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ABSTRACT

Attributes - that delineating the properties of data, and connections - that describing

the dependencies of data, are two essential components to characterize most real-world

phenomena. The synergy between these two principal elements renders a unique data

representation - the attributed networks. In many cases, people are inundated with

vast amounts of data that can be structured into attributed networks, and their use

has been attractive to researchers and practitioners in different disciplines. For exam-

ple, in social media, users interact with each other and also post personalized content;

in scientific collaboration, researchers cooperate and are distinct from peers by their

unique research interests; in complex diseases studies, rich gene expression comple-

ments to the gene-regulatory networks. Clearly, attributed networks are ubiquitous

and form a critical component of modern information infrastructure. To gain deep

insights from such networks, it requires a fundamental understanding of their unique

characteristics and be aware of the related computational challenges.

My dissertation research aims to develop a suite of novel learning algorithms to

understand, characterize, and gain actionable insights from attributed networks, to

benefit high-impact real-world applications. In the first part of this dissertation, I

mainly focus on developing learning algorithms for attributed networks in a static

environment at two different levels: (i) attribute level - by designing feature selection

algorithms to find high-quality features that are tightly correlated with the network

topology; and (ii) node level - by presenting network embedding algorithms to learn

discriminative node embeddings by preserving node proximity w.r.t. network topol-

ogy structure and node attribute similarity. As changes are essential components

of attributed networks and the results of learning algorithms will become stale over

time, in the second part of this dissertation, I propose a family of online algorithms

for attributed networks in a dynamic environment to continuously update the learn-
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ing results on the fly. In fact, developing application-aware learning algorithms is

more desired with a clear understanding of the application domains and their unique

intents. As such, in the third part of this dissertation, I am also committed to advanc-

ing real-world applications on attributed networks by incorporating the objectives of

external tasks into the learning process.
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Chapter 1

INTRODUCTION

1.1 Motivation and Overview

In data mining and machine learning, we often use attributes1 as measurable

properties to characterize phenomena of real-world data (Bishop, 2006). One of the

most common assumptions in conventional data analytical tasks is that the feature

representations of different data samples are independent and identically distributed

(i.i.d.). However, this assumption is often untenable in the real world as different

data samples are often explicitly or implicitly correlated with complex dependen-

cies (Getoor and Taskar, 2007; Sen et al., 2008). The synergy between the feature

representations of individual data samples and the dependencies among different data

samples yields a unique data representation - referred as attributed networks (Akoglu

et al., 2012; Huang et al., 2017a,b; Li et al., 2017b,c; Perozzi et al., 2014a; Perozzi and

Akoglu, 2016, 2018; Pfeiffer III et al., 2014; Rezaei et al., 2017; Robles et al., 2016).

Attributed networks are ubiquitous in myriad of high-impact domains, including so-

cial media platforms, citation networks, biology networks, and critical infrastructure

systems, to name a few. As such, mining attributed networks has attracted a surge

of research interests and has been attractive to researchers and practitioners from dif-

ferent disciplines, such as computer science, social science, network science, biology,

and other related interdisciplinary research subjects. In order to harness the power

of attributed networks, we propose a suite of novel learning algorithms to help better

1In this dissertation, we use attributes and features interchangeably. Meanwhile, we also use

networks and graphs interchangeably.
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understand, characterize, and gain actionable insights from such networks, to benefit

high-impact real-world applications from different domains.

1.1.1 What Are Attributed Networks?

Networks1 are widely used to represent various types of information systems where

nodes represent entities such as users, web pages, and genes; while edges represent

interactions between entities such as friendships, hyperlinks, and gene interactions.

In contrast to conventional plain networks where only pairwise node dependencies are

observed, nodes on attributed networks are often affiliated with a rich set of attributes

delineating their properties. For example, the popularity of social media services not

only allow users to interact with each other at a low cost but also enables them

to generate and share rich content information (e.g., user profile and user-generated

posts) (Mislove et al., 2010); in the course of scientific collaboration, the collabora-

tions among scholars form a co-authorship network and scholars are also distinct from

their peers through their unique research profile (e.g., research interests and publica-

tions) (Yang et al., 2013); to unravel the cellular organizations and functionalities in

biology studies, gene ontology (GO) annotation information is often complementary

to the raw protein-protein interaction topological structure (Zhang et al., 2013).

Before presenting the detailed definitions of attributed networks, we will first

summarize the notations used in this dissertation. Following the commonly used

notations, we use bold uppercase characters for matrices (e.g., A), bold lowercase

characters for vectors (e.g., a), normal lowercase characters for scalars (e.g., a), and

calligraphic characters for sets (e.g., F). We represent the i-th row of matrix A as

A(i, :) or Ai∗, the j-th column as A(:, j) or A∗j, the (i, j)-th entry as A(i, j) or Aij,

the i-th element of vector a as ai, transpose of A and a as A′ and a′ respectively,

and trace of A as tr(A) if it is a square matrix. We use diag(a) to denote the

2



diagonalization of vector a. 1 denotes a column vector whose elements are all 1 and I

denotes the identity matrix. For any matrix A ∈ Rn×d, its Frobenius norm is defined

as ‖A‖F =
√∑n

i=1

∑d
j=1 A(i, j)2, its `2,1-norm is ‖A‖2,1 =

∑n
i=1

√∑d
j=1 A(i, j)2,

and its `0-norm counts the number of nonzero elements in the matrix. The `2-norm

of a vector a ∈ Rd is ‖a‖2 =
√

aTa. The `1-norm of a ∈ Rd is ‖a‖1 =
∑d

i=1 |ai|.

