
Modeling, Design, and Control of Multiple Quadrotors

by

Abdullah E. Altawaitan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2019 by the
Graduate Supervisory Committee:

Armando A. Rodriguez, Chair
Konstantinos Tsakalis

Spring Berman

ARIZONA STATE UNIVERSITY

August 2019

ABSTRACT

In the last few decades, with the revolution of availability of low-cost microelectronics,

which allow fast and complex computations to be performed on board, there has

been increasing attention to aerial vehicles, especially rotary-wing vehicles. This is

because of their ability to vertically takeoff and land (VTOL), which make them

appropriate for urban environments where no runways are needed. Quadrotors took

considerable attention in research and development due to their symmetric body,

which makes them simpler to model and control compared to other configurations.

One contribution of this work is the design of a new open-source based Quadrotor

platform for research. This platform is compatible with both HTC Vive Tracking

System (HVTS) and OptiTrack Motion Capture System, Robot Operating System

(ROS), and MAVLINK communication protocol. The thesis examined both nonlinear

and linear modeling of a 6-DOF rigid-body quadrotor’s dynamics along with actuator

dynamics. Nonlinear/linear models are used to develop control laws for both low-level

and high-level hierarchical control structures. Both HVTS and OptiTrack were used

to demonstrate path following for single and multiple quadrotors. Hardware and

simulation data are compared. In short, this work establishes a foundation for future

work on formation flight of multi-quadrotor.

i

To my parents.

ii

ACKNOWLEDGMENTS

I would like to thank all people who have supported me to complete this thesis. I

would like to express my gratitude to my advisor Dr. Armando Rodriquez for his

continuous support of my studies and research; for his invaluable knowledge that I

learned from throughout my journey at ASU. Also for giving me the opportunity and

the room to work on exciting control topics; and for his help at all times for which I

am grateful for.

I would also like to thank my thesis committee members, Dr. Konstantinos

Tsakalis and Dr. Spring Berman for their support and help. Further, I would like to

thank Dr. Panagiotis Artemiadis for giving me the opportunity to work in the ASU

Drone Studio.

I also thank my colleagues at ASU - Shi Lu, Sai Shravan, Nirangkush Das, and

Kaustav Mondal for their help and support throughout this journey.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

CHAPTER

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION AND MOTIVATION . 1

1.1 Literature Servery: State of the art . 1

1.2 Contributions . 4

1.3 Organization of Thesis . 12

2 OVERVIEW OF THE QUADROTOR PLATFORM 13

2.1 Introduction and Overview . 13

2.2 Platform amd C4S Requirements . 13

3 MATHEMATICAL PRELIMINARIES . 18

3.1 Overview. 18

3.2 Earth Centered Earth Fixed Coordinate Frame and Body Coordi-

nate Frame . 18

3.3 Attitude Representation . 19

4 MODELING OF QUADROTOR . 22

4.1 Overview. 22

4.2 Airframe Design . 23

4.3 Moment of Inertia . 24

4.4 Brushless DC Motor (Actuator) Dynamics . 25

4.5 Vehicle Dynamics . 33

4.5.1 Nonlinear Dynamical Vehicle Model . 33

4.5.2 Linearization of Nonlinear Dynamical Vehicle Model 34

iv

CHAPTER Page

5 LOW-LEVEL CONTROL: INNER-OUTER LOOP CONTROL SYS-

TEM DESIGN . 40

5.1 Overview. 40

5.2 Inner-Loop: (p, q, r) Body Rotation Rates Control 43

5.2.1 Control System Design - PID Tuning . 45

5.2.2 Control System Design - Pole Placement 52

5.2.3 Control System Design - Design for Bandwidth and Robust-

ness . 63

5.3 Outer-Loop: (φ, θ, ψ) Attitude Control . 76

5.3.1 Control System Design - PID Tuning Design 76

5.3.2 Control System Design - Pole Placement Design 83

5.3.3 Control System Design - Design for Bandwidth and Robust-

ness . 94

6 HIGH-LEVEL CONTROL: POSITION AND PATH FOLLOWING CON-

TROL . 106

6.1 Overview. 106

6.2 Quadrotor Nonlinear Translational Dynamical Model 106

6.2.1 Linearization of Nonlinear Translational Dynamics Near Hover112

6.2.2 Linearization of Nonlinear Translational Dynamics for For-

ward Flight . 116

6.3 LQ Servo Design. 123

6.4 Weighted H∞ Sensitivity Optimization . 146

6.5 LQG/LTRO Design for Quadrotor Translational Dynamics 163

6.6 Quadrotor Hardware Demonstrations . 176

v

CHAPTER Page

6.7 Summary and Conclusions . 190

7 MULTIPLE QUADROTOR FORMATION CONTROL USING LEADER-

FOLLOWER APPROACH . 191

7.1 Overview. 191

7.2 Leader-Follower Approach . 192

8 SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 202

8.1 Summary . 202

8.2 Directions for Future Research . 202

REFERENCES . 204

APPENDIX

A MATLAB CODE . 207

A.1 High-level Control . 208

B FLIGHT CONTROLLER CODE . 231

B.1 Quadrotor.ino . 232

B.2 Quadrotor.h . 233

B.3 Quadrotor.cpp . 238

B.4 Communication.h . 258

B.5 Communication.cpp . 259

C ROBOT OPERATING SYSTEM (ROS) . 261

C.1 quad serial.cpp . 262

C.2 quad state.cpp. 264

C.3 quad control.cpp . 268

C.4 quad trajectory generation.cpp . 272

C.5 quad log.cpp . 275

vi

LIST OF TABLES

Table Page

1.1 Commercially Available Quadrotors . 5

1.2 Hardware Components for Our Low-cost Quadrotor 9

4.1 Nominal Values for Moment of Inertia . 24

4.2 Propulsion System Parameter Values . 32

5.1 Closed Loop Poles for the Inner-loop - PID Tuning Design 51

5.2 Closed Loop Step Response for the Inner-loop - PID Tuning Design . . . 52

5.3 Closed Loop Poles for the Inner-loop - Pole Placement Design 60

5.4 Closed Loop Step Response for the Inner-loop - Pole Placement Design 61

5.5 Closed Loop Poles for the Inner-loop For ωg = 25 rad/s, PM = 60,

and W = 50
s+50

- Bandwidth and Robustness Design 71

5.6 Closed Loop Step Response for the Inner-loop - Bandwidth and Ro-

bustness Design . 72

5.7 Closed Loop Poles for the Outer-loop - PID Tuning Design 82

5.8 Closed Loop Poles for the Outer-loop - Pole Placement Design 89

5.9 Closed Loop Poles for the Outer-loop - Bandwidth and Robustness

Design . 100

6.1 Closed Loop Poles - LQ Servo Design 1 . 126

6.2 Closed Loop Poles - LQ Servo Design 2 . 138

6.3 Weighting Transfer Functions and Parameters - H∞ Design 1 148

6.4 Closed Loop Poles for To - H∞ Design 1 . 149

6.5 Weighting Transfer Functions and Parameters - H∞ Design 2 151

6.6 Closed Loop Poles for To - H∞ Design 2 . 152

6.7 Target Closed Loop Poles for λi(A−HC) - LQG/LTRO Design 165

6.8 Closed Loop Poles for λi(A−BG−HC) - LQG/LTRO Design 169

vii

LIST OF FIGURES

Figure Page

1.1 250mm Airframe with X Configuration . 6

1.2 Teensy 3.2 Usb-based Microcontroller Development System 6

1.3 Dji Snail 2305 Brushless DC Motor . 7

1.4 DJI Snail 430-R ESC . 7

1.5 MPU6050 IMU . 8

1.6 Digi XBee3 Zigbee 3.0 . 8

1.7 Htc Vive Base Station . 10

1.8 OptiTrack Prime 17W Camera . 11

2.1 Quadrotor Architecture . 14

2.2 Quadrotor with Optitrack Motion Markers in ASU Drone Studio 17

3.1 Earth Coordinate Frame e and Body Coordinate Frame b 18

4.1 Overview of System Block Diagram . 22

4.2 Motor Force, Torque, and Rotation Rate. 25

4.3 Simplified Brush-less DC Motor Model with Battery Source 25

4.4 Relationship Between Propeller’s Angular Velocity and Thrust 27

4.5 Relationship Between Propeller’s Angular Velocity and Torque 27

4.6 Propulsion System Block Diagram . 28

4.7 Relationship Between PWM Signal and Propeller’s Angular Velocity . . . 29

4.8 Mapping Between Angular Velocity, PWM Signal, and Battery Voltage 30

4.9 RCbenchmark Series 1580 Thrust Stand and Dynamometer 31

4.10 Measured and Simulated Model Output for Propulsion System 32

4.11 Bode Magnitude for Vehicle (Torque to Rotation Rates) - I Variations . 36

4.12 Bode Magnitude for Vehicle (Torque to Rotation Rates) - τ Variations . 37

5.1 Block Diagram for Control Stages . 41

viii

Figure Page

5.2 Block Diagram from Controls to Accelerations . 42

5.3 Quadrotor Body Rotation Rates (p, q, r) and Accelerations (ṗ, q̇, ṙ) 43

5.4 Inner-loop Feedback Block Diagram . 44

5.5 Bode Magnitude and Phase Plots for Open Loop L Transfer Function

for Inner-loop - PID Tuning Design . 46

5.6 Nyquist Plot for Open Loop L Transfer Function for Inner-loop - PID

Tuning Design . 47

5.7 Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - PID Tuning Design. 48

5.8 Root Locus for Open Loop L Transfer Function for Inner-loop at High

Frequencies - PID Tuning Design. 48

5.9 Sensitivity |S| Bode Plot for Inner-loop - PID Tuning Design 49

5.10 Complementary Sensitivity |T | Bode Plot for Inner-loop - PID Tuning

Design . 50

5.11 Inner-loop Step Response for p Reference Command - PID Tuning Design 51

5.12 Bode Magnitude and Phase Plots for Open Loop L Transfer Function

for Inner-loop - Pole Placement Design . 54

5.13 Nyquist Plot for Open Loop L Transfer Function for Inner-loop - Pole

Placement Design . 55

5.14 Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - Pole Placement Design . 56

5.15 Root Locus for Open Loop l Transfer Function for Inner-loop at High

Frequencies - Pole Placement Design . 56

5.16 Sensitivity |S| Bode Plot for Inner-loop - Pole Placement Design 57

ix

Figure Page

5.17 Complementary Sensitivity |T | Bode Plot for Inner-loop - Pole Place-

ment Design . 58

5.18 Complementary Sensitivity |T | with Prefilter W Bode Plot for Inner-

loop - Pole Placement Design . 59

5.19 Inner-loop Step Response for p with and Without a Prefilter W - Pole

Placement Design . 60

5.20 Inner-loop Step Response for Different ts Design Parameters - Pole

Placement Design . 62

5.21 Inner-loop Step Response for Different Mp Design Parameters - Pole

Placement Design . 63

5.22 Bode Magnitude and Phase Plots for Open Loop L Transfer Function

for Inner-loop - Bandwidth and Robustness Design 65

5.23 Nyquist Plot for Open Loop L Transfer Function for Inner-loop - Band-

width and Robustness Design . 66

5.24 Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - Bandwidth and Robustness Design . 67

5.25 Root Locus for Open Loop L Transfer Function for Inner-loop at High

Frequencies - Bandwidth and Robustness Design . 67

5.26 Sensitivity |S| Bode Plot for Inner-loop - Bandwidth and Robustness

Design . 68

5.27 Complementary Sensitivity |T | Bode Plot for Inner-loop - Bandwidth

and Robustness Design . 69

5.28 Complementary Sensitivity |T | with Prefilter W Bode Plot for Inner-

loop - Bandwidth and Robustness Design . 70

x

Figure Page

5.29 Inner-loop Step Response for p with and Without a Prefilter W - Band-

width and Robustness Design . 71

5.30 Inner-loop Step Response for Different ωg Design Parameters - Band-

width and Robustness Design . 73

5.31 Inner-loop Step Response for Different PM Design Parameters - Band-

width and Robustness Design . 74

5.32 Inner-loop Step Response for Different Prefilter W Designs - Band-

width and Robustness Design . 75

5.33 Outer-loop Feedback Block Diagram . 76

5.34 Bode Magnitude and Phase Plots for Open Loop LOuter Transfer Func-

tion - PID Tuning Design . 77

5.35 Nyquist Plot for Open Loop LOuter Transfer Function - PID Tuning

Design . 78

5.36 Root Locus for Open Loop LOuter Transfer Function at Low Frequen-

cies - PID Tuning Design . 79

5.37 Root Locus for Open Loop LOuter Transfer Function at High Frequen-

cies - PID Tuning Design . 79

5.38 Sensitivity |S| Bode Plot for Outer-loop - PID Tuning Design 80

5.39 Complementary Sensitivity |T | Bode Plot for Outer-loop - PID Tuning

Design . 81

5.40 Step Response for φ Reference Command - PID Tuning Design 82

5.41 System Identification for the Closed-loop Transfer Function Try for

Outer-loop - PID Tuning Design . 83

xi

Figure Page

5.42 Bode Magnitude and Phase Plots for Open Loop LOuter Transfer Func-

tion - Pole Placement Design . 84

5.43 Nyquist Plot for Open Loop LOuter Transfer Function - Pole Placement

Design . 85

5.44 Root Locus for Open Loop LOuter Transfer Function at Low Frequen-

cies - Pole Placement Design . 86

5.45 Root Locus for Open Loop LOuter Transfer Function at High Frequen-

cies - Pole Placement Design . 86

5.46 Sensitivity |S| Bode Plot for Outer-loop - Pole Placement Design 87

5.47 Complementary Sensitivity |T | Bode Plot for Outer-loop - Pole Place-

ment Design . 88

5.48 Step Response for φ Reference Command - Pole Placement Design 90

5.49 System Identification for the Closed-loop Transfer Function Try for

Outer-loop - Pole Placement Design . 91

5.50 Sensitivity |S| Bode Plot for Outer-loop for Different Gain Values of

Kouter - Pole Placement Design . 92

5.51 Complementary Sensitivity |T | Bode Plot for Outer-loop for Different

Gain Values of Kouter - Pole Placement Design . 93

5.52 Step Response for φ Reference Command for Different Gain Values of

Kouter - Pole Placement Design . 94

5.53 Bode Magnitude and Phase Plots for Open Loop Louter Transfer Func-

tion - Bandwidth and Robustness Design . 95

5.54 Nyquist Plot for Open Loop Louter Transfer Function - Bandwidth and

Robustness Design . 96

xii

Figure Page

5.55 Root Locus for Open Loop Louter Transfer Function at Low Frequencies

- Bandwidth and Robustness Design. 97

5.56 Root Locus for Open Loop Louter Transfer Function at High Frequen-

cies - Bandwidth and Robustness Design. 97

5.57 Sensitivity |S| Bode Plot for Outer-loop - Bandwidth and Robustness

Design . 98

5.58 Complementary Sensitivity |T | Bode Plot for Outer-loop - Bandwidth

and Robustness Design . 99

5.59 Step Response for φ Reference Command - Bandwidth and Robustness

Design . 101

5.60 System Identification for the Closed-loop Transfer Function Try for

Outer-loop - Bandwidth and Robustness Design . 102

5.61 Sensitivity |S| Bode Plot for Outer-loop for Different Gain Values of

Kouter - Bandwidth and Robustness Design . 103

5.62 Complementary Sensitivity |T | Bode Plot for Outer-loop for Different

Gain Values of Kouter - Bandwidth and Robustness Design 104

5.63 Step Response for φ Reference Command for Different Gain Values of

Kouter - Bandwidth and Robustness Design . 105

6.1 High-level Feedback Block Diagram . 110

6.2 Quadrotor Singular Values: (Blue) Model Without Drag, (Red) Model

with Drag . 115

6.3 Quadrotor Singular Values: (Blue) Model Without Drag, (Black Dots)

Model with Inner-loop Dynamics . 116

6.4 Quadrotor Singular Values for Forward Flight . 122

xiii

Figure Page

6.5 LQ Servo with Dynamic Augmentation Block Diagram - LQ Servo

Design 1 . 125

6.6 Quadrotor Open Loop Singular Values at Error: (Blue) No Drag (Red)

with Drag - LQ Servo Design 1 . 126

6.7 Quadrotor Open Loop Singular Values at Input: (Blue) No Drag (Red)

with Drag - LQ Servo Design 1 . 127

6.8 Quadrotor Sensitivity Frequency Response at Error: (Blue) No Drag

(Red) with Drag - LQ Servo Design 1 . 128

6.9 Quadrotor Sensitivity Frequency Response at Input: (Blue) No Drag

(Red) with Drag - LQ Servo Design 1 . 129

6.10 Quadrotor Complementary Sensitivity Frequency Response at Output:

(Blue) No Drag (Red) with Drag - LQ Servo Design 1 130

6.11 Quadrotor Complementary Sensitivity Frequency Response at Input:

(Blue) No Drag (Red) with Drag - LQ Servo Design 1 131

6.12 Step Response for Reference Command r = [1 0 0 0]t - LQ Servo Design 1132

6.13 Step Response for Reference Command r = [0 1 0 0]t - LQ Servo Design 1133

6.14 Step Response for Reference Command r = [0 0 1 0]t - LQ Servo Design 1134

6.15 Step Response for Reference Command r = [0 0 0 1]t - LQ Servo Design 1135

6.16 LQ Servo with Dynamic Augmentation Block Diagram - LQ Servo

Design 2 . 137

6.17 Quadrotor Open Loop Singular Values at Error - LQ Servo Design 2 . . . 138

6.18 Quadrotor Open Loop Singular Values at Input - LQ Servo Design 2 . . 139

6.19 Quadrotor Sensitivity Frequency Response at Input - LQ Servo Design 2140

xiv

Figure Page

6.20 Quadrotor Complementary Sensitivity Frequency Response at Input -

LQ Servo Design 2 . 141

6.21 Step Response for Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo

Design 2 . 142

6.22 Step Response for Reference Command r = [0 1 0 0 0 0 0]t - LQ Servo

Design 2 . 143

6.23 Step Response for Reference Command r = [0 0 1 0 0 0 0]t - LQ Servo

Design 2 . 144

6.24 Step Response for Reference Command r = [0 0 0 0 0 0 1]t - LQ Servo

Design 2 . 145

6.25 Compensator Singular Values: (Blue) for Design 1 (Red) for Design 2 . . 153

6.26 Open Loop Singular Values at Plant Output - H∞ Design 155

6.27 Open Loop Singular Values at Plant Input - H∞ Design 156

6.28 Sensitivity Singular Values at Plant Output - H∞ Design 157

6.29 Sensitivity Singular Values at Plant Input - H∞ Design 158

6.30 Complementary Sensitivity Singular Values at Plant Output -H∞ Design159

6.31 Complementary Sensitivity Singular Values at Plant Input - H∞ Design160

6.32 Step Response for Reference Command r = [1 0 0 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design . 161

6.33 Step Response for Reference Command r = [0 1 0 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design . 161

6.34 Step Response for Reference Command r = [0 0 1 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design . 162

xv

Figure Page

6.35 Step Response for Reference Command r = [0 0 0 1]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design . 162

6.36 Plant P (Blue) and Design Plant Pd (Red) Singular Values - LQG/L-

TRO Design . 163

6.37 Quadrotor GFOL Singular Values - LQG/LTRO Design 165

6.38 Quadrotor Target Loop GKF Singular Values - LQG/LTRO Design 166

6.39 Quadrotor Target Sensitivity SKF Singular Values - LQG/LTRO Design167

6.40 Quadrotor Target Complementary Sensitivity TKF Singular Values -

LQG/LTRO Design . 168

6.41 Compensator Singular Values - LQG/LTRO Design 170

6.42 Open Loop Singular Values at Error - LQG/LTRO Design 171

6.43 Open Loop Singular Values at Input - LQG/LTRO Design 172

6.44 Sensitivity Singular Values at Error - LQG/LTRO Design 172

6.45 Sensitivity Singular Values at Input - LQG/LTRO Design 173

6.46 Complementary Sensitivity Singular Values at Output - LQG/LTRO

Design . 174

6.47 Step Response for Reference Command r = [1 0 0 0]T - LQG/LTRO

Design . 174

6.48 Step Response for Reference Command r = [0 1 0 0]T - LQG/LTRO

Design . 175

6.49 Step Response for Reference Command r = [0 0 1 0]T - LQG/LTRO

Design . 175

6.50 Step Response for Reference Command r = [0 0 0 1]T - LQG/LTRO

Design . 176

xvi

Figure Page

6.51 Hardware Demonstration for LQ Servo Design: x-axis Step Response

for Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo Design 2 177

6.52 Hardware Demonstration for LQ Servo Design: y-axis Step Response

for Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo Design 2 178

6.53 Circular Trajectory with ω = 0.2 - LQ Servo Design 2 179

6.54 x, y, z Resulting from rx(t) = 0.5sin(0.2t), ry(t) = 0.5cos(0.2t), rz(t) =

1.0 - LQ Servo Design 2 . 179

6.55 vx, vy, vz Resulting from rvx(t) = 0.5(0.2)cos(0.2t), rvy(t) = −0.5(0.2)sin(0.2t),

rvz(t) = 0.0 - LQ Servo Design 2 . 180

6.56 Circular Trajectory with ω = 0.4 - LQ Servo Design 2 181

6.57 x, y, z Resulting from rx(t) = 3.0sin(0.4t), ry(t) = 3.0cos(0.4t), rz(t) =

1.0 - LQ Servo Design 2 . 181

6.58 vx, vy, vz Resulting from rvx(t) = 3.0(0.4)cos(0.4t), rvy(t) = −3.0(0.4)sin(0.4t),

rvz(t) = 0.0 - LQ Servo Design 2 . 182

6.59 Circular Trajectory with ω = 0.8 - LQ Servo Design 2 183

6.60 x, y, z Resulting from rx(t) = 3.0sin(0.8t), ry(t) = 3.0cos(0.8t), rz(t) =

1.0 - LQ Servo Design 2 . 183

6.61 vx, vy, vz Resulting from rvx(t) = 3.0(0.8)cos(0.8t), rvy(t) = −3.0(0.8)sin(0.8t),

rvz(t) = 0.0 - LQ Servo Design 2 . 184

6.62 Circular Trajectory with ω = 1.0 - LQ Servo Design 2 185

6.63 x, y, z Resulting from rx(t) = 0.5sin(1.0t), ry(t) = 0.5sin(1.0t), rz(t) =

1.0 - LQ Servo Design 2 . 185

6.64 vx, vy, vz Resulting from rvx(t) = 0.5(1.0)cos(1.0t), rvy(t) = −0.5(1.0)sin(1.0t),

rvz(t) = 0.0 - LQ Servo Design 2 . 186

xvii

Figure Page

6.65 Figure Eight Trajectory with ω = 1.0 - LQ Servo Design 2 187

6.66 x, y, z Resulting from rx(t) = 0.5cos(1.0t), ry(t) = 0.5sin(1.0t) cos(1.0t),

rz(t) = 1.0 - LQ Servo Design 2 . 187

6.67 vx, vy, vz Resulting from rvx(t) = −0.5(1.0)sin(1.0t), rvy(t) = 0.5cos(2.0t),

rvz(t) = 0.0 - LQ Servo Design 2 . 188

6.68 Figure Eight Trajectory with ω = 1.0 - LQ Servo Design 2 189

6.69 x, y, z Resulting from rx(t) = 0.0, ry(t) = 0.5cos(1.0t), rz(t) = 1.0 +

0.5sin(1.0t) cos(1.0t) - LQ Servo Design 2 . 189

6.70 vx, vy, vz Resulting from rvx(t) = 0.0, rvy(t) = −0.5(1.0)sin(1.0t),

rvz(t) = 0.5cos(2.0t) - LQ Servo Design 2 . 190

7.1 Leader-follower (x, y) Axis . 192

7.2 Leader-follower Feedback Block Diagram . 193

7.3 Figure Eight Trajectory with ω = 1.0 - Leader-follower 195

7.4 x, y, z Resulting from rx(t) = 0, ry(t) = 0.5cos(1.0t), rz(t) = 1.0 +

0.5sin(1.0t) cos(1.0t) - Leader-follower . 196

7.5 x, y, z Error Resulting from rx(t) = 0, ry(t) = 0.5cos(1.0t, rz(t) =

1.0 + 0.5sin(1.0t) cos(1.0t) - Leader-follower . 197

7.6 Circular Trajectory with ω = 0.2 - Leader-follower . 198

7.7 x, y, z Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0 + 1.0cos(0.2t),

rz(t) = 1.0 - Leader-follower . 199

7.8 x, y, z Error Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0+1.0cos(0.2t),

rz(t) = 1.0 - Leader-follower . 200

7.9 vx, vy, vz Error Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0 +

1.0cos(0.2t), rz(t) = 1.0 - Leader-follower . 201

xviii

Chapter 1

INTRODUCTION AND MOTIVATION

Rotary-wing vehicles became widely used in the last decade. The is due to the

availability of low-cost and small-size microelectronics which allow fast and complex

computations to be performed on board. It has been used in many applications:

surveillance, transportation, mapping, exploration, building structures within [1, 2],

etc. Much has been done in the field of aerial robotics, especially quadrotors. The

reason is that because of its symmetry, it simpler and more convenient to work with

instead of hexarotor or other configurations. What makes quadrotors an interesting

problem is the fact that they are an unstable and under-actuated system, i.e., there

are four control inputs and 6-DOF which require some control system to be stable

the quadrotor.

1.1 Literature Servery: State of the art

� Quadrotor Modeling. Modeling of quadrotors is addressed within [3–5]. A

quadrotor consists of four motors - each can be controlled independently by a

PWM input signal. The output is the rotor’s rotation rate ω. For simplicity,

we assume that the motors are identical. The sum of these PWM input signals

produces a single collective thrust T which controls the vehicle’s altitude z and ż

while the different combination of them create three differential thrusts (torques

around 3-axes) which are used to control the vehicles’ attitude Θ and Θ̇.

– Kinematic Model. Quadrotor’s kinematic model is presented within [6,

7]. Two coordinate systems will be used in this work, the global frame

1

and body frame. For the vehicle’s position, in this work, we consider

the Cartesian coordinate system, i.e., Earth-centered Earth-fixed (ECEF)

frame, and Euler angles for the vehicle’s orientation. The reason we use

the global frame is that to control the vehicle’s position, we need to know

its position relative to the global frame. On the other hand, the body

frame is useful for the control inputs where we keep them relative to the

body frame for simplicity. A transformation from the body frame to the

global frame can be done using transformation matrices, and vice versa.

In this work, we consider the Z-Y-X sequence of rotations 1 , i.e., the first

rotation around the z-axis, second rotation around the y-axis, and last

rotation around the x-axis. Also, rotations are always counterclockwise

around their axis which is a convention that is used in this work.

– Dynamical Model. Within [6], the author addressed the nonlinear equa-

tions of motion of a quadrotor and the assumptions that were taken into

consideration to linearize these equations. Within [6, 8, 9], the authors

assume to have direct control of forces and moments as inputs (controls)

for the system. The reason is that because of the coupling of rotor’s ro-

tation rates ω, it is much simpler to control (u1, u2, u3, u4) independently

and then convert to (ω1, ω2, ω3, ω4) using a mapping 2 These input forces

and moments change the state of the vehicle. Within [6], a single-input-

single-output (SISO) model is presented for the inner-loop control.

� Brushless DC Motor. A model for the BLDC is addressed within [10]. How-

1It is a matter of convention; some papers use Z-X-Y as within [8]. In spite of the convention
used, there is a problem of singularity that we need to keep in mind. That is where the quaternion
system comes in when we do an estimation of angles of orientation

2A linear combination of rotor’s rotation rates ω as input force thrust (u1) and moments around
three axes (u2, u3, u4) to the system.

2

ever, from a controls-perspective, a first-order model for the rotor’s rotation

rate ω to the commanded rate ωc is presented within [9]. This model will be

used as the actuator dynamics of the plant for the inner-loop control.

� Classical Controls. SISO control design ideas are addressed within [11], in-

cluding pole-placement control design, lead-lag control design, internal model

principle, etc.

� Vehicle Inner-loop Control. From [12], inner-outer loop control hierarchical

structure is used such that inner-loop is associated with faster dynamics while

outer-loop is associated with slower dynamics. Within this work, the inner-loop

controls the vehicle’s angular velocities, namely (p, q, r) which are approximately

equal to (φ̇, θ̇, ψ̇) near hover. This is addressed within [13–15].

� Vehicle Outer-loop Control. In this work, the outer-loop controls the vehi-

cle’s angle of orientation (φ, θ, ψ). Three approaches were addressed within this

work: PID Tuning control, Pole-Placement control, and Design for Bandwidth

and Robustness. The PID control is addressed within [6], where we obtain the

desired performance by tuning the proportional-integral-derivative parameters.

On the other hand, with the Pole-Placement, we place the dominant poles at

the desired pole locations to meet the design specifications. In control design

for bandwidth and robustness, the unity gain crossover frequency and the phase

margin are taken into account. Both are addressed within [11].

� Vehicle Position/Trajectory Following Control. Within [16], a differential

flatness based control for trajectory following is introduced where a full-state

feedback LQR controller is designed for the control system. In [17], limitations

of differential flatness based control were addressed where the control induces

3

trajectory bias error. In this thesis, an LQR with Dynamical Augmentation is

used to obtain a zero steady-state error in trajectories.

� Vehicle Formation Control. Formation control has been used in many ap-

plications in aerial vehicles such as cooperative application [18], assembling

structures [2], and performing dance [19]. Within [20], quadrotor flight forma-

tion control using leader-follower approach is addressed. In this [21], formation

flight control of multiple quadrotors with a virtual leader is addressed.

1.2 Contributions

In this work, the following questions will be adderssed.

� How to build a low-cost quadrotor for a research platform? With

the evolution of technology and fast microcontrollers, it has been possible to

build such quadrotors with low-cost off-the-shelf components. Many theses and

papers addressed the question such as [13, 22]. There are many commercially

available quadrotors that have been used as a research platform. Table 1.1,

shows a list of the available quadrotors in market.

4

Product Name Hardware Components Cost

Parrot AR Drone On board computer, Wi-Fi, IMU,

ultra-sonic sensor, camera

$299.99

DJI Matrice 100 (Guidance) On board computer, Wi-Fi, IMU,

GPS, ultra-sonic sensor, camera

$4548.00

Intel Aero On board computer, Wi-Fi, IMU,

GPS, camera

$1,099.00

AscTec Hummingbird On board computer, Wi-Fi, IMU,

GPS

$4000.00

Table 1.1: Commercially Available Quadrotors

However, in this work, we will present a low-cost quadrotor designed as a re-

search platform for FAME. The following are the components that were used

to build the quadrotor which will put together in a PCB designed in [23]:

1. ATG-250 carbon-fiber frame 250mm airframe, has a 250mm wheelbase,

3mm of board thickness, 145 of weight.

5

Figure 1.1: 250mm Airframe with X Configuration

2. Teensy 3.2 USB-based microcontroller development system (32 Bit, 72 MHz

Cortex-M4, 3.3V signals, 5V tolerant, compatible with Arduino libraries

and IDE) for inner-loop attitude control.

Figure 1.2: Teensy 3.2 Usb-based Microcontroller Development System

3. DJI Snail 2305 Brushless DC motor (2400rpm/V, 23Ö5mm stator, 27.8g

weight) for the propulsion system for the four arms.

6

Figure 1.3: Dji Snail 2305 Brushless DC Motor

4. DJI Snail 430-R ESC (32-bit 100MHz MCU) as an electronic speed con-

troller (ESC) for each Brushless DC motor.

Figure 1.4: DJI Snail 430-R ESC

5. MPU6050 IMU Digital-output of 6-axis MotionFusion data (2.375-3.46 V

power supply, ±2/±4/±8/±12 gauss magnetic, ±2/±4/±6/±8/±16 g lin-

ear acceleration, 250/500/2000 dps, 300 to 1100 hPa pressure,) as an

inertial measurement unit (IMU).

7

Figure 1.5: MPU6050 IMU

6. Digi XBee3 Zigbee 3.0 (Zigbee, 802.15.4, DigiMesh® and BLE protocols)

as a wireless communication module between the flight-controller and the

computer station.

Figure 1.6: Digi XBee3 Zigbee 3.0

8

Product Quantity Price ($)

ATG-250 airframe 1 $14.00

Teensy 3.2 1 $27.00

Digi XBee3 2 $36.00

DJI Snail 2305 1 $100.00

IMU-6050 1 $11.00

DJI Snail 5048 Tri-blade 4 $28.00

RadioLink T8FB 1 $45.08

Lipo Battery 1 $30.0

Total Price $291.00

Table 1.2: Hardware Components for Our Low-cost Quadrotor

� How to design an open-source platform for quadrotors? In Chapter 2, a

description of the quadrotor platform is discussed. The platform was designed

using open-source tools, softwares, and operating systems. Mainly, there are

three essential components in the platform:

1. Ubuntu 16.04 (OS). The open-source Linux-distribution operating sys-

tem.

2. Robot Operating System (ROS). Most recent state-of-the-art libraries

and tools that were built for robot applications. The system is widely

used in many modern research applications such as [8, 9]. In this thesis,

ROS Kinetic (10th distribution) is used, which runs on Ubuntu 16.04 (OS).

ROS is compatible with HTC Vive Tracking System and OptiTrack Motion

Capture System.

3. MAVLINK. An open-source communication protocol that is developed

9

for micro air vehicle applications which proves to be reliable since 2009

[24]. It is very efficient where 8-bits per packet for overhead. Also, very

reliable where it can detect packets drop, corruption, etc. In this thesis,

MAVLINK version 1 is used.

4. HTC Vive Tracking System (HVTS). A virtual reality (VR) tracking

system which runs on SteamVR. In this thesis, two SteamVR base sta-

tions version 2.0 were used in 3.0m× 3.0m space to perform the hardware

demonstrations. HVTS has a refresh rate of 90Hz with millimeter-accuracy

with 7ms latency.

Figure 1.7: Htc Vive Base Station

5. OptiTrack Motion Capture System. A real-time tracking system with

sub-20m accuracy in optimal conditions. In this thesis, 18 Prime 17W

cameras were used in an 11.28m× 11.28m space to perform the hardware

demonstrations. OptiTrack Mocap has a refresh rate of 360Hz with sub-

millimeter accuracy with 2.8ms latency.

10

Figure 1.8: OptiTrack Prime 17W Camera

� What is a suitable inner-loop model and control structure? In this

thesis, the quadrotor is assumed to be performing near the hover position, i.e.,

attitude angles are small. Therefore, the inner-loop model becomes a Single-

Input Single-Output (SISO) system. From [25], a classical decentralized PID

controller is used for the inner loop. (See work within Chapter 5)

� What is a suitable outer-loop model and control structure? From [12],

as a result of a well designed inner-loop controller, the outer-loop model is just

the closed loop system Try of the inner-loop. Therefore, a proportional controller

is sufficient to stabilize the outer loop system. (See work within Chapter 5)

� What is a suitable high-level model and control structure? After de-

signing a low-level control system, where we have (φref , θref , rref) as a reference

commands and (φ, θ, r) as outputs, we can treat the outputs of the low-level

control system as inputs to the high-level control system. Three different con-

troller designs were presented: (1) LQ Servo, (2) Weighted H∞ Sensitivity

Optimization, (3) LQG/LTRO. (See work within Chapter 6)

11

1.3 Organization of Thesis

The remainder of the thesis is organized as follows

� Chapter 2 (page 13) describes the quadrotor platform architecture that is used

to perform the hardware demonstration in this thesis.

� Chapter 3 (page 18) describes the mathematical preliminaries in the thesis of

Earth Centered Earth Fixed Coordinate Frame (ECEF) and Body Coordinate

Frame, and Attitude Representation.

� Chapter 4 (page 22) describes the model of Motor Dynamics, Airframe Design,

Moment of Inertia, and Vehicle Dynamics.

� Chapter 5 (page 40) describes the low-level control of the inner-outer loop con-

trol hierarchical structure for body rate and attitude control.

� Chapter 6 (page 97) describes the high-level control of position/path following

of quadrotor.

� Chapter 7 (page 179) describes multiple quadrotor formation control using

leader-follwer approach along with hardware demonstration.

� Chapter 8 (page 190) is a summary and directions for future research.

12

Chapter 2

OVERVIEW OF THE QUADROTOR PLATFORM

2.1 Introduction and Overview

In this chapter, we want to show an overview of the Quadrotor platform that

was used in this thesis to command, control, communications, computing (C4), and

sensing (S) as in [12]. The C4S requirements in this thesis are based on open-source

where Ubuntu (OS), Robot Operating System (ROS), MAVLINK communication

protocol, and Arduino IDE are used in this work.

2.2 Platform amd C4S Requirements

In this section, a detailed overview of the platform and the C4S Requirements

will be addressed. The Quadrotor platform architecture is shown in Figure 2.1. The

architecture consists of two levels of control: (a) low-level control, (b) high-level

control. The low-level control also consists of two levels: (1) inner-loop control,

(2) outer-loop control. As in [12], inner-outer loop control hierarchical structure is

widely used in robotics applications such that the slower dynamics (outer-loop) to

are be followed by faster dynamics (inner-loop) for robust performance.

13

Figure 2.1: Quadrotor Architecture

14

� Command, Control, and Computing. There are two stages of a control

command for a quadrotor: (1) Manual mode and (2) Central mode. The Man-

ual mode is the dominant one that can take over when both modes are running

at the same time. The reason is that for safety purposes when something goes

wrong, the human-person can take control over the quadrotor manually using

the Remote Control. The Central mode can be activated by the Remote Con-

trol using Channel 5 for the ground station to take control over the quadrotor.

Once the Central mode is enabled, commands of (roll, pitch, thrust, and yaw

rate) from the ground station will be received by the flight controller. The

ground station acts as a central control command which performs all the heavy

computations of global sensing, filtering, estimation, trajectory generation, po-

sition control, and logging of data while the flight-controller performs only the

attitude control. In this work, the attitude control is performed locally on the

quadrotor instead of being performed globally on the ground station. The rea-

son is that, as stated before, for safety purposes so that the human-person can

switch to Manual mode and be able to control the quadrotor to a safe landing.

– Low-Level Control. As stated above, low-level control consists of an inner

and outer loop control hierarchical structure. The outer-loop is associ-

ated with the attitude angles (φ, θ, ψ) obtained at a rate of 100Hz. When

the quadrotor moves forward, the outer-loop outputs the desired angu-

lar rates commands of (pdes, qdes, rdes) for the inner-loop to follow. The

inner-loop is associated with body-rate control where the body-rate mea-

surements (p, q, r) obtained at a rate of 400Hz and the control commands

(u1, u2, u3, u4) computed at the same rate as well to deliver the PWM sig-

nals required for each motor. For instance, if we want the quadrotor to tilt

15

at a certain attitude angle θ. The outer-loop outputs the desired body-rate

q for each sample time (0.0025) seconds until the attitude angle reaches θ.

Hence, the desired body-rate q is zero at the desired attitude angle θ.

– High-Level Control. The high-level control generates the desired attitude

angles of the roll (φ) and pitch (θ), thrust (T), and yaw rate (r) commands

for the low-level control to follow. The high-level computes the desired

commands at a rate of 100Hz on the ground station. For instance, if we

want the quadrotor to move forward to the x position, the high-level control

computes the desired pitch angle θ for the quadrotor for each sample time

(0.01) seconds until the quadrotor reaches the desired position.

� Central Communication. In this work, communication between quadrotors

and ground station is done through XBee wireless modules with one end on

ground station and the other on a quadrotor. The communication is a two-way

communication where each quadrotor sends (angular rates, angles, and battery

voltage) to the ground station and on the other hand, the ground station sends

(roll, pitch, thrust, and yaw rate commands) to each quadrotor at a rate of

100Hz. One of the most reliable communication protocols that are widely em-

ployed in MAV community is the MAVLINK Micro Air Vehicle Communication

Protocol. The reason for using such a protocol is because of its reliability in

transmitting data for MAV applications and open-source library. For the 3D

motion data, HTC Vive and OptiTrack have different ways of communicating

with the ground station. In HTC Vive, data sent wirelessly from HTC Vive Base

stations to the ground station with a maximum update rate of 120Hz. However,

in OptiTrack Motion Capture System data were sent over direct Ethernet cable

with a maximum update rate of 360Hz.

16

� Local and Global Sensing. Each quadrotor is equipped with an IMU, MPU-

6050, that can measure the angular body rates along with attitude angles to

perform attitude control independently from the ground station. In case of fail-

ure in the ground station, a human person can be able to control the quadrotor

using a Remote Control in Manual mode. The local sensing for angular rates

runs at 400Hz while attitude angles at 100Hz. For global sensing, in this the-

sis, two global sensing systems were used: (1) HTC Vive Base Stations, (2)

OptiTrack Motion Capture System. Both systems provide 3D motion data of

positions, velocities, angles, and angular rates in a millimeter accuracy. Also,

both systems are compatible with ROS.

