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ABSTRACT 
 

Accurate forecasting of electricity prices has been a key factor for bidding 

strategies in the electricity markets. The increase in renewable generation due to 

large scale PV and wind deployment in California has led to an increase in day-

ahead and real-time price volatility. This has also led to prices going negative due to 

the supply-demand imbalance caused by excess renewable generation during 

instances of low demand. This research focuses on applying machine learning 

models to analyse the impact of renewable generation on the hourly locational 

marginal prices (LMPs) for California Independent System Operator (CAISO). 

Historical data involving the load, renewable generation from solar and wind, fuel 

prices, aggregated generation outages is extracted and collected together in a 

dataset and used as features to train different machine learning models. Tree- based 

machine learning models such as Extra Trees, Gradient Boost, Extreme Gradient 

Boost (XGBoost) as well as models based on neural networks such as Long short 

term memory networks (LSTMs) are implemented for price forecasting.  The focus is 

to capture the best relation between the features and the target LMP variable and 

determine the weight of every feature in determining the price. 

The impact of renewable generation on LMP forecasting is determined for 

several different days in 2018. It is seen that the prices are impacted significantly by 

solar and wind generation and it ranks second in terms of impact after the electric 

load. The results of this research propose a method to evaluate the impact of several 

parameters on the day-ahead price forecast and would be useful for the grid 

operators to evaluate the parameters that could significantly impact the day-ahead 

price prediction and which parameters with low impact could be ignored to avoid an 

error in the forecast. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Problem Statement and Motivation 
 

    Accurate forecasting of electricity prices has been a key issue for competitive markets 

due to the increasing renewable penetration into the grid.  Electricity markets followed 

the restructuring of the vertically integrated electric utility industry in the U.S. in the 

1990’s. While designing such competitive wholesale markets, the focus was on 

traditional forms of generation, including fossil, nuclear, and hydro. Since wind and 

solar had not flourished significantly then, little consideration was given to market 

design and operation under conditions of high penetrations of variable renewable 

resources [4]. Renewable energy sources have experienced tremendous investment and 

growth in the past decade in the United States due to technological advances and policy 

changes. Improved renewable generation and grid integration technology, combined 

with improved forecasting methods and changes to wholesale market rules and other 

subsidies and mandates have fostered tremendous growth in the amount of wind and 

solar power utilized in the U.S.  [7].  Variable renewable generation presents a 

challenge to market design due to the intermittent nature and uncertainty associated 

with plant output. The integration of a significant amount of wind and solar power into 

a power system results in important operational challenges, which in turn originate 

alterations in electricity prices. The problem of forecasting locational marginal price 

(LMP)in a deregulated electricity market is important to both system operators and 

market participants. Accurate LMP forecasts produced in real-time are essential for 

demand response, revenue and risk management, and an efficient operation of a smart 

grid [2].   
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   The thesis focuses on analysing the impact of   renewable generation on day-ahead 

locational marginal price (LMP) forecast for California ISO. The electricity market for 

California ISO is split into three zones: NP-15, ZP-26, SP-15. All of these are trading 

zones which were created to facilitate bilateral transactions between energy buyers and 

sellers. Fig.1.1 shows the trading zones for California ISO. 

 
Figure 1.1 Trading zones for California ISO [39]    
 

 
1.2 Understanding the Supply-Demand Curve 
 
 
  The prices in the electricity market are determined on a day-ahead or real-time basis 

by looking at the demand and supply. For the day-ahead markets, generators offer 

certain amount of power for a price while the buyers lodge the bids to buy power at a 

certain price. This bidding process for the next day goes on till 12 noon every day. The 

bids placed for buying and selling power can trace two curves. The point of intersection 
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of those two curves determine the ‘market clearing price’ which is paid to every 

successful bid. Fig 1,2,1 shows an example of a supply-demand curve in Germany.  

 
Figure 1.2.1 Example of a supply-demand curve based on a German day-ahead power 
market [34] 
 
   However, there might be instances when supply would exceed the demand. This 

occurs when there are instances with low demand and at the same time, the generation 

is inflexible to be ramped down. Renewable generation usually peaks in the middle of 

the day and if there’s low demand observed during the same, there might be several 

instances of prices going below zero for even an hour or so. This would lead to setting 

the ‘market clearing price’ less than zero. Fig 1.2.2 shows the supply-demand curve for a 

scenario when supply exceeds the demand. Consider an example when a lignite plant 

with a low ramp rate was running at its full capacity to meet the power demand. At 

some point in the middle of the day, PV production increases and reaches its peak, 

creating an imbalance in the supply and demand. In such cases, grid operators can 

either curtail the PV or can curtail the generation of the lignite plant. Curtailing the 

generation from the lignite plant is difficult since there are policy issues and even risks 
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of damaging the plant. If the operator does not choose any of the above actions, there 

occurs an instance of negative price.  

   The other reason for a below-zero price is the tax credit that is offered to wind farms. 

Several wind farms receive a Production Tax Credit (PTC) for every MWh of energy 

they produce. This gives them an incentive to produce as much power as possible and in 

such cases, the plants can even accept a negative price. For example, if the PTC offered 

to a wind farm is $20/MWh and the price is -$5/MWh, the farm still earns a net revenue 

of $15/MWh. Hence, some wind generators submit their supply bids at a negative price 

in the day-ahead and real-time market but only when they have strong confidence in 

their offer being the cheapest. [35] 

 

 
Figure 1.2.2 Example of a supply-demand curve for instances when supply exceeds the 
demand in a German day-ahead power market [34] 
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1.3 Locational Marginal Price (LMP) and Trading Zone Price Definition 
 
 
   Locational Marginal Pricing (LMP) represent the cost to buy and sell power at different 

locations within wholesale markets, usually called Regional Transmission Organizations 

(RTOs). There are seven RTOs in United States: CAISO (California Independent System 

Operator), ERCOT (Electric   Reliability   Council   of   Texas), PJM (Pennsylvania, Jersey 

and Maryland power pool), NEISO (New England ISO), Southwest Power Pool (SPP), 

NYISO (New York ISO) and MISO (Midcontinent ISO). Fig 1.3 shows the location of RTOs 

when United States. 

 
Figure 1.3.1 Map showing the regional tranmimission organizations (RTOs) within United  

States [38] 
 
 
   RTOs have Day Ahead and Real Time LMPs. Day-ahead LMPs represent prices in day-

ahead markets which let market participants buy and sell wholesale electricity a day before 

the operating day to avoid volatility. Real-time LMPs represent prices in real time markets 

which let participants buy and sell power during the day of operation. For example, if an 
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area under an RTO expects a demand of 50 MW to occur tomorrow at 2 pm, they would buy 

50 MW of electricity to be delivered at 2 pm tomorrow on the day-ahead market. However, 

at 2 pm on the next day, demand is actually 55 MW, then the additional 5 MW would be 

bought on the real-time market. Real-time market prices are generally more volatile than 

day-ahead market prices [19]. 

  Typically, LMP is the cost for the operator to deliver one additional MW to a bus/node in 

the network. LMP comprises of three components (see Fig.2.2). 

1. Energy: The price of energy at the reference node. The energy component does 

not   vary with location. The price at the reference bus is the load-weighted 

average of the system node prices. 

2. Congestion: The congestion component reflects the marginal cost of congestion at 

a given node relative to the reference node. Congestion is location-sensitive and 

arises when there are binding constraints on the transmission system. 

3. Losses: Represent the transmission losses and are locational sensitive. They 

reflect the cost of losses at that location relative to the load-weighted average of 

system node prices. 

  CAISO constitutes thousands of pricing nodes or PNodes under its area of operation. A 

pricing node or PNode is defined as a point where power generation or withdrawal is 

modelled within a system. LMP is calculated at such nodes and used for financial 

settlements [40].  Fig 1.3.3 shows the distribution of PNodes for CAISO in 2019.  

 
 
 
 
Figure 1.3: Components of LMP 

Locational 
Marginal 

Price 

System 
Energy 
Price 

Transmission 
Congestion 

Cost 

Cost 
Of 

Losses 
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Fig 1.3.3 Map showing distribution of pricing nodes within CAISO in 2019 [17] 
 

   A trading zone would constitute several such PNodes and would have its own price called 

as trading zone LMP. For this research, the trading zone LMP is calculated by simply 

averaging LMPs of all nodes that are a part of the zone.  

 
 
1.4   Thesis Outline 
 
   Chapter 1 identifies the problem and its importance, the history of electricity markets in 

United States, explaining the supply-demand curve to show how the prices are determined 

for the next day and defining how nodal and trading zone LMPs are calculated. 