1(.) denotes an indicator function. Meanwhile, we use the subscript to denote the

matrices, vectors, or sets at a specific time stamp (e.g., At, at, and St).

Based on the above notations, the formal definition of attributed network and its

data representation are as follows.

Definition 1. (Attributed Networks): An attributed network G = (V , E ,F) con-

sists of three important components: (1) V: a set of nodes; (2) E ⊆ V × V: a set of

edges showing the dependencies among the nodes in V; and (3) F : a set of attributes2

delineating the properties of nodes; and (4) X : a set of node-attribute pairs such that

X ⊆ V × F .

Definition 2. (Data Representation of Attributed Networks): Let G be the

given attributed network, where V = {v1, ..., vn} is the node set, E = {e1, ..., em} is the

edge set, and F = {f1, ..., fd} is the attribute set. We use matrix A ∈ Rn×n
≥0 to denote

the adjacency matrix of the network, where Aij > 0 is a positive number denoting

the edge weight between vi and vj (Aij = 0 if no connection). Meanwhile, we use

the matrix X = [x1,x2, ...,xn]′ ∈ Rn×d to denote the feature representation of these

n data samples (e.g., the values of the node-attribute pairs X ), where xi ∈ Rd is the

attribute information of node vi.

The illustration of a typical attributed network is shown in Figure 1.1. As can

2We assume the feature values are numerical. The categorical features can also be considered

here with one-hot encoding.
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Adjacency Matrix

Content Matrix
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Figure 1.1: An Illustration of the Attributed Network.

be observed from the figure, an attributed network consists of two different data

modalities: (i) the content matrix describing the properties of data samples; and (ii)

the adjacency matrix characterizing the dependencies among different data samples.

1.1.2 Why Study Attributed Networks?

Apparently, to distill patterns or values from attributed networks, on one hand we

can only look at the attribute information of different data samples, and then apply

off-the-shelf machine learning and data mining tools; on the other hand, we can also

work on the network information and then take advantage of advanced graph mining

techniques. For example, to infer the political polarizations of users in a social net-

work, we can either employ the user content information (e.g., user profile and user

posts) and formulate the problem as a conventional classification problem, or take ad-

vantage of relationships among users (e.g., friendships or following/follower relations)

and tackle the problem within the statistical relational learning paradigm (Getoor

and Taskar, 2007; Taskar et al., 2001). These approaches, however, inevitably ignore
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the inherent correlations among two different data modalities of attributed networks.

In fact, these two data modalities are often complementary with each other, and re-

cent studies (Jensen et al., 2004; La Fond and Neville, 2010) verified the existence

of statistical dependencies (a.k.a. autocorrelations) between the attributes of linked

nodes. For example, in social media, the political views (reflected in the user posts)

of connected users are often more similar than those of a randomly selected user pair.

The root cause of the correlations can be attributed to various social phenomena,

including social influence (Marsden and Friedkin, 1993), homophily effect (McPher-

son et al., 2001), and diffusion process (Doreian, 1989), among others. Hence, one

natural question to ask is will the fusion of these seemingly irrelevant information

sources bring new insights?

Meanwhile, there are a wealth of fascinating research questions that we can

study on attributed networks. How to seamlessly fuse friendship relations and user-

generated content to boost friend recommendation in context-rich social networks?

How to identify anomalies that lead to system failures in a critical infrastructure net-

work by making use of the observed information of infrastructures (e.g., electricity

capacity of a power plant)? How to track the evolutionary patterns of academic com-

munities in a time-evolving collaboration network? Whether the attributed networks

can be used to solve other research problems with implicit network structure?

1.2 Research Challenges

To answer these above questions, it requires us to have a fundamental understand-

ing of the unique characteristics of attributed networks, and be aware of the related

computational challenges. Here, we summarize the main challenges that we often

encounter when we are dealing with attributed networks:

1. C1: Content Challenge – We are now in the era of big data, where huge amounts
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of high-dimensional data become ubiquitous in various domains. For example,

social media platforms are swarming with low-quality user-generated content,

and conventional text representations (e.g., Bag-of-Words and TF-IDF) often

lead to a high-dimensional noisy representation of users. Another example is

the high-dimensional gene expression of proteins in protein-protein interaction

(PPI) networks. In these cases, a critical issue known as the curse of dimen-

sionality arises. It refers to the phenomenon that data becomes sparser in the

high-dimensional space, adversely affecting the learning algorithms designed for

low-dimensional data (Friedman et al., 2001; Guyon and Elisseeff, 2003; Keogh

and Mueen, 2011; Li et al., 2017a). Also, with a large number of features,

learning models tend to overfit which may cause performance degradation on

unseen data; and it significantly increases the memory storage requirements

and computational costs for data analytics. As a summary, noisy and high-

dimensional feature representations of nodes make conventional learning algo-

rithms unequipped to handle attributed networks.

2. C2: Structure Challenge – Undoubtedly, in addition to the noisy node features,

the network structure which encodes the dependencies among different data

samples could also be noisy due to the imprecise data collection process and

other potential factors (Abufouda and Zweig, 2017; Gu et al., 2013; Namata

et al., 2010). Specifically, many attributed networks suffer from noisy links,

and the underlying reason is that these links do not encode the real data de-

pendencies and hence decreases the quality of the network. For example, in

biology studies, the PPI network is often obtained based on high-throughput

screening data analysis. In practice, the whole process is often erroneous, intro-

ducing noisy links to the constructed PPI networks. Meanwhile, the observed
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network structure may only yield us a coarse indication of relations, while in

many cases, a more nuanced representation of tie strength information among

different nodes is required. The aforementioned issues bring challenges to accu-

rate analysis of attributed networks as well as downstream applications.

