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ABSTRACT    

In this thesis, the synergy between millimeter-wave (mmWave) imaging and 

wireless communications is used to achieve high accuracy user localization and mapping 

(SLAM) mobile users in an uncharted environment. Such capability is enabled by taking 

advantage of the high-resolution image of both line-of-sight (LoS) and non-line-of-sight 

(NLoS) objects that mmWave imaging provides, and by utilizing angle of arrival (AoA) 

and time of arrival (ToA) estimators from communications. The motivations of this work 

are as follows: first, enable accurate SLAM from a single viewpoint i.e., using only one 

antenna array at the base station without any prior knowledge of the environment. The 

second motivation is the ability to localize in NLoS-only scenarios where the user signal 

may experience more than one reflection until it reaches the base station. As such, this 

proposed work will not make any assumptions on what region the user is and will use 

mmWave imaging techniques that will work for both near and far field region of the base 

station and account for the scattering properties of mmWave. Similarly, a near field signal 

model is developed to correctly estimate the AoA regardless of the user location.  

This SLAM approach is enabled by reconstructing the mmWave image of the 

environment as seen by the base station. Then, an uplink pilot signal from the user is used 

to estimate both AoA and ToA of the dominant channel paths. Finally, AoA/ToA 

information is projected into the mmWave image to fully localize the user. Simulations 

using full-wave electromagnetic solvers are carried out to emulate an environment both in 

the near and far field. Then, to validate, an experiment carried in laboratory by creating a 

simple two-dimensional scenario in the 220-300 GHz range using a synthesized 13-cm 

linear antenna array formed by using vector network analyzer extenders and a one-
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dimensional linear motorized stage that replicates the base station. After taking 

measurements, this method successfully reconstructs the image of the environment and 

localize the user position with centimeter accuracy.   
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Figure 4.16- Aoa/Range Map From The Estimated Information Of Aoa/Toa Of The Recorded 

Data. The User Appears Wrongfully To In The Broadside At  Distance Of 2.78m With Respect 

To The Imaging Aperture. Inset: A) A Highlighted Portion Of The Map Showing The Top View 

At 2.78 M. B) Cross-Section Of User Amplitude Peak. ................................................................ 53 

Figure 4.17- The Localization Of The User After Projection Into The Corrected 2D Image [34].55 
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1 CHAPTER 1 

       INTRODUCTION 

Since the beginning of history, mankind desired to know their location and 

familiarize with the lay of the land to be able to travel around and trade with others. 

Seamen used the stars to estimate their position in the ocean and direct their ships to a 

destination while traveling merchants used known landmarks to guide their caravans 

around in the land. With the advent of electricity, people sought other methods to position 

themselves or objects of interest that do not rely on optical vision and provide more 

accurate information. One of the early methods was the invention of the radar in the early 

20th century where it was first used to detect ships and avoid crashing with each other in 

foggy weather[1]. Fast forward to today, almost every aspect of daily life is using some 

form of positioning, mapping or both, from car navigation to autonomous cleaning robots 

in apartments. Thus, the concept of simultaneous localization and mapping (SLAM) was 

born. 

Simultaneous localization and mapping is defined as the ability of a robot or a 

system to identify its environment, create a three-dimensional map, and acquire its 

current position[2]. One of the important factors that quantify the effectiveness of SLAM 

is the ability to localize and map the object of interest with high accuracy. Since 

millimeter waves (mmWaves, 30-300 GHz) have short wavelengths, high spatial 

resolution imaging can be achieved [3], [4] which, as we propose in this thesis, it can be 

exploited for high accuracy SLAM. As such ,SLAM can be implemented in various 

applications, including self-driving vehicles where nearby vehicles or crossing 
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pedestrians are identified to avoid accidents, assisted living tools by which vital signs and 

monitored and correlated with the current position to determine whether an injury 

occurred or not, and virtual/augmented reality devices where precise knowledge of the 

location of the surrounding objects provides the desired realism in the user’s perceived 

environment [5]–[9]. 

 

 

One of the fundamental approaches for localization is the time-of-arrival (ToA) or 

also known as time-of-flight (ToF). ToA can be defined as the time that took a signal 

generated by a source to travel and reach a receiver. The receiver can estimate the 

location of the source by multiplying the time with the speed of the signal in the medium, 

usually, the medium is considered as free space. This type of information is commonly 

Figure 1.1- SLAM applications. A) Augmented reality enhancement [8]. B) Assisted 

living devices support [5]. C) autonomous robot navigation [9].  
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used in communications systems where the location of a mobile station (a user or device) 

is needed to better enhance the performance of such system such as more throughput or 

provide an extra service that the mobile station can use this information for. A well-

known example that uses ToA is global positioning system or commonly known as GPS 

where a group of 24 synchronized satellites that orbit the earth and broadcast their 

location to a mobile device on earth that records the ToA and estimate the distance from 

each satellite to determine its position[10]. The basic concept for localization using ToA. 

Consider a scenario where a source (mobile station) in free space is transmitting a signal 

at time  𝑡1, then a receiver records this signal at time  𝑡2 , it follows that the distance R 

between the source and the receiver can be calculated as [11]: 

𝑅 = (𝑡2 − 𝑡1) ∗ 𝑐0 (3 − 20) 

If we consider all the possible points formed by that distance R, then they will lie on a 

circle of radius R. Hence, it can be inferred that for a two-dimensional scenario at least 

three known receivers are needed to localize the source by the intersection of their 

distance projection circles as shown in figure 1.2. This method is also known as 

“trilateration”. 
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However, this localization approach requires a strict synchronization between the 

transmitter and the receiver as any deviation will results in inaccuracy in time and 

therefore an error in localization. This type of synchronization is achieved by using an 

accurate time instrument which will add complexity and cost to the system [12]. 

Additionally, this method assumes a line-of-sight between the source and all receivers, as 

any multipath from the source to one receiver would translate to a different time delay, 

hence the distance R will be calculated erroneously. It is worth mentioning, that by 

adding the angle of arrival (AoA) information that is estimated from the induced phase 

shift on the multiple antennas of the access point (AP) will simplify the problem for 

localization in ToA. As this will result in reducing the requirement in principle to only 

one receiver compared to three when there is no AoA information as shown in figure 1.2.  

 

 

Figure 1.2-Source localization using ToA from 3 known receivers. By intersecting 

their distance projection circle the location of the source is estimated 
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By relaxing the strict synchronization between the source and the receivers time 

difference of arrival (TDoA) is used for localization. As there is no need in TDoA for the 

transmitter to be in sync with the receivers, but the receivers themselves are required to 

be in sync with each other.  Hence, the source position can be determined by measuring 

the difference in time of the signal received between the two receivers i an j, and when 

multiplied by the speed of the signal this will result in the difference of range as: 

𝑅𝑖,𝑗 = 𝑐0 ∗ ∆𝑡𝑖,𝑗 (3 − 21) 

The possible set of points for any two receivers i and j with range difference 𝑅𝑖,𝑗 due to a 

source will lie on a hyperboloid as show in figure 1.4 The equation in 2D is given by 

[11]: 

𝑅𝑖,𝑗 = √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − √(𝑥𝑗 − 𝑥)
2
+ (𝑦𝑗 − 𝑦)

2
(3 − 22) 

Where (𝑥𝑖 , 𝑦𝑖), (𝑥𝑗 , 𝑦𝑗) are the known coordinates for receiver i,j , and (𝑥, 𝑦) are the 

coordinates of the source that is to be located. Similar to ToA, at least 3 receivers are 

needed to localize the user as this will generate 3 hyperboloids that can be intersected and 

Figure 1.3-Source localization by combining AoA and ToA. 
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solve for the user location. To solve this problem a nonlinear regression or try to linearize 

the problem by using Taylor series expansion and then solve it numerically [11]. 

