
Representation, Exploration, and Recommendation of Music Playlists

by

Piyush Nolastname

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2019 by the
Graduate Supervisory Committee:

Sethuraman Panchanathan, Chair
Hemanth Kumar Demakethepalli Venkateswara

Heni Ben Amor

ARIZONA STATE UNIVERSITY

August 2019

ABSTRACT

Playlists have become a significant part of the music listening experience today be-

cause of the digital cloud-based services such as Spotify, Pandora, Apple Music. Ow-

ing to the meteoric rise in usage of playlists, recommending playlists is crucial to

music services today. Although there has been a lot of work done in playlist predic-

tion, the area of playlist representation hasn’t received that level of attention. Over

the last few years, sequence-to-sequence models, especially in the field of natural lan-

guage processing have shown the effectiveness of learned embeddings in capturing the

semantic characteristics of sequences. Similar concepts can be applied to music to

learn fixed length representations for playlists and the learned representations can

then be used for downstream tasks such as playlist comparison and recommendation.

In this thesis, the problem of learning a fixed-length representation is formulated in

an unsupervised manner, using Neural Machine Translation (NMT), where playlists

are interpreted as sentences and songs as words. This approach is compared with

other encoding architectures and evaluated using the suite of tasks commonly used

for evaluating sentence embeddings, along with a few additional tasks pertaining to

music. The aim of the evaluation is to study the traits captured by the playlist

embeddings such that these can be leveraged for music recommendation purposes.

This work lays down the foundation for analyzing music playlists and learning the

patterns that exist in the playlists in an end-to-end manner. This thesis finally

concludes with a discussion on the future direction for this research and its potential

impact in the domain of Music Information Retrieval.

i

DEDICATION

Dedicated to my sister for introducing me to the gift of music, and my parents for

always being there through the crescendos and decrescendos of my life.

ii

ACKNOWLEDGEMENTS

In completing this thesis, I have so many people to thank. First and foremost, I would

like to thank Dr. Sethuraman Panchanathan, who made sure I was always supported

in every possible way, and I could focus on my research. I would like to thank Dr.

Hemanth Venkateswara for providing me with invaluable guidance and support for

this thesis. This work would not have been possible without his mentorship. I am

grateful to Dr. Troy McDaniel, who welcomed me into the CUbiC Lab and allowed me

the freedom to do this work. This work would have been much harder to accomplish

without his support and encouragement. The CUbiC Lab has been an incredible

place to explore, learn, and play. I would also like to thank Dr. Heni Ben Amor for

being supportive and willing to be on the committee to assess my work.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Goals and Motivations . 3

1.1.1 Why Playlist Embeddings? . 3

1.1.2 Why Unsupervised Learning? . 4

1.2 Contributions . 4

1.3 Thesis Outline . 5

2 PLAYLISTS: OVERVIEW . 7

2.1 Overview. 7

2.2 What Is a Playlist? . 7

2.3 Aspects of a Good Playlist . 8

2.4 Why Is It Important? . 9

3 PLAYLIST REPRESENTATION: LITERATURE SURVEY 11

3.1 Overview. 11

3.2 Embedding Based Approaches . 12

3.2.1 LDA Based Models . 12

3.2.2 Collaborative Filtering . 12

3.2.3 Neural Network Based Approaches . 13

3.2.4 Other Non-neural Network Approaches . 15

3.3 Neural Machine Translation . 15

3.4 About Current Work . 16

4 SEQUENCE TO SEQUENCE LEARNING: BACKGROUND 17

iv

CHAPTER Page

4.1 Overview. 17

4.2 Recurrent Neural Networks . 17

4.2.1 Long Short Term Memory Unit . 19

4.2.2 Gated Recurrent Unit . 20

4.2.3 Bidirectional RNN . 21

4.3 Encoder-decoder Networks . 22

4.3.1 Attention Mechanism . 24

5 EMBEDDING MODELS USED IN THIS WORK. 26

5.1 Introduction . 26

5.2 Models . 26

5.3 Training Tasks: Problem Statement Formulation 31

6 EVALUATION: TASKS AND METRICS . 32

6.1 Evaluation Tasks . 32

6.1.1 Genre Related Tasks . 32

6.1.2 Playlist Length Prediction Task . 34

6.1.3 Song Content Task . 34

6.1.4 Sentence Semantic Measurement Task . 34

6.1.5 Song Order Tasks . 35

7 EXPERIMENTAL SETUP . 37

7.1 Data . 37

7.1.1 Data Source . 37

7.1.2 Data Statistics . 39

7.1.3 Data Filtering . 40

7.2 Data Labeling: Genre Assignment . 41

v

CHAPTER Page

7.2.1 Word-2-vec: Set up and Training . 42

7.3 Training . 42

8 EVALUATION RESULTS . 44

8.1 Genre Related Tasks . 45

8.1.1 Genre Prediction Task . 45

8.1.2 Genre Diversity Task . 45

8.1.3 Genre Switch Prediction Task . 46

8.2 Length Prediction Task . 46

8.3 Song Content Task. 46

8.4 Sentence Semantic Measurement Task . 47

8.5 Song Order Tasks . 47

8.5.1 Bigram Shift Task . 47

8.5.2 Permute Classification Task. 47

9 CONCLUSION AND FUTURE WORK . 49

BIBLIOGRAPHY. 50

vi

LIST OF TABLES

Table Page

3.1 Collaborative Filtering Example . 13

7.1 Downloaded Spotify Data Details . 38

7.2 Corpus Length Statistics . 40

8.1 Evaluation Task Results . 45

vii

LIST OF FIGURES

Figure Page

3.1 CNN Model Used in Volkovs et al. (2018) . 14

3.2 Proposed Architecture In Yang et al. (2018) . 14

3.3 Overview of the Proposed Work Architecture . 16

4.1 Simple Recurrent Neural Network Diagram . 18

4.2 LSTM Diagram . 20

4.3 GRU Diagram . 21

4.4 Bidirectional RNN . 22

4.5 Encoder-decoder Network . 23

4.6 Attention Module . 25

5.1 Google NMT Encoder . 29

5.2 Residual Connections . 30

5.3 DBRNN Encoder . 31

7.1 Data Download Workflow . 38

7.2 Zipf Plot for the Corpus . 39

7.3 T-SNE Plot for Genre-annotated Songs . 42

8.1 Evaluation Task Results . 44

8.2 Permute-shuffle Task Evaluation . 48

viii

Chapter 1

INTRODUCTION

In this age of cloud-based music streaming services such as Spotify, Pandora, Apple

music among others, with millions of songs at fingertips, users have grown accustomed

to, a) immediate attainment of their music demands, and b) an extended experience,

as first mentioned by Choi et al. (2016). With millions of songs in the pocket and

ever-improving technology, any song can be retrieved in a few seconds. However,

this makes the decision to select an item with millions of items available, extremely

overwhelming and difficult. Recommendation engines service this aspect of the change

in user behavior by selecting items for users based on their calculated preferences.

They help users find new music conveniently. Playlists handle the second aspect of

the changing behavior, which is the need for an extended experience. An extended

experience is achieved by sustaining the mood of the songs in a playlist. For e.g.

Spotify has over two billion playlists (ref: spotify.com (2018a)) created for every kind

of mood (sad, happy, angry, calm, etc.), activity (running, workout, studying, etc.),

and genre (blues, rock, pop, etc.). Because of the rising popularity of playlists as the

primary listening experience, a lot of attention is given to creating the best possible

playlists to have maximum user engagement. As a result, the playlist recommendation

has taken the center stage in the domain of Music Information Retrieval.

Unsurprisingly, over the past couple of years, the playlist recommendation task

has become analogous to playlist prediction/creation rather than playlist discovery,

comparison, and similarity. Tasks such as Automatic Playlist Continuation (APC)

(Schedl et al. (2017)) are commonly tried problems in the literature (Volkovs et al.

(2018), Yang et al. (2018), Ludewig et al. (2018)). However, not much focus has

1

been given to optimal playlist representation for discovery and exploration. Optimal

playlist representation forms a significant part of the overall playlist recommenda-

tion pipeline, as it is an effective way to help users discover existing playlists on the

platform by leveraging nearest-neighbor techniques. It also provides a way for the

recommendation engine to capture the implicit details of the user’s musical prefer-

ences such as the transition of the musical mood over time in a session.