3. C3: Fusion Challenge – We have shown that there are inherent correlations

among the two different data modalities of attributed networks, i.e., the for-

mation of one depends on and also influences the other one. Hence, effective

data fusion plays a central role when developing principled learning algorithms

on attributed networks. Despite its importance, the incompatibility issues may

naturally appear when we are trying to leverage these two data sources in a

collective manner (Singh and Gordon, 2008; Zhu et al., 2007). Firstly, the illu-

sion that all attributes are complementary to the network structure information

will break as connected nodes may not be similar in the original node feature

space due to the existence of noisy and irrelevant features. Secondly, as the

network structure itself is very noisy, the node attribute similarity may not be

aligned with the network topology structure. As such, a synergistic data fusion

over attributed networks necessitates a consensus feature space in which the

autocorrelation is maximally preserved.

4. C4: Evolution Challenge – A fundamental assumption behind existing learning

algorithms on attributed networks is that networks and the node attributes are

static and given a prior. However, this assumption is often untenable in practice

as most real-world attributed networks are intrinsically dynamic, characterized

by frequent structure and content changes. On one hand, the network structure

often evolves a wide range of ways with different evolutionary semantics (Ag-

garwal and Subbian, 2014). On the other hand, node attributes also change
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Figure 1.2: An Overview of My Research Contributions in This Dissertation.

dynamically such that new content patterns may emerge and outdated patterns

will fade. Examples include emerging topics and slang words in social media

after disasters. We refer such networks with both structure and content changes

as dynamic attributed networks. In such cases, learning models are required to

support online updates to maintain the freshness of end results for real-time

insights.

1.3 Research Contributions

My research work boils down to developing principled learning algorithms to tackle

the computational challenges (C1, C2, and C3) for static attributed networks, and

with an additional challenge (C4) for attributed networks in a dynamic environment.

The contributions of this dissertation are summarized as follows.

• Leverage feature selection for learning in a static environment : We study static

attributed networks at the attribute level by designing novel feature selection

algorithms to facilitate learning. The target is to find a subset of high-quality

features that show strong dependencies with the network structure, which are
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taken as input later by various off-the-shelf machine learning and data mining

algorithms for actionable insights.

• Leverage network embedding for learning in a static environment : We study

static attributed networks at the attributed level by presenting novel network

embedding algorithms. The goal is to map each node on the attributed network

into a new discriminative feature space in which the node proximity w.r.t. two

different data modalities are well preserved. Similarly, the learned embeddings

can also be utilized to advance various downstream graph mining tasks.

• Generalize feature learning in a dynamic environment : We generalize the above-

mentioned feature learning (including feature selection and network embedding)

algorithms in a dynamic environment when the attributed networks are contin-

uously evolving over time. The purpose of this study is to develop effective

yet efficient online learning algorithms that can quickly adapt to the changes of

attributed networks by updating the learning results on the fly, which in turn

enables us to gain real-time insights from the underlying system.

• Advance applications on attributed networks : We also attempt to advance real-

world applications on attributed networks across different disciplines. Different

from the aforementioned learning algorithms that are agnostic to specific tasks,

here we pay more attention to incorporating the objectives of specific appli-

cations and domain knowledge into the learning process, in a sense that the

developed algorithms will be customized for the targeted applications.

An overview of my dissertation research is summarized in Figure 1.2.
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1.4 Organization

The remainder of this dissertation is organized as follows. Chapter 2 reviews

related work on feature selection, network embedding, dynamic network analytics,

and attributed network analytics. Chapter 3 introduces the proposed novel feature

selection algorithms for learning on static attributed networks. Chapter 4 investigates

attributed networks from a different perspective with attributed network embedding.

Chapter 5 discusses how to develop an online feature selection algorithm for dynamic

attributed networks. Chapter 6 generalizes the attributed network embedding in a

dynamic setting by presenting an efficient online algorithm. Chapter 7 discusses the

application of node classification on attributed networks and shows how to capture

the personalized patterns of each node for relational learning. Chapter 8 studies the

anomaly detection problem on attributed networks and develops a general detection

framework with residual analysis. Chapter 9 investigates the streaming link prediction

problem on fast-evolving attributed networks and the proposed algorithm supports

the real-time prediction of missing links on the fly. Finally, Chapter 10 concludes the

dissertation and visions the paths for future work.
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Chapter 2

LITERATURE REVIEW

In this chapter, we review the related work from the following perspectives: (1)

feature selection; (2) network embedding; (3) dynamic network analytics; and (4)

attributed network analytics.

2.1 Feature Selection

Feature selection is imperative in alleviating the curse of dimensionality (Cover

and Thomas, 2012; Guyon and Elisseeff, 2003; Li et al., 2017a; Li and Liu, 2017) by

finding a subset of features of high quality and is essentially useful when the orig-

inal features are indispensable for model interpretation and knowledge distillation.

