
Analysing the impact of renewable generation on the locational marginal price (LMP)

forecast for California ISO

by

Chinmay Suhas Vad

A Thesis Presented in Partial Fulfilment
of the Requirements for the Degree

Master of Science

Approved April 2019 by the
Graduate Supervisory Committee:

Christiana B. Honsberg, Chair

Richard R. King
Sarah Kurtz

ARIZONA STATE UNIVERSITY

August 2019

i

ABSTRACT

Accurate forecasting of electricity prices has been a key factor for bidding

strategies in the electricity markets. The increase in renewable generation due to

large scale PV and wind deployment in California has led to an increase in day-

ahead and real-time price volatility. This has also led to prices going negative due to

the supply-demand imbalance caused by excess renewable generation during

instances of low demand. This research focuses on applying machine learning

models to analyse the impact of renewable generation on the hourly locational

marginal prices (LMPs) for California Independent System Operator (CAISO).

Historical data involving the load, renewable generation from solar and wind, fuel

prices, aggregated generation outages is extracted and collected together in a

dataset and used as features to train different machine learning models. Tree- based

machine learning models such as Extra Trees, Gradient Boost, Extreme Gradient

Boost (XGBoost) as well as models based on neural networks such as Long short

term memory networks (LSTMs) are implemented for price forecasting. The focus is

to capture the best relation between the features and the target LMP variable and

determine the weight of every feature in determining the price.

The impact of renewable generation on LMP forecasting is determined for

several different days in 2018. It is seen that the prices are impacted significantly by

solar and wind generation and it ranks second in terms of impact after the electric

load. The results of this research propose a method to evaluate the impact of several

parameters on the day-ahead price forecast and would be useful for the grid

operators to evaluate the parameters that could significantly impact the day-ahead

price prediction and which parameters with low impact could be ignored to avoid an

error in the forecast.

ii

To my parents,

Mr. Suhas Madhukar Vad & Mrs. Seema Suhas Vad

and my grandparents,

Late Mr. Madhukar Raghunath Vad

&

Mrs. Sudha Madhukar Vad

iii

ACKNOWLEDGMENTS

 My sincere thanks to my advisor, Dr. Christiana Honsberg for believing in me from right

when I took a course with her in Spring 2017. She gave me the chance to volunteer under

her for a project which led to building up my interest in renewable energy. Getting an

opportunity to work under her was the best thing happened to me during my Masters at

Arizona State University.

 I would also like to mention Dr. Sarah Kurtz, for being an excellent mentor and critic at

times. I feel privileged to have you on my committee and would like to thank you for

helping me learn the basics of writing a technical paper. You’ve been an excellent guide for

our conference paper and it wouldn’t have been possible to have a clear focus for the same

without you.

 My sincere thanks to Dr. Richard King who has been a pillar of support towards my thesis

and the conference paper. Your inputs towards the conference paper were extremely

valuable and helpful. A special mention to Dr. Stuart Bowden for taking out time to discuss

his interesting projects and appreciating my inputs on the same.

 Not many have thirteen priorities in their life and I am lucky to have those. The ‘Wolfpack’

made me the person I am today, and I feel extremely proud to have them in my life. Finally,

I would like to thank my partner, Apoorva Joshi for her undying support and constant

motivation. You believed in me more than I do in myself. And, my parents for their constant

support and motivation.

 Being more than 8000 miles away from home for around two years would not have been

easy had it not been my roommates, Samir Chaudhari and Aditya Bheemavarapu. The

constant support that you both provided is something I can be never thankful enough of.

iv

TABLE OF CONTENTS
Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF SYMBOLS .. xi

CHAPTER

INTRODUCTION .. 1

1.1 Problem Statement and Motivation ... 1

1.2 Understanding the Supply-Demand Curve ... 2

1.3 LMP and Trading Hub Price Definition .. 5

1.3 Thesis Outline .. 7

LITERATURE SURVEY .. 9

DATA COLLECTION & CLEANING .. 11

3.1 Collecting the Data ... 11

3.2 Data Cleaning and Processing ... 12

ANALYSING THE ISO DATA ... 14

4.1 Variation of Fuel Prices & Load ... 14

4.2 Variation of Renewable Generation & Generation Outages 17

4,3 Variation of Hourly LMPs .. 19

4.4 Impact of Renewable Generation on Hourly LMPs ... 20

ML ALGORITHMS FOR FORECASTING TRADING HUB PRICES 26

5.1 Describing the Models Used for Forecasting ... 26

v

5.2 Forecasting Procedure .. 32

RESULTS ... 35

6.1 Forecasting Results .. 35

6.2 Impact of Every Feature on the Locational Marginal Price (LMP) 43

CONCLUSION AND FUTURE WORK ... 49

7.1 Conclusion.. 49

7.2 Future Work .. 50

REFERENCES ... 51

APPENDIX

A Python Codes .. 55

vi

LIST OF TABLES

Table Page

6.1.1 Tabular form showing the relative RMSE (rRMSE) of the predictions

 from the machine learning (ML) algorithms .. 40

vii

LIST OF FIGURES

Figure Page

 1.1 Trading Zones for California ISO ... 2

 1.2.1 Example of a supply-demand curve based on German day-ahead

 power market .. 3

 1.2.2 Example of a supply-demand curve for instances when supply

 exceeds the demand in a German day-ahead power market 4

 1.3.1 Map showing the Regional Transmission Organization (RTOs) in United States ... 5

 1.3.2 Components of LMP .. 6

 1.3.3 Map showing the distribution of pricing nodes for CAISO in 2019 7

 3.2 Flowchart describing the data cleaning and processing algorithm 12

 4.1.1 Plot showing the variation of fuel prices from 2015-2018 .. 13

 4.1.2 Average fuel prices by year from 2015-2018 ... 14

 4.1.3 Electric Load Variation from 2015-2018 ... 15

 4.1.4 Average yearly load in GW from 2015-2018 ... 15

 4.2.1 Renewable (Solar+Wind) generation from 2015-2018 .. 16

 4.2.2 Average renewable generation in GW by year from 2015-2018 16

 4.2.3 Aggregated Generation Outages in GW from 2016-2018 ... 17

 4.2.4 Average generation outages in GW by year from 2016-2018 17

 4.3.1 Plot showing hourly trading hub LMPs for CAISO SP-15 trading

 hub from 2015-2018 .. 18

 4.3.2 Average trading hub LMP by year for CAISO SP-15 from 2015-2018 18

viii

Figure Page

4.4.1 Variation of hourly LMPs and renewable (Solar+Wind) generation for

 the first week of April in 2016 ... 19

 4.4.2 Variation of hourly LMPs and renewable (Solar+Wind) generation for

 the first week of April in 2017 ... 20

 4.4.3 Variation of hourly LMPs and renewable (Solar+Wind) generation for

 the first week of April in 2018 .. 20

 4.4.4 Plot showing the negative price share for every month of a year from

 2015-2018 ... 21

 4.4.5 Plot showing the negative price share for every hour of the day from

 2015-2018 ... 21

 4.4.6 Scatterplot showing the variation of hourly LMPs with increasing

 renewable generation in MWh from 2015-2018 .. 23

 5.1.1 Ensemble learning process ... 25

 5.1.2 Random Forest Tree structure .. 27

 5.1.3 Boosting Trees algorithm structure .. 27

 5.1.4 Structure of a repeating module in RNN containing a single layer 28

 5.1.5 Structure of a repeating module in LSTM containing four layers 29

 5.2.1 3-Fold Cross Validation ... 31

 5.2.2 Flowchart describing the prediction process by machine learning 34

 6.1.1 Plot Showing the Actual and Forecasted LMPs for January 21, 2018 using Extra

Trees Regression .. 35

ix

Figure Page

 6.1.2 Plot Showing the Actual and Forecasted LMPs for January 21, 2018 using

Gradient Boosting Regression ... 35

 6.1.3 Plot Showing the Actual and Forecasted LMPs for January 21, 2018 using

Long Short Term Memory Networks (LSTMs) ... 36

 6.1.4 Plot Showing the Actual and Forecasted LMPs for June 13, 2018 using Extra

Trees Regression .. 36

 6.1.5 Plot Showing the Actual and Forecasted LMPs for June 13, 2018 using

Gradient Boosting Regression ... 37

 6.1.6 Plot Showing the Actual and Forecasted LMPs for June 13, 2018 using

Long Short Term Memory Networks (LSTMs) ... 37

 6.1.7 Plot Showing the Actual and Forecasted LMPs for December 30, 2018 using Extra

Trees Regression .. 38

 6.1.8 Plot Showing the Actual and Forecasted LMPs for December 30, 2018 using

Gradient Boosting Regression ... 39

 6.1.9 Plot Showing the Actual and Forecasted LMPs for December 30, 2018 using

Long Short Term Memory Networks (LSTMs) ... 39

 6.2.1 Plot Showing the Impact of Features in the Dataset on the Price Forecast for

January 21, 2018 using Extra Trees Regression .. 42

 6.2.2 Plot Showing the Impact of Features in the Dataset on the Price Forecast for

January 21, 2018 using Gradient Boosting Regression ... 42

 6.2.3 Plot Showing the Impact of Features in the Dataset on the Price Forecast for June

13, 2018 using Extra Trees Regression ... 43

x

Figure Page

 6.2.4 Plot Showing the Impact of Features in the Dataset on the Price Forecast for June

13, 2018 using Gradient Boosting Regression .. 43

 6.2.5 Plot Showing the Impact of Features in the Dataset on the Price Forecast for

December 30, 2018 using Extra Trees Regression ... 44

 6.2.6 Plot Showing the Impact of Features in the Dataset on the Price Forecast for

December 30, 2018 using Gradient Boosting Regression ... 44

xi

LIST OF SYMBOLS

ANN Artificial Neural Networks

CAISO California Independent System Operator

CSV Comma-separated values

CV Cross Validation

EIM Energy Imbalance Market

GB Gradient Boost

GW Gigawatt

ISO Independent System Operator

LMP Locational Marginal Prices

LSTM Long short term memory

MMBTU One Million British Thermal Units

MISO Midcontinent Independent System Operator

ML Machine learning

MW Megawatt

MWh Megawatt-hour

NREL National Renewable Energy Laboratory

OASIS Open Access Same-Time Information System

PJM Pennsylvania-New Jersey-Maryland Interconnection

PNode Pricing Node

PTC Production Tax Credit

PV Photovoltaic

RF Random Forest

RNN Recurrent Neural Network

12

RTO Regional Transmission Organization

RMSE Root Mean Square Error

rRMSE Relative Root Mean Square Error

XG Extreme Gradient

XML eXtensible Markup Language

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

 Accurate forecasting of electricity prices has been a key issue for competitive markets

due to the increasing renewable penetration into the grid. Electricity markets followed

the restructuring of the vertically integrated electric utility industry in the U.S. in the