This work borrows ideas from the field of Natural Language Processing (NLP) to

achieve the task of representing playlists. Sequence to sequence (seq2seq) learning

has had a huge impact in the domain of NLP in capturing the semantic meaning of

sentences. Because of the fact that seq2seq networks can learn a representation of a

sentence that not just captures the content and meaning of the words occurring in

the sentence, but also the sequence of words means that it captures the context in a

much more holistic manner. As a result, seq2seq learning has been very successful in

tasks such as neural machine translation, where the task of the network is to learn

translation between two different languages.

The aim of this work is to create an end-to-end pipeline for learning playlist

embeddings which can be directly used for discovery and recommendation purposes.

The relationship playlist:songs :: sentences:words is evident. Inspiration is derived

from research in natural language processing to model playlist embeddings the way

sentences are embedded.

2

1.1 Goals and Motivations

1.1.1 Why Playlist Embeddings?

Current research pertaining to playlists is in the areas of automatic playlist gen-

eration (Andric and Haus (2006), Logan (2002) Chen et al. (2012)), and continuation

Chen et al. (2018) Volkovs et al. (2018) Yang et al. (2018). Multiple solutions have

been proposed to address these problems, like reinforcement learning (Liebman et al.

(2015)) and Recurrent Neural Network-based models (Choi et al. (2016)) for playlist

generation and playlist continuation tasks. However, great success has been achieved

in the field of natural language processing using the power of learned embeddings.

These fixed-length embeddings are easier to use and manipulate and can be used for

tasks such as machine translation and query-and-search. A case can be made for

using similar methods for music playlists as well:

1. The semantic properties captured by the learned embeddings can be leveraged

for providing with good-quality recommendations.

2. It can be easily integrated with other modes of information such as word2vec

Mikolov et al. (2013) model, or content-analysis-based models proposed by Lee

et al. (2009) or a combination of both, thus providing a multi-modal recommen-

dation.

3. Another use case for projecting the playlist content onto an embedding space

is easier browsing through the entire corpus as shown in the figure. MusicBox

by Lillie (2008) is a great example of this.

4. A similar case can be made for searching playlists that do not exactly fit into

one genre and hence are difficult to find for using the conventional query-and-

search method. Queries such as ”find a playlist like the current playlist with 50

3

songs, some blues, some rock, starting out with lower tempo songs and ending

with higher tempo songs” can be answered with the proposed technique.

5. Lastly, variational sequence-to-sequence models such as the one proposed by

Zhang et al. (2016) can be used for generating playlists from the embedding

space (Bowman et al. (2015b)).

1.1.2 Why Unsupervised Learning?

One of the major challenges when working with playlists is the lack of labeled

data. Natural language processing has many popular supervised datasets such as

SNLI Bowman et al. (2015a), Microsoft’s paraphrase detection Dolan et al. (2004),

SICK dataset Marelli et al. (2014), that are used to learn sentence embeddings that

capture distinct discriminative characteristics which would not be possible without

the labeled data. In the absence of annotated playlist datasets, this work resorts to

unsupervised learning to model playlist representations.

1.2 Contributions

This work is the first attempt at modeling and extensively analyzing compact

playlist representations with inspirations from natural language processing. The con-

tributions of the work are as follows:

1. A sequence -to-sequence learning-based model is proposed for learning a fixed-

length representation for the playlists that capture not just the content details,

but the information related to the sequence of the items as well.

2. A comprehensive comparison is made with other sentence-embedding models to

benchmark the performance of different models for different tasks and analyze

the relevance of the models for each task.

4

3. A suite of evaluation tasks is created to evaluate the proposed model. This

set of tasks not only contains the evaluation tasks used to evaluate sentence

embeddings, but new tasks pertaining to music are proposed which test the

extent of the properties captures by the embeddings relevant to music.

4. A new dataset (playlists-tracks) is introduced for the purpose of this work. The

dataset consists of 1 million playlists and 13 million tracks.

1.3 Thesis Outline

The thesis is structured in the following manner.

Chapter 2 provides an overview of playlists, a brief historical background, and dis-

cusses their significance in the domain of music information retrieval.

Chapter 3 .takes a look at the literature for music playlist representation. It dis-

cusses various models and techniques which have been used over the years to represent

playlists. This chapter also surveys the literature for the neural machine translation

domain. It finally ends the chapter briefly discussing how the current work differs

from the previous work.

Chapter 4 discusses the background to Sequence to Sequence Learning. It begins

with describing the basic building blocks of the seq2seq learning, and how those

blocks are stacked together to form the sequential encoder-decoder networks. This is

followed by a discussion about the state-of-the-art networks used for neural machine

translation.

Chapter 5 describes in detail the models used in this work, and how they compare

5

with each other in terms of architectures, use cases expected to be fulfilled and re-

quired computation complexity.

Chapter 6 focuses on the evaluation tasks and metrics for this work. In this chapter

are described the evaluation tasks used for evaluating sentence embeddings which are

used for this work as well. Tasks pertaining to music which can be used for evaluating

music playlist embeddings are introduced in this chapter as well.

Chapter 7 discusses in detail the experimental setup for this work. It begins with

describing the pipeline designed to download the data and create the dataset, followed

by dataset statistics, and data filtering needed for the work. It then mentions in de-

tail the word2vec algorithm training set up which is used to get song embeddings.

Finally, it ends by discussing the training set up for the embedding models used in

this work.

Chapter 8 describes the experimental results for the evaluation tasks and discusses

in detail the insight gained from the results.

Chapter 9 concludes the thesis by summarizing the contributions of this work. It

also takes a look at the directions in which the current work can be extended.

6

Chapter 2

PLAYLISTS: OVERVIEW

What else is a playlist but an eloquently composed sentence.

-Anonymous

2.1 Overview

This chapter sets up the context for playlists and their significance with regards

to this work. It delves into the traits that make up a playlist and how they shape our

listening experience.

2.2 What Is a Playlist?

According to Fields and Lamere (2010), a playlist can be defined as ”a set of

songs meant to be listened to as a group, usually with an explicit order”. A playlist

isn’t supposed to act as a mere container of songs, but is also supposed to have an

underlying order to the songs which plays a significant part in shaping the final user

experience. Three main factors led to the emergence of the playlists today:

1. Emergence of beat matching and phase alignment by disk jockeys in clubs which

led to birth of concepts such as ”proper song transitions”.

2. Emergence of portable devices which propelled the growth of mix tapes which

contained different songs by different artists in different orders.

3. Once the music went to cloud, these mix tapes began to be shared among users

and listened to, hence becoming the primary mode for listening to music.

7

2.3 Aspects of a Good Playlist

As mentioned in section 2.2, the two main components that make up a playlist

are song content (genre information) and order information. However, According to

De Mooij and Verhaegh (1997), there are several other implicit factors contribute

towards making of a good playlist:

1. Songs in the playlist: The songs comprising the playlist are the primary

components of a playlist as they shape the impact in terms of mood, emotion

etc.

2. Listeners preference for the songs: Since music is something that is very

subjective, often the impact of a particular piece of music is decided by the

listener’s preferences. For instance, some people prefer listening to sad music

when they are sad, while others prefer listening to angry music to cope with

their sadness.

3. Listeners familiarity with the songs; People feel more comfortable listening

to music with which they familiar as compared to completely unknown music.

Songs of unfamiliar type/genre tend to throw off the listeners, hence worsening

the listening experience.

4. Artist / Song variety: Variety is another strong factor in deciding the quality

of a playlist. A good playlist should have a good balance of homogeneity of songs

and variety in sense that a good playlist seldom has all the songs of exactly the

same type.

5. Order of songs: The order of songs in a playlist play a huge role in shaping the

listening experience. The order of songs in a playlist shape how our emotions

change over time by listening to music.

8

6. Song Transitions: Song Transition is defined as the flow between song to

another. Often songs which align in their starting points and ending points

tend to create much more flowing experience than songs put together which so

not complement each other.

7. Serendipity: Serendipity means applying shuffle mode to the playlist to have

a unique experience. Whilst in theory it might not sound like the best idea, in

real life, shuffle is a very popular feature of a playlist as it provides listener with

a new perspective an experience by reordering the songs each time the playlist

is listened to.

8. Context: Lastly, the context of a playlist is very important as it defines the

purpose of a playlist. Spotify has over 2 billion playlists created for different

contexts such as roadtrip, study, meditation etc. Having a context for a playlist

makes it easy for the listener to select the right playlist for the right moment.