Figure 2.2: Quadrotor with Optitrack Motion Markers in ASU Drone Studio

17

Chapter 3

MATHEMATICAL PRELIMINARIES

3.1 Overview

In this chapter, we present the mathematical preliminaries that are used throughout

the thesis. There are many conventions used in aerial vehicles, however, this thesis

focuses on one type of convention that is used throughout the thesis.

3.2 Earth Centered Earth Fixed Coordinate Frame and Body Coordinate Frame

Figure 3.1: Earth Coordinate Frame e and Body Coordinate Frame b

Earth Centered Earth Fixed Coordinate Frame (ECEF). The most famous

representation of position which is a linearized cartesian coordinate where every point

in space is represented by (x, y, z). Both x and y represent the lateral distance from

the origin which forms a plane tangent to the earth surface while z is perpendicular

18

to the surface. The right-hand rule is commonly used in aeronautics in order to

determine the positive axis in the coordinate frame, i.e. North-East-Down (NED).

However, more intuitively, in this thesis, the left-hand rule is considered, i.e. North-

East-Up (NEU). Let ei ∈ R3 for every i ∈ [x, y, z] such that

ex =


1

0

0

 , ey =


0

1

0

 , ez =


0

0

1

 (3.1)

represent a unit vector from the origin along (x, y, z) axes.

Body Coordinate Frame. The origin of the body-frame can be any point on the

vehicle. For instance, a sensor can be the origin of the body-frame. Yet, it is often the

case in aerial vehicles to have the center of mass of the vehicle as the origin point of the

body-frame. Why should a body-frame be used? There are many reasons for using

the body-frame: (1) It is more convenient to work with control inputs (u1, u2, u3, u4)

in the body-frame by changing the magnitude of thrust and moments instead of

keeping track of the orientation of these vectors (2) It is more intuitive to consider

the orientation or attitude of the vehicle as a sequence of finite rotations around a

fixed-point. In this work, the rotations are considered to be counter-clockwise around

the positive axis.

3.3 Attitude Representation

Euler Angles. The most used attitude or orientation representation is Euler angles.

The reason is that it is more intuitive to think of roll (φ), pitch (θ), and yaw (ψ)

instead of quaternions. The following Euler angles are defined as

� φ : Pitch angle is the counter clockwise rotation around the x-axis which is the

angle between the bx and (x,y) plane;

19

� θ : Roll angle is the counter clockwise rotation around the y-axis which is the

angle between the by and (x,y) plane;

� ψ : Yaw angle is the counter clockwise rotation around the z-axis which is the

angle between the projection of bx in (x,y) plane and ex vector;

The relationship between Euler angle rates (φ̇, θ̇, ψ̇) and the body rotation rates

or body angular velocity (p, q, r) as follows


p

q

r

 =


1 0 sin(θ)

0 cos(φ) −sin(φ)cos(θ)

0 sin(φ) cos(θ)cos(φ)



φ̇

θ̇

ψ̇

 (3.2)

One of the downsides of using Euler angles is the problem of gimbal lock. This

problem occurs when one of the angles goes to 90 deg and as a result we lose one

degree of freedom out of 3 degrees of freedom and the matrix becomes singular.

Rotation Matrices. We can represent the orientation of a vehicle from the body

frame to the earth frame by a series of rotations. In this work, we consider rotation

around z-axis first, then y-axis, and finally x-axis. The rotation matrices are as follows

Rx(φ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (3.3)

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (3.4)

Rz(ψ) =


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (3.5)

20

such that the new orientation can be computed using

Ω = Rz(ψ)Ry(θ)Rx(φ)Θ̇ (3.6)

where Ω = [p, q, r]T and Θ = [φ, θ, ψ]. The rotation matrix R is defined as

RE
B = Rz(ψ)Ry(θ)Rx(φ)

=


c(ψ)c(θ) c(φ)s(ψ) + c(ψ)s(φ)s(θ) c(φ)c(ψ)s(θ)− s(φ)s(ψ)

−c(θ)s(ψ) c(φ)c(ψ)− s(φ)s(ψ)s(θ) −c(ψ)s(φ)− c(φ)s(ψ)s(θ)

−s(θ) c(θ)s(φ) c(φ)c(θ)


(3.7)

where c and s represent cosine and sine, respectively.

21

Chapter 4

MODELING OF QUADROTOR

4.1 Overview

A quadrotor can vertically take-off and land (VTOL) which differentiated from a

fixed-wing aerial vehicle. Also, it has four rotors that generate upward forces when

spinning. The four rotors create a symmetry that makes the modeling simpler. Also,

because of the symmetry of the four rotors, the anti-torque moments of each rotor

will be canceled out by the others. Within [26], different configurations of a quadrotor

are presented, and we will consider the X configuration in this work. We will take

a look at the parts that assemble the quadrotor separately. The following is a block

diagram overview of the quadrotor system

Battery
Vb

ESC
Vavg

Upwm

Motor
ω

Propeller
U

Quadrotor

Figure 4.1: Overview of System Block Diagram

when connected directly to DC voltage source as they require commutation and

feedback control for speed for commutation and PWM signal that comes from the

flight controller is too weak to drive the BLDC motor directly [26, 27]. In addition to

the power protection and brake, modeling and designing an ESC is beyond the scope

of our research.

22

4.2 Airframe Design

The air-frame affects the maneuverability of a quadrotor, which means the maxi-

mum acceleration [26]. The relationship between both the propeller’s thrust Tp and

moment Mp with propeller radius rp as follows

Tp =
1

(2π)2
CTρω

2(2rp)
4

Mp =
1

(2π)2
CMρω

2(2rp)
5

(4.1)

where CT and CM are the thrust and moment coefficients, respectively, ρ is the air

density, ω is the propeller’s angular velocity, rp is the propeller’s radius. As shown

in the equations, the propeller’s thrust Tp and moment Mp are proportional to (2rp)
4

and (2rp)
5, respectively. According to [8], if the propeller’s radius rp scales linearly

with characteristic length dp, (rp ∼ d), the following relation approximately holds

m ∼ d3p ∼ r3p, I ∼ d5p ∼ r5p

a = v̇, α = ω̇

a =
ω2r4p
r3p

= ω2rp, α ∼
ω2r5p
r5p

= ω2

(4.2)

where m is the mass of the quadrotor and I is the moment of inertia, a is the linear

acceleration, α is the angular acceleration. From [8, 28], two approaches commonly

used to study the scaling of rotor speed with length in aerial vehicles, which are Mach

scaling and Froude scaling. From that, Mach scaling and Froude scaling conclude that

ω ∼ 1
rp

and ω ∼ 1√
rp

, respectively. The following is the relation with a and α:

a ∼ 1

rp
, α ∼ 1

r2p
, Mach

a ∼ 1, α ∼ 1

rp
, F roude

(4.3)

23

and from [26] the relationship between the maximum propeller’s radius rmax and the

airframe radius Ra is

rmax = Rasin(
θp
2

) (4.4)

where θp is the angle between propellers, in our case 90 degrees, from that, we can

see that the linear acceleration has a small effect on the size of the airframe, while

the angular acceleration is affected the most by (1√
2Ra

to 1
2R2

a
).

4.3 Moment of Inertia

To determine the moment of inertia of the quadrotor, within [5] addressed the

bifilar pendulum theory.

I =
mgT 2

I d
2
I

4π2LI
(4.5)

where m is the mass of the quadrotor, TI is the swing period, dI is the distance

between the two robes, and LT is the length of the robe. The parameter values found

in Table.

Parameter Definition Values

Ixx moment of inertia in x-axis 0.0019005 Kg.m2

Iyy moment of inertia in y-axis 0.0019536 Kg.m2

Izz moment of inertia in z-axis 0.0036894 Kg.m2

Table 4.1: Nominal Values for Moment of Inertia

24

4.4 Brushless DC Motor (Actuator) Dynamics

Figure 4.2: Motor Force, Torque, and Rotation Rate

Brushless DC Motor. Within [10], the small size of the quadrotor limited the

power sources on batteries which provide a direct current. Consequently, BLDC

became popular and widely used in quadrotors. Also, they provide feedback on the

rotational speed of the rotor. In Figure 4.3, a simplification for the BLDC model,

which is a DC motor, is shown as follows

Figure 4.3: Simplified Brush-less DC Motor Model with Battery Source

DC motors convert electrical energy into mechanical energy where we get the

motor’s rotation/spinning rate ω. The model of the motor consists of two parts: a

mechanical part and an electrical part such that

MechanicalPart


T − bθ̇ = Jθ̈

T = 1
kv
i

, ElectricalPart


V −Rai− La didt − Vemf = 0

Vemf = 1
kv
θ̇

(4.6)

25

The Kv rating is an essential part of the BLDC. It is defined by ω = Kvv, where ω is

the propeller’s rotational speed, V is voltage. For small quadrotors with small pro-

pellers, we need a high Kv rating while we need low Kv rating with large quadrotors.

Propellers/Rotors. They came in different shapes and number of blades. Within

[29], the weakest performance resulted in the one bladed propeller, and the best

performance is the two-bladed propeller. However, the three-bladed propeller is not

so much different from the two-bladed propeller in terms of performance. Therefore,

we considered the three-bladed propeller in our design of the quadrotor. To produce

thrust, a propeller is placed on top of the motor. From [6], the relationship the

propeller’s rotation rate and the force generated is as follows:

fi = kfω
2
i

τi = kτω
2
i

(4.7)

where kF and kτ are the thrust and moment coefficients, respectively, obtained from

kf = (
1

2π
)2CTρω

2(2rp)
4

kτ = (
1

2π
)2CMρω

2(2rp)
5

(4.8)

In [23], the values for kf and kτ were already determined as follows

26

Figure 4.4: Relationship Between Propeller’s Angular Velocity and Thrust

Figure 4.5: Relationship Between Propeller’s Angular Velocity and Torque

where the thrust constant and torque constant coefficients are 1.91× 10−6N/rad2

and 2.47× 10−8Nm/rad2, respectively.

Practical Issues. This is a question that might come to someone’s mind:

27

Why are we not modeling the electronic speed controllers (ESC)

with the dynamics of the motor to obtain a model for the propulsion system?

Because of the complexity of the ESC, we will model the dynamics of a single rotor

thrust (ESC, Motor, Propeller) as a first-order system as presented in [13]. In that

way, we simplify the propulsion system (ESC, Motor, Propeller) into a first-order

system as follows

ḟ =
1

τ
(fdes − f) (4.9)

The input to the propulsion system is a PWM signal ranges between (300 to 1700),

and the output is the propeller’s angular velocity w. We only have control over the

PWM signal; we cannot control the output voltage from the ESC, as shown in the

following block diagram in Figure 4.6.

Upwm

Vb
ESC

Vavg
Motor

ω

Figure 4.6: Propulsion System Block Diagram

where Vavg is the average voltage output from the ESC which is a resultant by

battery voltage Vb and PWM signal shown by the relation

Vavg = UpwmVb (4.10)

then the motor-propeller block gets Vavg as an input and outputs ωdes

ωdes = CbUpwmVb + ωc (4.11)

28

where Cb is a proportional constant, by using a thrust stand and dynamo-meter, we

were able to measure the PWM signal Upwm versus the propeller’s angular velocity ω

at a fixed battery voltage Vb as shown in Figure 4.7.

1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550

PWM Signal (us)

600

800

1000

1200

1400

1600

1800
 (

ra
d

/s
)

Measured

Fit model

Figure 4.7: Relationship Between PWM Signal and Propeller’s Angular Velocity

ωdes = 2.388Upwm − 1926 (4.12)

the fit model was approximated around the hover position where ω =
√

mg
4kf
≈ 924.75

(rad/s) for each propeller. We have assumed the battery voltage is fixed and does not

change over time; however, in reality, the battery voltage decreases over time, which

will result in low motor efficiency. Therefore, a model fit that captures the angular

velocity ω with respect to PWM signal Upwm and battery voltage Vb in Figure 4.8

and presented as follows in the equation

29

Figure 4.8: Mapping Between Angular Velocity, PWM Signal, and Battery Voltage

Upwm =
ω2 + 5393ω + 29960

1166Vb + 1544
+ 895 (4.13)

Then, because of the motor dynamics, the output ω cannot be achieved instanta-

neously without a delay which can be approximated by a first order transfer function

as follows

ω =
1

τs+ 1
ωdes (4.14)

where the time constant τm was obtained by performing a step response experiment

to find the 90% settling time of the motor, the RCBenchmark Series 1580 Thrust

Stand and Dynamometer was used as shown in Figure 4.9.

30

Figure 4.9: RCbenchmark Series 1580 Thrust Stand and Dynamometer

The 90% settling time found to be around ts ≈ 0.138 seconds. Therefore, τ ≈
ts
2.3

= 0.06 seconds. As a result, the transfer function from the desired angular velocity

ωdes to the actual angular velocity ω is as follows:

G(s) =
16.67

s+ 16.67
(4.15)

The System Identification Toolbox in MATLAB was used to validate our model with

the measured data. The system identified model obtained from the toolbox is as

follows

Gid(s) =
31.06

s+ 31.64
(4.16)

where we can see that the rise time of Gid model is closer to the measured data but

has steady state error. Therefore, we will be using the G model when designing the

31

inner-loop control while taking Gid model into consideration in terms of the maximum

bandwidth of actuator dynamics.

0 1 2 3 4 5 6

Time (s)

300

400

500

600

700

800

900

1000

1100

1200

 (
ra

d
/s

)

Measured and simulated model output

Model

SysID

Measured

Figure 4.10: Measured and Simulated Model Output for Propulsion System

Parameter Definition Values

kf thrust coefficient 1.91× 10−6N/rad2

kτ moment coefficient 2.47× 10−8Nm/rad2

ts 90% settling time 0.138 s

τm motor’s time constant 0.06 s

ωmin minimum propeller’s rotation rate 4774 rpm

ωmax maximum propeller’s rotation rate 17188 rpm

Table 4.2: Propulsion System Parameter Values

32

4.5 Vehicle Dynamics

Dynamics are concerned with the motion of the vehicle under the influence of

forces. We will study how spinning propellers create forces which influence the vehi-

cle’s state of motion.

4.5.1 Nonlinear Dynamical Vehicle Model

The equations of motion are divided into two coordinate frames, global and body

frames. The translation dynamics are expressed in the global frame while the rota-

tional dynamics are represented in the body frame as shown in (?) and (?), respec-

tively

mζ̈ = T (RE
B)T e3 −mg (4.17)

where m is the total mass of the vehicle, ζ = [x, y, z]T is the position vector in the

earth-frame, T is the total upward thrust in the body-frame, g = [0, 0, 9.81]T is the

acceleration vector due to gravity vector

IΩ̇ = M − Ω× (IΩ) (4.18)

where I is the inertia matrix, Ω = [p, q, r] is the angular velocity vector, M =

[Mx,My,Mz]
T is the moment developed around each axis. By putting everything

together, we obtain the following nonlinear model for the vehicle

ẋ = f(x, u) (4.19)

33



ẍ

ÿ

z̈

ṗ

q̇

ṙ


=



T
m

(−cos(ψ)cos(φ)sin(θ)− sin(ψ)sin(φ)))

T
m

(cos(ψ)sin(φ)− cos(φ)sin(ψ)sin(θ))

T
m

(cos(φ)cos(θ))− g
1
Ixx

(Mx + Iyyqr − Izzqr)
1
Iyy

(My − Ixxpr + Izzpr)

1
Izz

(Mz + Ixxpq − Iyypq)


(4.20)

4.5.2 Linearization of Nonlinear Dynamical Vehicle Model

Many assumptions were made to obtain the linearized model. The quadrotor is

assumed to be near hover position where the thrust magnitude is equal to the force

of gravity and the rotation of the vehicle near zero 1 . Therefore, the orientation can

be approximated by


p

q

r

 =


1 0 0

0 1 0

0 0 1



φ̇

θ̇

ψ̇

 (4.21)

Also, because we are near hover, the body rotation rates (p, q, r) are low. That means,

if we have two small numbers multiplied together, we will get a tiny number close to

zero, which we can omit such as qr, pr, and pq. As a result, we will end up with the

following expression for the rotational dynamics
φ̈

θ̈

ψ̈

 =


1
Ixx
Mx

1
Iyy
My

1
Izz
Mz

 (4.22)

We combine the rotational dynamics with actuator dynamics to obtain a MIMO LTI

model from applied torque (τ desφ , τ desθ), τ desψ) to vehicle’s rotational rates (φ̇, θ̇, ψ̇). The

1Roll (φ) and pitch (θ) angles are restricted to be near 0 ± 15 degrees.

34

sixth order MIMO LTI state-space representation is given by

ẋ = Ax+Bu y = Cx+Du (4.23)

where x = [τφ, τθ, τψ, φ̇, θ̇, ψ̇]T , y = [φ̇, θ̇, ψ̇]T , u = [τ desφ , τ desθ , τ desψ]T ,

A =



− 1
τ

0 0 0 0 0

0 − 1
τ

0 0 0 0

0 0 − 1
τ

0 0 0

1
Ixx

0 0 0 0 0

0 1
Iyy

0 0 0 0

0 0 1
Izz

0 0 0


B =



1
τ

0 0

0 1
τ

0

0 0 1
τ

0 0 0

0 0 0

0 0 0


(4.24)

C =

[
03×3 I3×3

]
D =

[
03×3

]
(4.25)

where τ is the motor’s time constant and (Ixx, Iyy, Izz are the vehicle’s moment of

inertia around the x-axis, y-axis, and z-axis, respectively. From that, we can obtain

the associated transfer function matrix

P (s) = C(sI − A)−1B +D =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 (4.26)

Nominal Transfer Functions. By taking the nominal parameter values from Table,

we compute the numerical values to obtain the following numerical MIMO transfer

function matrix:

P(φ̇,θ̇,ψ̇) = C(sI − A)−1B +D ≈


5152.6 0 0

0 5020.5 0

0 0 2653.1

 1

s(s+ 16.67)
(4.27)

35

where the off-diagonal elements are zero, which means the system is decoupled. Also,

assuming that motors are identical. Therefore, we can treat the system as a SISO

system for every axis of rotation. Also, numerically the system has no transmission

zeros which means we can apply classical SISO controllers with high bandwidth 2 .

Frequency Response Trade Studies: Moment of Inertia and Mass Varia-

tions. In Figure 4.11, we see that as a moment of inertia increases, the diagonal

magnitudes at all frequencies decrease, and vice versa. As stated before, there is no

relationship in the off-diagonal because of the decoupling. As we know, the moment

of inertia increases as mass increases, we can have the same relationship for mass

variation as well.

-50

0

50

100

T
o
:
O

u
t(

1
)

From: In(1)

-50

0

50

100

T
o
:
O

u
t(

2
)

100 102
-100

0

100

T
o
:
O

u
t(

3
)

From: In(2)

100 102

From: In(3)

100 102

Ixx=0.0019, Iyy=0.00195, Izz=0.00369

Ixx=0.0038, Iyy=0.0039, Izz=0.0074

Ixx=0.0057, Iyy=0.0058, Izz=0.0111

Ixx=9.5e-4, Iyy=9.75e-4, Izz=0.0018

Bode magnitude plot of the plant for variations of moment of inertia

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 4.11: Bode Magnitude for Vehicle (Torque to Rotation Rates) - I Variations

Frequency Response Trade Studies: Motor’s Time Constant τ . In Figure

4.12, we see that as motor’s time constant increases at low frequencies (below say

10 rad/s) the magnitudes do not change. However, above say 10 rad/s the diagonal

2Ideally we can have infinity upward gain margin, but we know this is not true in real-world
applications because everything has limitations, i.e., actuators have limitations

36

magnitudes decrease as motor’s time constant increase and vice versa.

-50

0

50

100

T
o

:
O

u
t(

1
)

From: In(1)

-50

0

50

100

T
o

:
O

u
t(

2
)

100
-50

0

50

100

T
o

:
O

u
t(

3
)

From: In(2)

100

From: In(3)

100

tau=0.044 s

tau=0.08 s

tau=0.133 s

tau=0.022 s

Bode magnitude plot of the plant for variations of motor time constant

Frequency (rad/s)

M
a

g
n

itu
d

e
 (

d
B

)

Figure 4.12: Bode Magnitude for Vehicle (Torque to Rotation Rates) - τ Variations

The same thing can be done with the translation dynamics where we linearize

around the hover position

ẍ

ÿ

z̈

φ̈

θ̈

ψ̈


=



T
m

(−cos(ψ)cos(φ)sin(θ)− sin(ψ)sin(φ)))

T
m

(cos(ψ)sin(φ)− cos(φ)sin(ψ)sin(θ))

T
m

(cos(φ)cos(θ))− g
1
Ixx
Mx

1
Iyy
My

1
Izz
Mz


(4.28)

where x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T and u = [T,Mx,My,Mz]
T .

ẋ = f(x, u) (4.29)

x = xe + δx , u = ue + δu (4.30)

37

where xe = [xo, yo, zo, 0, 0, 0, 0, 0, 0, 0, 0, 0]T and ue = [mg, 0, 0, 0]T .

δẋ ≈ f(xe + ue) +

[
∂f(x, u)

∂x

]∣∣∣∣
(xe,ue)

δx+

[
∂f(x, u)

∂u

]∣∣∣∣
(xe,ue)

δu (4.31)

where we can ignore the higher order terms for simplicity. Also, for simplicity, we can

treat δx = x and δu = u.

ẋ = Ax+Bu y = Cx+Du (4.32)

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −g 0 0 0 0 0 0 0

0 0 0 g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
m

0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz



(4.33)

where A =

[
∂f(x,u)
∂x

]∣∣∣∣
(xe,ue)

and B =

[
∂f(x,u)
∂u

]∣∣∣∣
(xe,ue)

.

Controllability of the Linearized Model. From [30], here we ask a fundamental

question:

Does there exist a state transferring control u(t) to take us from

initial state x(0) to final state x(tf) in finite time tf <∞?

38

This is where we check if the rank of the controllability matrix. The controllability

matrix C(A,B) is defined as follows

C(A,B)
def
= [B AB . . . An−1B] (4.34)

where n is the number of states, in our case n = 12. Computing the rank of C(A,B)

yields that the controllability matrix has a full row rank, which means the system (A,

B, C, D) is controllable.

39

Chapter 5

LOW-LEVEL CONTROL: INNER-OUTER LOOP CONTROL SYSTEM DESIGN

5.1 Overview

Our system consists of two parts: a digital part and a continuous part. The

reference commands, controller, and sensors are in the digital domain where the plant

in the continuous domain. There are two ways to compute digital controllers. The

first way is the approximate method where the controller is designed in continuous-

time C(s) and then discretized using one of the discretization methods. The other

method is the exact method where the controller is designed in the discrete-time C(z)

for the discrete-time plant P (z).

There are three standard discretization methods: Forward Euler (FE), Backward

Euler (BE), and Tustin.

� FE method: s is approximated by s = z−1
Ts

. Although, it is simple 1 and

preserves the relative degree of transfer functions, however, FE could yield an

unstable approximation for stable transfer functions for bad choices of Ts.

� BE method: s is approximated by s = 1−z−1

Ts
. BE yields biproper transfer

function with a good approximation up to 1
10

of Nyquist. However, BE yields

a stable digital approximation for stable transfer functions for all Ts. But for

unstable continuous-time transfer functions we may end up with a stable digital

transfer functions.

1In terms of calculation and implementation.

40

� Tustin method: s is approximated by s = 2
Ts

z−1
z+1

. This approximation yields a

stable transfer function with a good approximation up to 1
3

of Nyquist.

Choosing Sample Time Ts. To choose a proper sampling time Ts for our digital

implementation, here are some guidelines to follow from [31]:

� Rule 1: Sampling frequency at a fraction of 1
10

of Nyquist,

Ts <
π

ωg
× 1

10
(5.1)

� Rule 2: Six samples per rise time tr,

Ts =
tr
6

(5.2)

� Rule 3: Phase Margin deterioration of 12 degrees,

Ts <
0.2

ωg
(5.3)

wherein our design we have a unity gain cross over frequency wg ≈ 24rad/s and step

response rise time tr ≈ 0.05s. Therefore, in rule 1 we get Ts < 0.0131s, rule 2 we get

Ts = 0.0083s, and rule 3 we get Ts < 0.008s. As a result, we have chosen a sampling

time Ts = 0.0025s to meet all the three rules with some margin. Because we are

dealing with a digital controller, therefore, a delay is presented due to D/A and A/D

conversions. This delay needs to be accounted for before designing the controller.

The following block diagram presents the control stages of the system. Starting

from controls, propeller’s rotation rates, forces and moments generated, and then

transnational and angular accelerations.

Controls

u1, u2, u3, u4

Propeller

ω1, ω2, ω3, ω4

Forces and Moments

T,Mx,My,Mz

Accelerations

ẍ, ÿ, z̈, ṗ, q̇, ṙ

Figure 5.1: Block Diagram for Control Stages

41

where we have direct control over the propeller’s angular rates; however, we will

assume we have direct control over translational and angular accelerations from con-

trol inputs as illustrated in Figure 5.2. The reason is that we want each controller of

Controls

u1, u2, u3, u4

Accelerations

ẍ, ÿ, z̈, ṗ, q̇, ṙ

Figure 5.2: Block Diagram from Controls to Accelerations

the four to control four acceleration separately. In other words, u1 → z̈, u2 → ṗ, u3

→ q̇, and u4 → ṙ. Then, by mapping the control inputs to the propeller’s angular

rates we can directly control propeller’s angular rates as in

ω1 =

√
u1
kf

+ u2
kf l

+ u3
kf l

+ u4
km

4
(5.4)

ω2 =

√
u1
kf
− u2

kf l
+ u3

kf l
− u4

km

4
(5.5)

ω3 =

√
u1
kf
− u2

kf l
− u3

kf l
+ u4

km

4
(5.6)

ω4 =

√
u1
kf

+ u2
kf l
− u3

kf l
− u4

km

4
(5.7)

where we can define the control inputs as in

u1

u2

u3

u4


=



T

Mx

My

Mz


=



f1 + f2 + f3 + f4

l(f1 − f2 − f3 + f4)

l(f1 + f2 − f3 − f4)

M1 +M2 +M3 +M4


=



kF (ω2
1 + ω2

2 + ω2
3 + ω2

4)

lkF (ω2
1 − ω2

2 − ω2
3 + ω2

4)

lkF (ω2
1 + ω2

2 − ω2
3 − ω2

4)

kτ (ω
2
1 − ω2

2 + ω2
3 − ω2

4)


(5.8)

where l is the perpendicular distance from motor to axes which can be found from

l =
√
2L
2

, where L is the motor to body center distance.

42

5.2 Inner-Loop: (p, q, r) Body Rotation Rates Control

Figure 5.3: Quadrotor Body Rotation Rates (p, q, r) and Accelerations (ṗ, q̇, ṙ)

Consider the linearized system for the rotation dynamics
φ̈

θ̈

ψ̈

 = 03×3


φ̇

θ̇

ψ̇

+


1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz



Mx

My

Mz

 (5.9)

(5.10)

where C = I3×3 and D = 03×3. Therefore, the above system is both controllable and

observable. In order to obtain the transfer function matrix of the system we compute

P (s) = C(sI − A)−1B +D =


526.3
s

0 0

0 512.8
s

0

0 0 271
s

 (5.11)

P matrix is diagonal, which means each control input affects one output indepen-

dently. Therefore, we can treat the system as a Single-Input Single-Output (SISO)

system. We will consider one axis bx, and the other can follow the same thing anal-

ogously. The transfer function from the input Mx to the output φ̇ is as follows

PMxφ̇
(s) =

526.3

s
(5.12)

43

Main Goal. Want y to follow or track r. Typically, reference commands and distur-

bances are low-frequency signals, while sensor noise is high-frequency signals. There-

fore, we want to design K on the basis of nominal model Po for actual system P 2

such that the tracking error eT = r − y is small for anticipated r, di, do, n. There-

fore, we want the output to be y ≈ r. Because our plant is in the analog domain

(s-domain) and our controller is a digital controller (z-domain) there exist a DAC to

convert digital signals to analog signals. Whenever we see a DAC, a half sample of

delay will occur due to Zero-Order-Hold (ZOH), i.e., we lose some phase. Therefore,

we want to take the ZOH into account by discretizing the plant P (s) using ZOH with

a sample time of Ts = 0.0025 (400 Hz) to obtain P (z). Then, by using the Tustin

method to go back to continuous domain P (s) where we end up with

P (s) =
−9.51× 10−5(s− 800)(s+ 1.15× 105)

s(s+ 16.66)
(5.13)

r
W

rw e
K

u

di

up
P

yp

do

y

−

n

Figure 5.4: Inner-loop Feedback Block Diagram

Control Design and Internal Model Principles. In this method, we follow

the ideas of Root Locus and Pole-Placement, as presented within [11]. We define

the following specifications: (1) the closed loop system to be stable, (2) exhibits a

2Here P represents the actual system which is impossible to know exactly, but we can get an idea
of how far away is Po from the actual P .

44

zero steady-state error to step reference input r, output disturbances do, and input

disturbances di. Therefore, we need an integrator in the controller to achieve the

control design specifications. Also, we know that propeller harmonics start around

500 rad/s to 2000 rad/s, therefore, we want the open loop transfer function L to be

low at those frequencies. A good practice is to stay away by a decade below the first

propeller harmonic, i.e., the bandwidth need not be higher than 50 rad/s.

5.2.1 Control System Design - PID Tuning

In this design, we tune the three parameters of the Proportional-Integral-Derivative

(PID) controller until we achieve a reasonable response. The tuning is done in the

discrete-time, and then the controller is converted back to continuous-time to be ana-

lyzed. Then, we do a feedback system analysis to examine the open-loop and closed-

loop properties of the system. The controller is a Proportional-Integral-Derivative

(PID) structure with a high-frequency roll-off term as follows

K(s) =
g(s+ z1)(s+ z2)

s

[
a

s+ a

]
(5.14)

where g achieves the unity gain crossover frequency ωg, and zero at −z meets the

desired phase-margin specification. Also, for simplicity, a roll-off was neglected in the

controller design because motors, in reality, have roll-off to attenuate high-frequencies

where K(∞) = 0. Therefore, g = 0.0027, z1 = 6.079, z2 = 26.31 such that

K(s) =
0.0027(s+ 6.079)(s+ 26.31)

s

[
800

s+ 800

]
(5.15)

wherein digital implementation, the integrator windup problem comes into the pic-

ture. This is when the integral action of the PID controller keeps accumulating while

either the error sign changes or the controller output saturates. Therefore, an inte-

grator anti-windup needed to resolve that issue. One of the anti-windup methods in

45

[32], suggests that we clamp or not to clamp an integral part of the PID depending

on two conditions as follows:

� The sign of the error does not match the sign of the controller output

� The controller output saturates

if both conditions were met, a clamping for integral part will occur. The saturation

for u1 was set to [0, 15] while u2, u3, u4 for [−1, 1].

Analysis of the Feedback System. The analysis of the system will involve using

Bode plots, Root Locus, and stability margins. The open loop transfer function is

defined as follows

L = PK =
−0.00020741(s+ 1.152e05)(s− 800)(s+ 26.31)(s+ 6.079)

s2(s+ 800)(s+ 16.67)
(5.16)

-100

-50

0

50

100

M
a

g
n

it
u

d
e

 (
d

B
)

100 102 104 106
90

135

180

225

270

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Gm = 30.4 dB (at 790 rad/s) , Pm = 61.6 deg (at 28.7 rad/s)

Frequency (rad/s)

Figure 5.5: Bode Magnitude and Phase Plots for Open Loop L Transfer Function for

Inner-loop - PID Tuning Design

Open Loop Frequency Response. By breaking the loop at the error signal, we

get the open loop transfer function L. The plot shows large values at low frequencies,

46

which shows the integrator action. Also, a slope of −20dB/dec at unity crossover

frequency for good phase margin. The downward gain margin ↓ GM ≈ 0, upward

gain margin ↑ GM ≈ 33, phase margin PM ≈ 61.5°, unity gain crossover frequency

ωg ≈ 28.66 rad/s, delay margin DM ≈ 0.0375 s. Usually, we want to have good

values for ↑ GM, ↓ GM,PM , but we have no guarantees for stability robustness.

Because we might have, but we still have poor peak sensitivity. Therefore, we need

to look at the Nyquist plot

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 dB

-20 dB20 dB

10 dB

0 dB

-10 dB

-6 dB

-4 dB

-2 dB

6 dB

4 dB

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Figure 5.6: Nyquist Plot for Open Loop L Transfer Function for Inner-loop - PID

Tuning Design

we can see that Nyquist plot is away from the −1 point where we get; as a result,

low peak in the sensitivity transfer function plot. As the plot goes near the −1

point, we might end up with a significant bump in the sensitivity. Also, we have zero

closed-loop unstable poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.17)

47

-70 -60 -50 -40 -30 -20 -10 0 10 20

-20

-15

-10

-5

0

5

10

15

20
0.94

0.988

0.997

0.640.80.890.94

0.988

0.997

0.350.640.80.890.97

0.35

0.97

10203040506070

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.7: Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - PID Tuning Design

-500 0 500 1000 1500 2000 2500

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0.975
0.994

0.88

0.935

0.78

0.48
0.66

0.240.48
0.66

0.78

0.88

0.935

0.975
0.994

0.24

200

400

600

800

1e+03

200

400

600

800

1e+03

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.8: Root Locus for Open Loop L Transfer Function for Inner-loop at High

Frequencies - PID Tuning Design

48

-100

-50

0

50

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-45

0

45

90

135

180
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.9: Sensitivity |S| Bode Plot for Inner-loop - PID Tuning Design

Sensitivity Frequency Response. From the sensitivity transfer function plot, in

general, we want Bode plot magnitude to look small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation.The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 5.23 rad/s. That is a good definition for bandwidth, which

means reference commands will be followed within a 10% error.

49

-80

-60

-40

-20

0

20

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
90

180

270

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.10: Complementary Sensitivity |T | Bode Plot for Inner-loop - PID Tuning

Design

Complementary Sensitivity Frequency Response. From the complementary

sensitivity plot, in general, we want Bode plot magnitude to look small at high fre-

quencies for good high-frequency noise attenuation. The frequency at which the Bode

magnitude of the complementary sensitivity equals −20dB (0.1) is wh ≈ 254 rad/s

which means noise will be attenuated above wh by a factor of 10 and the closed-loop

system is robust with respect to high-frequency uncertain dynamics. Also, we have

a peak of 1.7dB at ω = 15 rad/s, which suggests that step reference commands will

result in an overshoot. We can obtain the lower bounds for the sensitivity ||S||H∞

and complementary sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.0313, 0, 0.9771

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.0312, 1, 0.9771

}(5.18)

Time Domain Analysis. The closed loop system from reference commands r to

50

Poles Damping Frequency (rad/sec)

-7.12e+00 1.00e+00 7.12e+00

-1.70e+01 + 1.68e+01i 7.10e-01 2.39e+01

-1.70e+01 - 1.68e+01i 7.10e-01 2.39e+01

-7.52e+02 1.00e+00 7.52e+02

Table 5.1: Closed Loop Poles for the Inner-loop - PID Tuning Design

the output y is the transfer function Try = WPK
1+PK

as follows:

Try =
25.42(s+ 6.079)(s+ 26.31)

(s+ 7.115)(s2 + 33.93s+ 571.4)
(5.19)

Step reference commands were applied to obtain the closed loop system step response.

5 10 15

Time (s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
n
g
u
la

r
ra

te
 (

ra
d
/s

)

Body Rotation Rate in x-axis

Reference

Simulation

Output

Figure 5.11: Inner-loop Step Response for p Reference Command - PID Tuning Design

51

Parameters Without Prefilter

Rise Time 0.0445 s

Settling Time 0.2902 s

Overshoot 19.49%

Undershoot 0.02%

Peak 1.1949

Table 5.2: Closed Loop Step Response for the Inner-loop - PID Tuning Design

5.2.2 Control System Design - Pole Placement

From [11], in this design, the controller K will be designed such that the closed

loop system step response properties of settling time, overshoot, etc are met by placing

the poles at certain locations. We define the following specifications for the closed-

loop system: (1) the closed loop system to be stable, (2) exhibits a zero steady-state

error to step reference input r, output disturbances do, and input disturbances di,

(3) exhibits a settling time to step reference commands r of ts ≈ 0.5s (4) overshoot

below 10%, i.e. Mp = 0.1. The controller K has the following structure:

K(s) =
g(s+ z)(s+ 16.67)

s

[
200

s+ 200

]2
(5.20)

where g and z are the two parameters that need to be designed to achieve the de-

sign specifications. Furthermore, we cancel the actuator dynamic’s pole at 16.67 by

introducing a zero in K at the same location. Additionally, a pole at the origin, an

integrator, to exhibit a zero steady-state error to step di because the plant has an

additional integrator to obtain a zero steady-state error to step reference commands,

from internal model principle ideas. Furthermore, a roll-off of almost a decade above

52

the unity gain crossover frequency to attenuate high-frequencies where K(∞) = 0.

τ =
ts
5
, Re{Pole} =

−1

τ
(5.21)

ζ =
−ln(Mp)√
ln(Mp)2 + π2

, θ = asin(ζ)
180

π
(5.22)

Im{Pole} =
|Re{Pole}|
|tan(θ π

180
)|

(5.23)

where the characteristic equation is as follows

char = s2 + 2σs+ σ2 + ω2
n (5.24)

where σ = −Re{Pole} and ωn = Im{Pole}.

g =
2σ

8.77× 103
, z =

σ2 + ω2
n

g × 8.77× 103
(5.25)

where g = 0.0023 and z = 14.3076 and we end up with the following K:

K(s) =
0.0023(s+ 14.3076)(s+ 16.67)

s

[
200

s+ 200

]2
(5.26)

Open Loop Frequency Response. By breaking the loop at the error e or the

plant output y, we obtain the open loop transfer function L = PK as follows:

L(s) =
−0.0086806(s+ 1.152e05)(s− 800)(s+ 16.67)(s+ 14.31)

s2(s+ 200)2(s+ 16.66)
≈ 20(s+ 14.31)

s2
(5.27)

53

-200

-100

0

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
0

90

180

270
P

h
a
s
e
 (

d
e

g
)

Bode Diagram

Gm = 21.3 dB (at 151 rad/s) , Pm = 43.4 deg (at 23.2 rad/s)

Frequency (rad/s)

Figure 5.12: Bode Magnitude and Phase Plots for Open Loop L Transfer Function

for Inner-loop - Pole Placement Design

where we have a high gain at low frequencies due to integral action along with

an increase in the phase around crossover ωg for closed-loop stability. The unity gain

crossover ωg = 23.2 rad/s and phase margin PM = 43.3◦. The downward gain margin

↓ GM ≈ 0, upward gain margin ↑ GM ≈ 11.55, delay margin DM ≈ 0.032s. Usually,

we want to have good values for ↑ GM, ↓ GM,PM , but we have no guarantees for

stability robustness. Because we might have, but we still have poor peak sensitivities.

Therefore, we need to look at the Nyquist plot as follows

54

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

6 dB

4 dB

20 dB

10 dB

0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB
2 dB

Nyquist Diagram

Real Axis

Im
a
g

in
a
ry

 A
x
is

Figure 5.13: Nyquist Plot for Open Loop L Transfer Function for Inner-loop - Pole

Placement Design

the plot suggests that we are quite away from the −1 point, i.e., the distance from

instability point. The closer the plot to −1 point implies that we will have a large

sensitivity peak |S| which is not desirable. Also, we have zero closed-loop unstable

poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.28)

55

-50 -40 -30 -20 -10 0

-150

-100

-50

0

50

100

150

0.7

0.42

0.030.0650.10.150.2
0.3

0.030.0650.10.150.20.3

0.42

0.7

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.14: Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - Pole Placement Design

-600 -400 -200 0 200 400 600 800 1000 1200

-600

-400

-200

0

200

400

0.52

0.9

0.95

0.978

600

0.7

0.82

700

0.30.520.7

0.82

0.9

0.95

0.978

0.994

0.3

0.994
100200300400500

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.15: Root Locus for Open Loop l Transfer Function for Inner-loop at High

Frequencies - Pole Placement Design

56

-100

-50

0

50

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-90

0

90

180
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.16: Sensitivity |S| Bode Plot for Inner-loop - Pole Placement Design

Sensitivity Frequency Response. The sensitivity transfer function Tre = S is from

r to e which we want to look like a zero at low frequencies. In other words, the impact

of reference commands r on the error e should be zero; otherwise we will end up with

large error values in e. The plot magnitude looks small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation. The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 5.28 rad/s. That is a good definition for bandwidth, which

means reference commands with frequency content below 5.28 rad/s will be followed

within 20dB, i.e., with a 10% steady-state error. Similarly, with the same amount

output disturbances do with frequency content below 5.28 rad/s will be attenuated

as well. The peak in the sensitivity is small, around 2dB, that is almost negligible.