1990’s. While designing such competitive wholesale markets, the focus was on

traditional forms of generation, including fossil, nuclear, and hydro. Since wind and

solar had not flourished significantly then, little consideration was given to market

design and operation under conditions of high penetrations of variable renewable

resources [4]. Renewable energy sources have experienced tremendous investment and

growth in the past decade in the United States due to technological advances and policy

changes. Improved renewable generation and grid integration technology, combined

with improved forecasting methods and changes to wholesale market rules and other

subsidies and mandates have fostered tremendous growth in the amount of wind and

solar power utilized in the U.S. [7]. Variable renewable generation presents a

challenge to market design due to the intermittent nature and uncertainty associated

with plant output. The integration of a significant amount of wind and solar power into

a power system results in important operational challenges, which in turn originate

alterations in electricity prices. The problem of forecasting locational marginal price

(LMP)in a deregulated electricity market is important to both system operators and

market participants. Accurate LMP forecasts produced in real-time are essential for

demand response, revenue and risk management, and an efficient operation of a smart

grid [2].

2

 The thesis focuses on analysing the impact of renewable generation on day-ahead

locational marginal price (LMP) forecast for California ISO. The electricity market for

California ISO is split into three zones: NP-15, ZP-26, SP-15. All of these are trading

zones which were created to facilitate bilateral transactions between energy buyers and

sellers. Fig.1.1 shows the trading zones for California ISO.

Figure 1.1 Trading zones for California ISO [39]

1.2 Understanding the Supply-Demand Curve

 The prices in the electricity market are determined on a day-ahead or real-time basis

by looking at the demand and supply. For the day-ahead markets, generators offer

certain amount of power for a price while the buyers lodge the bids to buy power at a

certain price. This bidding process for the next day goes on till 12 noon every day. The

bids placed for buying and selling power can trace two curves. The point of intersection

3

of those two curves determine the ‘market clearing price’ which is paid to every

successful bid. Fig 1,2,1 shows an example of a supply-demand curve in Germany.

Figure 1.2.1 Example of a supply-demand curve based on a German day-ahead power
market [34]

 However, there might be instances when supply would exceed the demand. This

occurs when there are instances with low demand and at the same time, the generation

is inflexible to be ramped down. Renewable generation usually peaks in the middle of

the day and if there’s low demand observed during the same, there might be several

instances of prices going below zero for even an hour or so. This would lead to setting

the ‘market clearing price’ less than zero. Fig 1.2.2 shows the supply-demand curve for a

scenario when supply exceeds the demand. Consider an example when a lignite plant

with a low ramp rate was running at its full capacity to meet the power demand. At

some point in the middle of the day, PV production increases and reaches its peak,

creating an imbalance in the supply and demand. In such cases, grid operators can

either curtail the PV or can curtail the generation of the lignite plant. Curtailing the

generation from the lignite plant is difficult since there are policy issues and even risks

4

of damaging the plant. If the operator does not choose any of the above actions, there

occurs an instance of negative price.

 The other reason for a below-zero price is the tax credit that is offered to wind farms.

Several wind farms receive a Production Tax Credit (PTC) for every MWh of energy

they produce. This gives them an incentive to produce as much power as possible and in

such cases, the plants can even accept a negative price. For example, if the PTC offered

to a wind farm is $20/MWh and the price is -$5/MWh, the farm still earns a net revenue

of $15/MWh. Hence, some wind generators submit their supply bids at a negative price

in the day-ahead and real-time market but only when they have strong confidence in

their offer being the cheapest. [35]

Figure 1.2.2 Example of a supply-demand curve for instances when supply exceeds the
demand in a German day-ahead power market [34]

5

1.3 Locational Marginal Price (LMP) and Trading Zone Price Definition

 Locational Marginal Pricing (LMP) represent the cost to buy and sell power at different

locations within wholesale markets, usually called Regional Transmission Organizations

(RTOs). There are seven RTOs in United States: CAISO (California Independent System

Operator), ERCOT (Electric Reliability Council of Texas), PJM (Pennsylvania, Jersey

and Maryland power pool), NEISO (New England ISO), Southwest Power Pool (SPP),

NYISO (New York ISO) and MISO (Midcontinent ISO). Fig 1.3 shows the location of RTOs

when United States.

Figure 1.3.1 Map showing the regional tranmimission organizations (RTOs) within United

States [38]

 RTOs have Day Ahead and Real Time LMPs. Day-ahead LMPs represent prices in day-

ahead markets which let market participants buy and sell wholesale electricity a day before

the operating day to avoid volatility. Real-time LMPs represent prices in real time markets

which let participants buy and sell power during the day of operation. For example, if an

6

area under an RTO expects a demand of 50 MW to occur tomorrow at 2 pm, they would buy

50 MW of electricity to be delivered at 2 pm tomorrow on the day-ahead market. However,

at 2 pm on the next day, demand is actually 55 MW, then the additional 5 MW would be

bought on the real-time market. Real-time market prices are generally more volatile than

day-ahead market prices [19].

 Typically, LMP is the cost for the operator to deliver one additional MW to a bus/node in

the network. LMP comprises of three components (see Fig.2.2).

1. Energy: The price of energy at the reference node. The energy component does

not vary with location. The price at the reference bus is the load-weighted

average of the system node prices.

2. Congestion: The congestion component reflects the marginal cost of congestion at

a given node relative to the reference node. Congestion is location-sensitive and

arises when there are binding constraints on the transmission system.

3. Losses: Represent the transmission losses and are locational sensitive. They

reflect the cost of losses at that location relative to the load-weighted average of

system node prices.

 CAISO constitutes thousands of pricing nodes or PNodes under its area of operation. A

pricing node or PNode is defined as a point where power generation or withdrawal is

modelled within a system. LMP is calculated at such nodes and used for financial

settlements [40]. Fig 1.3.3 shows the distribution of PNodes for CAISO in 2019.

Figure 1.3: Components of LMP

Locational
Marginal

Price

System
Energy
Price

Transmission
Congestion

Cost

Cost
Of

Losses

7

Fig 1.3.3 Map showing distribution of pricing nodes within CAISO in 2019 [17]

 A trading zone would constitute several such PNodes and would have its own price called

as trading zone LMP. For this research, the trading zone LMP is calculated by simply

averaging LMPs of all nodes that are a part of the zone.

1.4 Thesis Outline

 Chapter 1 identifies the problem and its importance, the history of electricity markets in

United States, explaining the supply-demand curve to show how the prices are determined

for the next day and defining how nodal and trading zone LMPs are calculated.

 Chapter 2 focuses on the literature survey and provides the methods used for price

forecasting in different electricity markets in the United States.

 Chapter 3 gives a detailed procedure on how the dataset for the thesis was created and

the methods used for cleaning and processing the data for further analysis.

 Chapter 4 provides a detailed analysis of the dataset described in Chapter 3 showing the

yearly variation along with the average yearly data. It also describes the correlation

between prices and renewable generation through different plots.

8

 Chapter 5 describes in detail the different machine learning (ML) algorithms used in this

thesis and the terminologies used in machine learning. Also, it provides the forecasting

procedure applied on the data. Chapter 5 also includes methods to tune the model for better

accuracy along with a way to determine the weight or impact of every feature on the price

prediction.

 Chapter 6 shows the results which are the comparison between the forecasting methods

described in Chapter 5. Also, Chapter 6 describes the weights of every feature in predicting

the price for every machine learning method.

 Chapter 7 is the final chapter which provides a conclusion and discusses the scope of

future work on this topic.

9

CHAPTER 2

LITERATURE SURVEY

 Day-ahead electricity price forecasting has been performed by several authors by methods

such as time series models, recurrent neural networks (RNNs) and simulations tools. [2]

provides a state-space approach to predict LMPs built by analysing the PJM real-time

pricing model. The results are obtained using a Monte-Carlo simulation and accuracy is

compared with the artificial neural network (ANN) forecasting results. The authors of [3]

use random forest (RF), an ensemble learning model to predict day-ahead hourly LMPs for

CAISO. The study performed in [3] focuses on the prices from January 2014 to February

2016 and is quite accurate. [33] includes applying deep learning to forecast extreme loads

observed in PJM. The results show that their model performs better than the traditional

Fourier series methods. The thesis extends the approach applied in [3] and [33] and

compares different methods to analyse the impact of renewable generation on price

forecasting.

 [5] studies the impact of variable renewable generation on LMPs for several RTOs and

creates a model to build scenarios which observe the impact with low and high solar and

wind generation. [6] gives a short introduction to the demand-supply curve which shows

how the price is determined and conducts a case study to demonstrate the effect of

increasing renewable penetration on the LMPs. The thesis correlates with the work done by

the authors of [7] but differs in terms of the dataset and methods applied for forecasting.

The authors of [7] analyse the impact of increasing wind generation on Midcontinent ISO

(MISO) pricing using regression-based techniques. [10] provides similar research as

conducted in [7] but in more depth and including several regional transmission

organizations (RTOs) in United States. The article mentioned in [11] tries to establish a

correlation between the negative prices and solar generation by studying the pricing data

10

for several Regional Transmission Organizations (RTOs). [12] strongly relates to a section

of this thesis which is to determine the correlation between the increasing solar generation

with negative prices for CAISO.