Concerning different selection strategies, they can be broadly grouped into three cat-

egories: filter methods, wrapper methods, and embedded methods. Filter methods

are independent of any learning algorithms and are thereby very efficient, they rely on

some data characteristics such as distance, consistency, dependency, and correlation

to measure the strength of each feature individually (Gu et al., 2012; He et al., 2005;

Peng et al., 2005; Robnik-Šikonja and Kononenko, 2003). Wrapper methods use the

prediction power of a predefined learning algorithm to evaluate the quality of the se-

lected features. They are inevitably computational expensive since the search space

grows exponentially with the number of features (Dy and Brodley, 2000; Guyon and

Elisseeff, 2003; Liu and Yu, 2005). Embedded methods is a tradeoff between these two

models which combines feature selection and model construction (Cai et al., 2010b;

Guyon et al., 2002; Nie et al., 2010). Therefore, they are usually comparably efficient

to filters and are comparably accurate to wrappers. Depending on whether label in-
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formation is involved, existing methods can be broadly classified as supervised (Tang

et al., 2014) and unsupervised algorithms (Alelyani et al., 2013). Supervised feature

selection directly makes use of the discriminative information embedded in the class

labels to find features to differentiate instances from different classes. Since label

information is time-consuming and expensive to obtain, there is a surge of interests

on unsupervised feature selection. Without label information in guiding the selection

phase, existing efforts seek for alternative criteria to assess the relevance of features,

including data similarity (He et al., 2006; Zhao and Liu, 2007; Zhao et al., 2013),

local and global discriminative information (Cai et al., 2010b; Du and Shen, 2015; Li

et al., 2012, 2018b; Qian and Zhai, 2013; Yang et al., 2011), and data reconstruction

error (Farahat et al., 2013; Li et al., 2017d; Zhao et al., 2016b). Traditional feature se-

lection algorithms cannot be directly applied on networked data as the i.i.d. assump-

tion does not hold. (Gu and Han, 2011) first studied supervised feature selection on

networked data, in particular, a graph regularized sparse learning framework is devel-

oped to capture the correlation between network structure and node attributes. (Tang

and Liu, 2012a) further investigated how to find relevant features from social media

data by incorporating various types of social relations, and it was later extended to

jointly find relevant instances and features simultaneously (Tang and Liu, 2013) since

both instances and features could be noisy. The above-mentioned attempts, how-

ever, are limited with the use of label information, which is often tedious to obtain

in practice. LUFS (Tang and Liu, 2012b) was among one of the first unsupervised

feature selection frameworks on networks. In particular, it leverages the community

structure of nodes to facilitate the selection of relevant features, which is performed

in two separate steps. (Li et al., 2016b) proposed a robust framework NetFS to em-

bed the community detection into feature selection, and the proposed framework is

robust to the noise among the observed links. However, it is argued that both LUFS
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and NetFS fail to take advantage of the fine-grained link information for feature

selection. Therefore, (Wei et al., 2015, 2016) proposed novel frameworks based on the

partial order relations among node pairs to exploit link information directly. These

efforts, however, fail to capture the finer-grained tie strength information embedded

on the network. Thus, (Li et al., 2019) developed an adaptive framework by char-

acterizing the optimal neighborhood structure around each node for unsupervised

feature selection. Additionally, feature selection on signed networks (Cheng et al.,

2017), and heterogeneous networks (Wei et al., 2017a) also have been investigated.

2.2 Network Embedding

Learning meaningful and discriminative representations of nodes in a network is

essential for various network analytical tasks as it avoids the laborious manual feature

engineering process. Additionally, as the node embedding representations are often

learned in a task-agnostic fashion, they are generalizable to a number of downstream

learning tasks such as node classification (Perozzi et al., 2014b), community detec-

tion (Wang et al., 2017b), link prediction (Grover and Leskovec, 2016), and visualiza-

tion (Tang et al., 2016). On top of that, it also has broad impacts in advancing many

real-world applications, ranging from recommendation (Wang et al., 2018), polyphar-

macy side effects prediction (Zitnik et al., 2018), to name disambiguation (Zhang and

Al Hasan, 2017). The basic idea is to represent each node by a low-dimensional vector

in which the relativity information among nodes on the original network is maximally

transcribed. The story of network embedding can be dated back to the early 2000s,

when myriad of graph embedding algorithms (Belkin and Niyogi, 2002; Roweis and

Saul, 2000; Tenenbaum et al., 2000) were developed, as a part of the general di-

mensionality reduction techniques. Graph embedding first builds an affinity graph

based on the feature representations of data instances and then embeds the affinity
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graph into a low-dimensional feature space. Along this line, we witnessed a surge of

factorization based network embedding methods in recent years, with the target to

decompose a carefully designed affinity matrix in capturing the first-order (Belkin and

Niyogi, 2002; Ahmed et al., 2013), higher-order (Cao et al., 2015; Ou et al., 2016) node

proximity, or community structure (Tang and Liu, 2009; Wang et al., 2017b) of the

underlying network. Despite their empirical success, the factorization based network

embedding methods have at least a quadratic time complexity w.r.t. the number of

nodes, prohibiting their practical usage on large-scale networks. The recent advances

of network representation learning are largely influenced by the word2vec (Mikolov

et al., 2013) model in the NLP community. The seminal work of Deepwalk (Perozzi

et al., 2014b) first makes an analogy between truncated random walks on a network

and sentences in a corpus, and then learns the embedding representations of nodes

with the same principle as word2vec. Typical embedding methods along this line

include LINE (Tang et al., 2015b), node2vec (Grover and Leskovec, 2016), and

PTE (Tang et al., 2015a). Recent work found that the embedding methods with

negative sampling (e.g., Deepwalk, LINE, PTE, and node2vec) can be unified

into a matrix factorization framework with closed-form solutions (Qiu et al., 2018),

which bridges the gap between these two families of network embedding methods.