57

-200

-150

-100

-50

0

50

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
0

90

180

270

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.17: Complementary Sensitivity |T | Bode Plot for Inner-loop - Pole Placement

Design

Complementary Sensitivity Frequency Response. The complementary sensi-

tivity transfer function T is from r to y or di to u, which we want to look like unity at

low frequencies and zero at high frequencies. In other words, we want the reference

commands r to show up in the plant output y. The plot suggests that low-frequency

content reference commands will be followed to some point. Also, the presence of

a bump of 3.83dB in T suggests that an overshoot will be present to step reference

commands r. Therefore, a prefilter W might be needed to reduce excessive overshoot

in step reference commands r. Therefore, a first-order prefilter W with pole close to

the controller zero 14.3 is as follows:

W (s) =
14.3076

s+ 14.3076
(5.29)

where the complementary sensitivity transfer function T = WPK
1+PK

looks like

58

-300

-200

-100

0

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Complementary Sensitivity with Prefilter

Bode Diagram

Frequency (rad/s)

Figure 5.18: Complementary Sensitivity |T | with Prefilter W Bode Plot for Inner-loop

- Pole Placement Design

where the prefilter reduces the overshoot significantly., also, the plot shows that

high-frequency sensor noise n with content above 146 rad/s will be attenuated within

20dB. However, with the prefilter, high-frequency sensor noise n with content above

58 rad/s will be attenuated within 20dB. We can obtain the lower bounds for the

sensitivity ||S||H∞ and complementary sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.0948, 0, 1.3552

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.0948, 1, 1.3552

}(5.30)

Time Domain Analysis. The closed loop system from reference commands r to

the output y is the transfer function Try = WPK
1+PK

as follows:

Try =
−0.1242(s+ 1.152e05)(s− 800)(s+ 16.67)

(s+ 261.8)(s+ 117.1)(s+ 16.66)(s2 + 21.01s+ 373.3)
(5.31)

Step reference commands were applied to obtain the closed loop system step response

as follows

59

Pole Damping Frequency (rad/s) Time Constant (s)

-1.43e+01 1.00e+00 1.43e+01 6.99e-02

-1.67e+01 1.00e+00 1.67e+01 6.00e-02

-1.05e+01 + 1.62e+01i 5.44e-01 1.93e+01 9.52e-02

-1.05e+01 - 1.62e+01i 5.44e-01 1.93e+01 9.52e-02

-1.17e+02 1.00e+00 1.17e+02 8.54e-03

-2.62e+02 1.00e+00 2.62e+02 3.82e-03

Table 5.3: Closed Loop Poles for the Inner-loop - Pole Placement Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Without prefilter

With prefilter

Step Response

Time (sec) (seconds)

B
o

d
y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.19: Inner-loop Step Response for p with and Without a Prefilter W - Pole

Placement Design

where the prefilter almost retrieved the closed-loop system design specifications

and reduces the excessive overshoot in the closed-loop step response.

60

Parameters Without Prefilter With Prefilter

Rise Time 0.0427 s 0.0914 s

Settling Time 0.3947 s 0.3151 s

Overshoot 35.59% 12.81%

Undershoot 0.06% 0.0%

Peak 1.3560 1.1282

Table 5.4: Closed Loop Step Response for the Inner-loop - Pole Placement Design

Time Domain Trade Studies: Varying the Settling Time ts Design Param-

eter. In Figure 5.19, we see that as ts increases, the response speed decreases because

we are shooting for a lower settling time as we increase ts. However, in practical im-

plementation, as ts goes below 0.3 s the system will experience large oscillations due

to pushing the system too much. Therefore, we have chosen the design parameter ts

to be 0.5 s to avoid the oscillations and end up with a more stable system without

pushing the system.

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

ts = 0.2

ts = 0.4

ts = 0.6

ts = 0.8

Inner-Loop Step Response - Without Prefilter

Time (seconds)
B

o
d
y
 r

a
te

 p
 (

d
e
g

/s
)

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

0

0.5

1

1.5

ts = 0.2

ts = 0.4

ts = 0.6

ts = 0.8

Inner-Loop Step Response - With Prefilter

Time (seconds)

B
o
d

y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.20: Inner-loop Step Response for Different ts Design Parameters - Pole

Placement Design

Time Domain Trade Studies: Varying the Overshoot Mp Design Parame-

ter. In Figure 5.20, we see that as Mp increases, the response speed increases (faster

response) with more significant overshoot as a trade-off. Therefore, there is a trade-

off between how fast we want the system to behave versus the percentage overshoot

that we get. Consequently, we have chosen the design parameter Mp to be 0.1 (10%)

overshoot as a reasonable response.

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

Mp = 0.05

Mp = 0.1

Mp = 0.15

Mp = 0.2

Inner-Loop Step Response - Without Prefilter

Time (seconds)
B

o
d
y
 r

a
te

 p
 (

d
e
g

/s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.5

0

0.5

1

1.5

Mp = 0.05

Mp = 0.1

Mp = 0.15

Mp = 0.2

Inner-Loop Step Response - With Prefilter

Time (seconds)

B
o
d

y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.21: Inner-loop Step Response for Different Mp Design Parameters - Pole

Placement Design

5.2.3 Control System Design - Design for Bandwidth and Robustness

Design for Bandwidth and Robustness. In this design, we do the opposite where

we design a controller to meet the desired specifications in the closed-loop system.

From [30], phase margin PM , and the unity gain crossover frequency ωg will be taken

beforehand into consideration when we design the controller. The reason is that, in

reality, we do not know how to place poles at certain locations to achieve the desired

performance. However, what we can do is that we design a controller to achieve a

certain bandwidth and phase margin by loop shaping. In loop shaping L, we want

high gain at low frequencies for good low-frequencies command following, good low-

frequencies output disturbance attenuation, and large phase around the crossover

frequency. We define the following specifications for the closed-loop system: (1) the

closed loop system to be stable, (2) exhibits a zero steady-state error to step reference

input r, output disturbances do, and input disturbances di, (3) unity gain crossover

63

ωg ≈ 25 rad/s (4) phase margin PM ≈ 60. Therefore, Proportional-Derivative (PD)

controller is not sufficient to achieve the defined specifications because to reject step

input disturbances di we need at least an integrator in the controller K. While it is

sufficient to have an integrator in L to reject step output disturbances do. Therefore,

an integrator in K is necessary to reject both di and do. Also, because the first

propeller harmonic is around 500 rad/s, we need the bandwidth to be at least a

decade below that, i.e., maximum reasonable bandwidth of 50 rad/s. Also, from

optimal control, a 60 deg phase margin is sufficient to have nice closed-loop properties

and robustness. Therefore, K has the following structure:

K(s) =
g(s+ z)(s+ 16.67)

s

[
200

s+ 200

]2
(5.32)

where g achieves the unity gain crossover frequency ωg, and a zero at z meets the

desired phase-margin specification. Furthermore, we cancel the actuator dynamic’s

pole at 16.67 by introducing a zero in K at the same location. Also, a pole at the

origin, an integrator, to exhibit a zero steady-state error to step di because the plant

has an additional integrator to obtain a zero steady-state error to step reference

commands, from internal model principle ideas. Additionally, a roll-off of almost a

decade above the unity gain crossover frequency to attenuate high-frequencies where

K(∞) = 0.

PM = 180◦ + P (jωg)
◦ + K(jωg)

◦ (5.33)

|L(jωg)| = 1 (5.34)

z =
ωg

tan(PM◦ − 180◦ − P (jωg)
◦ + 90◦ + 2atan(ωg

200
)◦ − atan(ωg

16.67
)◦)

(5.35)

g =
ωg(ω

2
g + 2002)

|P (jωg)|2002
√
ω2
g + z2

√
ω2
g + 16.672

(5.36)

64

where we end up with g = 0.0028 and z = 7.0482. The resulted controller is as follows

K(s) =
0.0025(s+ 7.048)(s+ 16.67)

s

[
200

s+ 200

]2
(5.37)

Open Loop Frequency Response. By breaking the loop at the error e or the

plant output y, we obtain the open loop transfer function L = PK as follows:

L(s) =
−0.01(s+ 1.15× 105)(s− 800)(s+ 16.67)(s+ 7.048)

s2(s+ 200)2(s+ 16.66)
≈ 24.4316(s+ 7.048)

s2
(5.38)

-200

-100

0

100

M
a

g
n

it
u

d
e

 (
d
B

)

100 102 104 106
0

90

180

270

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Gm = 20.2 dB (at 157 rad/s) , Pm = 58.2 deg (at 25 rad/s)

Frequency (rad/s)

Figure 5.22: Bode Magnitude and Phase Plots for Open Loop L Transfer Function

for Inner-loop - Bandwidth and Robustness Design

where we have a high gain at low frequencies due to integral action along with

an increase in the phase around crossover ωg for closed-loop stability. The unity gain

crossover ωg = 25 rad/s and phase margin PM = 58◦ were closely met as expected.

The downward gain margin ↓ GM ≈ 0, upward gain margin ↑ GM ≈ 10.2, delay

margin DM ≈ 0.04s. Usually, we want to have good values for ↑ GM, ↓ GM,PM ,

but we have no guarantees for stability robustness. Because we might have, but we

65

still have poor peak sensitivities. Therefore, we need to look at the Nyquist plot as

follows

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2 dB

20 dB

10 dB

0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

6 dB

4 dB

Nyquist Diagram

Real Axis

Im
a
g

in
a
ry

 A
x
is

Figure 5.23: Nyquist Plot for Open Loop L Transfer Function for Inner-loop - Band-

width and Robustness Design

the plot suggests that we are away from the −1 point, i.e., the distance from

instability point. The closer the plot to −1 point implies that we will have a large

sensitivity peak |S| which is not desirable. Also, we have zero closed-loop unstable

poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.39)

66

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

-10

-8

-6

-4

-2

0

2

4

6

8

0.160.320.460.620.740.84

0.98

0.160.320.460.620.740.84

0.93

0.98

0.93

2.557.51012.51517.5

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.24: Root Locus for Open Loop L Transfer Function for Inner-loop at Low

Frequencies - Bandwidth and Robustness Design

-200 0 200 400 600 800 1000 1200

-500

-400

-300

-200

-100

0

100

200

300

400

500

0.992
0.992

0.22

0.44

0.62

0.76

0.86
0.92
0.965

0.22

0.44

0.62

0.76

0.86
0.92
0.965

100

200

300

400

500

100

200

300

400

500

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.25: Root Locus for Open Loop L Transfer Function for Inner-loop at High

Frequencies - Bandwidth and Robustness Design

67

-100

-50

0

50

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-90

0

90

180
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.26: Sensitivity |S| Bode Plot for Inner-loop - Bandwidth and Robustness

Design

Sensitivity Frequency Response. The sensitivity transfer function Tre = S is from

r to e which we want to look like a zero at low frequencies. In other words, the impact

of reference commands r on the error e should be zero; otherwise we will end up with

large error values in e. The plot magnitude looks small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation. The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 4.32 rad/s. That is a good definition for bandwidth, which

means reference commands with frequency content below 4.32 rad/s will be followed

within 20dB, i.e., with a 10% steady-state error. Similarly, with the same amount

output disturbances do with frequency content below 4.32 rad/s will be attenuated

as well. The peak in the sensitivity is small, around 2dB, that is almost negligible.

68

-400

-300

-200

-100

0

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.27: Complementary Sensitivity |T | Bode Plot for Inner-loop - Bandwidth

and Robustness Design

Complementary Sensitivity Frequency Response. The complementary sensi-

tivity transfer function T is from r to y or di to u, which we want to look like unity at

low frequencies and zero at high frequencies. In other words, we want the reference

commands r to show up in the plant output y. The plot suggests that low-frequency

content reference commands will be followed to some point. Also, the presence of

a bump of 1.83dB in T suggests that an overshoot will be present to step reference

commands r. Therefore, a prefilter W might be needed to reduce excessive overshoot

in step reference commands r. Therefore, a first-order prefilter W with pole close to

the controller zero 7.048 is as follows:

W (s) =
7.048

s+ 7.048
(5.40)

where the complementary sensitivity transfer function T = WPK
1+PK

looks like

69

-300

-200

-100

0

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Complementary Sensitivity with Prefilter

Bode Diagram

Frequency (rad/s)

Figure 5.28: Complementary Sensitivity |T | with Prefilter W Bode Plot for Inner-loop

- Bandwidth and Robustness Design

where the prefilter reduces the overshoot significantly, also, the plot shows that

high-frequency sensor noise n with content above 164 rad/s will be attenuated within

20dB. However, with the prefilter, high-frequency sensor noise n with content above

45 rad/s will be attenuated within 20dB. We can obtain the lower bounds for the

sensitivity ||S||H∞ and complementary sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.1087, 0, 1.0313

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.1087, 1, 1.0313

}(5.41)

Time Domain Analysis. The closed loop system from reference commands r to

the output y is the transfer function Try = WPK
1+PK

as follows:

Try =
−0.07(s+ 1.15× 105)(s− 800)(s+ 16.67)

(s+ 268.7)(s+ 98.21)(s+ 19.92)(s+ 16.89)(s+ 12.94)
(5.42)

Step reference commands were applied to obtain the closed loop system step response

as follows

70

Pole Damping Frequency (rad/s) Time Constant (s)

-1.29e+01 1.00e+00 1.29e+01 7.73e-02

-1.69e+01 1.00e+00 1.69e+01 5.92e-02

-1.99e+01 1.00e+00 1.99e+01 5.02e-02

-5.00e+01 1.00e+00 5.00e+01 2.00e-02

-9.82e+01 1.00e+00 9.82e+01 1.02e-02

-2.69e+02 1.00e+00 2.69e+02 3.72e-03

Table 5.5: Closed Loop Poles for the Inner-loop For ωg = 25 rad/s, PM = 60, and

W = 50
s+50

- Bandwidth and Robustness Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Without prefilter

With prefilter

Step Response

Time (seconds)

B
o

d
y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.29: Inner-loop Step Response for p with and Without a Prefilter W - Band-

width and Robustness Design

where the prefilter got rid off the excessive overshoot in the closed-loop step re-

sponse.

71

Parameters Without Prefilter With Prefilter

Rise Time 0.0434 s 0.2170 s

Settling Time 0.3747 s 0.3937 s

Overshoot 19.65% 0.0%

Undershoot 0.08% 0.0011%

Peak 1.1965 0.9991

Table 5.6: Closed Loop Step Response for the Inner-loop - Bandwidth and Robustness

Design

Time Domain Trade Studies: Varying the Unity Gain Crossover Frequency

ωg Design Parameter. In Figure 5.29, we see that as ωg increases, the response

speed increases as well. However, in practical implementation, as ωg goes above 30

rad/s the system will experience large oscillations due to pushing the system too

much. Therefore, we have chosen the design parameter ωg to be 25 rad/s to avoid

the oscillations and end up with a more stable system without pushing the system.

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

_g = 10

_g = 20

_g = 30

_g = 40

Inner-Loop Step Response - Without Prefilter

Time (seconds)
B

o
d
y
 r

a
te

 p
 (

d
e
g

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

_g = 10

_g = 20

_g = 30

_g = 40

Inner-Loop Step Response - With Prefilter

Time (seconds)

B
o
d

y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.30: Inner-loop Step Response for Different ωg Design Parameters - Band-

width and Robustness Design

Time Domain Trade Studies: Varying the Phase Margin PM Design Pa-

rameter. In Figure 5.30, we can see that as the phase margin PM goes from 20◦ to

60◦, the step response of the closed-loop system goes more stable with fewer oscilla-

tions. However, with ωg = 25 rad/s, the maximum phase margin that we can achieve

with this design is 75◦. Therefore, to have some room, we have chosen the minimum

phase margin from optimal LQR control, which is PM = 60◦.

73

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2
PM = 20

PM = 40

PM = 60

Inner-Loop Step Response - Without Prefilter

Time (seconds)
B

o
d
y
 r

a
te

 p
 (

d
e
g

/s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2
PM = 20

PM = 40

PM = 60

Inner-Loop Step Response - With Prefilter

Time (seconds)

B
o
d

y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.31: Inner-loop Step Response for Different PM Design Parameters - Band-

width and Robustness Design

Time Domain Trade Studies: Varying the Prefilter W Pole Location. In

Figure 5.31, we can see that as the pole of the prefilter W increases, the step response

increase as well. However, there is a tradeoff with the faster response, which is an

excessive overshoot in the step response. Because in the inner-loop we care more

about the speed of the response, a prefilter of the form

W (s) =
50

s+ 50
(5.43)

is a reasonable selection for our design and has an overshoot of almost 20%.

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

W = 7

W = 21

W = 35

W = 50

Inner-Loop Step Response - With Prefilter

Time (seconds)

B
o
d

y
 r

a
te

 p
 (

d
e

g
/s

)

Figure 5.32: Inner-loop Step Response for Different Prefilter W Designs - Bandwidth

and Robustness Design

the final closed-loop transfer function for the inner-loop from the reference com-

mand r to the output y is as follows:

Try =
WPK

1 + PK
≈ 37(s+ 7.048)(s+ 16.67)

(s+ 12.94)(s+ 16.89)(s+ 19.92)
(5.44)

75

5.3 Outer-Loop: (φ, θ, ψ) Attitude Control

From [12], the inner-outer loop control hierarchical structure is used where slower

high-level commands to be followed by a faster inner control loop. For a good inner-

outer loop command following, the inner loop should be faster than the outer loop by

order of magnitude. However, in some applications, the inner-loop is 2-4 times the

outer loop where we push the system to its limits. In this design, a factor of close to

2.5 was chosen so that the outer loop bandwidth is around 10 rad/s while the inner

loop is 25 rad/s.

r einner
K

u

di

up
P

yp

do

yinner
1
s

ye
Kouter W

−

n

Figure 5.33: Outer-loop Feedback Block Diagram

5.3.1 Control System Design - PID Tuning Design

After designing the inner-loop control system by tuning each parameter (Proportional-

Integral-Derivative), the outer-loop plant model is the closed loop transfer function of

the inner loop Try from reference command r to output y multiplied by an integrator

as follows:

P(pref ,φ) = Try
[1
s

]
≈ 25.42(s+ 6.079)(s+ 26.31)

s(s+ 7.115)(s2 + 33.93s+ 571.4)
(5.45)

76

The controller of the outer loop is just a proportional controller

Kouter = 9 (5.46)

Open Loop Frequency Response. By breaking the loop at the error e = φref −φ

or the plant output y (φ) we obtain the open loop transfer function L = PK as

follows:

Louter ≈
228.78(s+ 6.079)(s+ 26.31)

s(s+ 7.115)(s2 + 33.93s+ 571.4)
(5.47)

-200

-150

-100

-50

0

50

M
a

g
n

it
u

d
e

 (
d
B

)

100 102 104 106
0

90

180

270

P
h

a
s
e

 (
d

e
g

)

Bode Diagram

Gm = 25.1 dB (at 66.2 rad/s) , Pm = 76.2 deg (at 10.7 rad/s)

Frequency (rad/s)

Figure 5.34: Bode Magnitude and Phase Plots for Open Loop LOuter Transfer Func-

tion - PID Tuning Design

where we have a slope of −20dB/dec at low frequencies due to integral action.

The unity gain crossover for the outer loop is ωg = 10.65 rad/s, which is lower

than the inner loop by a factor of 2.69, which is expected for inner-outer loop control

hierarchical structure. The phase margin is PM = 76.2◦. The downward gain margin

↓ GM ≈ 0, upward gain margin ↑ GM ≈ 18, delay margin DM ≈ 0.1248s. Usually,

77

we want to have good values for ↑ GM, ↓ GM,PM , but we have no guarantees for

stability robustness. Because we might have, but we still have poor peak sensitivities.

Therefore, we need to look at the Nyquist plot as follows

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20 dB

10 dB

0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry

 A
x
is

Figure 5.35: Nyquist Plot for Open Loop LOuter Transfer Function - PID Tuning

Design

the plot suggests that we are away from the −1 point, i.e., the distance from

instability point. The closer the plot to −1 point implies that we will have a large

sensitivity peak |S| which is not desirable. Also, we have zero closed-loop unstable

poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.48)

78

-30 -25 -20 -15 -10 -5 0 5

-20

-15

-10

-5

0

5

10

15

20

0.160.320.620.74

0.98

0.85

0.160.320.480.620.740.85

0.93

0.98

0.48

0.93

51015202530

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.36: Root Locus for Open Loop LOuter Transfer Function at Low Frequencies

- PID Tuning Design

-1500 -1000 -500 0 500 1000 1500

-600

-400

-200

0

200

400

600

800

0.660.820.9
0.945

0.972

0.99

0.997

0.40.660.820.9

0.945

0.972

0.99

0.997

0.4

2505007501e+031.25e+031.5e+031.75e+03

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.37: Root Locus for Open Loop LOuter Transfer Function at High Frequencies

- PID Tuning Design

79

-40

-30

-20

-10

0

10

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-45

0

45

90
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.38: Sensitivity |S| Bode Plot for Outer-loop - PID Tuning Design

Sensitivity Frequency Response. The sensitivity transfer function Tre = S is from

r to e which we want to look like a zero at low frequencies. In other words, the impact

of reference commands r on the error e should be zero; otherwise we will end up with

large error values in e. The plot magnitude looks small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation. The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 0.9 rad/s. That is a good definition for bandwidth which means

reference commands with frequency content below 0.9 rad/s will be followed within

20dB, i.e. with a 10% steady-state error. Similarly, with the same amount output

disturbances do with content below 0.9 rad/s will be attenuated as well. The peak in

the sensitivity is around 6.4dB.

80

-200

-150

-100

-50

0

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
0

90

180

270

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.39: Complementary Sensitivity |T | Bode Plot for Outer-loop - PID Tuning

Design

Complementary Sensitivity Frequency Response. The complementary sensi-

tivity transfer function T is from r to y or di to u, which we want to look like unity at

low frequencies and zero at high frequencies. In other words, we want the reference

commands r to show up in the plant output y. The plot suggests that low-frequency

content reference commands will be followed to some point. Additionally, there is no

presence of a bump in the complementary sensitivity plot. Also, the plot shows that

high-frequency sensor noise n with content above 52.3 rad/s will be attenuated within

20dB. We can obtain the lower bounds for the sensitivity ||S||H∞ and complementary

sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.0588, 0, 0.8103

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.0588, 1, 0.8103

}(5.49)

81

Pole Damping Frequency (rad/s) Time Constant (s)

-5.23e+00 1.00e+00 5.23e+00 1.91e-01

-1.27e+01 1.00e+00 1.27e+01 7.89e-02

-1.13e+01 + 2.06e+01i 4.80e-01 2.35e+01 8.87e-02

-1.13e+01 - 2.06e+01i 4.80e-01 2.35e+01 8.87e-02

-7.53e+02 1.00e+00 7.53e+02 1.33e-03

Table 5.7: Closed Loop Poles for the Outer-loop - PID Tuning Design

Time Domain Analysis.

Try ≈
228.63(s+ 26.31)(s+ 6.079)

(s+ 12.67)(s+ 5.229)(s2 + 22.56s+ 552)
(5.50)

10 11 12 13 14 15 16 17 18 19 20

Time (s)

-30

-20

-10

0

10

20

30

 a
n

g
le

 (
d

e
g

)

Outer-Loop Step Response

Reference

Hardware

Simulation

Figure 5.40: Step Response for φ Reference Command - PID Tuning Design

System Identification for the Outer-Loop. By using MATLAB’s System Iden-

tification Toolbox we have obtained the following closed-loop transfer function Try:

Tid =
211(s2 − 99.53s+ 5226)

(s2 + 33.4s+ 368.7)(s2 + 15.61s+ 2956)
(5.51)

82

10 11 12 13 14 15 16 17 18 19 20

Time (s)

-30

-20

-10

0

10

20

30

 a
n
g

le
 (

d
e
g

)

Measured and simulated model output

Model

SysID

Measured

Figure 5.41: System Identification for the Closed-loop Transfer Function Try for

Outer-loop - PID Tuning Design

5.3.2 Control System Design - Pole Placement Design

Because of a well designed inner-loop control system for the body rotation rates

(p, q, r), the outer-loop is just a proportional controller where the reference command

is (φ, θ, ψ). The closed loop system of the inner loop is Try and the new outer loop

plant is as follows

P(pref ,φ) = Try
[1
s

]
≈ 373(s+ 16.67)(s+ 14.31)

s(s+ 16.66)(s+ 14.31)(s2 + 21.01s+ 373.3)
(5.52)

Kouter = 8 (5.53)

Open Loop Frequency Response. By breaking the loop at the error e = φref −φ

or the plant output y (φ) we obtain the open loop transfer function L = PK as

follows:

Louter ≈
2.98× 103(s+ 16.67)

s(s+ 16.66)(s2 + 21.01s+ 373.3)
(5.54)

83

-600

-400

-200

0

200

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Bode Diagram

Gm = 6.52 dB (at 17 rad/s) , Pm = 52.7 deg (at 8.51 rad/s)

Frequency (rad/s)

Figure 5.42: Bode Magnitude and Phase Plots for Open Loop LOuter Transfer Func-

tion - Pole Placement Design

where we have a slope of −20dB/dec at low frequencies due to integral action.

The unity gain crossover for the outer loop is ωg = 8.5 rad/s, which is lower than

the inner loop by a factor of 2.7, which is expected for inner-outer loop control

hierarchical structure. The phase margin is PM = 52.6◦. The downward gain margin

↓ GM ≈ 0, upward gain margin ↑ GM ≈ 2.11, delay margin DM ≈ 0.1081s. Usually,

we want to have good values for ↑ GM, ↓ GM,PM , but we have no guarantees for

stability robustness. Because we might have, but we still have poor peak sensitivities.

Therefore, we need to look at the Nyquist plot as follows

84

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-20 dB

0 dB

20 dB

10 dB -10 dB

-6 dB

-4 dB

-2 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a
g

in
a
ry

 A
x
is

Figure 5.43: Nyquist Plot for Open Loop LOuter Transfer Function - Pole Placement

Design

the plot suggests that we are away from the −1 point, i.e., the distance from

instability point. The closer the plot to −1 point implies that we will have a large

sensitivity peak |S| which is not desirable. Also, we have zero closed-loop unstable

poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.55)

85

-20 -15 -10 -5 0 5

-60

-40

-20

0

20

40

60

0.48

0.0350.0750.1150.170.24
0.34

0.0350.0750.1150.170.24
0.34

0.48

0.75

0.75

10

20

30

40

50

60

10

20

30

40

50

60

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.44: Root Locus for Open Loop LOuter Transfer Function at Low Frequencies

- Pole Placement Design

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000

-1

-0.5

0

0.5

1

104

0.0350.0750.1150.17

0.75

0.48

0.34

0.0350.0750.1150.17

0.24

0.34

0.48

0.75

0.24

2e+03

4e+03

6e+03

8e+03

1e+04

1.2e+04

2e+03

4e+03

6e+03

8e+03

1e+04

1.2e+04

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.45: Root Locus for Open Loop LOuter Transfer Function at High Frequencies

- Pole Placement Design

86

-20

-10

0

10

M
a
g
n

it
u

d
e
 (

d
B

)

100 101 102 103
-45

0

45

90
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.46: Sensitivity |S| Bode Plot for Outer-loop - Pole Placement Design

Sensitivity Frequency Response. The sensitivity transfer function Tre = S is from

r to e which we want to look like a zero at low frequencies. In other words, the impact

of reference commands r on the error e should be zero; otherwise we will end up with

large error values in e. The plot magnitude looks small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation. The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 0.8 rad/s. That is a good definition for bandwidth which means

reference commands with frequency content below 0.8 rad/s will be followed within

20dB, i.e. with a 10% steady-state error. Similarly, with the same amount output

disturbances do with content below 0.8 rad/s will be attenuated as well. The peak in

the sensitivity is around 6.6dB.

87

-600

-400

-200

0

200

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.47: Complementary Sensitivity |T | Bode Plot for Outer-loop - Pole Place-

ment Design

Complementary Sensitivity Frequency Response. The complementary sensi-

tivity transfer function T is from r to y or di to u, which we want to look like unity at

low frequencies and zero at high frequencies. In other words, we want the reference

commands r to show up in the plant output y. The plot suggests that low-frequency

content reference commands will be followed to some point. Additionally, there is no

presence of a bump in the complementary sensitivity plot. Also, the plot shows that

high-frequency sensor noise n with content above 32 rad/s will be attenuated within

20dB. We can obtain the lower bounds for the sensitivity ||S||H∞ and complementary

sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.9, 0, 1.1285

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.9, 1, 1.1285

} (5.56)

88

Pole Damping Frequency (rad/s) Time Constant (s)

-1.33e+01 1.00e+00 1.33e+01 7.49e-02

-4.09e+00 + 1.44e+01i 2.72e-01 1.50e+01 2.45e-01

-4.09e+00 - 1.44e+01i 2.72e-01 1.50e+01 2.45e-01

-1.66e+01 1.00e+00 1.66e+01 6.01e-02

-1.17e+02 1.00e+00 1.17e+02 8.58e-03

-2.62e+02 1.00e+00 2.62e+02 3.82e-03

Table 5.8: Closed Loop Poles for the Outer-loop - Pole Placement Design

Time Domain Analysis.

Try ≈
2.9× 103(s+ 16.67)

(s2 + 8.175s+ 225.1)(s+ 13.34)(s+ 16.64)
(5.57)

89

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response without Prefilter

Reference

Output

Simulation

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response with Prefilter W = (14.3)/(s + 14.3)

Reference

Output

Simulation

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response with Prefilter W = (50)/(s + 50)

Reference

Output

Simulation

Figure 5.48: Step Response for φ Reference Command - Pole Placement Design

System Identification for the Outer-Loop. By using MATLAB’s System Iden-

90

tification Toolbox we have obtained the following closed-loop transfer function Try:

Tid =
−3233(s− 58.51)

(s2 + 18.6s+ 293)(s2 + 31.07s+ 643.7)
(5.58)

13 14 15 16 17 18 19 20 21 22 23 24

Time (sec)

-30

-20

-10

0

10

20

30
 a

n
g

le
 (

d
e
g

)

Measured and simulated model output

Model

SysID

Measured

Figure 5.49: System Identification for the Closed-loop Transfer Function Try for

Outer-loop - Pole Placement Design

Frequency Domain Trade Studies: Varying the Gain of the Controller.

By increasing the proportional gain of the controller Kouter from 2 to 12, the peak

sensitivity S increases as well, which is not desirable. However, as Kouter gets larger,

reference commands with higher frequency contents will be followed with a lower

steady-state error.

91

-60

-40

-20

0

20

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-45

0

45

90
P

h
a
s
e
 (

d
e

g
)

K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Bode Diagram

Frequency (rad/s)

Figure 5.50: Sensitivity |S| Bode Plot for Outer-loop for Different Gain Values of

Kouter - Pole Placement Design

Furthermore, the bump in the complementary sensitivity gets larger as Kouter

increases. As a result, there will be an excessive overshoot in the output response y

due to step reference commands r.

92

-200

-100

0

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 101 102 103

90

180

270

360

P
h

a
s
e
 (

d
e

g
)

K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Bode Diagram

Frequency (rad/s)

Figure 5.51: Complementary Sensitivity |T | Bode Plot for Outer-loop for Different

Gain Values of Kouter - Pole Placement Design

Time Domain Trade Studies: Varying the Gain of the Controller. By

increasing the proportional gain of the controller Kouter from 2 to 12, i.e., pushing

the system more and more, the rise time tr of the output response y becomes smaller,

and as a trade of the output, y exhibits excessive overshoot as well. Therefore, there

is a trade-off between the speed of the response and the overshoot.

93

0 0.5 1 1.5 2 2.5 3 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 5.52: Step Response for φ Reference Command for Different Gain Values of

Kouter - Pole Placement Design

5.3.3 Control System Design - Design for Bandwidth and Robustness

Because of a well designed inner-loop control system for the body rotation rates

(p, q, r), the outer-loop is just a proportional controller where the reference command

is (φ, θ, ψ). The closed loop system of the inner loop is Try and the new outer loop

plant is as follows

P(pref ,φ) = Try
[1
s

]
≈ 37(s+ 16.67)(s+ 7.048)

s(s+ 19.92)(s+ 16.89)(s+ 12.94)
, Kouter = 8 (5.59)

Open Loop Frequency Response. By breaking the loop at the error e = φref −φ

or the plant output y (φ) we obtain the open loop transfer function L = PK as

follows:

Louter ≈
296.27(s+ 16.67)(s+ 7.048)

s(s+ 19.92)(s+ 16.89)(s+ 12.94)
(5.60)

94

-400

-300

-200

-100

0

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Bode Diagram

Gm = 11.1 dB (at 25.8 rad/s) , Pm = 62.6 deg (at 9.58 rad/s)

Frequency (rad/s)

Figure 5.53: Bode Magnitude and Phase Plots for Open Loop Louter Transfer Function

- Bandwidth and Robustness Design

where we have a slope of −20dB/dec at low frequencies due to integral action.

The unity gain crossover for the outer loop is ωg = 9.58 rad/s, which is lower than

the inner loop by a factor of 2.6, which is expected for inner-outer loop control

hierarchical structure. The phase margin is PM = 62.6◦. The downward gain margin

↓ GM ≈ 0, upward gain margin ↑ GM ≈ 3.59, delay margin DM ≈ 0.1141s. Usually,

we want to have good values for ↑ GM, ↓ GM,PM , but we have no guarantees for

stability robustness. Because we might have, but we still have poor peak sensitivities.

Therefore, we need to look at the Nyquist plot as follows

95

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

20 dB

10 dB

0 dB

-20 dB

-10 dB

-6 dB

-4 dB

-2 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a
g

in
a
ry

 A
x
is

Figure 5.54: Nyquist Plot for Open Loop Louter Transfer Function - Bandwidth and

Robustness Design

the plot suggests that we are away from the −1 point, i.e., the distance from

instability point. The closer the plot to −1 point implies that we will have a large

sensitivity peak |S| which is not desirable. Also, we have zero closed-loop unstable

poles according to

Pu,cl = Pi,ol +Ncw = 0 (5.61)

96

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

-50

-40

-30

-20

-10

0

10

20

30

40

0.52

0.190.260.38

0.040.080.130.190.260.38

0.52

0.8

0.040.080.13

0.8

10

20

30

40

10

20

30

40

50

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d

s
-1

)

Figure 5.55: Root Locus for Open Loop Louter Transfer Function at Low Frequencies

- Bandwidth and Robustness Design

-2 -1 0 1 2 3 4 5

105

-4

-3

-2

-1

0

1

2

3

4
105

5e+04

1e+05

0.98

1.5e+05

0.84

0.92

2e+05
0.72

2.5e+050.58

0.143.5e+050.30.44

0.140.30.44

0.58

0.72

0.84

0.92

0.98
5e+04

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

3.5e+05

4e+05

3e+05

4e+05

Root Locus

Real Axis (seconds
-1

)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5.56: Root Locus for Open Loop Louter Transfer Function at High Frequencies

- Bandwidth and Robustness Design

97

-40

-30

-20

-10

0

10

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-45

0

45

90
P

h
a
s
e
 (

d
e

g
)

Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.57: Sensitivity |S| Bode Plot for Outer-loop - Bandwidth and Robustness

Design

Sensitivity Frequency Response. The sensitivity transfer function Tre = S is from

r to e which we want to look like a zero at low frequencies. In other words, the impact

of reference commands r on the error e should be zero; otherwise we will end up with

large error values in e. The plot magnitude looks small at low frequencies for good low-

frequency reference command following and good low-frequency output disturbance

attenuation. The frequency at which the Bode magnitude of the sensitivity equals

−20dB (0.1) is wl ≈ 0.8 rad/s. That is a good definition for bandwidth, which means

reference commands with frequency content below 0.8 rad/s will be followed within

20dB, i.e., with a 10% steady-state error. Similarly, with the same amount output

disturbances do with frequency content below 0.8 rad/s will be attenuated as well.

The peak in the sensitivity is around 4.29dB.

98

-400

-300

-200

-100

0

M
a
g
n

it
u

d
e
 (

d
B

)

100 102 104 106
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

Complementary Sensitivity

Bode Diagram

Frequency (rad/s)

Figure 5.58: Complementary Sensitivity |T | Bode Plot for Outer-loop - Bandwidth

and Robustness Design

Complementary Sensitivity Frequency Response. The complementary sensi-

tivity transfer function T is from r to y or di to u, which we want to look like unity at

low frequencies and zero at high frequencies. In other words, we want the reference

commands r to show up in the plant output y. The plot suggests that low-frequency

content reference commands will be followed to some point. Additionally, there is no

presence of a bump in the complementary sensitivity plot. Also, the plot shows that

high-frequency sensor noise n with content above 43 rad/s will be attenuated within

20dB. We can obtain the lower bounds for the sensitivity ||S||H∞ and complementary

sensitivity ||T ||H∞ using the following

||S||H∞ ≥ max

{
↑ GM
↑ GM − 1

,
↓ GM

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
1.38, 0, 0.9622

}
||T ||H∞ ≥ max

{
1

↑ GM − 1
,

1

1− ↓ GM
,

1

2 sin(|PM |
2

)

}
=

{
0.3855, 1, 0.9622

}(5.62)

99

Pole Damping Frequency (rad/s) Time Constant (s)

-5.38e+00 1.00e+00 5.38e+00 1.86e-01

-1.67e+01 1.00e+00 1.67e+01 6.00e-02

-7.56e+00 + 1.55e+01i 4.39e-01 1.72e+01 1.32e-01

-7.56e+00 - 1.55e+01i 4.39e-01 1.72e+01 1.32e-01

-7.55e+01 1.00e+00 7.55e+01 1.32e-02

-8.51e+02 1.00e+00 8.51e+02 1.18e-02

-2.69e+02 1.00e+00 2.69e+02 3.72e-03

Table 5.9: Closed Loop Poles for the Outer-loop - Bandwidth and Robustness Design

Time Domain Analysis.

Try ≈
226.31(s+ 16.67)(s+ 7.048)

(s+ 16.66)(s+ 5.379)(s2 + 15.12s+ 296.7)
(5.63)

100

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response without Prefilter

Reference

Output

Simulation

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response with Prefilter W = (7.0482)/(s + 7.0482)

Reference

Output

Simulation

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-30

-20

-10

0

10

20

30

 a
n
g
le

 (
d
e
g
)

Outer-Loop Step Response with Prefilter W = (50)/(s + 50)

Reference

Output

Simulation

Figure 5.59: Step Response for φ Reference Command - Bandwidth and Robustness

Design

System Identification for the Outer-Loop. By using MATLAB’s System Iden-

101

tification Toolbox we have obtained the following closed-loop transfer function Try:

Tid =
258.67(s2 − 89.99s+ 3648)

(s+ 41.83)(s+ 19.15)(s2 + 30.39s+ 1178)
(5.64)

10 11 12 13 14 15 16 17 18

Time (sec)

-25

-20

-15

-10

-5

0

5

10

15

20

25
 a

n
g

le
 (

d
e
g

)

Measured and simulated model output

Model

SysID

Measured

Figure 5.60: System Identification for the Closed-loop Transfer Function Try for

Outer-loop - Bandwidth and Robustness Design

Frequency Domain Trade Studies: Varying the Gain of the Controller.

By increasing the proportional gain of the controller Kouter from 2 to 12, the peak

sensitivity S increases as well, which is not desirable. However, as Kouter gets larger,

reference commands with higher frequency contents will be followed with a lower

steady-state error.

102

-60

-40

-20

0

20

M
a
g
n

it
u

d
e
 (

d
B

)

10-1 100 101 102 103
-45

0

45

90
P

h
a
s
e
 (

d
e

g
)

K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Bode Diagram

Frequency (rad/s)

Figure 5.61: Sensitivity |S| Bode Plot for Outer-loop for Different Gain Values of

Kouter - Bandwidth and Robustness Design

Additionally, the bump in the complementary sensitivity gets larger as Kouter

increases. As a result, there will be an excessive overshoot in the output response y

due to step reference commands r.

103

-150

-100

-50

0

50

100

M
a
g
n

it
u

d
e
 (

d
B

)

100 101 102 103
-180

0

180

360
P

h
a
s
e
 (

d
e

g
)

K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Bode Diagram

Frequency (rad/s)

Figure 5.62: Complementary Sensitivity |T | Bode Plot for Outer-loop for Different

Gain Values of Kouter - Bandwidth and Robustness Design

Time Domain Trade Studies: Varying the Gain of the Controller. By

increasing the proportional gain of the controller Kouter from 2 to 12, i.e., pushing

the system more and more, the rise time tr of the output response y becomes smaller,

and as a trade of the output, y exhibits excessive overshoot as well. Therefore, there

is a trade-off between the speed of the response and the overshoot.

104

0 0.5 1 1.5 2 2.5 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

K_outer = 2

K_outer = 4

K_outer = 6

K_outer = 8

K_outer = 10

K_outer = 12

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 5.63: Step Response for φ Reference Command for Different Gain Values of

Kouter - Bandwidth and Robustness Design

105

Chapter 6

HIGH-LEVEL CONTROL: POSITION AND PATH FOLLOWING CONTROL

6.1 Overview

In this chapter, a nonlinear quadrotor translational dynamical were linearized

around two different operating points. The first linearization is around hovering

position while the other around forwarding flight. Model analysis of both linear

models was addressed to show the effect of coupling in translational dynamics. Three

different controllers were designed for the decoupled linear model as follows: (1)

Linear Quadratic (LQ) Servo (2) Weighted H∞ Sensitivity Optimization (3) Linear

Quadratic Gaussian with Loop Transfer Recover at the Output (LQG/LTRO). For

each control design, a frequency domain analysis and time domain analysis were

presented as well.