 [13]-[16] and [23]-[32] provide a clear description of the models used for price forecasting

in the thesis. Also, they provide a good understanding on how to tune the model for higher

accuracy and determining the impact of every quantity included the dataset on the price

forecast.

 The primary goal of this thesis is to compare several advanced machine learning

algorithms such as the algorithm developed in [33] to determine the impact of renewable

generation on electricity price forecasting. Chapter 5 would cover the algorithms in detail.

11

CHAPTER 3

DATA COLLECTION AND CLEANING

3.1 Data Collection

 The thesis involves working with historical data for California ISO (CAISO). The ISO

provides an Open Access Same-Time Information System (OASIS) which includes real-time

data related to the ISO transmission systems and the electricity market for CAISO. [20].

OASIS allows the user to download data for a maximum duration of 30 days either through

its interface or through querying the API. The data are available either in XML format or

as a ZIP file which contains the .CSV document [20].

 Data were collected for the following quantities:

1. Fuel Prices

 Hourly gas prices for each day in $/mmBtu by fuel region

2. Renewable Generation

 5-minute data for actual wind and solar generation in MW for every hour of

the day aggregated by trading zones

3. System Load

Load in 5-minute intervals for every hour of the day in MW aggregated by

 trading zones

4. Locational Marginal Prices (LMP)

 Hourly LMPs for all nodes in $/MWh

5. Aggregated Generation Outages

 Hourly data for each day which includes generator de-rates and outages in

MW split by trading zones (SP-15, NP-15, ZP-26) and resource type (thermal,

hydro, renewable).

12

The final dataset includes the above data over a period of four years (2015-2018) except for

generation outages which has three-year data (2016-2018). This thesis involves analysing

the data using Python and hence .csv files were preferred over .xml files.

3.2 Data Cleaning & Processing

 The thesis involves performing analysis for the data over a year, hence, multiple .csv files

need to be aggregated together to generate the yearly data. For the renewable generation

and the load, the dataset involves values for every 5 minutes in an hour and is averaged to

produce the hourly values. Also, there are several hours missing in most of the datasets.

Around 80-100 hours were seen to be missing from every year. These missing values are

filled by averaging the values for the missing hour for the previous and the next seven days.

13

Figure 3.2. Flowchart describing the data cleaning and processing algorithm

 Fetch the 30-day data
from the OASIS API

Is the data
hourly or 5-

minute?

Fill in missing hours
by averaging values

over the previous and
the next seven days

Does the data
contain
missing
hours?

Average the data over
an hour

Does data
contain -

9999?

Replace the values
with zeros

Feed the data into the
machine learning

algorithm

14

CHAPTER 4

ANALYSING THE ISO DATA

4.1 Analysis of Fuel Prices and Electric Load

 The variation in every quantity described in Chapter 4 gives a picture of the trend

followed throughout the last few years. Fig 4.1.1 and 4.1.2 show fuel price variation and

average yearly fuel price from 2015-2018. Average fuel prices have dropped compared to

2015, and 2018 experienced a third-quarter high gas price window due to high prices

reported at the SoCal Citygate trading hub. [21]

Figure 4.1.1 Plot showing the variation of fuel prices from 2015-2018

15

Figure 4.1.2 Average fuel prices by year from 2015-2018

 Fig 4.1.3 shows the hourly electric load variation from 2015-2018. It is seen that the

electric load profile looks quite similar throughout the last few years. The average load for

the entire year has not changed significantly from 2015-2018 as shown in Fig 4.1.4

16

Figure 4.1.3 Electric Load Variation from 2015-2018

Figure 4.1.4 Average yearly load in GW from 2015-2018

17

4.2 Analysis of Renewable Generation and Generation Outages

 The focus of this thesis, renewable generation, has increased significantly over the last

three years. Fig 4.2.1 shows the same and Fig 4.2.2 clearly states the increase in PV and

Wind deployment over the past few years.

Figure 4.2.1 Renewable (Solar+Wind) Generation from 2015—2018

18

Figure 4.2.2 Average renewable generation in GW by year from 2015-2018

 Generation Outages account for aggregated outages from sources such as thermal,

hydroelectric and renewable power plants. Fig 4.2.3 represent the aggregated generation

outages from 2016-2018. It is seen from Fig 4.2.4 that average generation outages have

decreased in comparison to 2016.

Figure 4.2.3 Aggregated Generation Outages in GW from 2016-2018

19

Figure 4.2.4 Average generation outages in GW by year from 2016-2018

4.3 Variation of Hourly LMPs

 Fig 4.3.1 and Fig 4.3.2 show the variation of hourly LMPs for SP-15 hub from 2015-2018.

The average price has increased by around $4/MWh in comparison to 2015.

Figure 4.3.1 Plot showing hourly LMPs for CAISO SP-15 from 2015-2018

20

Figure 4.3.2 Average LMP by year for CAISO SP-15 from 2015-2018

4.4 Impact of Renewable Generation on Hourly LMPs

 Figures 4.4.1 to 4.4.3 clearly show that renewable generation cause a dip in the hourly

LMPs. The prices are compared with the renewable generation by solar and wind for the

first week of April in 2016, 2017 and 2018. A clear reduction in prices is seen when

renewable generation is close to its peak even forcing the prices to go negative. Also,

another observation is the sharp increase in prices for most of the cases when there are

instances of minimum renewable generation.

21

Figure 4.4.1 Variation of hourly LMPs and renewable (Solar+Wind) generation for April
first week in 2016

22

Figure 4.4.2 Variation of hourly LMPs and renewable (Solar+Wind) generation for April
first week in 2017

Figure 4.4.3 Variation of hourly LMPs and renewable generation in MWh for the first week
of April in 2018

 The plots in Fig 4.4.4 show the negative price share for every month of the year from

2015-2018. Negative pricing instances in 2016 and 2017 show significant increase of around

10% for March and April in comparison to 2015. March and April are also the two months

when renewable generation due to PV is maximum in comparison to the rest of the year. A

significant decrease is seen in the negative pricing share for 2018 as CAISO has done well

in reducing the instances by measures such as load shifting, storage and trading on the

Energy Imbalance Market (EIM).

23

Figure 4.4.4 Plot showing the negative price share for every month of a year from 2015-2018

 Fig 4.4.5 shows the negative price share for every hour of the day from 2015-2018. The

negative price share for 2016 and 2017 is found to be maximum around noon when usually

PV generation is maximum. 2018 reports a significant decrease in negative price share as

reported earlier which might be due to the counter-measures implemented by CAISO.

24

Figure 4.4.5 Plot showing negative price share for every hour of the day from 2015-2018

 Figure 4.4.6 tries to establish a correlation between LMPs and renewable generation from

2015-2018. From the plot, a slight negative correlation is seen between the two as the band of

prices reduces with the increasing renewable generation. The band of prices gets concentrated

around zero as the renewable generation by solar and wind increases. Another observation is

that the volatility of the prices decreases as the combined solar and wind generation goes

beyond 5 gigawatts.

25

Figure 4.4.6 Scatterplot showing the variation of hourly LMPs with increasing renewable
generation in MWh from 2015-2018

26

CHAPTER 5

Machine Learning (ML) forecasting algorithms for trading zone prices

5,1 Detailed Description of Machine Learning Models

 Machine learning (ML) makes it easier to understand the data accurately and in less

time. As defined in 90s by Arthur Samuel, it is a “field of study that gives computer the

ability to learn without being explicitly programmed” [41]. Multiple ML algorithms are

implemented to forecast electricity prices with a goal to evaluate the effect of every feature

on the price forecast and compare the percentage of error in the forecast for each model.

The features are load, renewable generation, fuel prices and aggregated generation outages.

Supervised learning algorithms are used since they provide more accurate predictions over

the clustering algorithms. Supervised learning is when you have the given data set and the

result, all you have to do is concoct a relationship between the input (given data set) and

the output (the given result). Since the output is price in $/MWh which is a continuous

variable, regression-based learning approaches are used in forecasting. Regression involves

predicting real-valued numbers by determining the statistical relationship between input

and output quantities. Ensemble- based learning methods have been implemented in this

thesis for forecasting since they provide much accurate results compared to linear models.

Ensemble models combine outputs from several models by using techniques such as

averaging, bagging etc. to give a better prediction of the output variable. Fig 5.1.1 shows

the ensemble learning process.

27

Figure 5.1.1 Ensemble learning process [22]

 The forecasting algorithms utilize eight features to model the problem. The features are as

follows:

• Load in MW

• Fuel Prices in $/mmBtu

• Generation Outages in MW

• Renewable (Solar+Wind) generation in MW

• Year

• Month of the year

• Day of the month

• Hour of the day

Three of these features (Day, Month and Year) were found to have little or no significant

impact on the price forecast as compared to the other features. Hence, they were not

accounted for while building the prediction model and the model is built on five features

which are:

28

• Load in MW

• Fuel Prices in $/mmBtu

• Generation Outages in MW

• Renewable (Solar+Wind) generation in MW

• Hour of the day

 Four ML algorithms have been implemented and the accuracy of every algorithm is

assessed along with the computational time. The scikit learn library in Python has been

utilized to implement the first three algorithms while the fourth has been implemented by

using the keras and Tensorflow library developed by Google. The algorithms are:

• Extra Trees Regression

• Gradient Boost Regression

• XGBoost Regression

• Long short term memory networks (LSTM) using Tensorflow

 Extra Trees or Extremely Randomized Trees is a supervised learning approach with the

goal to optimize Random Forest further in terms of reducing the variance in the output. It

differs from random forest learning method in terms of node split where the cut points are

chosen randomly instead of optimally finding the cut-point based on features. Also, it uses

the entire learning sample rather than using bootstrap copies of the same [23]. Random

Forest is a supervised learning algorithm which creates multiple decision trees and merges

the results to provide an accurate prediction. Fig 5.1.2 shows the random forest tree

structure. It involves splitting the dataset into several subsamples and then building a

decision tree for regression on every sample. The sampling of the data is done with

29

replacement till an optimal cut-point is found. The final or the predicted value is the mean

value of all output variables in the leaf node. [25]

Figure 5.1.2 Random Forest Tree structure [24]

 Gradient Boost (GB) is one more example of an optimized RF algorithm. GB works on

creating a sequence of trees with each successive tree built on the residuals of the

prediction of the previous tree. [26] Boosting is a way to transform weak learners into

strong learners. The learners mentioned previously are basically decision trees with

assigned weights. Fig 5.1.3 shows a boosting trees structure. Gradient Boosting involves a

gradual and sequential approach in which the weak learners are identified using gradient

descent in the loss function. The definition of a loss function is measuring how good are the

model coefficients at fitting the data. The algorithm tries to minimize the loss function by

adding weak learners at each step to build a strong learner. Hence, the magnitude of the

loss function is reduced at every step leading to less error between the actual and the

predicted value. [27].

