Team got close to a target without clarifying that it was a target. 

0 - No or refusal to pass information to teammates 

 

Note that the experimenter only rates overall process from 0-4, but should consider 

each of the four dimensions equally when doing so. 

 

Examples of 0: 

•  They move on without going to a waypoint. There was no attempt to overrule 

this. 

o DEMPC – AVO “disregard ___. Fly to ___” 

• No attempts to solve problems, they just continue to the next point. 

o PLO – DEMPC “Photo function’s red right now…” 

o DEMPC – PLO “disregard ___. Proceed to ___” 

 

Examples of 1: 

• They do not get nor ask for all of the necessary information before hand, but are 

still trying to get out of the current situation. 

o AVO – DEMPC “whats alt for wp13 ihave a warning” 

• Confusing question is asked by teammate who does not yet understand their roles 

but no attempts are made to clarify, they just get ignored. 

o PLO – AVO “At what steady airspeed and altitude is the picture?” 

 

Examples of 2: 

• Lack of acknowledgment, and no check to confirm that information was received. 

However, the job is still done with no problems. Basically, everyone understands 
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that everything is running smoothly, and acknowledgment is implied. (this 

generally works well until roadblocks are introduced) 

o PLO – AVO “Hold steady airspeed and altitude” 

o PLO – AVO and DEMPC “___ picture accepted” 

o DEMPC – PLO and AV0 “TGT ___ runway 5 mile radius speed 100-300 

ALT 1000-4000” 

o DEMPC – PLO and AVO “___ is ROZ exit” 

o PLO – AVO and DEMPC “___ picture accepted” 

o PLO – AVO and DEMPC “___ picture accepted” 

 

Examples of 3: 

• AVO asks for more information ahead of time to help plan their actions, and 

DEMPC will comply, but possibly not early enough to help. They do confirm that 

information is not needed immediately. Without that confirmation this may be 

considered a 1. 

o AVO – DEMPC “need more waypts” 

o DEMPC – AVO “I’ll give new route after PRK.” 

o DEMPC – AVO “You have OAK and PRK right?” 

o AVO – DEMPC “yes” 

 

Examples of 4: 

• Establishes plan for future coordination, which includes acknowledgment of all 

situations. 

o AVO – PLO “If you notice me flying to high or fast, or just right for 

pictures let me know so I can remember the speed and altitudes you 

prefer.” 

o PLO – AVO “Okay” 

• Appropriate acknowledgement made that information was received. Future plans 

are confirmed, and all teammates are being coordinated. 

o AVO – DEMPC “altitude?” 

o DEMPC – AVO “No altitude restrictions” 

o AVO – DEMPC “roger” 

o AVO – DEMPC “are all of the remaining points targets? Or entry or exit 

points?” 

o DEMPC – AVO “___, ___, ___ are targets. ___ is exit point” 

o AVO – PLO “let me know when I can go to next target” 

 

Figure 12. Coding guide for process ratings. 

 

Coordinated Awareness of Situation in Teams (CAST) 

 Coordinated Awareness of Situation in Teams is an interaction-based measure of 

team situation awareness capturing timely passing of information around a situation 
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change (Gorman et al., 2006). In this study, coordination around the various roadblocks 

were captured using cast. For each failure, interactions that coordinate perception of 

events, coordinated action regarding the situation, and whether or not the team overcomes 

the roadblock. 

Subjective self-report 

 Subjective self-report measures consist of the NASA TLX workload assessment, 

task knowledge, and demographics questions. The demographics questions assessed basic 

information as well as military experience, experience in robotics or UAV control, 

computer use, experience texting, communication preference, multiplayer video game 

experience, teamwork experience, confidence in individual and team member 

performance, and perceptions of the synthetic agent. Additionally, trust and 

anthropomorphism scales were applied. The trust scale was constructed based on an 

assessment of organizational trust, while anthropomorphism was conceptually generated. 

Biometrics 

Facial expression was recorded for positive and negative valence using the 

Affectiva application in the iMotions software for each participant teammate. This 

recording will last for the entire duration of the experiment, while only the mission 

recordings will be used. 
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	Effective Communication Reference Guides: reference guides (Figure 1 and 2) were provided in the participants’ workstations. They were told that following this reference guide would help them communicate effectively with their synthetic teammate.
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