 

 

 

 

 

 

 

 

 

 

One of the early work in SLAM is exploiting the received signal strength known as 

received signal strength indicator (RSSI) of Wi-Fi signals in wireless sensors 

environment for localization [13]. By relating the RSSI to the signal attenuation model 

due to path loss, the traveled distance can be estimated.  This approach suffers an average 

error of 1 meter in localization which can be considered high for small indoor scenario. 

The reason for this error is that reflections/diffraction from metal objects inside the room 

are not considered and this impacts the measured RSSI resulting in distance estimation 

error. Z. Wei et al. extended RSSI localization in mmWaves systems by adding AoA  

[14]. This was achieved by creating a database “fingerprint” of all RSSI/AoA’s of 

Figure 1.4- Source localization using TDoA approach. For each two receivers a 

hyperboloid is calculated, then by the intersection of these hyperboloids, the user 

location is estimated [11]. 
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possible candidate locations defined here as a reference point, then match the recorded 

RSSI and AoA of a source with this fingerprint database to estimate the source position 

as shown in figure 1.5. While this approach exploited the narrow beamwidth that 

mmWaves provide to reduce estimated error in a very large indoor environment, it 

suffered from computational complexity due to the need for a big number of APs or/and 

adding more reference points into the database to achieve high accuracy. WiFi in 

conjunction with OFDM -based user localization scheme that uses communication 

channel estimation and RSSI to resolve for AoA/range that leads to the user location by 

using off-the-shelf WiFi APs was developed in [15]. A fine estimation of AoA is 

achieved by exploiting the fact that the induced phase shift is the same across all the 

OFDM subcarriers for the given bandwidth of 40 MHz hence, the number of antennas in 

the APs can be artificially increased in post-processing by number of physical antennas 

times the number of subcarriers which will lead to a finer estimation on AoA. Although 

this scheme achieves sub-meter accuracy, it heavily relies on the number of available APs 

and the performance is degraded when there is two or less AP in LoS.      

In [16], user is localized by using a single WiFi AP that uses (ToA) information 

only by exploiting the fact that the accumulated phase delay recorded at the AP is directly 

related to ToA. By transmitting pilot signals from the user to the AP over different WiFi 

frequency bands results in different measured phase delays. Then, these phase delays are 

combined and processed to acquire the location of the user as the distance is ToA 

multiplied by the speed of propagation. While this method achieves an average 

localization accuracy of 0.65 m, it is not scalable because it has been developed with a 

single AP in mind and neglect the impact of other APs on the localization. Also, the 
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hoping between different WiFi bands can negatively impact the performance of 

communications between the other users and the AP as the localization process will use 

resources all over the bands that can be utilized for communication links.        

Others used frequencies below 6 GHz to support mmWave systems for 

localization due to well established and robust sub 6GHz AoA estimation techniques as 

seen in figure 1.6 [17]. AoA is estimated with respect of sub 6GHz band and is fed to the 

mmWave system to reduce beam training overhead; then it is paired with mmWave 

ranging to provide an estimate of the user location. The drawback is the requirement of 

having both sub 6 GHz and mmWave hardware presented at both the user and the base 

station. Also, not taking into account the difference in material interaction between sub 

6GHz and mmWave for AoA estimation will result in an inaccurate estimate as the 

multipath effect and the reflection/scattering of mmWave are not considered. 

Figure 1.5-Joint RSSI and AoA localization. A database containing all possible 

RSSI/AoA for every reference point in the environment is created, then the user is 

compared from his RSSI/AoA against this database to estimate his position [14]. 
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In [18], the difference between AoAs of several APs or angle difference of arrival 

(ADoA) were used to estimate localize the user. First, the locations of APs are estimated 

by recording the AoA from three different AP’s with respect of the user and subtracting 

them. Then the intersection of the arcs that are the loci of all possible points that satisfies 

this angle difference is the location estimate of the APs as shown in figure 1.7. Finally, 

by estimating the location of all APs, the user is localized in the same manner with the 

knowledge of APs positions. They are able to localize the user in line-of-sight (LoS) and 

line-of-sight with non-line-of-sight (NLoS) scenarios within sub-meter accuracy and 

provide a partial mapping of the environment without prior knowledge. However, the 

approach requires a total of at least 4 APs and one of them must be in LoS to properly 

work. 

Figure 1.6– Exploiting pre-existing sub 6 GHz resources to support mmWave 

localization estimation. Well known sub 6 GHz estimation tools are used to 

acquire information and feed it to mmWave system to improve the estimation 

process [15]. 
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An algorithm that exploits the combined information from AoA, angle of departure 

(AoD) and ToA is used to estimate the position and the orientation of the user [19]. This 

algorithm reaches the Cramér–Rao lower bound (CRLB) for a single mmWave 

transmitter in the presence of scatterers which defines the best user position and the 

orientation estimation achievable. However, it cannot localize the user when there is 

more than one bounce in the NLoS or the AP is in a scenario where there is only NLoS 

with no LoS path present. As a general remark, current SLAM methods are limited by the 

inability to 1) localize in NLoS path only, 2) produce a full high-resolution map of the 

environment. Therefore, the objective of this thesis is to develop a SLAM algorithm that 

uses mmWaves to provide a map of the environment and localize a user with high 

accuracy even in a scenario where there is only NLoS path and with no a priori 

knowledge of the environment. 

 

 

 

 

 

 

 
Figure 1.7- Localization using the difference of the estimated AoAs of several 

access points. This difference is used first to estimate the location of APs and then 

localize the user [16]. 
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1.1 Outline of the Thesis 

The organization of this thesis as follows: in chapter 2 the theory of mmWave 

imaging and around the corner imaging are discussed. Then in chapter 3, received signal 

model will be analyzed both in the near and far field and provide the array factor/steering 

vector associated with that model, and in the same chapter, this thesis approach for 

SLAM will be developed by combining both mmWave imaging and AoA/ToA 

information. After that in chapter 4, simulations and measurements of the proposed 

approach will be presented. Finally, chapter 5 will be the conclusions and the future work 

of this thesis. 
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2 CHAPTER 2 

BASIC CONCEPTS OF ACTIVE MILLIMETER-WAVE IMAGING 

In this chapter, the theory of active millimeter-wave imaging will be discussed. 

Then, NLoS imaging will be presented with measurements result to demonstrate the 

capability of using mmWave imaging system for NLoS objects scenarios.   

2.1 Active Millimeter-Waves Imaging Systems  

 Active imaging systems illuminate the scene and then receives the signals scattered 

in the surrounding environment. One of the applications of active mmWave imaging is 

concealed weapon detection, as mmWaves can penetrate fabric and hidden weapons will 

present a strong reflection in the mmWaves image that can be detected and identified. [4], 

[20]. A big concern for mmWaves imaging is as the distance increases the cross-range 

resolution decreases which needs an increased aperture size and thus the weight for the 

imaging system. In [20] they preserve the resolution as the distance increases by 

employing lens that collimates the beam. However, this comes at the cost of big lens and 

heavy equipment that makes scalability hard as shown in figure 2.1. 

As such, lensless imaging systems can be more practical if realized in large apertures 

due to the low profile and small weight[4], [21], [22]. Active mmWave systems can 

employ different reconstruction approaches that can be used on 2D planar based systems 

and able to reconstruct 3D images from the collected measurements from the 2D surface 

such as backward propagation and beam steering and can be further enhanced by 

employing digital signal processing techniques such as fast Fourier transforms and 

multiple signal Classification (MUSIC)[4], [23] . Thus, they are lensless and can have a 

compact form factor compared to lens-based systems while having a high spatial 
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resolution. In this chapter, the focus of our discussion is on planar systems due to its low 

weight and scalability that can be used in conjunction with communication systems. 

 

 

 

 

 

 

 

 

   

 

2.2 Backward Propagation using Fourier Transform Method for Imaging 

There are many techniques in literature and practice for getting an image of an 

object, one such technique is called the Backward Wave Imaging. If that object is 

illuminated by EM waves then the amplitude and phase of the reflected wave can be 

recorded by a receiving aperture, in which by applying the backward wave propagation 

algorithm, the object shape image can be reconstructed. The backward wave propagation 

method is implemented in this chapter by using FFT algorithm as described mainly in[4]. 