30

Figure 5.1.3 – Boosting trees algorithm structure [28]

 XGBoost or Extreme Gradient Boosting is one of the best ensemble-based learning

methods used in data science. XGBoost is similar to Gradient Boosting but has certain

features which makes it more efficient. It uses Newton Boosting which implements Newton-

Raphson method of approximations to provide a faster solution than gradient descent. Also,

it adds a randomization parameter to reduce the correlation between individual trees

leading to a better model. Also, XGBoost requires non-continuous memory access and

ensures the maximum utilization of available disk space leading to faster and efficient

computing. [29]

 Long short term memory (LSTM) networks are examples of recurrent neural networks

(RNNs) which are used to identify patterns in a dataset. RNNs can be visualized as

duplications of the same network, with each copy passing its output to the next. Fig 5.1.4

shows a basic structure of a recurrent neural network.

Figure 5.1.4 Structure of a repeating module in RNN containing a single layer [30]

31

 LSTMs are basically RNNs which can learn long-term dependencies. They have the ability

to preserve the error which could be fed back to the previous layers. In this way, RNNs

could learn over a longer span of time and give better outputs since the error is maintained

as a constant value. Fig 5.1.5 shows the structure for a LSTM network.

Figure 5.1.5 Structure of a repeating module in LSTM containing four layers [30]

 The horizontal lines running through the model are called as cell states through which the

information flows. The cell state can be loaded with information through structures called

as gates. These gates are a combination of a sigmoid neural net layer and a pointwise

multiplier. The output from the sigmoid layer is binary where zero means it acts as blocked

while one opens the gate. The following steps are implemented in LSTM:

1. LSTM decides through a sigmoid layer called as “forget gate layer” which data

should be passed to the cell state. The layer outputs 0 and 1 for every value

within the cell.

2. The information to be stored in the cell is decided through a sigmoid and a

hyperbolic tan (tanh) layer. The sigmoid layer decides the values to be stored

while the tanh layer creates a candidate vector to add to the state.

3. The cell state is updated using Step.2

32

4. Output is determined based on the cell state. It is determined by applying a

sigmoid layer through the cell state to determine what to output. Then, the cell

state is normalized by a tanh function to limit the values between (-1,1) and is

multiplied by the sigmoid layer output to get the final prediction.

5.2 FORECASTING PROCEDURE

 Before applying the ML algorithms on the dataset, the dataset is split into ‘training’ and

‘test’ data. Supervised learning methods are used to train the model on the ‘training’

dataset. This helps the model to build relationship between the input variables or features

and the target variable. The model is evaluated on the ‘test’ dataset which is kept aside and

unknown to the model. The models built by the algorithms specified in Section 6.1 need to

be tuned to achieve better accuracy. However, the test data cannot be used to check the

prediction accuracy since in the real world, the data would be completely new Also, tuning

the model using the ‘test’ data would flaw the generalization measure and lead to

inaccurate results. Hence, the model is tuned using a chunk of the ‘training’ data called as

‘validation’ data. Every ML model has a set of ‘hyperparameters’ which need to be set

manually and adjusted. These set of values describe the higher-level properties of the model

such as the learning rate, complexity etc. They cannot be learned from the data and need to

be pre-defined before starting the training process. The tuning process of the model on the

‘validation’ data has the goal to find the optimal ‘hyperparameters’ which would result in

the best degree of accuracy.

 With the goal to tune the model for best accuracy, a method called as cross-validation (CV)

is used to select the ‘validation’ dataset. Cross-validation tests the model using the training

data to make sure it does not overfit or underfit resulting in a greater degree of error. The

33

ML algorithms described in Section 5.1 are tuned using K-Fold CV which involves splitting

the data into folds and using each fold as a testing set at some point [31]. The method splits

the dataset into K parts or folds. Consider K=3 as an example. For the first iteration, the

first fold would be used as ‘test’ data while the rest are used as ‘training’ data. The second

iteration would involve using the second fold as ‘test’ data and the rest serving as ‘training’

data. The process would repeat until every fold is utilized as ‘test’ data. Fig 5.2.1 shows the

K- Fold CV algorithm for K=3.

Figure 5.2.1 3-Fold Cross Validation

First Iteration
Test Train Train

Second Iteration

Train Test Train

Third Iteration

Train Train Test

34

Figure 5.2.2 Flowchart describing the prediction process by machine learning (ML)

35

CHAPTER 6

RESULTS

6.1 Forecasting Results

 The ML algorithms discussed in Chapter 5 are applied on the dataset. The goal is to

compare the results of the three models and analyse how much renewable generation

impacts the price forecast. A common metric used to verify the accuracy of every ML model

is root mean squared error (RMSE). RMSE is widely used in forecasting and is defined as

the standard deviation of the errors in prediction. The prediction errors are often called as

residuals and they indicate how spread out the points are from the regression curve [35].

RMSE is defined as follows:

 Here,

 Predicted – Predicted values by the model

 Actual - Actual values (Test data)

 N - Number of actual values

 For this model, we use relative RMSE (rRMSE) as an accuracy metric. rRMSE is

expressed as a percentage and the better the value, the more accurate is the model. rRMSE

is defined as follows:

 Here,

 Predictedi – Predicted value by the model

 Actuali - Actual value

 N - Number of actual values

36

Three different days are chosen in 2018 to plot the predicted prices versus the actual prices.

Fig 6.1.1 – 6.1.3 shows the forecast and actual values for January 21, 2018 for all four ML

algorithms: Extra Trees Regression, Gradient Boosting Regression and LSTMs using

tensorflow.

Figure 6.1.1 Plot showing the actual and forecasted LMPs for January 21,2018 using Extra
Trees Regression

37

Figure 6.1.2 Plot showing the actual and forecasted LMPs for January 21,2018 using
Gradient Boost Regression

Figure 6.1.3 Plot showing the actual and forecasted LMPs for January 21,2018 using Long
short term memory networks (LSTMs)

38

 To ensure that the prediction covers a wide range of dates, the ML algorithms are tested

for two more days which are randomly picked. Fig 6.1.4 – 6.1.6 shows the forecast and

actual values for June 13, 2018 for all four ML algorithms: Extra Trees Regression,

Gradient Boosting Regression and LSTMs using tensorflow.

Figure 6.1.4 Plot showing the actual and forecasted LMPs for June 13,,2018 using Extra
Trees Regression

39

Figure 6.1.5 Plot showing the actual and forecasted LMPs for June 13,2018 using Gradient
Boost Regression

Figure 6.1.6 Plot showing the actual and forecasted LMPs for June 13,2018 using Long
short term memory networks (LSTMs)

40

Fig 6.1.7 – 6.1.9 shows the forecast and actual values for June 13, 2018 for all four ML

algorithms: Extra Trees Regression, Gradient Boosting Regression and LSTMs using

tensorflow.

Figure 6.1.7 Plot showing the actual and forecasted LMPs for December 30,2018 using
Extra Trees Regression

41

Figure 6.1.8 Plot showing the actual and forecasted LMPs for December 30,2018 using
Gradient Boosting Regression

Figure 6.1.9 Plot showing the actual and forecasted LMPs for December 30,2018 using Long
short term memory networks (LSTMs)

42

 The relative RMSE (rRMSE) of all machine learning (ML) forecasts for all the three days

has been tabulated into Table 6.1.1. Two rRMSEs values are calculated for every ML

algorithm which are for the ‘training’ and the ‘test’ data. rRMSE for ‘training’ data

indicates whether the model is overfitted or underfitted. Overfitting occurs when a model

learns too much from the ‘training’ data. This leads to a negative impact on the model’s

performance when it encounters new data. Overfitting usually occurs in non-linear models

which are more flexible [36]. An underfitted model is unable to model the ‘training’ data

and cannot make a good prediction for the new data. Underfitting denotes poor performance

of the ML forecasts. An ideal ML model tends to find a good value between overfitting and

underfitting. This is done by the hyperparameter tuning process discussed in Chapter 5.

ML algorithm

January 21

June 13

December 30

Data

Training
rRMSE

(%)

Test

rRMSE
(%)

Training
rRMSE

(%)

Test

rRMSE
(%)

Training
rRMSE

(%)

Test

rRMSE
(%)

Extra Trees

10.22

24.34

12.35

30.21

8.67

28.56

Gradient Boost

8.91

21.62

11.22

29.12

7.41

28.20

Long short term

memory networks
(LSTMs)

12.41

27.49

10.56

34.67

11.39

33.44

Table 6.1.1 Tabular form showing the relative RMSE (rRMSE) of the predictions from ML
algorithms

 The table shows that the model fits reasonably well for all three days after tuning the

hyperparameters. However, the testing rRMSE is high for all three cases. This might be

occurring since the thesis does not involve solving the economic dispatch problem that is

43

used for LMP formulation. The goal is to analyse the impact of every feature included in the

dataset on the prices. Also, other factors such as binding constraints on the system,

transmission outages aren’t included in the dataset since the data for the same was not

readily available on the OASIS portal for CAISO. These factors may cause a significant

impact of LMP and might result in a better degree of prediction of prices.