Aforementioned methods mainly adopt a shallow model and the expressibility of

the learned embedding representations are rather limited. As a remedy, researchers

also resort to deep learning techniques (Cao et al., 2016; Chang et al., 2015; Kipf

and Welling, 2016; Veličković et al., 2017; Wang et al., 2016) to learn more complex

and nonlinear mapping functions. Many popular deep graph embedding algorithms

can be found in the Deep Graph Library1. In addition to the raw network struc-

ture, real-world networks are often presented with different properties, thus there is

1https://www.dgl.ai/
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a growing interest to learn the embedding representations of networks from different

perspectives, such as attributed network (Huang et al., 2017a,b; Yang et al., 2015),

heterogeneous networks (Chen and Sun, 2017; Dong et al., 2017), multi-dimensional

networks (Ma et al., 2018; Zhang et al., 2018), signed networks (Wang et al., 2017a;

Yuan et al., 2017), and dynamic networks (Li et al., 2017c; Zhou et al., 2018).

2.3 Dynamic Network Analytics

Many real-world networks are not static but are continuously evolving with a dif-

ferent rate (Aggarwal and Subbian, 2014; Spiliopoulou, 2011; Zhang, 2010). Hence,

the results of many network mining tasks will become stale and need to be updated

to keep freshness. Along this line, various dynamic learning algorithms have been

proposed to incrementally adjust the end results from the previous time stamp, with

applications in low-rank approximation (Chen and Tong, 2015; Sarwar et al., 2002;

Tong et al., 2008), community detection (Chakrabarti et al., 2006; Chi et al., 2009;

Kim and Han, 2009; Ning et al., 2007; Tang et al., 2008), classification (Aggarwal and

Li, 2011; Guo et al., 2014; Jian et al., 2018), link prediction (Li et al., 2014b, 2018a;

Sarkar et al., 2012; Zhao et al., 2016a), and anomaly detection (Aggarwal et al., 2011;

Manzoor et al., 2016; Ranshous et al., 2015; Yu et al., 2018). For example, (Tong

et al., 2008) proposed an efficient way to sample columns and/or rows from the net-

work adjacency matrix for low-rank approximation. (Ning et al., 2007) proposed an

incremental approach to perform spectral clustering on networks dynamically. (Ag-

garwal and Li, 2011) proposed a random-walk based method to perform dynamic

classification in content-based networks. In (Zhu et al., 2016), a temporal latent

space model is proposed for temporal link prediction on dynamic networks. (Gupta

et al., 2012) proposed to detect evolutionary outliers by leveraging both time and

community information. In certain scenarios, the edge stream representing the in-
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teractions among nodes are continuously arriving at an unprecedented rate, posing

additional challenges to dynamic network analytics as the size of edge stream could

be massive and cannot be easily stored, which further exacerbates the consequent

learning tasks. Hence, most of the existing efforts are dedicated to designing effective

data structures to summarize the observed network structure in real-time. For exam-

ple, (Aggarwal et al., 2010) first proposed to cluster a small graph (or a collection or

edges) in a streaming fashion by using the hash-based compression techniques. The

similar sketching mechanism is extended to the scenario when node attributes are at-

tached to the continuously generated nodes (Zhao and Yu, 2013). In (Aggarwal et al.,

2011), a reservoir sampling method is presented to maintain the structural summary

of the underlying network stream for clustering and outlier detection. In terms of

classification, (Aggarwal, 2011) employed a min-hash based approach to model the

dependencies between the sketched subgraphs and the class labels. Another preva-

lent way to model dynamic networks is through tensors, and a more detailed review

can be found in (Papalexakis et al., 2017). Contrast to the maintenance models

which attempt to replenish the staleness of the model, the other line of work tries

to quantify and understand the evolution mechanisms of the dynamic networks. For

example, (Leskovec et al., 2005) found that dynamic networks gradually get densified

over time, and the diameter of the network also shrinks. In (Leskovec et al., 2008),

the authors scrutinized the dynamic networks from a microscopic perspective and

developed a network model to simulate the generation process of dynamic networks.

In (Nigam et al., 2018), the authors studied the co-evolution patterns of opinions

and network connections. A more detailed review of dynamic network analytics is

in (Aggarwal and Subbian, 2014).
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2.4 Attributed Network Analytics

As attributed networks are becoming widely used to model and characterize a va-

riety of real-world information systems, we have witnessed an increasing amount of re-

search efforts in mining attributed networks in recent years. Existing research progress

on attributed networks can be summarized into two parts: (1) analytical studies and

modeling of attributed networks; and (2) predictive modeling of attributed networks.

The first line of work focused on understanding the interplay between the node at-

tributes and the network structure, as well as the underlying generation mechanisms

of attributed networks. One of the most widely observed patterns among linked indi-

viduals on an attributed network is the assortativity, which implies that similar nodes

are connected to one another more often than dissimilar nodes. In (Newman, 2003,

2018b), the authors found that the social factors including influence and homophily

induce the assortativity patterns, and tried to understand the assortativity effect by

quantifying the correlation of node attributes and the network structure. (Rabbany

et al., 2017) generalized to quantify the structural correlations of a single attribute

or a pair of attributes. Other studies tried to understand the dynamic patterns of

attributed networks (Crandall et al., 2008) and differentiate social influence and ho-

mophily effects with randomization tests (La Fond and Neville, 2010). Later on, a

network sampling schema (Robles et al., 2016) and a generative network model (Pfeif-

fer III et al., 2014) are developed for a better characterization of attributed networks.