Figure 2.1- Proposed active imaging system in [17] highlighting the heavy 

equipment and lens. 
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In this work, we focus on monostatic imaging systems where both the transmitter 

and the receiver lay on the same location. Nevertheless, this work can be generalized to 

multistatic imaging systems and SLAM performance is expected to be superior. The 

target domain is divided into n planes with distance 𝑧𝑛 from transceiver plane, each is 

assumed to be flat and parallel to the imaging aperture as shown in Figure 2.1. Then, the 

transceiver/target planes are assumed to be coinciding with each other i.e. they share the 

same dimensions, and the x-y plane will be called cross-range axis and the distance from 

the transceiver plane to the target plane along the z-axis is called range axis. It is also 

assumed that the transceiver is located (x̅, y̅, 0), and a point in the target plane 𝑧𝑛 is at 

(𝑥, 𝑦, 𝑧𝑛), and the transceiver illuminates the target over a band of frequencies. 

The response of the system for a given wavenumber 𝑘 =
𝜔

𝑐0
 (𝜔 = 2𝜋𝑓 , and 𝑐0 is 

the speed of light in free space) and for a target that can be characterized by a reflectivity 

function 𝑂(𝑥, 𝑦, 𝑧) =  𝛿(𝑥 − 𝑥𝑡 , 𝑦 − 𝑦𝑡, 𝑧 − 𝑧𝑛 ) [24], where 𝑥𝑡, 𝑦𝑡 represents a point on 

the target plane is the sum of all points on the target planes multiplied by the phase 

travelled to theses points and given by:  

𝑠(�̅�, �̅�, 𝑘) = ∭𝑜(𝑥, 𝑦, 𝑧) × 𝑒−𝑗2𝑘𝑟𝑑𝑥𝑑𝑦𝑑𝑧 (2 − 1) 
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Where  

𝑟 =  √(�̅� − 𝑥)2 + (�̅� − 𝑦)2 + (𝑧̅ − 𝑧𝑛)2 (2 − 2) 

The phase term 𝑒−𝑗2𝑘𝑟 in equation (2-1) models a spherical wave originating from 

the transceiver point (x̅, y̅, 0). Using the method of stationary phase [25], [26] the 

spherical wave can be broken into an infinite sum of plane waves  

𝑒−𝑗2𝑘𝑟 = 𝑒−𝑗2𝑘√(x̅−𝑥)2+(y̅−𝑦)2+(z̅−𝑧𝑛)2 = ∬𝑒−𝑗𝑘𝑥(x̅−𝑥)−𝑗𝑘𝑦(y̅−𝑦)−𝑗𝑘𝑧(�̅�−𝑧𝑛)𝑑𝑘𝑥𝑑𝑘𝑦 (2 − 3) 

Where 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑍are the spatial frequencies of x, y, and z coordinate respectively.  

Thus, by substituting equation (2-3) into (2-1) and dropping the distinction between 

primed and unprimed coordinate systems since both planes share the same coordinate 

system yields  

Figure 2.2 - Topology of an active monostatic mmWave imaging system. Transceiver/target plane 

is primed/unprimed coordinate respectively. 
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𝑠( 𝑥, 𝑦, 𝑘) = ∬[∭𝑜(𝑥, 𝑦, 𝑧)𝑒−𝑗(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧] 𝑒𝑗𝑘𝑧𝑧𝑛𝑒𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦(2 − 4) 

  The term in the bracket represents the 3D spatial Fourier transform given by 

𝑂(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = 𝐹𝑇3𝐷[𝑜(𝑥, 𝑦, 𝑧)] =  ∭𝑜(𝑥, 𝑦, 𝑧)𝑒−𝑗(𝑘𝑥𝑥)𝑒−𝑗(𝑘𝑦𝑦)𝑒−𝑗(𝑘𝑧𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 (2 − 5) 

Then, equation (2-4) becomes  

𝑠( 𝑥, 𝑦, 𝑘) = ∬[𝑂(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)] 𝑒
𝑗𝑘𝑧𝑧𝑛𝑒𝑗𝑘𝑥𝑥𝑒𝑗𝑘𝑦𝑦𝑑𝑘𝑥𝑑𝑘𝑦 (2 − 6) 

By using mathematical manipulations and Fourier pairs relations  

𝑠( 𝑥, 𝑦, 𝑘) = 𝐹𝑇2𝐷
−1{[ 𝑂(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)]𝑒

𝑗𝑘𝑧𝑧𝑛} (2 − 7) 

𝑆(𝑘𝑥, 𝑘𝑦 , 𝑘) = 𝐹𝑇2𝐷[𝑠( 𝑥, 𝑦, 𝑘)] =  𝑂(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑒
𝑗𝑘𝑧𝑧𝑛  (2 − 8) 

𝑆(𝑘𝑥, 𝑘𝑦, 𝑘)𝑒−𝑗𝑘𝑧𝑧𝑛 =  𝑂(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) (2 − 9) 

𝑜(𝑥, 𝑦, 𝑧) = 𝐹𝑇3𝐷
−1[𝑆(𝑘𝑥, 𝑘𝑦, 𝑘)𝑒−𝑗𝑘𝑧𝑧𝑛] (2 − 10) 

From the electromagnetic dispersion of plane waves 

(2𝑘)2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 (2 − 11) 

𝑘𝑧 = √4𝑘2 − 𝑘𝑥
2 − 𝑘𝑦

2 (2 − 12) 

Finally, the relationship between the received backscattered signals 𝑠( 𝑥, 𝑦, 𝑘) and the 

scene’s reflectivity function 𝑜(𝑥, 𝑦, 𝑧) (reconstructed image) is obtained from 

𝑜(𝑥, 𝑦, 𝑧) = 𝐹𝑇3𝐷
−1 [𝐹𝑇2𝐷[𝑠( 𝑥, 𝑦, 𝑘)]𝑒

−𝑗√4𝑘2−𝑘𝑥
2−𝑘𝑦

2𝑧𝑛
] (2 − 13) 
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It is meaningful to give an expression for 2D imaging reconstruction as it will be 

used on later chapters, by following similar steps of equation (2-1) to (2-12) for a 

transceiver that illuminates targets at single cross range with a band of frequencies, the 

reconstructed 2D image is 

𝑜(𝑦, 𝑧) = 𝐹𝑇2𝐷
−1 [𝐹𝑇1𝐷[𝑠( 𝑦, 𝑘)]𝑒

−𝑗√4𝑘2−𝑘𝑦
2𝑧𝑛

] (2 − 14) 

 

2.3 Spatial Resolution and Sampling Criteria for the Monostatic Imaging System 

An image can be represented in the spatial frequency domain by taking the Fourier 

transform across the spatial domain, this spatial frequency domain is commonly called k-

space [27]. It is a function of the imaging aperture, antenna beamwidth, and the temporal 

bandwidth. This representation contains important details about the image and the system 

that generate this image. Such examples of those details are the resolutions of the image 

in both the cross range and range. An example of such space is shown in figure 2.2 [4]. 

