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ABSTRACT 

Reliable and secure operation of bulk power transmission system components is an 

important aspect of electric power engineering. Component failures in a transmission net-

work can lead to serious consequences and impact system reliability. The operational 

health of the transmission assets plays a crucial role in determining the reliability of an 

electric grid. To achieve this goal, scheduled maintenance of bulk power system compo-

nents is an important activity to secure the transmission system against unanticipated 

events. This thesis identifies critical transmission elements in a 500 kV transmission net-

work utilizing a ranking strategy.  

The impact of the failure of transmission assets operated by a major utility company 

in the Southwest United States on its power system network is studied. A methodology is 

used to quantify the impact and subsequently rank transmission assets in decreasing order 

of their criticality. The analysis is carried out on the power system network using a node 

breaker model and steady state analysis.  The light load case of spring 2019, peak load case 

of summer 2023 and two intermediate load cases have been considered for the ranking. 

The contingency simulations and power flow studies have been carried out using a com-

mercial power flow study software package, Positive Sequence Load Flow (PSLF). The 

results obtained from PSLF are analyzed using Matlab to obtain the desired ranking. The 

ranked list of transmission assets will enable asset managers to identify the assets that have 

the most significant impact on the overall power system network performance. Therefore, 

investment and maintenance decisions can be made effectively. A conclusion along with a 

recommendation for future work is also provided in the thesis. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

 

In 2017, approximately 3,723 billion kWh of electric energy were generated by all 

the utilities combined in the United States [1]. An electric power transmission system is 

responsible for transmitting this bulk electric power from a generating station to an electri-

cal substation. A transmission system is comprised of various transmission assets such as 

transformers, transmission lines, circuit breakers, and various switches. To ensure the reli-

able operation of an electric power grid, the health of these transmission assets is of im-

portance. Electric power utilities perform maintenance of these transmission assets to re-

duce the number of failures and to render those failures in a more planned environment. 

The cost incurred by the maintenance of these transmission assets is a significant part of 

operating cost. For example, the Southern California Edison Company was forecasted to 

expend about 13% of total operating expenditures on maintenance in 2015 [2].  

The expansion of the transmission infrastructure is not at par with the rapid increase 

in electric power consumption. The transmission assets are required to be operated very 

close to their rated limits to cater to the increased demand in electric energy. This results 

in faster aging of these assets since they are not designed to sustain a prolonged duration 

of the higher magnitude of power flows during peak load seasons. According to U.S. En-

ergy Information Administration (EIA), expenditures on operations and maintenance of the 

transmission grid by the companies from FERC data, has increased from $3.3 billion in 

1996 to $13.5 billion in 2016 [3]. With all the foregoing in view, it appears that asset 

maintenance is an important focus of transmission engineering. 
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Maintenance strategies can be broadly categorized into corrective, preventive, con-

dition-based and risk-based maintenance [4]. Using the latter two strategies, issues like 

unnecessary expenses resulting from early maintenance and resulting shutdowns, while 

ensuring timely maintenance of the critical components, can be addressed. In condition-

based maintenance, the real time state of the transmission assets is evaluated by timely 

monitoring of appropriate parameters and resulting changes [5]. This is used to predict the 

residual life of the critical components as well as to predict the probability of failure at a 

given period. Based on the real time values and trends in the equipment condition, the 

maintenance activities are scheduled. 

Risk-based bulk transmission equipment maintenance and replacement have re-

cently gained significant interest among several electric utilities.  The objective of risk-

based maintenance is to frame a procedure of allotting resources (human and economic) 

and schedule maintenance tasks among different transmission assets. This is based on the 

risk they impose on the system upon failure [6]. These risks are broadly quantified in terms 

of overloads, under-voltages, cascading failures, and voltage instability.  

The maintenance strategies described above have evolved from the smart condition 

monitoring systems which are used to improve the grid resiliency. The notion of a resilient 

grid focuses on the three elements articulated by the Electric Power Research Institute 

(EPRI) as follows [7]. The subject of this thesis addresses element (i) of these resilient grid 

objectives.  

i. Prevention – To prevent the failures by designing the maintenance routines, 

inspection procedures and recovery practices using innovative technologies. 
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ii. Recovery – To provide rapid damage control by faster deployment of the man-

power to attend the contingencies and replace the components with if required. 

iii. Survivability – To provide some basic level of electrical functionality to the 

consumers in the event of blackout.  

One of the important factors of power system operation, that assists in implement-

ing risk-based maintenance strategy, is to study and investigate the impact of outages on 

the electric grid in terms of the severity of those outages. This is termed as contingency 

analysis [8]. A contingency analysis provides essential results regarding the effects of var-

ious equipment outages on the electric power network. The severity of an equipment outage 

can be quantified in terms of performance indices based either on the network topology or 

on operating electrical parameters. These indices are used to rank the transmission equip-

ment in terms of their criticality (i.e. their impact upon failure). The ranking list can be 

used to make various investment decisions such as planning risk-based maintenance, main-

taining equipment spare parts, replacement strategies, human resource allocation of 

maintenance crews, and related operational responsibilities. Also, in condition-based 

maintenance, continuous monitoring of all the transmission assets is very expensive and 

needs a significant amount of data analysis. The critical elements identified through con-

tingency analysis would be the best candidates for condition monitoring, reducing the 

amount of data to be processed. The concept of contingency analysis and ranking of the 

transmission assets is discussed in several reported works [9] – [12].  

1.2 Research Objectives 

 

The prime objective of this research is to obtain the relative ranking of the assets 

such as transformers, transmission lines, and circuit breakers of an operating utility in terms 
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of their criticality. The criticality of a transmission asset relative to others determines the 

severity of the impact following its failure on the electric power network. This is achieved 

by running a post-outage power flow study and evaluating the flow based and voltage based 

performance indices. The outages are ranked in decreasing order of these performance in-

dices, with the most critical equipment ranked to the top and the least critical equipment 

ranked at the bottom. Each outage corresponds to a transformer, transmission line or a 

circuit breaker failure. A circuit breaker failure results in additional components taken out 

of service. The study is conducted for varying load patterns which includes spring light 

load of the year 2019, a forecasted summer peak load of the year 2023 and two intermediate 

loading scenarios. The entire analysis is conducted on the node breaker model of the elec-

tric power system of the operating utility under study. 

1.3 Thesis Organization 

 

The entire thesis is organized into five main chapters. 

• Chapter 1 describes the motivation behind this work along with the research ob-

jectives. 

• Chapter 2 is focused on the contingency analysis of the power system network. 

Contingency analysis has evolved from its earlier days in terms of its methodology 

and applications. One of the aspects of the contingency analysis is to carry out the 

power flow study following a contingency. This chapter describes the two widely 

used alternatives to the conventional power flow study namely the fast-decoupled 

power flow and the methods of distribution factors. These methods are applied to 

a test system and a comparison of the results is shown towards the end of this 

chapter. 
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• Chapter 3 describes the bus branch and node breaker model of the power system 

network. The benefits of using node breaker model over a bus branch model are 

discussed in this chapter. Details regarding the power system network of the oper-

ating utility under study along with various loading scenarios, considered while 

doing the analysis, are given in the subsequent sections. 

• Chapter 4 discusses various forms of flow and voltage based performance indices 

mentioned in the literature. Application of the performance indices for relatively 

ranking the transmission assets is described. Contingency ranking results for trans-

formers, transmission lines, and circuit breakers failure are presented and dis-

cussed. A list of the identified critical transmission assets is given at the end of the 

chapter.  

• Chapter 5 concludes the thesis by highlighting the main findings of the research. 

Recommendations for future work are given in this chapter.  

The thesis also contains more voluminous data and computer code which are presented 

in five appendices: 

A. List of circuit breaker contingencies 

B. EPCL code 

C. Matlab code 

D. Transmission line and transformer contingencies 

E. Circuit breaker contingencies 
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CHAPTER 2: CONTINGENCY ANALYSIS 

2.1 An Introduction to Power System Contingency Analysis 

 

Operation of an electric grid is a complex process since the system is large and 

operating conditions vary frequently. A disturbance in an electric grid can originate either 

from a change in load, an equipment failure (for example generator, transmission line, 

transformer outage) or a change of state of a device. The change of device status includes 

an unplanned opening of a circuit breaker in a substation or a failure of a circuit breaker to 

operate when required. Such a disturbance is usually termed as a contingency. It is always 

desired to evaluate the power system security and plan operational strategies to maintain 

the stable system operation when one or more elements fail. According to North American 

Electric Reliability Corporation (NERC) utility power system operation standards, each 

utility’s power system should be able to tolerate and recover from any single element fail-

ure scenario [13]. Hence in general, an electric grid is designed to be invulnerable against 

an N-1 contingency scenario (failure of a single element will not affect the grid operation).  

It is customary for an electric power utility to analyze the effect of all possible 

contingencies before-hand. This enables power system planners and engineers to determine 

the power network’s strengths or weaknesses and devise appropriate planning and opera-

tional strategies to be implemented in an event of a contingency. Following a contingency, 

the power system is exposed to a range of problems, which can be categorized as below 

[14]: 

(1) none – the power system recovers from the contingency completely, without 

overloading any element. 
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(2) severe – several lines or transformers may get overloaded and risk failure/dam-

age in future.  

(3) critical – the power system becomes unstable and will quickly collapse. 

Contingency analysis (static security analysis) is also a primary tool used for strategizing 

maintenance plans and assigning maintenance priority of certain transmission assets over 

others. This chapter describes the contingency analysis methodology and process. Various 

techniques developed over time for contingency analysis are discussed. A comparison of 

results between two different methods is shown.  

2.2 Contingency Analysis Methodology and Process 

 

 The contingency analysis process requires a detailed electrical model of the power 

system, called a network model. The network model is initialized with starting values re-

flecting the current operating conditions of the power system. These parameters include 

bus voltages, generation levels at each generator, loads and power interchanges among 

adjacent zones. Parameters like equipment ratings are also specified for calculating over-

loads and violations. Additionally, generator participation factors and priority order are 

also essential to reschedule the generation in case of loss of a generating station. With the 

available power network model, initialized with a specific operating condition, contin-

gency analysis can be executed. A contingency list is prepared that consists of all the ele-

ments that will be removed from the power system one by one, to test their impact on the 

overall network. A typical contingency list may consist of the following: 

(1) loss of a line 

(2) loss of a transformer 

(3) loss of a generator 
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(4) loss of a load 

(5) circuit breaker failure. 

Following the removal of each element, the modified network is solved for the volt-

ages (magnitude and angle) at each bus as well as active and reactive power flow in each 

branch. The results obtained for each contingency – the modified network solution – are 

compared with the base case network solution or the limits for each element in the network. 

Following a contingency, the results may show a transmission line being overloaded above 

its rated limit, for example, 110% or the bus voltages may fall below a certain value, say 

90% of its nominal voltage. Depending upon the severity of the impact, each contingency 

is ranked (contingency with most severe impact at the top and least at the bottom).  

The contingency analysis requires the following data inputs: 

• equipment list to be included in the analysis 

• rating of the power system elements (for example lines, generators, transformers) 

• base case network data to initialize the network model prior to evaluating each con-

tingency 

• power system loading scenarios (these may be part of the base cases). 

The severity of each contingency can be evaluated based on various factors like branch 

current or MVA flow, bus voltages, reactive power generation, or bus voltage deviations 

which are often termed as the performance indices (described in detail in Chapter 4). 

The flowchart [15] depicting the steps involved in the contingency analysis is 

shown in Figure 2.1. 
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Figure 2.1 Contingency Analysis Flowchart 
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2.3 Alternatives to AC Power Flow for Contingency Analysis 

As mentioned above, to carry out a contingency analysis, a power flow study is 

must on the network model after the contingency is simulated. The number of iterations in 

a flat start Newton-Raphson or Gauss-Seidel power flow study [16] is independent to the 

number of system buses. However, the time and memory requirements of each iteration are 

highly dependent on the number of buses. Matrix triangular factorization followed by a 

forward and backward substitution is required to solve any network model for its bus volt-

ages and angles. To do the same, sparsity techniques have been developed, but the pro-

cessing time varies as the cube of the number of buses [16]. Although the conventional 

methods of power flow study provide very accurate results, the techniques used for contin-

gency analysis must have enough speed with reasonable accuracy to be effective. Several 

attempts have been made to overcome these difficulties.  

The widely used alternatives to the conventional power flow study are the fast-

decoupled power flow [17] and the methods of distribution factors [18]. A decoupled power 

flow study relies upon close relation of active power flow and bus voltage phase angle, and 

reactive power flow and bus voltage magnitude. In methods of distribution factors, the net 

active power is expressed as the function of voltage phase angles at each bus. This section 

describes each method in brief detail. A comparison of results in terms of branch active 

power flows is shown at the end, with a justification for the method used in this thesis. 

Fast-decoupled power flow 

Fast decoupled power flow technique is one of the modifications of the conven-

tional power flow study. The Jacobian matrix entries for a Newton-Raphson power flow 

study are mentioned below [16], 
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𝐽1(𝑖, 𝑖) =
𝜕𝑃𝑖
𝜕𝛿𝑖

=∑𝑉𝑖𝑉𝑗|𝑌𝑖𝑗| sin(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖

 

 

 

(2.1) 

 

𝐽2(𝑖, 𝑖) =
𝜕𝑃𝑖
𝜕𝑉𝑖

=∑𝑉𝑗|𝑌𝑖𝑗| cos(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖

− 2𝑉𝑖|𝑌𝑖𝑖| cos(−𝜃𝑖𝑖) 

 

(2.2) 

 

𝐽3(𝑖, 𝑖) =
𝜕𝑄𝑖
𝜕𝛿𝑖

=∑𝑉𝑖𝑉𝑗|𝑌𝑖𝑗| cos(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁

𝑗=1
𝑗≠𝑖

 

 

(2.3) 

 

𝐽4(𝑖, 𝑖) =
𝜕𝑄𝑖

𝜕𝑣𝑖
= ∑ 𝑉𝑗|𝑌𝑖𝑗| sin(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁
𝑗=1
𝑗≠𝑖

− 2𝑉𝑖|𝑌𝑖𝑖| sin(−𝜃𝑖𝑖). 

 

(2.4) 

In (2.1) – (2.4), the expressions involve summation over N-1 terms, where each term is a 

product of three or more terms. The calculation of Jacobian matrix elements involves many 

computations, resulting in increased convergence time for large systems in a power flow 

study. In a fast-decoupled power flow, these summation terms are avoided as explained 

below. The expressions for active and reactive power mismatches are as follows, 

∆𝑃𝑖 = −∑|𝑌𝑖𝑗|𝑉𝑗𝑉𝑖 cos(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)

𝑁

𝑗=1

+ 𝑃𝑖 

 

(2.5) 

 

∆𝑄𝑖 = −∑ |𝑌𝑖𝑗|𝑉𝑗𝑉𝑖 sin(𝛿𝑖 − 𝛿𝑗 − 𝜃𝑖𝑗)
𝑁
𝑗=1 + 𝑄𝑖. (2.6) 

The above expressions indicate remarkable similarity with the diagonal entries of the Ja-

cobian matrix given by (2.1) to (2.4). Upon substituting the terms from (2.5) and (2.6) and 
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with the approximation of ∆Pi = 0 and ∆Qi = 0, the equations can be simplified as given 

below. These formulas are known as the fast formulas. 

 

𝐽1(𝑖, 𝑖) = 𝑄𝑖 − |𝑌𝑖𝑖|𝑉𝑖
2sin(−𝜃𝑖𝑖) 

 

 

(2.7) 

𝐽2(𝑖, 𝑖) = −
𝑃𝑖
𝑉𝑖
− 𝑉𝑖|𝑌𝑖𝑖|cos(−𝜃𝑖𝑖) 

 

(2.8) 

 

𝐽3(𝑖, 𝑖) = −𝑃𝑖 + |𝑌𝑖𝑖|𝑉𝑖
2cos(−𝜃𝑖𝑖) 

 

 

(2.9) 

𝐽4(𝑖, 𝑖) =
𝑄𝑖

𝑣𝑖
− 𝑉𝑖|𝑌𝑖𝑖|sin(−𝜃𝑖𝑖). 

 

(2.10) 

 For systems with low r/x line impedance ratios, the active power flow and the dif-

ference in the bus voltage phase angle are very closely related. The reactive power flow in 

a similar manner depends mainly on the difference in the bus voltage magnitude. This can 

be ascertained by the dominance of 𝜕P/𝜕δ (J1 of the Jacobian) and 𝜕𝑄/𝜕|V| (J4 of the Jaco-

bian) entries in the Jacobian matrix as explained in [16]. Hence, the J2 and J3 entries can 

be completely ignored. The modified P - δ and Q - |V| can now be written as, 

(
∆𝛿
∆|𝑉|

) = (
𝐽1 0
0 𝐽4

)
−1

(
∆𝑃
∆𝑄

) (2.11) 

∆𝛿 = 𝐽1
−1∆𝑃 (2.12) 

∆|𝑉| = 𝐽4
−1∆𝑄. (2.13) 

 It can be observed from (2.12) and (2.13) that the P - δ and Q - |V| equations are completely 

decoupled. The decoupled equations along with the fast formulas for Jacobian are together 

termed as fast-decoupled power flow. 
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Method of distribution factors 

Distribution factors play a crucial role in fast contingency screening and operational 

planning applications. Line Outage Distribution Factors (LODFs) of a power system net-

work involves assessing the sensitivity of the system power flows with respect to a branch 

outage. It quantifies how sensitive the flow in a branch i is with respect to the flow in a 

branch j of the network. The LODFs are computed using Power Transfer Distribution Fac-

tors (PTDFs). The PTDFs computes the sensitivity of the power flow in a branch with 

respect to change in active power injection at an arbitrary bus in the network [19]. These 

factors are derived from the linear DC power flow model.  

The DC power flow is a simplified version of the full AC power flow. It considers 

only the active power flows but neglects voltage support or reactive power management 

and transmission losses. The DC power flow model assumes the following [19]: 

• Flat voltage profile - the magnitude of bus voltages is assumed to be constant and 

equal to 1.0 p.u. 

• Low r/x ratios for the branches – neglecting the branch resistances (hence, ignoring 

the resistive losses in the branches). 

• Small voltage angle differences – approximating sin(δi-δj) = (δi-δj) and cos(δi-δj) = 

1. 

With the above assumptions, the only variables in the DC power flow are voltage angles 

and active power injections. Since the losses are neglected, all active power injections are 

known in advance. Hence the DC power flow becomes linear and there is no need for an 

iterative method to solve the equations. Table 2.1 summarizes the comparison of various 

aspects of the AC power flow versus the DC power flow [20]. 
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Table 2.1 AC Power Flow vs DC Power Flow 

 

Aspects AC power flow DC power flow 

Model Non-linear Linear 

Solution approach Iterative Non-iterative 

Convergence Not guaranteed Guaranteed 

Variables P, Q, |V|, δ P, δ 

Power losses Incorporated Neglected 

Accuracy 
As per specified tolerance 

limit 
Case and system dependent 

 

In case of a DC power flow model, the following equations hold true for each node 

i in the system, 

𝑃𝑖 =∑𝐵𝑖𝑗(𝛿𝑖 − 𝛿𝑗)

𝑁𝐵

𝑗=1

 (2.14) 

∑{𝑃𝑔𝑒𝑛,𝑖 − 𝑃𝑙𝑜𝑎𝑑,𝑖 − 𝑃𝑖}

𝑁𝐵

𝑖=1

= 0, (2.15) 

where, 

Pi : active power leaving node i, 

Pgen,i : active power injection at node i, 

Pload,i : load connected at a node i. 

 It is to be noted that each of these assumptions has some effect on the accuracy of 

the solution. There are several published efforts in the literature that aims at quantifying 

the tolerance that must be met to obtain an acceptable accuracy of the network solution 

using the DC power flow. For example, if the following conditions on the assumptions are 

met, then it would limit the Perror (active power estimation error) to 5% [21], 
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• negligible line resistance assumption can be justified for r/x < 0.25  

• the flat voltage profile means the standard deviations must be < 0.01.   

The PTDFs relating the loading in the line from bus i to bus j with respect to injected 

complex power Sk at bus k can be expressed as [22], 

𝜌𝑖𝑗,𝑘 =
(𝑋𝑖𝑘 − 𝑋𝑗𝑘)

𝑥𝑖𝑗
. (2.16) 

It is to be noted that the DC power flow assumptions are used while deriving the above 

equation. Using the above relation, a PTDF matrix of dimensions NL by NB is constructed 

as, 

𝜌 = [

𝜌1,1 𝜌1,2
 

𝜌𝑁𝐿,1 𝜌𝑁𝐿,2



… 𝜌1,𝑁𝐵

… 
… 𝜌𝑁𝐿,𝑁𝐵

]. (2.17) 

The change in the flow of active power on the branch between bus i and bus j can be 

expressed in terms of ∆Pk (change in the active power injection at bus k) as, 

∆𝑓𝑖𝑗 = ∑𝜌𝑖𝑗,𝑘∆𝑃𝑘

𝑁𝐵

𝑘=1

. (2.18) 

  The LODF dij,lm (distribution factor for branch i-j when branch l-m is on outage) 

are expressed in terms of the PTDFs by using the compensation theorem as explained in 

[16], 

𝑑𝑖𝑗,𝑙𝑚 =
(𝜌𝑖𝑗,𝑚

𝑜𝑢𝑡 − 𝜌𝑖𝑗,𝑚)

𝜌𝑙𝑚,𝑚
. (2.19) 

ρout corresponds to the PTDFs of the power system network post-outage. The post 

contingency power flow on a branch ij (fij
c), following the outage of a branch lm can be 

expressed in terms of LODF dij,lm as [16], 
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𝑓𝑖𝑗
𝑐 = 𝑓𝑖𝑗

𝑜 + 𝑑𝑖𝑗,𝑙𝑚𝑓𝑙𝑚
𝑜 , (2.20) 

where fij
o and flm

o are the pre-contingency flows on branches ij and lm. The LODFs are 

computed based entirely on the network parameters and topology. It is to be noted that the 

distribution factors remain the same unless the network topology is changed. Hence, they 

can be used repeatedly and rapidly to analyze reconfigurations occurring in the network, 

irrespective of change in operating conditions.     