   Chapter 2 focuses on the literature survey and provides the methods used for price 

forecasting in different electricity markets in the United States. 

   Chapter 3 gives a detailed procedure on how the dataset for the thesis was created and 

the methods used for cleaning and processing the data for further analysis. 

   Chapter 4 provides a detailed analysis of the dataset described in Chapter 3 showing the 

yearly variation along with the average yearly data. It also describes the correlation 

between prices and renewable generation through different plots. 
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   Chapter 5 describes in detail the different machine learning (ML) algorithms used in this 

thesis and the terminologies used in machine learning. Also, it provides the forecasting 

procedure applied on the data. Chapter 5 also includes methods to tune the model for better 

accuracy along with a way to determine the weight or impact of every feature on the price 

prediction. 

   Chapter 6 shows the results which are the comparison between the forecasting methods 

described in Chapter 5. Also, Chapter 6 describes the weights of every feature in predicting 

the price for every machine learning method. 

   Chapter 7 is the final chapter which provides a conclusion and discusses the scope of 

future work on this topic. 
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CHAPTER 2 
 

LITERATURE SURVEY 
 
 

  Day-ahead electricity price forecasting has been performed by several authors by methods 

such as time series models, recurrent neural networks (RNNs) and simulations tools. [2] 

provides a state-space approach to predict LMPs built by analysing the PJM real-time 

pricing model. The results are obtained using a Monte-Carlo simulation and accuracy is 

compared with the artificial neural network (ANN) forecasting results. The authors of [3] 

use random forest (RF), an ensemble learning model to predict day-ahead hourly LMPs for 

CAISO. The study performed in [3] focuses on the prices from January 2014 to February 

2016 and is quite accurate. [33] includes applying deep learning to forecast extreme loads 

observed in PJM. The results show that their model performs better than the traditional 

Fourier series methods. The thesis extends the approach applied in [3] and [33] and 

compares different methods to analyse the impact of renewable generation on price 

forecasting. 

  [5] studies the impact of variable renewable generation on LMPs for several RTOs and 

creates a model to build scenarios which observe the impact with low and high solar and 

wind generation. [6] gives a short introduction to the demand-supply curve which shows 

how the price is determined and conducts a case study to demonstrate the effect of 

increasing renewable penetration on the LMPs. The thesis correlates with the work done by 

the authors of [7] but differs in terms of the dataset and methods applied for forecasting. 

The authors of [7] analyse the impact of increasing wind generation on Midcontinent ISO 

(MISO) pricing using regression-based techniques. [10] provides similar research as 

conducted in [7] but in more depth and including several regional transmission 

organizations (RTOs) in United States. The article mentioned in [11] tries to establish a 

correlation between the negative prices and solar generation by studying the pricing data 
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for several Regional Transmission Organizations (RTOs). [12] strongly relates to a section 

of this thesis which is to determine the correlation between the increasing solar generation 

with negative prices for CAISO.  

  [13]-[16] and [23]-[32] provide a clear description of the models used for price forecasting 

in the thesis. Also, they provide a good understanding on how to tune the model for higher 

accuracy and determining the impact of every quantity included the dataset on the price 

forecast.  

   The primary goal of this thesis is to compare several advanced machine learning 

algorithms such as the algorithm developed in [33] to determine the impact of renewable 

generation on electricity price forecasting. Chapter 5 would cover the algorithms in detail.  
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CHAPTER 3 
 
 

DATA COLLECTION AND CLEANING 
 

3.1 Data Collection 
 
   The thesis involves working with historical data for California ISO (CAISO). The ISO 

provides an Open Access Same-Time Information System (OASIS) which includes real-time 

data related to the ISO transmission systems and the electricity market for CAISO. [20]. 

OASIS allows the user to download data for a maximum duration of 30 days either through 

its interface or through querying the API. The data are available either in XML format or 

as a ZIP file which contains the .CSV document [20].  

   Data were collected for the following quantities: 

1. Fuel Prices 

     Hourly gas prices for each day in $/mmBtu by fuel region 

2.  Renewable Generation 

     5-minute data for actual wind and solar generation in MW for every hour of 

the day aggregated by trading zones 

3.  System Load 

Load in 5-minute intervals for every hour of the day in MW aggregated by  

                  trading zones 

4.  Locational Marginal Prices (LMP) 

     Hourly LMPs for all nodes in $/MWh 

5. Aggregated Generation Outages  

    Hourly data for each day which includes generator de-rates and outages in 

MW split by trading zones (SP-15, NP-15, ZP-26) and resource type (thermal, 

hydro, renewable). 
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The final dataset includes the above data over a period of four years (2015-2018) except for 

generation outages which has three-year data (2016-2018). This thesis involves analysing 

the data using Python and hence .csv files were preferred over .xml files. 

 
 
3.2 Data Cleaning & Processing 
 
  The thesis involves performing analysis for the data over a year, hence, multiple .csv files 

need to be aggregated together to generate the yearly data. For the renewable generation 

and the load, the dataset involves values for every 5 minutes in an hour and is averaged to 

produce the hourly values. Also, there are several hours missing in most of the datasets. 

Around 80-100 hours were seen to be missing from every year. These missing values are 

filled by averaging the values for the missing hour for the previous and the next seven days.  
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Figure 3.2. Flowchart describing the data cleaning and processing algorithm 
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CHAPTER 4 

 
 

ANALYSING THE ISO DATA 
 

 
4.1 Analysis of Fuel Prices and Electric Load 
 
 
   The variation in every quantity described in Chapter 4 gives a picture of the trend 

followed throughout the last few years. Fig 4.1.1 and 4.1.2 show fuel price variation and 

average yearly fuel price from 2015-2018. Average fuel prices have dropped compared to 

2015, and 2018 experienced a third-quarter high gas price window due to high prices 

reported at the SoCal Citygate trading hub. [21] 

 

Figure 4.1.1 Plot showing the variation of fuel prices from 2015-2018 
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Figure 4.1.2 Average fuel prices by year from 2015-2018 
 

   Fig 4.1.3 shows the hourly electric load variation from 2015-2018. It is seen that the 

electric load profile looks quite similar throughout the last few years. The average load for 

the entire year has not changed significantly from 2015-2018 as shown in Fig 4.1.4 
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Figure 4.1.3 Electric Load Variation from 2015-2018 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.4 Average yearly load in GW from 2015-2018 
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4.2 Analysis of Renewable Generation and Generation Outages 

   The focus of this thesis, renewable generation, has increased significantly over the last 

three years. Fig 4.2.1 shows the same and Fig 4.2.2 clearly states the increase in PV and 

Wind deployment over the past few years. 

 

Figure 4.2.1 Renewable (Solar+Wind) Generation from 2015—2018 
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Figure 4.2.2 Average renewable generation in GW by year from 2015-2018 
 
 
  Generation Outages account for aggregated outages from sources such as thermal, 

hydroelectric and renewable power plants. Fig 4.2.3 represent the aggregated generation 

outages from 2016-2018. It is seen from Fig 4.2.4 that average generation outages have 

decreased in comparison to 2016. 

Figure 4.2.3 Aggregated Generation Outages in GW from 2016-2018 
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Figure 4.2.4 Average generation outages in GW by year from 2016-2018 
 
 
4.3 Variation of Hourly LMPs 

   Fig 4.3.1 and Fig 4.3.2 show the variation of hourly LMPs for SP-15 hub from 2015-2018. 