2.3.1 Spatial Resolution of the Imaging System 

The spatial resolution of an imaging system is important as it defines the fidelity 

of the image produced, and the amount of the details such an image contains. Spatial 

resolution depends on the information that is obtained from the spatial frequency domain 

of the system. For 3D spatial dimensions, the maximum spatial resolution at each axis in 

a Cartesian system is given by the relations of Fourier transform of equation (2-13) [28] : 

𝛿𝑥 ≈
2𝜋

∆𝑘𝑥
 (2 − 15) 
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𝛿𝑦 ≈
2𝜋

∆𝑘𝑦

(2 − 16) 

𝛿𝑧 ≈
2𝜋

∆𝑘𝑧

(2 − 17) 

Figure 2.3- K space representation of a 3D imaging system operating at range of 

wavenumbers from [𝑘𝑖, 𝑘𝑓] with central wavenumber of 𝑘𝑐. The shaded area represents 

the spatial frequencies supported by a given imaging system [4]. 
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By looking into figure 2.2 and assuming a square, then ∆𝑘𝑥,𝑦 can be approximated 

by the width of a rectangle whose length in the cross range is given by [4]: 

4𝑘𝑐 sin (
𝜃𝑏

2
) (2 − 18) 

Where 𝑘𝑐 =
2𝜋

𝜆𝑐
 is the central wavenumber, 𝜃𝑏 is the lesser between the beamwidth of the 

antenna element or the angle subtended by the aperture. Similarly, the cross range 

resolution is given by [4]: 

𝛿𝑥 = 𝛿𝑦 ≈
2𝜋

4𝑘𝑐 sin (
𝜃𝑏

2 )
=

𝜆𝑐

4 sin (
𝜃𝑏

2 )
(2 − 19) 

Also, for an imaging system whose aperture D is smaller than the distance R of the object 

from the aperture, the cross range resolution can be simplified as [4]: 

𝛿𝑥 = 𝛿𝑦 ≈ 
𝜆𝑐𝑅

2𝐷
(2 − 20) 

As for the resolution in range or the z-axis, the width is∆𝑘𝑧 =  2(𝑘𝑓 − 𝑘𝑖) where 𝑘𝑓 , 𝑘𝑖 

are the highest and lowest wavenumbers respectively. Therefore, the range resolution is 

approximated as [4]: 

 

𝛿𝑧 ≈
2𝜋

2(𝑘𝑓 − 𝑘𝑖)
=

𝜋

2𝜋
𝑐 (𝑓𝑓 − 𝑓𝑖)

=
𝑐0

2𝐵
(2 − 21)  

Where B is the bandwidth of the system. It is worth mentioning that equation (2-21) also 

represent the range resolution of a monostatic radar which is expected as this imaging 

system operates similarly to monostatic radars in principle.  
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2.3.2 Sampling Criteria  

Since scattered data collection is based on synthetic aperture radar (SAR) which is 

discretized in nature. Then, the need to choose proper sampling for both SAR movement 

(cross-range axis samples), and the temporal frequency step size is important to ensure 

correct image formulation without any artifact or corruption. The sampling along SAR is 

impacted by several variables such as the selection of wavelength, distance from the 

target and its size, and how long is the SAR aperture. In general, proper sampling is 

ensured if the Nyquist criteria are met, which states the phase shift in the spatial 

frequency domain from one SAR sample point to the next does not exceed π rad. 

Therefore, for a sample spatial size of Δx, the phase shift should not exceed 2kΔx for the 

worst case i.e. the target is near or at the edge of aperture[4]. Hence, 

2𝑘Δ𝑥 =
4𝜋

𝜆
Δ𝑥 <  𝜋 (2 − 22) 

Δ𝑥 <
𝜆

4
(2 − 23) 

Equation (2-23) represents the smallest sampling distance, however, achieving 
𝜆

4
 

is not practical for all cases as it requires more time to scan along the cross range. 

Depending on how far SAR is from the target and that the antenna beamwidth is usually 

less than 180𝜊 ,  
𝜆

4
 is not necessary and practical system can choose a sample size in the 

order of  
𝜆

2
 [4]. Similarly, the temporal frequency sampling need for focusing targets at a 

maximum range of 𝑅𝑚𝑎𝑥 is selected such that the phase shift from one wavenumber to 

the next “ Δ𝑘" does not exceed 𝜋 , where the worst case is  2Δ𝑘𝑅𝑚𝑎𝑥 < 𝜋 , Therefore [4] 
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2Δ𝑘𝑅𝑚𝑎𝑥 =
4𝜋

Δ𝜆
𝑅max  < 𝜋 (2 − 24) 

Δ𝑓 <
𝑐0

4𝑅𝑚𝑎𝑥
 (2 − 25)  

Where Δ𝑓 is the required temporal sampling frequency. From equation (2-25), the 

number of samples point 𝑁𝑓 =
𝐵

Δ𝑓
 can be related as : 

B

𝑁𝑓
<

𝑐0

4𝑅𝑚𝑎𝑥

(2 − 26) 

𝑁𝑓 >
4𝑅𝑚𝑎𝑥

𝑐0

𝐵

=
2𝑅𝑚𝑎𝑥

𝑐0

2𝐵

(2 − 27) 

Or 

𝑁𝑓 >
2𝑅𝑚𝑎𝑥

𝛿𝑧

(2 − 28) 

It can be inferred from equation (2-27) that the selection of the number of 

frequency samples over a given bandwidth impacts the allowable maximum range to be 

imaged. This combined with equation (2-23) and (2-21) gives a general guideline for the 

selection of the design parameter of the imaging problem.  

To summarize as a rule of thumb: 

• Temporal bandwidth impacts range resolution, the higher the bandwidth the finer 

the range resolution is. 

• Frequency step size or number of frequency points over a given bandwidth impact 

maximum unambiguous range, more frequency points lead to longer range. 
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• Sampling distance along SAR is best at  
𝜆

4
 , but if the target is moderately far from 

SAR and the beamwidth is narrow,  
𝜆

2
  sampling can be sufficient for reliable and 

image reconstruction.  

 

2.4 Non-Line of Sight Imaging Using Millimeter-Waves 

MmWaves sit between microwaves and infrared (IR)/visible light with respect of 

the RF spectrum in an area that has been dubbed “THz gap” [22] as shown in figure 2.3. , 

and they are promising candidates for non-line-of-sight (NLoS) imaging since it exhibits 

traits of both microwaves and IR/visible light featuring both specular and diffuse 

reflection/scattering phenomena when bouncing off common building materials including 

wood, drywall, etc. Such materials exhibit a moderately rough surface with respect to 

mmWave wavelengths. As such, they can be modeled as lossy mirrors where a 

significant ratio of the incident energy is reflected specularly and the remaining power is 

diffused almost isotropically as illustrated in figure 2.4. [29], [30] 

 

 

 

 

 

 
Figure 2.4- Portion of the EM spectrum highlighting the THz gap. 
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What makes mmWave wave also interesting for imaging is that its short 

wavelengths allow high spatial resolution which contributes to the fidelity of the overall 

image. As a consequent of being an EM wave, it is not impacted by lower visibility 

including night, dust, smoke, and fog. By exploiting both high spatial resolution and 

scattering properties that mmWave waves provides, an NLoS imaging application where 

common building materials such as open wooden door of an office is used to “look 

around” and acquire a detailed image of what’s inside the room as if the door is a mirror 

[31]. 

In this model as shown in figure 2.5, SAR is used to image an object and the 

reflecting surface by leveraging mmWave waves multipath propagation. It is first 

assumed that object is hidden from SAR by non-transparent occlusion with respect to 

mmWave i.e. no direct line-of-sight (LoS) path, the same non-transparent property is 

assumed on the object as well. Secondly, the reflecting surface (mirror) has a roughness 

that enables the mmWave wave to scatter both in the specular and the diffusion 

directions. Also, no prior information is known about the complete scene for both the 

Figure 2.5- EM waves scattering with respect of wavelength compared to the 

surface. Microwaves reflect specularly as it sees the surface to be smooth, 

Visible/IR diffuses due the apparent roughness of the surface, mmWaves 

have both traits as it sees the surface as moderately rough. 
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mirror and the object. Finally, although this method and SAR imaging techniques allow 

for 3D image reconstruction, for simplicity and experimental condition constrains 2D 

imaging (one cross range and range) is considered [31]. 