2.4 Comparison of AC Power Flow Study Alternatives 

 

 The power flow study alternatives discussed earlier are implemented on a 200 bus 

test system [23]. The test system is not related to the actual grid except that the generation 

and load profiles are made to resemble the actual scenario. The methodology used to create 

the test system is discussed in [24]. Table 2.2 summarizes the important aspects of the test 

system under study. PSLF provides an option to compute the line outage distribution fac-

tors (LODFs) for all the branches in the designated area and outputs the results in a text 

file. The LODFs computation feature in PSLF also scans all the branches in the designated 

area for overloads. In PSLF, the LODFs and post-outage power flow in the branches are 

calculated using (2.19) and (2.20) respectively. As discussed earlier, the method of distri-

bution factors uses a linear DC power flow model which neglects the transmission lines 

resistance. To handle this assumption, PSLF provides an option to increase the loads across 

the designated area by a factor known as ‘loss factor’ to account for the absence of resistive 

transmission losses. The loss factor is specified under losses records in the .efx file [25].  
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Table 2.2 System Description for the 200 Bus Test Case 

 

No. of generators in service 49 

No. of transmission lines in service 179 

No. of transformers in service 66 

Total Pgen (MW) 1488.26 

Total Qgen (MVAr) 105.78 

Total Pload (MW) 1475.65 

Total Qload (MVAr) 420.57 

 

 

 The comparison of Newton Raphson power flow, fast decoupled power flow, and 

method of distribution factors is carried out for the outage of a 115 kV line between bus 

numbers 124 and 9 in the test system. The simulation is carried out in PSLF version 

21.0_03. Table 2.3 shows the simulation results to draw a comparison between the power 

flow study alternatives. For illustrative purpose, the results for nine branches following the 

outage of the transmission line are shown. The distribution factors and the post outage 

flows are computed for the loss factors of 1.02 and 1.05.  
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The observations from the simulation results shown in Table 2.3 are discussed be-

low. 

• The post-outage active power flows computed using Newton Raphson and fast de-

coupled power flow methods are almost identical. 

• The distribution factors are independent of the loss factors and are identical for the 

loss factors of 1.02 and 1.05. This is evident from the fact that the distribution fac-

tors depend only on the network topology and they remain unchanged unless the 

topology itself is changed. Hence, the distribution factors for a power system net-

work are required to be computed just once and they can be used repeatedly to 

analyze various contingencies. Such is not the case with Newton Raphson and fast 

decoupled power flow study methods. This saves a lot of computation time making 

the method of distribution factors more suitable for online studies. 

• However, the post-outage active power flow in the branches varies with the loss 

factor. This is expected since the value of the loads in the network changes in pro-

portion to the loss factor used for calculations. 

• The calculation of distribution factors is based on the linear DC power flow model 

which involves several assumptions mentioned earlier. These assumptions affect 

the accuracy of the power flow results. The average of absolute percentage errors 

in the flows for the loss factors of 1.02 and 1.05 are observed to be 2.244 and 4.752 

respectively. 

• The research conducted in this thesis is based on an offline study where the com-

putation time is not a constraint. At the same time, it is desired that the results of 
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the power flow study are accurate, since any inaccuracy would affect the final re-

sults in the thesis. Therefore, the results for the post contingency power flows in 

this work are obtained using a Newton Raphson power flow study method. 
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CHAPTER 3: SYSTEM DESCRIPTION AND DATA PREPARATION 

3.1 System Modeling 

 

An important aspect of contingency analysis is the choice of the system model. 

Operational near-term and long-term planning studies utilize power flow models with top-

ological data that considers the physical connection and the operating condition of the 

power system. These models generally represent a substation with a single bus at a certain 

voltage level. The buses are connected to other substations by transmission lines and/or 

transformers usually termed as branches. Such models are called bus branch models. A bus 

branch model ignores the breaker schematic within a given substation. A bus branch model 

schematic for a part of a power system network is shown in Fig. 3.1.   

 

Figure 3.1 Substation Schematic: Bus Branch Model 

 

However, it must be noted that the equipment outages within a substation can 

change the system topology to the point that it may affect the reliability of the network, at 

a given operating point. Hence, the contingencies that may arise due to the change of a 

switch status within a substation are completely oblivious when using the bus-branch 

model. The accurate representation of all the contingencies associated with a power system 

network requires the substation configuration to be incorporated in the model. Also, as 

discussed in [26], the lessons learned from 2011 Arizona-Southern California blackout 
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suggests the need for duplicating real-time system conditions. Real time system conditions 

are very difficult to capture using the bus branch model and can only be implemented effi-

ciently using a node breaker model. 

Node-breaker model 

A node-breaker model of the power system fully represents the breaker configura-

tion at each station. This model reflects the actual operating conditions of the system ob-

tained from a real time energy management system (EMS). Disconnect switches, circuit 

breakers, fuses, links and other switching devices are modeled explicitly in a node breaker 

model. Each breaker is characterized by a status flag and a type flag. A status flag of 1 or 

0, signifies if the breaker is connected online or not respectively. Similarly, a type flag 

indicates the control mechanism exerted on the breaker, which is usually 1 for an automatic 

switching device and 0 for a manual switching device.  Fig. 3.2 shows such a model. 

 

Figure 3.2 Substation Schematic: Node Breaker Model 

 

It is to be noted that using a node breaker model, the substation configuration like 

a ring bus or the breaker-and-a-half bus can be modeled accurately. The type of system 
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model used while performing contingency analysis greatly affects the accuracy of the re-

sults. Contingencies like the stuck breakers can only be represented in a node breaker 

model. A comparison of the simulation of various contingencies is given in Table 3.1. For 

this comparison, the bus branch and node breaker substation schematics of Fig. 3.1 and 

Fig. 3.2 are used. 

Table 3.1 Comparison of the Contingency Simulation Using the Bus Branch and Node 

Breaker Model 

 

Contingency Bus branch model Node breaker model 

Fault on line 1 Line 1: Open 

Breaker A2: Open 

Breaker A3: Open 

Breaker B1: Open 

Fault on line 1 with 

breaker A4 out for 

maintenance 

Line 1: Open 

No lines are isolated 

Bus split is not captured 

Breaker A2: Open 

Breaker A3: Open 

Breaker B1: Open 

Line 4 gets isolated from 

line 2 and line 3 

 

From the above comparison in Table 3.1, it is apparent that the bus branch model 

fails to capture all the network changes resulting from contingency 2 (fault on line 1 with 

breaker A4 out of service), which on the other hand are obvious with the node breaker 

model. To summarize, a node-breaker model greatly improves the following as listed by 

NERC [27]: 

• visibility of equipment status 

• station configuration 

• associated critical contingencies 

• simulation of protection system operation. 



 

24 

In addition to the bus branch and node breaker model, a power system network can 

also be represented with a hybrid model [28]. In a hybrid model, a node breaker represen-

tation is used only for substations of interest, whereas all other areas are modeled using bus 

branch model. This greatly reduces the complexity associated with using the node-breaker 

model for large power systems.  

3.2 System Description 

 

The analysis is done on an operative power system network of a major utility com-

pany in the Southwest United States which is a part of the Western Interconnection. Since 

it was desired to analyze the circuit breaker contingencies, a node breaker model is used 

for this study. This section gives a brief description of the power system network. Table 

3.2 lists various loading scenarios on which the study has been conducted. The loading 

scenarios have been selected to understand the impact of the failure of transmission assets 

at various operating conditions. Table 3.3 summarizes the important aspects of the trans-

mission system at different loading scenarios. 

Table 3.2 List of Different Loading Scenarios of an Operating Utility 

 

Scenario 
Load connected to the utility 

Pload (MW) Qload (MVAr) 

1 2666.31 182.76 

2 4655.52 244.37 

3 6047.73 327.35 

4 7231.23 291.68 
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Table 3.3 Data Description for Different Scenarios 

 

Parameter 
Scenario 

1 2 3 4 

No. of generators in service 27 28 29 38 

Total Pgen (MW) 3166.39 4606.69 5627.10 6187.17 

Total Qgen (MVAr) 306.25 352.10 717.0 1044.02 

Total Pload (MW) 2666.31 4655.52 6047.73 7231.23 

Total Qload (MVAr) 182.76 244.38 327.35 291.68 

Total active power interchange to 

other areas (MW) 
444.07 -158.38 -567.29 -1241.29 

Total reactive power interchange 

to other areas (MVAr) 
172.50 -160.20 -650.76 -1102.58 

 

Scenario 1 corresponds to the light load case, where all generators are not at maxi-

mum or online. Also, in this case, some power is being exported to the neighboring areas. 

On the other hand, in scenarios 2,3, and 4, the power is being imported from the neighbor-

ing areas, since the local generation was not enough. Scenario 4 corresponds to the summer 

peak case when most of the generators are operating at their maximum generation limit 

Pgen,max. 

3.3 Data Preparation 

 

A West-wide System Model (WSM) power flow data file corresponding to scenario 

1 was provided by the operating utility. WSM is a full node breaker model representing the 

entire Western Interconnection. In addition to this, a power flow data file corresponding to 

the 2023 summer peak load case in the bus branch format was also provided. This chapter 
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describes the methodology by which the power flow study case files corresponding to load-

ing scenarios 2, 3 and 4 were developed in the node breaker format, from the given bus 

branch power flow data file. The operating conditions, load levels, generators in service 

and other details were matched as closely to the actual operating conditions as possible. A 

step by step procedure to create the power flow study case files is given as follows: 

1. Create a mapping list for the loads in the bus-branch model to the loads in the node 

breaker model. Only the loads which are having a service status of 1 in the bus 

branch model are considered. 

2. Update the Pload (active power) and Qload (reactive power) values of the loads in the 

node breaker model from the bus branch model. Keep updating the loads sequen-

tially until the desired loading condition is obtained. It is to be noted that the map-

ping of a load profile from the bus branch model is an approximate representation 

of a similar load profile in the node breaker model (due to the difference in the load 

nomenclatures).   

3. To account for increased load, new generators will be required to be switched on. 

A generation dispatch order list provided by the operating utility was followed. 

Table 3.4 lists the dispatch order along with the maximum generation limit for each 

generator. 

4. Ramp the active power generation of the generators already in service or switch on 

new generators if required, to match the desired load. Solve the power flow case. 

Save the power flow case file in .sav format. 

 

 



 

27 

Table 3.4 Generation Rescheduling Priority Order List 

 

Priority 

number 

Bus 

number 

Capacity 

Pgen,max (MW) 

 

Priority 

number 

Bus 

number 

Capacity 

Pgen,max (MW) 

1 9248 1376 29 35010 213 

2 9252 1379 30 35009 213 

3 9253 1377 31 35006 304 

4 102138 812 32 37177 250 

5 102140 809 33 37183 138 

6 102135 809 34 103379 92 

7 100299 416 35 103381 92 

8 100298 419 36 103380 92 

9 105208 437 37 103382 92 

10 105210 420 38 100121 42.6 

11 103364 181 39 100120 42.6 

12 103368 163 40 100123 42.6 

13 103365 264 41 100124 42.6 

14 103363 175 42 100126 42.6 

15 103371 134 43 100127 42.6 

16 101956 185 44 100112 42.6 

17 101957 185 45 100113 42.6 

18 101955 321 46 100115 42.6 

19 102527 230 47 100116 42.6 

20 102529 230 48 100118 42.6 

21 102531 300 49 100119 42.6 

22 101585 156 50 99240 66 

23 101593 100 51 99239 65 

24 7579 18 52 99236 66 

25 7580 18 53 101590 67 

26 37116 185 54 101589 67 

27 37117 185 55 101591 59 

28 37113 321  
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List of swing buses in each area 

 To maintain the consistency and avoid regulation conflicts arising due to multiple 

swing buses, only one swing bus is assigned in each area. In an area, a generator bus having 

the maximum available generation capacity is selected as the swing bus. The nomenclature 

used for bus types in PSLF is mentioned below [19], 

• type 0: swing bus (|V| – δ bus) 

• type 1: load bus (P – Q bus) 

• type 2: generator bus (P – |V| bus).  

The selected swing buses are designated as a type 0, generator buses are designated as type 

2 and the remaining buses are made type 1. Table 3.5 contains the list of swing buses for 

each area. No swing buses were designated in area 10 and 17, since assigning swing buses 

resulted in the divergence of the power flow. 

List of breakers to be switched on for new generators 

 Out of 52 generators listed in the priority list, only 27 generators are in service to 

cater to a load of 2666.31 MW corresponding to scenario 1. To meet the increased load 

requirement pertaining to scenarios 2,3, and 4, new generators are required to be commit-

ted. To ensure a generator is committed, the status of a generator is changed from 0 (out of 

service) to 1 (in service). In addition to this, a node-breaker model also requires that all the 

disconnect switches and breakers located downstream of a generator are switched on. In 

some cases, even the status of the unit transformer is required to be changed. Table 3.6 lists 

all the disconnect switches and/or breakers and unit transformers required to be switched 

on for the generators which are not in service in the base case. 
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Table 3.5 List of Swing Buses for Each Area 

 

Area number Swing bus number 

 

Area number Swing bus number 

1 5714 22 45737 

2 9252 23 49119 

3 11912 24 53060 

4 12634 25 60911 

5 13255 26 73284 

6 18668 27 75240 

7 25296 28 82768 

8 33587 29 86502 

9 34770 30 92536 

10 No swing bus 31 94678 

11 35336 32 96584 

12 36343 33 100299 

13 36742 34 104606 

14 37100 35 105726 

15 37129 36 106336 

16 37152 37 106820 

17 No swing bus 38 107910 

18 37527 39 113938 

19 38757 40 114128 

20 41068 41 114230 

21 43336  
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Table 3.6 List of Disconnect Switches/Breakers Required to be Switched on for Newly 

Committed Generators 

 

Generator bus no. Disconnect switches/breakers no. Unit transformer no. 

100298 
96199, 96197, 96211, 96178, 96207, 

96179, 96208, 96108, 96177, 96180 
5926 

105210 100890 - 

103364 99144 - 

103365 99146 - 

7579 6764 - 

7580 6765 - 

35009 33294 - 

37177 35324 - 

37183 35325 - 

103379 99140, 99092 - 

103381 99141 - 

103380 99142, 99097 - 

103382 99143, 99088, 99082, 99134 6032 

100121 96034 - 

100120 96038 - 

100123 96039 - 

100124 96040 - 

100126 96041 - 

100127 96042 - 

100112 96043 - 

100113 96044 - 

100115 96045 - 

100116 96035 - 

100118 96036 - 

100119 96037 - 

99240 95214 - 

99239 95215 - 

99236 95216 - 

101590 97387 - 

101589 97388 - 

101591 97384, 97249 - 
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List of in-service generators power output at various loading scenarios 

 

Table 3.7 - 3.10 consists of the list of in-service generators along with their power 

generation levels (Pgen and Qgen) for scenarios 1,2,3 and 4 respectively. There are several 

generators owned by the operating utility, which are not a part of the list mentioned in 

Table 3.4. It is to be noted that only the generators that appear in the generation dispatch 

order list of Table 3.4 are included here. 

Table 3.7 List of In-Service Generators for Loading Scenario 1: Pload = 2666.31 MW, 

Qload = 182.76 MVAr 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

9248 1337.14 -143.05 101957 154.50 14.65 

9252 1187.81 -114.15 101955 277.32 29.71 

9253 1329.30 -152.02 102527 129.09 0.27 

102138 463.54 -51.38 102529 143.62 5.09 

102140 412.38 -77.97 102531 165.83 4.84 

102135 328.02 -57.07 101585 94.11 -14.38 

100299 158.07 -103.58 101593 66.78 -10.39 

105208 288.11 9.69 37116 75.88 1.21 

103368 10.34 -28 37117 75.92 2.62 

103363 103.04 6.28 37113 134.45 48.09 

103371 69.55 -22.89 35010 151.71 0.42 

101956 153.78 7.53 35006 73.74 5.82 
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Table 3.8 List of In-Service Generators for Loading Scenario 2: Pload = 4655.52 MW, 

Qload = 244.38 MVAr 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

9248 1376 -89.15 101957 154.50 18.65 

9252 1310.89 -50.16 101955 277.32 36.99 

9253 1377 -96.19 102527 129.09 6.97 

102138 812 24.92 102529 143.62 11.78 

102140 809 2.80 102531 165.83 13.84 

102135 809 24.12 101585 94.11 6.12 

100299 116.95 -52.43 101593 66.78 0.43 

105208 437 0 37116 75.88 5.19 

105210 420 -139.64 37117 75.92 6.58 

103368 181 48.47 37113 134.45 55.45 

103363 84.72 38.12 35010 151.71 6.11 

103371 103.04 26.58 35006 73.74 14.91 

101956 69.55 -2.95  
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Table 3.9 List of In-Service Generators for Loading Scenario 3: Pload = 6047.73 MW, 

Qload = 327.35 MVAr 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

 

Bus 

number 
Pgen (MW) Qgen (MVAr) 

9248 1376 -34.08 101957 185 0 

9252 1251.26 -2.48 101955 321 69.56 

9253 1377 -40.10 102527 230 30.61 

102138 812 33.95 102529 230 34.14 

102140 809 11.85 102531 300 0 

102135 809 33.10 101585 156 29.25 

100299 136.75 -35.27 101593 100 13.54 

105208 437 0 7579 18 0.80 

105210 420 -132.51 7580 18 0.80 

103364 181 60.62 37116 185 0 

103368 163 69.99 37117 185 0 

103365 264 111.57 37113 321 97.93 

103363 175 44.63 35010 182.10 19.42 

103371 134 12.58 35006 73.74 29.27 

101956 185 0  
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Table 3.10 List of In-Service Generators for Loading Scenario 4: Pload = 7231.23 MW, 

Qload = 291.68 MVAr 

 

Bus number Pgen (MW) Qgen (MVAr) 

 

Bus number Pgen (MW) Qgen (MVAr) 

9248 1376 28.75 101593 100 26.02 

9252 1134.14 46.61 7579 18 1.66 

9253 1377 23.89 7580 18 1.66 

102138 812 46.13 37116 185 0 

102140 809 24.07 37117 185 0 

102135 809 45.20 37113 321 112.40 

100299 138.77 -13.72 35010 213 33.99 

105208 437 0 35009 213 19.44 

105210 420 -123.90 35006 304 0 

103364 181 80.67 37177 250 15.49 

103368 163 70 37183 138 30.74 

103365 264 151.42 103379 92 6.78 

103363 175 64.32 103381 92 0.11 

103371 134 31.89 103380 92 6.78 

101956 185 0 103382 92 11.19 

101957 185 0 100121 42.59 3.49 

101955 321 83.82 100120 42.59 3.49 

102527 230 39.60 100123 42.59 3.49 

102529 230 43.11 100124 42.59 3.49 

102531 300 0 100126 19.65 1.65 

101585 156 52.85  

 



 

35 

Contingency list preparation 

 

A contingency list consists of the elements that will be removed from the network 

model, one by one, to study the effects on the power system network. In general, the criteria 

for selection of the transformers, transmission lines and circuit breakers for the contingency 

simulation are stated as follows,  

• voltage level must be 500 kV 

• equipment must be in-service 

• equipment must be operated or owned by the operating utility. 

In addition to the above criteria, the conditions shown below should be met for a transmis-

sion line and a circuit breaker to include them in the contingency list: 

• In PSLF, a jumper is modeled as a transmission line with zero resistance and zero 

reactance (r = 0 and x = 0), whereas a series capacitor is modeled as a transmission 

line with zero resistance and a negative reactance (r = 0 and x < 0) [25]. Hence, 

while creating the contingency list, only the transmission lines with a positive re-

actance (x > 0) are considered. This filters out the 500 kV jumpers as well as series 

capacitors from the contingency list. 