Additionally, (Eswaran et al., 2018) discovered some interesting patterns about the

structural properties of attribute-induced subgraph and proposed to generate syn-

thetic graphs by matching the observed patterns. The second line of work made use

of the interplay between node attributes and network structure to perform various

predictive tasks on attributed networks, including subgraph matching (Du et al., 2017;
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Fang et al., 2016; Sakr et al., 2012; Tong et al., 2007), node classification (Hamilton

et al., 2017; Kipf and Welling, 2016; Li et al., 2017e; Singh and Gordon, 2008; Velick-

ovic et al., 2017; Zhu et al., 2007), network clustering (Akoglu et al., 2012; Bojchevski

and Günnemann, 2018; Gunnemann et al., 2013; Ruan et al., 2013; Yang et al., 2009,

2013), link prediction (Barbieri et al., 2014; Gao et al., 2011b; Gong et al., 2014; Li

et al., 2018a; Menon and Elkan, 2011; Wei et al., 2017b; Yin et al., 2010), anomaly

detection (Gao et al., 2010; Li et al., 2017b; Peng et al., 2018; Perozzi et al., 2014a;

Perozzi and Akoglu, 2016; Sánchez et al., 2013), pattern mining (Gunnemann et al.,

2010; Lee et al., 2016; Silva et al., 2012), ranking (Gao et al., 2011a; Hsu et al., 2017),

and network alignment (Heimann et al., 2018; Zhang and Tong, 2016; Zhou and De la

Torre, 2012). In this dissertation, we propose novel learning algorithms for attributed

networks from a new perspective with feature learning. In addition, we systemati-

cally investigate online algorithms for attributed networks in a dynamic environment

to replenish the end results, which is rather underexplored in the existing literature.

It should also be noted that in addition to the attributed networks, another widely

used way to fuse different information modalities is through tensors and it is beyond

the focus of this dissertation (Araujo et al., 2017; Papalexakis et al., 2017).
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Chapter 3

FEATURE SELECTION ON ATTRIBUTED NETWORKS

To facilitate the computational understanding of attributed networks, we first propose

to investigate attributed networks at the attribute level by developing novel feature

selection algorithms to find a high-quality feature subset that is tightly correlated with

the network structure. After the feature selection phase, the relevant feature subset

can be taken as input for off-the-shelf machine learning and data mining algorithms.

3.1 Overview

On attributed networks, as the node features are often in a high-dimensional fea-

ture space, the illusion that all features are dovetailed with the network topological

structure is not always true. As in the case of academic collaboration networks, fea-

tures like gender are rather more independent of network structure than discerning

features like research interests. On top of that, deviating or noisy features that are

not consistent with the network topology may jeopardize the discovery of actionable

and explainable patterns upon it. These observations necessitate the usage of feature

selection algorithms (Guyon and Elisseeff, 2003; Li et al., 2017a) to find a set of rel-

evant features closely correlated with the network structure. As it is easy to amass

substantial amounts of unlabeled data while label information is costly to obtain,

we focus on unsupervised feature selection for attributed networks. Existing unsu-

pervised feature selection algorithms cannot be directly applied or are not suitable

for attributed networks because of their distinct characteristics: (1) on attributed

networks, data instances are not independent and identically distributed (i.i.d.) but

inherently interconnected with each other; (2) in addition to noisy features in the
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content space, the observed networks are typically very noisy on grounds of imperfect

measurements (Newman, 2018a). To this end, we first propose a general unsupervised

framework NetFS (Li et al., 2016b) that is robust to the noisy network structure.

In fact, as NetFS models the network structure at a macro-level by community

analysis, thus it fails to exploit the finer-grained tie strength information and may

lead to suboptimal results. Hence, we also develop an adaptive unsupervised feature

selection framework ADAPT (Li et al., 2019) by characterizing and leveraging the

finer-grained tie strength information embedded on the network.

Before illustrating the details of the proposed frameworks, we first define the

problem of unsupervised feature selection for attributed networks as follows.

Problem 1. Unsupervised Feature Selection for Attributed Networks

Given: An attributed network G represented by the content matrix X ∈ Rn×d (where

the feature space is F) and the adjacency matrix A ∈ Rn×n
≥0 , where n and d

denote the number of nodes and features, respectively1. The number of selected

features is specified as m (m << d).

Select: A subset of most relevant features S ⊂ F (|S| = m) that is tightly correlated

with the network structure2.

3.2 Proposed Robust Framework – NetFS

In this section, we introduce the proposed robust unsupervised feature selection

framework NetFS in detail. An illustration of NetFS is illustrated in Figure 3.1.

Firstly, to capture the inherent interactions among networked instances, we introduce

1For undirected network, the adjacency matrix is symmetric such that A = A′. To model

the network information on directed networks, we specify A = max(A,A′), where max(∗, ∗) is an

element-wise maximum operation.
2The exact optimization function is given in the following sections.
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Figure 3.1: An Illustration of the Robust Feature Selection Framework NetFS.

the concept of latent representations to uncover some hidden attributes encoded in

the network structure. Secondly, to alleviate the adverse effects of noisy links, we

propose to embed the latent representation learning into the feature selection phase.

In this way, these two phases influence and help each other iteratively.

3.2.1 Problem Formulation

We first discuss how to model the latent representations from the network struc-

ture, and then introduce how to embed the latent representation learning into the

content information for feature selection.

Modeling Link Information with Latent Representation. On attributed net-

works, data instances connect to each other due to a variety of factors. For example,

in social networks, these factors can be movie fans, sports enthusiasts, colleagues,

family members, etc; in coauthor networks, factors include similar research interests,

same affiliations, etc. These hidden factors are often referred as latent representa-

tions since they can describe a set of diverse affiliation factors hidden in a network.

Latent representations of different instances interact with each other to form link in-

formation, and the instances with similar latent representations are more likely to be

connected with each other than the instances with dissimilar latent representations.

22



Uncovering latent representations has received increasing attention recently in

data mining and machine learning communities (Airoldi et al., 2008; Newman and Gir-

van, 2004; Tang and Liu, 2009). Here, we model the latent representations from link

information by symmetric nonnegative matrix factorization (SymNMF) (He et al.,

2011; Kuang et al., 2012). The principle of SymNMF is consistent with network clus-

tering such that each networked instance consists of a mixture of latent attributes.