2.4 Why Is It Important?

As mentioned in Chapter 1, in this day and age of on-demand music, users have

grown accustomed to, a) immediate attainment of their music demands, and b) an

extended experience. Playlists play a significant part in redefining the music experi-

ence:

1. Playlists formalize the music listening experience process. They represent a very

important component in the music listening experience which can be tweaked,

modified and experimented with in an attempt to the music experience better.

2. Playlists handle the need for an extended experience, which is achieved by

sustaining the mood of the songs in a playlist. For e.g. Spotify has over two

9

billion playlists (ref: spotify.com (2018a)) created for every kind of mood (sad,

happy, angry, calm, etc.), activity (running, workout, studying, etc.), and genre

(blues, rock, pop, etc.).

3. Playlists also enable discovery of new artists and songs. Owing to the decline of

albums as the primary mode of listening experience, playlists have gained huge

significance in discovery of new artists and songs.

10

Chapter 3

PLAYLIST REPRESENTATION: LITERATURE SURVEY

3.1 Overview

With regards to this work, natural language processing and music have impor-

tant similarities. Both have sequential structure in their constituent parts - words

in a sentence are akin to audio segments in a song or songs in a playlist. Both have

semantic relationships between the elements of the sequence. This chapter focuses

on highlighting the related work with regards to playlist representation, and natural

language processing for sentence representation.

Owing to the aforementioned similarities, there have been many works in the

literature which employ techniques from the field of natural language processing by

translating the problem at hand to an already solved-problem in natural language

processing, like McFee and Lanckriet (2011), which uses this analogy for evaluating

automatically generated playlists. The playlists generation algorithms in this work are

evaluated based on how likely it is to produce naturally occurring playlists, meaning

the candidate algorithms are assumed to follow Markov property:

P [(x0, x1, . . . , xk)] =P [X = x0]
k∏

i=1

P [Xt+1 = xi|Xt = xi−1] (3.1)

The best performing algorithms would have the maximum log likelihood of the

songs occurring proposed by the algorithm to occur in the playlist.

11

3.2 Embedding Based Approaches

3.2.1 LDA Based Models

Embedding models are often used alongside the aforementioned approach in

Music Information Retrieval (MIR) to project the data onto a compact space. In-

troduced by Blei et al. (2003), Latent Dirichlet Allocation (LDA) ”is a three-level

hierarchical Bayesian model, in which each item of a collection is modeled as a finite

mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite

mixture over an underlying set of topic probabilities”. Zheleva et al. (2010) create a

statistical model for capturing user taste using (LDA) . This work attempts to create

a playlist for each user by selecting songs from the joint distribution of different media

clusters, i.e. a distribution of songs, with each cluster representing its own unique

taste.

3.2.2 Collaborative Filtering

Collaborative Filtering (CF) Herlocker et al. (1999) is a widely used method

for recommendation, where the aim it to predict the choice of item selection for a user

based on the of information about selection choices of all the users. This technique

is able to predict how well a user would like an item that he/she has not rated. A

subset of users is chosen based on their similarity to the active user and a weighted

aggregate of their ratings is used to generate prediction for the current user. An

example of collaborative filtering is shown in the table 3.1 One of its shortcomings is

lack of consideration for order of items in the list and that there is no way to adjust

the search results based on query.

12

Star wars Hoop Dreams Contact Titanic

Joe 5 2 5 4

John 2 5 4 3

Al 2 2 2

Nathan 3 1 5 ?

Table 3.1: Collaborative Filtering can be represented as the problem of predicting
missing values in a user-item matrix. This is an example of user-item rating matrix
where each fixed cell represents a user’s rating for an item. The prediction engine is
attempting to provide Nathan a prediction for the movie Titanic.

3.2.3 Neural Network Based Approaches

Similar to CF, there have been many neural network based works Chen et al.

(2016) Van den Oord et al. (2013) Lee et al. (2018) which project the corpus and

the user profiles to a low dimensionality vector and then recommend items based on

cosine similarity between the query and the corpus items. But this thesis focuses on

works which do not have users in the loop.

1. Volkovs et al. (2018) create a playlist embedding, albeit with a task-tailored

objective function for automatic playlist continuation. A concatenated song se-

quence is passed through multiple layers of gated linear unit (GLU) convolution

blocks to output the playlist embedding as shown in the figure 3.1

2. Yang et al. (2018) use a custom autoencoder with an aim to make it easier

to include multiple modalities in the input. The proposed model takes in the

playlist content and the artist information, randomly setting either of these two

off enforcing the model to learn both the marginals and joint information across

playlists and contents.

13

Figure 3.1: CNN model architecture for producing playlist embeddings as discussed
in Volkovs et al. (2018)

Figure 3.2: An architecture of the proposed model for Yang et al. (2018) consisting
of (1) the content-aware autoencoder Uusing both the playlist and the artist and (2)
the charCNN using the playlist title.

14

3.2.4 Other Non-neural Network Approaches

1. Ludewig et al. (2018) uses tf-idf Ramos et al. (2003) to create playlist embed-

dings.

2. Aalto (2015) uses eigenvectors from the playlist to create a representation and

further uses cosine similarity between the playlists to compare playlists. How-

ever, one of the major limitations of this approach is that it doesn’t take into

account the order of items in the playlist.

3.3 Neural Machine Translation

This section briefly looks at the work done with regards to neural machine trans-

lation since it applies this technique to this work. Cho et al. (2014) used an RNN

-based network to create fixed length representation of variable length source and tar-

get sequences. This work proved to be a breakthrough in the field of neural machine

translation as prior approaches were much more complicated, mostly rule-based, and

not end-to-end. Work done by Cho et al. (2014) meant that neural machine trans-

lation became end-to-end and owing to the fixed-representation size irrespective of

the input sequence size, the embeddings became a lot more easier to access and ma-

nipulate. However, basic RNN units were not good enough for capturing long-term

dependencies. Sutskever et al. (2014) improved on this by using LSTM units in-

stead of RNN, and using separate networks for encoder and decoder to increase the

model capacity. Further improvement was made on this in Bahdanau et al. (2014) by

enabling the model to translate even longer sequences by introduction of Attention

mechanism, which is a technique used by the decoder to make use of source sequence

in making the output prediction.

15

Figure 3.3: Overview of the Proposed Work Architecture

3.4 About Current Work

This thesis work differs from the previously mentioned works in sense that the

aim is to leverage the playlist embeddings and use those for discovering, visualizing,

and recommending existing playlists, hence making playlists as the focal point of the

work, and their discovery as the prime purpose.

In addition to that, this work also focuses on creating a framework of evaluation tasks

for the playlist embeddings, which being source agnostic, can be used to evaluate other

models in the future as well. Many such tasks exists for evaluating embeddings in

other domains such as natural language processing, but no such suite of tasks exists

for evaluating playlist embeddings. This work attempts to be the first to create such

a framework.

16

Chapter 4

SEQUENCE TO SEQUENCE LEARNING: BACKGROUND

4.1 Overview

The name sequence-sequence learning in its very core implies that the network is

trained to take in sequences and output sequences. So instead of predicting single

word, the network outputs the entire sentence, which could be a translation in a

foreign language, could be the next predicted sentence from the corpus, of the same

sentence if the network is trained as a autoencoder.

4.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a component of a neural network where

the current input xt along with the previous previous hidden state ht−1 outputs next

hidden state ht+1. RNNs are called recurrent neural networks because of the recurrent

nature of its operation in the sense that same operation is applied on every input of

a sequence. Because of their design and operational nature, RNNs work well for

sequential inputs such as text,speech etc. Figure 4.1 shows an unfolded RNN.

This unfolded network shown in Figure 4.1 can be used to predict the next word in

a sequence given current word. For instance, for an input sentence ”Sky is blue, grass

is —”, RNN can be used to predict the green. For predicting ”green”, the network is

unfolded into an n-layer network where n is the length of the sentence, with a layer

for each word. Some important points about 4.1 are:

1. U and V are the activation functions and W is a weight vector. U, V, and W

are same for all the layers.

17

Figure 4.1: Simple Recurrent Neural Network Diagram

2. xt is an input to the RNN at time t.