• A circuit breaker in PSLF’s node breaker format does not carry the “owner number” 

attribute. Hence to identify a circuit breaker owned by the operating utility, the 

owner of the breaker’s terminal buses is determined. If the identified owner is the 

operating utility under consideration, then the circuit breaker is included in the con-

tingency list. It is to be noted that the disconnect switches (manual and motor op-

erated), are not considered for the analysis.  
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Three separate contingency lists consisting of 35 transformers, 29 transmission lines, 

and 112 circuit breakers are prepared. Tables 3.11 to 3.12 summarize the list of trans-

formers and transmission lines identified for ranking. The list of circuit breakers is 

given in Appendix A. 
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Table 3.11 List of 500 kV Transformers for Contingency Analysis and Ranking 

 

Transformer 

name 

From 

bus 
To bus 

Primary  

winding kV 

Secondary  

winding kV 

Tertiary  

winding kV 

Tr 1 99485 99488 500 115 - 

Tr 2* 99766 99832 500 230 12.5 

Tr 3* 99767 99833 500 230 12.5 

Tr 4 100257 100294 500 69 - 

Tr 5 100285 100293 500 345 - 

Tr 6 100284 100292 500 345 - 

Tr 7* 100264 100297 500 22 - 

Tr 8 100465 100469 500 230 - 

Tr 9 101451 101467 500 230 34 

Tr 10 101452 101468 500 230 34 

Tr 11 101924 101933 500 230 - 

Tr 12 101922 101932 500 230 - 

Tr 13* 102131 102139 500 26 - 

Tr 14* 102132 102134 500 26 - 

Tr 15* 102133 102136 500 26 - 

Tr 16* 102419 102443 500 24 - 

Tr 17* 102428 102444 500 24 - 

Tr 18* 102385 102445 500 24 - 

Tr 19* 102487 102536 500 18 - 

Tr 20* 102504 102540 500 18 - 

Tr 21* 102508 102541 500 18 - 

Tr 22* 102500 102539 500 18 - 

Tr 23* 102447 102525 500 18 - 

Tr 24* 102450 102526 500 18 - 

Tr 25* 102514 102542 500 18 - 

Tr 26* 102459 102528 500 18 - 

Tr 27* 102466 102530 500 18 - 

Tr 28* 102469 102532 500 18 - 

Tr 29 102738 102756 500 230 - 

Tr 30 102737 102755 500 230 - 

Tr 31 103145 103169 500 230 - 

Tr 32 103147 103162 500 230 - 

Tr 33 103144 103165 500 230 - 

Tr 34 103148 103166 500 230 - 

Tr 35 103604 103655 500 230 34 

* Denotes a generator step-up transformer 
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Table 3.12 List of 500 kV Transmission Lines for Contingency Analysis and Ranking 

 

Transmission line 

name 
From bus  To bus 

Ln 1 102439 7516 

Ln 2 100973 9782 

Ln 3 100982 9783 

Ln 4 101007 9048 

Ln 5 100976 37154 

Ln 6 102377 87944 

Ln 7 101006 96580 

Ln 8 100288 103616 

Ln 9 100265 103791 

Ln 10 102769 100463 

Ln 11 100464 102725 

Ln 12 100992 101293 

Ln 13 101921 100989 

Ln 14 101923 100995 

Ln 15 100987 102442 

Ln 16 102442 102390 

Ln 17 100972 102441 

Ln 18 102441 102387 

Ln 19 101008 102440 

Ln 20 102376 102440 

Ln 21 100963 102764 

Ln 22 101296 102479 

Ln 23 102481 101283 

Ln 24 101442 99759 

Ln 25 101445 101286 

Ln 26 102379 103152 

Ln 27 102728 99771 

Ln 28 103610 99768 

Ln 29 102732 105242 
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CHAPTER 4: RANKING METHODOLOGY AND RESULTS 

4.1 System Performance Indices  

 

 The critical elements in a transmission network are identified by carrying out a 

contingency analysis followed by the ranking of the transmission assets. However, to rank 

the assets, it is necessary to quantify the impact of their failure on the system. Depending 

upon the nature of severity, some outages may result in network constraints violation, such 

as bus voltages deviation outside limit and transmission lines or transformers overload.  

The ranking is usually achieved by computing the system wide performance indices. These 

indices are formulated to capture the effect of the contingencies in terms of the bus voltage 

deviations, branch overloads, or generator reactive power limits. Several contingency rank-

ing methods have been introduced in references [29]-[31]. In all these methods a perfor-

mance index is defined and calculated. The methods differ from each other in terms of 

performance index definition and their effectiveness in the identification of the critical el-

ements.  

In [32], the authors Ejebe and Wollenberg, have developed a fast technique for 

contingency ranking and selection. The authors have proposed a methodology for the rank-

ing of transmission lines and generator outages based on their impacts on bus voltages and 

branch power flows. This method evaluates the effect of outages on the system bus voltages 

by using the non-linear ac load flow equations, whereas a dc load flow model is used to 

rank the contingencies based on active power flows. The ranking obtained using this 

method provides the severity of each contingency relative to the others. The contingencies 

are analyzed further by carrying a full ac power flow starting at the top of the list and 
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stopping when the cases do not pose significant problems. This method selects the contin-

gencies in an adaptive way based on the system operating condition, instead of using a 

fixed list based on offline studies. The indices defined by the authors in [32] are based on 

the voltage constraints at the load buses and flow constraints on the transmission lines and 

transformers. The bus voltages are constrained between the high limit imposed by the max-

imum system voltage value and a low limit below which the system is vulnerable to voltage 

collapse. Similarly, the power flow on the transmission lines and transformers is con-

strained due to the thermal limits. These constraints are treated as ‘soft’ constraints by 

introducing a penalty function. This way the performance indices are penalized based on 

the magnitude of constraints violation. The voltage based performance index, termed as 

PIV, is defined in [32] as, 

𝑃𝐼𝑉 =  ∑
𝑊𝑉𝑖

2𝑛
(
|𝑉𝑖| − |𝑉𝑖

𝑠𝑝|

∆𝑉𝑖
𝑙𝑖𝑚

)

2𝑛𝑁𝐵

𝑖=1

, (4.1) 

 where, 

|Vi|  : voltage magnitude at bus i in p.u., 

|Vi
sp|  : specified voltage magnitude at bus i in p.u., 

∆Vi
lim : voltage deviation limit for bus i in p.u.,  

n : exponent of the penalty function, 

NB : number of buses in the system, 

WVi : real non-negative weighting factor for bus i. 

From (4.1), it can be observed that the PIV index accounts for voltage deviations 

across all the buses in the power system. Also, the PIV index will be higher for contingen-

cies that result in larger system wide voltage deviation. The index largely depends on the 

exponent n and the weight coefficient WVi. For the same amount of voltage deviation, the 
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value of PIV index will be greater for a greater value of n. Similarly, a higher value of WVi 

can be assigned to a bus where voltage deviation is not acceptable and may cause stability 

issues. This would increase the sensitivity of the PIV index with respect to the buses with 

higher weight coefficients. The authors in [32] have also defined a voltage-reactive power 

performance index PIVQ given as, 

𝑃𝐼𝑉𝑄 =  ∑
𝑊𝑉𝑖

2𝑛
(
|𝑉𝑖| − |𝑉𝑖

𝑠𝑝|

∆𝑉𝑖
𝑙𝑖𝑚

)

2𝑛𝑁𝐵

𝑖=1

+∑
𝑊𝑄𝑗

2𝑛
(

𝑄𝑗

𝑄𝑗
𝑚𝑎𝑥)

2𝑛𝑁𝐺

𝑗=1

, (4.2) 

where, 

Qj  : reactive power produced at bus i, 

Qj
max  : maximum allowable reactive power at bus i, 

NG : number of generators in the system, 

WQj : real non-negative weighting factor for bus j. 

In (4.2), the second summation accounts for violations occurring in the reactive 

power constraints of the generating units. However, the reactive power limits on the gen-

erators are usually considered while carrying out an AC power flow study in most of the 

software packages available these days. The weight coefficient WQj can be set to zero if the 

reactive power violations are not required to be accounted for.  

An index for quantifying the impact of contingency in terms of branch overloads is 

also defined in [32]. The active power performance index is given by, 

𝑃𝐼𝑀𝑊 =  ∑
𝑊𝑖

2𝑛
(
𝑃𝑖

𝑃𝑖
𝑙𝑖𝑚

)

2𝑛𝑁𝐿

𝑖=1

, (4.3) 

where, 

Pi  : active power flow on branch i in MW, 

Pi
lim  : the MW capacity of branch i, 
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NL : number of branches in the system, 

Wi : real non-negative weighting factor. 

The authors have introduced a concept of computing the sensitivities of the perfor-

mance indices given by (4.1), (4.2), and (4.3) with respect to the outages. However, com-

puting the sensitivities is more complicated than the performance indices. As suggested by 

Eftekharnejad in [33], the performance indices by themselves are enough to provide a rea-

sonable ranking of the contingencies. This holds true for a larger power system with a 

larger number of buses. 

It is to be noted that the performance index defined by (4.3), considers all the lines 

flow irrespective of the ratio  
𝑃𝑖

𝑃𝑖
𝑙𝑖𝑚. A contingency may result in several branch overloads 

while the other branches operate below their respective limits. A simpler flow based per-

formance index is defined by (4.4), 

𝑃𝐼𝐹 = {max(
𝐹𝑖

𝐹𝑖,𝑙𝑖𝑚
) ,𝑁𝑉}, (4.4) 

where i = 1 to NL (number of branches in the system). In (4.4), Fi and Fi,lim are the flow and 

the rating of the ith branch respectively expressed in terms of current for transmission lines 

and in terms of MVA for transformers. The term NV is the number of rating violations 

encountered for the ith contingency. The index in (4.4) considers only the branches with 

maximum loading in the network since those heavily loaded elements are more prone to 

failure. The contingency that resulted in maximum overloading gets ranked higher. If two 

or more contingencies resulted in the same overloading, then the number of rating viola-

tions Nv is used to resolve the ‘tie’ and ultimately rank the contingencies.  
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 A contingency ranking method that focuses on detecting the voltage problems has 

been described in [34]. The authors have introduced the concept of contingency stiffness 

to address the issue of inaccurate rankings due to nonlinearities of the reactive power equa-

tions, negligence of the effects of voltage regulators, and discontinuities due to limits on 

the reactive power generation devices. In this method, a stiffness index is calculated for 

each contingency. The stiffness index defined in [34] measures the amount of local dis-

turbance caused by an outage. Two different stiffness indices corresponding to branch and 

generator outages are defined. The contingencies are categorized into two groups based on 

the value of the stiffness index. In general, the first group consists of the contingencies 

having a stiffness index below a certain threshold. A smaller stiffness index implies that 

the system states and the power flow change linearly with respect to parameters of the 

circuit or generating unit under outage [34]. Hence such contingencies can be ranked using 

performance indices which are based on the linearized model around the operating point. 

However, the contingencies in the second group with a larger stiffness index imply the 

need for using alternative methods like subnetwork solution for ranking purpose [34]. A 

voltage based performance index described in [34] is given as, 

𝑀 =  ∑𝑊𝑖 (
2𝑉𝑖 − 𝑉𝑖

𝑚𝑎𝑥 − 𝑉𝑖
𝑚𝑖𝑛

𝑉𝑖
𝑚𝑎𝑥 − 𝑉𝑖

𝑚𝑖𝑛
)

2𝑛𝑁𝐵

𝑖=1

, (4.5) 

where, 

Vi : voltage magnitude at bus i in p.u., 

Vi
max : maximum allowable voltage magnitude at bus i in p.u., 

Vi
min : minimum allowable voltage magnitude at bus i in p.u., 

Wi : weighting factor for bus i, 

n : exponent of the penalty function. 
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The performance index M defined by (4.5), is smaller when the voltage magnitudes 

are within the given voltage limits Vi
max and Vi

min and it assumes a larger value when the 

bus voltages are outside the specified range. The contingency ranking method given in [34] 

further involves the computation of the derivative of the performance index M with respect 

to the contingency parameters. The ranking of contingencies is done based on the values 

of the derivative. It is to be noted that this method is not applicable for contingencies with 

a higher stiffness index.  

4.2 Ranking Methodology 

 

 A step by step procedure to obtain the ranking of the transmission assets is as fol-

lows:  

1. Create the power flow case files for different loading scenarios.  

2. Load the .sav power flow file for a loading scenario in PSLF. 

3. Simulate a transmission asset contingency from a contingency list. 

• For transformers and transmission lines contingencies, change the service 

status of the concerned equipment to 0. 

• To simulate a stuck breaker contingency, all the equipment including 

breakers, transmission lines, transformers, generators, or shunts that would 

trip due to a breaker getting stuck are taken out of service. 

4. Perform generation rescheduling if a contingency result in loss of a generator.   

5. Solve the power flow for the modified power system network. 

6. Upon convergence of the power flow study performed in step 5, save the results 

comprising of bus voltages and branch flows in a .txt file. Go to step 8. 
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7. If the power flow study for the modified power system network in step 5 fails to 

converge, an attempt is made to resolve the power flow by changing the solution 

parameters as follows, 

a. Increase the number of iterations before the VAR limit is imposed on the 

generators 

b. Increase the mismatch tolerance 

c. Increase the total number of power flow iterations. 

8. Repeat steps 3 to 7 for all the contingencies in the list. 

9. Export the .txt files containing the power flow results obtained in step 6 in 

Matlab. 

10. Compute the performance indices PIV and PIF given by (4.1) and (4.4) for all types 

of contingencies. 

11. Rank the transmission assets in decreasing order of the performance indices - PIV 

and PIF. 

12. Repeat steps 2 to 11 for all the loading scenarios.  

The contingency simulation of transmission assets is automated in PSLF using 

EPCL. EPCL is a programming language exclusively developed to work in conjunction 

with PSLF. It has direct access to the data tables of the power flow cases under study and 

can be used effectively to perform data manipulations, automate the simulations and gen-

erate reports [25].  

4.3 Simulation Results for 500 kV Transformer Contingencies 

 

 The transformer is a crucial equipment in an electrical utility’s transmission assets 

arsenal. In many cases, transformers are operated way beyond their predicted life of 25 to 
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40 years [35]. With the increase in demand for electric energy, some transformers are op-

erated above their rated MVA capacity. Operating utilities perform several off-line and on-

line analysis to monitor the health of the transformers so that any upcoming failure can be 

diagnosed and dealt in a planned manner. It is often desired to identify a set of critical 

transformers from the entire fleet. This would help prioritize the maintenance and invest-

ment decisions for the most critical transformers over the lesser ones, and hence optimize 

the operation and maintenance expenditure.  

The transformers are ranked relative to each other to identify the critical ones. The 

relative ranking of the transformers listed in Table 3.11 is achieved by quantifying the 

impact of their failure on the rest of the system in terms of the performance indices PIV and 

PIF given by (4.1) and (4.4) respectively. The PIV and PIF values corresponding to each N-

1 transformer contingency for four different loading scenarios are presented in this section. 

The EPCL code used to simulate each transformer contingency one-by-one and store the 

results in .txt files is given in Appendix B. The Matlab script that reads the .txt files 

containing the contingency power flow results and computes the performance indices is 

described in Appendix C.  

The simulation results of the transformer contingencies corresponding to scenario 

1 (light load case) and scenario 4 (summer peak load case) are discussed in this section. 

The results of transformer contingencies for scenario 3 and scenario 4 (intermediate load 

cases) are given in Appendix D. As described earlier, the performance indices capture the 

impact of transformer failures on the rest of the power system network in terms of branch 

overloads and bus voltage deviations. The transformers with higher values of PIV and PIF 

are identified as critical ones since their failure impact is severe relative to the transformers 
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with lower values of PIV and PIF indices. The values of PIV, PIF, and NV for each one of 

the 35 transformer contingencies corresponding to scenario 1 is listed in Table 4.1. 

Table 4.1 List of PIV and PIF Indices for Transformer Contingencies for Scenario 1 (Pload 

= 2666.31 MW, Qload = 182.76 MVAr) 

 

Transformer 

name 
PIV PIF NV 

 

Transformer 

name 
PIV PIF NV 

Tr 1 111.726 0.899 0 Tr 19 107.700 0.894 0 

Tr 2 104.911 0.899 0 Tr 20 115.119 0.924 0 

Tr 3 104.911 0.899 0 Tr 21 112.998 0.924 0 

Tr 4 111.213 0.899 0 Tr 22 112.514 0.924 0 

Tr 5 114.307 0.899 0 Tr 23 112.297 0.924 0 

Tr 6 115.092 0.899 0 Tr 24 110.725 0.924 0 

Tr 7 135.455 0.925 0 Tr 25 111.658 0.924 0 

Tr 8 108.298 0.898 0 Tr 26 112.173 0.924 0 

Tr 9 97.253 0.898 0 Tr 27 112.109 0.924 0 

Tr 10 97.211 0.898 0 Tr 28 112.313 0.924 0 

Tr 11 106.522 0.898 0 Tr 29 112.446 0.899 0 

Tr 12 106.882 0.898 0 Tr 30 112.446 0.899 0 

Tr 13 110.717 0.925 0 Tr 31 108.698 0.899 0 

Tr 14 111.536 0.925 0 Tr 32 108.698 0.899 0 

Tr 15 110.771 0.925 0 Tr 33 108.731 0.899 0 

Tr 16 136.628 0.977 0 Tr 34 108.564 0.899 0 

Tr 17 132.655 0.934 0 Tr 35 121.960 0.899 0 

Tr 18 137.260 0.977 0  

 

From the results mentioned in Table 4.1, it can be observed that the indices are 

close to each other in most of the contingencies. The indices differ from others only for a 

few critical contingencies. Also, it can be noted that for scenario 1, no branch limit viola-

tions are observed for any of the 35 transformer contingencies (i.e., NV = 0 for all the con-

tingencies). This is expected since scenario 1 corresponds to a light load case (~37 % of 

the peak load case) where the assets are not loaded to their maximum capacity in the base 

case. Hence, none of the branches in the power system network of the operating utility gets 

overloaded following a contingency.  
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The transformer contingencies with higher PIV are not always the cases with a high 

PIF  except for some of the critical contingencies. Therefore, the relative ranks of the trans-

formers obtained based on these performance indices are quite different. For example, Tr 

18 is identified as the most critical transformer relative to other transformers based on the 

both PIF and PIV performance indices, whereas the rank of transformer Tr 35 is different 

based on each of these performance indices. The plots of PIV and PIF performance indices 

for all the transformer contingencies under scenario 1 are shown in Fig. 4.1 to provide a 

better comparison.  

 
 

Figure 4.1 Comparison of PIV and PIF Indices for Transformer Contingencies of Loading 

Scenario 1 

 

Fig. 4.2 and 4.3 show the buses voltage deviation plot for Tr 18 and Tr 10 respec-

tively.  



 

49 

 

Figure 4.2 Scenario 1: Bus Voltage Deviation Plot for Most Critical Transformer Tr 18 

Contingency 

 

 

Figure 4.3 Scenario 1: Bus Voltage Deviation Plot for Least Critical Transformer Tr 10 

Contingency  

 

Tr 18 (PIV = 137.26) is the most critical transformer while Tr 10 (PIV = 97.211) is 

the least critical transformer identified based on the PIV index for scenario 1. From Fig. 

4.2, it is observed that upon failure of Tr 18, most of the buses suffer from over-voltage. 
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The buses in the power system network of the operating utility, following the Tr 10 trans-

former contingency also suffers from over-voltage. However, the voltage deviation for Tr 

18 and Tr 10 transformer contingencies across all the buses in the network is below the 

desired ∆Vlim value (i.e., 0.05 p.u. for 500 kV buses and 0.075 p.u. for the buses at any 

other voltage levels). This is evident from the values of the average bus voltage deviation 

∆Vavg for both the transformer contingencies shown in Fig. 4.2 and 4.3. The average bus 

voltage deviation of a power system network is given by, 

∆𝑉𝑎𝑣𝑔 =
1

𝑁𝐵
∑|𝑉𝑘 − 𝑉𝑘

𝑠𝑝|

𝑁𝐵

𝑘=1

, (4.6) 

where, 

Vk : voltage magnitude at bus k in p.u., 

Vk
sp : specified voltage magnitude at bus k in p.u., 

NB : number of buses in the power system network. 

The values of PIV, PIF, and NV for each one of the 35 transformer contingencies 

corresponding to scenario 4 is listed in Table 4.2. Scenario 4 corresponds to the summer 

peak load case of the operating utility. During summer, the transmission assets are operated 

at their maximum capacity to cater to the high load demand. A 500 kV transformer contin-

gency during such a peak load condition is expected to result in a severe impact on the rest 

of the system. This is evident from the results presented in Table 4.2. It can be noted that 

each transformer contingency irrespective of its PIF value results in at least two branch 

flow limit violations in the power system network of the operating utility i.e., NV ≥ 2. Tr 

35 is identified as the most critical transformer based on the PIF as well as PIV index. The 

PIF value of 1.129 for Tr 35 indicates that a branch in the power system network will be 
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loaded to 112.9 % of its rated limit, following the failure of transformer Tr 35. The value 

of NV for this transformer is 4. 