Mathematically, it decomposes the adjacency matrix A into a product of a nonnega-

tive matrix U and its transpose U′ in a low-dimensional latent space:

min
U≥0
‖A−UU′‖2

F , (3.1)

where U ∈ Rn×c
≥0 is the latent representations of all n instances, and c is the number

of latent factors that we need to specify.

Embedding Latent Representation Learning into Feature Selection. Con-

sidering the fact that the link information on attributed networks could be noisy and

incomplete, latent representations that are directly derived from link information may

jeopardize feature selection on the content space. In addition, according to the ho-

mophily effect (McPherson et al., 2001) and social influence (Marsden and Friedkin,

1993) in social science, content information will affect and is dependent on the latent

representations from the network structure. Therefore, it is desirable to embed latent

representation learning into the feature selection phase on the content space. As a

result, latent representation learning and feature selection could help and boost each

other. Content information can help learn better latent representations which are

robust to noisy links, and better latent representations can fill the gap of scarce label

information and rich link information to guide feature selection.

As latent factors encode some hidden attributes of instances, they should be re-

lated to some attributes of networked instances. Therefore, we take U as a constraint

23



to model the content information through a multivariate linear regression model:

min
W
‖XW −U‖2

F , (3.2)

where W ∈ Rd×c is a transformation matrix. Each row vector W(i, :) measures the

importance of the i-th feature. To achieve feature selection, we add an `2,1-norm

regularization term on W for a joint sparsity among all c latent factors:

min
W
‖XW −U‖2

F + α‖W‖2,1, (3.3)

where parameter α controls the sparsity of the model.

By combining the objective functions in Eq. (3.1) and Eq. (3.3), the final objective

function that embeds latent representation learning into feature selection phase can

be formulated as follows:

min
U≥0,W

J (W,U) = ‖XW −U‖2
F + α‖W‖2,1 +

β

2
‖A−UU′‖2

F , (3.4)

where β is a parameter to balance the latent representation modeling and the fea-

ture selection in the content space. It can be observed from Eq. (3.4) that when

W is fixed, the latent representation learning phase is not only associated with the

adjacency matrix A, but also the content matrix X. In this way, the learned latent

representations can capture their inherent correlations and are more robust to noisy

links. When the latent representations U is fixed, they will take the role of label

information to steer feature selection in a supervised way.

3.2.2 Optimization Solution

Now, we talk about how to solve the optimization problem of NetFS. The objec-

tive function in Eq. (3.4) is not convex w.r.t. U and W simultaneously. Besides, due

to the `2,1-norm regularization term, it is also not smooth. We adopt an alternating

optimization scheme to solve this problem.
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When U is fixed, the objective function is convex w.r.t. W. Therefore, we take

the derivative of J (W,U) with respect to W and set it to be zero, then we have:

X′(XW −U) + αDW = 0, (3.5)

where D ∈ Rd×d is a diagonal matrix such that D(i, i) = 1
2‖W(i,:)‖2 . It should be noted

that in practice, ‖W(i, :)‖2 could be very close to zero. Therefore, we define D(i, i) =

1
2‖W(i,:)‖2+ε

, where ε is a very small constant. Since X′X is a positive semidefinite

matrix, αD is a diagonal matrix with positive entries, thus their summation X′X+αD

is positive definite. Therefore, W has a closed-form solution, which is:

W = (X′X + αD)−1X′U. (3.6)

By substituting the above solution of W into Eq. (3.4), we get:

min
U≥0
J (U) = tr(U′U)− tr(W′MW) +

β

2
‖A−UU′‖2

F

= tr(U′(In −XM−1X′)U) +
β

2
‖A−UU′‖2

F ,

(3.7)

where M = X′X + αD. The problem in Eq. (3.7) is a standard bound-constrained

optimization problem, we propose to use projected gradient descent (Lin, 2007) to

solve it. Now the objective function can be reformulated as:

min
U≥0
J (U) = tr(U′(In −XM−1X′)U) +

β

2
‖A−UU′‖2

F . (3.8)

Let Ut be the update of U at the t-th iteration. It is updated by the following rule:

Ut+1 = P [Ut − st∇J (Ut)], (3.9)

where P [Ut−st∇J (Ut)] is a box projection operator which maps a point to a bounded

nonnegative region. st is the step size at the t-th iteration and can be determined by

the Armijo rule (Bertsekas, 1999). To be more specific, st = θat , where at is the first

nonnegative integer such that the condition J (Ut+1)−J (Ut) ≤ σ〈∇J (Ut), (Ut+1−

Ut)〉 is satisfied, where θ and σ are two predefined parameters between 0 and 1,

〈A,B〉 represents the inner product operation between two matrix A and B.
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Algorithm 1 Proposed Feature Selection Framework NetFS.

Input: Attributed network G, the number desired features m, parameters α and β.

Output: The top-m ranked features

1: Initialize Dk as an identity matrix, and set k = 0;

2: while objective function value in Eq. (3.4) not converge do

3: Compute Mk = X′X + αDk;

4: Obtain Uk+1 by projected gradient descent in Eq. (3.9);

5: Obtain Wk+1 by Eq. (3.6);

6: Update Dk+1 with Wk+1;

7: k = k + 1;

8: end while

9: Rank features according to ‖W(i, :)‖2.