3. ht is a hidden state, At time step t, it is the memory state of the network. ht

is calculated based on the current input and the previous hidden state. The

formula to calculate ht is given by:

ht = f (xt ∗ U + W∗ht−1) (4.1)

4. f is a nonlinear function such as Rectified Linear unit (ReLU), tanh. ht−1 is

initialized to zero for the first hidden state.

5. At time t, the output state yt is:

yt = Softmax (V∗ht) (4.2)

One of the major limitations of using RNN is the insufficient learning of long

term dependencies with gradient descent, as first mentioned by Bengio et al. (1994).

Also known as the vanishing gradient problem, it occurs when the weight of the

neurons in the network becomes too small during the back-propagation and as a

18

result, the majority of the network stops training. RNN’s don’t seem to work well

with longer length sequences, failing to capture long term sequential dependencies in

the sequences. This considerably limits the application of RNN’s to real life sequential

problems.

4.2.1 Long Short Term Memory Unit

Long Short-Term Memory Networks, a special kind of RNNs, were introduced by

Hochreiter and Schmidhuber (1997) to solve the aforementioned problem of vanishing

gradient. LSTM architecture as shown in figure 4.2 consists of four main gates:

1. input gate (i)

2. forget gate (f)

3. output gate (o)

4. memory cell (c)

The newly introduced ”gating mechanism”, where each cell makes decisions about

what to store, read and write via gates that open or close. The information is passed

by the gates based on a set of weights. Equations 4.3 - 4.8 show the the operation of

LSTM:

Ft = σ (WFxt + UFht−1 + bF) (4.3)

It = σ (WIxl + UIht−1 + bI) (4.4)

Ot = σ (WOxt + Uoht−1 + bO) (4.5)

19

Figure 4.2: LSTM Diagram

ct = Ft � ct−1 + II � tanh (Wcxt + UchI−1 + bc) (4.6)

ht = Ot � tanh (ct) (4.7)

ot = f (Woht + bo) (4.8)

Where σ is a sigmoid function, xt is an input vector at time t, ht is a hidden state

vector at time t, W is an input to hidden weight matrix, U is a hidden to hidden

weight matrix, and bt is the bias term.

4.2.2 Gated Recurrent Unit

Gated Recurrent Unit, introduced by Chung et al. (2015), is a variant of LSTM .

GRU doesn’t have an output gate, hence it writes the contents from its memory cell

to the larger net at each time-step. Owing to its comparatively simpler structure,

GRU is considered to be faster to train as it it needs fewer computations to make

20

Figure 4.3: GRU Diagram

hidden state updates.

Equations 4.9 - 4.11 show the operations of a GRU unit:

Zt = σ (Wzxt + Uzht−1 + bz) (4.9)

Rt = σ (WRxt + URht−1 + bR) (4.10)

ht = Zt � ht−1 + (1− Zt)� tanh (Whxt + Uh (Rt � ht−1) + bh (4.11)

Where Zt is the update gate, Rt is the reset gate, ht is the activation function,

� is element wise multiplication, and σ is the sigmoid function. U and W are the

learned weight matrices.

4.2.3 Bidirectional RNN

A Bidirectional RNN (shown in figure 4.4) is another variant of RNN, introduced

to capture more information before making a prediction at each time step. For each

21

Figure 4.4: A simplified architecture of Bidirectional RNN

time step, input for all the time steps before the current time step and all the time

steps ahead of the current time step are taken into consideration. In other words, it

means stacking two RNNs together in which the input sequence is fed in normal time

order for one network, and in reverse time order for another. The outputs of the two

networks are concatenated at each time step.

4.3 Encoder-decoder Networks

In this section is described the RNN EncoderDecoder framework (shown in figure

4.5), proposed first in Cho et al. (2014) and later improved in Sutskever et al. (2014),

upon which the proposed model for this work is based. Given a sequence of input

vectors x = {x1, x2, x3...xT}, the encoder is an RNN that reads each symbol of the

input sequentially. After reading the end of the sequence (marked by an end-of-

sequence symbol), the the hidden state of the RNN is a summary c of the whole

input sequence. This c is called context vector.

The decoder of this network is another RNN which generates the output sequence

by predicting the next symbol yt given the hidden state ht. Both yt and ht are also

22

Figure 4.5: Overview diagram of encoder -decoder network. Image source: Cho
et al. (2014)

conditioned on yt1 and on the context vector c of the input sequence. The hidden

state of the decoder at time t is computed by:

h〈t〉 = f
(
h〈t−1〉, yt−1, c

)
(4.12)

and conditional distribution of the next output symbol is given by:

P (yt|yt−1, yt−2, . . . , y1, c) = g
(
h(t), yt−1, c

)
(4.13)

where f and g are activation functions. The encoder and the decoder of the

network are trained together to maximize the following conditional log likelihood:

max
θ

1

N

N∑
n=1

log pθ (yn|xn) (4.14)

23

where θ is the set of the network parameters and (xn, yn) is the (input sequence,

output sequence) pair from the training set.

4.3.1 Attention Mechanism

One of the significant limitations of network described in section 4.3 is that the

network is not able to capture long term dependencies for relatively longer sequences

Bengio et al. (1994), because the entire onus of capturing the whole meaning of the

input sequence lies on context vector c, which is unable to do so. This problem

is partially mitigated in Sutskever et al. (2014) by using LSTM Sundermeyer et al.

(2012) units instead of vanilla RNN units and feeding the input sequence in the

reversed order to solve for lack of long-term dependency capture.

Bahdanau et al. (2014) introduced the attention mechanism to solve this problem

which involved focusing on a specific portion of the input sequence when predicting

the output at a particular time step. The attention mechanism ensures the encoder

doesn’t have to encode all the information into a single context vector. In this setting,

the context vector c is calculated using weighted sum of hidden states hj:

ci =
Tx∑
j=1

αijhj (4.15)

where αij is calculated as follows:

αij =
exp (eij)∑Tx

k=1 exp (eik)
(4.16)

where eij = a (si−1, hj) and si-1 is the decoder state at time step i − 1 and hj is

the encoder state at time step j. a(.) is the alignment model which scores how well

the output at time step i aligns with the input at time step j. The alignment model

a is a shallow feed forward neural network which is trained along with the rest of the

24

Figure 4.6: Diagram showing the Attention module. Image source: Bahdanau et al.
(2014)

network.

25

Chapter 5

EMBEDDING MODELS USED IN THIS WORK

5.1 Introduction

There are broadly two ways in which a representation for a sentence can be derived

from its constituting components:

1. Just considering the content of the components and discarding the order in

which the components appear.

2. Taking into account the content, as well as the order of the components.

Deriving an embedding from just the components is much simpler to achieve in

terms of required procedural and computation complexity, and yet surprisingly good

results can be obtained from such methods as shown in Adi et al. (2016). Learning an

embedding by taking into account not just the content, but the order of the compo-

nents as well is computationally complex, but yields very good results in cases where

the sequence really matters as shown in Adi et al. (2016) and Conneau et al. (2018)

5.2 Models

For this work, both these types of models are compared with along with some of

their variations:

1. Bag of words Model (BOW): Bag of words is a simple, yet highly effective

technique of feature extraction in the fields of information retrieval and natural

26

language processing, and even computer vision as shown by Fei-Fei (2007). It

derives its simplicity by throwing away the information related to the sequence

of the sub-components and only making sense from the multiplicity of the com-

posing components. Due to these reasons, It is especially good at capturing the

basic characteristics of the entities which can be decomposed into smaller com-

ponents such as sentences, documents (composed of words), images (composed

of histograms) etc.

A BOW representation can be calculated using arithmetic mean of components

representations. For this work, given{p1, p2, . . . , pn} a collection of playlists with

each sentence being a collection of songs {s1, s2, . . . , sm}, sentence embedding is

calculated using a simple arithmetic mean of its constituent word embeddings.

The effectiveness of this approach coupled with the simplicity of computation

makes it a very competitive baseline for comparison.

2. Smooth Inverse Frequency Weighted Scheme based Model (SIF): This

technique uses a weighted averaging scheme to get the playlist embedding vec-

tors followed by their modification using singular-value decomposition (SVD).

Inspired by random walk model for describing corpus generation and the dis-

course vector for representing the current context of the text in Arora et al.

(2016), this work models improves on the aforementioned modeling by taking

into account:

(a) Some words can occur out of context.

(b) Some frequent words such as ”the”, ”etc” appear often regardless of the

current topic being discussed.