The average price has increased by around $4/MWh in comparison to 2015. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.1 Plot showing hourly LMPs for CAISO SP-15 from 2015-2018 
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Figure 4.3.2 Average LMP by year for CAISO SP-15 from 2015-2018 
 
 
 
4.4   Impact of Renewable Generation on Hourly LMPs 
 

   Figures 4.4.1 to 4.4.3 clearly show that renewable generation cause a dip in the hourly 

LMPs. The prices are compared with the renewable generation by solar and wind for the 

first week of April in 2016, 2017 and 2018. A clear reduction in prices is seen when 

renewable generation is close to its peak even forcing the prices to go negative. Also, 

another observation is the sharp increase in prices for most of the cases when there are 

instances of minimum renewable generation.  
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Figure 4.4.1 Variation of hourly LMPs and renewable (Solar+Wind) generation for April 
first week in 2016 
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Figure 4.4.2 Variation of hourly LMPs and renewable (Solar+Wind) generation for April 
first week in 2017 
 

Figure 4.4.3 Variation of hourly LMPs and renewable generation in MWh for the first week 
of April in 2018 
 
 
   The plots in Fig 4.4.4 show the negative price share for every month of the year from 

2015-2018. Negative pricing instances in 2016 and 2017 show significant increase of around 

10% for March and April in comparison to 2015. March and April are also the two months 

when renewable generation due to PV is maximum in comparison to the rest of the year. A 

significant decrease is seen in the negative pricing share for 2018 as CAISO has done well 

in reducing the instances by measures such as load shifting, storage and trading on the 

Energy Imbalance Market (EIM). 
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Figure 4.4.4   Plot showing the negative price share for every month of a year from 2015-2018  
 
 
  Fig 4.4.5 shows the negative price share for every hour of the day from 2015-2018. The 

negative price share for 2016 and 2017 is found to be maximum around noon when usually 

PV generation is maximum. 2018 reports a significant decrease in negative price share as 

reported earlier which might be due to the counter-measures implemented by CAISO. 
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Figure 4.4.5 Plot showing negative price share for every hour of the day from 2015-2018  
 
 
  Figure 4.4.6 tries to establish a correlation between LMPs and renewable generation from 

2015-2018. From the plot, a slight negative correlation is seen between the two as the band of 

prices reduces with the increasing renewable generation. The band of prices gets concentrated 

around zero as the renewable generation by solar and wind increases. Another observation is 

that the volatility of the prices decreases as the combined solar and wind generation goes 

beyond 5 gigawatts. 
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Figure 4.4.6 Scatterplot showing the variation of hourly LMPs with increasing renewable 
generation in MWh from 2015-2018
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CHAPTER 5 
 

Machine Learning (ML) forecasting algorithms for trading zone prices 
 
 

5,1 Detailed Description of Machine Learning Models  
 

   Machine learning (ML) makes it easier to understand the data accurately and in less 

time. As defined in 90s by Arthur Samuel, it is a “field of study that gives computer the 

ability to learn without being explicitly programmed” [41].  Multiple ML algorithms are 

implemented to forecast electricity prices with a goal to evaluate the effect of every feature 

on the price forecast and compare the percentage of error in the forecast for each model. 

The features are load, renewable generation, fuel prices and aggregated generation outages. 

Supervised learning algorithms are used since they provide more accurate predictions over 

the clustering algorithms. Supervised learning is when you have the given data set and the 

result, all you have to do is concoct a relationship between the input (given data set) and 

the output (the given result). Since the output is price in $/MWh which is a continuous 

variable, regression-based learning approaches are used in forecasting. Regression involves 

predicting real-valued numbers by determining the statistical relationship between input 

and output quantities. Ensemble- based learning methods have been implemented in this 

thesis for forecasting since they provide much accurate results compared to linear models. 

Ensemble models combine outputs from several models by using techniques such as 

averaging, bagging etc. to give a better prediction of the output variable. Fig 5.1.1 shows 

the ensemble learning process. 
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Figure 5.1.1 Ensemble learning process [22] 

 
 

  The forecasting algorithms utilize eight features to model the problem. The features are as 

follows: 

• Load in MW 

• Fuel Prices in $/mmBtu 

• Generation Outages in MW 

• Renewable (Solar+Wind) generation in MW 

• Year 

• Month of the year 

• Day of the month 

• Hour of the day 

Three of these features (Day, Month and Year) were found to have little or no significant 

impact on the price forecast as compared to the other features. Hence, they were not 

accounted for while building the prediction model and the model is built on five features 

which are: 
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• Load in MW 

• Fuel Prices in $/mmBtu 

• Generation Outages in MW 

• Renewable (Solar+Wind) generation in MW 

• Hour of the day 

 

  Four ML algorithms have been implemented and the accuracy of every algorithm is 

assessed along with the computational time. The scikit learn library in Python has been 

utilized to implement the first three algorithms while the fourth has been implemented by 

using the keras and Tensorflow library developed by Google. The algorithms are: 

• Extra Trees Regression 

• Gradient Boost Regression 

• XGBoost Regression 

• Long short term memory networks (LSTM) using Tensorflow 

 

  Extra Trees or Extremely Randomized Trees is a supervised learning approach with the 

goal to optimize Random Forest further in terms of reducing the variance in the output. It 

differs from random forest learning method in terms of node split where the cut points are 

chosen randomly instead of optimally finding the cut-point based on features. Also, it uses 

the entire learning sample rather than using bootstrap copies of the same [23].  Random 

Forest is a supervised learning algorithm which creates multiple decision trees and merges 

the results to provide an accurate prediction. Fig 5.1.2 shows the random forest tree 

structure. It involves splitting the dataset into several subsamples and then building a 

decision tree for regression on every sample. The sampling of the data is done with 
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replacement till an optimal cut-point is found. The final or the predicted value is the mean 

value of all output variables in the leaf node. [25] 

Figure 5.1.2 Random Forest Tree structure [24] 
 
  Gradient Boost (GB) is one more example of an optimized RF algorithm. GB works on 

creating a sequence of trees with each successive tree built on the residuals of the 

prediction of the previous tree. [26] Boosting is a way to transform weak learners into 

strong learners. The learners mentioned previously are basically decision trees with 

assigned weights. Fig 5.1.3 shows a boosting trees structure. Gradient Boosting involves a 

gradual and sequential approach in which the weak learners are identified using gradient 

descent in the loss function. The definition of a loss function is measuring how good are the 

model coefficients at fitting the data. The algorithm tries to minimize the loss function by 

adding weak learners at each step to build a strong learner. Hence, the magnitude of the 

loss function is reduced at every step leading to less error between the actual and the 

predicted value. [27].  
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Figure 5.1.3 – Boosting trees algorithm structure [28] 
 
  XGBoost or Extreme Gradient Boosting is one of the best ensemble-based learning 

methods used in data science. XGBoost is similar to Gradient Boosting but has certain 

features which makes it more efficient. It uses Newton Boosting which implements Newton-

Raphson method of approximations to provide a faster solution than gradient descent. Also, 

it adds a randomization parameter to reduce the correlation between individual trees 

leading to a better model. Also, XGBoost requires non-continuous memory access and 

ensures the maximum utilization of available disk space leading to faster and efficient 

computing. [29] 

  Long short term memory (LSTM) networks are examples of recurrent neural networks 

(RNNs) which are used to identify patterns in a dataset. RNNs can be visualized as 

duplications of the same network, with each copy passing its output to the next. Fig 5.1.4 

shows a basic structure of a recurrent neural network. 

 
Figure 5.1.4 Structure of a repeating module in RNN containing a single layer [30] 

 



31 
 

   

 LSTMs are basically RNNs which can learn long-term dependencies. They have the ability 

to preserve the error which could be fed back to the previous layers. In this way, RNNs 

could learn over a longer span of time and give better outputs since the error is maintained 

as a constant value. Fig 5.1.5 shows the structure for a LSTM network. 

 
Figure 5.1.5 Structure of a repeating module in LSTM containing four layers [30] 

 
  The horizontal lines running through the model are called as cell states through which the 

information flows. The cell state can be loaded with information through structures called 

as gates. These gates are a combination of a sigmoid neural net layer and a pointwise 

multiplier.  The output from the sigmoid layer is binary where zero means it acts as blocked 

while one opens the gate. The following steps are implemented in LSTM: 

1. LSTM decides through a sigmoid layer called as “forget gate layer” which data 

should be passed to the cell state. The layer outputs 0 and 1 for every value 

within the cell. 

2. The information to be stored in the cell is decided through a sigmoid and a 

hyperbolic tan (tanh) layer. The sigmoid layer decides the values to be stored 

while the tanh layer creates a candidate vector to add to the state. 

3. The cell state is updated using Step.2  
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4. Output is determined based on the cell state. It is determined by applying a 

sigmoid layer through the cell state to determine what to output. Then, the cell 

state is normalized by a tanh function to limit the values between (-1,1) and is 

multiplied by the sigmoid layer output to get the final prediction. 

 
 
 
5.2 FORECASTING PROCEDURE 
 
 
  Before applying the ML algorithms on the dataset, the dataset is split into ‘training’ and 

‘test’ data. Supervised learning methods are used to train the model on the ‘training’ 

dataset. This helps the model to build relationship between the input variables or features 

and the target variable. The model is evaluated on the ‘test’ dataset which is kept aside and 

unknown to the model. The models built by the algorithms specified in Section 6.1 need to 

be tuned to achieve better accuracy. However, the test data cannot be used to check the 

prediction accuracy since in the real world, the data would be completely new Also, tuning 

the model using the ‘test’ data would flaw the generalization measure and lead to 

inaccurate results. Hence, the model is tuned using a chunk of the ‘training’ data called as 

‘validation’ data.  Every ML model has a set of ‘hyperparameters’ which need to be set 

manually and adjusted. These set of values describe the higher-level properties of the model 

such as the learning rate, complexity etc. They cannot be learned from the data and need to 

be pre-defined before starting the training process.  The tuning process of the model on the 

‘validation’ data has the goal to find the optimal ‘hyperparameters’ which would result in 

the best degree of accuracy.   