Table 4.2 List of PIV and PIF Indices for Transformer Contingencies for Scenario 4 (Pload 

= 7231.23 MW, Qload = 291.68 MVAr) 

 

Transformer 

name 

PIV PIF NV 

 

Transformer 

name 

PIV PIF NV 

Tr 1 1041.682 1.066 2 Tr 19 1060.818 1.067 2 

Tr 2 1078.403 1.067 2 Tr 20 1031.498 1.066 2 

Tr 3 1078.400 1.067 2 Tr 21 1038.592 1.066 2 

Tr 4 1039.761 1.066 2 Tr 22 1043.126 1.066 2 

Tr 5 1032.990 1.066 2 Tr 23 1041.916 1.066 2 

Tr 6 1031.064 1.066 2 Tr 24 1047.266 1.066 2 

Tr 7 1024.395 1.066 2 Tr 25 1046.641 1.066 2 

Tr 8 1073.128 1.067 2 Tr 26 1033.122 1.066 2 

Tr 9 1197.026 1.073 2 Tr 27 1034.211 1.066 2 

Tr 10 1197.689 1.073 2 Tr 28 1015.196 1.065 2 

Tr 11 1076.991 1.083 4 Tr 29 1041.999 1.066 2 

Tr 12 1073.577 1.083 4 Tr 30 1041.999 1.066 2 

Tr 13 1022.795 1.065 2 Tr 31 1067.538 1.067 2 

Tr 14 1020.178 1.065 2 Tr 32 1067.538 1.067 2 

Tr 15 1022.576 1.065 2 Tr 33 1067.027 1.067 2 

Tr 16 970.306 1.063 4 Tr 34 1068.682 1.067 2 

Tr 17 974.613 1.064 2 Tr 35 2149.555 1.129 4 

Tr 18 969.658 1.063 4  

 

A comparison of the PIV and PIF performance indices for transformer contingencies 

of scenario 4 is shown in Fig. 4.4. From the plots in Fig. 4.4, it is observed that the values 

of PIV and PIF performance indices follow a trend i.e., the values of PIV and PIF perfor-

mance indices for a transformer contingency are both either relatively higher or lower than 

the indices for other transformer contingencies. As a result, the set of critical transformers 

identified based on PIV and PIF indices are almost identical except a few transformers. Such 

a trend is not observed in the relative values of the PIV and PIF indices for transformer 

contingencies of scenarios 2 and 3. For illustrative purpose, the list of top ten transformers 

based on the PIV and PIF values for scenario 4 is shown in Table 4.3.  
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Figure 4.4 Comparison of PIV and PIF Indices for Transformer Contingencies of Loading 

Scenario 4 

 

Table 4.3 List of Top Ten Transformers Based on the PIV and PIF Values for Scenario 4 

 

Rank PIV based transformer PIF based transformer 

1 Tr 35 Tr 35 

2 Tr 10 Tr 11 

3 Tr 9 Tr 12 

4 Tr 2 Tr 10 

5 Tr 3 Tr 9 

6 Tr 11 Tr 8 

7 Tr 12 Tr 34 

8 Tr 8 Tr 31 

9 Tr 34 Tr 32 

10 Tr 31 Tr 33 

 

 Tr 35 and Tr 18 are identified as the most critical and least critical transformers 

respectively for scenario 4 using the voltage based PIV index. Figs. 4.5 and 4.6 show the 

bus voltage deviation plot for Tr 35 and Tr 18 transformer contingencies of scenario 4. It 

can be observed that the buses in the power system network of the operating utility show 
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significant under-voltage. The average voltage deviation for Tr 35 contingency is 0.054, 

which is higher than the acceptable ∆Vlim value of 0.05 p.u. for 500 kV buses.  

 

Figure 4.5 Scenario 4: Bus Voltage Deviation Plot for the Most Critical Transformer Tr 

35 Contingency Based on PIV 

 

 

Figure 4.6 Scenario 4: Bus Voltage Deviation Plot for the Least Critical Transformer Tr 

18 Contingency Based on PIV  
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In general, the PIV and PIF indices for the transformer contingencies under scenario 

4 are higher compared to similar contingencies under scenarios 1, 2 and 3. This can be seen 

from the plots in Figs. 4.7 and 4.8. It is to be noted that this trend is strictly observed for 

the PIV index but not for the PIF index (especially for top ten ranked transformer contin-

gencies). The PIF values for several transformers under scenario 1 are higher compared to 

the similarly ranked transformers under scenario 2 and 3.  

 
 

Figure 4.7 Comparison of the PIV Index Transformer Contingencies Under Different 

Loading Scenarios 

 

 

Figure 4.8 Comparison of the PIF Index for Transformer Contingencies Under Different 

Loading Scenarios 
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 Tables 4.4 and Table 4.5 summarizes the rank for the 35 transformer contingencies 

under different loading scenarios based on the PIV and PIF index respectively. 

Table 4.4 List of PIV Based Rank of the 35 Transformer Contingencies Under Different 

Loading Scenarios 

 

Transformer name 
PIV based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Tr 1 17 20 25 20 

Tr 2 33 5 4 4 

Tr 3 32 4 5 5 

Tr 4 20 23 26 21 

Tr 5 8 27 32 25 

Tr 6 7 28 33 27 

Tr 7 3 29 35 28 

Tr 8 28 6 9 8 

Tr 9 34 2 3 3 

Tr 10 35 3 2 2 

Tr 11 31 7 6 6 

Tr 12 30 8 8 7 

Tr 13 23 31 18 29 

Tr 14 19 32 21 31 

Tr 15 21 30 19 30 

Tr 16 2 34 10 34 

Tr 17 4 33 7 33 

Tr 18 1 35 11 35 

Tr 19 29 13 13 13 

Tr 20 6 26 31 26 

Tr 21 9 25 28 22 

Tr 22 10 19 24 16 

Tr 23 14 24 27 19 

Tr 24 22 14 17 14 

Tr 25 18 15 20 15 

Tr 26 15 22 30 24 

Tr 27 16 21 29 23 

Tr 28 13 18 34 32 

Tr 29 11 16 22 17 

Tr 30 12 17 23 18 

Tr 31 25 10 14 10 

Tr 32 26 11 15 11 

Tr 33 24 12 16 12 

Tr 34 27 9 12 9 

Tr 35 5 1 1 1 
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Table 4.5 List of PIF Based Rank of the 35 Transformer Contingencies Under Different 

Loading Scenarios 

 

Transformer name 
PIF based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Tr 1 17 13 16 20 

Tr 2 23 23 26 12 

Tr 3 24 24 27 13 

Tr 4 20 19 17 21 

Tr 5 19 3 5 23 

Tr 6 18 8 6 24 

Tr 7 7 10 13 28 

Tr 8 30 29 28 6 

Tr 9 31 31 30 5 

Tr 10 32 32 31 4 

Tr 11 34 35 1 2 

Tr 12 33 34 2 3 

Tr 13 6 6 34 29 

Tr 14 4 5 32 32 

Tr 15 5 7 33 30 

Tr 16 2 2 4 34 

Tr 17 3 4 7 33 

Tr 18 1 1 3 35 

Tr 19 35 30 29 11 

Tr 20 8 9 9 27 

Tr 21 9 11 12 22 

Tr 22 10 15 15 18 

Tr 23 14 12 14 19 

Tr 24 16 20 21 14 

Tr 25 15 18 18 15 

Tr 26 12 14 10 26 

Tr 27 13 16 11 25 

Tr 28 11 17 8 31 

Tr 29 21 21 19 16 

Tr 30 22 22 20 17 

Tr 31 28 27 24 8 

Tr 32 29 28 25 9 

Tr 33 26 26 23 10 

Tr 34 27 25 22 7 

Tr 35 25 33 35 1 
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The results in Tables 4.4 and 4.5 imply that the rank of a transformer contingency 

relative to the others depend largely on the loading condition of the power system network 

under which the contingencies are simulated. The rank also varies with the type of perfor-

mance index (PIV or PIF) used to quantify the impact of a contingency on the power system 

network of the operating utility. Equation (4.7) is used to consolidate the criticality associ-

ated with each transformer contingency based on a performance index under various load-

ing scenarios. 

𝑅𝐹,𝑘 = 𝑘∑
𝑊𝑖

𝑅𝑘,𝑖

𝑁𝑐

𝑖=1

, (4.7) 

  where, 

 k : multiplying factor, 

Wi : weight assigned to a loading scenario i, 

Nc : total number of loading scenarios under study, 

Rk,i : rank of kth contingency for ith loading scenario, 

RF,k : final ranking index of kth contingency considering Nc loading scenarios. 

The final ranking index RF is calculated for each transformer contingency based on 

both the PIV and PIF performance indices used here. Since Nc is 4, equation (4.7) will take 

the following form, 

𝑅𝐹,𝑘 = 𝑘 (
𝑊1

𝑅𝑘,1
+

𝑊2

𝑅𝑘,2
+

𝑊3

𝑅𝑘,3
+

𝑊4

𝑅𝑘,4
). (4.8) 

  After computing the final ranking index RF using (4.8), the transformer contingen-

cies are ranked in decreasing order of the value of RF. In general, the contingencies with a 

relatively higher value of the index RF are critical than the contingencies with a lower RF. 
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The values of weights W1, W2, W3, and W4 used here are 0.33, 0.25, 0.17, and 0.25 respec-

tively. These values reflect the percentage of days when the power system network of the 

operating utility operates under the respective loading scenario (note that ∑Wi =1). The 

multiplying factor k is set to be 100 to provide better resolution in the values of RF. Table 

4.6 shows the list of all the transformer contingencies which are ranked using RF based on 

the PIV and PIF performance indices. Tr 35 and Tr 18 are identified as the most critical 

transformers relative to others based on the PIV and PIF performance indices respectively 

in the 500 kV transmission network of the operating utility under study. 
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Table 4.6 List of PIV and PIF Based Ranks of Transformer Contingencies Using the RF 

Index 

 

PIV based 

 

PIF based 

Rank 
Transformer 

name 
RF Rank 

Transformer 

name 
RF 

1 Tr 35 73.600 1 Tr 18 64.381 

2 Tr 18 35.974 2 Tr 16 33.985 

3 Tr 9 30.276 3 Tr 28 31.185 

4 Tr 16 27.471 4 Tr 22 27.563 

5 Tr 10 19.671 5 Tr 26 20.436 

6 Tr 28 16.500 6 Tr 35 18.569 

7 Tr 2 15.681 7 Tr 21 14.563 

8 Tr 26 13.241 8 Tr 27 14.557 

9 Tr 11 12.194 9 Tr 20 11.520 

10 Tr 3 11.636 10 Tr 25 11.029 

11 Tr 27 10.359 11 Tr 14 9.718 

12 Tr 12 9.921 12 Tr 11 9.415 

13 Tr 22 8.194 13 Tr 1 8.833 

14 Tr 8 7.971 14 Tr 24 8.611 

15 Tr 21 7.534 15 Tr 23 8.492 

16 Tr 25 7.048 16 Tr 2 7.489 

17 Tr 20 6.948 17 Tr 10 7.438 

18 Tr 7 6.887 18 Tr 9 7.402 

19 Tr 24 6.806 19 Tr 13 7.197 

20 Tr 34 6.604 20 Tr 12 6.971 

21 Tr 1 6.582 21 Tr 3 6.736 

22 Tr 31 6.410 22 Tr 15 6.646 

23 Tr 29 6.349 23 Tr 17 6.566 

24 Tr 32 6.292 24 Tr 29 6.200 

25 Tr 19 6.071 25 Tr 30 6.177 

26 Tr 33 6.017 26 Tr 7 5.938 

27 Tr 23 5.344 27 Tr 5 5.908 

28 Tr 30 5.209 28 Tr 19 5.489 

29 Tr 6 5.121 29 Tr 8 5.470 

30 Tr 5 4.945 30 Tr 6 5.259 

31 Tr 17 4.926 31 Tr 4 5.219 

32 Tr 4 4.581 32 Tr 31 5.156 

33 Tr 14 4.134 33 Tr 33 4.969 

34 Tr 15 4.133 34 Tr 34 4.957 

35 Tr 13 4.048 35 Tr 32 4.635 
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4.4 Simulation Results for 500 kV Transmission Line Contingencies 

 

 In this section, the voltage based performance index PIV and the flow based perfor-

mance index PIF are used to rank the 500 kV transmission lines in the power system net-

work of the operating utility relative to each other.  The PIV and PIF values corresponding 

to each N-1 transmission line contingencies for four different loading scenarios are pre-

sented in this section. The simulation of each transmission line contingency is automated 

using the PSLF’s EPCL programming language. The code for simulating the transmission 

line contingencies is similar to the EPCL code used for the transformers mentioned in Ap-

pendix B. The .txt files containing the contingency power flow results are exported to 

Matlab where the performance indices are computed using the script given in Appendix C.  

The simulation results of the transmission line contingencies corresponding to sce-

nario 1 (light load case) and scenario 4 (summer peak load case) are discussed in this sec-

tion. The results of transmission line contingencies for scenario 3 and scenario 4 (interme-

diate load cases) are presented in Appendix D. The values of PIV, PIF and NV performance 

indices for the 29 transmission line contingencies under scenario 1 are given in Table 4.7.  

 It can be noted from Table 4.7 that the value of PIF is less than unity and the value 

of NV is zero for all the transmission line contingencies under scenario 1. This implies that 

none of the transmission line contingencies result in branch limit violations. Hence, the 

transmission network of the operating utility does not possess any threat of branches over-

load from the transmission line contingencies under a light load case. However, it should 

be noted that the failure of any of these transmission lines, when the power system network 

is already under an N-1 contingency, may worsen the system condition further. Under a 

summer peak case, this could even result in a cascading failure or even a blackout.  
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Table 4.7 List of PIV and PIF Indices for Transmission Line Contingencies for Scenario 1 

(Pload = 2666.31 MW, Qload = 182.76 MVAr) 

 

Transmission 

line name 
PIV PIF NV 

 

Transmission 

line name 
PIV PIF NV 

Ln 1 117.459 0.896 0 Ln 16 110.269 0.898 0 

Ln 2 110.405 0.899 0 Ln 17 109.629 0.898 0 

Ln 3 110.405 0.899 0 Ln 18 110.267 0.898 0 

Ln 4 98.463 0.896 0 Ln 19 109.629 0.898 0 

Ln 5 105.545 0.898 0 Ln 20 110.267 0.898 0 

Ln 6 99.684 0.897 0 Ln 21 110.009 0.895 0 

Ln 7 103.443 0.897 0 Ln 22 103.661 0.898 0 

Ln 8 51.241 0.896 0 Ln 23 103.661 0.898 0 

Ln 9 107.313 0.899 0 Ln 24 112.269 0.898 0 

Ln 10 95.821 0.898 0 Ln 25 63.015 0.895 0 

Ln 11 95.012 0.898 0 Ln 26 85.357 0.896 0 

Ln 12 99.614 0.898 0 Ln 27 76.495 0.898 0 

Ln 13 106.438 0.898 0 Ln 28 90.793 0.898 0 

Ln 14 106.798 0.898 0 Ln 29 94.183 0.898 0 

Ln 15 104.497 0.897 0     

 

A comparison of the values of PIV and PIF performance indices for all the transmis-

sion line contingencies under scenario 1 is given in Fig. 4.9. Ln 1 and Ln 9 are identified 

as the most critical transmission lines relative to the others based on their PIV and PIF values 

respectively. The performance indices PIF and PIV quantify the impact of a contingency on 

the rest of the power system network in terms of branch overloads and voltage deviations. 

The two parameters are not directly related to each other. Hence, the critical lines identified 

using both the performance indices are different.        
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Figure 4.9 Comparison of PIV and PIF Indices for Transmission Line Contingencies of 

Scenario 1 

 

Figs. 4.10 and 4.11 show the plots of voltage deviation across all the buses in the 

power system network of the operating utility for the most critical transmission line Ln 

1and the least critical transmission line Ln 8. These lines are identified based on the values 

of their respective PIV index. From the plots, it can be observed that the voltage deviations 

are not significant. This is evident from the value of average voltage deviation mentioned 

in the plots. The value of average voltage deviation ∆Vavg for the most critical line Ln 1 is 

0.013 which is below the threshold. As mentioned earlier, the acceptable voltage deviation 

is 0.05 p.u. at 500 kV buses and 0.075 p.u. for the buses at other voltage levels. The value 

of ∆Vavg for the contingencies corresponding to other transmission lines is lesser than 

0.013. Hence, from the system wide post contingency bus voltage profile, it is observed 

that any of the transmission line contingencies does not have a severe impact on the power 

system of the operating utility. However, the values of the performance index PIV are used 

to rank the transmission lines relative to each other.   
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Figure 4.10 Scenario 1: Bus Voltage Deviation Plot for Most Critical Transmission Line 

Ln 1 Contingency based on PIV 

 

 
 

Figure 4.11 Scenario 1: Bus Voltage Deviation Plot for Least Critical Transmission Line 

Ln 8 Contingency Based on PIV 

 

 

The simulation results for the transmission line contingencies under scenarios 2 and 

3 are given in Appendix D. Table 4.8 shows the values of performance indices PIV, PIF, 

and NV for the transmission line contingencies under scenario 4 (summer peak load case). 

The transmission line contingencies during summer peak load case are expected to have a 
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more severe impact compare to the similar contingencies under a relatively light load case 

(i.e., scenario 1,2, and 3). The observations from the results of Table 4.8 are discussed 

below.  

• A transmission line contingency irrespective of its PIF value results in at least 2 

branch limit violations under a summer peak case.  

• Ln 25 (PIF = 1.088, NV = 2) and Ln 1 (PIF = 1.066, NV = 2) are identified as the 

most critical and the least critical transmission lines for this scenario. The values of 

the PIF index for these lines are very close to each other. This implies that the con-

tingency corresponding to any line including these two (irrespective of the rank) 

will have a significant impact on the power system network of the operating utility. 

The PIF values are used to rank the transmission lines relative to each other. 

• Although the value of NV (number of branches with rating violations) for Ln 13 and 

Ln 14 is 4, they are ranked lower than Ln 25 with NV = 2. This is because the trans-

mission lines are ranked primarily based on their PIF values. A contingency with a 

higher PIF value implies that a branch in the network will be overloaded relatively 

higher (and is more prone to failure), compared to the overloaded branches under 

other contingencies. Thus, the value of PIF takes priority over NV while ranking the 

contingencies relative to each other. 

• Ln 25 (PIV = 1813.311) and Ln 3 (PIV = 1042.364) are identified as the most critical 

and the least critical transmission lines under scenario 4 based on PIV index. 
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Table 4.8 List of PIV and PIF Indices for Transmission Line Contingencies for Scenario 4 

(Pload = 7231.23 MW, Qload = 291.68 MVAr) 

 

Transmission 

line name 
PIV PIF NV 

 

Transmission 

line name 
PIV PIF NV 

Ln 1 1043.687 1.066 2 Ln 16 1047.646 1.066 2 

Ln 2 1042.364 1.066 2 Ln 17 1049.697 1.066 2 

Ln 3 1042.364 1.066 2 Ln 18 1047.610 1.066 2 

Ln 4 1100.044 1.068 2 Ln 19 1049.697 1.066 2 

Ln 5 1043.187 1.066 2 Ln 20 1047.610 1.066 2 

Ln 6 1103.361 1.068 2 Ln 21 1131.258 1.069 2 

Ln 7 1079.019 1.067 2 Ln 22 1083.453 1.067 2 

Ln 8 1573.810 1.078 2 Ln 23 1083.453 1.067 2 

Ln 9 1087.252 1.066 2 Ln 24 1081.243 1.071 2 

Ln 10 1186.691 1.070 2 Ln 25 1813.311 1.088 2 

Ln 11 1121.572 1.068 2 Ln 26 1461.389 1.078 2 

Ln 12 1092.305 1.068 2 Ln 27 1290.321 1.073 2 

Ln 13 1077.354 1.083 4 Ln 28 1113.953 1.068 2 

Ln 14 1073.928 1.083 4 Ln 29 1151.565 1.069 2 

Ln 15 1068.323 1.067 2     

 

A comparison of the values of PIV and PIF performance indices for all the transmis-

sion line contingencies under scenario 4 is given in Fig. 4.12.  

 

 
 

Figure 4.12 Comparison of PIV and PIF Indices for Transmission Line Contingencies of 

Scenario 4 
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Figs. 4.13 and 4.14 show the bus voltage deviation plots for the most critical trans-

mission line Ln 25 and the least critical transmission line Ln 3 for scenario 4.  

 
 

Figure 4.13 Scenario 4: Bus Voltage Deviation Plot for Most Critical Transmission Line 

Ln 25 Contingency Based on PIV 

 

 
 

Figure 4.14 Scenario 4: Bus Voltage Deviation Plot for Least Critical Transmission Line 

Ln 3 Contingency Based on PIV 
 

The plots show under voltages at almost all the buses. The value of average voltage 

deviation ∆Vavg for Ln 25 is 0.053 which is higher than the threshold of 0.05 p.u. for 500 

kV buses. However, the value of ∆Vavg for Ln 3 is 0.039. It can be noted that, although Ln 
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3 is identified as the least critical line, the value of ∆Vavg is close to the threshold. Hence, 

any further contingency can significantly impact the voltage across all the buses and may 

even cause a voltage stability issue in the power system network of the operating utility. 

The comparison of PIV and PIF values for transmission line0 contingencies of sim-

ilar ranks under various loading scenarios is shown in Figs. 4.15 and 4.16 respectively. In 

general, the PIV value for a transmission line contingency under scenario 4 (summer peak 

load case) is greater than the PIV value of a contingency of similar ranks under scenarios 

with the relatively lesser load. This trend is not observed strictly in the ranking using the 

PIF index. Also, it can be noted that the performance indices for only the top ranked con-

tingencies differ from each other. These indices tend to saturate at lower ranks irrespective 

of the loading scenario.            