27

Based on these considerations, two modifications are made:

(a) An additive term αp(w) in the log-linear model is introduced, where p(w)

is the unigram probability of the word and α is a scalar.

(b) A common discourse vector c is introduced which serves as a correction

term for the most frequent discourse.

Concretely, given the discourse vector cs, the probability of a word w is emitted

in the sentences is modeled by:

Pr [w emitted in sentence s|cs] = αp(w) + (1− α)
exp (〈c̃s, vw〉)

Zc̃s

where c̃s = βc0 + (1− β)cs,c0 ⊥ cs

(5.1)

where α and β are scalar hyperparameters, and Zc̃s =
∑

w∈V exp (〈c̃s, vw〉)

The maximum likelihood estimator for cs is:

arg max
∑
w∈s

fw (c̃s) ∝
∑
w∈s

a

p(w) + a
vw, where a =

1− α
αZ

(5.2)

That is, the maximum likelihood estimator is approximately a weighted average

of the vectors of the words in the sentence.

To estimate cs, the direction of c0 is estimated by computing the first principal

component of cs’s set of sentences. In other words, the final sentence embedding

is obtained by subtracting the projection of cs’s to the first principal component.

This method of generating sentence embeddings proves to be a stronger baseline

compared to the traditional averaging.

3. NMT-based Models: This model is based on the the RNN-Encoder-Decoder

framework discussed in Section 4.1. Given a sequence of n words xt=1,...,n, an

28

RNN-encoder generates hidden states ht=1,...,n. The attention mechanism takes

in these hidden states along with the decoder states and outputs context vectors

ct=1,...,n, which are then fed to the decoder to predict the output yt=1,...,n.

(a) Base Unidirectional Encoder: This is considered as the base NMT

model for this work. For this model, a unidirectional RNN, and global

attention model Luong et al. (2015) is used where score
(
ht, hs

)
= hTt Wahs.

Figure 5.1: Google NMT Encoder

(b) Google NMT Encoder: This model was introduced in Wu et al. (2016).

The first layer of encoder in this model is bidirectional, while the rest of

the layers are unidirectional. This model also uses residual connections

introduced by Szegedy et al. (2017) to improve the gradient flow in the

network, and the attention model used is the one mentioned in Luong

et al. (2015).

Residual Connections Training very deep networks is susceptible to

29

running in problems such as vanishing and exploding gradients as shown

in Pascanu et al. (2012) and Hochreiter et al. (2001). A way to mitigate the

this issue is residual connections, which are simply connections between a

layer and layers after the next. Residual connections improve the gradient

flow in the backward pass, which allows very deep encoder and decoder

network to be trained effectively.

Figure 5.2: Image showing a comparison of simple stacked connections (on the left)
with Residual connections (on the right). Image source : Wu et al. (2016)

Let LSTMi and LSTMi+1 be the ith and (i+ 1)th layer, whose parameters

are Wi and Wi+1 respectively. At the tth time step, for the stacked LSTM

with residual connections:

ci
t,m

i
t = LSTMi

(
ci
t−1,m

i
t−1,x

i−1
t ; Wi

)
xi
t = mi

t + xi−1
t

ci+1
t ,mi+1

t = LSTMi+1

(
ci+1
t−1,m

i+1
t−1,x

i
t; W

i+1
) (5.3)

where xit is the input to LSTMi at time step t, and mi
t and cit are the

hidden states and memory states of LSTMi at time step t, respectively.

(c) Deep Bidirectional RNN Encoder: For bidirectional encoder, hidden

state ht where t ∈ {1, ..n} is the concatenation of a forward RNN and

a backward RNN that read the sequences in two opposite directions. Its

30

Figure 5.3: DBRNN Encoder

called a deep bidirectional encoder when multiple layers of bidirectional

layers are stacked together, making it a deep network.

5.3 Training Tasks: Problem Statement Formulation

For the current work, a Neural Machine Translation System (a sequence to se-

quence network with attention module) is trained as an autoencoder where the target

sequence is the same as the source sequence, and the goal of the model is to recon-

struct the input sequence. The corpus for the current work consists of playlists with

each playlist consisting of song ids. The context vector c would then represent the

playlist embedding generated by the encoder.

31

Chapter 6

EVALUATION: TASKS AND METRICS

6.1 Evaluation Tasks

The defining characteristics of any playlist are type, length and order. Type

signifying the genre information of the playlist, length, the number of songs in the

playlist and order capturing implicit characteristics of how the songs are ordered in the

playlist. Hence, a good playlist embedding should encode information about the genre

of the songs it contains, the order of songs, length of playlist and songs themselves.

The experiments for this work are divided into four parts; the first part examines the

effectiveness of the embeddings learned in encoding the genre information of the songs

constituting the playlist. The second part examines the quality of the playlist length

information encoded in the learned embedding. The third part deals with evaluating

the extent of the song information encoded in the learned embedding, and the fourth

part deals with evaluating the songs-order information.

6.1.1 Genre Related Tasks

6.1.1.1 Genre Prediction (Multi-Class Prediction)

This task (GPred) measures to what extent a playlist embedding encodes the

genre-related information of the songs it contains. Given a playlist embedding, the

goal of the classifier is to predict the correct genre for the playlist. The task is

formulated as multi-class classification, with nine output classes. The ground truth

labels (genres) are assigned to only those playlists for which all of the songs having

32

a genre1 and more than 70% of the songs agree on the genre, which results in 35527

playlists for evaluation. Training samples are weighted-by-class as the dataset is

skewed with the majority class (electronic) having 18138 samples while the minority

class (classical) just having 75 samples.

6.1.1.2 Genre Diversity Prediction

This task (GDPred) measures the extent to which the playlist embedding cap-

tures the sense of the homogeneity/diversity of the songs (with regards to their genre)

constituting it. Given a playlist embedding, the goal of the classifier is to predict the

number of genres spanned by the songs in that playlist. The task is also formulated

as multi-class classification, with 3 output classes being low diversity (0-3 genres),

medium diversity (3-6 genres) and high diversity (6-9 genres).

6.1.1.3 Genre Switch Prediction

A genre switch is defined here as change in genre going from one song to another.

A homogeneous playlist would have fewer number of such genre shifts than a more

diverse playlist. The aim of this task (GSPred) is to predict the number of all

the genres switches given a playlist embedding. For this task, the absolute number

of switches for a playlist is normalized by dividing it by the length of the playlist

such that the final label lies between 0 and 1. The task is then formulated as multi-

class classification, with the five output classes being low switch playlist (0-0.34),

mid-switch playlist (0.34-0.67) and high-switch playlist (0.76-1.00)

1Only those songs are assigned genres for which song embeddings are available

33

6.1.2 Playlist Length Prediction Task

This task (PLen) measures to what extent the playlist embedding encodes its

length. Given a playlist embedding, the goal of the classifier is to predict the length

(number of songs) in the original playlist. Following Adi et al. (2016), the task is

formulated as multi-class classification, with ten output classes (spanning the range

[30-250]) corresponding to equal binned lengths of size 20. Training samples are

class-weighted as the dataset is unbalanced, with a majority class (lengths 30-50

songs) having 78015 samples and the minority class (230-250 songs) having just 1098

samples.

6.1.3 Song Content Task

The song content (SC) closely follows the Word Content (WC) task described by

Conneau et al. (2018) in testing whether it is possible to recover information about

the original words in the sentence from its embedding. 750 mid-frequency songs (the

middle 750 songs in a list of songs sorted by their occurrence count) are picked from

the corpus vocabulary, and sample equal numbers of playlists that contain one and

only one of these songs. The experiment is formulated as a 750-way classification

problem where the aim of the classifier is to predict which of the 750 songs does a

playlist contain, given the playlist embedding.