  With the goal to tune the model for best accuracy, a method called as cross-validation (CV) 

is used to select the ‘validation’ dataset. Cross-validation tests the model using the training 

data to make sure it does not overfit or underfit resulting in a greater degree of error.  The 
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ML algorithms described in Section 5.1 are tuned using K-Fold CV which involves splitting 

the data into folds and using each fold as a testing set at some point [31]. The method splits 

the dataset into K parts or folds. Consider K=3 as an example. For the first iteration, the 

first fold would be used as ‘test’ data while the rest are used as ‘training’ data. The second 

iteration would involve using the second fold as ‘test’ data and the rest serving as ‘training’ 

data. The process would repeat until every fold is utilized as ‘test’ data. Fig 5.2.1 shows the 

K- Fold CV algorithm for K=3.  

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5.2.1 3-Fold Cross Validation 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

First Iteration 
Test Train Train 

 
Second Iteration 

Train Test Train 

 
Third Iteration 

Train Train Test 
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Figure 5.2.2 Flowchart describing the prediction process by machine learning (ML)   
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CHAPTER 6 
 

RESULTS 
 
6.1 Forecasting Results 
 
   The ML algorithms discussed in Chapter 5 are applied on the dataset. The goal is to 

compare the results of the three models and analyse how much renewable generation 

impacts the price forecast. A common metric used to verify the accuracy of every ML model 

is root mean squared error (RMSE).  RMSE is widely used in forecasting and is defined as 

the standard deviation of the errors in prediction. The prediction errors are often called as 

residuals and they indicate how spread out the points are from the regression curve [35]. 

RMSE is defined as follows: 

 
 
 
 
 
     
  Here, 

   Predicted – Predicted values by the model 

   Actual      - Actual values (Test data) 

           N      - Number of actual values 

   For this model, we use relative RMSE (rRMSE) as an accuracy metric. rRMSE is   

expressed as a percentage and the better the value, the more accurate is the model. rRMSE 

is defined as follows: 

 
 
 
 
 
                
                         Here, 

   Predictedi – Predicted value by the model 

   Actuali      - Actual value  

           N      - Number of actual values 
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Three different days are chosen in 2018 to plot the predicted prices versus the actual prices. 

Fig 6.1.1 – 6.1.3 shows the forecast and actual values for January 21, 2018 for all four ML 

algorithms: Extra Trees Regression, Gradient Boosting Regression and LSTMs using 

tensorflow.  

 

Figure 6.1.1 Plot showing the actual and forecasted LMPs for January 21,2018 using Extra 
Trees Regression 
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Figure 6.1.2 Plot showing the actual and forecasted LMPs for January 21,2018 using 
Gradient Boost Regression 
 

 
Figure 6.1.3 Plot showing the actual and forecasted LMPs for January 21,2018 using Long 
short term memory networks (LSTMs) 
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  To ensure that the prediction covers a wide range of dates, the ML algorithms are tested 

for two more days which are randomly picked. Fig 6.1.4 – 6.1.6 shows the forecast and 

actual values for June 13, 2018 for all four ML algorithms: Extra Trees Regression, 

Gradient Boosting Regression and LSTMs using tensorflow. 

 

Figure 6.1.4 Plot showing the actual and forecasted LMPs for June 13,,2018 using Extra 
Trees Regression 
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Figure 6.1.5 Plot showing the actual and forecasted LMPs for June 13,2018 using Gradient 
Boost Regression 
 

 
Figure 6.1.6 Plot showing the actual and forecasted LMPs for June 13,2018 using Long 
short term memory networks (LSTMs) 
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Fig 6.1.7 – 6.1.9 shows the forecast and actual values for June 13, 2018 for all four ML 

algorithms: Extra Trees Regression, Gradient Boosting Regression and LSTMs using 

tensorflow. 

 

 

Figure 6.1.7 Plot showing the actual and forecasted LMPs for December 30,2018 using 
Extra Trees Regression 
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Figure 6.1.8 Plot showing the actual and forecasted LMPs for December 30,2018 using 
Gradient Boosting Regression 
 

 
Figure 6.1.9 Plot showing the actual and forecasted LMPs for December 30,2018 using Long 
short term memory networks (LSTMs) 
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   The relative RMSE (rRMSE) of all machine learning (ML) forecasts for all the three days 

has been tabulated into Table 6.1.1. Two rRMSEs values are calculated for every ML 

algorithm which are for the ‘training’ and the ‘test’ data. rRMSE for ‘training’ data 

indicates whether the model is overfitted or underfitted.  Overfitting occurs when a model 

learns too much from the ‘training’ data. This leads to a negative impact on the model’s 

performance when it encounters new data. Overfitting usually occurs in non-linear models 

which are more flexible [36]. An underfitted model is unable to model the ‘training’ data 

and cannot make a good prediction for the new data. Underfitting denotes poor performance 

of the ML forecasts. An ideal ML model tends to find a good value between overfitting and 

underfitting. This is done by the hyperparameter tuning process discussed in Chapter 5. 

 

 
ML algorithm 

 
January 21 

 
June 13 

 
December 30 

 
Data 

 
Training 
rRMSE 

(%) 

 
Test 

rRMSE 
(%) 

 
Training 
rRMSE 

(%) 

 
Test 

rRMSE 
(%) 

 
Training 
rRMSE 

(%) 

 
Test 

rRMSE 
(%) 

 
Extra Trees 

 
10.22 

 
24.34 

 
12.35 

 
30.21 

 
8.67 

 
28.56 

 
Gradient Boost 

 
8.91 

 
21.62 

 
11.22 

 
29.12 

 
7.41 

 
28.20 

 
Long short term 

memory networks 
(LSTMs) 

 
12.41 

 
27.49 

 
10.56 

 
34.67 

 
11.39 

 
33.44 

 
Table 6.1.1 Tabular form showing the relative RMSE (rRMSE) of the predictions from ML 
algorithms 
 
 
   The table shows that the model fits reasonably well for all three days after tuning the 

hyperparameters. However, the testing rRMSE is high for all three cases. This might be 

occurring since the thesis does not involve solving the economic dispatch problem that is 



43 
 

used for LMP formulation. The goal is to analyse the impact of every feature included in the 

dataset on the prices. Also, other factors such as binding constraints on the system,  

transmission outages aren’t included in the dataset since the data for the same was not 

readily available on the OASIS portal for CAISO. These factors may cause a significant 

impact of LMP and might result in a better degree of prediction of prices. 

 

6.2 Impact of Every Feature on the Locational Marginal Price (LMP) 

 

  Every feature in the ‘training’ dataset for a machine learning (ML) algorithm has an 

impact on the target variable or the predicted value. Knowing the weights of every feature 

in determining the target variable makes the model interpretable. These weights are called 

as feature importances. Feature importances help the user know which features are most 

important in predicting the output. They also help in detecting features which have very 

little or negligible impact on the forecast. The user can go ahead and discard those features 

if not important to get a better accurate prediction.  Tree-based algorithms usually have a 

number of decision trees which have multiple nodes. Every node is an if/else condition on a 

single feature which is designed to split the data into two. In this way, similar samples end 

up in same sets. This optimal condition is chosen based on a measure which is called as 

variance for regression-based trees. Thus, during the training process, it can be computed 

how much each feature decreases the variance in a tree. For structures such as random 

forest, the decrease in variance from each feature can be averaged and features can be 

ranked according to this measure. [37] 

  Feature importances can be calculated using a built-in function in the Python scikit 

learning library for forest-based structures.  The output is an array of weights for every 
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feature present in the ‘training’ dataset. Fig 6.2.1 to 6.2.6 show a bar plot of how much each 

feature in the dataset affects the price prediction.  