6.2 Impact of Every Feature on the Locational Marginal Price (LMP)

 Every feature in the ‘training’ dataset for a machine learning (ML) algorithm has an

impact on the target variable or the predicted value. Knowing the weights of every feature

in determining the target variable makes the model interpretable. These weights are called

as feature importances. Feature importances help the user know which features are most

important in predicting the output. They also help in detecting features which have very

little or negligible impact on the forecast. The user can go ahead and discard those features

if not important to get a better accurate prediction. Tree-based algorithms usually have a

number of decision trees which have multiple nodes. Every node is an if/else condition on a

single feature which is designed to split the data into two. In this way, similar samples end

up in same sets. This optimal condition is chosen based on a measure which is called as

variance for regression-based trees. Thus, during the training process, it can be computed

how much each feature decreases the variance in a tree. For structures such as random

forest, the decrease in variance from each feature can be averaged and features can be

ranked according to this measure. [37]

 Feature importances can be calculated using a built-in function in the Python scikit

learning library for forest-based structures. The output is an array of weights for every

44

feature present in the ‘training’ dataset. Fig 6.2.1 to 6.2.6 show a bar plot of how much each

feature in the dataset affects the price prediction.

Figure 6.2.1 Plot showing the impact of features in the dataset on the price forecast for
January 21, 2018 using Extra Trees Regression

45

Figure 6.2.2 Plot showing the impact of features in the dataset on the price forecast for
January 21, 2018 using Gradient Boosting Regression

Figure 6.2.3 Plot showing the impact of features in the dataset on the price forecast for June
13, 2018 using Extra Trees Regression

46

Figure 6.2.4 Plot showing the impact of features in the dataset on the price forecast for June
13, 2018 using Gradient Boosting Regression

Figure 6.2.5 Plot showing the impact of features in the dataset on the price forecast for
December 30, 2018 using Extra Trees Regression

47

Figure 6.2.6 Plot showing the impact of features in the dataset on the price forecast for
December 30, 2018 using Gradient Boosting Regression

 From the plots in Fig 6.2.1 – 6.2.6, it is seen that the feature importances vary for every

prediction. This is because the training data varies for each one of these predictions. Also,

one other reason would be that the features are randomly permuted at each split in a tree.

The best-found split might vary even if the training data remains the same.

 Fig 6.2.1- 6.2.6 clearly show that the highest impact on the LMP is of the load or demand

for that hour. It is seen that for most of the above cases, renewable generation has also had

a significant impact on the price forecast. The impact is even greater than the impact caused

by aggregated generation outages which usually impact the LMP by increasing the

congestion component.

 This shows that increasing renewable generation in California can significantly impact the

real-time locational marginal prices (LMPs) for every node within California ISO. There

might be hours with low demand during the day. If in such cases, renewable generation is at

48

its peak, for example, solar during the middle of the day, prices might go negative even for

several hours. Such negative prices would be difficult to forecast in case they do not follow a

consistent pattern.

49

Chapter 7

CONCLUSION

7.1 Conclusion

 The goal of this research was to concentrate on how the load, fuel prices, renewable

generation and generation outages affect the forecast of locational marginal prices (LMPs)

for California ISO. This goal was achieved by comparing several machine learning (ML)

methods for price forecasting and analysing their results. The research was aimed

specifically to answer the question of “How would increasing renewable generation for

California impact the day-ahead and the real-time LMP forecast?”. The results show that

solar and wind generation do cause a significant impact on the price forecast.

 A detailed discussion on the problem statement, definitions for nodal and trading zone

LMPs and the supply -demand curve for price determination was presented in this research.

The methods described for data cleaning and extraction would prove to be useful since the

OASIS portal for CAISO can provide data for a maximum of 30 days at a single time. Also,

the dataset had to be cleaned and processed before the analysis. A single dataset with all the

historical data for load, fuel prices, renewable generation which was generated, would be a

great place for anyone to start their analysis.

 The trend observed by the load, renewable (solar+wind) generation, fuel prices, LMPs

provide a picture of the current scenario for California ISO and indicate the variation since

the last few years. Moreover, the plots with renewable generation and LMPs state that there

is a significant dip in the prices when renewable generation starts to increase and reaches

its peak during the day. Also, a spike in LMPs is seen when the renewable generation falls

to a minimum value.

 The ML algorithms described in Chapter 5 provide a reasonable forecast of LMPs for

specific days. The impacts of every feature obtained from the forecast describe how much the

50

forecasted price would be affected if there is a deviation in the dataset. It was expected that

the load would have the maximum impact on the day-ahead price forecast and is verified by

observing the feature importance plots. An interesting finding from this research is that the

renewable generation ranks second in terms of impact which is unusual as generation

outages were also included in the dataset. Hence, there could be price fluctuations in case of

an intermittent renewable generation scenario.

 The results show that machine learning could be applied effectively in terms of

determining the impacts of several parameters on the day-ahead and real-time price

forecast for California. This would help grid operators in determining which parameters

would impact the price forecast significantly and which parameters could be ignored due to

have little or less significant impact.

7.2 Future Work

 As discussed earlier, the goal of this research was to analyse the impact of renewable

generation on the locational marginal price (LMP) forecast. Features such as load,

renewable generation, fuel prices, generation outages were considered for the prediction.

The prediction did not involve factors such as transmission outages, binding constraints, etc.

Hence, there is scope for improving the accuracy of the forecast. Some of the possibilities

are:

• Solving the economic dispatch problem at every node to forecast the LMP

• Passing features such as transmission outages and constraints on the system to

determine their impact on LMP

• Involving features such as weather forecast, temperature etc. to get an accurate

forecast

• Using deep-learning algorithms to improve the forecasting accuracy

51

REFERENCES

[1] Juan M. Morales, Student Member, IEEE, Antonio J. Conejo, Fellow, IEEE, and
Juan Pérez-Ruiz, Member, IEEE, ‘Simulating the Impact of Wind Production on
Locational Marginal Prices

[2] Yuting Ji, Jinsub Kim, Robert J. Thomas and Lang Tong, ‘Forecasting Real-Time
Locational Marginal Price: A State Space Approach, June 25, 2016

[3] Ashkan Sadeghi-Mobarakeh, Mahdi Kohansal, Evangelos E. Papalexakis, and

Hamed Mohsenian-Rad, ‘Data Mining based on Random Forest Model to Predict the
California ISO Day-ahead Market Prices, April 26, 2017

[4] J.C. Smith, Stephen Beuning, Henry Durrwachter, Erik Ela, David Hawkins,
Brendan Kirby, Warren Lasher, Jonathan Lowell, Kevin Porter, Ken Schuyler, Paul
Sotkiewicz,’ Impact of Variable Renewable Energy on US Electricity Markets,
March 5, 2010

[5] Ryan Wiser, Andrew Mills, Joachim Seel, Todd Levin, Audum Botterud, ‘Impact of

Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs,
November 2017

[6] Joachim Seel, Andrew Mills, Ryan Wiser, ‘Impact of High Variable Renewable

Energy (VRE) Futures on Wholesale Electricity Prices, and on Electric-Sector
Decision Making, May 16, 2018

[7] Dov Quint, Steve Dahlke, ‘The Impact of Wind Generation on Wholesale Electricity

Prices in the Midcontinent Market, June 5, 2017

[8] J. Zarnikau, C.K. Woo, R. Baldick, ‘Did the introduction of a nodal market structure
impact wholesale electricity prices in the Texas (ERCOT) market?, October 10,2018

[9] Michael E. Birk,” Impact of Distributed Energy Resources on Locational Marginal

Prices and Electricity Networks, June 2016

[10] Philipp Brown, “U.S. Renewable Electricity: How Does Wind Generation Impact
Competitive Power Markets?, November 7, 2012

[11] Lucas Davis, “Is Solar Really the Reason for Negative Electricity Prices?,

https://energyathaas.wordpress.com/2017/08/28/is-solar-really-the-reason-for-
negative-electricity-prices/

https://energyathaas.wordpress.com/2017/08/28/is-solar-really-the-reason-for-negative-electricity-prices/
https://energyathaas.wordpress.com/2017/08/28/is-solar-really-the-reason-for-negative-electricity-prices/

52

[12] Chris Namovicz,” Rising solar generation in California coincides with negative

wholesale electricity prices, EIA, TODAY IN ENERGY, April 7. 2017

[13] Will Koehrsen, “Hyperparameter Tuning the Random Forest in Python,
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-
python-using-scikit-learn-28d2aa77dd74 , Jan 9, 2018

[14] Mohtadi Ben Fraj, “In Depth: Parameter tuning for Gradient Boosting,
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-gradient-boosting-
3363992e9bae , Dec 24, 2017

[15] Eryk Lewinson, “Explaining Feature Importance by example of a Random Forest,
https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-
random-forest-d9166011959e , Feb 11,2017

[16] Aarshay Jain, “Complete Guide to Parameter Tuning in XGBoost (with codes in

Python),
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-
xgboost-with-codes-python/ , March 1, 2016

[17] Today’s Outlook, Prices, California ISO “
http://www.caiso.com/TodaysOutlook/Pages/Prices.aspx

[18] California ISO, “Market Redesign & Technology Upgrade (MRTU) Project CAISO
Proposal, October 26, 2005

[19] AEP Energy, “Real-Time vs Day-Ahead Pricing, January 5, 2018,

https://www.aepenergy.com/2018/01/05/december-2017-edition/

[20] California ISO, “Interface specification for OASIS, Fall 2018 Release, Version 5.1.4,
July 25, 2018, http://www.caiso.com/Documents/OASIS-
InterfaceSpecification_v5_1_4Clean_Fall2018Release.pdf

[21] California ISO, “Q3 2018 Report on Market Issues and Performance, November 1,
2018,
http://www.caiso.com/Documents/2018ThirdQuarterReportonMarketIssuesandPerfo
rmance.pdf

[22] Benjamin Aunkofer, “Ensemble Learning, December 3, 2017, https://data-science-
blog.com/blog/2017/12/03/ensemble-learning/