6.1.4 Sentence Semantic Measurement Task

The sentence semantic measurement task is an effective sentence embedding eval-

uation task. The goal of this task is to evaluate the embeddings based on how well

they capture the semantic meaning of the sentence, and if the relationship between

two sentences, given just their embeddings, can be inferred or not. The way this

34

task is set up is given two sentences, the goal is to classify whether the pair have a

entailment, contradictory or paraphrase relationship. For the current work, this task

is set up by creating a dataset of playlists sampled from the dataset. The paired

playlists are chosen in the following manner:

1. A shuffled portion of the songs of the original playlist as the entailment playlist.

2. A completely different playlist with non overlapping songs as the contradictory

playlist

6.1.5 Song Order Tasks

6.1.5.1 Bigram Shift Task

Text sentences are governed by language grammatical rules. These rules govern

the existence of certain bi-grams in the language (e.g. will do, will go) as well as the

lack of existence of others (eg. try will). In the field of natural language processing,

the Bigram Shift (BShift) experiment, introduced in Adi et al. (2016), is a very good

way to measure the extent to which word-order information is encoded in the sentence

embeddings. This evaluation task is formulated as a binary classification problem,

where the aim of the classifier is to distinguish between original sentences from the

corpus and sentences where two adjacent words have been inverted. And even the

simplistic BOW models are able to perform well on this task. Adi et al. (2016).

However, playlists do not have apparent grammatical rules that govern the order of

songs. One of the most commonly used features on music platforms, Shuffle validates

this claim. Hence, the Bigram shift experiment should not work for music playlists

the way it works for sentences, as inverting a few songs does not make the playlist

embedding very much different from the original playlist embedding. To validate the

hypothesis that inverting two songs in a playlist cannot be compared to inverting two

35

words in sentence, bigram-shift experiment is set up.

For the bigram-shift experiment, a dataset with playlists where each playlist has a

corresponding pair having adjacent songs reversed, is created. To create the dataset

for this experiment, 55265 playlists are selected whose length lie in the range [50-100].

For each of these playlists, an additional playlist is created with two adjacent songs

inverted. This results in a balanced dataset of size 110530.

6.1.5.2 Permute Classification Task

Through this task, this work aims to answer the questions: Can the proposed

embedding models capture song order, and if they can, to what extent? This task

is split into two sub tasks: i) Shuffle Task, and ii) Reversal task. To create the

dataset for this experiment, a list of 38168 playlists is selected whose lengths lie in

the range [50-100]. In the Shuffle task, for each playlist in this task-specific dataset,

a fraction of all the songs in that playlist is randomly shuffled. The playlists are

shuffled in two ways: a) by selecting a random block in the playlist and shuffling just

that block (shuffle type-1), and b) Randomly selecting songs from the playlist and

shuffling them (shuffle type-2). A binary classifier is trained where the aim of the

classifier is to distinguish between an original and a permuted playlist. The Reversal

task is similar to the Shuffle task except that the randomly selected sub-sequence of

songs are reversed instead of shuffled. Both these tasks are further extended with a

slight modification that from the original dataset, playlists which are inverted are not

included in the dataset and vice-versa.

36

Chapter 7

EXPERIMENTAL SETUP

In this chapter, experimental setup details for this work are specified, starting

from dataset creation, filtering, and data annotation. This is followed by the training

details where the training setup and model configurations used in the experiments

for this work are explained.

7.1 Data

7.1.1 Data Source

The dataset for this work has been assembled by downloading publicly available

playlists from Spotify using the Spotify developer API spotify.com (2018b). 1 million

playlists were downloaded from Spotify, consisting of both user-created playlists as

well as Spotify-curated ones. The user created playlists are the ones created by Spotify

users, whereas the Spotify curated playlists are the ones created by music editors at

Spotify to create the best possible public playlists based on the listening preferences

of the users. The Spotify curated playlists are famously known for their accurate

contextual mapping, where the context is usually a genre (Blues, EDM, Rock etc.),

activity (car rides, workouts etc) and moods (peaceful, high energy etc). To create the

dataset, list of 2680 genres was extracted from everynoise.com (2012) as the search

terms for getting 104935 playlists from Spotify. Data download workflow is shown in

the figure 7.1 and data details are mentioned the Table 7.1.

37

Figure 7.1: Data Download Workflow

Downloaded playlists details

Playlists Artists Albums Songs

1054935 1290663 2918452 13282009

Table 7.1: Downloaded Spotify Data Details

38

Figure 7.2: Zipf plot for the corpus. Log scale used for frequency and rank

7.1.2 Data Statistics

7.1.2.1 Zipf’s Law

According to Wikipedia, Zipf’s law states that given a large sample of words, the

frequency of any word is inversely proportional to its rank in the frequency table.

Zipf plot of the corpus is shown in Figure 7.2

7.1.2.2 Playlists Length Statistics

More than half of the playlists (401880) are of length less than 50 and another

246427 (33%) of the playlists have lengths in the range [50-150]. Statistics related to

the length of the playlists are given in Table 7.2

39

Playlist Corpus Length statistics

Mean Std Median Min. Max.

83.3 133 45 10 5000

Table 7.2: Corpus Length Statistics

7.1.2.3 Genre Homogeneity/Diversity Statistics

Out of 745543 playlists, 49164 playlists have all of their songs genre annotated.

Out of 49164 playlists, 24422 (49%) playlists have less than or equal to 3 genres

in total across all of their songs, 23162 (47%) playlists have less than of equal to 6

genres in total, and 1580 (3%) playlists have more than 6 genres.

7.1.3 Data Filtering

As a part of cleaning up the data before training, following De Boom et al. (2018),

the less frequent and less relevant items from the dataset are discarded. The reason

this step is important is because the majority of the playlists (1054200) in the corpus

are user-created playlists, which are susceptible to being extremely noisy in terms

of the characteristics such as playlist-length, homogeneity etc in the absence of any

constraints put on the playlist creation for users. [rare words removal reason]. Having

discussed the reasons for data filtering for this work, here are steps taken to filter the

data:

1. Tracks occurring in less than 3 playlists are discarded.

2. Playlists with the less than 30% of tracks left after this are also removed.

3. All duplicate tracks from playlists are removed.

4. Finally, only playlists with lengths in the range [10-5000] are retained and the

rest are discarded.

40

This leaves a total of 745543 playlists and 2470756 unique tracks.

7.2 Data Labeling: Genre Assignment

The songs in the dataset downloaded from Spotify do not have genre labels. There-

fore, a word-2-vec model is trained on the corpus with playlist lengths restricted to

a range [30-3000] and the minimum frequency threshold of the songs set to a value

of 5. The resulting song embeddings are then clustered into 2001 clusters, and each

cluster is manually assigned one of the 9 genres:

1. Rock

2. Metal

3. Blues

4. Country

5. Classical

6. Electronic

7. Hip Hop

8. Reggae

9. Latin

To validate this approach, a classifier is trained on the annotated dataset consisting

of the manually annotated song embeddings.The network used for evaluation is a 3

1This number was chosen with an aim to get maximum feasible localized clusters (and hence not

missing less popular genres among bigger clusters) while keeping the number within a limit which

was feasible for annotating the data.

41

Figure 7.3: t-SNE plot for genre-annotated songs for embedding size 300, with 1000
sampled songs for each genre

layer neural network with input dimension of 300 and output dimension of 9 (which

is equal to the number of genres). An accuracy of 94% is achieved on the test set. A

t-SNE plot of the annotated songs is generated as well to further validate proposed

approach as shown in Figure 7.3.

7.2.1 Word-2-vec: Set up and Training

A word2vec model is trained on the corpus to get the song embeddings, using the

Gensim (Řeh̊uřek and Sojka (2010)) Implementation. Skipgram (McCormick (2016))

algorithm with negative sampling value set to 5 and window size of 5 is used for the

algorithm configuration. Minimum threshold for the occurrence of words is set to 5.

The word vectors are trained for sizes k ∈ {300, 500, 750, 1000}.

7.3 Training

1. BOW Model: Embeddings are calculated for only those playlists for which

embeddings for all constituent songs are available. This leaves a total of 339998

playlists.

42

2. SIF Model: For the base configuration of the model, the value of the SIF

parameter a is set to e−3 where the weight given to each word in the corpus is

a/(a + p(w)) and a is the controlled parameter. Different values for a ranging

from e−3 and e−5 are experimented with.

3. NMT-based Models: All of the NMT encoders use 3 layer network with an

hidden state size is controlled for and k ∈ {500, 750, 1000} . LSTM and GRU

units were experimented with and the hidden state size was varied from 500

to 1000. Adam and SGD are experimented with 2 optimizers. The maximum

gradient norm is to 1 to prevent exploding gradients.

2SGD performed generally worse than Adam, hence the details for SGD are not included

43

Chapter 8

EVALUATION RESULTS

In this section, a detailed description of the experimental results along with their

analysis and insights is provided. For each of the discussed tests genre, length, and

content the performance of different embedding models across multiple embedding

lengths is investigated. 1The results for the evaluation tasks are presented in the table

8.1.