 

 
 

Figure 4.15 Comparison of the PIV Index Transmission Line Contingencies Under Differ-

ent Loading Scenarios 
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Figure 4.16 Comparison of the PIF Index Transmission Line Contingencies Under Differ-

ent Loading Scenarios 

 

 The ranks of each transmission line contingencies under different loading scenarios 

based on the PIV and PIF indices are summarized in Tables 4.9 and 4.10 respectively. It can 

be observed that the ranks vary with the load on the operating utility as well as with the 

performance index used for analysis. For example, Ln 1 is identified as the most critical 

line for scenario 1 based on the PIV index, whereas it is the least critical line for scenario 2 

and 3 based on the same index. The same line is ranked 27th relative to the other lines based 

on the PIF index for scenario 1. 
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Table 4.9 List of PIV  Based Rank of the 29 Transmission Line Contingencies Under Dif-

ferent Loading Scenarios 

 

Transmission line 

name 

PIV based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Ln 1 1 29 29 26 

Ln 2 3 24 27 28 

Ln 3 4 25 28 29 

Ln 4 21 12 12 11 

Ln 5 14 20 21 27 

Ln 6 19 13 13 10 

Ln 7 18 17 17 17 

Ln 8 29 2 2 2 

Ln 9 11 5 11 13 

Ln 10 22 6 5 5 

Ln 11 23 8 7 8 

Ln 12 20 14 9 12 

Ln 13 13 19 16 18 

Ln 14 12 21 18 19 

Ln 15 15 18 20 20 

Ln 16 5 28 26 23 

Ln 17 9 22 22 21 

Ln 18 6 26 24 24 

Ln 19 10 23 23 22 

Ln 20 7 27 25 25 

Ln 21 8 11 10 7 

Ln 22 16 15 14 14 

Ln 23 17 16 15 15 

Ln 24 2 10 19 16 

Ln 25 28 1 1 1 

Ln 26 26 4 3 3 

Ln 27 27 3 4 4 

Ln 28 25 7 8 9 

Ln 29 24 9 6 6 
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Table 4.10 List of PIF  Based Rank of the 29 Transmission Line Contingencies Under 

Different Loading Scenarios 

 

Transmission line 

name 

PIF based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Ln 1 27 27 29 29 

Ln 2 2 4 6 26 

Ln 3 3 5 7 27 

Ln 4 25 25 25 13 

Ln 5 20 20 16 28 

Ln 6 23 24 28 12 

Ln 7 21 22 22 18 

Ln 8 24 1 26 4 

Ln 9 1 2 4 20 

Ln 10 15 7 13 8 

Ln 11 4 3 5 11 

Ln 12 10 6 3 14 

Ln 13 17 21 1 2 

Ln 14 13 19 2 3 

Ln 15 22 23 21 19 

Ln 16 7 11 10 23 

Ln 17 8 12 11 21 

Ln 18 5 8 8 24 

Ln 19 9 13 12 22 

Ln 20 6 9 9 25 

Ln 21 29 28 24 9 

Ln 22 11 14 18 16 

Ln 23 12 15 19 17 

Ln 24 18 16 15 7 

Ln 25 28 29 23 1 

Ln 26 26 26 27 5 

Ln 27 19 17 17 6 

Ln 28 14 10 14 15 

Ln 29 16 18 20 10 



 

71 

The ranks of the transmission line contingencies relative to each other based on the 

PIF and PIV performance indices for different loading scenarios are consolidated using the 

ranking index defined by (4.8). The values of weights W1, W2, W3, and W4 used here are 

0.33, 0.25, 0.17, and 0.25 respectively. The value of k is set to be 100. The results are 

shown in Table 4.11. 

Table 4.11 List of PIV and PIF Based Ranks of the Transmission Line Contingencies Us-

ing the RF Index 

 

PIV based 

 

PIF based 

Rank 
Transmission 

line name 
RF Rank 

Transmission 

line name 
RF 

1 Ln 25 68.179 1 Ln 9 51 

2 Ln 1 35.410 2 Ln 8 33.279 

3 Ln 8 34.638 3 Ln 13 32.632 

4 Ln 26 21.519 4 Ln 25 27.780 

5 Ln 24 21.457 5 Ln 2 26.545 

6 Ln 27 20.056 6 Ln 11 22.256 

7 Ln 10 14.067 7 Ln 14 20.688 

8 Ln 2 13.564 8 Ln 3 19.354 

9 Ln 21 11.669 9 Ln 12 14.919 

10 Ln 9 11.469 10 Ln 18 12.892 

11 Ln 29 11.153 11 Ln 20 11.167 

12 Ln 3 10.719 12 Ln 10 10.204 

13 Ln 11 10.113 13 Ln 16 9.7740 

14 Ln 28 9.794 14 Ln 17 8.9440 

15 Ln 16 9.234 15 Ln 27 8.3740 

16 Ln 18 8.212 16 Ln 19 8.1430 

17 Ln 6 7.468 17 Ln 24 8.101 

18 Ln 12 7.408 18 Ln 26 7.860 

19 Ln 4 7.344 19 Ln 28 7.738 

20 Ln 20 7.320 20 Ln 22 7.293 

21 Ln 17 6.766 21 Ln 29 6.801 

22 Ln 22 6.729 22 Ln 23 6.782 

23 Ln 13 6.306 23 Ln 21 5.517 

24 Ln 23 6.304 24 Ln 6 5.167 

25 Ln 19 6.262 25 Ln 4 4.923 

26 Ln 14 6.201 26 Ln 7 4.869 

27 Ln 7 5.775 27 Ln 5 4.855 

28 Ln 15 5.689 28 Ln 15 4.712 

29 Ln 5 5.343 29 Ln 1 3.596 



 

72 

From Table 4.11, it can be observed that considering the impact of the transmission 

line contingencies under four different loading scenarios, Ln 25 and Ln 9 are identified as 

the most critical transmission lines based on the PIV and PIF indices respectively. 

4.5 Simulation Results for 500 kV Circuit Breaker Contingencies  

 

 The relay protection in a power system network is responsible for sensing the faults 

and tripping the circuit breakers to isolate the faulted circuit or equipment. The relays are 

coordinated in such a way that the circuit breaker(s) closest to the fault are tripped to clear 

the fault with minimum impact on the rest of the power system network. This requires the 

circuit breakers to operate in time and interrupt or clear the fault current. However, occa-

sionally circuit breakers may fail to operate as desired. Hence, the fault may persist in the 

system and can damage other transmission assets if not cleared in time. According to [36], 

breaker failures are mainly categorized as failure to clear and failure to trip. In failure to 

clear scenarios, the breaker contacts open but the arc inside the breaker’s contact chambers 

is not extinguished completely. Therefore, the fault current continues to flow and the fault 

is not cleared. However, in failure to trip situations, the breaker’s contacts fail to open after 

a trip signal is initiated by the protective relay. The reason for this malfunction could be 

incorrect circuit wiring or a mechanical problem in the breaker itself. Such a condition is 

termed as a ‘stuck breaker’ [36]. 

 During a breaker failure situation, backup protection known as a breaker failure 

protection (BFP) is activated where other circuit breakers are tripped to isolate the sources 

contributing to the fault [36]. A BFP will disconnect all the circuit breakers and/or equip-

ment that are connected directly to the faulty circuit breaker to avoid feeding the fault cur-

rent from other sources. Hence, a BFP usually trips more than one circuit breakers when 
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activated. This may result in loss of additional transmission elements like transformers, 

transmission lines, generators, shunt devices, and/or loads depending upon the substation 

configuration.  

In this study, the criticality of the 500 kV circuit breakers is analyzed in terms of 

their impact on the rest of the power system network when a breaker fails to trip or when 

it suffers from a stuck breaker situation. To simulate a stuck breaker contingency, a list is 

prepared consisting of all the circuit breakers and transmission elements that would be 

required to trip under the failure to trip situation of that breaker. However, it is to be noted 

that the faulty breaker stays in service while simulating the stuck breaker scenario. A sub-

station with breaker-and-a-half bus configuration is shown in Fig. 4.17. For illustrative 

purpose, the list of circuit breakers and transmission equipment that will trip due to the 

stuck breaker contingencies of breakers CB 1, CB 2, CB 3, and CB 9 of Fig. 4.17 is given 

in Table 4.12.     

 

Figure 4.17 Breaker-and-a-Half Substation Configuration 
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Table 4.12 Illustration of Stuck Breaker Contingencies 

 

Stuck 

breaker 

Tripped circuit 

breakers 

Tripped transmission 

equipment 

CB 1 

CB 2 

CB 4 

CB 7 

Line 1 

CB 2 
CB 1 

CB 3 

Line 1 

Gen 1 

CB 3 

CB 2 

CB 6 

CB 9 

Gen 1 

CB 9 

CB 3 

CB 6 

CB 8 

Tr 1 

 

From Table 4.12, it can be noted that a stuck breaker contingency may even result 

in the loss of more than one transmission element in a substation as in the case of CB 2. 

This can have a severe impact on the rest of the system. The stuck breaker contingency for 

each one of the 112 circuit breakers identified in the contingency list is simulated in PSLF.  

An EPCL code in conjunction with a Matlab script is used to automate the simula-

tion, store the results and eventually calculate the performance indices PIV and PIF for each 

circuit breaker failure scenario. The value of performance indices PIV, PIF and NV for the 

stuck breaker contingencies under scenario 1 (light load case) are given in Tables E.1-E.2 

of Appendix E.  A comparison between the values of these performance indices for sce-

nario 1 is shown in Fig. 4.18.  
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Figure 4.18 Comparison of PIV and PIF Indices for Circuit Breaker Contingencies of Sce-

nario 1 

 

The observations from the simulation results of the stuck breaker contingencies un-

der scenario 1 are discussed below: 

• From the values of PIF and NV, it can be observed that none of the stuck breaker 

contingency results in any branch overload in the power system network of the 

operating utility. The value of NV is zero for all the contingencies under study. 

• Cb 73 (PIF = 0.982) is identified as the most critical circuit breaker relative to the 

others based on the PIF performance index. Although, no branch limit violations 

are observed for Cb 73 contingency, the value of PIF is very close to unity even for 

a light load condition. The activation of BFP following the stuck breaker contin-

gency of Cb 73 results in the tripping of two additional circuit breakers and the loss 

of a generator in the power system network of the operating utility.  

• The PIF value for the top 30 circuit breakers contingencies is observed to be greater 

than or equal to 0.9. It can be observed that this value is higher than the top ranked 

transformer and transmission line contingencies. Hence, in general, the impact of 
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the critical circuit breaker contingencies is more severe than the impact of the trans-

former and transmission line contingencies. 

• Cb 10 (PIV = 193.561) is identified as the most critical circuit breaker relative to 

the others based on the PIV performance index.  

Figs. 4.19 and 4.20 show the system wide bus voltage deviation plot for the most 

critical circuit breaker Cb 10 and the least critical circuit breaker Cb 9 under scenario 1. It 

can be observed that the bus voltages are not significantly affected upon failure of these 

breakers. This is evident from the value of the average voltage deviation ∆Vavg. The value 

of ∆Vavg is observed to be 0.016 and 0.007 for Cb 10 and Cb 9 respectively which is below 

the threshold value. In general, the value of ∆Vavg for other circuit breaker contingencies 

lies between 0.007 and 0.016. Hence, from the point of view of system bus voltages, the 

stuck breaker contingencies do not have any severe impact on the power system network 

of the operating utility under scenario 1.     

 
 

Figure 4.19 Scenario 1: Bus Voltage Deviation Plot for Most Critical Circuit Breaker Cb 

10 Contingency Based on PIV 
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Figure 4.20 Scenario 1: Bus Voltage Deviation Plot for Least Critical Circuit Breaker Cb 

9 Contingency Based on PIV 

 

  

The simulation results for the 500 kV stuck breaker contingencies under scenario 

2,3, and 4 are given in Tables E.3-E.8 of Appendix E. A comparison of the values of PIV 

and PIF performance indices for contingencies under scenario 4 is shown in Fig. 4.21. Each 

breaker failure contingency under scenario 4 results in at least two branch limit violations 

(NV ≥ 2) in the power system network of the operating utility. Several circuit breaker con-

tingencies even result in four branch limit violations. These contingencies are shown in 

Fig. 4.21. These observations imply that a stuck breaker contingency under the summer 

peak load case, irrespective of its rank, will impact the rest of the power system network 

significantly in terms of branch overloads. Cb 107 (PIF = 1.174, NV = 6) is identified as the 

most critical circuit breaker for scenario 4 (summer peak load case) based on the PIF index. 

A total of six branch limit violations are observed in the network during Cb 107 contin-

gency. The PIF value of 1.174 for this breaker indicates that the maximum overloaded 

branch will be operating at 117.4 % of its rated limit.  
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Figure 4.21 Comparison of PIV and PIF Indices for Circuit Breaker Contingencies of Sce-

nario 4 

 

Cb 107 is identified as the most critical circuit breaker for scenario 4 based on the 

PIV performance index. The value of PIV index for this circuit breaker is 3404.958 which 

is very high compared to the PIV values of the top ranked circuit breakers under relatively 

light load cases. The bus voltage deviation plot for Cb 107 circuit breaker contingency is 

shown in Fig. 4.22. This plot indicates severe under-voltage across all the buses in the 

power system network of the operating utility. The average voltage deviation ∆Vavg is ob-

served to be 0.066 for Cb 107 circuit breaker contingency which is higher than the thresh-

old value. The voltage deviation plot for the least critical circuit breaker Cb 74 based on 

the PIV index, is shown in Fig. 4.23. Although the system wide voltage profile show under-

voltage across most of the buses, the impact is not that severe. This is evident from the 

lower value of ∆Vavg = 0.038 for Cb 74 circuit breaker contingency under scenario 4. 
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Figure 4.22 Scenario 4: Bus Voltage Deviation Plot for Most Critical Circuit Breaker Cb 

107 Contingency Based on PIV 

 

 

 
 

Figure 4.23 Scenario 4: Bus Voltage Deviation Plot for Most Critical Circuit Breaker Cb 

74 Contingency Based on PIV 

 

The comparison of PIV and PIF values for circuit breaker contingencies of similar 

ranks under various loading scenarios is shown in Figs. 4.24 and 4.25 respectively. 
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Figure 4.24 Comparison of the PIV Index Circuit Breaker Contingencies Under Different 

Loading Scenarios 

 

 

 

 
 

Figure 4.25 Comparison of the PIF Index Circuit Breaker Contingencies Under Different 

Loading Scenarios 

 

 

The ranks of each circuit breaker contingency under different loading scenarios 

based on the PIV and PIF indices are summarized in Tables E.9-E.14. The ranks of the 

circuit breaker contingencies relative to each other based on the PIF and PIV performance 
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indices for different loading scenarios are consolidated using the ranking index RF defined 

by (4.8). The values of weights W1, W2, W3, and W4 used here are 0.33, 0.25, 0.17, and 0.25 

respectively. The value of k is set to be 100. As discussed earlier, the ranking of the con-

tingencies using RF accounts for all four loading scenarios in the proportion of the values 

W1 to W4. Table 4.13 shows the results of ranking the circuit breaker contingencies using 

PIV and PIF based on the ranking index RF. For the illustrative purpose, the list for top 35 

circuit breaker contingencies is shown here. A complete list is given in Tables E.15-E17 of 

Appendix E. Cb 107 and Cb 73 are identified as the most critical circuit breakers based on 

the PIV and PIF performance indices respectively using the final ranking index RF.  
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Table 4.13 List of PIV and PIF Based Top 35 Circuit Breaker Contingencies Using RF  

 

PIV based 

 

PIF based 

Rank Circuit breaker name RF Rank Circuit breaker name RF 

1 Cb 107 78 1 Cb 73 60.118 

2 Cb 109 34.079 2 Cb 74 30.223 

3 Cb 10 33.632 3 Cb 107 29.088 

4 Cb 47 22.631 4 Cb 58 28.981 

5 Cb 6 17.124 5 Cb 59 20.503 

6 Cb 48 14.967 6 Cb 109 15.531 

7 Cb 45 14.956 7 Cb 32 12.830 

8 Cb 46 12.303 8 Cb 65 10.917 

9 Cb 19 9.056 9 Cb 31 9.561 

10 Cb 9 8.652 10 Cb 64 9.463 

11 Cb 74 7.345 11 Cb 47 9.052 

12 Cb 106 7.137 12 Cb 94 8.031 

13 Cb 104 6.580 13 Cb 35 7.825 

14 Cb 73 6.297 14 Cb 82 7.631 

15 Cb 5 6.294 15 Cb 10 7.498 

16 Cb 4 6.203 16 Cb 6 7.205 

17 Cb 63 6.175 17 Cb 45 6.985 

18 Cb 3 6.041 18 Cb 34 6.709 

19 Cb 103 6.032 19 Cb 85 6.626 

20 Cb 105 5.494 20 Cb 9 6.485 

21 Cb 59 5.474 21 Cb 106 6.005 

22 Cb 64 4.801 22 Cb 46 5.728 

23 Cb 12 4.787 23 Cb 48 4.888 

24 Cb 11 4.335 24 Cb 63 4.801 

25 Cb 75 4.335 25 Cb 4 4.767 

26 Cb 49 4.193 26 Cb 53 4.718 

27 Cb 95 4.167 27 Cb 54 4.348 

28 Cb 65 4.127 28 Cb 52 4.190 

29 Cb 101 3.979 29 Cb 11 4.036 

30 Cb 50 3.907 30 Cb 12 3.829 

31 Cb 15 3.784 31 Cb 76 3.669 

32 Cb 7 3.750 32 Cb 75 3.600 

33 Cb 97 3.715 33 Cb 99 3.587 

34 Cb 58 3.634 34 Cb 88 3.563 

35 Cb 13 3.476 35 Cb 1 3.371 
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CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Main Conclusions 

 

The study in this thesis analyzes the failure impact of the 500 kV transformers, 

transmission lines and circuit breakers on the power system network of the operating util-

ity. The severity of the impact is quantified in terms of two system wide performance in-

dices namely PIF and PIV. The ranks of the 500 kV transmission assets obtained using these 

performance indices highlight the critical transmission equipment in each category. The 

analysis was carried out for four different loading scenarios of the operating utility under 

study.   

It is observed that the values of PIV and PIF performance indices tend to saturate 

for the contingencies at lower ranks irrespective of the loading scenario under considera-

tion. However, these values differ from each other for critical contingencies located at the 

top of the ranking list. The performance index PIV defined by (4.1), provides a better per-

spective of the voltage deviations occurring in the power system network following a con-

tingency. The most critical contingencies, especially under high loading scenarios (sce-

nario 3 and 4), result in large voltage deviations at the buses in the power system network. 

In case of the circuit breaker Cb 107 contingency for scenario 4, the value of PIV is ob-

served to be ~ 3405 which is quite high. The average voltage deviation for this contingency 

is found to be 0.066 p.u. which is greater than the recommended threshold value of 0.05 

p.u. for the 500 kV buses. On the other hand, the contingency corresponding to the least 

critical circuit breaker, Cb 74 (PIV = 969.4), results in lesser voltage deviations (∆Vavg = 

0.038). Hence, the PIV index can be effectively used to identify the critical assets from the 
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large set of transmission elements based on the severity of their failure impact on the sys-

tem voltage profile. The PIF index ranks the contingencies relative to each other based on 

the maximum branch overload in the power system network following a contingency.            

It is observed that the criticality of the transmission assets varies with the loading 

conditions. For example, Tr 35 is identified as the most critical transformer for scenario 4 

(summer peak load case). The same transformer is ranked at 27th position (out of 35 trans-

formers under study) for scenario 1 (light load case). Similar trends are observed in the 

ranking list of transmission lines and circuit breakers as well. The ranks of the transmission 

assets are also found to vary with the performance index used to quantify the impact of the 

failure on the rest of the power system network. Transmission line Ln 1 is identified as the 

most critical transmission line under operating conditions corresponding to scenario 1 

based on the PIV index. The same line is ranked at 27th position (out of 29 transmission line 

under study) for the same scenario using the PIF index. 

Since the rank of a transmission asset relative to the others varies with the loading 

scenario, a ranking index RF is used to consolidate the ranks under different loading sce-

narios. The ranking list of the transmission assets obtained using the index RF can be used 

to prioritize long term maintenance and investment decisions for the critical assets. This 

index considers different loading scenarios to which the utility is subjected to over a period 

of one year. Similarly, the short term maintenance strategies can be designed based on the 

ranking list obtained for the scenario which most closely resembles the system loading. 

That system loading is at the time when the maintenance of the transmission assets is 

planned.    
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 In general, the impact of breaker failure contingencies on the power system network 

of the operating utility is found to be more severe than the transformer or transmission line 

contingencies. This can be observed from the values of the PIV and PIF performance indices 

for the circuit breakers, transformers and transmission lines located at top of the ranking 

lists under any scenario. The values of these performance indices are always higher for the 

circuit breaker contingencies. Such an observation is a result of the fact that a stuck breaker 

contingency results in the loss of additional circuit breakers along with other transmission 

elements. The simulation and analysis of breaker failure contingencies is carried out using 

the node breaker model. Several critical circuit breakers are identified whose failure could 

have a detrimental impact on the system. This is the advantage of using the node breaker 

model over the traditional bus branch model. 