 

 

This is done by using SAR that illuminates the scene by mmWave waves and 

record the scattered field data. Then the recorded data can be formatted and reconstrued 

as an image by using equation (2-14). It follows that by applying equation (2-14) into 

NLOS scenario similar to the one depicted in figure 2.5 without taking into account the 

multipath propagation and not identifying the reflecting surface by exploiting diffusion 

will lead into a raw image that does not represent the reality and needs to be corrected as 

shown in figure 2.5. 

 

Figure 2.6-Representation of non-line-of-sight (NLoS) imaging. MmWaves generated from SAR 

are specularly and diffusely scattered from common material “reflecting surface” then exploited 

to image the NLoS object, occlusion is there to ensure that only NLoS path is present [31]. the 

hidden object appears as a ghost behind the reflective surface due to not accounting for the 

mmWaves multipath propagation. 
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2.4.1 Identifying the Reflective Surface from Diffuse Scattering 

As stated before, in the mmWave wave spectrum most common building material 

experience both a strong specular reflection and a significant diffuse scattering that can 

be measured. To demonstrate that, bistatic radar cross section (RCS) of metallic mirror vs 

calcium sulfate dihydrate (gypsum) known generally as drywall that has been compressed 

between paper sheets have been measured in the frequency of 330 GHz as shown in 

figure 2.6. It is shown that due to the roughness of the drywall, the diffuse scattering is 

significant and can be observed to be around -30dB compared to the maximum in 

average, yet the specular reflection is still strong and able to acquire the image of the 

hidden object from it. From the definition of the model shown in figure 2.5, the scattered 

signals due to the diffusion of the reflective surface will arrive earlier in time to SAR 

compared to the scattered signals from the hidden object which is expected due to the 

travel path of both scattered signals. This can be exploited with the geometry of the 

reflective surface to devise an algorithm that will differentiate between the hidden object 

and the reflective surface and their respective location, and at the same time create an 

image that will represent the true scene. 

2.4.2 Image Correction for Non-Line-of-Sight Imaging  

From the previous discussion, the algorithm makes the following assumptions : no 

object in the scene is transparent with respect to the frequency range used, the first object 

that appears in the raw image with respect to range is assumed to be the reflective surface 

and what is after the object is what will be dubbed as “ghosts” [31]. Then, the algorithm 

works as the following: First, the scattered mmWave wave data that has been recorded by 

SAR is collected. Then, the raw image is reconstructed using equation (2-14) and identify 
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the reflective surface and then map the ghost object into its correct location. Finally, the 

raw image is updated with corrected positions. This mapping process is done by 

translating these ghost objects into their correct locations by rotating each point after the 

reflective surface by an angle of (180-2 𝜃𝑖) degree with respect to that reflective surface 

as shown in figure 2.7 , where the center of rotation is at the intersection of the reflective 

surface and the line that connects the ghost object with the SAR [31]. 

 

2.4.3 Experimental Validation of Non-Line-of-Sight mmWave imaging 

To test the capability of NLoS imaging system, an experiment replicating similar 

scenario like the model depicted in figure 2.5 is performed by using two vector network 

analyzer (VNA) extenders, two horn antennas, and a motorized linear translation stage 

that emulated a 12 cm monostatic SAR operating at a bandwidth of 100 GHz with 

frequency range between 220-320 GHz with 0.1 GHz sampling which yields about a 

Figure 2.7- Bistatic RCS of metal mirror vs drywall @ 330 GHz, it is shown that 

mirror has stronger main lobe and lower sidelobes compared to drywall which is the 

expected case. Nevertheless, the drywall still exhibits strong main lobe and with an 

average of -30dB for the sidelobe which represents the diffusion scattering that still 

can be detected 
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maximum range of 1.5 m with a resolution of 1.5 mm. Also, drywall was used as a 

reflective surface, and two metallic posts are placed in the scene as targets as shown in 

figure 2.9 [31]. 

 

 

 

 

 

 

Figure 2.8-Image correction algorithm.a) The true geometery. b) the reconstructed Raw 

mmWave image. c) the corrected image, this is done by rotating each ghost object (180-

2𝜃𝑖) degree with respect of reflective surface into their respective correct position. 
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The data collected is processed by a MATLAB script following equation (2-14) 

and reconstructs the raw image as shown, in figure 2.10 (a). In this raw image, the bright 

yellow lines represent the drywall surface due to diffusion scattering. The geometry of 

these points will be used as the mirror plane to correct the raw image following the 

discussion in section 2.3.2. The updated image is also shown in figure 2.10 (b). To further 

demonstrate the capability of this system, metallic posts were placed as targets and the 

algorithm was able to identify the posts and translate them to the correct position as 

shown in figure 2.11. 

In this Chapter, the basic concepts of active mmWave imaging system were 

presented and analyzed and discussed the ability using mmWaves for high-resolution 

NLoS imaging by exploiting the diffuse scattering of mmWaves to image and identify the 

Figure 2.9- Experimental setup done in the lab; SAR is used to image the metallic post by 

exploiting mmWave wave interaction with drywall as a reflective surface. Occlusion is there to 

make sure only NLOS components are present, and absorber is used to avoid scattering from 

other objects in the lab. Inset: SAR is implemented by using a pair of transmitting/receiving 

antenna mounted over a linear translation stage [31]. 
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reflective surfaces and image the NLoS object from the specular scattering. Then to 

illustrate the capability of using mmWaves for NLoS imaging, an experiment was carried 

out as mentioned in this chapter that was able to produce a 1.5 mm range resolution 

image, identify the reflective surface, and correct the image to reflect the true scene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10- a) Raw SAR image obtained, the bright yellow line is the drywall, 

and the cardboard box shown in the wrong position and treated as “ghost”. B) 

Corrected image with the right location of the box after applying the algorithm. 

Inset: optical image of the scene [31]. 
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Figure 2.11- a)  Raw SAR image obtained, the bright yellow line are the dry wall and 

the two dots are the “ghosts” that represents the metallic posts. b) Corrected image 

with the right location of the two posts after applying the algorithm. Inset: optical 

image of the scene [31]. 
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3 CHAPTER 3 

COMBINATION OF IMAGING AND AOA/RANGE ESTIMATION FOR 

SIMULTANEOUS LOCALIZATION AND MAPPING 

In this chapter, the estimation of AoA and ToA or equivalently the range (range = 

ToA . speed of light) will be presented. We will discuss the signal model to find AoA in 

both cases: near field, and far field. Then the impact of these cases in our estimation on 

AoA will be analyzed. Finally, techniques used in ToA estimation in communications 

will be briefly introduced. 

 

 

Figure 3.1- The three regions of EM fields of a radiating antenna. 
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3.1 Electromagnetic (EM) Fields Regions 

The EM fields from a radiating element can be divided with respect of the area 

surrounding this element into 3 regions: reactive near field, radiating near field, and far 

field as shown in figure 3.1. These regions are separated by boundaries that when crossed 

define the fields pattern shape and characteristics and their details as follows: 

a) Reactive near field 

 

This region is defined as the immediate area around the radiating element, where 

 the electric field component is in time-phase quadrature with magnetic field i.e. E-field 

and H-field are out of phase by 90° . All the power is stored therefore, the time average 

power density is equal to zero. The outer boundary of this region is given by [25] 

 

𝑅 < 0.62 √
𝐷3

𝜆
(3 − 1) 

 

where R is the distance, D is the largest dimension of the radiating element “𝐷 >  𝜆”, if 

the largest dimension is smaller than 𝜆 then the boundary is taken as 
𝜆

2𝜋
. 

 

 

b) Radiating near field  

In this region the radiated power starts to dominate over the stored power, the angular 

fields components are dependent on the distance from the radiating elements and starts to 

from a spherical wave front. The boundaries of this region are given as [25] 

0.62 √
𝐷3

𝜆
< 𝑅 <

2𝐷2

 𝜆
(3 − 2) 
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If the radiating element largest dimension “D” is smaller than the wavelength then this 

region might not exist [25]. 