1Experiment details for investigating the order-related properties captured by the embeddings

are discussed in the Chapter ??

Figure 8.1: Evaluation task results with respect to the encoder hidden state size.
Missing bars are for cases where it was not possible to train an embedding of that
size due to memory constraints.

44

Evaluation Tasks

GPred GDPred GSPred PLen SC

BOW Model 96.8 79 82.5 34 39.6

SIF Model 97.5 80.05 84 33.4 44.3

NMT Model 76.6 75.8 80.8 70.7 15.3

GNMT Model 80.1 74.5 80.9 63.5 18.5

DBRNN Model 84.9 76.2 82.3 71.9 21.7

Table 8.1: Evaluation Task Results for the Embedding Models

8.1 Genre Related Tasks

8.1.1 Genre Prediction Task

For the GPred task, BoW models outperform the NMT-based models. This

can be attributed to the reasoning that the playlist vector created by averaging the

constituent songs is embedded in the space of the songs as their centroid. Since the

genre of the playlist is the genre of its songs, the BOW outperforms the NMT at genre

prediction. For the NMT-based models, the performance appears to improve with

increasing RNN hidden state size in the encoder, as larger embedding sizes generally

have more space to encode sequence information.

8.1.2 Genre Diversity Task

In the GDPred task as well BOW-based models perform better than the NMT-

based models perform the best with the base SIF model achieving 80% accuracy while

NMT-based models achieve an accuracy of 73%-75%.

45

8.1.3 Genre Switch Prediction Task

For the GSPred task, all models surprisingly perform quite well with an average

accuracy of 80% achieved. However, even if by a comparatively smaller margin, the

BoW models perform outperform the NMT-based models. Both the BoW model and

the SIF model achieve an accuracy of 82.5% and 84% respectively, while the NMT

models have an accuracy of 80% with the only exception of DBRNN model getting

82.3% accuracy.

Overall, for all the genre-based experiments, BoW models perform better than

the NMT models.

8.2 Length Prediction Task

For the PLen task, the NMT-based models perform quite well, achieving 72%

accuracy while the BoW models perform quite poorly managing just 35% accuracy.

The performance of the NMT-based models doesn’t come as any surprise as it has

been widely studied that sequence to sequence based models are able to capture such

characteristics of the sentences. Poor performance of the BoW models however is

indeed surprising as BoW models have been shown to perform comparatively better

on this task Adi et al. (2016) Conneau et al. (2018).

8.3 Song Content Task

For the SC task, the NMT Models performed poorly compared to the BoW mod-

els. However, the obtained results closely match the results for the unsupervised

models for the same task in Conneau et al. (2018). The authors cite the inability of

the model to capture the content-based information due to the complexity of the way

46

the information is encoded by the model.

8.4 Sentence Semantic Measurement Task

For the Sentence Semantic Measurement Task 2, all the models were very easily

able to correctly tag the paired playlists, resulting in 99% accuracy. One of the

reasons this experiment didn’t work in the way it was set up was that since the

entailed playlists are always going to be shorter in length than the original playlists,

the model could just focus on the length for making the prediction while completely

ignoring the content of the playlists. This experiment especially points towards the

lack of supervised datasets in music.

8.5 Song Order Tasks

8.5.1 Bigram Shift Task

A binary classifier is trained over the set of playlists with an accuracy of 49% for

all the embedding models, meaning the classifier is unable to distinguish the original

playlist from bigram-inverted ones for all the encoders. Hence, the results for the

current task show that another experiment is needed to assess the effectiveness of the

embedding models in capturing the song-order in the playlist.

8.5.2 Permute Classification Task

As seen in Figure 8.2, the base NMT-based model is able to distinguish correctly

the permuted playlists from the original playlists as the proportion of the permuta-

tion is increased. Even for the extension of the tasks where complementary playlist

pairs are not added to the dataset, the classifier can still distinguish between the

2results not included in the results table

47

Figure 8.2: Classification accuracy vs permute proportion for the Permute-shuffle
task

original and the permuted playlists. On the other hand, BoW models cannot distin-

guish between the original and permuted playlists, making seq2seq models better for

capturing the song-order in the playlist.

48

Chapter 9

CONCLUSION AND FUTURE WORK

This work presents a sequence-to-sequence based approach for learning playlist

embeddings, which can be used for tasks such as playlist discovery, comparison and

recommendation. First the problem of learning a playlist-embedding is defined and

followed by how it can be formulated as a seq2seq-based problem. The proposed

model is then compared with two BoW models on a number of tasks chosen from

the field of natural language processing (like sentence length prediction, bi-gram shift

experiment etc) as well as music (genre prediction and genre-diversity prediction).

This work shows that the proposed approach is effective in capturing the semantic

properties of playlists.

This approach can also be extended in two directions:

1. Learning better playlist representations: The proposed technique can be

used to learn even better playlist-representations by integrating additional song-

embedding models such as spectrogram-based models such as Lee et al. (2009).

This would mean combining a) co-occurrence of songs in a playlist, and b)

absolute content analysis of songs using a neural network, to learn even better

playlist embeddings.

2. Creating new playlists: The proposed approach can also be leveraged for gen-

erating new playlists by using variational models approach as shown in Zhang

et al. (2016) for generation of new sentences.

49

BIBLIOGRAPHY

Aalto, E., “Learning playlist representations for automatic playlist generation”,
(2015).

Adi, Y., E. Kermany, Y. Belinkov, O. Lavi and Y. Goldberg, “Fine-grained anal-
ysis of sentence embeddings using auxiliary prediction tasks”, arXiv preprint
arXiv:1608.04207 (2016).

Andric, A. and G. Haus, “Automatic playlist generation based on tracking users
listening habits”, Multimedia Tools and Applications 29, 2, 127–151 (2006).

Arora, S., Y. Li, Y. Liang, T. Ma and A. Risteski, “A latent variable model approach
to pmi-based word embeddings”, Transactions of the Association for Computational
Linguistics 4, 385–399 (2016).

Bahdanau, D., K. Cho and Y. Bengio, “Neural machine translation by jointly learning
to align and translate”, arXiv preprint arXiv:1409.0473 (2014).

Bengio, Y., P. Simard, P. Frasconi et al., “Learning long-term dependencies with
gradient descent is difficult”, IEEE transactions on neural networks 5, 2, 157–166
(1994).

Blei, D. M., A. Y. Ng and M. I. Jordan, “Latent dirichlet allocation”, Journal of
machine Learning research 3, Jan, 993–1022 (2003).

Bowman, S. R., G. Angeli, C. Potts and C. D. Manning, “A large annotated corpus
for learning natural language inference”, arXiv preprint arXiv:1508.05326 (2015a).

Bowman, S. R., L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz and S. Bengio,
“Generating sentences from a continuous space”, arXiv preprint arXiv:1511.06349
(2015b).

Chen, C.-M., M.-F. Tsai, Y.-C. Lin and Y.-H. Yang, “Query-based music recommen-
dations via preference embedding”, in “Proceedings of the 10th ACM Conference
on Recommender Systems”, pp. 79–82 (ACM, 2016).

Chen, C.-W., P. Lamere, M. Schedl and H. Zamani, “Recsys challenge 2018: Auto-
matic music playlist continuation”, in “Proceedings of the 12th ACM Conference
on Recommender Systems”, pp. 527–528 (ACM, 2018).

Chen, S., J. L. Moore, D. Turnbull and T. Joachims, “Playlist prediction via metric
embedding”, in “Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining”, pp. 714–722 (ACM, 2012).

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation”, arXiv preprint arXiv:1406.1078 (2014).

50

Choi, K., G. Fazekas and M. Sandler, “Towards playlist generation algorithms using
rnns trained on within-track transitions”, arXiv preprint arXiv:1606.02096 (2016).

Chung, J., C. Gulcehre, K. Cho and Y. Bengio, “Gated feedback recurrent neural net-
works”, in “International Conference on Machine Learning”, pp. 2067–2075 (2015).

Conneau, A., G. Kruszewski, G. Lample, L. Barrault and M. Baroni, “What you can
cram into a single vector: Probing sentence embeddings for linguistic properties”,
arXiv preprint arXiv:1805.01070 (2018).