6.2 Quadrotor Nonlinear Translational Dynamical Model

Since we have designed an attitude controller (inner-loop), now we will design the

outer-loop control. The quadrotor system has 12 states x = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T

but since we have an attitude controller which takes care of (φ, θ, p, q, r), we will end

up with 7 states for the outer loop control x = [x, y, z, ẋ, ẏ, ż, ψ]T and ν = [T, φ, θ, r]T .

The nonlinear translational dynamics of the quadrotor as follows

ẋ = f(x, ν) (6.1)
ẍ

ÿ

z̈

 =


−c(φ)s(θ)c(ψ)− s(φ)s(ψ)

−c(φ)s(θ)s(ψ) + s(φ)c(ψ)

c(φ)c(θ)

 T

m
+


0

0

−g

 (6.2)

106

ψ̇ =
s(φ)

c(θ)
p+

c(φ)

c(θ)
r (6.3)

Nonlinearity Issue. This is a question that might come to someone’s mind:

How do we obtain a linear model for the system

without restricting ψ to be a constant value?

From [16], we replace the nonlinearity term by up ∈ R3 and solving for it. After

solving for up, we can solve for (φ, θ, ψ) because we have three equations and three

unknowns. We have the following

up
def
= fp(x, ν) = RT

z (ψ)RT
y (θ)RT

x (φ)


0

0

1

 T

m
=


−c(φ)s(θ)c(ψ)− s(φ)s(ψ)

−c(φ)s(θ)s(ψ) + s(φ)c(ψ)

c(φ)c(θ)

 T

m
(6.4)

(6.5)

uψ
def
= fψ(x, ν) =

s(φ)

c(θ)
p+

c(φ)

c(θ)
r (6.6)

where we end up with 
ẍ

ÿ

z̈

 = up +


0

0

−g

 (6.7)

ψ̇ = uψ (6.8)

where up = [up1, up2, up3]
T is the linear control input for (ẍ, ÿ, z̈) and uψ is the linear

control input for ψ̇. Now we can obtain the linear system

ẋ = Ax+Bu+ hg (6.9)

107

where x = [x, y, z, ẋ, ẏ, ż, ψ]T , u = [up, uψ]T .

A =


03×3 I3×3 03×1

03×3 03×3 03×1

01×3 01×3 01×1

 , B =


03×3 03×1

I3×3 03×1

01×3 I1×1

 , h =



0

0

0

0

0

−1

0



(6.10)

Once we obtain u, we can convert back using the inverse functions

ν =



T

φ

θ

r


=

 f−1p (x, ν)

f−1ψ (x, ν)

 (6.11)

to obtain T, we take the 2-norm for both sides of

up = RT
z (ψ)RT

y (θ)RT
x (φ)


0

0

1

 T

m
(6.12)

because RTR is the identity for rotation matrices. Therefore, we obtain the following

T = m
√
u2p1 + u2p2 + u2p3 (6.13)

basically, for fp(x, ν) we have three equations and four unknowns (T, φ, θ, ψ). Because

ψ does not affect the path tracking, we multiple both sides by Rz(ψ) and define

z = [z1, z2, z3]
T 

z1

z2

z3

 = Rz(ψ)up
m

T
= RT

y (θ)RT
x (φ)


0

0

1

 (6.14)

108

after computing z values, we can solve for φ and θ

φ = sin−1(z2)

θ = tan−1(
−z1
z3

)
(6.15)

finally we can solve for r using f−1ψ (x, ν)

r = uψ
c(θ)

c(φ)
+ q

s(φ)

c(φ)
(6.16)

Differential Flatness. From [16, 17, 33], a flat differential system is one in which the

states and inputs can be expressed as functions of the output and its time derivatives

without integration.

y = y(x, u, u̇, ü, ...)

x = x(y, ẏ, ÿ, ...)

u = u(y, ẏ, ÿ, ...)

(6.17)

where yref = [xref , yref , zref , ψref]T , xref = [yref , ẏref]T , and uref = [yref , ẏref , ÿref]T .

From above, we know that uref = [urefp , urefψ]T where we end up with the following

system

ẋref = Axref +Buref + hg (6.18)

where error state-space model becomes as follows

ė = Ae+Bue (6.19)

where e = xref − x and ue = uref − u. The full-state feedback controller ue = −Ge

as shown in the block diagram

109

[ζr, ζ̇r, ζ̈r, ψ̇r, ψr]T
ζ̈r, ψ̇

DF
ζr, ζ̇r, ψr e

LQR
ue u

f−1
ν

ẋ = Ax+Bν
y

−

Figure 6.1: High-level Feedback Block Diagram

110

Algorithm 1 Compute High-Level Control Commands

1. Compute all the seven error states:

ex = xref − x, ey = yref − y, ez = zref − z

evx = ẋref − ẋ, evy = ẏref − ẏ, evz = żref − ẋ, eψ = ψref − ψ

2. Compute the four error integral term for (x, y, z):

exi+ = ex dt, eyi+ = ey dt, ezi+ = ez dt, eψi+ = eψ dt

3. Compute the LQR output control commands (u1, u2, u3, u4) as follows:

u1 = g1ex + g2evx + g3exi, u2 = g1ey + g2evy + g3eyi

u3 = g4ez + g5evz + g6ezi, u4 = g7eψ + g8eψi

4. Compute the feed-forward terms:

up1 = u1 + ẍref , up2 = u2 + ÿref , up3 = u3 + z̈ref + 9.81

upψ = u4 + ψ̇ref

5. Compute the desired commands (θ, φ, T, r) from the inverse mapping:

T = m
√
u2p1 + u2p2 + u2p3

z1 = m
T

(up1cos(ψ) + up2sin(ψ))

z2 = m
T

(−up1sin(ψ) + up2cos(ψ))

z3 = m
T
up3

φ = asin(z2)

θ = atan(−z1
z3

)

r = upψ
cos(θ)
cos(φ)

+ q sin(φ)
cos(φ)

111

6.2.1 Linearization of Nonlinear Translational Dynamics Near Hover

From [34], linearizing the nonlinear translational quadrotor dynamics around the

hover position φ = θ = ψ = 0°, T = mg, yields the following linear model:

ẋp = Apxp +Bpup

yp = Cpxp

up =

[
θ φ T r

]T
xp =

[
x y z ẋ ẏ ż ψ

]T
yp =

[
x y z ψ

]T
(6.20)

Ap1 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, Bp1 =



0 0 0 0

0 0 0 0

0 0 0 0

−9.81 0 0 0

0 9.81 0 0

0 0 1.5015 0

0 0 0 1


Cp1 =

 I3×3 03×3 0

01×3 01×3 1



(6.21)

By performing coordinate transformation as in [30]

u = Suup1

x = Sxxp1

y = Syyp1

(6.22)

112

where

Su =



180
π

0 0 0

0 180
π

0 0

0 0 1 0

0 0 0 180
π


, Sx =

 I6×6 06×1

01×6
180
π

 , Sy =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 180
π


(6.23)

we end up with the following system

Ap = SxAp1S
−1
x

Bp = SxBp1S
=1
u

Cp = SyCp1S
−1
x

Dp = SyDp1S
−1
u

(6.24)

where the eigenvalues/eigenvectors of the Ap matrix is given using MATLAB ’eig(A)’

command:

V =

 I3×3 −I3×3 03×1

04×3 04×3 04×1

 , U = 07×7 (6.25)

where V and U is the eigenvector and eigenvalues matrix, respectively. The system

has no finite transmission zeros. The system transfer function matrix is as follows

P (s) = Cp(sI − Ap)−1Bp =



−0.17122
s2

0 0 0

0 0.17122
s2

0 0

0 0 1.502
s2

0

0 0 0 1
s


(6.26)

The off-diagonal elements are zero, which implies that there is no coupling between

inputs and outputs.

System Analysis at Low Frequencies. Performing singular value decomposition

113

(SVD) at wo = 0.01rad/s yields P = USV H

U =

[
u1 u2 u3 u4

]
=



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



S = diag(σ1, σ2, σ3, σ4) =



15015 0 0 0

0 1712 0 0

0 0 1712 0

0 0 0 100



V =

[
v1 v2 v3 v4

]
=



0 −1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



(6.27)

From SVD, we have the following:

� maximum singular value of 15015 is associated with the vehicle’s z position

(u1 = [0 0 1 0]T), and the vehicle’s input T (v1 = [0 0 1 0]).

� minimum singular value of 100 is associated with vehicle’s yaw angle ψ (u4 =

[0 0 0 1]T), and the vehicle’s input r (v4 = [0 0 0 1]).

From the above, we can see that it is easier to thrust in the z-direction than to yaw

at an angle.

Plant Singular Values. In Figure 6.2 below, singular values have large magnitudes

at low frequencies; this is expected since we have integrators in each channel in the

plant. The blue singular values are associated with the plant model without drag

term and the red ones associated with plant model with linear drag term. Also, in

114

Figure 6.3, we see a comparison between singular values for the plant without control

input dynamics (blue) and with control input dynamics (black).

10-4 10-3 10-2 10-1 100 101

Frequency (rad/sec)

-100

-50

0

50

100

150

200

S
in

g
u

la
r

V
a

lu
e
s
 (

d
B

)

Outputs: x, y, z (m), (deg); Inputs: , (deg), T (N), r (deg/s)

Figure 6.2: Quadrotor Singular Values: (Blue) Model Without Drag, (Red) Model

with Drag

115

10-4 10-3 10-2 10-1 100 101 102

Frequency (rad/sec)

-150

-100

-50

0

50

100

150

200

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Outputs: x, y, z (m), (deg); Inputs: , (deg), T (N), r (deg/s)

Figure 6.3: Quadrotor Singular Values: (Blue) Model Without Drag, (Black Dots)

Model with Inner-loop Dynamics

6.2.2 Linearization of Nonlinear Translational Dynamics for Forward Flight

In [35], the aerial drag force is expressed as follows

Fd =
1

2
ρCdv

2A =
1

2
ρCdv

2(Stsin(α) + Sscos(α)) (6.28)

where ρ is the air density, v is the quadrotor’s speed, Cd is the drag force coefficient,

A is an efficient drag area, St is the planar area from top view, Ss is the planar area

from side, α is the angle of attack. For small α, we can neglect the St term. Also, we

can treat α as the pitch angle φ. The acceleration along the x-axis with drag term

can be expressed as follows:

ẍ =
T

m

(
− c(φ)s(θ)c(ψ)− s(φ)s(ψ)

)
− 1

2m
ρCdv

2Ssc(θ) (6.29)

Linearizing the nonlinear translational quadrotor dynamics in forward flight where

116

θo = −30°, φo = ψo = 0°, To = mg
cos(θo)

, yields the following linear model:

ẋp1 = Ap1xp1 +Bp1up1

yp1 = Cp1xp1

up1 =

[
θ φ T r

]T
xp1 =

[
x y z ẋ ẏ ż ψ

]T
yp1 =

[
x y z ψ

]T
(6.30)

Ap1 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 −0.0078 0 0 0

0 0 0 0 0 0 5.6638

0 0 0 0 0 0 0

0 0 0 0 0 0 0



,

Bp1 =



0 0 0 0

0 0 0 0

0 0 0 0

−9.8233 0 0.7508 0

0 11.3276 0 0

5.6638 0 1.3003 0

0 0 0 1.1547


Cp1 =

 I3×3 03×3 0

01×3 01×3 1



(6.31)

117

by performing coordinate transformation

u = Suup1

x = Sxxp1

y = Syyp1

(6.32)

where

Su =



180
π

0 0 0

0 180
π

0 0

0 0 1 0

0 0 0 180
π


, Sx =

 I6×6 06×1

01×6
180
π

 , Sy =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 180
π


(6.33)

where we end up with the following system

Ap =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 −0.0078 0 0 0

0 0 0 0 0 0 0.0989

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, Bp =



0 0 0 0

0 0 0 0

0 0 0 0

−0.1714 0 0.7508 0

0 0.1977 0 0

0.0989 0 1.3003 0

0 0 0 1.1547


Cp =

 I3×3 03×3 0

01×3 01×3 1



(6.34)

where the eigenvalues/eigenvectors of the Ap matrix is given using MATLAB ’eig(A)’

118

command:

V =



1 0 0 −1.0000 0 0 0

0 1 0 0 −1 0 1

0 0 1 0 0 −1 0

0 0 0 0.0078 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



U =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −0.0078 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(6.35)

where V and U is the eigenvector and eigenvalues matrix, respectively. The sys-

tem is both fully controllable and fully observable. Also, the system has no finite

119

transmission zeros where the system transfer function matrix is as follows

P (s) = Cp(sI − Ap)−1Bp

=



−
[
Cdρ(−Sssin(θ))vx

2
+
Tcos(θ)
m

]
s
(
s+Cdρvx(Sscos(θ))

) 0 −sin(θ)
ms
(
s+Cdρvx(Sscos(θ))

) 0

0 T
ms2

0 −Tsin(θ)
ms3cos(θ)

−Tsin(θ)
ms2

0 cos(θ)
ms2

0

0 0 0 1
scos(θ)



=



−0.1715
s(s+0.0077)

0 0.7508
s(s+0.0077)

0

0 0.1977
s2

0 0.11414
s3

0.09885
s2

0 1.3003
s2

0

0 0 0 1.1547
s



(6.36)

where off-diagonal elements are nonzero, which implies that inputs are cross-coupled

to the outputs, furthermore, we can observe that as the quadrotor’s speed increases

the poles of P1,1 and P1,2 move more to the left half plane and as pitch angle θ goes

from 0° → −90° the off-diagonal elements’ magnitude goes up. In other words, the

coupling between the inputs and outputs increases. To get a decoupled system (zero

off-diagonal), we need θ to be close to zero, i.e., the attitude angles need to be small.

System Analysis at Low Frequencies. Performing singular value decomposition

120

(SVD) at wo = 0.01rad/s yields P = USV H

U =

[
u1 u2 u3 u4

]
=



0 0.3047 0.9525 0

1 0 0 −0.0010

0 0.9525 −0.3047 0

0.0010 0 0 1



S = diag(σ1, σ2, σ3, σ4) =



114160 0 0 0

0 13690 0 0

0 0 1220 0

0 0 0 2



V =

[
v1 v2 v3 v4

]
=



0 0.0474 −0.9989 0

0.0173 0 0 −0.9999

0 0.9989 0.0474 0

0.9999 0 0 0.0173



(6.37)

From this svd, we have the following:

� maximum singular value of 114160 is associated with the vehicle’s y position

(u1 = [0 1 0 0.001]T), and the vehicle’s input r (v1 = [0 0.0173 0 0.9999]).

� minimum singular value of 2 is associated with vehicle’s yaw angle ψ (u4 =

[0 − 0.001 0 1]T), and the vehicle’s input φ (v4 = [0 − 0.9999 0 0.0173]).

From the above, we can see that P (j0.01)v = USV Hv =
∑4

i=1 σiuiv
H
i . Since the

second component of u1 is much larger than the other and the fourth component of

v1 is much larger than the other, it follows that the singular value σ1 = 114160 is

primarily associated with r and y. Also, the third component of u2 is much larger

than the other and the third component of v2 is much larger than the other, it follows

that the singular value σ2 = 13690 is primarily associated with T and z. The first

121

component of u3 is much larger than the other and the first component of v3 is

much larger than the other, it follows that the singular value σ3 = 1220 is primarily

associated with θ and x. The fourth component of u4 is much larger than the other

and the second component of v3 is much larger than the other, it follows that the

singular value σ4 = 2 is primarily associated with φ and ψ. In other words, we can

say that it is easier to turn in the y-axis position using r control input than to yaw

at an angle with using φ control input.

System Analysis at Different Frequencies. We perform the singular value de-

composition (SVD) at a particular frequencies of interest. Starting with frequency

ω = 0.078 rad/s where we see two singular values approximately match at that fre-

quency. From SVD, at ω = 0.078 rad/s both singular values σ1 and σ2 are almost

equal to each other. Also, at ω = 0.8 rad/s both singular values σ3 and σ4 are almost

equal to each other. Similarly, both singular values σ1 and σ2 match each other at

ω = 1.32 rad/s. Singular Values.

10-4 10-3 10-2 10-1 100 101

Frequency (rad/sec)

-100

-50

0

50

100

150

200

250

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)

Outputs: x, y, z (m), (rad); Inputs: , (rad), T (N), r (rad/s)

Figure 6.4: Quadrotor Singular Values for Forward Flight

122

6.3 LQ Servo Design

From now on, we will consider the decoupled model where the angles near zero

(near hover) without the coordinate transformation. The reason is that our attitude

system was designed in units of radians; therefore, we need to design the position

control in the same units as well. From [30], the objective is to design a full state

feedback control law where u = −Gx. The goal is to obtain stabilizing G′s, i.e.

Reλi(A−BG) < 0. The approach is to optimize a quadratic ”cost functional”

min
u
J(u)

def
=

1

2

∫ ∞
0

(xTQx+ uTRu)dτ

subject to ẋ = Ax+Bu

x(0) = x0

(6.38)

where Q = QT ≥ 0 ∈ Rnxn is the state weighting matrix, R = RT > 0 ∈ Rmxm is the

control weighting matrix.

LQ Servo Design 1. The plant P was augmented with an integrator in each channel

to guarantee a zero steady-state error to step reference commands as follows

A =

 Ap 07×4

Cp 04×4

 , B =

 Bp

04×4

 , C =

[
Cp 04×4

]
(6.39)

where the state of the system x = [xp xi]
T . The solution of the optimization problem

is as follows

u = −Gx (6.40)

G = R−1BTK (6.41)

where K is the unique symmetric (K = KT) at least positive semi-definite (K ≥ 0)

of the Control Algebriac Riccati Equation (CARE)

0 = KA+ ATK +MTM −KBR−1BTK (6.42)

123

where

Q = diag(10, 10, 10, 10, 10, 10, 1, 100, 100, 100, 1), R = ρI4×4, ρ = 0.1 (6.43)

Gy =



−40.0977 0.0000 0.0000 −0.0000

0.0000 40.0977 0.0000 0.0000

−0.0000 0.0000 29.0671 0.0000

0.0000 −0.0000 0.0000 4.0404



Gi =



−31.6228 −0.0000 0.0000 −0.0000

−0.0000 31.6228 −0.0000 0.0000

−0.0000 0.0000 31.6228 −0.0000

0.0000 0.0000 0.0000 3.1623



Gr =



−23.8408 0.0000 0.0000

−0.0000 23.8408 −0.0000

−0.0000 −0.0000 11.7778

0.0000 0.0000 0.0000



(6.44)

From [12, 30], the following closed loop LQ servo block diagram is shown below

124

r

−
e

I
s

xI
Gi

Gy

u
Bp

ẋp I
s

xp

Ap

Cp

ŷ

Cr

xr
Gr

−

Figure 6.5: LQ Servo with Dynamic Augmentation Block Diagram - LQ Servo Design

1

From the block diagram, we can obtain the state-space representation for the

open-loop at the error signal e or the plant output y as follows

Aol =

 Ap −BpGrCr BpGi

04×7 04×4

 , Bol =

 BpGy

I4×4

 , Col =

[
Cp 04×4

]
, Dol = 04×4(6.45)

where the state of the system x = [xp xi] and the input to the system is the error

signal e = r − y. From that, we can obtain the closed loop system as follows

Acl = Aol −BolCol Bcl = Bol Ccl = Col Dcl = Dol (6.46)

The closed loop poles are shown in Table 6.1.

125

Poles Damping Frequency (rad/sec)

-1.06e+00 1.00e+00 1.06e+00

-1.04e+00 + 1.27e+00i 6.32e-01 1.64e+00

-1.04e+00 - 1.27e+00i 6.32e-01 1.64e+00

-1.04e+00 + 1.27e+00i 6.32e-01 1.64e+00

-1.04e+00 - 1.27e+00i 6.32e-01 1.64e+00

-1.35e+00 + 1.16e+00i 7.59e-01 1.78e+00

-1.35e+00 - 1.16e+00i 7.59e-01 1.78e+00

-2.00e+00 1.00e+00 2.00e+00

-2.00e+00 1.00e+00 2.00e+00

-2.98e+00 1.00e+00 2.98e+00

-1.50e+01 1.00e+00 1.50e+01

Table 6.1: Closed Loop Poles - LQ Servo Design 1

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-150

-100

-50

0

50

100

150

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)

Open Loop Singular Values: Error Signal

Figure 6.6: Quadrotor Open Loop Singular Values at Error: (Blue) No Drag (Red)

with Drag - LQ Servo Design 1

126

Open Loop Frequency Response at Error. By breaking the loop at the error

signal, we get the open loop transfer function matrix Le. As shown in Figure 6.6, at

low frequencies, we have a slope of at least −20dB/dec for all singular values due to

an integral action in each control channel. The plot shows that reference commands

r below 0.38 rad/s will be followed within 10% steady-state error. Similarly, output

disturbances do below 0.38 rad/s will be attenuated by 20dB (0.1). In addition to

sensor noise n with frequencies above 40 rad/s will be attenuated by 20dB (0.1).

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-50

0

50

100

150

200

250

S
in

g
u

la
r

V
a

lu
e

s
 (

d
B

)

Open Loop Singular Values: Plant Input

Figure 6.7: Quadrotor Open Loop Singular Values at Input: (Blue) No Drag (Red)

with Drag - LQ Servo Design 1

Open Loop Frequency Response at Plant Input. By breaking the loop at the

plant input, we get the open loop transfer function matrix Lu. As shown in Figure

6.7, the input disturbances di below 0.6 rad/s will be attenuated by 20dB. In other

words, the input signal u will have a disturbance of 10% of the magnitude of di.

127

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-140

-120

-100

-80

-60

-40

-20

0

20

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Sensitivity: Error Signal

Figure 6.8: Quadrotor Sensitivity Frequency Response at Error: (Blue) No Drag

(Red) with Drag - LQ Servo Design 1

Sensitivity Frequency Response at Error. The sensitivity frequency response

plot suggests that reference commands below 0.3 rad/s will be followed within 10%

steady-state error. Also, output disturbances do below 0.3 rad/s will be attenuated

by 20dB. A bump at 2 rad/s with a magnitude of 3.3dB is shown in the plot, which

will result in an overshoot in step reference commands.

128

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-250

-200

-150

-100

-50

0

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Sensitivity: Plant Input

Figure 6.9: Quadrotor Sensitivity Frequency Response at Input: (Blue) No Drag

(Red) with Drag - LQ Servo Design 1

Sensitivity Frequency Response at Input. The sensitivity transfer function Su,

which shows the impact of the input disturbance di on the input signal u. From the

plot, we see that di will be attenuated by 20dB for frequencies below 0.6 rad/s.

129

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-120

-100

-80

-60

-40

-20

0

20

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Complementary Sensitivity: Plant Output

Figure 6.10: Quadrotor Complementary Sensitivity Frequency Response at Output:

(Blue) No Drag (Red) with Drag - LQ Servo Design 1

Complementary Sensitivity Frequency Response at Output. The singular

values of the complementary sensitivity at the output Te suggest that noise n for

frequencies above 40 rad/s will be attenuated by 20dB. Also, a peak of 3.6dB is

present at ω ≈ 1.2 rad/s, which suggests an overshoot to step reference commands.

130

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-50

-40

-30

-20

-10

0

10

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Complementary Sensitivity: Plant Input

Figure 6.11: Quadrotor Complementary Sensitivity Frequency Response at Input:

(Blue) No Drag (Red) with Drag - LQ Servo Design 1

LQ Servo Design: Time Domain Analysis. Step reference commands were

applied for each output y to obtain the closed loop system step response.

131

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [1 0 0 0] Command

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-50

0

50

C
o
n

tr
o

ls
Input Response To r = [1 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.12: Step Response for Reference Command r = [1 0 0 0]t - LQ Servo Design

1

For Figure,

� The output response has an overshoot of 41%, rise time of 0.89s, settling time

of 6.9s.

� The control response is not aggressive where the angle goes from approximately

−45° to 45°.

132

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 1 0 0] Command

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-50

0

50

P
it
c
h

,
R

o
ll

(d
e
g

),
 T

h
ru

s
t
(N

),
 Y

a
w

 (
d
e
g

/s
)

Input Response To r = [0 1 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.13: Step Response for Reference Command r = [0 1 0 0]t - LQ Servo Design

1

For Figure,

� The output response has an overshoot of 41%, rise time of 0.89s, settling time

of 6.9s.

� The control response is not aggressive where the angle goes from approximately

−45° to 45°.

133

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 0 1 0] Command

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-40

-20

0

20

40

P
it
c
h

,
R

o
ll

(d
e
g

),
 T

h
ru

s
t
(N

),
 Y

a
w

 (
d
e
g

/s
)

Input Response To r = [0 0 1 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.14: Step Response for Reference Command r = [0 0 1 0]t - LQ Servo Design

1

For Figure,

� The output response has an overshoot of 29%, rise time of 0.49s, settling time

of 2.98s.

� The control response is too aggressive where thrust reaches a magnitude of 20N

from the equilibrium.

134

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 0 0 1] Command

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-2

0

2

4

6
P

it
c
h

,
R

o
ll

(d
e
g

),
 T

h
ru

s
t
(N

),
 Y

a
w

 (
d
e
g

/s
)

Input Response To r = [0 0 0 1] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.15: Step Response for Reference Command r = [0 0 0 1]t - LQ Servo Design

1

For Figure,

� The output response has an overshoot of 16.3%, rise time of 0.78s, settling time

of 5.1s.

� The control response is not aggressive where the yaw angular rate goes from

approximately 4°/s to −1°/s.

LQ Servo Design 2. The plant P was augmented with an integrator in each channel

to guarantee a zero steady-state error to step reference commands as follows

A =

 Ap 07×4

Cp 04×4

 , B =

 Bp

04×4

 , C =

[
I7×7

]
(6.47)

where the state of the system x = [xp xi]
T . The solution of the optimization problem

is as follows

u = −Gx (6.48)

135

G = R−1BTK (6.49)

where K is the unique symmetric (K = KT) at least positive semi-definite (K ≥ 0)

of the Control Algebriac Riccati Equation (CARE)

0 = KA+ ATK +MTM −KBR−1BTK (6.50)

where

Q = diag(10, 10, 10, 10, 10, 10, 100, 100, 100, 100, 1), R = ρI4×4, ρ = 0.2 (6.51)

Gy =



−30.9362 0.0000 0.0000 −20.2822 0.0000 0.0000 0.0000

0.0000 30.9362 0.0000 0.0000 20.2822 0.0000 0.0000

−0.0000 0.0000 1.0713 0.0000 0.0000 8.8378 0.0000

0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000 22.4605



Gi =



−22.3607 0.0000 0.0000 0.0000

0.0000 22.3607 0.0000 0.0000

0.0000 0.0000 22.3607 0.0000

0.0000 0.0000 0.0000 2.2361



(6.52)

From [12, 30], the following closed loop LQ servo block diagram is shown below

136

r

−
e

Cr
I
s

xI
Gi

Gy

u
Bp

ẋp I
s

xp

Ap

Cp

ŷ

Figure 6.16: LQ Servo with Dynamic Augmentation Block Diagram - LQ Servo Design

2

From the block diagram, we can obtain the state-space representation for the

open-loop at the error signal e or the plant output y as follows

Aol =

 Ap BpGi

04×7 04×4

 , Bol =

 BpGy

Cr

 , Col =

[
Cp 04×4

]
, Dol = 07×7 (6.53)

where the state of the system x = [xp xi] and the input to the system is the error

signal e = r − y. From that, we can obtain the closed loop system as follows

Acl =

 Ap −BpGyCp BpGi

−CrCp 04×4

 , Bcl =

 BpGy

Cr

 , Ccl =

[
Cp 04×4

]
, Dcl = 07×7(6.54)

where the closed loop poles are shown in Table 6.2.

137

Poles Damping Frequency (rad/sec)

-1.00e-01 1.00e+00 1.00e-01

-8.99e-01 + 1.22e+00i 5.95e-01 1.51e+00

-8.99e-01 - 1.22e+00i 5.95e-01 1.51e+00

-8.99e-01 + 1.22e+00i 5.95e-01 1.51e+00

-8.99e-01 - 1.22e+00i 5.95e-01 1.51e+00

-1.67e+00 1.00e+00 1.67e+00

-1.67e+00 1.00e+00 1.67e+00

-1.35e+00 + 1.17e+00i 7.56e-01 1.78e+00

-1.35e+00 - 1.17e+00i 7.56e-01 1.78e+00

-1.06e+01 1.00e+00 1.06e+01

-2.24e+01 1.00e+00 2.24e+01

Table 6.2: Closed Loop Poles - LQ Servo Design 2

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-100

-50

0

50

100

150

200

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Open Loop Singular Values: Plant Input

Figure 6.17: Quadrotor Open Loop Singular Values at Error - LQ Servo Design 2

138

Open Loop Frequency Response at Error. By breaking the loop at the error

signal we get the open loop transfer function matrix Le. As shown in Figure 6.17,

at low frequencies we have a slope of at least −20dB/dec for all singular values

due to an integral action in each control channel. The plot shows that reference

commands r below 1.0 rad/s will be followed within 10% steady-state error. Also,

output disturbances do below 1.0 rad/s will be attenuated by 20dB (0.1). In addition

to sensor noise n with frequencies above 345 rad/s will be attenuated by 20dB (0.1).

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-50

0

50

100

150

200

250

S
in

g
u

la
r

V
a

lu
e

s
 (

d
B

)

Open Loop Singular Values: Plant Input

Figure 6.18: Quadrotor Open Loop Singular Values at Input - LQ Servo Design 2

Open Loop Frequency Response at Plant Input. By breaking the loop at the

plant input, we get the open loop transfer function matrix Lu. As shown in Figure

6.18, the input disturbances di below 0.7 rad/s will be attenuated by 20dB. In other

words, the input signal u will have a disturbance of 10% of the magnitude of di.

139

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-250

-200

-150

-100

-50

0

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Sensitivity: Plant Input

X: 0.7385

Y: -19.96

Figure 6.19: Quadrotor Sensitivity Frequency Response at Input - LQ Servo Design

2

Sensitivity Frequency Response at Input. The sensitivity transfer function Su,

which shows the impact of the input disturbance di on the input signal u. From the

plot, we see that di will be attenuated by 20dB for frequencies below 0.7 rad/s.

140

10-3 10-2 10-1 100 101 102 103

Frequency (rad/sec)

-50

-40

-30

-20

-10

0

10

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

LQ Complementary Sensitivity: Plant Input

Figure 6.20: Quadrotor Complementary Sensitivity Frequency Response at Input -

LQ Servo Design 2

LQ Servo Design: Time Domain Analysis. Step reference commands were

applied for each output y to obtain the closed loop system step response.

141

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [1 0 0 0 0 0 0] Command

x

y

z

vx

vy

vz

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-40

-20

0

20

40

C
o
n

tr
o

ls
Input Response To r = [1 0 0 0 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.21: Step Response for Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo

Design 2

For Figure,

� The output response has an overshoot of 38%, rise time of 0.69s, settling time

of 5.3s.

� The control response is not aggressive where the angle goes from approximately

−30° to 30°.

142

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 1 0 0 0 0 0] Command

x

y

z

vx

vy

vz

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-40

-20

0

20

40

C
o
n

tr
o

ls
Input Response To r = [0 1 0 0 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.22: Step Response for Reference Command r = [0 1 0 0 0 0 0]t - LQ Servo

Design 2

For Figure,

� The output response has an overshoot of 38%, rise time of 0.69s, settling time

of 5.3s.

� The control response is not aggressive where the angle goes from approximately

−30° to 30°.

143

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-1

0

1

2

3

O
u

tp
u
ts

Output Response To r = [0 0 1 0 0 0 0] Command

x

y

z

vx

vy

vz

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-20

0

20

40

C
o
n

tr
o

ls
Input Response To r = [0 0 1 0 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.23: Step Response for Reference Command r = [0 0 1 0 0 0 0]t - LQ Servo

Design 2

For Figure,

� The output response has an overshoot of 23%, rise time of 0.44s, settling time

of 2.88s.

� The control response is too aggressive where thrust reaches a magnitude of 20N

from the equilibrium.

144

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 0 0 0 0 0 1] Command

x

y

z

vx

vy

vz

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-10

0

10

20

30

C
o
n

tr
o

ls
Input Response To r = [0 0 0 0 0 0 1] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.24: Step Response for Reference Command r = [0 0 0 0 0 0 1]t - LQ Servo

Design 2

For Figure,

� The output response has an overshoot of 0.42%, rise time of 0.09s, settling time

of 0.16s.

� The control response no too aggressive where the yaw angular rate goes from

approximately 20°/s to −20°/s.

145

6.4 Weighted H∞ Sensitivity Optimization

From [30, 36], we want to design a K controller for the plant P = [Ap, Bp, Cp, Dp]

such that the closed-loop systems exhibit the following: (1) stable closed loop sys-

tem, (2) good low frequency reference command following, (3) good low frequency

disturbance attenuation, (4) good high frequency noise attenuation/rejection, (5) ro-

bustness with high frequency unmodeled dynamics. Therefore, the Weighted H∞

control how large the real ”peaks” are by using stable weighting functions to shape

the closed loop functions that we care about. The following are the closed loop

functions that we care about:

Tre = S =
1

1 + PK
, Tru = KS =

K

1 + PK
, Try = T =

PK

1 + PK
(6.55)

where the problem is to find a stabilizing K such that

K = arg

 min
K stabilizing

γ

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥


W1S

W2KS

W3T


∥∥∥∥∥∥∥∥∥∥
H∞

< γ

 (6.56)

where W1, W2, and W3 are the weighting matrices and γ is a parameter to be

minimized. In general, W1 needs to be large at low-frequencies and small at high-

frequencies such that when we take W−1
1 , it shapes the desired S that we want to

achieve. On the other hand, W2 often selected to be a large constant so that we are

lowering the bandwidth of the system, i.e., low control action. Finally, W3 generally

chosen to be small at low-frequencies and large at high-frequency so that Try looks

large at low-frequencies and small at high-frequencies which what we desire.

Weighted Transfer Functions: Design 1. The weights were selected by following

the guides in [30].

� For the sensitivity weighting, ωb1 , ωb2 , ωb3 was selected to be a decade below

146

input dynamics (15 rad/s) which equals to 0.15. ωb4 was chosen to be 15 rad/s

in order to have a faster response in yaw.

� For the control sensitivity weighting, initially, constant values were selected Mu.

By decreasing Mu, more control action will be applied.

� For the complementary sensitivity, ωbc1 , ωbc2 , ωbc3 were selected initially to to be

15 rad/s, a decade above the desired closed loop bandwidth of 1.5 rad/s. Then

increased to have more closed loop bandwidth. Similarly, ωbc4 was selected to

be 150 rad/s, one decade above the desired closed loop bandwidth of 153 rad/s.

W1 =



s/Ms1+ωb1
s+εωb1

0 0 0

0
s/Ms2+ωb2
s+εωb2

0 0

0 0
s/Ms3+ωb3
s+εωb3

0

0 0 0
s/Ms4+ωb4
s+εωb4



W2 =



Mu1 0 0 0

0 Mu2 0 0

0 0 Mu3 0

0 0 0 Mu4



W3 =



s+ωbc1/My1

εs+ωbc1
0 0 0

0
s+ωbc2/My2

εs+ωbc2
0 0

0 0
s+ωbc3/My3

εs+ωbc3
0

0 0 0
s+ωbc4/My4

εs+ωbc4



(6.57)

147

Weight (W) Figure (Approx. W−1) Parameters of M and ω

W1(s) = s/Ms+ωb
s+εωb

ω

ε

Ms

εωb

Msωb

Ms1 = 10, Ms2 = 10,

Ms3 = 10, Ms4 = 10

ωb1 = 0.15, ωb2 = 0.15,

ωb3 = 0.15, ωb4 = 15

W2(s) = Mu

ω

Mu
Mu1 = 10, Mu2 = 10,

Mu3 = 0.01, Mu4 = 10

W3(s) = s+ωbc/My

εs+ωbc
ω

My

ε

ωbc
My

ωbc
ε

My1 = 10, My2 = 10,

My3 = 10, My4 = 10

ωbc1 = 30, ωbc2 = 30,

ωbc3 = 30, ωbc4 = 150

Table 6.3: Weighting Transfer Functions and Parameters - H∞ Design 1

where ε = 0.001 and the closed loop poles are as follows:

148

Poles Damping Frequency (rad/s)

-1.00e+00 + 1.00e-06i 1.00e+00 1.00e+00

-1.00e+00 - 1.00e-06i 1.00e+00 1.00e+00

-1.41e+00 1.00e+00 1.41e+00

-1.41e+00 1.00e+00 1.41e+00

-1.98e+00 1.00e+00 1.98e+00

-2.00e+00 + 2.31e-03i 1.00e+00 2.00e+00

-2.00e+00 - 2.31e-03i 1.00e+00 2.00e+00

-2.00e+00 1.00e+00 2.00e+00

-2.00e+00 + 1.04e-03i 1.00e+00 2.00e+00

-2.00e+00 - 1.04e-03i 1.00e+00 2.00e+00

-2.02e+00 1.00e+00 2.02e+00

-2.10e+00 1.00e+00 2.10e+00

-2.00e+00 + 7.05e-01i 9.43e-01 2.12e+00

-2.00e+00 - 7.05e-01i 9.43e-01 2.12e+00

-5.09e+00 + 1.95e+00i 9.34e-01 5.45e+00

-5.09e+00 - 1.95e+00i 9.34e-01 5.45e+00

-3.00e+04 1.00e+00 3.00e+04

-3.00e+04 1.00e+00 3.00e+04

-3.00e+04 1.00e+00 3.00e+04

-1.50e+05 1.00e+00 1.50e+05

-1.08e+07 1.00e+00 1.08e+07

-1.08e+07 1.00e+00 1.08e+07

Table 6.4: Closed Loop Poles for To - H∞ Design 1

Weighted Transfer Functions: Design 2. For the second design, the same pro-

149

cedures applied in the first design were used here except for the control sensitivity

weighting W2. Because the first design does not ’request’ a roll-off for the controller,

a first-order transfer function matrix was designed.

� ωbu1 , ωbu2 , ωbu3 , ωbu4 were selected to be approximately one decades above the

control input dynamics.

� Mu1 ,Mu2 ,Mu4 were selected to be 0.001 to have a decent control action while

Mu3 was selected to be larger to have more control action in thrust control T .

W1 =



s/Ms1+ωb1
s+εωb1

0 0 0

0
s/Ms2+ωb2
s+εωb2

0 0

0 0
s/Ms3+ωb3
s+εωb3

0

0 0 0
s/Ms4+ωb4
s+εωb4



W2 =



s+ωbu1Mu1

εs+ωbu1
0 0 0

0
s+ωbu2Mu2

εs+ωbu2
0 0

0 0
s+ωbu3Mu3

εs+ωbu3
0

0 0 0
s+ωbu4Mu4

εs+ωbu4



W3 =



s+ωbc1/My1

εs+ωbc1
0 0 0

0
s+ωbc2/My2

εs+ωbc2
0 0

0 0
s+ωbc3/My3

εs+ωbc3
0

0 0 0
s+ωbc4/My4

εs+ωbc4



(6.58)

150

Weight (W) Figure (Approx. W−1) Parameters of M and ω

W1(s) = s/Ms+ωb
s+εωb

ω

ε

Ms

εωb

Msωb

Ms1 = 10, Ms2 = 10,

Ms3 = 10, Ms4 = 10

ωb1 = 0.15, ωb2 = 0.15,

ωb3 = 0.15, ωb4 = 15

W2(s) = s+ωbuMu

εs+ωbu
ω

Mu

ε

ωbu
Mu

ωbu
ε

Mu1 = 0.001, Mu2 = 0.001,

Mu3 = 0.01, Mu4 = 0.001

ωbu1 = 150, ωbu2 = 150,

ωbu3 = 150, ωbu4 = 150

W3(s) = s+ωbc/My

εs+ωbc
ω

My

ε

ωbc
My

ωbc
ε

My1 = 10, My2 = 10,

My3 = 10, My4 = 10

ωbc1 = 30, ωbc2 = 30,

ωbc3 = 30, ωbc4 = 150

Table 6.5: Weighting Transfer Functions and Parameters - H∞ Design 2

where ε = 0.001 and the closed loop poles are as follows:

151

Poles Damping Frequency (rad/s)

-1.66e+00 + 3.20e-01i 9.82e-01 1.69e+00

-1.66e+00 - 3.20e-01i 9.82e-01 1.69e+00

-1.66e+00 + 3.20e-01i 9.82e-01 1.69e+00

-1.66e+00 - 3.20e-01i 9.82e-01 1.69e+00

-1.74e+00 + 2.87e-01i 9.87e-01 1.77e+00

-1.74e+00 - 2.87e-01i 9.87e-01 1.77e+00

-2.00e+00 1.00e+00 2.00e+00

-1.89e+00 + 1.14e+00i 8.56e-01 2.21e+00

-1.89e+00 - 1.14e+00i 8.56e-01 2.21e+00

-1.89e+00 + 1.14e+00i 8.56e-01 2.21e+00

-1.89e+00 - 1.14e+00i 8.56e-01 2.21e+00

-2.55e+00 1.00e+00 2.55e+00

-2.55e+00 1.00e+00 2.55e+00

-2.79e+00 1.00e+00 2.79e+00

-2.99e+00 + 2.63e+00i 7.51e-01 3.98e+00

-2.99e+00 - 2.63e+00i 7.51e-01 3.98e+00

-4.24e+00 1.00e+00 4.24e+00

-1.24e+01 + 1.02e+01i 7.72e-01 1.60e+01

-1.24e+01 - 1.02e+01i 7.72e-01 1.60e+01

-6.17e+01 1.00e+00 6.17e+01

-5.12e+02 1.00e+00 5.12e+02

-5.12e+02 1.00e+00 5.12e+02

-3.00e+04 1.00e+00 3.00e+04

-3.00e+04 1.00e+00 3.00e+04

-3.00e+04 1.00e+00 3.00e+04

-1.50e+05 1.00e+00 1.50e+05

Table 6.6: Closed Loop Poles for To - H∞ Design 2152

Bilinear Transformation. A bilinear transformation was performed in order to

move the poles at the origin to the right half plane (RHP) by p1 = −1 and p2 = −1020.

p1 was chosen to be −1 which is approximately a decade below the attitude inner-loop

bandwidth (15 rad/s). By increasing the magnitude of p1, i.e., more negative, the

bandwidth of the system increases and as a result, more control action is needed as

well.