 

c) Far field 

 

In this region, the fields components now are independent of the radial distance from 

the radiating element, and in this region, the fields can be treated as a plane wave. the 

inner boundary of this region is given by  

𝑅 <
2𝐷2

 𝜆
 (3 − 3) 

3.2 Received Signal Model for a Uniform Linear Array Receiver 

In this section, we will consider finding the AoA from a phased antenna array 

system.  

3.2.1 Near field Signal Model 

Consider a signal 𝑢(𝑡) that is transmitted from a source that is at a radial distance 

R and angle 𝜃 in the near field from the center of the N element receiving array with 

reference element to respective n element spacing of 𝑑𝑛 . Angle θ, ranges from 0 to π as 

shown in figure 3.2.  Also, in this analysis, for simplicity but without loss of generality we 

assume 𝑢(𝑡) = 1.  Since the source is in the near field region of the receiving array, no 

assumption is taken with regards to the radial distance from the target to each element of 

the array nor the angle θ. Hence, the need to select a reference distance/angle to determine 

the AoA from is needed. Any element can be chosen but for the sake of our analysis and 

later use in the algorithm the center element is chosen to be the reference. 
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For the center element, the phase variation incurred due to the source at a radial 

distance R is given by 

𝑒𝑗𝑘𝑅 (3 − 4) 

Similarly, the phase variation due to the same source at a radial distance 𝑟𝑛 for an n 

element is 

𝑒𝑗𝑘𝑟𝑛 (3 − 5) 

In both equations, k is the wave number. Then, the phase different between the reference 

element and the nth element is: 

𝑒𝑗𝑘(𝑟𝑛−𝑅) (3 − 6) 

Figure 3.2- Near field representation of source at distance R from the center of 

the array, 𝑟𝑛 is the distance from the nth element 𝑑𝑛 is the spacing between 

each successive element , 𝜃 is the angle of of the source “AoA” measured 

from the axis of the array   
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To estimate AoA, it is needed to relate equation (3-6) with the angle θ. 

By looking into figure 3.2 and applying geometrical relations on the triangle depicted in 

that figure, 𝑟𝑛 can be represent as [32] 

𝑟𝑛 = √(𝑅 𝑠𝑖𝑛𝜃)2 + (𝑑𝑛 − 𝑅 𝑐𝑜𝑠𝜃)2 (3 − 7) 

By expanding the brackets under the square root, equation (3-7) becomes 

𝑟𝑛 = √𝑅2 + 2𝑑𝑛 𝑅 𝑐𝑜𝑠𝜃 + 𝑑𝑛
2 (3 − 8) 

Hence the array factor for an N element array can be expressed as [32]: 

𝐴𝐹(𝜃, 𝑅) = ∑ 𝑎(𝑚) ∗ 𝑒
𝑗𝑘(√𝑅2+2𝑑𝑚𝑅 𝑐𝑜𝑠𝜃+𝑑𝑚

2 −𝑅)
𝑁−1

𝑛=0

; 𝑚 = 𝑛 −
𝑁 − 1

2
(3 − 9) 

Or in vector form, the array response vector is 

𝑔(𝜃, 𝑅) =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑎 (−
𝑁 − 1

2
) 𝑒

𝑗𝑘(𝑟
−

𝑁−1
2

−𝑅)

𝑎 (1 −
𝑁 − 1

2
) 𝑒

𝑗𝑘(𝑟
1−

𝑁−1
2

−𝑅)

⋮
1
⋮

𝑎 (𝑁 − 2 −
𝑁 − 1

2
  ) 𝑒

𝑗𝑘(𝑟
𝑁−2−

𝑁−1
2

−𝑅)

𝑎 (𝑁 − 1 −
𝑁 − 1

2
) 𝑒

𝑗𝑘(𝑟
𝑁−1−

𝑁−2
2

−𝑅)

]
 
 
 
 
 
 
 
 
 
 
 
 

(3 − 10) 

 

In both (3-9) and (3-10) 𝑎(𝑚) represent the ratio of the attenuation of spherical waves 

and is given by 𝑎(𝑚) =
𝑅

𝑟𝑚
  [33]. From (3-9) and (3-10), it is noticed that this a joint 
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search problem for both θ, and R in which both parameters can be estimated in the same 

search operation. For the sake of simplicity and throughout this thesis the reference 

distance R is assumed known or estimated via other range finding techniques as it will 

simplify the search and will give a greater focus on finding the AoA θ. Hence, the 

steering vector needed to be applied to match filter the array response vector 𝑔(𝜃, 𝑅) at 

θ=𝜃𝐴𝑜𝐴 is 𝑔∗(𝜃 = 𝜃𝐴𝑜𝐴 , 𝑅) where * is the conjugate operator. 

Note about even and odd numbered arrays: 

For an odd array the element that can be chosen as a reference is the center 

element and all of the previous analysis above can be applied, however for an even-

numbered array there is no center element hence either selecting one of the two center 

elements or create a virtual point in the center and apply the same analysis to it. 

 

3.2.2 Far Field Signal Model 

Similar to the near field model, consider a signal 𝑢(𝑡) = 1 that is transmitted 

from a source that is at a radial distance R in the far field (i.e. R is assumed now to be 

very large), and angle 𝜃 from the receiving array with equal element spacing of 𝑑  as 

shown in figure 3.4.  Since the source now is in the far field region of the receiving array, 

assume that the wave originating from the source is planar. As such, AoA is the same for 

all the elements and the radial distance R is the approximately the same for all i.e. 𝑟1 =

𝑟2 = 𝑟3 = 𝑟4 ≈ 𝑅 for figure 3.4. And as for the phase variation of an incident wave on the 

received elements, each successive element has an incurred phase incremented by 
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𝑑 cos (𝜃) with respect of the previous element in the array.  Thus, the array factor of the 

receiver array of N elements due to a source in the far field is [25]: 

𝐴𝐹 = ∑ 𝑒𝑗𝑘 𝑛𝑑 𝑐𝑜𝑠(𝜃)

𝑁−1

𝑛=0

(3 − 18) 

 

 

 

 

 

 

 

 

 

 

 

Or in vector form as array response vector 

𝑔(𝜃) =

[
 
 
 
 

1
𝑒𝑗𝑘𝑑 𝑐𝑜𝑠(𝜃)

𝑒𝑗𝑘2𝑑 cos(𝜃)

⋮
𝑒𝑗𝑘(𝑁−1)𝑑 cos(𝜃)]

 
 
 
 

(3 − 19) 

Figure 3.3- Far Field representation of a source that is transmitting to an 

receiving array . The travel paths from the source to each receiver point are 

assumed to be parallel with each other, and the signal is incident on them by 

the same angle 𝜃. The red lines represent the extra phase incurred by each 

path compared to the first element path. 
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 As a consequence of the far field approximation, the angle information now is 

decoupled from the radial distance, and it is seen in equations (3-18), (3-19) that both the 

array factor and the steering vector are a function of 𝜃 only which simplify the angle 

search problem. The trade-off is the need to estimate the radial distance of the source via 

another approach if the scope of the problem is to estimate both angle and distance in 

which this work needs. Hence, the steering vector to be applied to match filter the array 

response vector 𝑔(𝜃) at θ=𝜃𝐴𝑜𝐴 is 𝑔∗(𝜃 = 𝜃𝐴𝑜𝐴) , where  *  is the conjugate operator . 

3.3 Combining MmWave Imaging and AoA/ToA Information for SLAM 

In this section, the algorithm to localize a mobile user by exploiting both mmWave 

imaging and AoA/ToA information is presented. First, as an initialize step, it is assumed 

the scene of interest is void from mobile stations i.e. only static objects are present. Then, 

the base station reconstructs a mmWave image and if necessary, correct it as explained in 

section 2.3. When a mobile user enters the environment, it will send a wideband uplink 

pilot signal that will be used to estimate AoA/ToA or equivalently AoA/range, as range R 

is equal to ToA*𝑐0.  From the reconstructed image and the estimated AoA/Range 

information, there is three possible scenarios, the first one is that the mobile station is in 

direct line-of-sight with respect of the base station. The second is the mobile station is in 

the non-line-of-sight with respect of the base station, as depicted in figure 3.8, and 

finally, the mobile station is observed from both LoS and NLoS with respect of the base 

station. 