[23] Zhi-Hua Zhou, “Ensemble Learning,

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-gradient-boosting-3363992e9bae
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-gradient-boosting-3363992e9bae
https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e
https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
http://www.caiso.com/TodaysOutlook/Pages/Prices.aspx
https://www.aepenergy.com/2018/01/05/december-2017-edition/
http://www.caiso.com/Documents/OASIS-InterfaceSpecification_v5_1_4Clean_Fall2018Release.pdf
http://www.caiso.com/Documents/OASIS-InterfaceSpecification_v5_1_4Clean_Fall2018Release.pdf
http://www.caiso.com/Documents/2018ThirdQuarterReportonMarketIssuesandPerformance.pdf
http://www.caiso.com/Documents/2018ThirdQuarterReportonMarketIssuesandPerformance.pdf
https://data-science-blog.com/blog/2017/12/03/ensemble-learning/
https://data-science-blog.com/blog/2017/12/03/ensemble-learning/
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf

53

[24] Pierre Geurts, Damien Ernst, Louis Wehenkel, “Extremely randomized trees,

March 2, 2006

[25] Vaibhav Kumar, “ Random forests and decision trees from scratch in python,
October 23, 2018, https://towardsdatascience.com/random-forests-and-decision-
trees-from-scratch-in-python-3e4fa5ae4249

[26] Krishni Hewa, “ A Beginners guide to Random Forest Regression, November 26,

2018, https://medium.com/datadriveninvestor/random-forest-regression-
9871bc9a25eb

[27] Jerome H. Friedman, “Stochastic Gradient Boosting, March 26, 1999

[28] Harshdeep Singh, “Understanding Gradient Boosting Machines, November 3, 2018,

https://towardsdatascience.com/understanding-gradient-boosting-machines-
9be756fe76ab

[29] Maria Jesus, “Introduction to Boosted Trees, March 14, 2017,
https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/

[30] Tianqi Chen, Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System, 2016

[31] Krishni Hewa, “ K-Fold Cross Validation, December 16, 2018,

https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833

[32] Michael Polson, Vadim Sokolov, “Deep Learning for Energy Markets, April 2019

[33] Soren Amelang, Kerstine Appunn, “ The causes and effects of negative power
prices, January 5, 2018, https://www.cleanenergywire.org/factsheets/why-power-
prices-turn-negative

[34] Penn State College of Earth and Mineral Sciences, EBF 483: Introduction to

Electricity Markets (12,3), “The Curious Case of the Negative Prices, https://www.e-
education.psu.edu/ebf483/node/717

[35] Raunak Goswami, “Root-Mean-Square Error (RMSE) | Machine Learning,
https://www.includehelp.com/ml-ai/root-mean-square%20error-rmse.aspx

[36] Model Evaluation – Regression,
https://www.saedsayad.com/model_evaluation_r.htm

https://towardsdatascience.com/random-forests-and-decision-trees-from-scratch-in-python-3e4fa5ae4249
https://towardsdatascience.com/random-forests-and-decision-trees-from-scratch-in-python-3e4fa5ae4249
https://medium.com/datadriveninvestor/random-forest-regression-9871bc9a25eb
https://medium.com/datadriveninvestor/random-forest-regression-9871bc9a25eb
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://towardsdatascience.com/understanding-gradient-boosting-machines-9be756fe76ab
https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/
https://medium.com/datadriveninvestor/k-fold-cross-validation-6b8518070833
https://www.cleanenergywire.org/factsheets/why-power-prices-turn-negative
https://www.cleanenergywire.org/factsheets/why-power-prices-turn-negative
https://www.e-education.psu.edu/ebf483/node/717
https://www.e-education.psu.edu/ebf483/node/717
https://www.includehelp.com/ml-ai/root-mean-square%20error-rmse.aspx
https://www.saedsayad.com/model_evaluation_r.htm

54

[37] Sven Stringer, “Feature importance – what’s in a name?,
https://medium.com/bigdatarepublic/feature-importance-whats-in-a-name-
79532e59eea3

[38] “Regional Transmission Organizations (RTO)/Independent System Operators

(ISO)”, https://www.ferc.gov/industries/electric/indus-act/rto.asp

[39] “California ISO Open Access Same-time Information System (OASIS)”,
http://oasis.caiso.com/mrioasis/logon.do

[40] California ISO, “Market Redesign & Technology Upgrade (MRTU) Project CAISO
Proposal, October 2005, https://www.caiso.com/Documents/N-5-AppendixA-
October26_2005-October19_2005TradingHubWhitePaper.pdf

[41] “Machine Learning for Beginners, https://towardsdatascience.com/machine-
learning-for-beginners-d247a9420dab

https://medium.com/bigdatarepublic/feature-importance-whats-in-a-name-79532e59eea3
https://medium.com/bigdatarepublic/feature-importance-whats-in-a-name-79532e59eea3
https://www.ferc.gov/industries/electric/indus-act/rto.asp
http://oasis.caiso.com/mrioasis/logon.do
https://www.caiso.com/Documents/N-5-AppendixA-October26_2005-October19_2005TradingHubWhitePaper.pdf
https://www.caiso.com/Documents/N-5-AppendixA-October26_2005-October19_2005TradingHubWhitePaper.pdf
https://towardsdatascience.com/machine-learning-for-beginners-d247a9420dab
https://towardsdatascience.com/machine-learning-for-beginners-d247a9420dab

55

APPENDIX A

PYTHON CODES

56

A. PYTHON CODES

LOAD ANALYSIS

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates

Read the data from 2015-2018
demand_2015= pd.read_csv(r'CAISO_hourlydemand_2015.csv')
demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv')
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv')
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv')

demand_2015['Date'] = demand_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2015['Date'] = pd.to_datetime(demand_2015['Date'])
demand_2016['Date'] = demand_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2016['Date'] = pd.to_datetime(demand_2016['Date'])
demand_2017['Date'] = demand_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M'))
demand_2017['Date'] = pd.to_datetime(demand_2017['Date'])
demand_2018['Date'] = demand_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2018['Date'] = pd.to_datetime(demand_2018['Date'])

#Join dataframes
demand = [demand_2015,demand_2016,demand_2017, demand_2018]
demand = pd.concat(demand)
demand['load']= demand['load']/1000
demand = demand.set_index('Date')
demand = demand.drop(['zone'],axis=1)

#Plot the data
ax1 = demand.plot(legend=False)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax1.set_title('Variation of Electric load for California ISO from 2015-2018',fontsize=15)
ax1.set_xlabel('Date',fontsize=15)
ax1.set_ylabel('GW',fontsize=15)

57

ax1.tick_params(axis='both', which='both', labelsize=15)

#Plot the averages
g = demand.groupby((demand.index.year)).mean()
g.plot(kind='bar',legend=False,rot=0)
plt.xlabel('Year',fontsize=15)
plt.ylabel('GW',fontsize=15)
plt.title('Average yearly loads for California ISO from 2015-2018',fontsize=15)
plt.tick_params(axis='both', which='both', labelsize=15)

FUEL PRICES ANALYSIS

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import matplotlib.dates as mdates

Read the data from 2015-2018
fuelprices_2015 = pd.read_csv(r'CAISO_fuelprices2015.csv')
fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv')
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv')
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv')

fuelprices_2015['Date'] = fuelprices_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2015['Date'] = pd.to_datetime(fuelprices_2015['Date'])
fuelprices_2016['Date'] = fuelprices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date'])
fuelprices_2017['Date'] = fuelprices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date'])
fuelprices_2018['Date'] = fuelprices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date'])

#Join dataframes

58

fuelprices = [fuelprices_2015,fuelprices_2016,fuelprices_2017,fuelprices_2018]
fuelprices = pd.concat(fuelprices)
fuelprices = fuelprices.set_index('Date')
#Plot the data
ax = fuelprices.plot(legend=False)
ax.set_title('Variation of Fuel Prices for California ISO from 2015-2018',fontsize=15)
ax.set_xlabel('Date',fontsize=15)
ax.set_ylabel('$/mmbtu',fontsize=15)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax.tick_params(axis='both', which='both', labelsize=15)
#Plot the yearly averages
g = fuelprices.groupby(fuelprices.index.year).mean()
g.plot(kind='bar',legend=False,rot=0)
plt.title('Average Yearly fuel prices for California ISO from 2015-2018',fontsize=15)
plt.xlabel('Year',fontsize=15)
plt.ylabel('$/mmbtu',fontsize=15)
plt.tick_params(axis='both', which='both', labelsize=15)

RENEWABLE GENERATION ANALYSIS

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates

#Load the data
rengen_2015 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2015.csv')
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv')
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv')
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv')

rengen_2015['Date'] = rengen_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2015['Date'] = pd.to_datetime(rengen_2015['Date'])
rengen_2016['Date'] = rengen_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date'])
rengen_2017['Date'] = rengen_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date'])
rengen_2018['Date'] = rengen_2018.Date.apply(

59

 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date'])
#Join dataframes

rengen = [rengen_2015,rengen_2016,rengen_2017,rengen_2018]
rengen = pd.concat(rengen)
rengen = rengen.set_index('Date')
rengen = rengen/1000
#Plot the data
ax1 = rengen.plot(legend=False)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax1.set_title('Renewable (Solar+Wind) generation for California ISO from 2015-
2018',fontsize=15)
ax1.set_xlabel('Date',fontsize=15)
ax1.set_ylabel('GW',fontsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)

#Plot the yearly averages
g = rengen.groupby(rengen.index.year).mean()
e,kind='bar',rot=0)
plt.title('Average Yearly generation from Solar and Wind for California ISO from 2015-
2018',fontsize=15)
plt.xlabel('Year',fontsize=15)
plt.ylabel('GW',fontsize=15)
plt.tick_params(axis='both', which='both', labelsize=15)

GENERATION OUTAGES ANALYSIS

60

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates

#Load data from 2016-2018
genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv')
genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv')
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv')

genoutages_2016['Date'] = genoutages_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date'])
genoutages_2017['Date'] = genoutages_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date'])
genoutages_2018['Date'] = genoutages_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date'])

#Join dataframes
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018]
genoutages = pd.concat(genoutages)
genoutages['GW'] = genoutages['MW']/1000
genoutages = genoutages.drop(['MW'],axis=1)
genoutages = genoutages.set_index('Date')

#Plot the data
ax1 = genoutages.plot(legend=False)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax1.set_title('Generation Outages for California ISO from 2016-2018',fontsize=15)
ax1.set_xlabel('Date',fontsize=15)
ax1.set_ylabel('GW',fontsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)