10-2 100 102 104 106 108
-250

-200

-150

-100

-50

0

50
Compensator Singular Values

Frequency (rad/s)

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Figure 6.25: Compensator Singular Values: (Blue) for Design 1 (Red) for Design 2

Compensator Singular Values. The compensator singular values are constant at

low frequencies (say 0.3 rad/s), and this is due to the bilinear transformation shifting

the integral behavior ’requested’ from W1. The minimum singular value is 0.6dB for

Design 2, which is very low compared to 5dB for Design 1. By performing an SVD

for K for Design 1 at 0.01 rad/s, we see that singular values σ3 and σ4 are close to

153

each other and associated with T → z and r → ψ, respectively.

U =



−0.9999 0.0120 0.0000 0.0000

−0.0120 −0.9999 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 −1.0000



S =



6.2056 0 0 0

0 6.2056 0 0

0 0 1.8791 0

0 0 0 1.7741



V =



0.9999 −0.0120 0.0000 0.0000

−0.0120 −0.9999 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 −1.0000



(6.59)

Similarly, for Design 2, the minimum singular value is associated with T → z. That

will result in a steady state error to reference commands for z and ψ for Design 1,

and z in Design 2. In Design 1, the maximum singular value does not roll off at

high frequencies, which in result does not attenuate high-frequency noise n in e. This

is due to the absence of roll off ’request’ in W2 weighting transfer function matrix.

This is not the case in Design 2, where the weighting transfer function matrix W2

requested a roll off in the compensator singular values.

154

10-3 10-2 10-1 100 101 102 103
-200

-150

-100

-50

0

50

100

150
Open Loop Singular Values: Error Signal

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.26: Open Loop Singular Values at Plant Output - H∞ Design

Open Loop Singular Values at Plant Output. By breaking the loop at the

plant output y or the error signal e, we obtain the transfer function matrix Lo. As

shown in the plot, at low frequencies, reference commands r will be followed within

a 10% steady state error below 0.17 rad/s. Similarly, output disturbances do will be

attenuated by 20dB (0.1) below 0.17 rad/s. Also, sensor noise n with frequencies

above 11.9 rad/s will be attenuated by 20dB as well. In Design 2, reference com-

mands with frequency content below 0.3 rad/s will be followed within a 10% steady

state error. Similarly, output disturbances do below 0.3 rad/s will be attenuated by

20dB. However, sensor noise n with frequencies above 40 rad/s will be attenuated by

20dB. Therefore, Design 2 provides better reference command following and output

disturbance attenuation while Design 1 provides better sensor noise attenuation.

155

10-3 10-2 10-1 100 101 102 103
-200

-150

-100

-50

0

50

100

150
Open Loop Singular Values: Plant Input

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.27: Open Loop Singular Values at Plant Input - H∞ Design

Open Loop Singular Values at Plant Input. By breaking the loop at the plant

input u we obtain the transfer function matrix Li. The plot shows that input distur-

bances di will be attenuated by 20dB for frequencies below 0.17 rad/s. In Design 2,

the input disturbances di below 0.3 rad/s will be attenuated by 20dB.

156

10-3 10-2 10-1 100 101 102 103
-140

-120

-100

-80

-60

-40

-20

0

20
Sensitivity: Error Signal

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.28: Sensitivity Singular Values at Plant Output - H∞ Design

Sensitivity Singular Values at Plant Output. The plot shows that reference

commands r will be followed within a 10% steady state error for frequencies below 0.17

rad/s. Similarly, output disturbances do will be attenuated by 20dB for frequencies

below 0.17 rad/s. Also, the plot shows a peak of 4dB at 4 rad/s, which is acceptable.

In Design 2, reference commands with frequency content below 0.3 rad/s will be

followed within a 10% steady state error. Similarly, output disturbances do below 0.3

rad/s will be attenuated by 20dB. However, Design 2 has a trade-off between better

reference commands following and output disturbance attenuation, and a higher bump

in the sensitivity of 6dB.

157

10-3 10-2 10-1 100 101 102 103
-140

-120

-100

-80

-60

-40

-20

0

20
Sensitivity: Plant Input

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.29: Sensitivity Singular Values at Plant Input - H∞ Design

Sensitivity Singular Values at Plant Input. The plot shows that input distur-

bances di with frequencies below 0.17 rad/s will be attenuated by 20dB. In Design 2,

input disturbances di with frequencies below 0.3 rad/s will be attenuated by 20dB.

However, a peak of 6dB around 3 rad/s is present in Design 2, which is a tradeoff

between bandwidth and peak in the sensitivity.

158

10-3 10-2 10-1 100 101 102 103
-200

-150

-100

-50

0

50
Complementary Sensitivity: Plant Output

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.30: Complementary Sensitivity Singular Values at Plant Output -H∞ Design

Complementary Sensitivity Singular Values at Plant Output. The plot shows

that low-frequency reference commands will be followed. The So present a better

interpretation for reference commands following. Design 1 crosses −3dB point at 2.2

rad/s while Design 2 at 3.3 rad/s. In other words, Design 2 has more closed loop

bandwidth. However, Design 2 has a larger bump of 4.6dB where Design 1 has 3.3dB

at the same frequency of 1.8 rad/s/. Both bumps start to grow around 0.8 rad/s due

to compensator zeros. A prefilter can be used to reduce excessive overshoot in y.

159

10-3 10-2 10-1 100 101 102 103
-200

-150

-100

-50

0

50
Complementary Sensitivity: Plant Input

Frequency (rad/sec) (rad/s)

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)
(d

B
)

Figure 6.31: Complementary Sensitivity Singular Values at Plant Input - H∞ Design

Complementary Sensitivity Singular Values at Plant Input. The plot shows

that in both Design 1 and Design 2 input disturbances di for frequencies below 0.3

rad/s will not be attenuated in u, which is not desirable.

Step Response.

160

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [1 0 0 0] Command

x

y

z

psi

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-60

-40

-20

0

20

C
o
n

tr
o

ls
Input Response To r = [1 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Pitch

Roll

Thrust

Yaw Rate

Figure 6.32: Step Response for Reference Command r = [1 0 0 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u

ts

Output Response To r = [1 0 0 0] Command

x

y

z

psi

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-20

0

20

40

60

C
o

n
tr

o
ls

Input Response To r = [0 1 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Pitch

Roll

Thrust

Yaw Rate

Figure 6.33: Step Response for Reference Command r = [0 1 0 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design

161

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0

0.5

1

1.5

2

O
u

tp
u
ts

Output Response To r = [0 0 1 0] Command

x

y

z

psi

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-5

0

5

10

C
o
n

tr
o

ls
Input Response To r = [0 0 1 0] Command

Pitch

Roll

Thrust

Yaw Rate

Pitch

Roll

Thrust

Yaw Rate

Figure 6.34: Step Response for Reference Command r = [0 0 1 0]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u

ts

Output Response To r = [0 0 0 1] Command

x

y

z

psi

x

y

z

psi

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-5

0

5

10

C
o

n
tr

o
ls

Input Response To r = [0 0 0 1] Command

Pitch

Roll

Thrust

Yaw Rate

Pitch

Roll

Thrust

Yaw Rate

Figure 6.35: Step Response for Reference Command r = [0 0 0 1]t: Design 1 (Solid)

and Design 2 (Dotted) - H∞ Design

162

6.5 LQG/LTRO Design for Quadrotor Translational Dynamics

In the beginning, we augment the plant P with integrators in each channel to

form Pd = [A,B,C] to get zero steady-state error to step reference commands. The

singular values for the plant P and design plant Pd are shown below

10-2 10-1 100 101 102

Frequency (rad/sec)

-150

-100

-50

0

50

100

150

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)

Design Plant Singular Values

Figure 6.36: Plant P (Blue) and Design Plant Pd (Red) Singular Values - LQG/LTRO

Design

where

A =

 04×4 04×7

Bp Ap

 , B =

 I4×4

07×4

 , C =

[
04×4 Cp

]
(6.60)

and the state of the system Pd is x = [xi xp]
T where xi is the integrator state and xp

is the plant P state. From [30] we can design the target open loop transfer function

matrix Lo = GKF = C(sI −A)−1H by shaping GFOL (assuming GFOL is large at low

frequencies). Given that, we have the following

Lo(jw) = GKF (jw) ≈ 1
√
µ
GFOL(jw) (6.61)

163

where L matrix is used to shape Lo, and µ is used for increase/decreasing loop band-

width. The L matrix for Design 1 is as follows

L =

 LL

LH


LL =

[
Cp(jωoI − Ap)−1Bp

]−1
LH = CT

p

[
CpC

T
p

]−1
(6.62)

where ωo = 0.01rad/s. The matrix LL match GFOL at low frequencies while LH

matches GFOL at high frequencies. That is, L matrix matches GFOL at all frequen-

cies. This will result in a GFOL with a unity gain crossover frequency where we can

increase/decrease the bandwidth of the closed-loop system by changing the unity gain

crossover by a factor of 1√
µ
. In this case, µ was chosen to be 0.05 to get a unity gain

crossover frequency of approximately 1.5 rad/s (a decade below inner loop dynamics).

In Design 2, L was chosen to be

L = B (6.63)

Solving Θ = µI4× 4 using the Filter Algebraic Riccati Equation (FARE) yields the

following

0 = AΣ + ΣAT + LLT − ΣCTΘ−1CΣ (6.64)

where H is given below

H = ΣCTΘ−1 (6.65)

where target closed loop poles for λi(A−HC) for Design 1 are given in Table:

164

Poles Damping Frequency (rad/s)

-1.00e-04 1.00e+00 1.00e-04

-1.00e-04 1.00e+00 1.00e-04

-1.58e+00 1.00e+00 1.58e+00

-1.31e-08 1.00e+00 1.31e-08

-3.92e-05 1.00e+00 3.92e-05

-1.36e-04 1.00e+00 1.36e-04

-1.00e-04 + 2.37e-09i 1.00e+00 1.00e-04

-1.00e-04 - 2.37e-09i 1.00e+00 1.00e-04

-1.58e+00 1.00e+00 1.58e+00

-1.58e+00 1.00e+00 1.58e+00

-1.58e+00 1.00e+00 1.58e+00

Table 6.7: Target Closed Loop Poles for λi(A−HC) - LQG/LTRO Design

10-2 10-1 100 101 102

Frequency (rad/sec)

-40

-30

-20

-10

0

10

20

30

40

50

S
in

g
u

la
r

V
a
lu

e
s
 (

d
B

)

G
FOL

 Singular Values

Figure 6.37: Quadrotor GFOL Singular Values - LQG/LTRO Design

165

In the target open loop singular values plot, the gain crossover frequency is 1

rad/s as expected. Also, the loop shape looks like an integrator because L matrix

was designed in such a way.

10-2 10-1 100 101 102

Frequency (rad/sec)

-40

-30

-20

-10

0

10

20

30

40

50

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Target Open Loop Singular Values at Output

Figure 6.38: Quadrotor Target Loop GKF Singular Values - LQG/LTRO Design

The target loop GKF singular values plot shows a unity gain crossover at 1.5 rad/s

as expected. Since µ was selected to be 0.4 rad/s and 1√
(0.4)
≈ 1.5.

166

10-2 10-1 100 101 102

Frequency (rad/sec)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Target Sensitivity Singular Values at Output

Figure 6.39: Quadrotor Target Sensitivity SKF Singular Values - LQG/LTRO Design

The target sensitivity follows reference commands r below 0.14 rad/s within 10%

steady state error. Similarly, output disturbances do below 0.14 rad/s are going to be

attenuated by 20dB. Also, we can see that the sensitivity plot has no bump, which

desirable.

167

10-2 10-1 100 101 102

Frequency (rad/sec)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Target Comp Sensitivity Singular Values at Output

Figure 6.40: Quadrotor Target Complementary Sensitivity TKF Singular Values -

LQG/LTRO Design

In the target complementary sensitivity plot, step reference commands r at low

frequencies will be followed. The sensitivity plot shows that more clearly. Sensor

noise n for frequencies above 15 rad/s will be attenuated by 20dB. Also, the plot has

no bump (ζ = 1), which means there is no overshoot in the output response to a step

reference command.

Loop Transfer Recovery at the Output. From [30], we can do Loop Transfer

Recovery at the Output (LTRO), by designing a cheap control (small ρ) that will

recover the target open loop transfer function matrix Lo = GKF as follows

Q = diag(0.1, 0.1, 0.1, 1, 100, 100, 100, 10, 10, 10, 10), R = ρI4×4, ρ = 1× 10−9(6.66)

where closed loop poles for the system is in Table

168

Poles Damping Frequency (rad/s)

-3.16e+04 1.00e+00 3.16e+04

-1.00e+04 1.00e+00 1.00e+04

-1.00e+04 1.00e+00 1.00e+04

-1.00e+04 1.00e+00 1.00e+04

-1.47e+01 1.00e+00 1.47e+01

-3.24e+00 1.00e+00 3.24e+00

-3.16e+00 1.00e+00 3.16e+00

-1.85e+00 + 1.41e+00i 7.97e-01 2.33e+00

-1.85e+00 - 1.41e+00i 7.97e-01 2.33e+00

-1.58e+00 1.00e+00 1.58e+00

-1.85e+00 + 1.41e+00i 7.97e-01 2.33e+00

-1.85e+00 - 1.41e+00i 7.97e-01 2.33e+00

-1.58e+00 1.00e+00 1.58e+00

-1.58e+00 1.00e+00 1.58e+00

-1.58e+00 1.00e+00 1.58e+00

-4.46e-04 1.00e+00 4.46e-04

2.70e-04 -1.00e+00 2.70e-04

-1.02e-04 1.00e+00 1.02e-04

-9.79e-05 1.00e+00 9.79e-05

-1.31e-08 1.00e+00 1.31e-08

-1.00e-04 + 1.90e-05i 9.82e-01 1.02e-04

-1.00e-04 - 1.90e-05i 9.82e-01 1.02e-04

Table 6.8: Closed Loop Poles for λi(A−BG−HC) - LQG/LTRO Design

169

10-8 10-6 10-4 10-2 100 102 104

Frequency (rad/sec)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Compensator Singular Values

Figure 6.41: Compensator Singular Values - LQG/LTRO Design

In the compensator, singular values plot shows very low magnitudes at low fre-

quencies which will lead to large steady-state error in x, y, and z by doing an SVD

at ω = 0.0001 rad/s. The design starts to have an integral action of −20dB/dec

slope below 0.0001 rad/s. At high frequencies, the compensator rolls off to attenuate

high-frequency signals.

170

10-2 10-1 100 101 102

Frequency (rad/sec)

-120

-100

-80

-60

-40

-20

0

20

40

60

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Open Loop Singular Values at Error

Figure 6.42: Open Loop Singular Values at Error - LQG/LTRO Design

Open Loop Singular Values at Plant Output. As shown in the plot, at low

frequencies reference commands r will be followed within a 10% steady state error

below 0.0.1 rad/s. Similarly, output disturbances do will be attenuated by 20dB (0.1)

below 0.1 rad/s. Also, sensor noise n with frequencies above 7 rad/s will be attenuated

by 20dB as well.

171

10-2 10-1 100 101 102

Frequency (rad/sec)

-120

-100

-80

-60

-40

-20

0

20

40

60

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Open Loop Singular Values at Input

Figure 6.43: Open Loop Singular Values at Input - LQG/LTRO Design

Open Loop Singular Values at Plant Input. The plot shows that input distur-

bances di will be attenuated by 20dB for frequencies below 0.1 rad/s.

10-2 10-1 100 101 102

Frequency (rad/sec)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

S
in

g
u

la
r

V
a

lu
e

s
 (

d
B

)

Sensitivity Singular Values at Error

Figure 6.44: Sensitivity Singular Values at Error - LQG/LTRO Design

Sensitivity Singular Values at Plant Output. The plot shows that reference

172

commands r will be followed within a 10% steady state error for frequencies below 0.03

rad/s. Similarly, output disturbances do will be attenuated by 20dB for frequencies

below 0.03 rad/s.

10-2 10-1 100 101 102

Frequency (rad/sec)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Sensitivity Singular Values at Input

Figure 6.45: Sensitivity Singular Values at Input - LQG/LTRO Design

Sensitivity Singular Values at Plant Input. The plot shows that input distur-

bances di with frequencies below 0.03 rad/s will be attenuated by 20dB.

173

10-2 10-1 100 101 102

Frequency (rad/sec)

-120

-100

-80

-60

-40

-20

0

20

S
in

g
u
la

r
V

a
lu

e
s
 (

d
B

)

Complementary Sensitivity Singular Values at Ouput

Figure 6.46: Complementary Sensitivity Singular Values at Output - LQG/LTRO

Design

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u

ts

Output Response To r = [1 0 0 0] Command

x

y

z

psi

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-10

-5

0

5

C
o

n
tr

o
ls

Input Response To r = [1 0 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.47: Step Response for Reference Command r = [1 0 0 0]T - LQG/LTRO

Design

174

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 1 0 0] Command

x

y

z

psi

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-5

0

5

10

C
o
n

tr
o

ls
Input Response To r = [0 1 0 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.48: Step Response for Reference Command r = [0 1 0 0]T - LQG/LTRO

Design

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u

ts

Output Response To r = [0 0 1 0] Command

x

y

z

psi

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

0

0.5

1

1.5

2

C
o

n
tr

o
ls

Input Response To r = [0 0 1 0] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.49: Step Response for Reference Command r = [0 0 1 0]T - LQG/LTRO

Design

175

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

-0.5

0

0.5

1

1.5

O
u

tp
u
ts

Output Response To r = [0 0 0 1] Command

x

y

z

psi

0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

0

0.5

1

1.5

C
o
n

tr
o

ls
Input Response To r = [0 0 0 1] Command

Pitch

Roll

Thrust

Yaw Rate

Figure 6.50: Step Response for Reference Command r = [0 0 0 1]T - LQG/LTRO

Design

6.6 Quadrotor Hardware Demonstrations

All hardware demonstrations are done using the LQR controller Design 2. The 3D

motion data of positions, velocities, and accelerations are obtained from either HTC

Vive Tracking System or OptiTrack Motion Capture System at a rate of 100Hz. Then,

the data are processed and filtered on the ground station as well. Then, the ground

station computes the commanded roll φ, pitch θ, thrust T , and yaw rate r using the

nonlinear mapping. The commands are sent through Xbee modules wirelessly from

the ground station to the quadrotor at a rate of 100Hz. The following outlines the

hardware demonstrations:

1. Position Control at a Setpoint. In this demonstration, a step response of

1 meter in the x-axis is applied while keeping the reference z at 1 meter and

the rest to zero. The OptiTrack mocap is used to demonstrate the following

176

experiment. The reference commands are as follow:

xr = 1 yr = 0 zr = 1

ẋr = 0 ẏr = 0 żr = 0

ẍr = 0 ÿr = 0 z̈r = 0

30 35 40 45 50 55 60 65 70 75 80

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x-
as

ix
 (m

)

Step Response in x-axis

r
x

Simulation

Hardware

30 35 40 45 50 55 60 65 70 75 80

Time (s)

-50

-40

-30

-20

-10

0

10

20

30

40

50

C
on

tro
ls

Input Response To r = [1 0 0 0 0 0 0] Command

Simulation

Hardware

Figure 6.51: Hardware Demonstration for LQ Servo Design: x-axis Step Response

for Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo Design 2

177

30 35 40 45 50 55 60 65 70 75 80

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y-
ax

is
 (m

)

Step Response in y-axis

r
y

Simulation

Hardware

30 35 40 45 50 55 60 65 70 75 80

Time (s)

-50

-40

-30

-20

-10

0

10

20

30

40

50
C

on
tro

ls
Input Response To r = [1 0 0 0 0 0 0] Command

Simulation

Hardware

Figure 6.52: Hardware Demonstration for LQ Servo Design: y-axis Step Response for

Reference Command r = [1 0 0 0 0 0 0]t - LQ Servo Design 2

2. Path Following a Circular Trajectory with ω = 0.2. In this demonstration,

a pre-defined circle trajectory is applied as a trajectory reference command to

the quadrotor to follow. The HTC Vive Tracking System is used to demonstrate

the following experiment. The velocity of the quadrotor v =
√
v2x + v2y + v2z ≈

0.12 m/s. The reference trajectory is as follow:

xr(t) = 0.5sin(0.2t) yr(t) = 0.5cos(0.2t) zr(t) = 1.0

ẋr(t) = 0.5(0.2)cos(0.2t) ẏr(t) = −0.5(0.2)sin(0.2t) żr(t) = 0.0

ẍr(t) = −0.5(0.2)2sin(0.2t) ÿr(t) = −0.5(0.2)2cos(0.2t) z̈r(t) = 0.0

178

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x-asix (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

s
ix

 (
m

)

Circle

reference

output

Figure 6.53: Circular Trajectory with ω = 0.2 - LQ Servo Design 2

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

x
-a

s
ix

 (
m

)

r
x
(t) = 0.5 sin(0.2 t)

r
x

Simulation

Hardware

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

y
-a

x
is

 (
m

)

r
y
(t) = 0.5 cos(0.2 t)

r
y

Simulation

Hardware

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
z
(t) = 1.0

r
z

Simulation

Hardware

Figure 6.54: x, y, z Resulting from rx(t) = 0.5sin(0.2t), ry(t) = 0.5cos(0.2t), rz(t) =

1.0 - LQ Servo Design 2

179

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

x
-a

s
ix

 (
m

)

r
vx

(t) = 0.5 (0.2) cos(0.2 t)

r
vx

Simulation

Hardware

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

y
-a

x
is

 (
m

)

r
vy

(t) = -0.5 (0.2) sin(0.2 t)

r
vy

Simulation

Hardware

20 25 30 35 40 45 50 55

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
vz

(t) = 0.0

r
vz

Simulation

Hardware

Figure 6.55: vx, vy, vz Resulting from rvx(t) = 0.5(0.2)cos(0.2t), rvy(t) =

−0.5(0.2)sin(0.2t), rvz(t) = 0.0 - LQ Servo Design 2

3. Path Following a Circular Trajectory with ω = 0.4. In this demonstration,

a pre-defined circle trajectory is applied as a trajectory reference command to

the quadrotor to follow. The OptiTrack mocap is used to demonstrate the

following experiment. The velocity of the quadrotor v =
√
v2x + v2y + v2z ≈ 0.9

m/s. The reference trajectory is as follow:

xr(t) = 3.0sin(0.4t) yr(t) = 3.0cos(0.4t) zr(t) = 1.0

ẋr(t) = 3.0(0.4)cos(0.4t) ẏr(t) = −3.0(0.4)sin(0.4t) żr(t) = 0.0

ẍr(t) = −3.0(0.4)2sin(0.4t) ÿr(t) = −3.0(0.4)2cos(0.4t) z̈r(t) = 0.0

180

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x-asix (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

s
ix

 (
m

)

Circle

reference

output

Figure 6.56: Circular Trajectory with ω = 0.4 - LQ Servo Design 2

Figure 6.57: x, y, z Resulting from rx(t) = 3.0sin(0.4t), ry(t) = 3.0cos(0.4t), rz(t) =

1.0 - LQ Servo Design 2

181

Figure 6.58: vx, vy, vz Resulting from rvx(t) = 3.0(0.4)cos(0.4t), rvy(t) =

−3.0(0.4)sin(0.4t), rvz(t) = 0.0 - LQ Servo Design 2

4. Path Following a Circular Trajectory with ω = 0.8. In this demonstration,

a pre-defined circle trajectory is applied as a trajectory reference command to

the quadrotor to follow. The OptiTrack mocap is used to demonstrate the

following experiment. The velocity of the quadrotor v =
√
v2x + v2y + v2z ≈ 1.8

m/s. The reference trajectory is as follow:

xr(t) = 3.0sin(0.8t) yr(t) = 3.0cos(0.8t) zr(t) = 1.0

ẋr(t) = 3.0(0.8)cos(0.8t) ẏr(t) = −3.0(0.8)sin(0.8t) żr(t) = 0.0

ẍr(t) = −3.0(0.8)2sin(0.8t) ÿr(t) = −3.0(0.8)2cos(0.8t) z̈r(t) = 0.0

182

-5 -4 -3 -2 -1 0 1 2 3 4 5

x-axis (m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
-a

x
is

 (
m

)

Circle

reference

output

Figure 6.59: Circular Trajectory with ω = 0.8 - LQ Servo Design 2

Figure 6.60: x, y, z Resulting from rx(t) = 3.0sin(0.8t), ry(t) = 3.0cos(0.8t), rz(t) =

1.0 - LQ Servo Design 2

183

Figure 6.61: vx, vy, vz Resulting from rvx(t) = 3.0(0.8)cos(0.8t), rvy(t) =

−3.0(0.8)sin(0.8t), rvz(t) = 0.0 - LQ Servo Design 2

5. Path Following a Circular Trajectory with ω = 1.0. In this demonstration,

a pre-defined circle trajectory is applied as a trajectory reference command to

the quadrotor to follow. The HTC Vive Tracking System is used to demonstrate

the following experiment. The velocity of the quadrotor v =
√
v2x + v2y + v2z ≈

0.45 m/s. The reference trajectory is as follow:

xr(t) = 0.5sin(1.0t) yr(t) = 0.5sin(1.0t) zr(t) = 1.0

ẋr(t) = 0.5(1.0)cos(1.0t) ẏr(t) = −0.5(1.0)sin(1.0t) żr(t) = 0.0

ẍr(t) = −0.5(1.0)2sin(1.0t) ÿr(t) = −0.5(1.0)2cos(1.0t) z̈r(t) = 0.0

184

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x-asix (m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y
-a

s
ix

 (
m

)

Circle

reference

output

Figure 6.62: Circular Trajectory with ω = 1.0 - LQ Servo Design 2

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
x
(t) = 0.5 sin(1.0 t)

r
x

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
y
(t) = 0.5 cos(1.0 t)

r
y

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
z
(t) = 1.0

r
z

Simulation

Hardware

Figure 6.63: x, y, z Resulting from rx(t) = 0.5sin(1.0t), ry(t) = 0.5sin(1.0t), rz(t) =

1.0 - LQ Servo Design 2

185

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
vx

(t) = 0.5 (1.0) cos(1.0 t)

r
vx

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
vy

(t) = -0.5 (1.0) sin(1.0 t)

r
vy

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
vz

(t) = 0.0

r
vz

Simulation

Hardware

Figure 6.64: vx, vy, vz Resulting from rvx(t) = 0.5(1.0)cos(1.0t), rvy(t) =

−0.5(1.0)sin(1.0t), rvz(t) = 0.0 - LQ Servo Design 2

6. Path Following a Lemniscate/Figure Eight Trajectory with ω = 1.0. In

this demonstration, a pre-defined lemniscate or figure eight trajectory is applied

as a trajectory reference command to the quadrotor to follow. The HTC Vive

Tracking System is used to demonstrate the following experiment. The velocity

of the quadrotor v =
√
v2x + v2y + v2z ≈ 0.5 m/s. The reference trajectory is as

follow:

xr(t) = 0.5cos(1.0t) yr(t) = 0.5sin(1.0t) cos(1.0t) zr(t) = 1.0

ẋr(t) = −0.5(1.0)sin(1.0t) ẏr(t) = 0.5cos(2.0t) żr(t) = 0.0

ẍr(t) = −0.5(1.0)2cos(1.0t) ÿr(t) = −sin(2.0t) z̈r(t) = 0.0

186

0
1-1

0.5

0.5

1

Figure Eight

-0.5

1.5

y-asix (m)x-asix (m)

00

2

-0.50.5
-11

reference

output

Figure 6.65: Figure Eight Trajectory with ω = 1.0 - LQ Servo Design 2

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
x
(t) = 0.5 cos(1.0 t)

r
x

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
y
(t) = 0.5 sin(1.0 t) cos(1.0 t)

r
y

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
z
(t) = 1.0

r
z

Simulation

Hardware

Figure 6.66: x, y, z Resulting from rx(t) = 0.5cos(1.0t), ry(t) = 0.5sin(1.0t) cos(1.0t),

rz(t) = 1.0 - LQ Servo Design 2

187

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
vx

(t) = -0.5 (1.0) sin(1.0 t)

r
vx

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
vy

(t) = 0.5 cos(2.0 t)

r
vy

Simulation

Hardware

20 25 30 35 40 45 50

Time (s)

-2

-1

0

1

2

z
-a

x
is

 (
m

)

r
vz

(t) = 0.0

r
vz

Simulation

Hardware

Figure 6.67: vx, vy, vz Resulting from rvx(t) = −0.5(1.0)sin(1.0t), rvy(t) =

0.5cos(2.0t), rvz(t) = 0.0 - LQ Servo Design 2

7. Path Following a Vertical Lemniscate/Figure Eight Trajectory with

ω = 1.0. In this demonstration, a pre-defined lemniscate or figure eight trajec-

tory is applied as a trajectory reference command to the quadrotor to follow.

The HTC Vive Tracking System is used to demonstrate the following exper-

iment. The velocity of the quadrotor v =
√
v2x + v2y + v2z ≈ 0.5 m/s. The

reference trajectory is as follow:

xr(t) = 0.0 yr(t) = 0.5cos(1.0t) zr(t) = 1.0 + 0.5sin(1.0t) cos(1.0t)

ẋr(t) = 0.0 ẏr(t) = −0.5(1.0)sin(1.0t) żr(t) = 0.5cos(2.0t)

ẍr(t) = 0.0 ÿr(t) = −0.5(1.0)2cos(1.0t) z̈r(t) = −sin(2.0t)

188

0

-1

0.5

1-0.5

1

0.5

x-asix (m)

0

Vertical Figure Eight

y-asix (m)

1.5

0
0.5

2

-0.5

1 -1

reference

output

Figure 6.68: Figure Eight Trajectory with ω = 1.0 - LQ Servo Design 2

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
x
(t) = 0.0

r
x

Simulation

Hardware

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
y
(t) = 0.5 cos(1.0 t)

r
y

Simulation

Hardware

35 40 45 50 55 60 65 70

Time (s)

0

0.5

1

1.5

2

z
-a

x
is

 (
m

)

r
z
(t) = 1.0 + 0.5 sin(1.0 t) cos(1.0 t)

r
z

Simulation

Hardware

Figure 6.69: x, y, z Resulting from rx(t) = 0.0, ry(t) = 0.5cos(1.0t), rz(t) = 1.0 +

0.5sin(1.0t) cos(1.0t) - LQ Servo Design 2

189

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

r
vx

(t) = 0.0

r
vx

Simulation

Hardware

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

r
vy

(t) = -0.5 (1.0) sin(1.0 t)

r
vy

Simulation

Hardware

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

z
-a

x
is

 (
m

)

r
vz

(t) = 0.5 cos(2.0 t)

r
vz

Simulation

Hardware

Figure 6.70: vx, vy, vz Resulting from rvx(t) = 0.0, rvy(t) = −0.5(1.0)sin(1.0t),

rvz(t) = 0.5cos(2.0t) - LQ Servo Design 2

6.7 Summary and Conclusions

In summary, linearization of the nonlinear translational quadrotor dynamics has

been shown in two different operating points. From that, we saw the quadrotor

linear model can be decoupled if attitude angles φ and θ are close to zero (near

hover); otherwise, the coupling will show up in the model. The decoupled linear

model was considered to control system design in this project. Three control designs

were designed: (1) LQ Servo design (2) Weighted H∞ Sensitivity Optimization (3)

LQG/LTRO design. From the frequency domain and time domain analysis, we see

that both LQ design and Weighted H∞ Design 2 have similar performance in general.

190

Chapter 7

MULTIPLE QUADROTOR FORMATION CONTROL USING

LEADER-FOLLOWER APPROACH

7.1 Overview

Formation control problems became more attractive in the robotics research field

— systems where multiple robots interact with each other to achieve a certain goal

called the multi-agent system. More especially, aerial vehicles took great attention

in the multi-agent system due to their high maneuverability in all three-dimensional

space. They have been used in cooperative application [18], assembling structures

[2], and performing dance [19]. From [37], formation control problems can be divided

into two sub-categories: (1) Centralized and (2) Decentralized. In the centralized

problem, a single unit (e.g., ground station) requires all information from all agents

to make a decision. On the other hand, the decentralized problem is where each agent

makes a decision locally. In this thesis, we examine the centralized problem where all

information is gathered and processed on a central unit (computer ground station).

Then, commands are issued to each agent from the ground station accordingly.

191

7.2 Leader-Follower Approach

Figure 7.1: Leader-follower (x, y) Axis

Leader-Follower Approach. In the leader-follower approach, the leader quadrotor

follows a specified trajectory while the follower quadrotor follows the leader while

keeping the separation distance specified beforehand. In this thesis, two quadrotors

were experimentally verified to show the leader-follower formation control. There are

a couple of assumptions that were made:

� All quadrotors are identical and have the same control system.

� This is a centralized control problem; where all computations are performed on

the ground station.

� Only the leader knows the reference trajectory to be followed.

192

� The followers maintain a constant separation distance in each direction, speci-

fied by a constant vector in x, y, z, from the leader.

� The leader has no information about the spacial position, velocity, or accelera-

tion of the followers.

The following is a block diagram that illustration two the leader-follower control for

two vehicles. The top loop is the leader quadrotor while the lower loop is the follower

quadrotor

[ζr, ζ̇r, ζ̈r, ψ̇r, ψr]T
ζ̈r

DF
ζr, ζ̇r, ψr e1

LQR
u1

f−1
ν1

ẋ = Ax+Bν1
y1

−

Separation

ζ̈r

DF
ζr, ζ̇r, ψr e2

LQR
u2

f−1
ν2

ẋ = Ax+Bν2
y2

−

Figure 7.2: Leader-follower Feedback Block Diagram

In the following, the desired leader trajectory is as follows:

xL = xr yL = yr zL = zr

ẋL = ẋr ẏL = ẏr żL = żr

ẍL = ẍr ÿL = ÿr z̈L = z̈r

193

while the desired trajectory for the follower is the spatial position, velocity, and

acceleration of the leader with the separation in each direction as follows:

xF = xL − dx yF = yL − dy zF = zL − dz

ẋF = ẋL ẏF = ẏL żF = żL

ẍF = ẍL ÿF = ÿL z̈F = z̈L

Quadrotor Hardware Demonstrations. All hardware demonstrations are done

using the LQR controller Design 2. The 3D motion data of positions, velocities,

and accelerations are obtained from either HTC Vive Tracking System or OptiTrack

Motion Capture System at a rate of 100Hz. Then, the data are processed and filtered

on the ground station as well. The ground station computes the commanded roll φ,

pitch θ, thrust T , and yaw rate r using the nonlinear mapping. The commands are

sent through Xbee modules wirelessly from the ground station to each quadrotor at

a rate of 100Hz. The following outlines the hardware demonstrations:

1. Following a Line with a Separation of 1.5 meters in the y-axis. In this

demonstration, the leader quadrotor is following a reference trajectory along the

x-axis while the follower quadrotor is following the leader while maintaining a

separation distance of 1.5m in the y-axis. The HTC Vive Tracking System is

used to demonstrate the following experiment. The spatial position, velocity,

and acceleration of the leader are filtered using a moving average filter and then

fed-back to the follower. The leader reference commands are as follow:

xr = 0.5sin(0.6t) yr = 0 zr = 1

ẋr = 0.5(0.6)cos(0.6t) ẏr = 0 żr = 0

ẍr = −0.5(0.6)2sin(0.6t) ÿr = 0 z̈r = 0

194

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x-asix (m)

-2

-1.5

-1

-0.5

0

0.5

1

y
-a

s
ix

 (
m

)

Leader-Follower

Leader

Follower

Figure 7.3: Figure Eight Trajectory with ω = 1.0 - Leader-follower

195

Figure 7.4: x, y, z Resulting from rx(t) = 0, ry(t) = 0.5cos(1.0t), rz(t) = 1.0 +

0.5sin(1.0t) cos(1.0t) - Leader-follower

196

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

Seperation Error in x-axis

error
x

35 40 45 50 55 60 65 70

Time (s)

-2

-1

0

1

2

y
-a

x
is

 (
m

)

Seperation Error in y-axis

error
y

35 40 45 50 55 60 65 70

Time (s)

-1

-0.5

0

0.5

1

z
-a

x
is

 (
m

)

Seperation Error in z-axis

error
z

Figure 7.5: x, y, z Error Resulting from rx(t) = 0, ry(t) = 0.5cos(1.0t, rz(t) = 1.0 +

0.5sin(1.0t) cos(1.0t) - Leader-follower

2. Following a Circular Path with a Separation of 5.0 meters in the y-axis.

In this demonstration, the leader quadrotor is following a circular reference

trajectory when the follower quadrotor is following the leader while maintaining

a separation distance of 5.0m in the y-axis. The OptiTrack mocap is used

to demonstrate the following experiment. The spatial position, velocity, and

acceleration of the leader are filtered using a moving average filter then fed-

197

back to the follower. The leader reference commands are as follow:

xr = 1.0sin(0.2t) yr = 3.0 + 1.0cos(0.2t) zr = 1

ẋr = 1.0(0.2)cos(0.2t) ẏr = −1.0(0.2)sin(0.2t) żr = 0

ẍr = −1.0(0.2)2sin(0.2t) ÿr = −1.0(0.2)2cos(0.2t) z̈r = 0

-5 -4 -3 -2 -1 0 1 2 3 4 5

x-asix (m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
-a

s
ix

 (
m

)

Leader-Follower

Leader

Follower

Figure 7.6: Circular Trajectory with ω = 0.2 - Leader-follower

198

Figure 7.7: x, y, z Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0 + 1.0cos(0.2t),

rz(t) = 1.0 - Leader-follower

199

60 65 70 75 80 85

Time (s)

-1

-0.5

0

0.5

1

x
-a

s
ix

 (
m

)

Seperation Error in x-axis

error
x

60 65 70 75 80 85

Time (s)

-1

-0.5

0

0.5

1

y
-a

x
is

 (
m

)

Seperation Error in y-axis

error
y

60 65 70 75 80 85

Time (s)

-1

-0.5

0

0.5

1

z
-a

x
is

 (
m

)

Seperation Error in z-axis

error
z

Figure 7.8: x, y, z Error Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0+1.0cos(0.2t),

rz(t) = 1.0 - Leader-follower

200

Figure 7.9: vx, vy, vz Error Resulting from rx(t) = 1.0sin(0.2t), ry(t) = 3.0 +

1.0cos(0.2t), rz(t) = 1.0 - Leader-follower

201

Chapter 8

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

8.1 Summary

In this thesis, we presented how to build an open-source based platform for quadro-

tors for future formation control research. We studied the modeling of quadrotor’s

rotational and translational dynamics with trade-off studies as well. Classical controls

were used to design low-level control for rotational dynamics (body rate and attitude).

Furthermore, LQ Servo, WeightedH∞ Sensitivity Optimization, and LQG/LTRO de-

signs were used to design high-level control for translational dynamics (position and

path following control). Simulation and hardware data are shown to be similar. This

work is an attempt to design a platform that is going to be a foundation for future

research in quadrotor’s formation control.

8.2 Directions for Future Research

Future work will involve the following:

� Onboard Sensing. Use of more accurate internal measurement unit (IMU)

that can provide a better estimation of body rotation rates and attitude angles.