5.2 Recommendations for Future Work 

 

Below are the recommendations for the future work that can be carried out by the 

operating utility on its power system network: 

• The ranking of the transmission assets at 230 kV can be carried out in a manner 

similar to the 500 kV transmission assets, to identify the critical elements relative 

to each other at 230 kV level. The study can also be extended for the assets at dis-

tribution level. 

• Protective relays as well as instrumentation transformers play an important role in 

ensuring that the system senses and clears the faults immediately. Such elements 

can be analyzed to quantify the impact of their failure and rank them relative to 

each other to identify the critical ones. 
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APPENDIX A 

CONTINGENCY LIST OF 500 kV CIRCUIT BREAKERS 
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The list of circuit breakers identified for contingency analysis and ranking as per 

criteria described in section 3.2 are given in Tables A.1-A.3. 

Table A.1 List of 500 kV Circuit Breakers from Cb 1 to Cb 34 for Contingency Analysis 

and Ranking  

 

Circuit breaker name From bus number To bus number 

Cb 1 99487 99486 

Cb 2 99762 99757 

Cb 3 99760 99764 

Cb 4 99761 99765 

Cb 5 

 

99773 99772 

Cb 6 

 

100270 100262 

Cb 7 100279 100258 

Cb 8 100280 100259 

Cb 9 100273 100269 

Cb 10 100276 100271 

Cb 11 

 

100267 100263 

Cb 12 100246 100250 

Cb 13 100459 100460 

Cb 14 100468 100467 

Cb 15 100461 100462 

Cb 16 100986 100966 

Cb 17 100984 100954 

Cb 18 100949 100950 

Cb 19 101004 100957 

Cb 20 100981 100958 

Cb 21 100998 100999 

Cb 22 101001 101002 

Cb 23 101009 101005 

Cb 24 100978 100965 

Cb 25 100991 100983 

Cb 26 100947 100955 

Cb 27 100970 100952 

Cb 28 100988 100961 

Cb 29 100959 100960 

Cb 30 100968 100969 

Cb 31 100980 100962 

Cb 32 100974 100951 

Cb 33 100971 100956 

Cb 34 100967 100953 
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Table A.2 List of 500 kV Circuit Breakers from Cb 35 to Cb 75 for Contingency Analy-

sis and Ranking  

 

Circuit breaker name From bus number To bus number 

Cb 35 100997 100996 

Cb 36 100990 100964 

Cb 37 100977 100975 

Cb 38 100993 100994 

Cb 39 101294 101281 

Cb 40 101292 101291 

Cb 41 101287 101288 

Cb 42 101290 101289 

Cb 43 101297 101285 

Cb 44 101282 101295 

Cb 45 101300 101284 

Cb 46 101299 101298 

Cb 47 101446 101443 

Cb 48 101449 101450 

Cb 49 101440 101439 

Cb 50 101447 101448 

Cb 51 101454 101453 

Cb 52 102129 102131 

Cb 53 102130 102132 

Cb 54 102128 102133 

Cb 55 102431 102437 

Cb 56 102436 102438 

Cb 57 102408 102418 

Cb 58 102394 102384 

Cb 59 102395 102404 

Cb 60 102398 102421 

Cb 61 102402 102423 

Cb 62 102392 102386 

Cb 63 102380 102383 

Cb 64 102401 102397 

Cb 65 102416 102417 

Cb 66 102400 102411 

Cb 67 102403 102414 

Cb 68 102389 102407 

Cb 69 102381 102415 

Cb 70 102382 102412 

Cb 71 102434 102432 

Cb 72 102405 102406 

Cb 73 102396 102420 

Cb 74 102409 102426 

Cb 75 102393 102413 
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Table A.3 List of 500 kV Circuit Breakers from Cb 76 to Cb 112 for Contingency Analy-

sis and Ranking  

 

Circuit breaker name From bus number To bus number 

Cb 76 102388 102424 

Cb 77 102399 102425 

Cb 78 102489 102486 

Cb 79 102498 102496 

Cb 80 102502 102499 

Cb 81 102506 102503 

Cb 82 102511 102512 

Cb 83 102510 102507 

Cb 84 102516 102513 

Cb 85 102517 102518 

Cb 86 102522 102521 

Cb 87 102449 102446 

Cb 88 102452 102453 

Cb 89 102455 102454 

Cb 90 102458 102456 

Cb 91 102461 102462 

Cb 92 102464 102463 

Cb 93 102468 102465 

Cb 94 102471 102472 

Cb 95 102734 102735 

Cb 96 102731 102733 

Cb 97 102727 102729 

Cb 98 102724 102726 

Cb 99 102740 102739 

Cb 100 102770 102771 

Cb 101 102762 102763 

Cb 102 102765 102766 

Cb 103 103150 103151 

Cb 104 103153 103149 

Cb 105 103146 103155 

Cb 106 103605 103602 

Cb 107 103611 103607 

Cb 108 103608 103603 

Cb 109 103609 103606 

Cb 110 103798 103792 

Cb 111 103793 103790 

Cb 112 103795 103796 
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APPENDIX B 

EPCL CODE TO SIMULATE TRANSFORMER CONTINGENCIES 
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$file="6047_KJ.sav" 

@return=getf($file) 

gosub initialize 

@ntran=casepar[0].ntran 

@ngen=casepar[0].ngen 

@nbus=casepar[0].nbus 

@nbrsec=casepar[0].nbrsec 

$file1="tran_list.txt" 

$file2="tran_fail_busvolts.txt" 

$file3="tran_fail_flows.txt" 

$file4="tran_fail_genx.txt" 

@ret=openlog($file1) 

@ret=openlog($file2) 

@ret=openlog($file3) 

@ret=openlog($file4) 

@count=0 

for @tran_num = 0 to @ntran-1 

 /* 

 @tran_num=5979 

 */ 

 @fbus_ind=tran[@tran_num].ifrom 

 @tbus_ind=tran[@tran_num].ito 

 @tbus1_ind=tran[@tran_num].itert 

 @flag1=0; 

 @flag2=0; 

 if((busd[@fbus_ind].basekv=500) or (busd[@tbus_ind].basekv=500)) 

  @flag1=1 

 endif 

 if(@tbus1_ind!=-1) 

  if(busd[@tbus1_ind].basekv=500) 

   @flag2=1 

  endif 

 endif  

 /*checking for utility owned 500 KV transformers*/ 

 if((tran[@tran_num].nown=33) and (@flag1 or @flag2)) 

  if(tran[@tran_num].st=1) 

   @count=@count+1 

   tran[@tran_num].st=0 

   gosub gen_resch    

   /*soln argument is 0 for non-flat start*/ 

   solpar[0].itnrvl=0 

   solpar[0].itnrmx=25   

   solpar[0].tolnr=1   

   @return=soln("0") 

   if(@return=-2) 

    @return=getf($file) 

    tran[@tran_num].st=0 

    gosub gen_resch 

    solpar[0].itnrvl=6 

    solpar[0].itnrmx=75 

    solpar[0].tolnr=1 

    @return=soln("0") 

   elseif(@return=-3) 

    @return=getf($file) 

    tran[@tran_num].st=0 

    gosub gen_resch    

    busd[9247].type=0 
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    @return=soln("0") 

   endif    

   @ret=flowcalc("1")    

   @equip_no=@tran_num    

   gosub flows  

   logprint($file3,"endofcase<")  

   @return=getf($file) 

  endif    

 endif 

next 

logterm("ALL CASES EVALUATED") 

close($file1) 

close($file2) 

close($file3) 

 

/* subroutine to initialize unit transformers to their respective gen-

erators index */  

subroutine initialize 

 dim #tr_gen[6560] 

 dim #gen_pr[55] 

 for @i=0 to @ntran-1 

  #tr_gen[@i]=0 

 next  

 #tr_gen[5927]=3508 

 #tr_gen[5977]=3529 

 #tr_gen[5978]=3530 

 #tr_gen[5979]=3531 

 #tr_gen[5986]=275 

 #tr_gen[5987]=276 

 #tr_gen[5988]=277 

 #tr_gen[5990]=3532 

 #tr_gen[5993]=3555 

 #tr_gen[5994]=3556 

 #tr_gen[5995]=3557 

 #tr_gen[5996]=3558 

 #tr_gen[5997]=3559 

 #tr_gen[5998]=3560 

 #tr_gen[5999]=3535 

 #tr_gen[6000]=3536 

 #tr_gen[6001]=3537  

 #gen_pr[0]=275 

 #gen_pr[1]=276 

 #gen_pr[2]=277 

 #gen_pr[3]=3529 

 #gen_pr[4]=3530 

 #gen_pr[5]=3531 

 #gen_pr[6]=3508 

 #gen_pr[7]=3507 

 #gen_pr[8]=3578 

 #gen_pr[9]=3577 

 #gen_pr[10]=3541 

 #gen_pr[11]=3544 

 #gen_pr[12]=3542 

 #gen_pr[13]=3543 

 #gen_pr[14]=3545 

 #gen_pr[15]=3524 

 #gen_pr[16]=3525 
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 #gen_pr[17]=3526 

 #gen_pr[18]=3535 

 #gen_pr[19]=3536 

 #gen_pr[20]=3537 

 #gen_pr[21]=3519 

 #gen_pr[22]=3522 

 #gen_pr[23]=260 

 #gen_pr[24]=261 

 #gen_pr[25]=1225 

 #gen_pr[26]=1226 

 #gen_pr[27]=1227 

 #gen_pr[28]=1160 

 #gen_pr[29]=1161 

 #gen_pr[30]=1162 

 #gen_pr[31]=1243 

 #gen_pr[32]=1246 

 #gen_pr[33]=3546 

 #gen_pr[34]=3547 

 #gen_pr[35]=3548 

 #gen_pr[36]=3549 

 #gen_pr[37]=3495 

 #gen_pr[38]=3499 

 #gen_pr[39]=3500 

 #gen_pr[40]=3501 

 #gen_pr[41]=3502 

 #gen_pr[42]=3503 

 #gen_pr[43]=3504 

 #gen_pr[44]=3505 

 #gen_pr[45]=3506 

 #gen_pr[46]=3496 

 #gen_pr[47]=3497 

 #gen_pr[48]=3498 

 #gen_pr[49]=3489 

 #gen_pr[50]=3490 

 #gen_pr[51]=3491 

 #gen_pr[52]=3520 

 #gen_pr[53]=3521 

 #gen_pr[54]=3523 

return 

/*subroutine to reschedule the generation in case of loss of a genera-

tor */ 

subroutine gen_resch 

 if(#tr_gen[@tran_num]!=0) 

  @gen_indx=#tr_gen[@tran_num] 

  @delp=gens[@gen_indx].pgen 

  gens[@gen_indx].st=0 

  gens[@gen_indx].pgen=0   

  for @j=0 to 51 

   if(#gen_pr[@j]!=@gen_indx) 

    @indx=#gen_pr[@j] 

    if(@indx!=3507) 

     @buff=gens[@indx].pmax-gens[@indx].pgen 

     if((@buff>0) and (@buff<@delp)) 

     

 gens[@indx].pgen=gens[@indx].pgen+@buff 

      if(gens[@indx].st=0) 

       gens[@indx].st=1 
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       gosub swtch_brkrs 

      endif 

      @delp=@delp-@buff    

    

     elseif(@buff>@delp) 

     

 gens[@indx].pgen=gens[@indx].pgen+@delp 

      if(gens[@indx].st=0) 

       gens[@indx].st=1 

       gosub swtch_brkrs 

      endif 

      @delp=0     

  

     endif 

     if(@delp=0) 

      quitfor 

     endif 

    endif    

   endif 

  next 

 endif 

return 

 

/*subroutine to switch breakers to bring a newly switched generator in 

service */ 

subroutine swtch_brkrs 

 if(@indx=3507) 

  brkr[96199].st=1 

  tran[5926].st=1 

  brkr[96197].st=1 

  brkr[96211].st=1 

  brkr[96178].st=1 

  brkr[96207].st=1 

  brkr[96179].st=1 

  brkr[96208].st=1 

  brkr[96108].st=1 

  brkr[96177].st=1 

  brkr[96180].st=1 

 elseif(@indx=3577) 

  brkr[100890].st=1  

 elseif(@indx=3541) 

  brkr[99144].st=1  

 elseif(@indx=3542) 

  brkr[99146].st=1  

 elseif(@indx=260) 

  brkr[6764].st=1 

 elseif(@indx=261) 

  brkr[6765].st=1 

 elseif(@indx=1161) 

  brkr[33294].st=1 

 elseif(@indx=1243) 

  brkr[35324].st=1 

 elseif(@indx=1246) 

  brkr[35325].st=1 

 elseif(@indx=3546) 

  brkr[99140].st=1 

  brkr[99092].st=1 
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 elseif(@indx=3547) 

  brkr[99141].st=1 

 elseif(@indx=3548) 

  brkr[99142].st=1 

  brkr[99097].st=1 

 elseif(@indx=3549) 

  brkr[99143].st=1 

  brkr[99088].st=1 

  tran[6032].st=1 

  brkr[99082].st=1 

  brkr[99134].st=1 

 elseif(@indx=3495) 

  brkr[96034].st=1 

 elseif(@indx=3499) 

  brkr[96038].st=1 

 elseif(@indx=3500) 

  brkr[96039].st=1 

 elseif(@indx=3501) 

  brkr[96040].st=1 

 elseif(@indx=3502) 

  brkr[96041].st=1 

 elseif(@indx=3503) 

  brkr[96042].st=1 

 elseif(@indx=3504) 

  brkr[96043].st=1 

 elseif(@indx=3505) 

  brkr[96044].st=1 

 elseif(@indx=3506) 

  brkr[96045].st=1 

 elseif(@indx=3496) 

  brkr[96035].st=1 

 elseif(@indx=3497) 

  brkr[96036].st=1 

 elseif(@indx=3498) 

  brkr[96037].st=1 

 elseif(@indx=3489) 

  brkr[95214].st=1 

 elseif(@indx=3490) 

  brkr[95215].st=1 

 elseif(@indx=3491) 

  brkr[95216].st=1 

 elseif(@indx=3520) 

  brkr[97387].st=1 

 elseif(@indx=3521) 

  brkr[97388].st=1 

 elseif(@indx=3523) 

  tran[5963].st=1 

  brkr[97384].st=1 

  brkr[97429].st=1   

 endif 

return 
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APPENDIX C 

MATLAB SCRIPT TO CALCULATE PERFORMANCE INDICES 
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C.1 Code Structure 

 

 The entire code is divided into seven subroutines that perform different tasks indi-

vidually. A summary of the subroutines along with their respective functions is given in 

Table C.1. The run sequence of the Matlab code is shown in Fig. C.1. 

Table C.1 Summary of Matlab Subroutines and Their Functions 

 

Subroutine 

name 
Function 

sav_dat.m 
Invokes ‘read_’ subroutines to read the .txt files containing power 

flow study results and the contingency lists. Saves the read data.    

read_list.m 
Reads the .txt files containing contingency lists for transformers, 

transmission lines, and circuit breakers. 

read_flows.m 
Reads the .txt files containing branches flows for each transformer, 

transmission line, and circuit breaker contingency simulated in PSLF. 

read_volts.m 
Reads the .txt files containing bus voltages for each transformer, 

transmission line and circuit breaker contingency simulated in PSLF. 

main.m 

Calls the ‘piflowindx.m’ and ‘pivindx.m’ subroutines to compute flow 

based and voltage based performance indices and displays the ranking 

results. 

piflowindx.m 
Calculates the flow based performance index (PIF) for a given contin-

gency. 

pivindx.m 
Calculates the voltage based performance index (PIV) for a given con-

tingency. 

 

 

Figure C.1 Run Sequence for the Matlab Code 
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C.2 Matlab Subroutines 

 

save_dat.m           

 
clear all; 

format long; 

  

filename="Contingency list.xlsx"; 
% Writes the contingency list in an excel file 
[tran_list]=read_list("tran_list.txt"); 
writetable(tran_list,filename,'Sheet','Transformers list'); 
[line_list]=read_list("line_list.txt"); 
writetable(line_list,filename,'Sheet','Lines list'); 
[cb_list]=read_list("cb_list.txt"); 
writetable(cb_list,filename,'Sheet','Circuit breakers list'); 

  
% Reading flows 
[base_flows]=read_flows("base_flows.txt",0); 
[tran_fail_flows,num_tran_cases]=read_flows("tran_fail_flows.txt",1); 
[line_fail_flows,num_line_cases]=read_flows("line_fail_flows.txt",1); 
[cb_fail_flows,num_cb_cases]=read_flows("cb_fail_flows.txt",1); 

  
% Reading volts 
[base_volts]=read_volts("base_busvolts.txt",0); 
[tran_fail_busvolts]=read_volts("tran_fail_busvolts.txt",1); 
[line_fail_busvolts]=read_volts("line_fail_busvolts.txt",1); 
[cb_fail_busvolts]=read_volts("cb_fail_busvolts.txt",1); 
save('data_raw');  

 

 

read_list.m 

 
function[list]=read_list(filename); 

line=0; 

fid=fopen(filename); 

while ~feof(fid)   

    tline=fgetl(fid);  

    line=line+1; 

    data(line,:)=textscan(tline,'%d%d%s%s%s%d%d%d%d%d%f%f');     

end  

list=cell2table(data); 

 

read_flows.m  

 
function[flows,total_cases]=read_flows(filename,flag); 

if(flag==0) 

    fprintf("Reading base flows...."); 

else 

    fprintf("Reading cases flows...."); 

end 

fid=fopen(filename); 

line=0; 

casenum=1; 

while ~feof(fid)   
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    tline=fgetl(fid);  

    while(~strcmp(tline,'endofcase')) 

        line=line+1; 

        if(line>3) 

            data(line-3,:)=textscan(tline,'%d%d%d%d%s%2c%f%f%f%f%f'); 

        end 

        tline=fgetl(fid); 

    end 

    if(flag==1) 

        flows(casenum).dat=cell2table(data); 

        casenum=casenum+1; 

    else 

        flows(1).dat=cell2table(data); 

    end 

    line=0; 

end  

total_cases=casenum-1; 

fprintf("Completed\n"); 

 

read_volts.m 

 
function[volts]=read_volts(filename,flag); 
if(flag==0) 
    fprintf("Reading base voltages...."); 
else 
    fprintf("Reading cases voltages...."); 
end 
fid=fopen(filename); 
line=0; 
casenum=1; 
while ~feof(fid)   
    tline=fgetl(fid);  
    while(~strcmp(tline,'endofcase')) 
        line=line+1; 
        if(line>4) 
            data(line-4,:)=textscan(tline,'%d%d%d%14c%f%f%f%f%f%f'); 
        end 
        tline=fgetl(fid); 
    end 
    if(flag==1) 
        volts(casenum).dat=cell2table(data); 
        casenum=casenum+1; 
    else 
        volts(1).dat=cell2table(data); 
    end 
    line=0; 
end  
total_cases=casenum-1; 
fprintf("Completed\n"); 

 

main.m 

 
clear all; 
format long; 
load('data_raw'); 
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fprintf("Ranking transformers on PIF....\n"); 
[pif1_tran_ranks,pif2_tran_ranks,load_mat]=piflowindx(num_tran_cases,tr

an_fail_flows); 
fprintf("Ranking lines on PIF....\n"); 
[pif1_line_ranks 

pif2_line_ranks]=piflowindx(num_line_cases,line_fail_flows); 
fprintf("Ranking circuit breakers on PIF....\n"); 
[pif1_cb_ranks,pif2_cb_ranks]=piflowindx(num_cb_cases,cb_fail_flows); 
fprintf("Ranking transformers on PIV....\n"); 
[piv1_tran_ranks,piv2_tran_ranks,delv_tran]=pivindx(num_tran_cases,tran

_fail_busvolts); 
fprintf("Ranking lines on PIV....\n"); 
[piv1_line_ranks,piv2_line_ranks,delv_line]=pivindx(num_line_cases,line

_fail_busvolts); 
fprintf("Ranking circuit breakers on PIV....\n"); 
[piv1_cb_ranks,piv2_cb_ranks,delv_cb]=pivindx(num_cb_cases,cb_fail_busv

olts); 
save('results'); 

 
piflowindx.m 

 
function[pif1 pif2 load_mat]=ranking(num_cases,flows) 
Wi=1; 
n=1;  
for i=1:num_cases    
    pif2(i,2)=0; 
    violations=0; 
    for j=1:size(flows(i).dat,1) 
        if(flows(i).dat{j,11}==0) 
            ratio(j)=0.666; 
        else 
            if(strcmp(cell2mat(flows(i).dat{j,5}),'LINE')==1) 
                ratio(j)=flows(i).dat{j,10}/flows(i).dat{j,11}; 
            else 
                ratio(j)=flows(i).dat{j,9}/flows(i).dat{j,11}; 
            end             
        end 
        if(ratio(j)>1) 
            violations=violations+1; 
        end 
        load_mat(j,i)=ratio(j)*100; 

         
        pif2(i,1)=i; 
        pif2(i,2)=pif2(i,2)+(0.5*Wi/n)*ratio(j)^(2*n); 
    end 
    pif2(i,2)=pif2(i,2)/2; 
    pif1(i,1)=i; 
    [pif1(i,2) pif1(i,3)]=max(ratio); 
    pif1(i,4)=violations;     
end 
pif1=sortrows(pif1,2,'descend'); 
pif2=sortrows(pif2,2,'descend'); 

 

pivindx.m 
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function[piv1,piv2,del]=pivindx(num_cases,volts); 
n=1; 
for case_num=1:num_cases 
    piv1(case_num,1:2)=0; 
    piv2(case_num,1:2)=0; 
    count=0; 
    for bus_num=1:size(volts(case_num).dat,1) 
        if(volts(case_num).dat{bus_num,3}~=0) 
            count=count+1; 
            vi=volts(case_num).dat{bus_num,6}; 
            vsp=volts(case_num).dat{bus_num,8};             
            if(vsp==0) 
                vsp=1.1; 
            end 
            del(case_num).vi(count,1)=abs(vi-vsp); 
            del(case_num).vi(count,2)=bus_num;             
            Wvi=1; 
            if(volts(case_num).dat{bus_num,5}>=500) 
                del_vi=0.05; 
            else 
                del_vi=0.075; 
            end 
            piv1(case_num,1)=case_num; 
            piv1(case_num,2)=piv1(case_num,2)+(0.5*Wvi/n)*((abs(vi-

vsp))/del_vi)^(2*n); 
            piv2(case_num,1)=case_num; 
            piv2(case_num,2)=piv2(case_num,2)+abs(vi-vsp); 
        end         
    end 
    piv2(case_num,2)=piv2(case_num,2)/size(volts(case_num).dat,1); 
end 
piv1=sortrows(piv1,2,'descend'); 
piv2=sortrows(piv2,2,'descend'); 
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APPENDIX D 

SIMULATION RESULTS OF CONTINGENCIES UNDER SCENARIOS 2 AND 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

107 

D.1 A Listing of PIV and PIF Indices for Transformer Contingencies of Scenario 2 and 3 

 

The values of PIV, PIF, and NV for each one of the 35 transformer contingencies 

corresponding to scenario 2 are listed in Table D.1. Fig. D.1 shows the comparison of the 

PIV and PIF indices for transformer contingencies of scenario 2. The values of PIV, PIF, and 

NV for each one of the 35 transformer contingencies corresponding to scenario 3 are listed 

in Table D.2. Fig. D.2 shows the comparison of the PIV and PIF indices for transformer 

contingencies of scenario 3. 