#Plot the yearly averages
g = genoutages.groupby(genoutages.index.year).mean()
g.plot(legend=False,kind='bar',rot=0)
plt.title('Average Yearly generation outages for California ISO from 2016-2018')
plt.xlabel('Year',fontsize=15)
plt.ylabel('GW',fontsize=15)
plt.tick_params(axis='both', which='both', labelsize=15)

61

LMP ANALYSIS

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates

#Load the data from 2015-2018
prices_2015 = pd.read_csv(r'CAISO_hourlypricing2015.csv')
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv')
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv')
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv')

prices_2015['Date'] = prices_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2015['Date'] = pd.to_datetime(prices_2015['Date'])
prices_2016['Date'] = prices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2016['Date'] = pd.to_datetime(prices_2016['Date'])
prices_2017['Date'] = prices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2017['Date'] = pd.to_datetime(prices_2017['Date'])
prices_2018['Date'] = prices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2018['Date'] = pd.to_datetime(prices_2018['Date'])

#Join dataframes
prices = [prices_2015,prices_2016,prices_2017,prices_2018]
prices = pd.concat(prices)
prices = prices.set_index('Date')

#Plot the data
ax1 = prices.plot(legend=False)
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax1.set_title('Variation of electricity prices for California ISO SP15 trading hub from 2015-
2018',fontsize=15)
ax1.set_xlabel('Date',fontsize=15)
ax1.set_ylabel('$/MWh',fontsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)

#Plot the yearly averages

62

g = prices.groupby(prices.index.year).mean()
g.plot(kind='bar',legend=False,rot=0)
plt.xlabel('Year',fontsize=15)
plt.ylabel('$/MWh',fontsize=15)
plt.title('Average yearly electricity prices for California ISO from 2015-2018',fontsize=15)
plt.tick_params(axis='both', which='both', labelsize=15)

PRICING AND RENEWABLE GENERATION

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates

#Load the data
prices_2015 = pd.read_csv(r'CAISO_hourlypricing2015.csv')
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv')
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv')
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv')

rengen_2015 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2015.csv')
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv')
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv')
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv')

rengen_2015['Date'] = rengen_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2015['Date'] = pd.to_datetime(rengen_2015['Date'])
rengen_2016['Date'] = rengen_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date'])
rengen_2017['Date'] = rengen_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date'])
rengen_2018['Date'] = rengen_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date'])

prices_2015['Date'] = prices_2015.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2015['Date'] = pd.to_datetime(prices_2015['Date'])
prices_2016['Date'] = prices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2016['Date'] = pd.to_datetime(prices_2016['Date'])

63

prices_2017['Date'] = prices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2017['Date'] = pd.to_datetime(prices_2017['Date'])
prices_2018['Date'] = prices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2018['Date'] = pd.to_datetime(prices_2018['Date'])

rengen_2015 = rengen_2015.set_index('Date')
rengen_2016 = rengen_2016.set_index('Date')
rengen_2017 = rengen_2017.set_index('Date')
rengen_2018 = rengen_2018.set_index('Date')

prices_2015 = prices_2015.set_index('Date')
prices_2016 = prices_2016.set_index('Date')
prices_2017 = prices_2017.set_index('Date')
prices_2018 = prices_2018.set_index('Date')

neg_2015=prices_2015[prices_2015['price']<0]
neg_2016=prices_2016[prices_2016['price']<0]
neg_2017=prices_2017[prices_2017['price']<0]
neg_2018=prices_2018[prices_2018['price']<0]

prices_2015['MW']= rengen_2015['MW']
prices_2016['MW']= rengen_2016['MW']
prices_2017['MW']= rengen_2017['MW']
prices_2018['MW']= rengen_2018['MW']
xticks = np.arange(0,24,1)

#Plot the data
day_2015 = prices_2015['20151225':'20151225']
day_2015= day_2015.reset_index()
day_2015 = day_2015.drop(['Date'],axis=1)
fig, axes = plt.subplots(nrows=2, ncols=1)
xticks = np.arange(0,25,1)
ax1 =
day_2015[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r')
ax2 =
day_2015[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g')
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.set_xlabel('',fontsize=15)
ax2.set_xlabel('',fontsize=15)
ax1.set_ylabel('$/MWh',fontsize=15)
ax2.set_ylabel('MW',fontsize=15)

#Plot the data
day_2016 = prices_2016['20160429':'20160429']
day_2016= day_2016.reset_index()
day_2016 = day_2016.drop(['Date'],axis=1)
fig, axes = plt.subplots(nrows=2, ncols=1)

64

ax1 =
day_2016[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r')
ax2 =
day_2016[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g')
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.set_xlabel('',fontsize=15)
ax2.set_xlabel('',fontsize=15)
ax1.set_ylabel('$/MWh',fontsize=15)
ax2.set_ylabel('MW',fontsize=15)

#Plot the data
day_2017 = prices_2017['20170420':'20170420']
day_2017= day_2017.reset_index()
day_2017 = day_2017.drop(['Date'],axis=1)
fig, axes = plt.subplots(nrows=2, ncols=1)
ax1 =
day_2017[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r')
ax2 =
day_2017[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g')
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.set_xlabel('',fontsize=15)
ax2.set_xlabel('',fontsize=15)
ax1.set_ylabel('$/MWh',fontsize=15)
ax2.set_ylabel('MW',fontsize=15)

#Plot the data
day_2018 = prices_2018['20181111':'20181111']
day_2018= day_2018.reset_index()
day_2018 = day_2018.drop(['Date'],axis=1)
fig, axes = plt.subplots(nrows=2, ncols=1)
ax1 =
day_2018[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r')
ax2 =
day_2018[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g')
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.tick_params(axis='both', which='both', labelsize=15)
ax2.tick_params(axis='both', which='both', labelsize=15)
ax1.set_xlabel('',fontsize=15)
ax2.set_xlabel('',fontsize=15)
ax1.set_ylabel('$/MWh',fontsize=15)
ax2.set_ylabel('MW',fontsize=15)

#Comparison of negative prices and renewable generation
#plt.suptitle('Renewable Generation and Trading Hub Pricing for a day in 2015')
#prices_2016[prices_2016['price']>200]=0

65

#week_2018 = prices_2016['20160401':'20160407']
#fig, ax = plt.subplots()
#plt.plot(week_2018['price'], 'r', label='Prices',linewidth=3)
##plt.ylim(25,40)
#plt.legend(loc=2)
#ax.tick_params(axis='both', which='both', labelsize=15)
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%d/%m'))
Get second axis
#ax2 = ax.twinx()
#plt.plot(week_2018['MW'], marker='o',linestyle='--',linewidth=3.5)
##plt.ylim(0,10)
#plt.legend()
#ax2.tick_params(axis='both', which='both', labelsize=15)
#ax.set_ylabel('Price in $/Mwh',fontsize=15)
#ax2.set_ylabel('Renewable (Solar+Wind) Generation in MWh',fontsize=15)
#ax.set_xlabel('Day',fontsize=15)
#ax.set_title('Electricity prices and Renewable Generation for April first week in
2016',fontsize=15)

FINAL CODE

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

#Load the data
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv')
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv')
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv')

fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv')
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv')
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv')

demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv')
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv')
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv')

rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv')
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv')
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv')

genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv')

66

genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv')
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv')

#Convert the timestamp into a datetime object
fuelprices_2016['Date'] = fuelprices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date'])
fuelprices_2017['Date'] = fuelprices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date'])
fuelprices_2018['Date'] = fuelprices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date'])

prices_2016['Date'] = prices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2016['Date'] = pd.to_datetime(prices_2016['Date'])
prices_2017['Date'] = prices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2017['Date'] = pd.to_datetime(prices_2017['Date'])
prices_2018['Date'] = prices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2018['Date'] = pd.to_datetime(prices_2018['Date'])

demand_2016['Date'] = demand_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2016['Date'] = pd.to_datetime(demand_2016['Date'])
demand_2017['Date'] = demand_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M'))
demand_2017['Date'] = pd.to_datetime(demand_2017['Date'])
demand_2018['Date'] = demand_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2018['Date'] = pd.to_datetime(demand_2018['Date'])

rengen_2016['Date'] = rengen_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date'])
rengen_2017['Date'] = rengen_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date'])
rengen_2018['Date'] = rengen_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date'])

genoutages_2016['Date'] = genoutages_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date'])
genoutages_2017['Date'] = genoutages_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date'])

67

genoutages_2018['Date'] = genoutages_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date'])

#Join dataframes
fuelprices = [fuelprices_2016,fuelprices_2017,fuelprices_2018]
fuelprices = pd.concat(fuelprices)
prices = [prices_2016,prices_2017,prices_2018]
prices = pd.concat(prices)
rengen = [rengen_2016,rengen_2017,rengen_2018]
rengen = pd.concat(rengen)
demand = [demand_2016,demand_2017, demand_2018]
demand = pd.concat(demand)
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018]
genoutages = pd.concat(genoutages)

#Create a single dataframe with all the data
demand['LMP']= prices['price']
demand['Fuelprices']= fuelprices['PRC']
demand['Renewable_Generation']= rengen['MW']
demand['Generation Outages']= genoutages['MW']
demand['Year']= demand['Date'].dt.year
demand['Month']= demand['Date'].dt.month
demand['Day']= demand['Date'].dt.day
demand['Hour']= demand['Date'].dt.hour
demand['LMP']= demand['LMP'].astype(float)
demand['load']= demand['load'].astype(float)
demand['Fuelprices']= demand['Fuelprices'].astype(float)
demand['Renewable_Generation']= demand['Renewable_Generation'].astype(float)
demand['Generation Outages']= demand['Generation Outages'].astype(float)
demand['load']= demand['load']/1000
demand['Generation Outages']= demand['Generation Outages']/1000
demand['Renewable_Generation']= demand['Renewable_Generation']/1000
demand = demand.reset_index()
demand_new = demand
demand_new = demand_new.drop(['index','zone','load','Fuelprices',
 'Renewable_Generation','Generation Outages',
 'Hour','Year','Month','Day'],axis=1)
demand = demand.drop(['Date','index','zone'],axis=1)
demand = demand.drop(['Year','Month','Day'],axis=1)