In addition to cameras that can perform onboard localization independent of

the motion capture system, e.g., GPS, LIDAR, etc.

� Formation Control. Design more accurate centralized formation control

methods where every agent is aware of the neighbors in addition to collision

avoidance between agents.

202

� Multi-Agent Cooperation. Interaction and cooperation between air and

ground vehicles to achieve a particular goal using the same platform developed

in this thesis.

� Estimation. Implement a more accurate estimation for 3D motion data for

HTC Vive and OptiTrack. This includes Kalman Filter, Extended Kalman

Filter, Particle Filter, etc.

203

REFERENCES

[1] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller, J. S.
Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight assembled
architecture installation: Cooperative construction with flying machines,” IEEE
Control Systems Magazine, vol. 34, no. 4, pp. 46–64, Aug 2014.

[2] H. Durrant-Whyte, N. Roy, and P. Abbeel, Construction of Cubic
Structures with Quadrotor Teams. MITP, 2012. [Online]. Available: https:
//ieeexplore-ieee-org.ezproxy1.lib.asu.edu/document/6301066

[3] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor
micro quadrotor,” in IEEE International Conference on Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004, vol. 5, April 2004, pp. 4393–4398 Vol.5.

[4] M. Y. Amir and V. Abbass, “Modeling of quadrotor helicopter dynamics,” in
2008 International Conference on Smart Manufacturing Application, April 2008,
pp. 100–105.

[5] “Flying car and autonomous flight engineer nanodegree.” [Online]. Available:
https://www.udacity.com/course/flying-car-nanodegree--nd787

[6] S. BOUABDALLAH, “Design and control of quadrotors with application to au-
tonomous flying,” Ph.D. Dissertation, EPFL, 2007.

[7] Z. Benic, P. Piljek, and D. Kotarski, “Mathematical modelling of unmanned
aerial vehicles with four rotors,” Interdisciplinary Description of Complex
Systems - scientific journal, vol. 14, no. 1, pp. 88–100, 2016. [Online]. Available:
https://EconPapers.repec.org/RePEc:zna:indecs:v:14:y:2016:i:1:p:88-100

[8] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling,
estimation, and control of quadrotor,” IEEE Robotics Automation Magazine,
vol. 19, no. 3, pp. 20–32, Sep. 2012.

[9] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control
for precise aggressive maneuvers with quadrotors,” The International Journal
of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012. [Online]. Available:
https://doi.org/10.1177/0278364911434236

[10] M. Bangura, “Aerodynamics and control of quadrotors,” M.S. Thesis, The Aus-
tralian National University, Canberra, 2017.

[11] A. A. Rodriguez, Analysis and Design of Feedback Control Systems. Tempe,
AZ: CONTROL3D, L.L.C., 2002.

[12] Z. Lin, “Modeling, design and control of multiple low-cost robotic ground vehi-
cles,” M.S. Thesis, Arizona State University, Tempe, AZ, 2015.

204

https://ieeexplore-ieee-org.ezproxy1.lib.asu.edu/document/6301066
https://ieeexplore-ieee-org.ezproxy1.lib.asu.edu/document/6301066
https://www.udacity.com/course/flying-car-nanodegree--nd787
https://EconPapers.repec.org/RePEc:zna:indecs:v:14:y:2016:i:1:p:88-100
https://doi.org/10.1177/0278364911434236

[13] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, saturation, and
body-rate control for accurate aggressive quadrotor flight,” IEEE Robotics and
Automation Letters, vol. 2, pp. 476–482, 2017.

[14] S. Lupashin, M. Hehn, M. W. Mueller, A. Schoellig, M. Sherback, and
R. D’Andrea, “A platform for aerial robotics research and demonstration: The
flying machine arena,” Mechatronics, vol. 24, 02 2014.

[15] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza,
“Autonomous, vision-based flight and live dense 3d mapping with a quadrotor
micro aerial vehicle,” Journal of Field Robotics, vol. 33, 03 2015.

[16] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flatness based
control of a rotorcraft for aggressive maneuvers,” 09 2011, pp. 2688–2693.

[17] J. Vuong, B. Byers, and R. Sharma, “Limitations of differential flatness based
control of quadrotor and solutions,” 12 2014.

[18] K. Sreenath and V. Kumar, “Dynamics, control and planning for cooperative
manipulation of payloads suspended by cables from multiple quadrotor robots,”
06 2013.

[19] F. Augugliaro, A. Schoellig, and R. D’Andrea, “Dance of the flying machines:
Methods for designing and executing an aerial dance choreography,” pp. 96–104,
2013.

[20] D. Mercado-Ravell, R. Castro-Linares, and R. Lozano, “Quadrotors flight for-
mation control using a leader-follower approach,” 07 2013, pp. 3858–3863.

[21] E. Abbasi, M. Ghayour, M. Danesh, P. Amiri, and M. Yoosefian, “Formation
flight control and path tracking of a multi-quadrotor system in the presence of
measurement noise and disturbances,” 10 2018.

[22] X. Chen, “Flight controller design, automatic tuning and performance evaluation
of quadrotor uavs,” Ph.D Dissertation, RMIT University, 2017.

[23] S. Lu, “Modeling, control and design of a quadrotor platform for indoor environ-
ments,” M.S. Thesis, Arizona State University, Tempe, AZ, 2018.

[24] MAVLink, “Introduction.” [Online]. Available: https://mavlink.io/en/

[25] K. Mondal, “Multivariable control of fixed wing aircrafts,” M.S. Thesis, Arizona
State University, Tempe, AZ, 2015.

[26] Q. Quan, Introduction to Multicopter Design and Control, 06 2017.

[27] techSultan, “How does a hobby esc drive a bldc motor?” [On-
line]. Available: https://electronics.stackexchange.com/questions/355167/
how-does-a-hobby-esc-drive-a-bldc-motor

205

https://mavlink.io/en/
https://electronics.stackexchange.com/questions/355167/how-does-a-hobby-esc-drive-a-bldc-motor
https://electronics.stackexchange.com/questions/355167/how-does-a-hobby-esc-drive-a-bldc-motor

[28] C. H. Wolowicz, J. S. Brown, and W. P. Gilbert, “Similitude requirements and
scaling relationships as applied to model testing,” 1979.

[29] A. Michael Harrington, “Optimal propulsion system design for a micro quad
rotor,” 01 2011.

[30] A. A. Rodriguez, Analysis and Design of Multivariable Feedback Control Systems.
Tempe, AZ: CONTROL3D, L.L.C., 2002.

[31] M. Shafique, “Lecture notes in computer control systems,” April 2019.

[32] B. Douglas, “Understanding pid control, part 2: Expanding beyond a simple inte-
gral video,” Jun 2018. [Online]. Available: https://www.mathworks.com/videos/
understanding-pid-control-part-2-expanding-beyond-a-simple-integral-1528310418260.
html

[33] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechanical
control systems: A catalog of prototype systems,” in Proceedings of the 1995
ASME International Congress and Exposition, 1995.

[34] A. E. C. D. Cunha, “Benchmark: Quadrotor attitude control,” in ARCH14-15.
1st and 2nd International Workshop on Applied veRification for Continuous
and Hybrid Systems, ser. EPiC Series in Computing, G. Frehse and
M. Althoff, Eds., vol. 34. EasyChair, 2015, pp. 57–72. [Online]. Available:
https://easychair.org/publications/paper/mwnd

[35] W. Dong, G.-Y. Gu, X. Zhu, and H. Ding, “Modeling and control of a quadrotor
uav with aerodynamic concepts,” in Proceedings of World Academy of Science,
Engineering and Technology, no. 77. World Academy of Science, Engineering
and Technology (WASET), 2013, p. 437.

[36] K. Puttannaiah, “A generalized h-infinity mixed sensitivity convex approach
to multivariable control design subject to simultaneous output and input loop-
breaking specifications,” Ph.D. Dissertation, Arizona State University, Tempe,
AZ, 2018.

[37] A. Jiménez, V. Garćıa-Dı́az, and S. Bolaños, “A decentralized framework for
multi-agent robotic systems,” Sensors, vol. 18, no. 2, p. 417, 2018.

206

https://www.mathworks.com/videos/understanding-pid-control-part-2-expanding-beyond-a-simple-integral-1528310418260.html
https://www.mathworks.com/videos/understanding-pid-control-part-2-expanding-beyond-a-simple-integral-1528310418260.html
https://www.mathworks.com/videos/understanding-pid-control-part-2-expanding-beyond-a-simple-integral-1528310418260.html
https://easychair.org/publications/paper/mwnd

APPENDIX A

MATLAB CODE

207

MATLAB Version: 9.3.0.9483333 (R2017b).

A.1 High-level Control

% Title: Quadrotor Linear Translational Dynamics
% References: http://aar.faculty.asu.edu/classes/eee598S98/eee598c.html
% Control Variables
% u = [delta theta, pitch angle (rad)
% delta phi, roll angle (rad)
% delta T, thrust (N)
% delta r, yaw rate (rad/s)]
%
%
% State Variables
% x = [x, x-axis position (m)
% y, y-axis position (m)
% z, z-axis position (m)
% vx, velocity in the x-axis (m/s)
% vy, velocity in the y-axis (m/s)
% vz, velocity in the z-axis (m/s)
% psi, yaw angle (rad)]
%
%
% Output Variables
% y = [x, x-axis position (m)
% y, y-axis position (m)
% z, z-axis position (m)
% psi, yaw angle (rad)]
%
%**
% Linearization Around Hover without Drag
% where T 0 = mg (N), phi 0 = theta 0 = psi 0 = 0 (rad)
s = tf('s');
g = 9.81;
m = 0.666;
Ap1 = [zeros(3,3) eye(3,3) zeros(3,1); zeros(4,3) zeros(4,3) ...

zeros(4,1)];
Bp1 = [zeros(3,3) zeros(3,1); -g 0 0 0; 0 g 0 0; 0 0 1/m 0; 0 0 0 1];
Cp1 = [eye(3,3) zeros(3,4); zeros(1,3) zeros(1,3) 1];
Dp1 = zeros(4,4);

% Changing Units from radians to degrees
r2d = 180/pi;
su = diag([r2d, r2d, 1, r2d]);
sx = diag([1, 1, 1, 1, 1, 1, r2d]);
sy = diag([1, 1 , 1, r2d]);
Ap1 = sx*Ap1*inv(sx);
Bp1 = sx*Bp1*inv(su);
Cp1 = sy*Cp1*inv(sx);
Dp1 = sy*Dp1*inv(su);

%**
% Linearization Around Hover with Linear Drag
% beta = rho*Cd*vx e*Ss*
% vx e = 1 (m/s), Ss = 0.015625 (mˆ2), rho = 1.225, Cd = 0.47

208

beta = 0.0090;
Ap2 = [zeros(3,3) eye(3,3) zeros(3,1); zeros(3,3) -beta*eye(3,3) ...

zeros(3,1); zeros(1,7)]
Bp2 = [zeros(3,3) zeros(3,1); -g 0 0 0; 0 g 0 0; 0 0 1/m 0; 0 0 0 1];
Cp2 = [eye(3,3) zeros(3,4); zeros(1,3) zeros(1,3) 1];
Dp2 = zeros(4,4);

% Changing Units from radians to degrees
r2d = 180/pi;
su = diag([r2d, r2d, 1, r2d]);
sx = diag([1, 1, 1, 1, 1, 1, r2d]);
sy = diag([1, 1 , 1, r2d]);
Ap2 = sx*Ap2*inv(sx);
Bp2 = sx*Bp2*inv(su);
Cp2 = sy*Cp2*inv(sx);
Dp2 = sy*Dp2*inv(su);

% --
% Plant Dimensions
%
[ns,nc] = size(Bp1); % Number of States, Number of ...

Controls
[no,~] = size(Cp1);

% First System with no drag
[ns1,nc1] = size(Bp1); % Number of States, Number ...

of Controls
[no1,~] = size(Cp1); % Number of Outputs

% Second System with drag
[ns2,nc2] = size(Bp2); % Number of States, Number ...

of Controls
[no2,~] = size(Cp2); % Number of Outputs

% --
% Natural Modes: Poles (Eigenvalues), Eigenvectors
%
% First System with no drag
[evec1,eval1] = eig(Ap1) % evec contains eigenvectors

% eval contains poles or eigenvalues
% Second System with drag
[evec2,eval2] = eig(Ap2)

% --
% Transmission Zeros
%
% First System with no drag
plantzeros1 = tzero(ss(Ap1,Bp1,Cp1,Dp1)) % transmission zeros
% System has no finite transmission zeros

% Second System with drag
plantzeros2 = tzero(ss(Ap2,Bp2,Cp2,Dp2)) % transmission zeros
% System has no finite transmission zeros

209

% --
% SYSTEM TRANSFER FUNCTIONS: From u i to x j
%
% First System with no drag
Plant zpk1 = zpk(ss(Ap1,Bp1,Cp1,Dp1)) % Zeros, Poles, and Gains fron ...

u i to x j
% Second System with drag
Plant zpk2 = zpk(ss(Ap2,Bp2,Cp2,Dp2)) % Zeros, Poles, and Gains fron ...

u i to x j
% --
% Controllability
%
% First System with no drag
cm1 = [Bp1 Ap1*Bp1 (Ap1ˆ2)*Bp1 (Ap1ˆ3)*Bp1 (Ap1ˆ4)*Bp1 (Ap1ˆ5)*Bp1 ...

(Ap1ˆ6)*Bp1]; % Controllability Matrix
rcm1 = rank(cm1) % Rank of Controllability Matrix
% Second System with drag
cm2 = [Bp2 Ap2*Bp2 (Ap2ˆ2)*Bp2 (Ap2ˆ3)*Bp2 (Ap2ˆ4)*Bp2 (Ap2ˆ5)*Bp2 ...

(Ap2ˆ6)*Bp2]; % Controllability Matrix
rcm2 = rank(cm2) % Rank of Controllability Matrix
% --
% Observability
%
% First System with no drag
om1 = [Cp1; Cp1*Ap1; Cp1*(Ap1ˆ2); Cp1*(Ap1ˆ3); Cp1*(Ap1ˆ4); ...

Cp1*(Ap1ˆ5); Cp1*(Ap1ˆ6)]; % Observability Matrix
rom1 = rank(om1) % Rank of Observability Matrix
% Second System with drag
om2 = [Cp2; Cp2*Ap2; Cp2*(Ap2ˆ2); Cp2*(Ap2ˆ3); Cp2*(Ap2ˆ4); ...

Cp2*(Ap2ˆ5); Cp2*(Ap2ˆ6)]; % Observability Matrix
rom2 = rank(om2) % Rank of Observability Matrix

% FREQUENCY RESPONSE: Singular Values
%
% u = [theta (rad) phi (rad) T (N) r (rad/s)]
% x = [x (m/s) y (m/s) z (m/s) vx (m/s) ...

vy (m/s) vz (m/s) psi (rad)]
% y = [x (m/s) y (m/s) z (m/s) psi (rad)]
%
winit = -4;
wfin = 1;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
sv = sigma(ss(Ap1, Bp1, Cp1, Dp1),w);
sv = 20*log10(sv);
figure; semilogx(w, sv, 'b')
%clear sv
title('Outputs: x, y, z (m), \psi (deg); Inputs: \theta, \phi (deg), ...

T (N), r (deg/s)')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(Ap2, Bp2, Cp2, Dp2),w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')

210

pause

% PLANT SVD ANALYSIS at Low Frequencies, w = 0.01 (rad/s)
%
% First System with no drag
w0 = 0.01;
P w0 = Cp1*inv(w0*eye(7,7)-Ap1)*Bp1;
[udc1,sdc1,vdc1] = svd(P w0)
% Second System with drag
P w0 = Cp2*inv(w0*eye(7,7)-Ap2)*Bp2;
[udc2,sdc2,vdc2] = svd(P w0)

%% ...

%
% First Design for Linear Quadratic Regulator (LQR) with Integrator
% Augment Plant with Integrators
% For Zero Steady Error to Step Commands
% This follows from the Internal Model Priciple
% State x = [xp xI]
% where
% xp is the state
% xI is the integrator state
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First System with no drag
A1 = [Ap1 zeros(7,4); Cp1 zeros(4,4)];
B1 = [Bp1; zeros(4,4)];
C1 = [Cp1 zeros(4,4)];
D1 = zeros(4,4);
Cr1 = [0 0 0 1 0 0 0;

0 0 0 0 1 0 0;
0 0 0 0 0 1 0];

% Second System with drag
A2 = [Ap2 zeros(7,4); Cp2 zeros(4,4)];
B2 = [Bp2; zeros(4,4)];
C2 = [Cp2 zeros(4,4)];
D2 = zeros(4,4);
Cr2 = [0 0 0 1 0 0 0;

0 0 0 0 1 0 0;
0 0 0 0 0 1 0];

% LQR Design Parameters
rho = 0.1;
Q = diag([10,10,10,10,10,10,1,100,100,100,1]);
R = rho * eye(4,4);
[G1, K1, clpoles1] = lqr(A1,B1,Q,R);
[G2, K2, clpoles2] = lqr(A2,B2,Q,R);
%***
%
% LQ OPEN LOOP FREQUENCY RESPONSE
%
gy1 = [G1(:,1:3) G1(:,7)];
gr1 = G1(:,4:6);
gz1 = G1(:,8:11);
gy2 = [G2(:,1:3) G2(:,7)];
gr2 = G2(:,4:6);
gz2 = G2(:,8:11);

211

% First System with no drag
aol1 = [Ap1-Bp1*gr1*Cr1 Bp1*gz1;

zeros(4,7) zeros(4,4)];
bol1 = [Bp1*gy1;

eye(4,4)];
col1 = [Cp1 zeros(4,4)];
dol1 = zeros(4,4);
ols1 = ss(aol1, bol1, col1, dol1);

% Second System with drag
aol2 = [Ap2-Bp2*gr2*Cr2 Bp2*gz2;

zeros(4,7) zeros(4,4)];
bol2 = [Bp2*gy2;

eye(4,4)];
col2 = [Cp2 zeros(4,4)];
dol2 = zeros(4,4);
ols2 = ss(aol2, bol2, col2, dol2);

w = logspace(-3,3,100);
sv = sigma(ss(A1, B1, G1, 0*ones(4,4)),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('Open Loop Singular Values: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(A2, B2, G2, 0*ones(4,4)),w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')
hold off
pause

w = logspace(-3,3,100);
sv = sigma(ols1,w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('Open Loop Singular Values: Error Signal')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ols2,w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')
pause
%return

%***
%
% LQ CLOSED LOOP FREQUENCY RESPONSE
%
% First System with no drag
acl1 = aol1 - bol1*col1;

212

bcl1 = bol1;
ccl1 = col1;
dcl1 = dol1;
cls1 = ss(acl1,bcl1,ccl1,dcl1);
% Second System with drag
acl2 = aol2 - bol2*col2;
bcl2 = bol2;
ccl2 = col2;
dcl2 = dol2;
cls2 = ss(acl2,bcl2,ccl2,dcl2);

% Closed Loop Poles
% First System with no drag
[Wn1,zeta1, clpoles1] = damp(cls1)
% Second System with drag
[Wn2,zeta2, clpoles2] = damp(cls2)

sv = sigma(ss(A1-B1*G1, B1, -G1, eye(4,4)-0*ones(4,4)),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('LQ Sensitivity: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(A2-B2*G2, B2, -G2, eye(4,4)-0*ones(4,4)),w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')
hold off
pause

sv = sigma(ss(acl1, bcl1, -ccl1, eye(4,4)-dcl1),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('LQ Sensitivity: Error Signal')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(acl2, bcl2, -ccl2, eye(4,4)-dcl2),w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')
pause

sv = sigma(ss(acl1, bcl1, ccl1, dcl1),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('LQ Complementary Sensitivity: Plant Output')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(acl2, bcl2, ccl2, dcl2),w);
sv = 20*log10(sv);

213

semilogx(w, sv, 'r')
hold off
pause
%return

sv = sigma(ss(A1-B1*G1, B1, G1, 0*ones(4,4)),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('LQ Complementary Sensitivity: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
hold on
sv = sigma(ss(A2-B2*G2, B2, G2, 0*ones(4,4)),w);
sv = 20*log10(sv);
semilogx(w, sv, 'r')
hold off
pause

%***
%
% CLOSED LOOP COMMAND FOLLOWING
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First System
%
t = [0:0.02:10];
[y, t, x] = step(cls1,t);

%
% POSITION IN X-AXIS COMMAND
%
% x: r = [1 0 0 0] x-axis position Command
%
figure;
subplot(2,1,1)
plot(t,y(:,:,1))
grid
title('Output Response To r = [1 0 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [1 0 0 0] x-axis position Command
%
u10 = [-G1 gy1]*[x(:,:,1)'

ones(1, size(x(:,:,1)')*[0 1]')
0*ones(1, size(x(:,:,1)')*[0 1]')
0*ones(1, size(x(:,:,1)')*[0 1]')
0*ones(1, size(x(:,:,1)')*[0 1]')];

subplot(2,1,2)
plot(t,u10)
grid
title('Input Response To r = [1 0 0 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')

214

pause

%
% POSITION IN Y-AXIS COMMAND
%
% y: r = [0 1 0 0] y-axis position Command
%
figure;
subplot(2,1,1)
plot(t,y(:,:,2))
grid
title('Output Response To r = [0 1 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')

%
% Controls: r = [0 1 0 0] y-axis position Command
%
u20 = [-G1 gy1]*[x(:,:,2)'

0*ones(1, size(x(:,:,2)')*[0 1]')
ones(1, size(x(:,:,2)')*[0 1]')
0*ones(1, size(x(:,:,2)')*[0 1]')
0*ones(1, size(x(:,:,2)')*[0 1]')];

subplot(2,1,2)
plot(t,u20)
grid
title('Input Response To r = [0 1 0 0] Command')
ylabel('Pitch, Roll (deg), Thrust (N), Yaw (deg/s)')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%
% POSITION IN Z-AXIS COMMAND
%
% z: r = [0 0 1 0] z-axis position Command
%
figure;
subplot(2,1,1)
plot(t,y(:,:,3))
grid
title('Output Response To r = [0 0 1 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [0 0 1 0] z-axis position Command
%
u30 = [-G1 gy1]*[x(:,:,3)'

0*ones(1, size(x(:,:,3)')*[0 1]')
0*ones(1, size(x(:,:,3)')*[0 1]')
ones(1, size(x(:,:,3)')*[0 1]')
0*ones(1, size(x(:,:,3)')*[0 1]')];

subplot(2,1,2)
plot(t,u30)

215

grid
title('Input Response To r = [0 0 1 0] Command')
ylabel('Pitch, Roll (deg), Thrust (N), Yaw (deg/s)')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%
% YAW COMMAND
%
% Yaw: r = [0 0 0 1] yaw Command
%
figure;
subplot(2,1,1)
plot(t,y(:,:,4))
grid
title('Output Response To r = [0 0 0 1] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [0 0 0 1] Yaw Command
%
u40 = [-G1 gy1]*[x(:,:,4)'

0*ones(1, size(x(:,:,4)')*[0 1]')
0*ones(1, size(x(:,:,4)')*[0 1]')
0*ones(1, size(x(:,:,4)')*[0 1]')
ones(1, size(x(:,:,4)')*[0 1]')];

subplot(2,1,2)
plot(t,u40)
grid
title('Input Response To r = [0 0 0 1] Command')
ylabel('Pitch, Roll (deg), Thrust (N), Yaw (deg/s)')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%% H-infinity Control design
P = ss(Ap1,Bp1,Cp1,Dp1);

% Bilinear transformation
% Move the poles at the origin to the right-half plane.
% This is to avoid pole-zero cancellation.
% By default, hinfsyn cancels out all stable poles (even near-imaginary
% poles).
p1=-1; p2=-1e20;
[apd,bpd,cpd,dpd]=bilin(Ap1,Bp1,Cp1,Dp1,1,'Sft jw',[p2 p1]);
Pd=ss(apd,bpd,cpd,dpd);

% ...

% Weights
% Standard first order weights are chosen
% See AAR's book
% Design 1
M11=10; w11=0.15; Eps11=0.001; M12=10; w12=15; Eps12=0.001; M13=10; ...

216

w13=1.5; Eps13=0.001;
W11 = [tf([1/M11 w11], [1 w11*Eps11]) 0 0 0 ;

0 tf([1/M11 w11], [1 w11*Eps11]) 0 0 ;
0 0 tf([1/M11 w11], [1 w11*Eps11]) 0 ;
0 0 0 tf([1/M12 w12], [1 w12*Eps12])];

M21=10; w21=1000; Eps21=0.1; M22=0.01; w22=1000; Eps22=0.1;
W21 = [M21 0 0 0;

0 M21 0 0;
0 0 M22 0;
0 0 0 M21];

M31=10; w31=30; Eps31=0.001; M32=10; w32=150; Eps32=0.001; M33=10; ...
w33=15; Eps33=0.001;

W31 = [tf([1 w31/M31], [Eps31 w31]) 0 0 0;
0 tf([1 w31/M31], [Eps31 w31]) 0 0;
0 0 tf([1 w31/M31], [Eps31 w31]) 0;
0 0 0 tf([1 w32/M32], [Eps32 w32])];

% Design 2
M11=10; w11=0.15; Eps11=0.001; M12=10; w12=15; Eps12=0.001; M13=10; ...

w13=1.5; Eps13=0.001;
W12 = [tf([1/M11 w11], [1 w11*Eps11]) 0 0 0 ;

0 tf([1/M11 w11], [1 w11*Eps11]) 0 0 ;
0 0 tf([1/M11 w11], [1 w11*Eps11]) 0 ;
0 0 0 tf([1/M12 w12], [1 w12*Eps12])];

M21=0.001; w21=150; Eps21=0.001; M22=0.01; w22=150; Eps22=0.001;
W22 = [tf([1 w21*M21], [Eps21 w21]) 0 0 0;

0 tf([1 w21*M21], [Eps21 w21]) 0 0;
0 0 tf([1 w22*M22], [Eps22 w22]) 0;
0 0 0 tf([1 w21*M21], [Eps21 w21])] ;

M31=10; w31=30; Eps31=0.001; M32=10; w32=150; Eps32=0.001; M33=10; ...
w33=15; Eps33=0.001;

W32 = [tf([1 w31/M31], [Eps31 w31]) 0 0 0;
0 tf([1 w31/M31], [Eps31 w31]) 0 0;
0 0 tf([1 w31/M31], [Eps31 w31]) 0;
0 0 0 tf([1 w32/M32], [Eps32 w32])];

% ...

% Design 1 - Generalized plant
GenP=augw(Pd,W11,W21,W31);

% ...

% Design 1 - Obtain controller using Mablab's hinfsyn command
Kd=hinfsyn(GenP);

% ...

% Design 1 - Inverse bilinear transformation
[akd,bkd,ckd,dkd] = ssdata(Kd);
[ak,bk,ck,dk]=bilin(akd,bkd,ckd,dkd,-1,'Sft jw',[p2 p1]);
K1=ss(ak,bk,ck,dk);

217

% ...

% Design 2 - Generalized plant
GenP=augw(Pd,W12,W22,W32);

% ...

% Design 2 - Obtain controller using Mablab's hinfsyn command
Kd=hinfsyn(GenP);

% ...

% Design 2 - Inverse bilinear transformation
[akd,bkd,ckd,dkd] = ssdata(Kd);
[ak,bk,ck,dk]=bilin(akd,bkd,ckd,dkd,-1,'Sft jw',[p2 p1]);
K2=ss(ak,bk,ck,dk);

% ...

% Form closed loop maps
% f CLTFM.m is a matlab function for computing OL and CL maps in a ...

standard
% output feedback structure. This file must be in the current Matlab ...

folder
[Lo1,Li1,So1,Si1,To1,Ti1,KS1,PS1] = f CLTFM(P,K1);
[Lo2,Li2,So2,Si2,To2,Ti2,KS2,PS2] = f CLTFM(P,K2);

% Closed Loop Poles
[Wn1,zeta1, clpoles1] = damp(To1)
[Wn2,zeta2, clpoles2] = damp(To2)

% PLOTS
wvec=logspace(-3,3,10000);

%**
%
% OPEN LOOP FREQUENCY RESPONSE
figure;
sigma(Lo1,wvec, 'b');
hold on
sigma(Lo2,wvec, ':r');
title('Open Loop Singular Values: Error Signal')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

figure;
sigma(Li1,wvec, 'b');
hold on
sigma(Li2,wvec, ':r');
title('Open Loop Singular Values: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

%**
%

218

% CLOSED LOOP FREQUENCY RESPONSE

figure;
sigma(So1,wvec, 'b');
hold on
sigma(So2,wvec, ':r');
title('Sensitivity: Error Signal')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

figure;
sigma(Si1,wvec, 'b');
hold on
sigma(Si2,wvec, ':r');
title('Sensitivity: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

figure;
sigma(To1,wvec, 'b');
hold on
sigma(To2,wvec, ':r');
title('Complementary Sensitivity: Plant Output')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

figure;
sigma(Ti1,wvec, 'b');
hold on
sigma(Ti2,wvec, ':r');
title('Complementary Sensitivity: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')

%**
%
% CLOSED LOOP TIME RESPONSE

t = [0:0.02:10];
[y1, t, x1] = step(To1,t);
[y2, t, x2] = step(To2,t);
%
% POSITION IN X-AXIS COMMAND
%
% x: r = [1 0 0 0] x-axis position Command
%
figure;
subplot(2,1,1);
plot(t,y1(:,:,1))
hold on
plot(t,y2(:,:,1), ':')
grid

219

title('Output Response To r = [1 0 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi', 'x', 'y', 'z', 'psi')
hold off
%
% Controls: r = [1 0 0 0] x-axis position Command
%
[u1, t] = step(KS1,t);
[u2, t] = step(KS2,t);
u10=u1(:,:,1);
subplot(2,1,2);
plot(t,u10)
hold on
u10=u2(:,:,1);
plot(t,u10, ':')
grid
title('Input Response To r = [1 0 0 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate', 'Pitch', 'Roll', ...

'Thrust', 'Yaw Rate')
hold off
pause

%
% POSITION IN Y-AXIS COMMAND
%
% y: r = [0 1 0 0] y-axis position Command
%
figure;
subplot(2,1,1);
plot(t,y1(:,:,2))
hold on
plot(t,y2(:,:,2), ':')
grid
title('Output Response To r = [1 0 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi', 'x', 'y', 'z', 'psi')
hold off
%
% Controls: r = [0 1 0 0] y-axis position Command
%
[u1, t] = step(KS1,t);
[u2, t] = step(KS2,t);
u20=u1(:,:,2);
subplot(2,1,2);
plot(t,u20)
hold on
u20=u2(:,:,2);
plot(t,u20, ':')
grid
title('Input Response To r = [0 1 0 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate', 'Pitch', 'Roll', ...

220

'Thrust', 'Yaw Rate')
hold off
pause

%
% POSITION IN Z-AXIS COMMAND
%
% z: r = [0 0 1 0] z-axis position Command
%
figure;
subplot(2,1,1);
plot(t,y1(:,:,3))
hold on
plot(t,y2(:,:,3), ':')
grid
title('Output Response To r = [0 0 1 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi', 'x', 'y', 'z', 'psi')
hold off
% Controls: r = [0 0 1 0] z-axis position Command
%
[u1, t] = step(KS1,t);
[u2, t] = step(KS2,t);
u30=u1(:,:,3);
subplot(2,1,2);
plot(t,u30)
hold on
u30=u2(:,:,3);
plot(t,u30, ':')
grid
title('Input Response To r = [0 0 1 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate', 'Pitch', 'Roll', ...

'Thrust', 'Yaw Rate')
hold off
pause

%
% YAW COMMAND
%
% Yaw: r = [0 0 0 1] yaw Command
%
figure;
subplot(2,1,1);
plot(t,y1(:,:,4))
hold on
plot(t,y2(:,:,4), ':')
grid
title('Output Response To r = [0 0 0 1] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi', 'x', 'y', 'z', 'psi')
hold off
% Controls: r = [0 0 0 1] yaw Command
%

221

[u1, t] = step(KS1,t);
[u2, t] = step(KS2,t);
u40=u1(:,:,4);
subplot(2,1,2);
plot(t,u40)
hold on
u40=u2(:,:,4);
plot(t,u40, ':')
grid
title('Input Response To r = [0 0 0 1] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate', 'Pitch', 'Roll', ...

'Thrust', 'Yaw Rate')
hold off
pause

%% LQG/LTRO Design
% Design or Form Compensator
%

% Augment Plant Input with Integrators, in order to acheive zero
% steady error to step inputs.
%
% Form Design Plant
ap = Ap1;
bp = Bp1;
cp = Cp1;
dp = Dp1;
a = [zeros(nc,nc+ns); bp ap];
b = [eye(nc,nc); zeros(ns,nc)];
c = [zeros(no,nc) cp];
d = [zeros(no,nc)];

winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
sv = sigma(ss(ap, bp, cp, dp),w);
sv = 20*log10(sv);
figure; semilogx(w, sv)
hold on
sv = sigma(ss(a, b, c, d),w);
sv = 20*log10(sv);
semilogx(w, sv, ':r')
%clear sv
title('Design Plant Singular Values')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

%
% Use Kalman Filter to Design Target Loop (At Output)

222

%
s = j*0.0001;
ll = inv(cp*inv(s*eye(7)-ap)*bp); % Match at Low Freq
% lh = inv(s*eye(7)-ap)*bp*ll;
lh = cp'*inv(cp*cp');
l = [ll;lh];

winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
gfolsv = sigma(ss(a, l, c, d),w);
gfolsv = 20*log10(gfolsv);
figure; semilogx(w, gfolsv)
%clear sv
title('G {FOL} Singular Values')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

mu = 0.4; % Set Target Loop Bandwidth ...
Parameter

%mu = 1;
%mu = 10;
%mu = 20;
x = are(a',(1/mu)*c'*c,l*l'); % Solve Filter Algebraic Riccati ...

Equation (FARE)
h = (1/mu)*x*c'; % Solve for the Kalman Filter ...

Gain H

%
% Target Closed Loop Poles and Zeros
%
tclpoles = eig(a-h*c)
tclzeros = tzero(a-h*c,h,c, d)

%
% Target Open Loop SVD at s = j20
%
s = j*20
tol s = c*inv(s*eye(size(a))-a)*h + d
[tolu, tols, tolv] = svd(tol s)

%
% SVD Analysis yields:
%
% - maximum singular value associated with theta 2 (light link)
% - minimum singular value associated with theta 1 (heavy link)
%

%
% Target Open Loop Singular Values
%
winit = -2;

223

wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
sv = sigma(ss(a,h,c,d),w);
tlsv = 20*log10(sv);
figure;semilogx(w, tlsv)
title('Target Open Loop Singular Values at Output')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

%
% Target Sensitivity Singular Values
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
sv = sigma(ss(a-h*c,h,-c,eye(no,no)),w);
sv = 20*log10(sv);
figure;semilogx(w, sv)
title('Target Sensitivity Singular Values at Output')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

%
% Target Complementary Sensitivity Singular Values
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
sv = sigma(ss(a-h*c,h,c,d),w);
sv = 20*log10(sv);
figure;semilogx(w, sv)
title('Target Comp Sensitivity Singular Values at Output')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

%
% Target Closed Loop Singular Values
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts); % Form vector of ...

logarithmically spaced freq points
ntacl = a-h*c;
ntbcl = h;

224

ntccl = c;
ntdcl = d;
sv = sigma(ss(ntacl, ntbcl, ntccl, ntdcl),w);
sv = 20*log10(sv);
figure;semilogx(w, sv)
title('Target Closed Loop Singular Values (r to y)')
grid
xlabel('Frequency (rad/sec)')
ylabel('T {ry}, Singular Values (dB)')
pause

%
% Target Step Responses
%
tinit = 0;
tinc = 0.005;
tfin = 20.0;
t = [tinit:tinc:tfin]'; % Vector of uniformly ...

spaced time points
r1 = [ones(size(t)) zeros(size(t)) zeros(size(t)) zeros(size(t))];
r2 = [zeros(size(t)) ones(size(t)) zeros(size(t)) zeros(size(t))];
r3 = [zeros(size(t)) zeros(size(t)) ones(size(t)) zeros(size(t))];
r4 = [zeros(size(t)) zeros(size(t)) zeros(size(t)) ones(size(t))];

%
% Loop Transfer Recovery at Output
%
q = diag([0.1, 0.1, 0.1, 1, 100, 100, 100, 10, 10, 10, 10]);
rho = 1e-9; % LQG/LTRO Recovery ...

Parameter
[g, kp, clp] = lqr(a, b, q, rho*eye(nc,nc)); % Compute Control Gain ...