Table D.1 List of PIV and PIF Indices for Transformer Contingencies of Scenario 2 (Pload 

= 4655.52 MW, Qload = 244.38 MVAr) 

 

Transformer name PIV PIF NV 

 

Transformer name PIV PIF NV 

Tr 1 52.641 0.918 0 Tr 19 53.888 0.918 0 

Tr 2 55.588 0.918 0 Tr 20 51.721 0.918 0 

Tr 3 55.588 0.918 0 Tr 21 52.350 0.918 0 

Tr 4 52.490 0.918 0 Tr 22 52.641 0.918 0 

Tr 5 51.088 0.942 0 Tr 23 52.359 0.918 0 

Tr 6 50.771 0.919 0 Tr 24 52.879 0.918 0 

Tr 7 46.978 0.918 0 Tr 25 52.787 0.918 0 

Tr 8 54.574 0.918 0 Tr 26 52.558 0.918 0 

Tr 9 68.131 0.918 0 Tr 27 52.613 0.918 0 

Tr 10 68.126 0.918 0 Tr 28 52.677 0.918 0 

Tr 11 54.329 0.917 0 Tr 29 52.746 0.918 0 

Tr 12 54.181 0.917 0 Tr 30 52.746 0.918 0 

Tr 13 38.751 0.919 0 Tr 31 53.933 0.918 0 

Tr 14 38.617 0.919 0 Tr 32 53.933 0.918 0 

Tr 15 38.758 0.919 0 Tr 33 53.909 0.918 0 

Tr 16 37.832 1.026 2 Tr 34 53.991 0.918 0 

Tr 17 38.267 0.924 0 Tr 35 171.93 0.918 0 

Tr 18 37.780 1.026 2     
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Figure D.1 Comparison of PIV and PIF Indices for Transformer Contingencies of Loading 

Scenario 2 

 

Table D.2 List of PIV and PIF Indices for Transformer Contingencies for Scenario 3 (Pload 

= 6047.73 MW, Qload = 327.35 MVAr) 

 

Transformer 

name 

PIV PIF NV 

 

Transformer 

name 

PIV PIF NV 

Tr 1 305.225 0.911 0 Tr 19 312.708 0.910 0 

Tr 2 325.295 0.911 0 Tr 20 300.431 0.911 0 

Tr 3 325.294 0.911 0 Tr 21 303.565 0.911 0 

Tr 4 304.633 0.911 0 Tr 22 305.241 0.911 0 

Tr 5 300.236 0.939 0 Tr 23 304.618 0.911 0 

Tr 6 299.131 0.916 0 Tr 24 307.035 0.911 0 

Tr 7 292.496 0.911 0 Tr 25 306.553 0.911 0 

Tr 8 315.235 0.911 0 Tr 26 301.570 0.911 0 

Tr 9 354.579 0.910 0 Tr 27 302.055 0.911 0 

Tr 10 354.696 0.910 0 Tr 28 295.319 0.911 0 

Tr 11 319.589 1.086 2 Tr 29 305.307 0.911 0 

Tr 12 318.185 1.085 2 Tr 30 305.307 0.911 0 

Tr 13 306.780 0.910 0 Tr 31 312.642 0.911 0 

Tr 14 305.751 0.910 0 Tr 32 312.642 0.911 0 

Tr 15 306.693 0.910 0 Tr 33 312.503 0.911 0 

Tr 16 314.866 0.966 0 Tr 34 312.968 0.911 0 

Tr 17 318.277 0.912 0 Tr 35 592.830 0.910 0 

Tr 18 314.240 0.966 0     
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Figure D.2 Comparison of PIV and PIF Indices for Transformer Contingencies of Loading 

Scenario 3 

D.2 A Listing of PIV and PIF Indices for Transmission Line Contingencies of Scenario 2 

 

The values of PIV, PIF, and NV for each one of the 29 transmission line contingen-

cies corresponding to scenario 2 are listed in Table D.3. Fig. D.3 shows the comparison of 

the PIV and PIF indices for transformer contingencies of scenario 2. The values of PIV, PIF, 

and NV for each one of the 29 transmission line contingencies corresponding to scenario 3 

are listed in Table D.4. Fig. D.4 shows the comparison of the PIV and PIF indices for trans-

former contingencies of scenario 3. 

 

 

 

 

 

 



 

110 

Table D.3 List of PIV and PIF Indices for Transmission Line Contingencies for Scenario 2 

(Pload = 4655.52 MW, Qload = 244.38 MVAr) 

 

Transmission 

line name 
PIV PIF NV 

 

Transmission 

line name 
PIV PIF NV 

Ln 1 50.926 0.915  Ln 16 52.754 0.917 0 

Ln 2 52.769 0.918 0 Ln 17 52.947 0.917 0 

Ln 3 52.769 0.918 0 Ln 18 52.756 0.917 0 

Ln 4 57.296 0.916 0 Ln 19 52.947 0.917 0 

Ln 5 54.309 0.917 0 Ln 20 52.756 0.917 0 

Ln 6 56.486 0.916 0 Ln 21 57.513 0.915 0 

Ln 7 55.037 0.917 0 Ln 22 55.604 0.917 0 

Ln 8 118.98 0.946 0 Ln 23 55.604 0.917 0 

Ln 9 67.078 0.918 0 Ln 24 58.927 0.917 0 

Ln 10 65.717 0.918 0 Ln 25 119.06 0.915 0 

Ln 11 62.204 0.918 0 Ln 26 76.861 0.916 0 

Ln 12 56.15 0.918 0 Ln 27 79.398 0.917 0 

Ln 13 54.355 0.917 0 Ln 28 63.702 0.917 0 

Ln 14 54.207 0.917 0 Ln 29 62.083 0.917 0 

Ln 15 54.706 0.917 0     

 

 

 

 
 

Figure D.3 Comparison of PIV and PIF Indices for Transmission Line Contingencies of 

Loading Scenario 2 
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Table D.4 List of PIV and PIF Indices for Transmission Line Contingencies for Scenario 3 

(Pload = 6047.73 MW, Qload = 327.35 MVAr) 

 

Transmission 

line name 
PIV PIF NV 

 

Transmission 

line name 
PIV PIF NV 

Ln 1 304.429 0.909 0 Ln 16 306.423 0.911 0 

Ln 2 305.751 0.911 0 Ln 17 307.355 0.911 0 

Ln 3 305.751 0.911 0 Ln 18 306.445 0.911 0 

Ln 4 327.991 0.909 0 Ln 19 307.355 0.911 0 

Ln 5 312.777 0.910 0 Ln 20 306.445 0.911 0 

Ln 6 325.530 0.909 0 Ln 21 334.309 0.909 0 

Ln 7 318.678 0.910 0 Ln 22 321.719 0.910 0 

Ln 8 508.887 0.909 0 Ln 23 321.719 0.910 0 

Ln 9 332.603 0.911 0 Ln 24 315.650 0.910 0 

Ln 10 365.919 0.910 0 Ln 25 581.638 0.909 0 

Ln 11 345.917 0.911 0 Ln 26 420.475 0.909 0 

Ln 12 335.285 0.911 0 Ln 27 400.690 0.910 0 

Ln 13 319.812 1.086 2 Ln 28 339.665 0.910 0 

Ln 14 318.396 1.085 2 Ln 29 352.956 0.910 0 

Ln 15 315.450 0.910 0     

 

 

 

 
 

Figure D.4 Comparison of PIV and PIF Indices for Transmission Line Contingencies of 

Loading Scenario 3 
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APPENDIX E 

SIMULATION RESULTS OF CIRCUIT BREAKER CONTINGENCIES FOR DIFFER-

ENT SCENARIOS  
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Table E.1 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 1 to Cb 

72 Under Scenario 1 (Pload = 2666.31 MW, Qload = 182.76 MVAr) 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

1 111.199 0.924 0 37 106.775 0.898 0 

2 88.580 0.897 0 38 99.575 0.898 0 

3 76.987 0.898 0 39 99.577 0.898 0 

4 68.026 0.898 0 40 99.577 0.898 0 

5 64.763 0.897 0 41 103.608 0.898 0 

6 186.956 0.900 0 42 103.608 0.898 0 

7 119.590 0.899 0 43 103.608 0.898 0 

8 111.144 0.899 0 44 103.608 0.898 0 

9 56.832 0.897 0 45 62.848 0.895 0 

10 193.561 0.926 0 46 62.848 0.895 0 

11 134.559 0.925 0 47 60.899 0.895 0 

12 134.899 0.925 0 48 62.343 0.895 0 

13 88.936 0.898 0 49 100.675 0.898 0 

14 95.402 0.898 0 50 100.810 0.898 0 

15 86.555 0.898 0 51 83.442 0.898 0 

16 94.796 0.898 0 52 95.409 0.925 0 

17 104.769 0.897 0 53 111.492 0.925 0 

18 110.007 0.895 0 54 95.442 0.925 0 

19 151.101 0.897 0 55 117.443 0.896 0 

20 96.916 0.899 0 56 117.443 0.896 0 

21 111.705 0.899 0 57 102.397 0.893 0 

22 111.643 0.899 0 58 126.378 0.928 0 

23 96.967 0.899 0 59 136.347 0.977 0 

24 105.511 0.898 0 60 102.397 0.893 0 

25 94.801 0.898 0 61 96.087 0.891 0 

26 94.801 0.898 0 62 89.978 0.896 0 

27 104.463 0.897 0 63 85.338 0.896 0 

28 105.713 0.897 0 64 97.791 0.930 0 

29 112.127 0.899 0 65 133.008 0.934 0 

30 110.350 0.899 0 66 110.222 0.898 0 

31 106.427 0.898 0 67 110.304 0.898 0 

32 106.400 0.898 0 68 110.400 0.899 0 

33 110.350 0.899 0 69 110.219 0.898 0 

34 106.786 0.898 0 70 110.275 0.898 0 

35 106.759 0.898 0 71 110.375 0.899 0 

36 97.562 0.897 0 72 110.219 0.898 0 
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Table E.2 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 73 to Cb 

112 Under Scenario 1 (Pload = 2666.31 MW, Qload = 182.76 MVAr) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

73 136.675 0.982 0 93 111.626 0.924 0 

74 136.973 0.977 0 94 113.657 0.926 0 

75 124.154 0.901 0 95 94.472 0.899 0 

76 110.712 0.901 0 96 103.302 0.898 0 

77 110.400 0.899 0 97 96.391 0.898 0 

78 107.694 0.894 0 98 105.214 0.899 0 

79 103.660 0.898 0 99 100.859 0.899 0 

80 96.537 0.924 0 100 83.284 0.897 0 

81 112.163 0.924 0 101 80.620 0.895 0 

82 117.614 0.926 0 102 97.969 0.896 0 

83 94.712 0.924 0 103 85.286 0.896 0 

84 110.832 0.924 0 104 85.300 0.896 0 

85 113.447 0.926 0 105 89.309 0.898 0 

86 109.381 0.924 0 106 65.818 0.897 0 

87 109.760 0.924 0 107 182.863 0.897 0 

88 113.180 0.924 0 108 90.487 0.898 0 

89 101.617 0.898 0 109 104.372 0.897 0 

90 95.896 0.924 0 110 96.039 0.898 0 

91 105.585 0.924 0 111 103.547 0.899 0 

92 109.191 0.924 0 112 110.397 0.899 0 
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Table E.3 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 1 to Cb 

76 for Scenario 2 (Pload = 4655.52 MW, Qload = 244.38 MVAr) 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

1 52.641 0.918 0 39 56.263 0.918 0 

2 71.452 0.917 0 40 56.263 0.918 0 

3 81.395 0.917 0 41 55.708 0.917 0 

4 88.823 0.917 0 42 55.708 0.917 0 

5 86.378 0.917 0 43 55.708 0.917 0 

6 41.798 0.957 0 44 55.708 0.917 0 

7 57.510 0.918 0 45 119.25 0.915 0 

8 52.490 0.918 0 46 119.25 0.915 0 

9 109.61 0.927 0 47 127.45 0.915 0 

10 44.858 0.946 0 48 120.13 0.915 0 

11 47.244 0.918 0 49 73.848 0.917 0 

12 47.113 0.918 0 50 73.606 0.917 0 

13 70.004 0.918 0 51 68.089 0.918 0 

14 65.828 0.918 0 52 38.743 0.919 0 

15 71.078 0.917 0 53 38.565 0.919 0 

16 52.947 0.917 0 54 38.749 0.919 0 

17 54.494 0.917 0 55 50.909 0.915 0 

18 57.373 0.915 0 56 50.909 0.915 0 

19 50.988 0.916 0 57 55.195 0.914 0 

20 51.856 0.918 0 58 38.789 0.971 0 

21 52.640 0.918 0 59 37.787 1.026 2 

22 52.640 0.918 0 60 55.195 0.914 0 

23 51.856 0.918 0 61 58.280 0.912 0 

24 54.305 0.917 0 62 55.378 0.916 0 

25 52.947 0.917 0 63 76.848 0.916 0 

26 52.947 0.917 0 64 52.023 0.922 0 

27 54.703 0.917 0 65 38.829 0.924 0 

28 55.011 0.924 0 66 52.751 0.917 0 

29 53.022 0.926 0 67 52.734 0.917 0 

30 52.769 0.918 0 68 52.751 0.918 0 

31 54.352 0.917 0 69 52.753 0.917 0 

32 54.351 0.917 0 70 52.751 0.917 0 

33 52.769 0.918 0 71 52.767 0.918 0 

34 54.204 0.917 0 72 52.753 0.917 0 

35 54.204 0.917 0 73 37.878 1.034 2 

36 56.901 0.917 0 74 37.734 1.026 2 

37 53.699 0.917 0 75 58.793 0.919 0 

38 56.150 0.918 0 76 52.248 0.919 0 
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Table E.4 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 77 to Cb 

112 for Scenario 2 (Pload = 4655.52 MW, Qload = 244.38 MVAr) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

77 52.751 0.918 0 95 72.830 0.918 0 

78 53.859 0.918 0 96 62.349 0.917 0 

79 55.569 0.917 0 97 72.017 0.918 0 

80 52.741 0.918 0 98 62.181 0.918 0 

81 53.035 0.918 0 99 70.080 0.918 0 

82 51.396 0.942 0 100 65.839 0.917 0 

83 53.779 0.918 0 101 70.949 0.915 0 

84 53.477 0.918 0 102 64.210 0.916 0 

85 52.769 0.943 0 103 76.515 0.916 0 

86 53.366 0.918 0 104 76.703 0.916 0 

87 53.640 0.918 0 105 73.758 0.917 0 

88 52.379 0.918 0 106 87.699 0.947 0 

89 56.790 0.917 0 107 486.01 0.947 0 

90 53.254 0.918 0 108 63.570 0.917 0 

91 55.178 0.917 0 109 210.99 0.945 0 

92 53.637 0.918 0 110 68.368 0.918 0 

93 53.315 0.918 0 111 65.602 0.918 0 

94 52.636 0.945 0 112 52.771 0.918 0 
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Table E.5 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 1 to Cb 

76 for Scenario 3 (Pload = 6047.73 MW, Qload = 327.35 MVAr) 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

1 305.225 0.911 0 39 335.146 0.911 0 

2 351.808 0.910 0 40 335.146 0.911 0 

3 430.126 0.910 0 41 274.094 0.976 0 

4 360.144 1.083 1 42 274.094 0.976 0 

5 425.595 0.910 0 43 274.094 0.976 0 

6 258.457 0.917 0 44 274.094 0.976 0 

7 308.031 0.911 0 45 582.867 0.909 0 

8 304.630 0.911 0 46 582.867 0.909 0 

9 402.186 1.048 1 47 609.353 0.909 0 

10 262.305 0.916 0 48 583.371 0.909 0 

11 292.916 0.911 0 49 365.613 0.910 0 

12 292.759 0.911 0 50 365.170 0.910 0 

13 379.904 0.911 0 51 354.777 0.910 0 

14 366.684 0.910 0 52 306.778 0.910 0 

15 384.912 0.910 0 53 305.746 0.910 0 

16 307.177 0.911 0 54 306.690 0.910 0 

17 314.389 0.910 0 55 304.235 0.909 0 

18 333.976 0.909 0 56 304.235 0.909 0 

19 294.946 0.909 0 57 323.521 0.909 0 

20 303.548 0.911 0 58 270.616 1.097 1 

21 305.172 0.911 0 59 314.820 0.966 0 

22 305.016 0.911 0 60 323.521 0.909 0 

23 303.656 0.911 0 61 335.417 0.909 0 

24 312.571 0.910 0 62 317.005 0.909 0 

25 307.191 0.911 0 63 357.171 1.009 1 

26 307.191 0.911 0 64 433.191 0.910 0 

27 315.230 0.910 0 65 318.805 0.912 0 

28 317.590 0.910 0 66 306.306 0.911 0 

29 307.588 0.911 0 67 306.270 0.911 0 

30 305.591 0.911 0 68 305.539 0.911 0 

31 319.695 1.086 2 69 261.613 0.968 0 

32 319.562 1.086 2 70 306.346 0.911 0 

33 305.591 0.911 0 71 305.590 0.911 0 

34 318.283 1.085 2 72 261.613 0.968 0 

35 318.155 1.085 2 73 317.904 0.981 0 

36 340.454 0.911 0 74 314.194 0.966 0 

37 312.497 0.910 0 75 319.857 0.912 0 

38 335.159 0.911 0 76 306.847 0.912 0 
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Table E.6 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 77 to Cb 

112 for Scenario 3 (Pload = 6047.73 MW, Qload = 327.35 MVAr) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

77 305.539 0.911 0 95 373.099 0.911 0 

78 312.346 0.910 0 96 349.240 0.910 0 

79 273.697 0.976 0 97 368.470 0.911 0 

80 307.047 0.911 0 98 338.304 0.911 0 

81 309.566 0.911 0 99 357.774 0.911 0 

82 298.414 0.911 0 100 369.814 0.910 0 

83 312.296 0.910 0 101 384.915 0.909 0 

84 312.575 0.910 0 102 366.219 0.909 0 

85 306.569 0.911 0 103 419.481 0.909 0 

86 311.510 0.910 0 104 419.679 0.909 0 

87 313.526 0.910 0 105 409.152 0.910 0 

88 305.862 0.911 0 106 430.212 0.909 0 

89 328.352 0.910 0 107 1178.09 0.909 0 

90 306.940 0.911 0 108 339.202 0.910 0 

91 315.349 0.910 0 109 730.144 0.909 0 

92 308.756 0.911 0 110 342.766 0.911 0 

93 300.560 0.911 0 111 332.406 0.911 0 

94 293.002 0.957 0 112 305.745 0.911 0 
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Table E.7 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 1 to Cb 