 

 
 

 
 
Figure 6.2.1 Plot showing the impact of features in the dataset on the price forecast for 
January 21, 2018 using Extra Trees Regression 
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Figure 6.2.2 Plot showing the impact of features in the dataset on the price forecast for 
January 21, 2018 using Gradient Boosting Regression 
 

 
Figure 6.2.3 Plot showing the impact of features in the dataset on the price forecast for June 
13, 2018 using Extra Trees Regression 
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Figure 6.2.4 Plot showing the impact of features in the dataset on the price forecast for June 
13, 2018 using Gradient Boosting Regression 
 
 

 
Figure 6.2.5 Plot showing the impact of features in the dataset on the price forecast for 
December 30, 2018 using Extra Trees Regression 
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Figure 6.2.6 Plot showing the impact of features in the dataset on the price forecast for 
December 30, 2018 using Gradient Boosting Regression 
 
 
  From the plots in Fig 6.2.1 – 6.2.6, it is seen that the feature importances vary for every 

prediction. This is because the training data varies for each one of these predictions. Also, 

one other reason would be that the features are randomly permuted at each split in a tree. 

The best-found split might vary even if the training data remains the same. 

  Fig 6.2.1- 6.2.6 clearly show that the highest impact on the LMP is of the load or demand 

for that hour. It is seen that for most of the above cases, renewable generation has also had 

a significant impact on the price forecast. The impact is even greater than the impact caused 

by aggregated generation outages which usually impact the LMP by increasing the 

congestion component.  

  This shows that increasing renewable generation in California can significantly impact the 

real-time locational marginal prices (LMPs) for every node within California ISO. There 

might be hours with low demand during the day. If in such cases, renewable generation is at 



48 
 

its peak, for example, solar during the middle of the day, prices might go negative even for 

several hours. Such negative prices would be difficult to forecast in case they do not follow a 

consistent pattern.  
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Chapter 7 

CONCLUSION 

7.1 Conclusion 

   The goal of this research was to concentrate on how the load, fuel prices, renewable 

generation and generation outages affect the forecast of locational marginal prices (LMPs) 

for California ISO. This goal was achieved by comparing several machine learning (ML) 

methods for price forecasting and analysing their results. The research was aimed 

specifically to answer the question of “How would increasing renewable generation for 

California impact the day-ahead and the real-time LMP forecast?”. The results show that 

solar and wind generation do cause a significant impact on the price forecast. 

    A detailed discussion on the problem statement, definitions for nodal and trading zone 

LMPs and the supply -demand curve for price determination was presented in this research. 

The methods described for data cleaning and extraction would prove to be useful since the 

OASIS portal for CAISO can provide data for a maximum of 30 days at a single time. Also, 

the dataset had to be cleaned and processed before the analysis. A single dataset with all the 

historical data for load, fuel prices, renewable generation which was generated, would be a 

great place for anyone to start their analysis. 

    The trend observed by the load, renewable (solar+wind) generation, fuel prices, LMPs 

provide a picture of the current scenario for California ISO and indicate the variation since 

the last few years. Moreover, the plots with renewable generation and LMPs state that there 

is a significant dip in the prices when renewable generation starts to increase and reaches 

its peak during the day. Also, a spike in LMPs is seen when the renewable generation falls 

to a minimum value. 

     The ML algorithms described in Chapter 5 provide a reasonable forecast of LMPs for 

specific days. The impacts of every feature obtained from the forecast describe how much the 
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forecasted price would be affected if there is a deviation in the dataset. It was expected that 

the load would have the maximum impact on the day-ahead price forecast and is verified by 

observing the feature importance plots. An interesting finding from this research is that the 

renewable generation ranks second in terms of impact which is unusual as generation 

outages were also included in the dataset. Hence, there could be price fluctuations in case of 

an intermittent renewable generation scenario. 

  The results show that machine learning could be applied effectively in terms of 

determining the impacts of several parameters on the day-ahead and real-time price 

forecast for California. This would help grid operators in determining which parameters 

would impact the price forecast significantly and which parameters could be ignored due to 

have little or less significant impact.  

 

7.2 Future Work 

   As discussed earlier, the goal of this research was to analyse the impact of renewable 

generation on the locational marginal price (LMP) forecast. Features such as load, 

renewable generation, fuel prices, generation outages were considered for the prediction. 

The prediction did not involve factors such as transmission outages, binding constraints, etc. 

Hence, there is scope for improving the accuracy of the forecast. Some of the possibilities 

are: 

• Solving the economic dispatch problem at every node to forecast the LMP 

• Passing features such as transmission outages and constraints on the system to 

determine their impact on LMP  

• Involving features such as weather forecast, temperature etc. to get an accurate 

forecast 

• Using deep-learning algorithms to improve the forecasting accuracy 
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A. PYTHON CODES 

 
 

LOAD ANALYSIS 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import matplotlib.dates as mdates 
 
# Read the data from 2015-2018 
demand_2015= pd.read_csv(r'CAISO_hourlydemand_2015.csv') 
demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv') 
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv') 
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv') 
 
demand_2015['Date'] = demand_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2015['Date'] = pd.to_datetime(demand_2015['Date']) 
demand_2016['Date'] = demand_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2016['Date'] = pd.to_datetime(demand_2016['Date']) 
demand_2017['Date'] = demand_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M')) 
demand_2017['Date'] = pd.to_datetime(demand_2017['Date']) 
demand_2018['Date'] = demand_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2018['Date'] = pd.to_datetime(demand_2018['Date']) 
 
#Join dataframes 
demand = [demand_2015,demand_2016,demand_2017, demand_2018] 
demand = pd.concat(demand) 
demand['load']= demand['load']/1000 
demand = demand.set_index('Date') 
demand = demand.drop(['zone'],axis=1) 
 
#Plot the data 
ax1 = demand.plot(legend=False) 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
ax1.set_title('Variation of Electric load for California ISO from 2015-2018',fontsize=15) 
ax1.set_xlabel('Date',fontsize=15) 
ax1.set_ylabel('GW',fontsize=15) 
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ax1.tick_params(axis='both', which='both', labelsize=15) 
 
#Plot the averages 
g = demand.groupby((demand.index.year)).mean() 
g.plot(kind='bar',legend=False,rot=0) 
plt.xlabel('Year',fontsize=15) 
plt.ylabel('GW',fontsize=15) 
plt.title('Average yearly loads for California ISO from 2015-2018',fontsize=15) 
plt.tick_params(axis='both', which='both', labelsize=15) 
 
 
FUEL PRICES ANALYSIS 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import numpy as np 
import pandas as pd 
 
import matplotlib.pyplot as plt 
import matplotlib.dates as mdates 
 
 
# Read the data from 2015-2018 
fuelprices_2015 = pd.read_csv(r'CAISO_fuelprices2015.csv') 
fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv') 
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv') 
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv') 
 
 
fuelprices_2015['Date'] = fuelprices_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2015['Date'] = pd.to_datetime(fuelprices_2015['Date']) 
fuelprices_2016['Date'] = fuelprices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date']) 
fuelprices_2017['Date'] = fuelprices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date']) 
fuelprices_2018['Date'] = fuelprices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date']) 
# 
 
 
#Join dataframes 
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fuelprices = [fuelprices_2015,fuelprices_2016,fuelprices_2017,fuelprices_2018] 
fuelprices = pd.concat(fuelprices) 
fuelprices = fuelprices.set_index('Date') 
#Plot the data 
ax = fuelprices.plot(legend=False) 
ax.set_title('Variation of Fuel Prices for California ISO from 2015-2018',fontsize=15) 
ax.set_xlabel('Date',fontsize=15) 
ax.set_ylabel('$/mmbtu',fontsize=15) 
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
ax.tick_params(axis='both', which='both', labelsize=15) 
#Plot the yearly averages 
g = fuelprices.groupby(fuelprices.index.year).mean() 
g.plot(kind='bar',legend=False,rot=0) 
plt.title('Average Yearly fuel prices for California ISO from 2015-2018',fontsize=15) 
plt.xlabel('Year',fontsize=15) 
plt.ylabel('$/mmbtu',fontsize=15) 
plt.tick_params(axis='both', which='both', labelsize=15) 
 
 
RENEWABLE GENERATION ANALYSIS 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import matplotlib.dates as mdates 
 
#Load the data 
rengen_2015 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2015.csv') 
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv') 
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv') 
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv') 
 
 
rengen_2015['Date'] = rengen_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2015['Date'] = pd.to_datetime(rengen_2015['Date']) 
rengen_2016['Date'] = rengen_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date']) 
rengen_2017['Date'] = rengen_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date']) 
rengen_2018['Date'] = rengen_2018.Date.apply( 
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    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date']) 
#Join dataframes 
 
rengen = [rengen_2015,rengen_2016,rengen_2017,rengen_2018] 
rengen = pd.concat(rengen) 
rengen = rengen.set_index('Date') 
rengen = rengen/1000 
#Plot the data 
ax1 = rengen.plot(legend=False) 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
ax1.set_title('Renewable (Solar+Wind) generation for California ISO from 2015-
2018',fontsize=15) 
ax1.set_xlabel('Date',fontsize=15) 
ax1.set_ylabel('GW',fontsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
 