Matrix G

% This is a MBC followed by an integrator bannk.
%
ak = [0*ones(nc,no) g; zeros(ns+nc,no) a-b*g-h*c];
bk = [zeros(nc,no); h];
ck = [eye(nc,no) zeros(nc, ns+nc)];
dk = [zeros(no,no)];
%return

%
%***
%***
%***
%
%

kpoles = eig(ak) % Compensator Poles
kzeros = tzero(ak, bk, ck, dk) % Compensator Zeros

winit = -8;

225

wfin = 4;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(ak, bk, ck, dk),w);
sv = 20*log10(sv);
figure; semilogx(w, sv)
%clear sv
title('Compensator Singular Values')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause
%return

%
% Form Open Loop System
%
[al, bl, cl, dl] = series(ak, bk, ck, dk, ap, bp, cp, dp);

olpoles = eig(al) % Open Loop Poles
olzeros = tzero(al,bl,cl,dl) % Open Loop Zeros

winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(al, bl, cl, dl), w);
sv = 20*log10(sv);
figure; semilogx(w, sv, w, tlsv)
%clear sv
title('Open Loop Singular Values at Error (Recovered and Target)')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

figure; semilogx(w, sv)
%clear sv
title('Open Loop Singular Values at Error')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

%return

%
% Form Open Loop System
%
[ali, bli, cli, dli] = series(ap, bp, cp, dp, ak, bk, ck, dk);

winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(ali, bli, cli, dli), w);

226

sv = 20*log10(sv);
figure; semilogx(w, sv)
%clear sv
title('Open Loop Singular Values at Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause
%return

%
% Form Closed Loop System
%
acl = al-bl*cl;
bcl = bl;
ccl = cl;
dcl = dl;

clpoles = eig(acl) % Closed Loop Poles
damp(clpoles)
clzeros = tzero(acl,bcl,ccl,dcl) % Closed Loop Zeros (r to y)

%
% Sensitivity at Error
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(acl, bcl, -ccl, eye(4)),w);
sv = 20*log10(sv);
figure; semilogx(w, sv)
%clear sv
title('Sensitivity Singular Values at Error')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause
%return

%
% Sensitivity at Input
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(ali-bli*cli, bli, -cli, eye(4)),w);
sv = 20*log10(sv);
figure; semilogx(w, sv)
%clear sv
title('Sensitivity Singular Values at Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause

227

%return

%
% Complementary Sensitivity
%
winit = -2;
wfin = 2;
nwpts = 200;
w = logspace(winit,wfin,nwpts);
sv = sigma(ss(acl, bcl, ccl, dcl),w);
sv = 20*log10(sv);
figure; semilogx(w, sv)
%clear sv
title('Complementary Sensitivity Singular Values at Ouput')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
pause
%return

%%
cls = ss(acl, bcl, ccl, dcl);
t = [0:0.02:20];
[y, t, x1] = step(cls,t);
%
% POSITION IN X-AXIS COMMAND
%
% x: r = [1 0 0 0] x-axis position Command
%
figure;
subplot(2,1,1);
plot(t,y(:,:,1))
grid
title('Output Response To r = [1 0 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [1 0 0 0] x-axis position Command
%
[u, t] = step(ss(ak,bk,ck,dk),t);
u10=u(:,:,1);
subplot(2,1,2);
plot(t,u10)
grid
title('Input Response To r = [1 0 0 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%
% POSITION IN Y-AXIS COMMAND
%
% y: r = [0 1 0 0] y-axis position Command
%

228

figure;
subplot(2,1,1);
plot(t,y(:,:,2))
grid
title('Output Response To r = [0 1 0 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [0 1 0 0] y-axis position Command
%
[u, t] = step(ss(ak,bk,ck,dk),t);
u20=u(:,:,2);
subplot(2,1,2);
plot(t,u20)
grid
title('Input Response To r = [0 1 0 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%
% POSITION IN Z-AXIS COMMAND
%
% z: r = [0 0 1 0] z-axis position Command
%
figure;
subplot(2,1,1);
plot(t,y(:,:,3))
grid
title('Output Response To r = [0 0 1 0] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [0 0 1 0] z-axis position Command
%
[u, t] = step(ss(ak,bk,ck,dk),t);
u30=u(:,:,3);
subplot(2,1,2);
plot(t,u30)
grid
title('Input Response To r = [0 0 1 0] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

%
% YAW COMMAND
%
% Yaw: r = [0 0 0 1] yaw Command
%
figure;
subplot(2,1,1);
plot(t,y(:,:,4))

229

grid
title('Output Response To r = [0 0 0 1] Command')
ylabel('Outputs')
xlabel('Time (seconds)')
legend('x', 'y', 'z', 'psi')
%
% Controls: r = [0 0 0 1] yaw Command
%
[u, t] = step(ss(ak,bk,ck,dk),t);
u40=u(:,:,4);
subplot(2,1,2);
plot(t,u40)
grid
title('Input Response To r = [0 0 0 1] Command')
ylabel('Controls')
xlabel('Time (seconds)')
legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
pause

230

APPENDIX B

FLIGHT CONTROLLER CODE

231

B.1 Quadrotor.ino

// Author: Abdullah Altawaitan
// Description: Teensy 3.2 code
// Check the Following:
// 1. The voltage readings
// 2. The Baud rate
// 3. The receiver channels
// 4. The control mode
#include "Communication.h"

Quadrotor Quad;
Communication Vive;
SBUS Radiolink(Serial2);

void setup()
{
Teensy();
Quad.MotorInit();
Quad.SensorInit();
Quad.FilterInit();
digitalWrite(LEDRed, LOW);
digitalWrite(LEDGreen, HIGH);
Serial.println("Now Ready!");
Quad.loop timer = micros();

}

void loop()
{
// outerCounter for 100Hz
Quad.outerCounter++;
Receiver();
Quad.ArmingState();
Quad.BatteryVoltageCheck();
Quad.Estimation(1);
Vive.ROS Send(&Quad);
Quad.Receiver();
Quad.Control(2);
Quad.DifferentialFlatness();
Quad.AttitudeControl();
Quad.GenerateMotorCommands();
Quad.LoopCounter();

}

void Teensy()
{
Serial.begin(115200);
Serial1.begin(115200);
Radiolink.begin();
pinMode(LEDRed, OUTPUT);
pinMode(LEDGreen, OUTPUT);
digitalWrite(LEDGreen, LOW);
digitalWrite(LEDRed, LOW);

232

Quad.channel.CH1 = 1000;
Quad.channel.CH2 = 1000;
Quad.channel.CH3 = 250;
Quad.channel.CH4 = 1000;
Quad.channel.CH5 = 250;
Quad.channel.CH6 = 250;
Quad.QuadrotorState = 0;

}

void Receiver()
{
if (Radiolink.read(Quad.channels, &Quad.failSafe, &Quad.lostFrames))
{
Quad.channel.CH1 = Quad.channels[0];
Quad.channel.CH2 = Quad.channels[1];
Quad.channel.CH3 = Quad.channels[2];
Quad.channel.CH4 = Quad.channels[3];
Quad.channel.CH5 = Quad.channels[4];
Quad.channel.CH6 = Quad.channels[5];
Quad.channel.CH7 = Quad.channels[6];
Quad.channel.CH8 = Quad.channels[7];
Quad.channel.CH9 = Quad.channels[8];
Quad.channel.CH10 = Quad.channels[9];

}
}

void serialEvent1()
{
Vive.ROS Receive(&Quad);

}

B.2 Quadrotor.h

// Author: Abdullah Altawaitan

#include "i2c t3.h"
#include "EEPROM.h"
#include "SBUS.h"
#include "Arduino.h"
#include "Quaternion.h"
#include "IMU.h"
#include <cmath>
#include <SoftwareSerial.h>

// Teensy 3.2 pins
#define MOTOR1 20
#define MOTOR2 6
#define MOTOR3 21
#define MOTOR4 5
#define CHANNEL1 23
#define CHANNEL2 22
#define CHANNEL3 17
#define CHANNEL4 16
#define CHANNEL5 24

233

#define CHANNEL6 26
#define CHANNEL7 27
#define CHANNEL8 28
#define LED 13
#define LEDRed 31
#define LEDGreen 33

// Motor parameters
#define MIN MOTOR LEVEL 1055
#define MAX MOTOR LEVEL 1550
#define OFF MOTOR LEVEL 950

// AHRS
#define twoKi (2.0f * 0.25f)
#define twoKp (2.0f * 0.5f)

// Quadrotor modes
#define START MODE 0
#define TRANS MODE 1
#define ARMING MODE 2
#define TEMP MODE 3
#define DISARMING MODE 4

// Quadrotor Parameters
#define mass 0.647
#define armlength 0.1215
#define k f 0.000001518 // Thrust coefficient
#define k m 0.00000001843 // Torque coefficient
#define kappa 0.0127 // Ratio between thrust [N] and torque due to ...

drag [N m] kappa = torque/thrust
#define Ixx 0.002
#define PWM FACTOR 26.214 // 65535.0 / 2500.0

// Loop
#define FREQ 400
#define dt 0.0025 // Period for 400Hz
#define dtOuter 0.01 // Period for 100Hz
#define dtMicroseconds 2500

// Inner-loop PID parameters
#define kpPQRx 0.1
#define kdPQRx 0.003
#define kiPQRx 0.5
#define kpPQRy 0.1
#define kdPQRy 0.003
#define kiPQRy 0.5
#define kpPQRz 0.1
#define kdPQRz 0.001
#define kiPQRz 0.2
// Outer-loop PID parameters
#define kpx 7
#define kdx 0
#define kix 0
#define kpy 7
#define kdy 0
#define kiy 0

234

#define kpz 9
#define kdz 0
#define kiz 0

class Quadrotor
{
public:

struct STATE {
float x, y, z, phi, theta, psi, xdot, ydot, zdot, p, q, r;
Quaternion quaternion;

};
struct XYZ {

float x, y, z;
};
struct GYRO {

XYZ raw, tempOffset, gyroOffset, calibrated, filtered;
};
struct ACCEL {

XYZ raw, afterOffset, calibrated, filtered;
};
struct FILTER {

float b0, b1, b2, a1, a2, element0, element1, element2;
};
struct Q {

float w, x, y, z;
};
struct TRIG {

float phi sin, theta sin, psi sin, phi cos, theta cos, psi cos;
};
struct CH {

short CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8, CH9, CH10;
};
struct ERROR {

float p, q, r, p prev1, p prev2, p prev3, q prev1, q prev2, ...
q prev3, r prev1, r prev2, r prev3, p integral, q integral, ...
r integral;

float phi, theta, psi, phi prev1, theta prev1, psi prev1, ...
phi integral, theta integral, psi integral;

float xdot, xdot prev1, xdot prev2, xdot prev3, xdot integral, ...
ydot, ydot prev1, ydot prev2, ydot prev3, ydot integral, ...
zdot, zdot prev1, zdot prev2, zdot prev3, zdot integral;

float x, y, z, x integral, y integral, z integral;
};
struct Acc Cali {

int16 t accel raw[6][3], accel timer = 0;
int32 t accel calitmpx, accel calitmpy, accel calitmpz;
float accel offset[3], a[3][3], T[3][3];
float g = 8192; // for +-4g range

};
struct CONTROLS {

float current, prev1, prev2, prev3; // U[n], U[n-1], U[n-2], U[n-3]
};
struct W {

float input, input prev1, output, output prev1; // W = (az + ...
a)/(z - b) first-order prefilter W = c/(s + c)

};

235

// Sensor variables
IMU imu;
GYRO gyro;
ACCEL accel;
FILTER gyroFilterParameterX, gyroFilterParameterY, ...

gyroFilterParameterZ, accelFilterParameterX, ...
accelFilterParameterY, accelFilterParameterZ;

Acc Cali Acc Cali;
Q q = {1.0, 0.0, 0.0, 0.0};
XYZ gyroAngle;
XYZ accelAngle;
int8 t gyro calibration done = 0;
int8 t accel calibration done = 0;
short gyro calibration counter = 0;
float GyroCollection[3] = {0, 0, 0};
float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f;
Quaternion quat;
float temperature;

// Quadrotor variables
STATE X;
STATE Xdes;
ERROR error;
TRIG trig;
int16 t throttle;
uint8 t QuadrotorState = START MODE;
float voltage;
unsigned long loop timer;
uint8 t blink = 0;
uint8 t blinkCounter = 0;
int flight mode = 0;

// Control variables
CONTROLS U1, U2, U3, U4; // Inner loop
CONTROLS U1des;
W Wp, Wq, Wr, Wxdot, Wydot, Wzdot; // Prefilter
uint8 t outerCounter = 0;
int8 t control method = 0;
int control method counter = 0;

// Receiver variables
CH channel;
uint16 t channels[16];
uint8 t failSafe;
uint16 t lostFrames = 0;
bool lastChannel1, lastChannel2, lastChannel3, lastChannel4, ...

lastChannel5;
unsigned long receiverChannelTimer1, receiverChannelTimer2, ...

receiverChannelTimer3, receiverChannelTimer4, ...
receiverChannelTimer5;

float RCYawRate;

// Motor variables
float PWM1, PWM2, PWM3, PWM4;
float volt1, volt2, volt3, volt4;

236

float omega1, omega2, omega3, omega4;
float omega1Squared, omega2Squared, omega3Squared, omega4Squared;

// Xbee Zigbee variables
const byte numChars = 32;
char receivedChars[32];
char tempChars[32];
float float1 = 0.0;
float float2 = 0.0;
float float3 = 0.0;
boolean newData = false;
uint8 t Xbee couter = 0;
uint8 t Xbee couter2 = 0;
uint16 t DataTimer = 0;

// HTC Vive
uint8 t Xbee data[500];
int16 t Xbee length;
short Xbee command;
float moving average[13][5], sum average[13];

// Methods
void MotorInit(void);
void SensorInit(void);
void IMUread(void);
void GyroCalibration(void);
void AccelCalibration(uint8 t point);
void AccelOffsetRead(void);
void FilterInit(void);
void Estimation(int8 t method);
void NonlinearComplementaryFilter(void);
void AHRS(void);
void MahonyAHRS(void);
void MahonyAHRSUpdate(float gx, float gy, float gz, float ax, ...

float ay, float az);
void ArmingState(void);
void BatteryVoltageCheck(void);
void Receiver(void);
void Control(int8 t method);
void ThrottleControl(void);
void AttitudeControl(void);
void AngularRateControl(void);
void AltitudeControl(void);
void PositionControl(void);
void VelocityControl(void);
void DifferentialFlatness(void);
void GenerateMotorCommands(void);
void MotorRun(void);
void SecondOrderLowPassFilter(float sample freq, float ...

cutoff freq, struct FILTER *input IIR);
void LoopCounter(void);
float SecondOrderLowPassFilterApply(float cutoff freq, float ...

sample, struct FILTER *input IIR);
float CONSTRAIN(float x, float min, float max);
float invSqrt(float number);

237

private:

};

B.3 Quadrotor.cpp

#include "Quadrotor.h"

// Motor initialization
void Quadrotor::MotorInit(void)
{
voltage = (float)analogRead(A14) * 0.019586;
pinMode(MOTOR1, OUTPUT);
pinMode(MOTOR2, OUTPUT);
pinMode(MOTOR3, OUTPUT);
pinMode(MOTOR4, OUTPUT);
analogWriteFrequency(MOTOR1, 400);
analogWriteFrequency(MOTOR2, 400);
analogWriteFrequency(MOTOR3, 400);
analogWriteFrequency(MOTOR4, 400);
analogWriteResolution(16);

// Motors initialization
float PWM = PWM FACTOR * OFF MOTOR LEVEL;
analogWrite(MOTOR1, PWM);
analogWrite(MOTOR2, PWM);
analogWrite(MOTOR3, PWM);
analogWrite(MOTOR4, PWM);

}

// Sensor initialization and calibration
// Source: Pololu Robotics and Electronics ...

(https://github.com/pololu/lsm303-arduino)
// Source: Andrea Vitali (DT0053 Design tip - 6-point tumble sensor ...

calibration)
void Quadrotor::SensorInit(void)
{
Wire.begin();
Wire.setRate(I2C RATE 2000);
Wire1.begin();
Wire1.setRate(I2C RATE 2000);

// Gyroscope initialization
imu.Init();

// Sensor calibration
Serial.println("Sensor Calibration...");
Serial.println("Place Quadrotor on level.");
delay(1000);
// Accelerometer calibration
Serial.println("If you enter 'a', the calibration will get started.");
delay(3000);
char incomingByte = Serial.read();

238

if (incomingByte == 'a')
{
Serial.println("On Level, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(4);

}
accel calibration done = 0;

Serial.println("On Back, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(5);

}
accel calibration done = 0;

Serial.println("Right Wing Up, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(3);

}
accel calibration done = 0;

Serial.println("Left Wing Up, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(2);

}
accel calibration done = 0;

Serial.println("Nose Up, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(0);

}
accel calibration done = 0;

Serial.println("Nose Down, and wait for 10 seconds");
delay(10000);
while (accel calibration done == 0)
{
Quadrotor::AccelCalibration(1);

}
accel calibration done = 1;

}

Quadrotor::AccelOffsetRead();
accel calibration done = 1;
while (gyro calibration done == 0 && gyro calibration counter <= 1500)
{
gyro calibration counter++;
GyroCalibration();

239

}
Serial.println("Sensor Calibration... Done!");

}

// Read Gyroscope Data
// Source: Shi Lu (https://github.com/ragewrath/Mark3-Copter-Pilot)
void Quadrotor::IMUread(void)
{
imu.read();
accel.raw.x = imu.a.x;
accel.raw.y = imu.a.y;
accel.raw.z = imu.a.z;
gyro.raw.x = imu.g.x;
gyro.raw.y = imu.g.y;
gyro.raw.z = imu.g.z;

// Sensor Thermal Compensation
float temp, temp2, temp3;
temperature = (float) imu.temp / 340.0 + 36.53;
temp = temperature;
temp = Quadrotor::CONSTRAIN(temp, 22.5, 55.0);
temp2 = temp * temp;
temp3 = temp * temp * temp;
gyro.tempOffset.x = 0.000263 * temp3 - 0.03098 * temp2 + 0.03939 * ...

temp - 29.4;
gyro.tempOffset.y = -0.0004279 * temp3 + 0.05322 * temp2 - 2.941 * ...

temp + 80.16;
gyro.tempOffset.z = 0.0004163 * temp3 - 0.0332 * temp2 + 0.6652 * ...

temp + 23.3;
gyro.calibrated.x = (gyro.raw.x - gyro.tempOffset.x);
gyro.calibrated.y = (gyro.raw.y - gyro.tempOffset.y);
gyro.calibrated.z = (gyro.raw.z - gyro.tempOffset.z);

if (gyro calibration done == 1)
{
gyro.calibrated.x = gyro.calibrated.x - gyro.gyroOffset.x;
gyro.calibrated.y = gyro.calibrated.y - gyro.gyroOffset.y;
gyro.calibrated.z = gyro.calibrated.z - gyro.gyroOffset.z;

gyro.filtered.x = Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
gyro.calibrated.x, &gyroFilterParameterX);

gyro.filtered.y = Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
-gyro.calibrated.y, &gyroFilterParameterY);

gyro.filtered.z = Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
-gyro.calibrated.z, &gyroFilterParameterZ);

float p deg = gyro.filtered.x / 32.768;
float q deg = gyro.filtered.y / 32.768;
float r deg = gyro.filtered.z / 32.768;

X.p = p deg * (PI/180);
X.q = q deg * (PI/180);
X.r = r deg * (PI/180);

gyroAngle.x += p deg * dt;
gyroAngle.y += q deg * dt;
gyroAngle.z += r deg * dt;

240

}

if (accel calibration done == 1)
{
accel.afterOffset.x = (float)accel.raw.x - Acc Cali.accel offset[0];
accel.afterOffset.y = (float)accel.raw.y - Acc Cali.accel offset[1];
accel.afterOffset.z = (float)accel.raw.z - Acc Cali.accel offset[2];

accel.calibrated.x = accel.afterOffset.x * Acc Cali.T[0][0] + ...
accel.afterOffset.y * Acc Cali.T[1][0] + ...
accel.afterOffset.z * Acc Cali.T[2][0];

accel.calibrated.y = accel.afterOffset.x * Acc Cali.T[0][1] + ...
accel.afterOffset.y * Acc Cali.T[1][1] + ...
accel.afterOffset.z * Acc Cali.T[2][1];

accel.calibrated.z = accel.afterOffset.x * Acc Cali.T[0][2] + ...
accel.afterOffset.y * Acc Cali.T[1][2] + ...
accel.afterOffset.z * Acc Cali.T[2][2];

accel.filtered.x = ...
Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
accel.calibrated.x, &accelFilterParameterX);

accel.filtered.y = ...
Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
accel.calibrated.y, &accelFilterParameterY);

accel.filtered.z = ...
Quadrotor::SecondOrderLowPassFilterApply(30.0, ...
accel.calibrated.z, &accelFilterParameterZ);

}
}

// Gyroscope calibration
// Source: Pololu Robotics and Electronics ...

(https://github.com/pololu/lsm303-arduino)
// Source: Andrea Vitali (DT0053 Design tip - 6-point tumble sensor ...

calibration)
void Quadrotor::GyroCalibration(void)
{
if (gyro calibration counter > 400 && gyro calibration counter < 1001)
{
Quadrotor::IMUread();
GyroCollection[0] += gyro.calibrated.x;
GyroCollection[1] += gyro.calibrated.y;
GyroCollection[2] += gyro.calibrated.z;

}
if (gyro calibration counter == 1001)
{
gyro.gyroOffset.x = GyroCollection[0] / 600;
gyro.gyroOffset.y = GyroCollection[1] / 600;
gyro.gyroOffset.z = GyroCollection[2] / 600;
GyroCollection[0] = 0;
GyroCollection[1] = 0;
GyroCollection[2] = 0;
gyro calibration done = 1;

}
}

// Accelerometer Calibration

241

// Source: Andrea Vitali (DT0053 Design tip - 6-point tumble sensor ...
calibration)

// Source: Shi Lu (https://github.com/ragewrath/Mark3-Copter-Pilot)
void Quadrotor::AccelCalibration(uint8 t point)
{
if (Acc Cali.accel timer == 100)
{
Acc Cali.accel raw[point][0] = Acc Cali.accel calitmpx / 100;
Acc Cali.accel raw[point][1] = Acc Cali.accel calitmpy / 100;
Acc Cali.accel raw[point][2] = Acc Cali.accel calitmpz / 100;
Acc Cali.accel calitmpx = 0;
Acc Cali.accel calitmpy = 0;
Acc Cali.accel calitmpz = 0;
Acc Cali.accel timer = 0;
EEPROM.write(100 + 6 * point + 1, Acc Cali.accel raw[point][0] & ...

0b11111111);
EEPROM.write(100 + 6 * point + 2, Acc Cali.accel raw[point][0] ...

>> 8);
EEPROM.write(100 + 6 * point + 3, Acc Cali.accel raw[point][1] & ...

0b11111111);
EEPROM.write(100 + 6 * point + 4, Acc Cali.accel raw[point][1] ...

>> 8);
EEPROM.write(100 + 6 * point + 5, Acc Cali.accel raw[point][2] & ...

0b11111111);
EEPROM.write(100 + 6 * point + 6, Acc Cali.accel raw[point][2] ...

>> 8);
accel calibration done = 1;

}
else
{
Quadrotor::IMUread();
Acc Cali.accel calitmpx += accel.raw.x;
Acc Cali.accel calitmpy += accel.raw.y;
Acc Cali.accel calitmpz += accel.raw.z;
Acc Cali.accel timer++;

}
}

// Accelerometer Offset Calculation
// Source: Andrea Vitali (DT0053 Design tip - 6-point tumble sensor ...

calibration)
// Source: Shi Lu (https://github.com/ragewrath/Mark3-Copter-Pilot)
void Quadrotor::AccelOffsetRead(void)
{
uint8 t point;
for (point = 0; point < 6; point++)
{
Acc Cali.accel raw[point][0] = (EEPROM.read(100 + 6 * point + 2) ...

<< 8) | EEPROM.read(100 + 6 * point + 1);
Acc Cali.accel raw[point][1] = (EEPROM.read(100 + 6 * point + 4) ...

<< 8) | EEPROM.read(100 + 6 * point + 3);
Acc Cali.accel raw[point][2] = (EEPROM.read(100 + 6 * point + 6) ...

<< 8) | EEPROM.read(100 + 6 * point + 5);
}

Acc Cali.accel offset[0] = (float)(Acc Cali.accel raw[0][0] + ...
Acc Cali.accel raw[1][0]) / 2.0;

242

Acc Cali.accel offset[1] = (float)(Acc Cali.accel raw[2][1] + ...
Acc Cali.accel raw[3][1]) / 2.0;

Acc Cali.accel offset[2] = (float)(Acc Cali.accel raw[4][2] + ...
Acc Cali.accel raw[5][2]) / 2.0;

Serial.println("------------------------");
Serial.println("Accelerometer Offset: ");
Serial.println("------------------------");
Serial.print(Acc Cali.accel offset[0]);
Serial.print(", ");
Serial.print(Acc Cali.accel offset[1]);
Serial.print(", ");
Serial.println(Acc Cali.accel offset[2]);

for (point = 0; point < 3; point++)
Acc Cali.a[0][point] = (float)Acc Cali.accel raw[0][point] - ...

Acc Cali.accel offset[point];
for (point = 0; point < 3; point++)

Acc Cali.a[1][point] = (float)Acc Cali.accel raw[2][point] - ...
Acc Cali.accel offset[point];

for (point = 0; point < 3; point++)
Acc Cali.a[2][point] = (float)Acc Cali.accel raw[4][point] - ...

Acc Cali.accel offset[point];

Acc Cali.T[0][0] = (Acc Cali.g * (Acc Cali.a[1][1] * ...
Acc Cali.a[2][2] - Acc Cali.a[1][2] * Acc Cali.a[2][1])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[0][1] = -(Acc Cali.g * (Acc Cali.a[0][1] * ...
Acc Cali.a[2][2] - Acc Cali.a[0][2] * Acc Cali.a[2][1])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[0][2] = (Acc Cali.g * (Acc Cali.a[0][1] * ...
Acc Cali.a[1][2] - Acc Cali.a[0][2] * Acc Cali.a[1][1])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[1][0] = -(Acc Cali.g * (Acc Cali.a[1][0] * ...
Acc Cali.a[2][2] - Acc Cali.a[1][2] * Acc Cali.a[2][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

243

Acc Cali.T[1][1] = (Acc Cali.g * (Acc Cali.a[0][0] * ...
Acc Cali.a[2][2] - Acc Cali.a[0][2] * Acc Cali.a[2][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[1][2] = -(Acc Cali.g * (Acc Cali.a[0][0] * ...
Acc Cali.a[1][2] - Acc Cali.a[0][2] * Acc Cali.a[1][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[2][0] = (Acc Cali.g * (Acc Cali.a[1][0] * ...
Acc Cali.a[2][1] - Acc Cali.a[1][1] * Acc Cali.a[2][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[2][1] = -(Acc Cali.g * (Acc Cali.a[0][0] * ...
Acc Cali.a[2][1] - Acc Cali.a[0][1] * Acc Cali.a[2][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Acc Cali.T[2][2] = (Acc Cali.g * (Acc Cali.a[0][0] * ...
Acc Cali.a[1][1] - Acc Cali.a[0][1] * Acc Cali.a[1][0])) / ...
(Acc Cali.a[0][0] * Acc Cali.a[1][1] * Acc Cali.a[2][2] - ...
Acc Cali.a[0][0] * Acc Cali.a[1][2] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][1] * Acc Cali.a[1][0] * Acc Cali.a[2][2] + ...
Acc Cali.a[0][1] * Acc Cali.a[1][2] * Acc Cali.a[2][0] + ...
Acc Cali.a[0][2] * Acc Cali.a[1][0] * Acc Cali.a[2][1] - ...
Acc Cali.a[0][2] * Acc Cali.a[1][1] * Acc Cali.a[2][0]);

Serial.println("------------------------");
Serial.println("Accelerometer Calibration: ");
Serial.println("------------------------");
Serial.print(Acc Cali.T[0][0]);
Serial.print(", ");
Serial.print(Acc Cali.T[0][1]);
Serial.print(", ");
Serial.println(Acc Cali.T[0][2]);
Serial.print(Acc Cali.T[1][0]);
Serial.print(", ");
Serial.print(Acc Cali.T[1][1]);
Serial.print(", ");
Serial.println(Acc Cali.T[1][2]);
Serial.print(Acc Cali.T[2][0]);

244

Serial.print(", ");
Serial.print(Acc Cali.T[2][1]);
Serial.print(", ");
Serial.println(Acc Cali.T[2][2]);
Serial.println("------------------------");

}

// Second Order Low Pass Filter for Gyroscope data
void Quadrotor::FilterInit(void)
{
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&gyroFilterParameterX);
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&gyroFilterParameterY);
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&gyroFilterParameterZ);
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&accelFilterParameterX);
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&accelFilterParameterY);
Quadrotor::SecondOrderLowPassFilter(400.0, 30.0, ...

&accelFilterParameterZ);
}

// Sensor Estimation Methods
// Method 1: AHRS
// Method 2: Nonlinear Complementary Filter
void Quadrotor::Estimation(int8 t method)
{
// Choosing one of the methods
if (method == 1)
{
Quadrotor::AHRS();

}
else if (method == 2)
{
Quadrotor::NonlinearComplementaryFilter();

}
else
{
Quadrotor::AHRS();

}
}

// Nonlinear Complementary Filter
// Source: S. Tellex, A. Brown, and S. Lupashin. Estimation for ...

Quadrotors. June 11, 2018.
void Quadrotor::NonlinearComplementaryFilter(void)
{
Quadrotor::IMUread();

accelAngle.x = -atan(accel.calibrated.x / accel.calibrated.z); // ...
Roll [rad]

accelAngle.y = atan(accel.calibrated.y / accel.calibrated.z); // ...
Pitch [rad]

245

XYZ gyroAngle rad;
gyroAngle rad.x = gyroAngle.x * PI / 180;
gyroAngle rad.y = -gyroAngle.y* PI / 180;
gyroAngle rad.z = -gyroAngle.z * PI / 180;

// Nonlinear Complementary Filter using Quaternions
double tau = (0.90) / (1 - 0.90) * dt;
quat.q[0] = cos(gyroAngle rad.x / 2) * cos(gyroAngle rad.y / 2) * ...

cos(gyroAngle rad.z / 2) + sin(gyroAngle rad.x / 2) * ...
sin(gyroAngle rad.y / 2) * sin(gyroAngle rad.z / 2);

quat.q[1] = -cos(gyroAngle rad.x / 2) * sin(gyroAngle rad.y / 2) * ...
sin(gyroAngle rad.z / 2) + cos(gyroAngle rad.y / 2) * ...
cos(gyroAngle rad.z / 2) * sin(gyroAngle rad.x / 2);

quat.q[2] = cos(gyroAngle rad.x / 2) * cos(gyroAngle rad.z / 2) ...
* sin(gyroAngle rad.y / 2) + sin(gyroAngle rad.x / 2) * ...
cos(gyroAngle rad.y / 2) * sin(gyroAngle rad.z / 2);

quat.q[3] = cos(gyroAngle rad.x / 2) * cos(gyroAngle rad.y / 2) * ...
sin(gyroAngle rad.z / 2) - sin(gyroAngle rad.x / 2) * ...
cos(gyroAngle rad.z / 2) * sin(gyroAngle rad.y / 2);

Quaternion dq;

double omega[3] = {gyro.calibrated.x, gyro.calibrated.y, ...
gyro.calibrated.z};

double theta = (double)sqrt(omega[0] * omega[0] * dt + omega[1] * ...
omega[1] * dt + omega[2] * omega[2] * dt);

if (theta < 1e-8) {
dq = dq;

} else {
dq.q[0] = cos(theta / 2.f);
dq.q[1] = sin(theta / 2.f) * omega[0] * dt / theta;
dq.q[2] = -sin(theta / 2.f) * omega[1] * dt / theta;
dq.q[3] = -sin(theta / 2.f) * omega[2] * dt / theta;

}

quat = Quaternion().multiply(dq, quat).normalize();

// Convert to Euler
double roll predicted, pitch predicted, yaw predicted;
roll predicted = atan2(2 * (quat.q[2] * quat.q[3] + quat.q[0] * ...

quat.q[1]), quat.q[0] * quat.q[0] - quat.q[1] * quat.q[1] - ...
quat.q[2] * quat.q[2] + quat.q[3] * quat.q[3]);

pitch predicted = -asin(2 * (quat.q[1] * quat.q[3] - quat.q[0] * ...
quat.q[2]));

yaw predicted = atan2(2 * (quat.q[1] * quat.q[2] + quat.q[0] * ...
quat.q[3]), quat.q[0] * quat.q[0] + quat.q[1] * quat.q[1] - ...
quat.q[2] * quat.q[2] - quat.q[3] * quat.q[3]);

X.phi = (tau / (tau + dt)) * (roll predicted) + (dt / (tau + dt)) ...
* accelAngle.x;

X.theta = (tau / (tau + dt)) * (pitch predicted) + (dt / (tau + ...
dt)) * accelAngle.y;

X.psi = yaw predicted;
}

246

// Attitude and Heading Reference Systems (AHRS)
// S. Madgwick (http://x-io.co.uk/res/doc/madgwick internal report.pdf)
// Source: Shi Lu (https://github.com/ragewrath/Mark3-Copter-Pilot)
void Quadrotor::AHRS(void)
{
Quadrotor::IMUread();
Quadrotor::MahonyAHRS();

}

void Quadrotor::MahonyAHRS()
{
float quat[4], ypr[3], gx, gy, gz, AHRS val[9];
AHRS val[0] = accel.filtered.x / 8192.0;
AHRS val[1] = accel.filtered.y / 8192.0;
AHRS val[2] = accel.filtered.z / 8192.0;
AHRS val[3] = X.p;
AHRS val[4] = -X.q;
AHRS val[5] = -X.r;

Quadrotor::MahonyAHRSUpdate(AHRS val[3], AHRS val[4], AHRS val[5], ...
AHRS val[0], AHRS val[1], AHRS val[2]);

quat[0] = q.w;
quat[1] = q.x;
quat[2] = q.y;
quat[3] = q.z;

gx = 2 * (quat[1] * quat[3] - quat[0] * quat[2]);
gy = 2 * (quat[0] * quat[1] + quat[2] * quat[3]);
gz = quat[0] * quat[0] - quat[1] * quat[1] - quat[2] * quat[2] + ...

quat[3] * quat[3];

ypr[0] = atan2(2 * quat[1] * quat[2] - 2 * quat[0] * quat[3], 2 * ...
quat[0] * quat[0] + 2 * quat[1] * quat[1] - 1);

ypr[1] = atan(gx / sqrt(gy * gy + gz * gz));
ypr[2] = atan(gy / sqrt(gx * gx + gz * gz));;

X.phi = ypr[2];
X.theta = ypr[1];
// When the base stations are off
if (channel.CH5 < 1600)
{
X.psi = ypr[0];

}
}

void Quadrotor::MahonyAHRSUpdate(float gx, float gy, float gz, float ...
ax, float ay, float az)

{
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
float q0, q1, q2, q3;
q0 = q.w;
q1 = q.x;
q2 = q.y;

247

q3 = q.z;

// Compute feedback only if accelerometer measurement valid ...
(avoids NaN in accelerometer normalisation)

if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {

// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;

// Estimated direction of gravity and vector perpendicular to ...
magnetic flux

halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;

// Error is sum of cross product between estimated and measured ...
direction of gravity

halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);

// Compute and apply integral feedback if enabled
if (twoKi > 0.0f) {

integralFBx += twoKi * halfex * (1.0f / FREQ); // integral ...
error scaled by Ki

integralFBy += twoKi * halfey * (1.0f / FREQ);
integralFBz += twoKi * halfez * (1.0f / FREQ);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;

}
else {

integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;

}

// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;

}

// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / FREQ)); // pre-multiply common factors
gy *= (0.5f * (1.0f / FREQ));
gz *= (0.5f * (1.0f / FREQ));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);

248

// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;

q.w = q0;
q.x = q1;
q.y = q2;
q.z = q3;

}

// Quadrotor States of Operation
void Quadrotor::ArmingState(void)
{
if (QuadrotorState == START MODE && channel.CH3 < 320 && ...

channel.CH4 < 320)
{
QuadrotorState = TRANS MODE;

}
if (QuadrotorState == TRANS MODE && channel.CH3 < 320 && ...

channel.CH4 > 900 && channel.CH4 < 1500)
{
QuadrotorState = ARMING MODE;
// Reset variables
error.p integral = 0;
error.q integral = 0;
error.r integral = 0;
error.phi integral = 0;
error.theta integral = 0;
error.psi integral = 0;

}
if (QuadrotorState == ARMING MODE && channel.CH3 < 320 && ...

channel.CH4 < 320)
{
QuadrotorState = TEMP MODE;

}
if (QuadrotorState == TEMP MODE && channel.CH3 < 320 && ...

channel.CH4 > 900 && channel.CH4 < 1500)
{
QuadrotorState = START MODE;

}
if (channel.CH3 < 320 && channel.CH4 > 1600)
{
QuadrotorState = DISARMING MODE;

}
if (channel.CH6 > 1000)
{
QuadrotorState = DISARMING MODE;

}
}

// Checking Battery Voltage
void Quadrotor::BatteryVoltageCheck(void)
{

249

float v = (float)analogRead(A14) * 0.019586;
voltage = v * 0.005 + voltage * 0.995;
voltage = Quadrotor::CONSTRAIN(voltage, 9.0, 17.0);
if (voltage < 10.5)
{
if (blink == 0)
{
if (blinkCounter <= 160)
{
blinkCounter += 1;

}
else
{
blinkCounter = 0;
blink = 1;

}
digitalWrite(LEDRed, HIGH);
digitalWrite(LEDGreen, LOW);

}
else
{
if (blinkCounter <= 160)
{
blinkCounter += 1;

}
else
{
blinkCounter = 0;
blink = 0;

}
digitalWrite(LEDRed, LOW);
digitalWrite(LEDGreen, LOW);

}
}
else
{
if (blink == 0)
{
if (blinkCounter <= 160)
{
blinkCounter += 1;

}
else
{
blinkCounter = 0;
blink = 1;

}
digitalWrite(LEDRed, LOW);
digitalWrite(LEDGreen, HIGH);

}
else
{
if (blinkCounter <= 160)
{
blinkCounter += 1;

}
else

250

{
blinkCounter = 0;
blink = 0;

}
digitalWrite(LEDRed, LOW);
digitalWrite(LEDGreen, LOW);

}
}

}

// RC Remote Signal Receiver
void Quadrotor::Receiver(void)
{
if (channel.CH5 < 1600)
{
Xdes.phi = 0;
if (channel.CH1 > 1100)
{
float phi desired degree = (channel.CH1 - 1100) / 30;
Xdes.phi = phi desired degree * (PI / 180.0);

}
else if (channel.CH1 < 900)
{
float phi desired degree = (channel.CH1 - 900) / 30;
Xdes.phi = phi desired degree * (PI / 180.0);

}
Xdes.phi = Quadrotor::CONSTRAIN(Xdes.phi, -0.6, 0.6);

Xdes.theta = 0;
if (channel.CH2 > 1100)
{
float theta desired degree = (channel.CH2 - 1100) / 30;
Xdes.theta = theta desired degree * (PI / 180.0);

}
else if (channel.CH2 < 900)
{
float theta desired degree = (channel.CH2 - 900) / 30;
Xdes.theta = theta desired degree * (PI / 180.0);

}
Xdes.theta = Quadrotor::CONSTRAIN(Xdes.theta, -0.6, 0.6);

RCYawRate = 0;
if (channel.CH4 > 1100)
{
float psi desired degree = (channel.CH4 - 1100) / 10;
RCYawRate = psi desired degree * (PI / 180.0);

}
else if (channel.CH4 < 900)
{
float psi desired degree = (channel.CH4 - 900) / 10;
RCYawRate = psi desired degree * (PI / 180.0);

}
RCYawRate = Quadrotor::CONSTRAIN(RCYawRate, -1.5, 1.5);

}
}

// Choosing the control method:

251

// 1. Classical PID
// 2. Pole-Placement
void Quadrotor::Control(int8 t method)
{
control method = method;

}

// Attitude Control (Outer-loop at 100Hz)
// P Controller
void Quadrotor::AttitudeControl(void)
{
if (outerCounter >= 4)
{
Wp.input = 0;
Wq.input = 0;
Wr.input = 0;
Wp.output = 0;
Wq.output = 0;
Wr.output = 0;

if (QuadrotorState == ARMING MODE)
{
if (channel.CH3 > 320 | | (channel.CH5 > 1600 && flight mode == ...

1) | | (channel.CH5 > 1600 && flight mode == 2) | | ...
(channel.CH5 > 1600 && flight mode == 3))

{
error.phi = Xdes.phi - X.phi;
Xdes.p = kpx * error.phi;

// Prefilter
Wp.input = Xdes.p;
Wp.output = (0.6 * Wp.output prev1) + (0.2 * Wp.input) + ...

(0.2 * Wp.input prev1);
Wp.output = Quadrotor::CONSTRAIN(Wp.output, -6.28, 6.28);

error.theta = Xdes.theta - X.theta;
Xdes.q = kpy * error.theta;

// Prefilter
Wq.input = Xdes.q;
Wq.output = (0.6 * Wq.output prev1) + (0.2 * Wq.input) + ...

(0.2 * Wq.input prev1);
Wq.output = Quadrotor::CONSTRAIN(Wq.output, -6.28, 6.28);

if (channel.CH5 > 1600) // HTC Vive Base Station
{
// Already have a desired yaw rate

}
else
{
error.psi = Xdes.psi - X.psi;
(error.psi < -PI ? error.psi+(2*PI) : (error.psi > PI ? ...

error.psi - (2*PI): error.psi));
Xdes.r = kpz * error.psi;
Xdes.r = Quadrotor::CONSTRAIN(Xdes.r, -1, 1);

if (RCYawRate >= 0.09 | | RCYawRate <= -0.09)

252

{
Xdes.r = RCYawRate;
Xdes.psi = X.psi;

}
if (channel.CH3 < 320)
{
Xdes.psi = X.psi;

}
}

}
}
Wp.output prev1 = Wp.output;
Wp.input prev1 = Wp.input;
Wq.output prev1 = Wq.output;
Wq.input prev1 = Wq.input;

}
Quadrotor::AngularRateControl();

}

// Angular Rate Control or Body Rate Control (Inner-loop at 400Hz)
// PID Controller (PD Controller is sufficient)
void Quadrotor::AngularRateControl(void)
{
U2.current = 0;
U3.current = 0;
U4.current = 0;
if (QuadrotorState == ARMING MODE)
{
if (channel.CH3 > 320 | | (channel.CH5 > 1600 && flight mode == ...

1) | | (channel.CH5 > 1600 && flight mode == 2) | | ...
(channel.CH5 > 1600 && flight mode == 3))

{
if (control method == 1) // PID with No prefilter
{
error.p = Xdes.p - X.p;
error.p integral += error.p * dt;
error.p integral = Quadrotor::CONSTRAIN(error.p integral, ...

-1, 1);
U2.current = error.p * kpPQRx + (error.p - error.p prev1) * ...

kdPQRx / dt + error.p integral * kiPQRx;
error.p prev1 = error.p;

error.q = Xdes.q - X.q;
error.q integral += error.q * dt;
error.q integral = Quadrotor::CONSTRAIN(error.q integral, ...

-1, 1);
U3.current = error.q * kpPQRy + (error.q - error.q prev1) * ...

kdPQRy / dt + error.q integral * kiPQRy;
error.q prev1 = error.q;

// Note: Using Radio Control (RC) we control the yaw angular ...
rate (NOT yaw angle)

// Base Station is ON
if (channel.CH5 > 1600)
{
error.r = Xdes.r - X.r;
U4.current = error.r * kpPQRz + (error.r - error.r prev1) ...

253

* kdPQRz / dt;
error.r prev1 = error.r;

}
else // Base Station is OFF
{
error.r = Xdes.r - X.r;
error.r integral += error.r * dt;
error.r integral = Quadrotor::CONSTRAIN(error.r integral, ...

-1, 1);
U4.current = error.r * kpPQRz + (error.r - error.r prev1) ...

* kdPQRz / dt + error.r integral * kiPQRz;
error.r prev1 = error.r;

}
}
else if (control method == 2) // PID with prefilter (Design ...

for Bandwidth and Robustness)
{
error.p = Wp.output - X.p;
U2.current = (2.2 * U2.prev1) - (1.56 * U2.prev2) + (0.36 * ...

U2.prev3) + (0.0918 * error.p) - (0.08645 * ...
error.p prev1) - (0.09174 * error.p prev2) + (0.08652 * ...
error.p prev3);

error.q = Wq.output - X.q;
U3.current = (2.2 * U3.prev1) - (1.56 * U3.prev2) + (0.36 * ...

U3.prev3) + (0.0918 * error.q) - (0.08645 * ...
error.q prev1) - (0.09174 * error.q prev2) + (0.08652 * ...
error.q prev3);

// Note: Using Radio Control (RC) we control the yaw angular ...
rate (NOT yaw angle)

// Base Station is ON
if (channel.CH5 > 1600)
{
error.r = Xdes.r - X.r;
U4.current = error.r * kpPQRz + (error.r - error.r prev1) ...