The mmWave image will be combined with the estimated 𝜃𝐴𝑜𝐴 and ToA (range) to 

find the location of the user with respect to the environment. The physical center of the 

BS antenna array is used as a reference point for the 𝜃𝐴𝑜𝐴 and ToA. Namely, a ray is 
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launched from the BS center at an angle equal to 𝜃𝐴𝑜𝐴. For LoS users, the length of the 

ray will be equal to R, and the user will be located at the end of the ray path. If the user is 

in NLoS, then the ray will intersect a mirror object at a distance <R. Then, a second ray is 

launched from the intersected point at the specular angle with respect to the mirror 

surface. This is repeated for multiple bounces until the total length of all the rays is equal 

to R. The end of the ray path is then the location of the user, as illustrated in figure 3.5 

[34]. A flowchart summarizing this SLAM approach is laid out in figure 3.10.  

 

 

In this chapter, the received signal model for both near and far fields were discussed to be 

used for AoA estimation highlight the difference in assumptions between them. Then, 

this thesis approach for high accuracy SLAM was presented and laid out with focusing on 

NLoS only localization by utilizing both mmWaves imaging and the AoA/ToA 

information together. 

Figure 3.4- Example of user localization using a single base station equipped with an antenna 

array. (a) Mobile station is in LoS , (b) Mobile station is in NLoS. 
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Figure 3.5- Projecting AoA/Range on the mmWave image and to recover the user location 

even for NLoS occasions [33] . 

Figure 3.6- flowchart highlighting this SLAM approach process. 
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4 CHAPTER 4 

SIMULATIONS AND MEASURMENTS RESULTS 

In this chapter, the capability of the near field model to acquire the AoA information 

for both regions near/far field will be presented via simulations in various scenarios. 

Then, the SLAM algorithm will be verified both in simulations and lab measurements to 

demonstrate the effectiveness in localizing a user with centimeter accuracy. 

4.1 Simulations 

To analyze the novel SLAM method, we use full-wave simulation to estimate 

radiation, propagation, scattering and reception phenomena that occur in this complicated 

process. The simulated received signals are fed into the image reconstruction method (see 

Chapter 2, section 2.2) and AoA/range estimation (see Chapter 3, section 3.2) to estimate 

the methods performance. However, such geometries constitute extremely electrically 

large problems and full-wave EM solution becomes impractical. As such, we limit the 

analysis to 2D by using a commercial method-of-moments (MoM) solver (WiPL-D,[35]). 

4.1.1 Near Field User Simulation Model 

First, define a generating source that produces a 2D Gaussian beam that emulates 

a narrow beam and expressed as 

𝐵𝑒𝑎𝑚(𝑥) =
1

𝜎√2𝜋
𝑒

−
𝑥−𝜇
2𝜎2  (4 − 1) 

Where 𝜇, 𝜎 are the mean and standard deviation respectively and they are chosen to be as 

𝜇 = 0, 𝑎𝑛𝑑 𝜎 = 0.1. The far field pattern is shown in figure 4.1  
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This source is operating at a frequency of 220 GHz which represents the user. It is 

placed at distance R= 1.8m from the center of 260 elements receiving array with equal 

spacing of 0.5 mm ≡
𝜆

3
 at 220GHz in two direction: Broadside and a shifted 20 degree 

with respect of broadside as shown in figure 4.2. For the sake of this simulation and 

simplicity, the distance R=1.8m is assumed to be known or estimated from ToA methods. 

First, fields data are collected for each element in the array which will represent the array 

response vector as defined in equation 3-10. Then, the steering vectors will be calculated 

using the conjugate of this equation covering all the possible angles from 0 to 180 degree 

Figure 4.1- Polar plot of the far field pattern in dB for the 2D Gaussian narrow beam. 
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with an angle step of 
180

1000
 . These steering vectors will be multiplied with the response 

vector to recreate the received signal pattern. 

 

These steering vectors will be multiplied with the response vector to recreate the 

received signal pattern. This process is also known as digital beam forming (DBF) where 

the received fields are scanned for all possible angles and reconstruct the received pattern 

in post-processing. As shown in figure 4.3 and 4.4, both amplitude patterns have only 

single major lobe at their estimated direction. This is expected since the spacing between 

the elements is λ/3 < λ/2, and any spacing that is less than or equal to λ/2 for uniform 

linear scanning array will yield only a single peak [25]. 

 

 

 

Figure 4.2- Near field simulation setup for a user at distance of 1.8 m from the center the receiver 

array. (a) the user is at broadside. (b) the user is shifted 20 degree “70 degree” from the broadside 

direction. 
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Figure 4.4- Received array response for a broadside user in the near field at 220 

GHz and distance of 1.8m. The maximum is at 90 degree which represents the real 

direction of the user 

Figure 4.3- Received array response for a 20 degree shift with respect of broadside 

user in the near field at 220 GHz and distance of 1.8m. The maximum is at 70 degree 

which represents the real direction of the user. 
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4.1.2 Far-field User Simulation Model 

The same generator source defined at section 4.1.1 is now placed at distance R= 

20m to the center of 260 elements receiving array with equal spacing of 0.5 mm ≡λ/3 at 

220GHz. This twenty-meter distance is chosen such that to make sure that the user now is 

in the far field region with respect to the receiving array. Two directions were considered 

broadside and a shifted 20 degree with respect of broadside as shown in figure 4.5. 

The near field model of section 3.2.1 is used to demonstrate the capability of the 

defined array response vector to model both regions near/far field, as this model is 

general and doesn’t make any assumption regarding what region it is. Similar to the 

previous section, the steering vectors will be calculated using the conjugate of equation 3-

10 for all possible angles. Then, they will be multiplied with the response vector to 

recreate the received signal pattern in the far field, and for comparison, the pattern is also 

calculated using the far field approximation as outlined in chapter 3. The results are 

shown in figure 4.6 and 4.7. From both figures 4.6 and 4.7, it can be noticed that both the 

Figure 4.5- Far field simulation setup for a user at distance of 20 m from the center the receiver 

array. (a) the user is at broadside. (b) the user is shifted 20 degree “70 degree” from the broadside 

direction. 
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near field model and the far field model are in agreement with each other. This is 

expected as the near field model can account for all possible distances. 

 

4.1.3 SLAM Simulation for a 2D Scene 

       Consider the following 2D scenario, a user represented by a gaussian narrow beam of 

equation 4-1 and is operating at a bandwidth of 75 GHz with a frequency range from 220 

GHz to 295 GHz. This user is placed at a distance 1m from the center of 40 cm rough 

PEC wall with an angle of 45 degrees with respect to the wall normal. Then, 260 

elements with equal spacing of 0.5 mm that will create a monostatic SAR are placed at 

0.8 m from the center of the rough PEC wall as illustrated in figure 4.8.  

 

Figure 4.6-Received array response for a broadside user in the far field at 220 GHz and distance of 

20 m. The red line represents the recreated pattern using the far field approximation, while the blue 

line is recreated using the near field model, as seen for both cases, the maximum is at 90 degree 

which represents the real direction of the user. 
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First, the monostatic SAR is used to illuminate and records the fields for 1001 

frequency points for the defined bandwidth which yields a maximum allowable range of 

1 m and range resolution of 2 mm. This recorded data then is used to reconstruct the 2D 

mmWave image as shown in figure 4.9. Since there is only a single static object in this 

simple scenario there is no merit in applying image correction and this single object is 

defined as the reflective surface. Then, the user transmits tones using stepped frequency 

in the same defined frequency range that emulates ToA and is captured by the SAR in 

which they will be used to create the AoA/range map as shown in figure 4.10 for a single 

frequency AoA and figure 4.11 for the AoA/range map.  