#Split the data into test and training
len_data = 26280
test_lowerlim = 18000
test_upperlim = test_lowerlim + 24
demand_new = demand_new[test_lowerlim:test_upperlim]
X_train1= demand.iloc[0:test_lowerlim,demand.columns!='LMP'].values
X_train2 = demand.iloc[test_upperlim:len_data,demand.columns!='LMP'].values
X_train = np.vstack((X_train1,X_train2))
X_test = demand.iloc[test_lowerlim:test_upperlim,demand.columns!='LMP'].values
y_train1= demand.iloc[0:test_lowerlim,1].values
y_train2 = demand.iloc[test_upperlim:len_data,1].values

68

y_train = np.concatenate([y_train1,y_train2])
y_test = demand.iloc[test_lowerlim:test_upperlim,1].values

Import libraries from sklearn
from sklearn import ensemble
from sklearn.metrics import mean_squared_error
import xgboost as xg
Store the different type of regressors used in a list.Every regressor in the
list is tried and tested for the score. Apparently, the Gradient Boosting
regressor gives the maximum score

regressors = [
 ensemble.ExtraTreesRegressor(n_estimators
=400,random_state=0,max_depth=24,max_features='sqrt'),
 ensemble.RandomForestRegressor(random_state=0,n_estimators=100),
 ensemble.GradientBoostingRegressor(max_depth=12, max_features='log2',
 n_estimators= 400, subsample= 0.95,learning_rate=0.01),
 xg.XGBRegressor(n_estimators=1400,
learning_rate=0.01,max_depth=17,gamma=5,subsample=0.85,
 colsample_bytree = 0.85,min_child_weight=1)
]
clf = regressors[0]
y_test1 = np.zeros(len(y_test))
y_train1 = np.zeros(len(y_train))
Train model
model = clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_trainpred = clf.predict(X_train)
print(clf.score(X_test,y_test))
print('The rmse of test prediction is:', (mean_squared_error(y_test, y_pred)
/mean_squared_error(y_test, y_test1))** 0.5)
print('The rmse of train prediction is:', (mean_squared_error(y_train, y_trainpred)
/mean_squared_error(y_train, y_train1))** 0.5)

#Plot the actual and forecasted LMPs
demand_new['Predicted LMP']= y_pred
demand_new = demand_new.set_index('Date')
demand_new.plot(legend=True)
plt.xlabel('Hour of the day',fontsize='x-large')
plt.ylabel('$/MWh',fontsize='x-large')
plt.title('Comparison between actual and forecasted LMP for January 21,2018',fontsize='x-large')
plt.tick_params(axis='both', which='minor', labelsize=15)
plt.tick_params(axis='both', which='major', labelsize=15)

Calculate feature importances
importances = model.feature_importances_
importances = pd.DataFrame(importances)
importances = importances.T
labels = list(demand)
importances.columns = ['load',
 'Fuelprices',
 'Renewable_Generation',

69

 'Generation Outages',
 'Hour']
importances = importances.T
importances.plot(kind='bar',rot=10,legend=False)
#plt.title('Impact of different parameters on LMP for January 21,2018 using Extra Trees
Regression',fontsize=15)
#plt.title('Impact of different parameters on LMP for June 13,2018 using XGBoost
Regression',fontsize=15)
#plt.title('Impact of different parameters on LMP for January 21,2018 using Gradient Boost
Regression',fontsize=15)
plt.tick_params(axis='both', which='minor', labelsize=15)
plt.tick_params(axis='both', which='major', labelsize=15)

FINAL CODE LSTM NETWORKS

-*- coding: utf-8 -*-
"""
Created on Tue Mar 19 13:40:31 2019

@author: chinm
"""

import numpy as np
import pandas as pd
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,LSTM
import matplotlib.pyplot as plt
seed = 7
np.random.seed(seed)

#Load the data
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv')
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv')
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv')

fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv')
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv')
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv')

demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv')
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv')
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv')

rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv')
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv')
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv')

genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv')
genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv')
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv')

70

fuelprices_2016['Date'] = fuelprices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date'])
fuelprices_2017['Date'] = fuelprices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date'])
fuelprices_2018['Date'] = fuelprices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date'])

prices_2016['Date'] = prices_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2016['Date'] = pd.to_datetime(prices_2016['Date'])
prices_2017['Date'] = prices_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2017['Date'] = pd.to_datetime(prices_2017['Date'])
prices_2018['Date'] = prices_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
prices_2018['Date'] = pd.to_datetime(prices_2018['Date'])

demand_2016['Date'] = demand_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2016['Date'] = pd.to_datetime(demand_2016['Date'])
demand_2017['Date'] = demand_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M'))
demand_2017['Date'] = pd.to_datetime(demand_2017['Date'])
demand_2018['Date'] = demand_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
demand_2018['Date'] = pd.to_datetime(demand_2018['Date'])

rengen_2016['Date'] = rengen_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date'])
rengen_2017['Date'] = rengen_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date'])
rengen_2018['Date'] = rengen_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date'])

genoutages_2016['Date'] = genoutages_2016.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date'])
genoutages_2017['Date'] = genoutages_2017.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date'])
genoutages_2018['Date'] = genoutages_2018.Date.apply(
 lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M'))
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date'])

71

#Join dataframes
fuelprices = [fuelprices_2016,fuelprices_2017,fuelprices_2018]
fuelprices = pd.concat(fuelprices)
prices = [prices_2016,prices_2017,prices_2018]
prices = pd.concat(prices)
rengen = [rengen_2016,rengen_2017,rengen_2018]
rengen = pd.concat(rengen)
demand = [demand_2016,demand_2017, demand_2018]
demand = pd.concat(demand)
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018]
genoutages = pd.concat(genoutages)
demand['LMP']= prices['price']
demand['Fuelprices']= fuelprices['PRC']
demand['Renewable_Generation']= rengen['MW']
demand['Generation Outages']= genoutages['MW']

demand['Year']= demand['Date'].dt.year
demand['Month']= demand['Date'].dt.month
demand['Day']= demand['Date'].dt.day
demand['Hour']= demand['Date'].dt.hour
demand['LMP']= demand['LMP'].astype(float)
demand['load']= demand['load'].astype(float)
demand['Fuelprices']= demand['Fuelprices'].astype(float)
demand['Renewable_Generation']= demand['Renewable_Generation'].astype(float)
demand['Generation Outages']= demand['Generation Outages'].astype(float)
demand['load']= demand['load']/1000
demand['Generation Outages']= demand['Generation Outages']/1000
demand = demand.reset_index()
demand = demand.drop(['Date','index','zone'],axis=1)
demand = demand[['LMP','load','Fuelprices','Renewable_Generation','Generation
Outages','Year','Month','Day','Hour']]
values = demand.values
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled = scaler.fit_transform(values)

#convert data to supervised form

def to_supervised(data,dropNa = True,lag = 1):
 df = pd.DataFrame(data)
 column = []
 column.append(df)
 for i in range(1,lag+1):
 column.append(df.shift(-i))
 df = pd.concat(column,axis=1)
 df.dropna(inplace = True)
 features = data.shape[1]
 df = df.values
 supervised_data = df[:,:features*lag]
 supervised_data = np.column_stack([supervised_data, df[:,features*lag]])
 return supervised_data

72

timeSteps = 2
supervised = to_supervised(scaled,lag=timeSteps)
#print(pd.DataFrame(supervised).head())

splitting the data
training on only first year data
features = demand.shape[1]
train_hours = 26250
X = supervised[:,:features*timeSteps]
y = supervised[:,features*timeSteps]

x_train = X[:train_hours,:]
x_test = X[train_hours:,:]
y_train = y[:train_hours]
y_test = y[train_hours:]

print (x_train.shape,x_test.shape,y_train.shape,y_test.shape)

#convert data to fit for lstm
#dimensions = (sample, timeSteps here it is 1, features)

x_train = x_train.reshape(x_train.shape[0], timeSteps, features)
x_test = x_test.reshape(x_test.shape[0], timeSteps, features)

print(x_train.shape,x_test.shape)

#define the model

model = Sequential()
model.add(LSTM(50, input_shape = (timeSteps,x_train.shape[2])))
model.add(Dense(1, activation='tanh'))
model.compile(optimizer='adam',loss='mae')

history = model.fit(x_train,y_train, validation_data = (x_test,y_test), epochs = 1000, batch_size
= 32, verbose = 0, shuffle = False)

#plt.plot(history.history['loss'], label='train')
#plt.plot(history.history['val_loss'], label='test')
#plt.legend()
#plt.yticks([])
#plt.xticks([])
#plt.title("loss during training")
#plt.show()

#scale back the prediction to orginal scale
y_pred = model.predict(x_test)
x_test = x_test.reshape(x_test.shape[0],x_test.shape[2]*x_test.shape[1])
inv_new = np.concatenate((y_pred, x_test[:,-(features-1):]) , axis =1)
inv_new= scaler.inverse_transform(inv_new)
final_pred = inv_new[:,0]

73

y_test = y_test.reshape(len(y_test), 1)
inv_new = np.concatenate((y_test, x_test[:,-(features-1):]) ,axis = 1)
inv_new = scaler.inverse_transform(inv_new)
actual_pred = inv_new[:,0]

#plot the prediction with actual data

plt.plot(final_pred, label = "prediction",c = "b")
plt.plot(actual_pred,label = "actual data",c="r")
#plt.xlim(0, 100)
#plt.ylim(0, 300)
#plt.yticks([])
#plt.xticks([])
plt.title("comparison between prediction and actual data")
plt.legend()

from sklearn.metrics import mean_squared_error

print('The rmse of prediction is:', mean_squared_error(final_pred,actual_pred) ** 0.5)
from sklearn.metrics import r2_score
Compute error between our test predictions and the actual values.

print(r2_score(actual_pred,final_pred,multioutput='variance_weighted'))