#Plot the yearly averages 
g = rengen.groupby(rengen.index.year).mean() 
e,kind='bar',rot=0) 
plt.title('Average Yearly generation from Solar and Wind for California ISO from 2015-
2018',fontsize=15) 
plt.xlabel('Year',fontsize=15) 
plt.ylabel('GW',fontsize=15) 
plt.tick_params(axis='both', which='both', labelsize=15) 
 
 
GENERATION OUTAGES ANALYSIS 
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# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import matplotlib.dates as mdates 
 
#Load data from 2016-2018 
genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv') 
genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv') 
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv') 
 
 
genoutages_2016['Date'] = genoutages_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date']) 
genoutages_2017['Date'] = genoutages_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date']) 
genoutages_2018['Date'] = genoutages_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date']) 
 
#Join dataframes 
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018] 
genoutages = pd.concat(genoutages) 
genoutages['GW'] = genoutages['MW']/1000 
genoutages = genoutages.drop(['MW'],axis=1) 
genoutages = genoutages.set_index('Date') 
 
#Plot the data 
ax1 = genoutages.plot(legend=False) 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
ax1.set_title('Generation Outages for California ISO from 2016-2018',fontsize=15) 
ax1.set_xlabel('Date',fontsize=15) 
ax1.set_ylabel('GW',fontsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
 
#Plot the yearly averages 
g = genoutages.groupby(genoutages.index.year).mean() 
g.plot(legend=False,kind='bar',rot=0) 
plt.title('Average Yearly generation outages for California ISO from 2016-2018') 
plt.xlabel('Year',fontsize=15) 
plt.ylabel('GW',fontsize=15) 
plt.tick_params(axis='both', which='both', labelsize=15) 
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LMP ANALYSIS 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import matplotlib.dates as mdates 
 
#Load the data from 2015-2018 
prices_2015 = pd.read_csv(r'CAISO_hourlypricing2015.csv') 
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv') 
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv') 
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv') 
 
prices_2015['Date'] = prices_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2015['Date'] = pd.to_datetime(prices_2015['Date']) 
prices_2016['Date'] = prices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2016['Date'] = pd.to_datetime(prices_2016['Date']) 
prices_2017['Date'] = prices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2017['Date'] = pd.to_datetime(prices_2017['Date']) 
prices_2018['Date'] = prices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2018['Date'] = pd.to_datetime(prices_2018['Date']) 
# 
 
#Join dataframes 
prices = [prices_2015,prices_2016,prices_2017,prices_2018] 
prices = pd.concat(prices) 
prices = prices.set_index('Date') 
 
#Plot the data 
ax1 = prices.plot(legend=False) 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
ax1.set_title('Variation of electricity prices for California ISO SP15 trading hub from 2015-
2018',fontsize=15) 
ax1.set_xlabel('Date',fontsize=15) 
ax1.set_ylabel('$/MWh',fontsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
 
#Plot the yearly averages 
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g = prices.groupby(prices.index.year).mean() 
g.plot(kind='bar',legend=False,rot=0) 
plt.xlabel('Year',fontsize=15) 
plt.ylabel('$/MWh',fontsize=15) 
plt.title('Average yearly electricity prices for California ISO from 2015-2018',fontsize=15) 
plt.tick_params(axis='both', which='both', labelsize=15) 
 
 
PRICING AND RENEWABLE GENERATION 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
import matplotlib.dates as mdates 
 
#Load the data 
prices_2015 = pd.read_csv(r'CAISO_hourlypricing2015.csv') 
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv') 
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv') 
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv') 
 
rengen_2015 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2015.csv') 
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv') 
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv') 
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv') 
 
rengen_2015['Date'] = rengen_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2015['Date'] = pd.to_datetime(rengen_2015['Date']) 
rengen_2016['Date'] = rengen_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date']) 
rengen_2017['Date'] = rengen_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date']) 
rengen_2018['Date'] = rengen_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date']) 
 
prices_2015['Date'] = prices_2015.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2015['Date'] = pd.to_datetime(prices_2015['Date']) 
prices_2016['Date'] = prices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2016['Date'] = pd.to_datetime(prices_2016['Date']) 
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prices_2017['Date'] = prices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2017['Date'] = pd.to_datetime(prices_2017['Date']) 
prices_2018['Date'] = prices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2018['Date'] = pd.to_datetime(prices_2018['Date']) 
# 
 
rengen_2015 = rengen_2015.set_index('Date') 
rengen_2016 = rengen_2016.set_index('Date') 
rengen_2017 = rengen_2017.set_index('Date') 
rengen_2018 = rengen_2018.set_index('Date') 
 
prices_2015 = prices_2015.set_index('Date') 
prices_2016 = prices_2016.set_index('Date') 
prices_2017 = prices_2017.set_index('Date') 
prices_2018 = prices_2018.set_index('Date') 
 
neg_2015=prices_2015[prices_2015['price']<0] 
neg_2016=prices_2016[prices_2016['price']<0] 
neg_2017=prices_2017[prices_2017['price']<0] 
neg_2018=prices_2018[prices_2018['price']<0] 
## 
prices_2015['MW']= rengen_2015['MW'] 
prices_2016['MW']= rengen_2016['MW'] 
prices_2017['MW']= rengen_2017['MW'] 
prices_2018['MW']= rengen_2018['MW'] 
xticks = np.arange(0,24,1) 
 
#Plot the data 
day_2015 = prices_2015['20151225':'20151225'] 
day_2015= day_2015.reset_index() 
day_2015 = day_2015.drop(['Date'],axis=1) 
fig, axes = plt.subplots(nrows=2, ncols=1) 
xticks = np.arange(0,25,1) 
ax1 = 
day_2015[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r') 
ax2 = 
day_2015[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g') 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.set_xlabel('',fontsize=15) 
ax2.set_xlabel('',fontsize=15) 
ax1.set_ylabel('$/MWh',fontsize=15) 
ax2.set_ylabel('MW',fontsize=15) 
 
#Plot the data 
day_2016 = prices_2016['20160429':'20160429'] 
day_2016= day_2016.reset_index() 
day_2016 = day_2016.drop(['Date'],axis=1) 
fig, axes = plt.subplots(nrows=2, ncols=1) 
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ax1 = 
day_2016[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r') 
ax2 = 
day_2016[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g') 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.set_xlabel('',fontsize=15) 
ax2.set_xlabel('',fontsize=15) 
ax1.set_ylabel('$/MWh',fontsize=15) 
ax2.set_ylabel('MW',fontsize=15) 
# 
#Plot the data 
day_2017 = prices_2017['20170420':'20170420'] 
day_2017= day_2017.reset_index() 
day_2017 = day_2017.drop(['Date'],axis=1) 
fig, axes = plt.subplots(nrows=2, ncols=1) 
ax1 = 
day_2017[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r') 
ax2 = 
day_2017[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g') 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.set_xlabel('',fontsize=15) 
ax2.set_xlabel('',fontsize=15) 
ax1.set_ylabel('$/MWh',fontsize=15) 
ax2.set_ylabel('MW',fontsize=15) 
# 
#Plot the data 
day_2018 = prices_2018['20181111':'20181111'] 
day_2018= day_2018.reset_index() 
day_2018 = day_2018.drop(['Date'],axis=1) 
fig, axes = plt.subplots(nrows=2, ncols=1) 
ax1 = 
day_2018[['price']].plot(kind='bar',legend=False,ax=axes[0],xticks=xticks,xlim=(0,24),color='r') 
ax2 = 
day_2018[['MW']].plot(kind='bar',legend=False,ax=axes[1],xticks=xticks,xlim=(0,24),color='g') 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.tick_params(axis='both', which='both', labelsize=15) 
ax2.tick_params(axis='both', which='both', labelsize=15) 
ax1.set_xlabel('',fontsize=15) 
ax2.set_xlabel('',fontsize=15) 
ax1.set_ylabel('$/MWh',fontsize=15) 
ax2.set_ylabel('MW',fontsize=15) 
 