* kdPQRz / dt;
error.r prev1 = error.r;

}
else // Base Station is OFF
{
error.r = Xdes.r - X.r;
error.r integral += error.r * dt;
error.r integral = Quadrotor::CONSTRAIN(error.r integral, ...

-1, 1);
U4.current = error.r * kpPQRz + (error.r - error.r prev1) ...

* kdPQRz / dt + error.r integral * kiPQRz;
error.r prev1 = error.r;

}
}

}
}
U2.current = Quadrotor::CONSTRAIN(U2.current, -2, 2);
U2.prev3 = U2.prev2;
U2.prev2 = U2.prev1;
U2.prev1 = U2.current;
U3.current = Quadrotor::CONSTRAIN(U3.current, -2, 2);

254

U3.prev3 = U3.prev2;
U3.prev2 = U3.prev1;
U3.prev1 = U3.current;
error.p prev3 = error.p prev2;
error.p prev2 = error.p prev1;
error.p prev1 = error.p;
error.q prev3 = error.q prev2;
error.q prev2 = error.q prev1;
error.q prev1 = error.q;
error.r prev3 = error.r prev2;
error.r prev2 = error.r prev1;
error.r prev1 = error.r;

}

void Quadrotor::ThrottleControl(void)
{
if (QuadrotorState == ARMING MODE && channel.CH3 > 320)
{
float Thrust = 0.008193 * channel.CH3 - 2.458;
U1.current = Thrust / (cos(X.phi)*cos(X.theta));
U1.current = Quadrotor::CONSTRAIN(U1.current, 0, 15);;

}
else
{
U1.current = 0;

}
}

void Quadrotor::DifferentialFlatness(void)
{
if (channel.CH5 > 1600)
{
if (outerCounter >= 4)
{
if (QuadrotorState == ARMING MODE)
{
if (flight mode == 1 | | flight mode == 2 | | flight mode == 3)
{
U1des.current = Quadrotor::CONSTRAIN(U1des.current, 0, 15);
Xdes.phi = Quadrotor::CONSTRAIN(Xdes.phi, -0.6, 0.6);
Xdes.theta = Quadrotor::CONSTRAIN(Xdes.theta, -0.6, 0.6);
Xdes.r = Quadrotor::CONSTRAIN(Xdes.r, -2, 2);

// Assign Thrust Here
U1.current = U1des.current;

}
else if (flight mode == -1)
{
QuadrotorState = DISARMING MODE;

}
else
{
U1.current = 0;
Xdes.phi = 0;
Xdes.theta = 0;
Xdes.r = 0;

}

255

}
}

}
else
{
Quadrotor::ThrottleControl();

}
}

// Generate Motor Commands
// Shi Lu (https://github.com/ragewrath/Mark3-Copter-Pilot)
// Notes: Please read README file
void Quadrotor::GenerateMotorCommands(void)
{
omega1Squared = 130958.617 * U1.current - 1480900 * U2.current + ...

1480900 * U3.current + 1290232.68 * U4.current;
omega2Squared = 130958.617 * U1.current + 1480900 * U2.current - ...

1480900 * U3.current + 1290232.68 * U4.current;
omega3Squared = 130958.617 * U1.current + 1480900 * U2.current + ...

1480900 * U3.current - 1290232.68 * U4.current;
omega4Squared = 130958.617 * U1.current - 1480900 * U2.current - ...

1480900 * U3.current - 1290232.68 * U4.current;
omega1Squared = Quadrotor::CONSTRAIN(omega1Squared, 0, 900000000);
omega2Squared = Quadrotor::CONSTRAIN(omega2Squared, 0, 900000000);
omega3Squared = Quadrotor::CONSTRAIN(omega3Squared, 0, 900000000);
omega4Squared = Quadrotor::CONSTRAIN(omega4Squared, 0, 900000000);
omega1 = sqrt(omega1Squared);
omega2 = sqrt(omega2Squared);
omega3 = sqrt(omega3Squared);
omega4 = sqrt(omega4Squared);

// Motor Model
if (QuadrotorState == ARMING MODE)
{
float param a = 1166.0, param b = 5393, param c = 299600, ...

param d = 1544, param e = 894.5;
PWM1 = (omega1 * omega1 + param b * omega1 + param c) / (param a ...

* voltage + param d) + param e;
PWM2 = (omega2 * omega2 + param b * omega2 + param c) / (param a ...

* voltage + param d) + param e;
PWM3 = (omega3 * omega3 + param b * omega3 + param c) / (param a ...

* voltage + param d) + param e;
PWM4 = (omega4 * omega4 + param b * omega4 + param c) / (param a ...

* voltage + param d) + param e;
PWM1 = Quadrotor::CONSTRAIN(PWM1, MIN MOTOR LEVEL, MAX MOTOR LEVEL);
PWM2 = Quadrotor::CONSTRAIN(PWM2, MIN MOTOR LEVEL, MAX MOTOR LEVEL);
PWM3 = Quadrotor::CONSTRAIN(PWM3, MIN MOTOR LEVEL, MAX MOTOR LEVEL);
PWM4 = Quadrotor::CONSTRAIN(PWM4, MIN MOTOR LEVEL, MAX MOTOR LEVEL);

}
if (QuadrotorState != ARMING MODE)
{
PWM1 = OFF MOTOR LEVEL;
PWM2 = OFF MOTOR LEVEL;
PWM3 = OFF MOTOR LEVEL;
PWM4 = OFF MOTOR LEVEL;

}
if (QuadrotorState == DISARMING MODE)

256

{
PWM1 = OFF MOTOR LEVEL;
PWM2 = OFF MOTOR LEVEL;
PWM3 = OFF MOTOR LEVEL;
PWM4 = OFF MOTOR LEVEL;

}

Quadrotor::MotorRun();
}

// Run Motors
void Quadrotor::MotorRun(void)
{
float input1 = PWM FACTOR * PWM1;
float input2 = PWM FACTOR * PWM2;
float input3 = PWM FACTOR * PWM3;
float input4 = PWM FACTOR * PWM4;
analogWrite(MOTOR1, input1);
analogWrite(MOTOR2, input2);
analogWrite(MOTOR3, input3);
analogWrite(MOTOR4, input4);

}

// Second Order Low Pass Filter
// Source: Leonard Hall (https://github.com/PX4/Firmware) ...

PX4/Firmware/src/lib/mathlib/math/filter/LowPassFilter2p.cpp
void Quadrotor::SecondOrderLowPassFilter(float sample freq, float ...

cutoff freq, struct FILTER *input IIR)
{
if (cutoff freq <= 0.0f) {

// no filtering
return;

}
float fr = sample freq / cutoff freq;
float ohm = tanf(PI / fr);
float c = 1.0f + 2.0f * cosf(PI / 4.0f) * ohm + ohm * ohm;
input IIR->b0 = ohm * ohm / c;
input IIR->b1 = 2.0f * input IIR->b0;
input IIR->b2 = input IIR->b0;
input IIR->a1 = 2.0f * (ohm * ohm - 1.0f) / c;
input IIR->a2 = (1.0f - 2.0f * cosf(PI / 4.0f) * ohm + ohm * ohm) ...

/ c;
}

// Second Order Low Pass Filter Apply
// Source: Leonard Hall (https://github.com/PX4/Firmware) ...

PX4/Firmware/src/lib/mathlib/math/filter/LowPassFilter2p.cpp
float Quadrotor::SecondOrderLowPassFilterApply(float cutoff freq, ...

float sample, struct FILTER *input IIR)
{
if (cutoff freq <= 0.0f) {

// no filtering
return sample;

}
// do the filtering
input IIR->element0 = sample - input IIR->element1 * input IIR->a1 ...

257

- input IIR->element2 * input IIR->a2;
float output = input IIR->element0 * input IIR->b0 + ...

input IIR->element1 * input IIR->b1 + input IIR->element2 * ...
input IIR->b2;

input IIR->element2 = input IIR->element1;
input IIR->element1 = input IIR->element0;

// return the value. Should be no need to check limits
return output;

}

// Constrain Data Between Min and Max Values
float Quadrotor::CONSTRAIN(float x, float min, float max)
{
if (x < min) x = min;
if (x > max) x = max;
return x;

}

// Invert Square Root
float Quadrotor::invSqrt(float number) {
long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = * (long *) &y;
i = 0x5f3759df - (i >> 1);
y = * (float *) &i;
y = y * (threehalfs - (x2 * y * y));
return y;

}

void Quadrotor::LoopCounter(void)
{
if (outerCounter >= 4)
{
outerCounter = 0;

}
while (micros() - loop timer < dtMicroseconds);
// Reset the zero timer
loop timer = micros();

}

B.4 Communication.h

#include <Eigen.h> // Calls main Eigen matrix class library
#include <Eigen/LU> // Calls inverse, determinant, LU ...

decomp., etc.
#include "Quadrotor.h"
#include "mavlink.h"

using namespace Eigen; // Eigen related statement; simplifies ...

258

syntax for declaration of matrices

class Communication
{
public:

// Variables
struct CommunicationState {

float thrust, phi, theta, r;
int mode;

};
CommunicationState CommunicationState;

// Methods
void ROS Send(Quadrotor *quadrotor);
void ROS Receive(Quadrotor *quadrotor);

private:
};

B.5 Communication.cpp

#include "Communication.h"

void Communication::ROS Send(Quadrotor *quadrotor)
{

mavlink message t mav msg;
uint8 t len;
uint8 t buf[MAVLINK MAX PACKET LEN];
uint32 t time mav = micros();
mavlink msg raw imu pack(1, 1, &mav msg, time mav,
quadrotor->accel.filtered.x*1000, ...

quadrotor->accel.filtered.y*1000, ...
quadrotor->accel.filtered.z*1000,

quadrotor->X.p*1000, quadrotor->X.q*1000, quadrotor->X.r*1000, ...
quadrotor->X.phi*1000, quadrotor->X.theta*1000, ...
quadrotor->voltage*1000);

len = mavlink msg to send buffer(buf, &mav msg);
Serial1.write(buf, len);

}

void Communication::ROS Receive(Quadrotor *quadrotor)
{
mavlink message t msg;
mavlink status t status;
while (Serial1.available())
{
uint8 t c = Serial1.read();
if (mavlink parse char(MAVLINK COMM 0, c, &msg, &status))
{
switch (msg.msgid)
{
case MAVLINK MSG ID HEARTBEAT:

mavlink heartbeat t hb;
mavlink msg heartbeat decode(&msg, &hb);
Serial.print(millis());
Serial.print("\ncustom mode: "); ...

259

Serial.println(hb.custom mode);
Serial.print("Type: "); Serial.println(hb.type);
Serial.print("autopilot: "); Serial.println(hb.autopilot);
Serial.print("mavlink version: "); ...

Serial.println(hb.mavlink version);
Serial.println();
break;

case MAVLINK MSG ID ROLL PITCH YAW SPEED THRUST SETPOINT:
mavlink roll pitch yaw speed thrust setpoint t des;
mavlink msg roll pitch yaw speed thrust setpoint decode(&msg, ...

&des);
CommunicationState.thrust = des.thrust;
CommunicationState.phi = des.roll speed; // We are sending ...

roll angle (rad) NOT body roll rate
CommunicationState.theta = des.pitch speed; // We are ...

sending pitch angle (rad) NOT body pitch rate
CommunicationState.r = des.yaw speed;
CommunicationState.mode = des.time boot ms;
quadrotor->flight mode = CommunicationState.mode;
Serial.println(CommunicationState.thrust);

if (quadrotor->channel.CH5 > 1600)
{
quadrotor->U1des.current = CommunicationState.thrust;
quadrotor->Xdes.phi = CommunicationState.phi;
quadrotor->Xdes.theta = CommunicationState.theta;
quadrotor->Xdes.r = CommunicationState.r;

quadrotor->U1des.current = ...
quadrotor->CONSTRAIN(quadrotor->U1des.current, 0, 15);

quadrotor->Xdes.phi = ...
quadrotor->CONSTRAIN(quadrotor->Xdes.phi, -1.0, 1.0);

quadrotor->Xdes.theta = ...
quadrotor->CONSTRAIN(quadrotor->Xdes.theta, -1.0, 1.0);

quadrotor->Xdes.r = ...
quadrotor->CONSTRAIN(quadrotor->Xdes.r, -2, 2);

}
}

}
}

}

260

APPENDIX C

ROBOT OPERATING SYSTEM (ROS)

261

C.1 quad serial.cpp

// Author: Abdullah Altawaitan
// Date: April 4, 2019

#include "ros/ros.h"
#include <serial/serial.h>
#include "sensor msgs/Imu.h"
#include "quad/quad cmd msg.h"
#include "mavlink/mavlink.h"

serial::Serial ser;

class quad serial
{
public:

ros::NodeHandle n;
ros::Subscriber sub;
ros::Publisher pub;
sensor msgs::Imu imu;
quad::quad cmd msg quad cmd;

quad serial()
{
sub = n.subscribe<quad::quad cmd msg>("/quad cmd", 1000, ...

&quad serial::callback, this);
pub = n.advertise<sensor msgs::Imu>("quad serial imu", 1000);

}

~quad serial()
{
// Empty

}

void callback(const quad::quad cmd msg::ConstPtr& msg)
{
// Serial write
quad cmd.mode = msg->mode;
quad cmd.phi des = msg->phi des;
quad cmd.theta des = msg->theta des;
quad cmd.r des = msg->r des;
quad cmd.thrust des = msg->thrust des;
mavlink message t mav msg2;
uint8 t len;
uint8 t buf2[MAVLINK MAX PACKET LEN];
ros::Time begin = ros::Time::now();
mavlink msg roll pitch yaw speed thrust setpoint pack(255, 1, ...

&mav msg2,
quad cmd.mode, quad cmd.phi des, ...

quad cmd.theta des, ...
quad cmd.r des, ...
quad cmd.thrust des);

len = mavlink msg to send buffer(buf2, &mav msg2);
ser.write(buf2, len);

}

262

void serialRead(void)
{
// Serial read
uint8 t buf[MAVLINK MAX PACKET LEN];
size t length = ser.read(buf, sizeof(buf));
if (length > 0)
{
mavlink message t mav msg;

mavlink status t status;

for (int i = 0; i < length; i++)
{
if(mavlink parse char(MAVLINK COMM 0, buf[i], &mav msg, ...

&status))
{
switch (mav msg.msgid)
{
case MAVLINK MSG ID HEARTBEAT:

mavlink heartbeat t hb;
mavlink msg heartbeat decode(&mav msg, &hb);
break;

case MAVLINK MSG ID RAW IMU:
mavlink raw imu t mav imu;
mavlink msg raw imu decode(&mav msg, &mav imu);
imu.linear acceleration.x = ((float)mav imu.xacc)/1000.00;
imu.linear acceleration.y = ((float)mav imu.yacc)/1000.00;
imu.linear acceleration.z = ((float)mav imu.zacc)/1000.00;
imu.angular velocity.x = ((float)mav imu.xgyro)/1000.00;
imu.angular velocity.y = ((float)mav imu.ygyro)/1000.00;
imu.angular velocity.z = ((float)mav imu.zgyro)/1000.00;
imu.orientation.x = ((float)mav imu.xmag)/1000.00; // ...

Roll angle
imu.orientation.y = ((float)mav imu.ymag)/1000.00; // ...

Pitch angle
break;

}
}

}
}
pub.publish(imu);

}
};

int main(int argc, char **argv)
{
ros::init(argc, argv, "quad serial node");
quad serial quad;

try
{

ser.setPort("/dev/ttyUSB0");
ser.setBaudrate(115200);
serial::Timeout to = serial::Timeout::simpleTimeout(1000);
ser.setTimeout(to);
ser.open();

}

263

catch (serial::IOException& e)
{

ROS ERROR STREAM("Unable to open port ");
return -1;

}

if (ser.isOpen())
{

ROS INFO STREAM("Serial Port initialized");
}
else
{

return -1;
}

ros::Rate loop rate(50);

while (ros::ok())
{
quad.serialRead();
ros::spinOnce();
loop rate.sleep();

}

ros::shutdown();
return 0;

}

C.2 quad state.cpp

// Author: Abdullah Altawaitan
// Date: April 4, 2019

#include "ros/ros.h"
#include <serial/serial.h>
#include "Eigen/Dense"
#include "math.h"
#include "geometry msgs/Vector3.h"
#include "nav msgs/Odometry.h"
#include "sensor msgs/Imu.h"
#include "tf/LinearMath/Quaternion.h"
#include "tf/LinearMath/Matrix3x3.h"
#include "quad/quad state msg.h"
#include "mavlink/mavlink.h"

float x, y, z, vx, vy, vz, qw, qx, qy, qz;
float vx prev, vy prev, vz prev;
float x offset, y offset, z offset;
float sum average[13];
float moving average[13][5];
uint8 t initial = 0;
class quad state
{
public:

ros::NodeHandle n;

264

ros::Subscriber sub;
ros::Subscriber sub2;
ros::Publisher pub;
ros::Publisher pub2;
sensor msgs::Imu imu;
quad::quad state msg state;

quad state()
{
sub = n.subscribe<sensor msgs::Imu>("/quad serial imu", 1000, ...

&quad state::callback, this);
sub2 = ...

n.subscribe<nav msgs::Odometry>("/vive/LHR FC64C5CA odom", ...
1000, &quad state::callback2, this);

pub = n.advertise<quad::quad state msg>("quad state", 1000);
}

~quad state()
{
// Empty

}

void callback(const sensor msgs::Imu::ConstPtr& msg)
{
imu.linear acceleration.x = msg->linear acceleration.x;
imu.linear acceleration.y = msg->linear acceleration.y;
imu.linear acceleration.z = msg->linear acceleration.z;
imu.angular velocity.x = msg->angular velocity.x;
imu.angular velocity.y = msg->angular velocity.y;
imu.angular velocity.z = msg->angular velocity.z;
imu.orientation.x = msg->orientation.x; // Roll angle
imu.orientation.y = msg->orientation.y; // Pitch angle

state.velocity.angular.x = imu.angular velocity.x;
state.velocity.angular.y = imu.angular velocity.y;
state.velocity.angular.z = imu.angular velocity.z;
state.attitude.x = imu.orientation.x;
state.attitude.y = imu.orientation.y;

}

void callback2(const nav msgs::Odometry::ConstPtr& msg)
{
// Transformation
tf::Quaternion q1(msg->pose.pose.orientation.x,

msg->pose.pose.orientation.y,
msg->pose.pose.orientation.z,
msg->pose.pose.orientation.w);

tf::Quaternion q2(0.707, 0.000, 0.000, 0.707);
tf::Matrix3x3 m(q2*q1);
double roll, pitch, yaw;
m.getRPY(roll, pitch, yaw);
state.attitude.z = -(float) yaw; // Yaw (psi) in (rads)
tf::Quaternion myQuaternion;
myQuaternion.setRPY(roll, pitch, yaw);
state.pose.orientation.w = myQuaternion.w();
state.pose.orientation.x = myQuaternion.x();
state.pose.orientation.y = myQuaternion.y();

265

state.pose.orientation.z = myQuaternion.z();

// Moving Average
for (uint8 t j = 0; j < 13 ; j++)
{
sum average[j] = sum average[j] - moving average[j][4] / 5;

}

for (uint8 t i = 4; i > 0; i--)
{
for (uint8 t j = 0; j < 13 ; j++)
{
moving average[j][i] = moving average[j][i - 1];

}
}

if (initial == 0)
{
x offset = -(msg->pose.pose.position.x);
y offset = -(msg->pose.pose.position.z);
z offset = msg->pose.pose.position.y;
initial = initial + 1;

}

// Shift axes
x = -(msg->pose.pose.position.x) - x offset;
y = -(msg->pose.pose.position.z) - y offset;
z = msg->pose.pose.position.y - z offset;

moving average[0][0] = x;
moving average[1][0] = y;
moving average[2][0] = z;
moving average[3][0] = -(msg->twist.twist.linear.x);
moving average[4][0] = -(msg->twist.twist.linear.z);
moving average[5][0] = msg->twist.twist.linear.y;
moving average[6][0] = state.attitude.x;
moving average[7][0] = state.attitude.y;
moving average[8][0] = state.attitude.z;
moving average[9][0] = state.pose.orientation.w;
moving average[10][0] = state.pose.orientation.x;
moving average[11][0] = state.pose.orientation.y;
moving average[12][0] = state.pose.orientation.z;

for (uint8 t j = 0; j < 13 ; j++)
{
sum average[j] = sum average[j] + moving average[j][0] / 5;

}

x = sum average[0];
y = sum average[1];
z = sum average[2];
vx = sum average[3];
vy = sum average[4];
vz = sum average[5];
qw = sum average[9];
qx = sum average[10];

266

qy = sum average[11];
qz = sum average[12];

state.acceleration.linear.x = (vx - vx prev) / (0.01);
state.acceleration.linear.y = (vy - vy prev) / (0.01);
state.acceleration.linear.z = (vz - vz prev) / (0.01);
vx prev = vx;
vy prev = vy;
vz prev = vz;

float CF a = 0.8, dtOuter = 0.01, dtOuter 2 = dtOuter * dtOuter;
state.velocity.linear.x = (state.velocity.linear.x + dtOuter * ...

state.acceleration.linear.x) * CF a + vx * (1 - CF a);
state.velocity.linear.y = (state.velocity.linear.y + dtOuter * ...

state.acceleration.linear.y) * CF a + vy * (1 - CF a);
state.velocity.linear.z = (state.velocity.linear.z + dtOuter * ...

state.acceleration.linear.z) * CF a + vz * (1 - CF a);

state.pose.position.x = (state.pose.position.x + dtOuter * ...
state.velocity.linear.x + 0.5 * dtOuter 2 * ...
state.acceleration.linear.x) * CF a + x * (1 - CF a);

state.pose.position.y = (state.pose.position.y + dtOuter * ...
state.velocity.linear.y + 0.5 * dtOuter 2 * ...
state.acceleration.linear.y) * CF a + y * (1 - CF a);

state.pose.position.z = (state.pose.position.z + dtOuter * ...
state.velocity.linear.z + 0.5 * dtOuter 2 * ...
state.acceleration.linear.z) * CF a + z * (1 - CF a);

state.x offset = x offset;
state.y offset = y offset;
state.z offset = z offset;
// Publish
pub.publish(state);

}

float invSqrt(float number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;

x2 = number * 0.5F;
y = number;
i = * (long *) &y;
i = 0x5f3759df - (i >> 1);
y = * (float *) &i;
y = y * (threehalfs - (x2 * y * y));
return y;

}

};

int main(int argc, char **argv)
{
ros::init(argc, argv, "quad state");

267

quad state quad;

ros::Rate loop rate(100);

ros::spin();
ros::shutdown();
return 0;

}

C.3 quad control.cpp

// Author: Abdullah Altawaitan
// Date: April 4, 2019

#include "ros/ros.h"
#include "quad/quad state msg.h"
#include "quad/quad cmd msg.h"

double error xi = 0;
double error yi = 0;
double error zi = 0;
double error psii = 0;

class quad control
{
public:

ros::NodeHandle n;
ros::Subscriber sub;
ros::Subscriber sub2;
ros::Publisher pub;

quad::quad cmd msg quad cmd;
quad::quad state msg state;
quad::quad state msg desired;
float mass = 0.647;

// Constructor
quad control()
{
sub = n.subscribe<quad::quad state msg>("/quad state", 1000, ...

&quad control::callback, this);
sub2 = n.subscribe<quad::quad state msg>("/quad trajectory", ...

1000, &quad control::callback2, this);
pub = n.advertise<quad::quad cmd msg>("quad cmd", 1000);

}
// Destructor
~quad control()
{
// Empty

}

void callback(const quad::quad state msg::ConstPtr& msg)
{
state.pose.position.x = msg->pose.position.x;
state.pose.position.y = msg->pose.position.y;

268

state.pose.position.z = msg->pose.position.z;
state.velocity.linear.x = msg->velocity.linear.x;
state.velocity.linear.y = msg->velocity.linear.y;
state.velocity.linear.z = msg->velocity.linear.z;
state.velocity.angular.x = msg->velocity.angular.x;
state.velocity.angular.y = msg->velocity.angular.y;
state.velocity.angular.z = msg->velocity.angular.z;
state.acceleration.linear.x = msg->acceleration.linear.x;
state.acceleration.linear.y = msg->acceleration.linear.y;
state.acceleration.linear.z = msg->acceleration.linear.z;
state.attitude.z = msg->attitude.z;
state.velocity.angular.z = msg->velocity.angular.z;

}

void callback2(const quad::quad state msg::ConstPtr& msg)
{
desired.pose.position.x = msg->pose.position.x;
desired.pose.position.y = msg->pose.position.y;
desired.pose.position.z = msg->pose.position.z;
desired.velocity.linear.x = msg->velocity.linear.x;
desired.velocity.linear.y = msg->velocity.linear.y;
desired.velocity.linear.z = msg->velocity.linear.z;
desired.acceleration.linear.x = msg->acceleration.linear.x;
desired.acceleration.linear.y = msg->acceleration.linear.y;
desired.acceleration.linear.z = msg->acceleration.linear.z;
desired.attitude.z = msg->attitude.z;
desired.velocity.angular.z = msg->velocity.angular.z;
desired.mode = msg->mode;

}

void LQR(void)
{
// LQR Control
// Calculate error
float error x = desired.pose.position.x - state.pose.position.x;
float error y = desired.pose.position.y - state.pose.position.y;
float error z = desired.pose.position.z - state.pose.position.z;
float error vx = desired.velocity.linear.x - ...

state.velocity.linear.x;
float error vy = desired.velocity.linear.y - ...

state.velocity.linear.y;
float error vz = desired.velocity.linear.z - ...

state.velocity.linear.z;
float error psi = desired.attitude.z - state.attitude.z;

// Integration
if (desired.mode != 0)
{
error xi += error x * 0.01;
error yi += error y * 0.01;
error zi += error z * 0.01;
error psii += error psii * 0.01;

}
else
{
error xi = 0;
error yi = 0;

269

error zi = 0;
error psii = 0;

}

float g1 = 5.0, g2 = 4.74, g3 = 4.74;
float u1, u2, u3, u4;
u1 = g1 * error x + g2 * error vx + g3 * error xi;
u2 = g1 * error y + g2 * error vy + g3 * error yi;
u3 = 8.0 * error z + 4.27 * error vz + 4.86 * error zi;
u4 = 8.0 * error psi + 4.86 * error psii;

// Anti-Windup
double saturated u1 = CONSTRAIN(u1, -1, 1);
double saturated u2 = CONSTRAIN(u2, -1, 1);
double saturated u3 = CONSTRAIN(u3, -5, 5);
double saturated u4 = CONSTRAIN(u4, -4, 4);
int clamp x = antiWindup(error x, u1, saturated u1);
int clamp y = antiWindup(error y, u2, saturated u2);
int clamp z = antiWindup(error z, u3, saturated u3);
int clamp psi = antiWindup(error psi, u4, saturated u4);

if (clamp x == 1)
{
// integral part is set to zero
error xi = 0;
u1 = g1 * error x + g2 * error vx;

}
if (clamp y == 1)
{
// integral part is set to zero
error yi = 0;
u2 = g1 * error y + g2 * error vy;

}
if (clamp z == 1)
{
// integral part is set to zero
error zi = 0;
u3 = g1 * error z + g2 * error vz;

}
if (clamp psi == 1)
{
// integral part is set to zero
error psii = 0;
u4 = g1 * error psi;

}

// Feedforward
float up 1, up 2, up 3, up psi;
up 1 = u1 + desired.acceleration.linear.x;
up 2 = u2 + desired.acceleration.linear.y;
up 3 = u3 + desired.acceleration.linear.z + 9.81;
up psi = u4 + desired.velocity.angular.z;

// Inverse Mapping
float z1, z2, z3;
float thrust cmd = mass * sqrt(up 1*up 1 + up 2*up 2 + up 3*up 3);
thrust cmd = CONSTRAIN(thrust cmd, 0, 15);

270

z1 = (mass/thrust cmd) * (up 1*cos(state.attitude.z) + ...
up 2*sin(state.attitude.z));

z2 = (mass/thrust cmd) * (-up 1*sin(state.attitude.z) + ...
up 2*cos(state.attitude.z));

z3 = (mass/thrust cmd) * up 3;
z1 = CONSTRAIN(z1, -1, 1);
z2 = CONSTRAIN(z2, -1, 1);
z3 = CONSTRAIN(z3, -1, 1);
float phi cmd = asin(z2);
float theta cmd = atan(-z1/z3);
float r cmd = up psi*cos(theta cmd)/cos(phi cmd) + ...

state.velocity.angular.y*sin(phi cmd)/cos(phi cmd);

phi cmd = CONSTRAIN(phi cmd, -1.0, 1.0);
theta cmd = CONSTRAIN(theta cmd, -1.0, 1.0);
r cmd = CONSTRAIN(r cmd, -1, 1);

quad cmd.thrust des = thrust cmd;
quad cmd.phi des = phi cmd;
quad cmd.theta des = theta cmd;
quad cmd.r des = r cmd;
quad cmd.mode = desired.mode;
pub.publish(quad cmd);

}

int antiWindup(float error, float output, float saturatedOutput)
{
int check1 = 0;
int check2 = 0;
int clamp = 0;

// Check 1
if (output != saturatedOutput)
{
check1 = 1;

}
else
{
check1 = 0;

}

// Check 2
if (sign(error) != sign(output))
{
check2 = 1;

}
else
{
check2 = 0;

}

// Check 3
if ((check1 * check2) == 1)
{
clamp = 1;

}
else

271

{
clamp = 0;

}
return clamp;

}

int sign(float num)
{
if (num > 0) return 1;
if (num < 0) return -1;
return 0;

}

double CONSTRAIN(double x, double min, double max)
{
if (x > max)
{
x = max;

}
else if (x < min)
{
x = min;

}
else
{
x = x;

}
return x;

}
};

int main(int argc, char **argv)
{
ros::init(argc, argv, "quad control");
quad control quad;

ros::Rate loop rate(100);

while (ros::ok())
{
quad.LQR();
ros::spinOnce();
loop rate.sleep();

}

ros::shutdown();
return 0;

}

C.4 quad trajectory generation.cpp

// Author: Abdullah Altawaitan
// Date: April 4, 2019

#include "ros/ros.h"

272

#include "quad/quad state msg.h"
#include "std msgs/Int8.h"

double i = 0;
double k = 0;
double j = 0;
int mode = 0;
double w = 1.0;
class quad trajectory generation
{
public:

ros::NodeHandle n;
ros::Subscriber sub;
ros::Publisher pub;
quad::quad state msg state;

quad trajectory generation()
{
sub = n.subscribe<std msgs::Int8>("/quad gui", 1000, ...

&quad trajectory generation::callback, this);
pub = n.advertise<quad::quad state msg>("quad trajectory", 1000);

}

~quad trajectory generation()
{
// Empty

}

void callback(const std msgs::Int8::ConstPtr& msg)
{
mode = msg->data;

}

void publishGenerateTrajectory(void)
{
// Trajectory Generation
if (mode != 0)
{
if (mode == 1)
{
state.pose.position.x = 0;
state.pose.position.y = 0;
state.pose.position.z = i;
state.pose.position.z = CONSTRAIN(state.pose.position.z, 0, 1);
state.velocity.linear.x = 0;
state.velocity.linear.y = 0;
state.velocity.linear.z = 0;
state.acceleration.linear.x = 0;
state.acceleration.linear.y = 0;
state.acceleration.linear.z = 0;
state.attitude.z = 0;
state.velocity.angular.z = 0;
state.mode = 1;
// Increment
i = i + 0.005;

}
else if (mode == 2)

273

{
state.pose.position.x = 0;
state.pose.position.y = 0.5 * cos(k * w);
state.velocity.linear.x = 0;
state.velocity.linear.y = -0.5 * w * sin(k * w);
state.acceleration.linear.x = 0;
state.acceleration.linear.y = -0.5 * (w*w) * cos(k * w);
state.pose.position.z = 1.0 + 0.5 * sin(k * w) * cos(k * w);
state.velocity.linear.z = 0.5 * w * cos(2 * k * w);
state.acceleration.linear.z = -(w*w) * sin(2 * k * w);
state.attitude.z = 0;
state.velocity.angular.z = 0;
state.mode = 2;
// Increment
k = k + 0.01;

}
else if (mode == 3)
{
state.pose.position.x = 0;
state.pose.position.y = 0;
state.pose.position.z = 1.0 - j*0.2;
state.velocity.linear.x = 0;
state.velocity.linear.y = 0;
state.velocity.linear.z = 0;
state.acceleration.linear.x = 0;
state.acceleration.linear.y = 0;
state.acceleration.linear.z = 0;
state.attitude.z = 0;
state.velocity.angular.z = 0;
state.mode = 3;
// Increment
if (state.pose.position.z > 0)
{
j = j + 0.01;

}
if (state.pose.position.z < 0.02)
{
state.mode = -1;

}
}
else
{
state.pose.position.x = 0;
state.pose.position.y = 0;
state.pose.position.z = 0;
state.velocity.linear.x = 0;
state.velocity.linear.y = 0;
state.velocity.linear.z = 0;
state.acceleration.linear.x = 0;
state.acceleration.linear.y = 0;
state.acceleration.linear.z = 0;
state.attitude.z = 0;
state.velocity.angular.z = 0;
state.mode = -1;

}
}
else

274

{
state.pose.position.x = 0;
state.pose.position.y = 0;
state.pose.position.z = 0;
state.velocity.linear.x = 0;
state.velocity.linear.y = 0;
state.velocity.linear.z = 0;
state.acceleration.linear.x = 0;
state.acceleration.linear.y = 0;
state.acceleration.linear.z = 0;
state.attitude.z = 0;
state.velocity.angular.z = 0;
state.mode = 0;

}
pub.publish(state);

}

double CONSTRAIN(double x, double min, double max)
{
if (x > max)
{
x = max;

}
else if (x < min)
{
x = min;

}
else
{
x = x;

}
return x;

}
};

int main(int argc, char **argv)
{
ros::init(argc, argv, "quad trajectory generation");
quad trajectory generation quad;

ros::Rate loop rate(100);

while (ros::ok())
{
quad.publishGenerateTrajectory();
ros::spinOnce();
loop rate.sleep();

}

ros::shutdown();
return 0;

}

C.5 quad log.cpp

275

#include "ros/ros.h"
#include <fstream>
#include "quad/quad state msg.h"
#include "quad/quad cmd msg.h"
#include "sensor msgs/Imu.h"

using namespace std;
ofstream datafile;

class quad log
{
public:

ros::NodeHandle n;
ros::Subscriber sub;
ros::Subscriber sub2;
ros::Subscriber sub3;
ros::Subscriber sub4;
quad::quad state msg desired;
quad::quad state msg actual;
quad::quad cmd msg cmd;

quad log()
{
sub = n.subscribe<quad::quad state msg>("/quad trajectory", ...

1000, &quad log::callback, this);
sub2 = n.subscribe<quad::quad state msg>("/quad state", 1000, ...

&quad log::callback2, this);
sub3 = n.subscribe<quad::quad cmd msg>("/quad cmd", 1000, ...

&quad log::callback3, this);
sub4 = n.subscribe<sensor msgs::Imu>("/quad serial imu", 1000, ...

&quad log::callback4, this);
}

~quad log()
{
// Empty

}

void callback(const quad::quad state msg::ConstPtr& msg)
{
desired.pose.position.x = msg->pose.position.x;
desired.pose.position.y = msg->pose.position.y;
desired.pose.position.z = msg->pose.position.z;
desired.velocity.linear.x = msg->velocity.linear.x;
desired.velocity.linear.y = msg->velocity.linear.y;
desired.velocity.linear.z = msg->velocity.linear.z;
desired.acceleration.linear.x = msg->acceleration.linear.x;
desired.acceleration.linear.y = msg->acceleration.linear.y;
desired.acceleration.linear.z = msg->acceleration.linear.z;
desired.attitude.z = msg->attitude.z;
desired.mode = msg->mode;

}

void callback2(const quad::quad state msg::ConstPtr& msg)
{
actual.pose.position.x = msg->pose.position.x;
actual.pose.position.y = msg->pose.position.y;

276

actual.pose.position.z = msg->pose.position.z;
actual.velocity.linear.x = msg->velocity.linear.x;
actual.velocity.linear.y = msg->velocity.linear.y;
actual.velocity.linear.z = msg->velocity.linear.z;
actual.acceleration.linear.x = msg->acceleration.linear.x;
actual.acceleration.linear.y = msg->acceleration.linear.y;
actual.acceleration.linear.z = msg->acceleration.linear.z;
actual.attitude.z = msg->attitude.z;

}

void callback3(const quad::quad cmd msg::ConstPtr& msg)
{
cmd.phi des = msg->phi des;
cmd.theta des = msg->theta des;
cmd.r des = msg->r des;

}

void callback4(const sensor msgs::Imu::ConstPtr& msg)
{
actual.attitude.x = msg->orientation.x;
actual.attitude.y = msg->orientation.y;

}

void writeData(void)
{
datafile << desired.mode << ", " << desired.pose.position.x << ...

", " << desired.pose.position.y
<< ", " << desired.pose.position.z << ", " << ...

desired.velocity.linear.x
<< ", " << desired.velocity.linear.y << ", " << ...

desired.velocity.linear.z
<< ", " << cmd.phi des << ", " << cmd.theta des << ", "
<< desired.attitude.z << ", " << actual.pose.position.x
<< ", " << actual.pose.position.y << ", " << actual.pose.position.z
<< ", " << actual.velocity.linear.x << ", " << ...

actual.velocity.linear.y
<< ", " << actual.velocity.linear.z << ", " << ...

actual.attitude.x << ", "
<< actual.attitude.y << ", " << actual.attitude.z << endl;

}
};

int main(int argc, char **argv)
{
datafile.open("/home/altwaitan/catkin ws/src/quad/vehicle1 data.txt");
ros::init(argc, argv, "quad log");
quad log quad;

ros::Rate loop rate(100);

if (datafile.is open())
{
datafile << "mode" << ", " << "xdes" << ", " << "ydes" << ", " ...

<< "zdes" << ", "
<< "vxdes" << ", " << "vydes" << ", " << "vzdes" << ", "
<< "phides" << ", " << "thetades" << ", " << "psides" << ", "

277

<< "x" << ", " << "y" << ", " << "z" << ", " << "vx" << ", "
<< "vy" << ", " << "vz" << ", " << "phi" << ", " << "theta"
<< ", " << "psi" << endl;
while (ros::ok())
{
quad.writeData();
ros::spinOnce();
loop rate.sleep();

}
}
else
{
ROS ERROR STREAM("Unable to open datafile");

}
datafile.close();
ros::shutdown();
return 0;

}

278

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Literature Servery: State of the art
	1.2 Contributions
	1.3 Organization of Thesis

	2
	2.1 Introduction and Overview
	2.2 Platform amd C4S Requirements

	3
	3.1 Overview
	3.2 Earth Centered Earth Fixed Coordinate Frame and Body Coordinate Frame
	3.3 Attitude Representation

	4
	4.1 Overview
	4.2 Airframe Design
	4.3 Moment of Inertia
	4.4 Brushless DC Motor (Actuator) Dynamics
	4.5 Vehicle Dynamics
	4.5.1 Nonlinear Dynamical Vehicle Model
	4.5.2 Linearization of Nonlinear Dynamical Vehicle Model

	5
	5.1 Overview
	5.2 Inner-Loop: (p, q, r) Body Rotation Rates Control
	5.2.1 Control System Design - PID Tuning
	5.2.2 Control System Design - Pole Placement
	5.2.3 Control System Design - Design for Bandwidth and Robustness

	5.3 Outer-Loop: (, ,) Attitude Control
	5.3.1 Control System Design - PID Tuning Design
	5.3.2 Control System Design - Pole Placement Design
	5.3.3 Control System Design - Design for Bandwidth and Robustness

	6
	6.1 Overview
	6.2 Quadrotor Nonlinear Translational Dynamical Model
	6.2.1 Linearization of Nonlinear Translational Dynamics Near Hover
	6.2.2 Linearization of Nonlinear Translational Dynamics for Forward Flight

	6.3 LQ Servo Design
	6.4 Weighted H Sensitivity Optimization
	6.5 LQG/LTRO Design for Quadrotor Translational Dynamics
	6.6 Quadrotor Hardware Demonstrations
	6.7 Summary and Conclusions

	7
	7.1 Overview
	7.2 Leader-Follower Approach

	8
	8.1 Summary
	8.2 Directions for Future Research
	REFERENCES
	A
	A.1 High-level Control

	B
	B.1 Quadrotor.ino
	B.2 Quadrotor.h
	B.3 Quadrotor.cpp
	B.4 Communication.h
	B.5 Communication.cpp

	C
	C.1 quad_serial.cpp
	C.2 quad_state.cpp
	C.3 quad_control.cpp
	C.4 quad_trajectory_generation.cpp
	C.5 quad_log.cpp