76 for Scenario 4 (Pload = 7231.23 MW, Qload = 291.68 MVAr) 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

1 1041.682 1.066 2 39 1091.734 1.068 2 

2 1157.871 1.072 2 40 1091.734 1.068 2 

3 1288.734 1.069 2 41 1083.118 1.067 2 

4 1390.067 1.074 2 42 1083.118 1.067 2 

5 1353.652 1.075 2 43 1083.118 1.067 2 

6 996.2910 1.066 2 44 1083.118 1.067 2 

7 1037.855 1.065 2 45 1814.773 1.088 2 

8 1039.737 1.066 2 46 1814.773 1.088 2 

9 1526.181 1.077 2 47 1881.436 1.091 2 

10 1001.007 1.066 2 48 1814.258 1.088 2 

11 1024.654 1.066 2 49 1231.272 1.077 2 

12 1024.557 1.066 2 50 1231.049 1.077 2 

13 1212.258 1.071 2 51 1197.290 1.073 2 

14 1189.685 1.070 2 52 1022.795 1.065 2 

15 1225.039 1.071 2 53 1020.177 1.065 2 

16 1048.959 1.066 2 54 1022.576 1.065 2 

17 1048.519 1.066 2 55 1043.071 1.066 2 

18 1130.282 1.069 2 56 1043.071 1.066 2 

19 1051.726 1.067 2 57 1092.546 1.067 2 

20 1043.251 1.066 2 58 1015.177 1.065 2 

21 1041.469 1.066 2 59 970.0530 1.063 4 

22 1040.827 1.066 2 60 1092.546 1.067 2 

23 1043.726 1.066 2 61 1121.492 1.068 2 

24 1042.538 1.066 2 62 1070.226 1.067 2 

25 1049.015 1.066 2 63 1460.752 1.078 2 

26 1049.015 1.066 2 64 1332.155 1.074 2 

27 1067.529 1.067 2 65 974.9550 1.064 2 

28 1035.732 1.066 2 66 1047.181 1.066 2 

29 1012.481 1.065 2 67 1047.162 1.066 2 

30 1041.721 1.066 2 68 1041.613 1.066 2 

31 1076.985 1.083 4 69 1047.145 1.066 2 

32 1076.519 1.083 4 70 1047.224 1.066 2 

33 1041.721 1.066 2 71 1041.704 1.066 2 

34 1073.567 1.083 4 72 1047.145 1.066 2 

35 1073.112 1.083 4 73 977.3150 1.064 4 

36 1110.679 1.068 2 74 969.4080 1.063 4 

37 1064.362 1.067 2 75 1069.613 1.067 2 

38 1091.731 1.068 2 76 1056.897 1.067 2 
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Table E.8 List of PIV and PIF Indices for Circuit Breaker Contingencies from Cb 77 to Cb 

112 for Scenario 4 (Pload = 7231.23 MW, Qload = 291.68 MVAr) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit 

breaker name 
PIV PIF NV 

 

Circuit 

breaker name 
PIV PIF NV 

77 1041.613 1.066 2 95 1242.145 1.072 2 

78 1059.945 1.067 2 96 1146.104 1.069 2 

79 1082.655 1.067 2 97 1224.025 1.072 2 

80 1049.563 1.066 2 98 1114.252 1.068 2 

81 1056.823 1.067 2 99 1201.001 1.071 2 

82 1028.244 1.066 2 100 1198.372 1.071 2 

83 1062.253 1.067 2 101 1232.011 1.072 2 

84 1064.686 1.067 2 102 1196.994 1.071 2 

85 1049.110 1.066 2 103 1457.541 1.078 2 

86 1060.591 1.067 2 104 1458.307 1.078 2 

87 1066.607 1.067 2 105 1430.038 1.077 2 

88 1046.960 1.066 2 106 1385.033 1.075 2 

89 1100.528 1.068 2 107 3404.958 1.174 6 

90 1049.894 1.066 2 108 1112.133 1.068 2 

91 1068.801 1.067 2 109 2535.890 1.136 4 

92 1052.417 1.066 2 110 1112.512 1.067 2 

93 1032.316 1.066 2 111 1089.087 1.066 2 

94 1010.067 1.065 2 112 1042.325 1.066 2 
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Table E.9 List of PIV  Based Rank of the 112 Circuit Breaker Contingencies from Cb 1 to 

Cb 40 Under Different Loading Scenarios 

 

Circuit breaker name 
PIV based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 1 26 87 89 89 

Cb 2 96 20 29 29 

Cb 3 104 11 9 16 

Cb 4 105 8 25 12 

Cb 5 107 10 10 14 

Cb 6 2 104 112 108 

Cb 7 13 36 67 95 

Cb 8 27 91 92 94 

Cb 9 112 7 14 7 

Cb 10 1 103 109 107 

Cb 11 9 101 101 99 

Cb 12 8 102 102 100 

Cb 13 95 24 17 23 

Cb 14 86 28 21 28 

Cb 15 97 21 16 21 

Cb 16 89 73 71 72 

Cb 17 55 54 56 73 

Cb 18 41 37 39 31 

Cb 19 4 98 99 66 

Cb 20 78 96 96 81 

Cb 21 22 88 90 92 

Cb 22 23 89 91 93 

Cb 23 77 95 95 80 

Cb 24 53 57 60 84 

Cb 25 87 71 69 70 

Cb 26 88 72 70 71 

Cb 27 56 53 54 56 

Cb 28 51 52 51 96 

Cb 29 21 70 68 105 

Cb 30 34 75 84 86 

Cb 31 49 55 45 49 

Cb 32 50 56 46 50 

Cb 33 35 76 85 87 

Cb 34 46 58 48 51 

Cb 35 48 59 49 52 

Cb 36 76 38 32 36 

Cb 37 47 62 61 59 

Cb 38 73 42 36 42 

Cb 39 71 40 37 40 

Cb 40 72 41 38 41 
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Table E.10 List of PIV  Based Rank of the 112 Circuit Breaker Contingencies from Cb 41 

to Cb 80 Under Different Loading Scenarios 

 

Circuit breaker name 
PIV based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 41 59 43 103 44 

Cb 42 60 44 104 45 

Cb 43 61 45 105 46 

Cb 44 62 46 106 47 

Cb 45 108 5 5 4 

Cb 46 109 6 6 5 

Cb 47 111 3 3 3 

Cb 48 110 4 4 6 

Cb 49 70 15 23 19 

Cb 50 69 17 24 20 

Cb 51 101 26 28 26 

Cb 52 85 108 75 101 

Cb 53 25 109 82 103 

Cb 54 84 107 76 102 

Cb 55 15 99 93 82 

Cb 56 16 100 94 83 

Cb 57 65 49 42 38 

Cb 58 11 106 108 104 

Cb 59 7 111 55 111 

Cb 60 66 50 43 39 

Cb 61 81 35 35 32 

Cb 62 93 48 52 53 

Cb 63 98 12 27 8 

Cb 64 75 94 7 15 

Cb 65 10 105 47 110 

Cb 66 38 84 79 75 

Cb 67 36 86 80 76 

Cb 68 30 82 87 90 

Cb 69 39 79 110 77 

Cb 70 37 81 78 74 

Cb 71 33 78 86 88 

Cb 72 40 80 111 78 

Cb 73 6 110 50 109 

Cb 74 5 112 57 112 

Cb 75 12 34 44 54 

Cb 76 29 93 74 63 

Cb 77 31 83 88 91 

Cb 78 45 60 62 62 

Cb 79 58 47 107 48 

Cb 80 79 85 72 68 



 

123 

Table E.11 List of PIV  Based Rank of the 112 Circuit Breaker Contingencies from Cb 81 

to Cb 112 Under Different Loading Scenarios 

 

Circuit breaker name 
PIV based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 81 20 69 65 64 

Cb 82 14 97 98 98 

Cb 83 90 61 63 60 

Cb 84 28 65 59 58 

Cb 85 18 77 77 69 

Cb 86 43 66 64 61 

Cb 87 42 63 58 57 

Cb 88 19 92 81 79 

Cb 89 67 39 41 37 

Cb 90 83 68 73 67 

Cb 91 52 51 53 55 

Cb 92 44 64 66 65 

Cb 93 24 67 97 97 

Cb 94 17 90 100 106 

Cb 95 91 18 18 17 

Cb 96 64 32 30 30 

Cb 97 80 19 20 22 

Cb 98 54 33 34 33 

Cb 99 68 23 26 24 

Cb 100 102 27 19 25 

Cb 101 103 22 15 18 

Cb 102 74 30 22 27 

Cb 103 100 14 12 10 

Cb 104 99 13 11 9 

Cb 105 94 16 13 11 

Cb 106 106 9 8 13 

Cb 107 3 1 1 1 

Cb 108 92 31 33 35 

Cb 109 57 2 2 2 

Cb 110 82 25 31 34 

Cb 111 63 29 40 43 

Cb 112 32 74 83 85 
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Table E.12 List of PIF  Based Rank of the 112 Circuit Breaker Contingencies from Cb 1 

to Cb 40 Under Different Loading Scenarios 

 

Circuit breaker name 
PIF based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 1 18 32 36 88 

Cb 2 86 92 86 23 

Cb 3 72 74 82 33 

Cb 4 82 89 6 20 

Cb 5 92 93 90 18 

Cb 6 30 5 20 98 

Cb 7 31 26 30 102 

Cb 8 40 37 42 92 

Cb 9 95 13 7 14 

Cb 10 10 8 21 95 

Cb 11 14 27 34 99 

Cb 12 15 28 35 100 

Cb 13 50 46 65 28 

Cb 14 69 60 75 32 

Cb 15 80 73 80 27 

Cb 16 73 69 62 67 

Cb 17 87 94 83 78 

Cb 18 106 105 101 35 

Cb 19 94 96 102 56 

Cb 20 37 24 32 80 

Cb 21 35 33 37 89 

Cb 22 36 34 38 90 

Cb 23 38 25 33 81 

Cb 24 79 83 81 91 

Cb 25 74 70 63 68 

Cb 26 75 71 64 69 

Cb 27 88 95 85 54 

Cb 28 85 16 89 96 

Cb 29 34 14 61 106 

Cb 30 44 41 49 82 

Cb 31 70 84 3 8 

Cb 32 71 85 2 7 

Cb 33 45 42 50 83 

Cb 34 66 81 5 10 

Cb 35 67 82 4 9 

Cb 36 84 80 57 36 

Cb 37 57 68 79 57 

Cb 38 58 49 25 40 

Cb 39 59 50 26 41 

Cb 40 60 51 27 42 
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Table E.13 List of PIF  Based Rank of the 112 Circuit Breaker Contingencies from Cb 41 

to Cb 80 Under Different Loading Scenarios 

 

Circuit breaker name 
PIF based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 41 61 75 10 46 

Cb 42 62 76 11 47 

Cb 43 63 77 12 48 

Cb 44 64 78 13 49 

Cb 45 103 106 95 4 

Cb 46 104 107 96 5 

Cb 47 107 109 94 3 

Cb 48 105 108 97 6 

Cb 49 81 90 92 17 

Cb 50 83 91 93 16 

Cb 51 54 59 72 22 

Cb 52 13 21 78 103 

Cb 53 11 20 74 105 

Cb 54 12 22 77 104 

Cb 55 101 103 110 93 

Cb 56 102 104 111 94 

Cb 57 110 110 103 44 

Cb 58 6 4 1 108 

Cb 59 3 3 18 111 

Cb 60 111 111 104 45 

Cb 61 112 112 98 37 

Cb 62 96 97 112 52 

Cb 63 97 99 8 12 

Cb 64 5 17 84 21 

Cb 65 4 15 22 110 

Cb 66 56 67 58 72 

Cb 67 55 65 56 76 

Cb 68 41 38 43 86 

Cb 69 52 62 15 73 

Cb 70 51 61 53 75 

Cb 71 43 40 46 85 

Cb 72 53 63 16 74 

Cb 73 1 1 9 109 

Cb 74 2 2 17 112 

Cb 75 28 19 24 63 

Cb 76 29 18 23 62 

Cb 77 42 39 44 87 

Cb 78 109 58 68 61 

Cb 79 65 79 14 50 

Cb 80 24 36 52 71 
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Table E.14 List of PIF  Based Rank of the 112 Circuit Breaker Contingencies from Cb 81 

to Cb 112 Under Different Loading Scenarios 

 

Circuit breaker name 
PIF based rank 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Cb 81 17 45 60 64 

Cb 82 7 12 29 101 

Cb 83 26 57 67 59 

Cb 84 20 53 69 58 

Cb 85 9 11 47 77 

Cb 86 22 54 66 60 

Cb 87 21 55 70 55 

Cb 88 16 31 45 79 

Cb 89 78 86 88 39 

Cb 90 25 47 51 70 

Cb 91 27 72 71 53 

Cb 92 23 56 55 66 

Cb 93 19 48 31 97 

Cb 94 8 9 19 107 

Cb 95 33 29 41 24 

Cb 96 77 87 87 34 

Cb 97 49 44 54 25 

Cb 98 47 30 40 38 

Cb 99 32 23 28 29 

Cb 100 91 88 91 31 

Cb 101 108 102 99 26 

Cb 102 100 101 100 30 

Cb 103 98 98 107 11 

Cb 104 99 100 108 13 

Cb 105 76 64 76 15 

Cb 106 90 6 109 19 

Cb 107 93 7 105 1 

Cb 108 68 66 73 43 

Cb 109 89 10 106 2 

Cb 110 48 52 59 51 

Cb 111 39 35 39 65 

Cb 112 46 43 48 84 
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Table E.15 List of PIV and PIF Based Ranking List of Circuit Breaker Contingencies from 

Rank 1 to 39 Using the RF Index 

 

PIV based 

 

PIF based 

Rank 
Circuit 

breaker name 
RF Rank 

Circuit 

breaker name 
RF 

1 Cb 107 78 1 Cb 73 60.118 

2 Cb 109 34.079 2 Cb 74 30.223 

3 Cb 10 33.632 3 Cb 107 29.088 

4 Cb 47 22.631 4 Cb 58 28.981 

5 Cb 6 17.124 5 Cb 59 20.503 

6 Cb 48 14.967 6 Cb 109 15.531 

7 Cb 45 14.956 7 Cb 32 12.830 

8 Cb 46 12.303 8 Cb 65 10.917 

9 Cb 19 9.056 9 Cb 31 9.561 

10 Cb 9 8.652 10 Cb 64 9.463 

11 Cb 74 7.345 11 Cb 47 9.052 

12 Cb 106 7.137 12 Cb 94 8.031 

13 Cb 104 6.580 13 Cb 35 7.825 

14 Cb 73 6.297 14 Cb 82 7.631 

15 Cb 5 6.294 15 Cb 10 7.498 

16 Cb 4 6.203 16 Cb 6 7.205 

17 Cb 63 6.175 17 Cb 45 6.985 

18 Cb 3 6.041 18 Cb 34 6.709 

19 Cb 103 6.032 19 Cb 85 6.626 

20 Cb 105 5.494 20 Cb 9 6.485 

21 Cb 59 5.474 21 Cb 106 6.005 

22 Cb 64 4.801 22 Cb 46 5.728 

23 Cb 12 4.787 23 Cb 48 4.888 

24 Cb 11 4.335 24 Cb 63 4.801 

25 Cb 75 4.335 25 Cb 4 4.767 

26 Cb 49 4.193 26 Cb 53 4.718 

27 Cb 95 4.167 27 Cb 54 4.348 

28 Cb 65 4.127 28 Cb 52 4.190 

29 Cb 101 3.979 29 Cb 11 4.036 

30 Cb 50 3.907 30 Cb 12 3.829 

31 Cb 15 3.784 31 Cb 76 3.669 

32 Cb 7 3.750 32 Cb 75 3.600 

33 Cb 97 3.715 33 Cb 99 3.587 

34 Cb 58 3.634 34 Cb 88 3.563 

35 Cb 13 3.476 35 Cb 1 3.371 

36 Cb 99 3.268 36 Cb 95 3.318 

37 Cb 100 3.144 37 Cb 29 3.271 

38 Cb 82 3.043 38 Cb 81 3.171 

39 Cb 2 3.042 39 Cb 41 3.118 
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Table E.16 List of PIV and PIF Based Ranks of Circuit Breaker Contingencies from Rank 

40 to 78 Using the RF Index 

 

PIV based 

 

PIF based 

Rank 
Circuit 

breaker name 
RF Rank 

Circuit 

breaker name 
RF 

40 Cb 14 2.979 40 Cb 93 3.064 

41 Cb 102 2.978 41 Cb 103 3.023 

42 Cb 55 2.940 42 Cb 42 2.939 

43 Cb 51 2.857 43 Cb 7 2.838 

44 Cb 56 2.795 44 Cb 84 2.799 

45 Cb 85 2.741 45 Cb 43 2.786 

46 Cb 18 2.723 46 Cb 20 2.777 

47 Cb 96 2.697 47 Cb 80 2.748 

48 Cb 110 2.686 48 Cb 87 2.723 

49 Cb 81 2.664 49 Cb 105 2.715 

50 Cb 98 2.626 50 Cb 23 2.692 

51 Cb 94 2.625 51 Cb 104 2.664 

52 Cb 88 2.535 52 Cb 44 2.654 

53 Cb 29 2.417 53 Cb 86 2.637 

54 Cb 108 2.395 54 Cb 98 2.618 

55 Cb 111 2.392 55 Cb 92 2.569 

56 Cb 61 2.389 56 Cb 97 2.556 

57 Cb 36 2.318 57 Cb 90 2.542 

58 Cb 84 2.282 58 Cb 79 2.538 

59 Cb 21 2.245 59 Cb 69 2.514 

60 Cb 89 2.224 60 Cb 21 2.441 

61 Cb 93 2.181 61 Cb 72 2.420 

62 Cb 39 2.174 62 Cb 50 2.418 

63 Cb 22 2.171 63 Cb 51 2.407 

64 Cb 40 2.125 64 Cb 28 2.402 

65 Cb 38 2.115 65 Cb 83 2.385 

66 Cb 57 2.081 66 Cb 38 2.384 

67 Cb 60 2.036 67 Cb 111 2.381 

68 Cb 76 2.033 68 Cb 22 2.377 

69 Cb 1 2.028 69 Cb 13 2.358 

70 Cb 31 2.016 70 Cb 49 2.341 

71 Cb 53 1.999 71 Cb 39 2.323 

72 Cb 34 1.993 72 Cb 91 2.281 

73 Cb 32 1.976 73 Cb 40 2.265 

74 Cb 8 1.948 74 Cb 5 2.205 

75 Cb 35 1.939 75 Cb 8 2.177 

76 Cb 87 1.914 76 Cb 68 2.149 

77 Cb 91 1.900 77 Cb 77 2.100 

78 Cb 68 1.878 78 Cb 71 2.056 
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Table E.17 List of PIV and PIF Based Ranks of Circuit Breaker Contingencies from Rank 

79 to 112 Using the RF Index 

 

PIV based 

 

PIF based 

Rank 
Circuit 

breaker name 
RF Rank 

Circuit 

breaker name 
RF 

79 Cb 41 1.874 79 Cb 30 2.012 

80 Cb 112 1.868 80 Cb 33 1.970 

81 Cb 42 1.837 81 Cb 112 1.951 

82 Cb 77 1.834 82 Cb 110 1.947 

83 Cb 78 1.827 83 Cb 2 1.940 

84 Cb 27 1.822 84 Cb 14 1.903 

85 Cb 86 1.822 85 Cb 15 1.893 

86 Cb 37 1.808 86 Cb 3 1.761 

87 Cb 43 1.802 87 Cb 70 1.711 

88 Cb 71 1.802 88 Cb 36 1.698 

89 Cb 30 1.797 89 Cb 101 1.684 

90 Cb 92 1.783 90 Cb 108 1.678 

91 Cb 79 1.781 91 Cb 96 1.647 

92 Cb 44 1.768 92 Cb 100 1.640 

93 Cb 33 1.759 93 Cb 67 1.617 

94 Cb 70 1.756 94 Cb 66 1.603 

95 Cb 67 1.749 95 Cb 37 1.600 

96 Cb 28 1.722 96 Cb 102 1.581 

97 Cb 66 1.715 97 Cb 89 1.548 

98 Cb 17 1.709 98 Cb 16 1.462 

99 Cb 62 1.674 99 Cb 25 1.441 

100 Cb 24 1.642 100 Cb 18 1.432 

101 Cb 69 1.642 101 Cb 26 1.420 

102 Cb 72 1.611 102 Cb 78 1.394 

103 Cb 83 1.463 103 Cb 61 1.367 

104 Cb 90 1.371 104 Cb 27 1.301 

105 Cb 25 1.335 105 Cb 57 1.261 

106 Cb 26 1.317 106 Cb 60 1.242 

107 Cb 80 1.316 107 Cb 62 1.234 

108 Cb 16 1.300 108 Cb 19 1.225 

109 Cb 23 1.183 109 Cb 24 1.204 

110 Cb 20 1.169 110 Cb 17 1.171 

111 Cb 54 1.095 111 Cb 55 0.993 

112 Cb 52 1.094 112 Cb 56 0.983 

 

 