 

Figure 4.7- Received array response for a 20 degree shift with respect of broadside user in the 

far field at 220 GHz and distance of 20 m. The red line represents the recreated pattern using 

the far field approximation, while the blue line is recreated using the near field model, as seen 

for both cases, the maximum is at 70 degree which represents the real direction of the user. 
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Figure 4.8- User is placed 1 m away from a rough PEC wall with an angle of 45 

degree with respect of the normal of the wall. A receiver array is placed 0.8 m 

away from center of the wall 

Figure 4.9- AoA estimation of a single frequency at 220 GHz, the user 

appears wrongfully to be in the broadside with respect to the SAR. 
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Finally, the AoA/Range map information is projected upon the mmWave image 

as outlined in section 3.5 to achieve SLAM, and the results are shown in figure 4.12.  

The results of SLAM are in strong agreement with simulation parameters with a 

deviation of less than 1 mm, and the cross range resolution is about 11 mm for a distance 

of 1.8m. 

 

 

 

 

 

 

Figure 4.10- Reconstrued mmWave image highlighting the rough wall and SAR. This image has 

range resolution of 2mm. 
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Figure 4.12- The localization of the user after projection for the simulated 2D 

scene. 

Figure 4.11- AoA/Range map from the estimated information of AoA/ToA of 

the recorded data. The user appears wrongfully to in the broadside at distance 

of 1.8 m with respect to the imaging aperture. Inset: a) a highlighted portion 

of the map showing the top view at 1.8 m. b) Cross-section of user amplitude 

peak. 
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4.2 Measurements 

An experiment for SLAM carried in THz lab is performed by setting up a 2D 

environment that consists of two VNA extenders [36] connected to two 23 dBi horn 

antenna are mounted on a one-dimensional motorized linear stage that will create a 13 cm 

monostatic synthetic aperture in which represent the base station. While for the user, it is 

represented by a single VNA extender connected to 23 dBi horn antenna as well. Finally, 

two drywalls one is in LoS while the other in NLoS of the base station are placed as 

shown in figure 4.13. 

The frequencies range of operation is from 220-330 GHz that gives a100 GHz 

bandwidth which yields a range resolution of 1.5 mm. For both the base station “imaging 

system” and the user a stepped-frequency signal is transmitted along this bandwidth with 

frequency step size of 20 MHz for a total of 5500 points. This enables the maximum 

allowable rage of approximately 3.75 m for the imaging system. The synthesized aperture 

illuminates the scene and record 𝑆21for the multiple frequency points in the defined 

Figure 4.13-2D experiment setup, as shown two drywalls are placed in line of sight and non-line 

of sight of motorized VNA extender that will act as a base station. While another VNA extender 

will act as a user that is going to be localized [32]. 
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frequency range. This recorded data will be used to reconstruct the raw mmWave image 

and then correct it using the approach outlined in chapter 2, the results are shown in 

figure 4.14 and 4.15.  

 

 

 

 

 

 

 

 

 

Figure 4.14- Reconstrued raw mmWave image of the 2D environment. The 2nd NLoS drywall 

appears behind the LoS drywall erroneously and needs correction [34]. 

Drywall 1 Drywall 2 

SAR 

Figure 4.15- Corrected mmWave image. Now, the 2nd dry wall is placed at the correct 

position [34]. 

Drywall 1 Drywall 2 
SAR 
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Then, the user sends tones in the same frequency range using stepped frequency 

that emulate ToA that is captured by the base station and are recorded as 𝑆21as well. By 

applying the AoA/ToA (range) estimation techniques to the recorded data, an AoA/range 

map is obtained as shown in figure 4.16. Finally, this AoA/Range information is 

projected on the corrected image with the outlined algorithm described in section 3.5 to 

achieve SLAM for the user as seen in figure 4.17. The results are verified with the actual 

distances using measuring tools and are in good agreement with the experiment results 

within centimeter accuracy ≈ 3mm. As for the cross-range resolution, it is approximately 

2.6 cm at distance of 2.8m for the 13cm synthesized aperture. 

 

 

 

 

Figure 4.16- AoA/Range map from the estimated information of AoA/ToA of 

the recorded data. The user appears wrongfully to in the broadside at distance 

of 2.78m with respect to the imaging aperture. Inset: a) a highlighted portion 

of the map showing the top view at 2.78 m. b) Cross-section of user 

amplitude peak. 
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In this chapter, both simulations and measurements were carried out to verify this 

thesis approach for SLAM. First, AoA simulations both in the near/far field were carried 

out and showed accurate angle localization for both cases and demonstrated the ability of 

the near field model to localize the angle even in far field scenarios. Then, a simple 2D 

SLAM scenario was simulated and was able to correctly localize the user with 2 mm 

range resolution and resolvable length of 11 mm at distance of 1.8. Finally, 

measurements were carried out in the lab to simulate 2 bounces NLoS SLAM scenario in 

which the proposed approach is able to correctly identify the user with centimeter 

accuracy as mentioned in this chapter. 
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Figure 4.17- the localization of the user after projection into the 

corrected 2D image [34]. 
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5 CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, centimeter accuracy SLAM is achieved by combining mmWave 

imaging and AoA/ToA estimation. The main goal of this work is to demonstrate the 

ability to localize users in the non-line-of-sight only with multiple reflections scenario 

with high accuracy. It is done that by exploiting both specular and diffuse scattering of 

mmWave signal due to surface roughness. As such, mmWaves are utilized to image both 

LoS and NLoS objects with millimeter-scale range. Then, AoA models for both near/far 

field regions are used to obtain the direction of signal arrival are presented.  

To validate the accuracy of this approach, 2D full-wave simulations were carried 

out to estimate the AoA for several scenes. First, for LoS only in the frequency of 220 

GHz scenario, it was demonstrated that the near field model can accurately estimate AoA 

and it is was identical to the far field approximation model when compared in the far field 

region. Moreover, a simple SLAM scenario is simulated where a mmWave image is 

reconstructed using a 13 cm monostatic SAR. This SAR operates in the range of 220-295 

GHz which yields a total bandwidth of 75 GHz with range resolution of 2 mm. Also, a 

source that emulates a user is placed in the NLoS with respect to the receiver transmits 

discreet frequency pilot signals within the 220-295 GHz bandwidth. By applying the 

Fourier Transform on the discreet frequency tones, we estimate both AoA and range 

which are then projected on the mmWave image. This will finally lead to the true 

localization of the user achieving centimeter accuracy in range and cross-range resolution 

of 11 mm at a distance of 1.8m  
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Furthermore, experimental measurements were carried out in the lab for a 2D non-

LoS scenario with multiple reflections that used 23 dBi Horn antenna coupled to VNA 

extenders to emulate both the base station and the user in the frequency range of 220-330 

GHz. Both mmWave image and AoA/ToA information are acquired, then the AoA/ToA 

information is projected onto the mmWave. The user was localized correctly 

demonstrating the capability of this approach to localize NLoS users from multiple 

reflections with a centimeter (3mm) accuracy in range and cross-range resolution of 

approximately 2.6 cm at distance of 2.8m for the 13cm synthesized aperture.           

5.2 Future work 

 However, there are many challenges and improvements that can be addressed in 

subsequent studies. The following points summarize such challenges: 

• Investigate the localization of a user where diffuse scattering signals dominate 

the multipath propagation. The loss of the specular direction information will 

result in localization ambiguity.   

•  The process of identifying the reflective surface boundary for image correction 

in this work is carried out manually. Future work will focus on the 

implementation of an algorithm that automates the process by identifying mirror 

surfaces and applying the mirroring correction. 

• Although the focus of this work is for SLAM, this work can be extended and 

used in mmWave channel estimation in wireless communications, thus leading to 

the reduction of training overhead which will lead to increased data rates. 
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