#Comparison of negative prices and renewable generation 
#plt.suptitle('Renewable Generation and Trading Hub Pricing for a day in 2015') 
#prices_2016[prices_2016['price']>200]=0 
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#week_2018 = prices_2016['20160401':'20160407'] 
#fig, ax = plt.subplots() 
#plt.plot(week_2018['price'], 'r', label='Prices',linewidth=3) 
##plt.ylim(25,40) 
#plt.legend(loc=2) 
#ax.tick_params(axis='both', which='both', labelsize=15) 
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%d/%m')) 
## Get second axis 
#ax2 = ax.twinx() 
#plt.plot(week_2018['MW'], marker='o',linestyle='--',linewidth=3.5) 
##plt.ylim(0,10) 
#plt.legend() 
#ax2.tick_params(axis='both', which='both', labelsize=15) 
#ax.set_ylabel('Price in $/Mwh',fontsize=15) 
#ax2.set_ylabel('Renewable (Solar+Wind) Generation in MWh',fontsize=15) 
#ax.set_xlabel('Day',fontsize=15) 
#ax.set_title('Electricity prices and Renewable Generation for April first week in 
2016',fontsize=15) 
 
 
FINAL CODE 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
 
 
#Load the data 
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv') 
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv') 
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv') 
 
fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv') 
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv') 
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv') 
 
demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv') 
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv') 
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv') 
 
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv') 
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv') 
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv') 
 
genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv') 
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genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv') 
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv') 
 
#Convert the timestamp into a datetime object 
fuelprices_2016['Date'] = fuelprices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date']) 
fuelprices_2017['Date'] = fuelprices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date']) 
fuelprices_2018['Date'] = fuelprices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date']) 
# 
 
prices_2016['Date'] = prices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2016['Date'] = pd.to_datetime(prices_2016['Date']) 
prices_2017['Date'] = prices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2017['Date'] = pd.to_datetime(prices_2017['Date']) 
prices_2018['Date'] = prices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2018['Date'] = pd.to_datetime(prices_2018['Date']) 
# 
demand_2016['Date'] = demand_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2016['Date'] = pd.to_datetime(demand_2016['Date']) 
demand_2017['Date'] = demand_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M')) 
demand_2017['Date'] = pd.to_datetime(demand_2017['Date']) 
demand_2018['Date'] = demand_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2018['Date'] = pd.to_datetime(demand_2018['Date']) 
 
rengen_2016['Date'] = rengen_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date']) 
rengen_2017['Date'] = rengen_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date']) 
rengen_2018['Date'] = rengen_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date']) 
# 
 
genoutages_2016['Date'] = genoutages_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date']) 
genoutages_2017['Date'] = genoutages_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date']) 
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genoutages_2018['Date'] = genoutages_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date']) 
 
#Join dataframes 
fuelprices = [fuelprices_2016,fuelprices_2017,fuelprices_2018] 
fuelprices = pd.concat(fuelprices) 
prices = [prices_2016,prices_2017,prices_2018] 
prices = pd.concat(prices) 
rengen = [rengen_2016,rengen_2017,rengen_2018] 
rengen = pd.concat(rengen) 
demand = [demand_2016,demand_2017, demand_2018] 
demand = pd.concat(demand) 
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018] 
genoutages = pd.concat(genoutages) 
 
#Create a single dataframe with all the data 
demand['LMP']= prices['price'] 
demand['Fuelprices']= fuelprices['PRC'] 
demand['Renewable_Generation']= rengen['MW'] 
demand['Generation Outages']= genoutages['MW'] 
demand['Year']= demand['Date'].dt.year 
demand['Month']= demand['Date'].dt.month 
demand['Day']= demand['Date'].dt.day 
demand['Hour']= demand['Date'].dt.hour 
demand['LMP']= demand['LMP'].astype(float) 
demand['load']= demand['load'].astype(float) 
demand['Fuelprices']= demand['Fuelprices'].astype(float) 
demand['Renewable_Generation']= demand['Renewable_Generation'].astype(float) 
demand['Generation Outages']= demand['Generation Outages'].astype(float) 
demand['load']= demand['load']/1000 
demand['Generation Outages']= demand['Generation Outages']/1000 
demand['Renewable_Generation']= demand['Renewable_Generation']/1000 
demand = demand.reset_index() 
demand_new = demand 
demand_new = demand_new.drop(['index','zone','load','Fuelprices', 
                              'Renewable_Generation','Generation Outages', 
                               'Hour','Year','Month','Day'],axis=1) 
demand = demand.drop(['Date','index','zone'],axis=1) 
demand = demand.drop(['Year','Month','Day'],axis=1) 
 
#Split the data into test and training 
len_data = 26280 
test_lowerlim = 18000 
test_upperlim = test_lowerlim + 24 
demand_new = demand_new[test_lowerlim:test_upperlim] 
X_train1= demand.iloc[0:test_lowerlim,demand.columns!='LMP'].values 
X_train2 = demand.iloc[test_upperlim:len_data,demand.columns!='LMP'].values 
X_train = np.vstack((X_train1,X_train2)) 
X_test = demand.iloc[test_lowerlim:test_upperlim,demand.columns!='LMP'].values 
y_train1= demand.iloc[0:test_lowerlim,1].values 
y_train2 = demand.iloc[test_upperlim:len_data,1].values 
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y_train = np.concatenate([y_train1,y_train2]) 
y_test = demand.iloc[test_lowerlim:test_upperlim,1].values 
 
###   Import libraries from sklearn  
from sklearn import ensemble 
from sklearn.metrics import mean_squared_error 
import xgboost as xg 
### Store the different type of regressors used in a list.Every regressor in the 
### list is tried and tested for the score. Apparently, the Gradient Boosting 
### regressor gives the maximum score 
 
regressors = [ 
            ensemble.ExtraTreesRegressor(n_estimators 
=400,random_state=0,max_depth=24,max_features='sqrt'), 
            ensemble.RandomForestRegressor(random_state=0,n_estimators=100), 
            ensemble.GradientBoostingRegressor(max_depth=12, max_features='log2',  
                                               n_estimators= 400, subsample= 0.95,learning_rate=0.01), 
            xg.XGBRegressor(n_estimators=1400, 
learning_rate=0.01,max_depth=17,gamma=5,subsample=0.85, 
                            colsample_bytree = 0.85,min_child_weight=1) 
            ] 
clf = regressors[0] 
y_test1 = np.zeros(len(y_test)) 
y_train1 = np.zeros(len(y_train)) 
#### Train model 
model = clf.fit(X_train, y_train) 
y_pred = clf.predict(X_test) 
y_trainpred = clf.predict(X_train) 
print(clf.score(X_test,y_test)) 
print('The rmse of test prediction is:', (mean_squared_error(y_test, y_pred) 
/mean_squared_error(y_test, y_test1))** 0.5) 
print('The rmse of train prediction is:', (mean_squared_error(y_train, y_trainpred) 
/mean_squared_error(y_train, y_train1))** 0.5) 
 
#Plot the actual and forecasted LMPs 
demand_new['Predicted LMP']= y_pred     
demand_new = demand_new.set_index('Date') 
demand_new.plot(legend=True) 
plt.xlabel('Hour of the day',fontsize='x-large') 
plt.ylabel('$/MWh',fontsize='x-large') 
plt.title('Comparison between actual and forecasted LMP for January 21,2018',fontsize='x-large') 
plt.tick_params(axis='both', which='minor', labelsize=15) 
plt.tick_params(axis='both', which='major', labelsize=15) 
 
#### Calculate feature importances 
importances = model.feature_importances_ 
importances = pd.DataFrame(importances) 
importances = importances.T 
labels = list(demand) 
importances.columns = ['load', 
 'Fuelprices', 
 'Renewable_Generation', 
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 'Generation Outages', 
 'Hour'] 
importances = importances.T 
importances.plot(kind='bar',rot=10,legend=False) 
#plt.title('Impact of different parameters on LMP for  January 21,2018 using Extra Trees 
Regression',fontsize=15) 
#plt.title('Impact of different parameters on LMP for June 13,2018 using XGBoost 
Regression',fontsize=15) 
#plt.title('Impact of different parameters on LMP for January 21,2018 using Gradient Boost 
Regression',fontsize=15) 
plt.tick_params(axis='both', which='minor', labelsize=15) 
plt.tick_params(axis='both', which='major', labelsize=15) 
 
 
FINAL CODE LSTM NETWORKS 
 
# -*- coding: utf-8 -*- 
""" 
Created on Tue Mar 19 13:40:31 2019 
 
@author: chinm 
""" 
 
import numpy as np 
import pandas as pd 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense,LSTM 
import matplotlib.pyplot as plt 
seed = 7 
np.random.seed(seed) 
 