De Boom, C., R. Agrawal, S. Hansen, E. Kumar, R. Yon, C.-W. Chen, T. Demeester
and B. Dhoedt, “Large-scale user modeling with recurrent neural networks for
music discovery on multiple time scales”, Multimedia Tools and Applications pp.
1–23 (2018).

De Mooij, A. and W. Verhaegh, “Learning preferences for music playlists”, Artificial
Intelligence 97, 1-2, 245–271 (1997).

Dolan, B., C. Quirk and C. Brockett, “Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources”, in “Proceedings of the 20th
international conference on Computational Linguistics”, p. 350 (Association for
Computational Linguistics, 2004).

everynoise.com, “Everynoise.com”, URL https://www.everynoise.com/ (2012).

Fei-Fei, L., “Recognizing and learning object categories”, CVPR Short Course, 2007
(2007).

Fields, B. and P. Lamere, “Finding a path through the juke box: The playlist tu-
torial”, in “11th International Society for Music Information Retrieval Conference
(ISMIR)”, (Citeseer, 2010).

Herlocker, J. L., J. A. Konstan, A. Borchers and J. Riedl, “An algorithmic framework
for performing collaborative filtering”, in “22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 1999”,
pp. 230–237 (Association for Computing Machinery, Inc, 1999).

Hochreiter, S., Y. Bengio, P. Frasconi, J. Schmidhuber et al., “Gradient flow in re-
current nets: the difficulty of learning long-term dependencies”, (2001).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computation
9, 8, 1735–1780 (1997).

Lee, H., P. Pham, Y. Largman and A. Y. Ng, “Unsupervised feature learning for audio
classification using convolutional deep belief networks”, in “Advances in neural
information processing systems”, pp. 1096–1104 (2009).

Lee, J., K. Lee, J. Park, J. Park and J. Nam, “Deep content-user embedding model
for music recommendation”, arXiv preprint arXiv:1807.06786 (2018).

51

https://www.everynoise.com/

Liebman, E., M. Saar-Tsechansky and P. Stone, “Dj-mc: A reinforcement-learning
agent for music playlist recommendation”, in “Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems”, pp. 591–599
(International Foundation for Autonomous Agents and Multiagent Systems, 2015).

Lillie, A. S., MusicBox: Navigating the space of your music, Ph.D. thesis, Mas-
sachusetts Institute of Technology (2008).

Logan, B., “Content-based playlist generation: Exploratory experiments.”, in “IS-
MIR”, (2002).

Ludewig, M., I. Kamehkhosh, N. Landia and D. Jannach, “Effective nearest-neighbor
music recommendations”, in “Proceedings of the ACM Recommender Systems
Challenge 2018”, p. 3 (ACM, 2018).

Luong, M.-T., H. Pham and C. D. Manning, “Effective approaches to attention-based
neural machine translation”, arXiv preprint arXiv:1508.04025 (2015).

Marelli, M., L. Bentivogli, M. Baroni, R. Bernardi, S. Menini and R. Zamparelli,
“Semeval-2014 task 1: Evaluation of compositional distributional semantic models
on full sentences through semantic relatedness and textual entailment”, in “Pro-
ceedings of the 8th international workshop on semantic evaluation (SemEval 2014)”,
pp. 1–8 (2014).

McCormick, C., “Word2vec tutorial-the skip-gram model”, (2016).

McFee, B. and G. R. Lanckriet, “The natural language of playlists.”, in “ISMIR”,
vol. 11, pp. 537–541 (2011).

Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient estimation of word repre-
sentations in vector space”, arXiv preprint arXiv:1301.3781 (2013).

Pascanu, R., T. Mikolov and Y. Bengio, “Understanding the exploding gradient prob-
lem”, CoRR, abs/1211.5063 2 (2012).

Ramos, J. et al., “Using tf-idf to determine word relevance in document queries”, in
“Proceedings of the first instructional conference on machine learning”, vol. 242,
pp. 133–142 (2003).

Řeh̊uřek, R. and P. Sojka, “Software Framework for Topic Modelling with Large
Corpora”, in “Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks”, pp. 45–50 (ELRA, Valletta, Malta, 2010), http://is.muni.
cz/publication/884893/en.

Schedl, M., H. Zamani, C.-W. Chen, Y. Deldjoo and M. Elahi, “Recsys challenge
2018: Automatic playlist continuation”, in “Late-Breaking/Demos Proc. 18th Int.
Soc. Music Information Retrieval Conf.”, (2017).

spotify.com, “Million playlist dataset”, URL https://labs.spotify.com/2018/05/
30/introducing-the-million-playlist-dataset-and-recsys-challenge-2018/
(2018a).

52

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://labs.spotify.com/2018/05/30/introducing-the-million-playlist-dataset-and-recsys-challenge-2018/
https://labs.spotify.com/2018/05/30/introducing-the-million-playlist-dataset-and-recsys-challenge-2018/

spotify.com, “Spotify developer api”, URL https://developer.spotify.com/
(2018b).

Sundermeyer, M., R. Schlüter and H. Ney, “Lstm neural networks for language mod-
eling”, in “Thirteenth annual conference of the international speech communication
association”, (2012).

Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to sequence learning with neural
networks”, in “Advances in neural information processing systems”, pp. 3104–3112
(2014).

Szegedy, C., S. Ioffe, V. Vanhoucke and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning”, in “Thirty-First AAAI Con-
ference on Artificial Intelligence”, (2017).

Van den Oord, A., S. Dieleman and B. Schrauwen, “Deep content-based music rec-
ommendation”, in “Advances in neural information processing systems”, pp. 2643–
2651 (2013).

Volkovs, M., H. Rai, Z. Cheng, G. Wu, Y. Lu and S. Sanner, “Two-stage model for au-
tomatic playlist continuation at scale”, in “Proceedings of the ACM Recommender
Systems Challenge 2018”, p. 9 (ACM, 2018).

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation”, arXiv preprint
arXiv:1609.08144 (2016).

Yang, H., Y. Jeong, M. Choi and J. Lee, “Mmcf: Multimodal collaborative filtering
for automatic playlist continuation”, in “Proceedings of the ACM Recommender
Systems Challenge 2018”, p. 11 (ACM, 2018).

Zhang, B., D. Xiong, J. Su, H. Duan and M. Zhang, “Variational neural machine
translation”, arXiv preprint arXiv:1605.07869 (2016).

Zheleva, E., J. Guiver, E. Mendes Rodrigues and N. Milić-Frayling, “Statistical mod-
els of music-listening sessions in social media”, in “Proceedings of the 19th inter-
national conference on World wide web”, pp. 1019–1028 (ACM, 2010).

53

https://developer.spotify.com/

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Goals and Motivations
	Why Playlist Embeddings?
	Why Unsupervised Learning?

	Contributions
	Thesis Outline

	PLAYLISTS: OVERVIEW
	Overview
	What Is a Playlist?
	Aspects of a Good Playlist
	Why Is It Important?

	PLAYLIST REPRESENTATION: LITERATURE SURVEY
	Overview
	Embedding Based Approaches
	LDA Based Models
	Collaborative Filtering
	Neural Network Based Approaches
	Other Non-neural Network Approaches

	Neural Machine Translation
	About Current Work

	SEQUENCE TO SEQUENCE LEARNING: BACKGROUND
	Overview
	Recurrent Neural Networks
	Long Short Term Memory Unit
	Gated Recurrent Unit
	Bidirectional RNN

	Encoder-decoder Networks
	Attention Mechanism

	EMBEDDING MODELS USED IN THIS WORK
	Introduction
	Models
	Training Tasks: Problem Statement Formulation

	EVALUATION: TASKS AND METRICS
	Evaluation Tasks
	Genre Related Tasks
	Playlist Length Prediction Task
	Song Content Task
	Sentence Semantic Measurement Task
	Song Order Tasks

	EXPERIMENTAL SETUP
	Data
	Data Source
	Data Statistics
	Data Filtering

	Data Labeling: Genre Assignment
	Word-2-vec: Set up and Training

	Training

	EVALUATION RESULTS
	Genre Related Tasks
	Genre Prediction Task
	Genre Diversity Task
	Genre Switch Prediction Task

	Length Prediction Task
	Song Content Task
	Sentence Semantic Measurement Task
	Song Order Tasks
	Bigram Shift Task
	Permute Classification Task

	CONCLUSION AND FUTURE WORK

	BIBLIOGRAPHY