#Load the data 
prices_2016 = pd.read_csv(r'CAISO_hourlypricing2016.csv') 
prices_2017 = pd.read_csv(r'CAISO_hourlypricing2017.csv') 
prices_2018 = pd.read_csv(r'CAISO_hourlypricing2018.csv') 
 
fuelprices_2016 = pd.read_csv(r'CAISO_fuelprices2016.csv') 
fuelprices_2017 = pd.read_csv(r'CAISO_fuelprices2017.csv') 
fuelprices_2018 = pd.read_csv(r'CAISO_fuelprices2018.csv') 
 
demand_2016 = pd.read_csv(r'CAISO_hourlydemand_2016.csv') 
demand_2017 = pd.read_csv(r'CAISO_hourlydemand_2017.csv') 
demand_2018 = pd.read_csv(r'CAISO_hourlydemand_2018.csv') 
 
rengen_2016 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2016.csv') 
rengen_2017 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2017.csv') 
rengen_2018 = pd.read_csv(r'CAISO_hourlyrenewablegeneration_SP15_2018.csv') 
 
genoutages_2016 = pd.read_csv(r'CAISO_genoutages_hourly_2016.csv') 
genoutages_2017 = pd.read_csv(r'CAISO_genoutages_hourly_2017.csv') 
genoutages_2018 = pd.read_csv(r'CAISO_genoutages_hourly_2018.csv') 
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fuelprices_2016['Date'] = fuelprices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2016['Date'] = pd.to_datetime(fuelprices_2016['Date']) 
fuelprices_2017['Date'] = fuelprices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2017['Date'] = pd.to_datetime(fuelprices_2017['Date']) 
fuelprices_2018['Date'] = fuelprices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
fuelprices_2018['Date'] = pd.to_datetime(fuelprices_2018['Date']) 
# 
 
prices_2016['Date'] = prices_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2016['Date'] = pd.to_datetime(prices_2016['Date']) 
prices_2017['Date'] = prices_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2017['Date'] = pd.to_datetime(prices_2017['Date']) 
prices_2018['Date'] = prices_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
prices_2018['Date'] = pd.to_datetime(prices_2018['Date']) 
# 
demand_2016['Date'] = demand_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2016['Date'] = pd.to_datetime(demand_2016['Date']) 
demand_2017['Date'] = demand_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%m/%d/%Y %H:%M')) 
demand_2017['Date'] = pd.to_datetime(demand_2017['Date']) 
demand_2018['Date'] = demand_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
demand_2018['Date'] = pd.to_datetime(demand_2018['Date']) 
 
rengen_2016['Date'] = rengen_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2016['Date'] = pd.to_datetime(rengen_2016['Date']) 
rengen_2017['Date'] = rengen_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2017['Date'] = pd.to_datetime(rengen_2017['Date']) 
rengen_2018['Date'] = rengen_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
rengen_2018['Date'] = pd.to_datetime(rengen_2018['Date']) 
# 
 
genoutages_2016['Date'] = genoutages_2016.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2016['Date'] = pd.to_datetime(genoutages_2016['Date']) 
genoutages_2017['Date'] = genoutages_2017.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2017['Date'] = pd.to_datetime(genoutages_2017['Date']) 
genoutages_2018['Date'] = genoutages_2018.Date.apply( 
    lambda x: pd.to_datetime(x).strftime('%d/%m/%Y %H:%M')) 
genoutages_2018['Date'] = pd.to_datetime(genoutages_2018['Date']) 
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#Join dataframes 
fuelprices = [fuelprices_2016,fuelprices_2017,fuelprices_2018] 
fuelprices = pd.concat(fuelprices) 
prices = [prices_2016,prices_2017,prices_2018] 
prices = pd.concat(prices) 
rengen = [rengen_2016,rengen_2017,rengen_2018] 
rengen = pd.concat(rengen) 
demand = [demand_2016,demand_2017, demand_2018] 
demand = pd.concat(demand) 
genoutages = [genoutages_2016,genoutages_2017,genoutages_2018] 
genoutages = pd.concat(genoutages) 
demand['LMP']= prices['price'] 
demand['Fuelprices']= fuelprices['PRC'] 
demand['Renewable_Generation']= rengen['MW'] 
demand['Generation Outages']= genoutages['MW'] 
 
demand['Year']= demand['Date'].dt.year 
demand['Month']= demand['Date'].dt.month 
demand['Day']= demand['Date'].dt.day 
demand['Hour']= demand['Date'].dt.hour 
demand['LMP']= demand['LMP'].astype(float) 
demand['load']= demand['load'].astype(float) 
demand['Fuelprices']= demand['Fuelprices'].astype(float) 
demand['Renewable_Generation']= demand['Renewable_Generation'].astype(float) 
demand['Generation Outages']= demand['Generation Outages'].astype(float) 
demand['load']= demand['load']/1000 
demand['Generation Outages']= demand['Generation Outages']/1000 
demand = demand.reset_index() 
demand = demand.drop(['Date','index','zone'],axis=1) 
demand = demand[['LMP','load','Fuelprices','Renewable_Generation','Generation 
Outages','Year','Month','Day','Hour']] 
values = demand.values 
from sklearn.preprocessing import MinMaxScaler 
scaler = MinMaxScaler() 
scaled = scaler.fit_transform(values) 
 
#convert data to supervised form 
 
def to_supervised(data,dropNa = True,lag = 1): 
    df = pd.DataFrame(data) 
    column = [] 
    column.append(df) 
    for i in range(1,lag+1): 
        column.append(df.shift(-i)) 
    df = pd.concat(column,axis=1) 
    df.dropna(inplace = True) 
    features = data.shape[1] 
    df = df.values 
    supervised_data = df[:,:features*lag] 
    supervised_data = np.column_stack( [supervised_data, df[:,features*lag]]) 
    return supervised_data 
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timeSteps = 2 
supervised = to_supervised(scaled,lag=timeSteps) 
#print(pd.DataFrame(supervised).head()) 
 
 
# splitting the data 
# training on only first year data 
features = demand.shape[1] 
train_hours = 26250 
X = supervised[:,:features*timeSteps] 
y = supervised[:,features*timeSteps] 
 
x_train = X[:train_hours,:] 
x_test = X[train_hours:,:] 
y_train = y[:train_hours] 
y_test = y[train_hours:] 
 
print (x_train.shape,x_test.shape,y_train.shape,y_test.shape) 
 
#convert data to fit for lstm 
#dimensions = (sample, timeSteps here it is 1, features ) 
 
x_train = x_train.reshape(x_train.shape[0], timeSteps, features) 
x_test = x_test.reshape(x_test.shape[0], timeSteps, features) 
 
print(x_train.shape,x_test.shape) 
 
#define the model 
 
model = Sequential() 
model.add( LSTM( 50, input_shape = ( timeSteps,x_train.shape[2]) ) ) 
model.add( Dense(1, activation='tanh') ) 
model.compile(optimizer='adam',loss='mae') 
 
history =  model.fit( x_train,y_train, validation_data = (x_test,y_test), epochs = 1000, batch_size 
= 32, verbose = 0, shuffle = False) 
# 
#plt.plot(history.history['loss'], label='train') 
#plt.plot(history.history['val_loss'], label='test') 
#plt.legend() 
#plt.yticks([]) 
#plt.xticks([]) 
#plt.title("loss during training") 
#plt.show() 
 
#scale back the prediction to orginal scale 
y_pred = model.predict(x_test) 
x_test = x_test.reshape(x_test.shape[0],x_test.shape[2]*x_test.shape[1]) 
inv_new = np.concatenate( (y_pred, x_test[:,-(features-1):] ) , axis =1) 
inv_new= scaler.inverse_transform(inv_new) 
final_pred = inv_new[:,0] 
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y_test = y_test.reshape( len(y_test), 1) 
inv_new = np.concatenate( (y_test, x_test[:,-(features-1):] ) ,axis = 1) 
inv_new = scaler.inverse_transform(inv_new) 
actual_pred = inv_new[:,0] 
 
#plot the prediction with actual data 
 
plt.plot(final_pred, label = "prediction",c = "b") 
plt.plot(actual_pred,label = "actual data",c="r") 
#plt.xlim(0, 100) 
#plt.ylim(0, 300) 
#plt.yticks([]) 
#plt.xticks([]) 
plt.title("comparison between prediction and actual data") 
plt.legend() 
 
 
from sklearn.metrics import mean_squared_error 
# 
print('The rmse of prediction is:', mean_squared_error(final_pred,actual_pred) ** 0.5) 
from sklearn.metrics import r2_score 
# Compute error between our test predictions and the actual values. 

print(r2_score(actual_pred,final_pred,multioutput='variance_weighted')) 