3.2.3 Time Complexity Analysis

The pseudocode of the proposed NetFS framework is shown in Algorithm 1. In

each iteration, when W is fixed, we use projected gradient descent method to update

U, the computational cost to obtain the gradient in Eq. (3.9) is O(n2d) + O(nd2) +

O(n2c). Then we fix U to update W, we can first precompute X′X once, which

requires the O(nd2) in the worst case; later on, the computation in Eq. (3.6) requires

O(d3) + O(d2c) + O(ndc). In practice, the computational of the matrix inversion

operation can be further accelerated by solving a linear equation.

3.2.4 Convergence Analysis

In summary, the objective function in Eq. (3.4) is solved through an alternating

way. When W is fixed, we use projected gradient descent through Eq. (3.9) to update

U; then we fix U and employ Eq. (3.6) to update W, and the diagonal matrix D is
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updated as well. Later on, we sort the features in a descending order according to the

matrix W and return top-m ones. Specifically, the larger the value ‖W(i, :)‖2 is, the

more important the i-th feature is. Next, we show the objective function of NetFS

in Eq. (3.4) is guaranteed to converge with the proposed optimization algorithm.

Lemma 1. The following inequality holds if Wk(i, :) and Wk+1(i, :) are non-zero

vectors (i=1,2,...,d) (Nie et al., 2010):

‖Wk+1‖2,1 −
∑
i

‖Wk+1(i, :)‖2
2

2‖Wk(i, :)‖2

≤ ‖Wk‖2,1 −
∑
i

‖Wk(i, :)‖2
2

2‖Wk(i, :)‖2

. (3.10)

Theorem 1. The alternating optimization procedure will decrease the objective func-

tion value of Eq. (3.4).

Proof. During the (k+1)-th iteration, when Wk is fixed, we update U with projected

gradient descent, which decreases the objective function J (U) for appropriate choices

of step size. Therefore, we have:

J (Uk+1,Wk) ≤ J (Uk,Wk). (3.11)

Then when Uk+1 is fixed, we obtain the optimal solution Wk+1 through Eq. (3.6)

and Wk+1 is the solution of the following objective function:

min
W
‖XW −Uk+1‖2

F + αtr(W′DkW). (3.12)

Therefore, we have the following inequality:

‖XWk+1 −Uk+1‖2
F + αtr(W′

k+1DkWk+1) ≤ ‖XWk −Uk+1‖2
F + αtr(W′

kDkWk)

⇒ ‖XWk+1 −Uk+1‖2
F + α‖Wk+1‖2,1 − α(‖Wk+1‖2,1 −

∑
i

‖Wk+1(i, :)‖2
2

2‖Wk(i, :)‖2

)

≤ ‖XWk −Uk+1‖2
F + α‖Wk‖2,1 − α(‖Wk‖2,1 −

∑
i

‖Wk(i, :)‖2
2

2‖Wk(i, :)‖2

).

(3.13)
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Integrating the results in Lemma 1, we have the following:

‖XWk+1 −Uk+1‖2
F + α‖Wk+1‖2,1 ≤ ‖XWk −Uk+1‖2

F + α‖Wk‖2,1

⇒ J (Uk+1,Wk+1) ≤ J (Uk+1,Wk) ≤ J (Uk,Wk),

(3.14)

which completes the proof. �

3.3 Experimental Evaluation of NetFS

We conduct experiments to assess the performance of NetFS in performing un-

supervised feature selection on attributed networks. We first introduce the datasets

and experimental settings before presenting details of the experiments.

Datasets. Three real-world attributed networks, BlogCatalog, Flickr, and Epinions

are used for evaluation. BlogCatalog is a social blog directory in which users can post

their blogs under different predefined categories. The tags of blogs from users form

the feature information, while the major categories of blogs by users are considered as

ground truth. Flickr is an image sharing website, users can provide tags for the photos

they upload which provide feature information. Besides, users interact with others

forming link information. Photos are organized under some predefined categories,

which are used as ground truth. To facilitate the comparison with the online version

of NetFS that is designed for the dynamic attributed networks (will be introduced

later in Chapter 5), we randomly disturb 0.1% edges and 0.1% feature values over

20 time stamps for static attributed networks BlogCatalog and Flickr. Epinions is a

product review website in which users can share their reviews about products. Users

themselves can also build trust relations to seek advice from others. Features are

formed by the bag-of-words model, while the major categories of reviews by users are

taken as ground truth of class labels. Since the time information when users build

trust relationships is available, we crawled and collected the site at 17 different time

stamps to form a dynamic attributed network. Then for all these three datasets,
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Table 3.1: Detailed Information of the Datasets Used for NetFS and TeFS.

BlogCatalog Flickr Epinions

# of nodes 5,196 7,575 5,665

# of features 8,189 12,047 10,382

# of links 171,743 239,738 97,123

# of classes 6 9 24

# of time stamps 20 20 17

we rerun NetFS and other baselines at each time stamp and report the average

evaluation performance across different time stamps. Some statistics of these datasets

are listed in Table 3.1.

Experimental Settings. Following the standard way to assess unsupervised feature

selection (Cai et al., 2010b; Li et al., 2012; Yang et al., 2011), we compare different

methods in terms of the clustering performance3. Two commonly used clustering per-

formance metrics, i.e., normalized mutual information (NMI) and clustering accuracy

(ACC) are used.

Let C and C ′ denote the clustering results from ground truth class labels and the

predicted cluster labels, respectively. The mutual information between two clusters

C and C ′ is:

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j)log

p(ci, c
′
j)

p(ci)p(c′j)
, (3.15)

where p(ci) and p(c′j) are the probabilities of instances in cluster ci and c′j, respectively.

p(ci, c
′
j) indicates the probability of instances in cluster ci and in c′j at the same time.

Then, NMI is defined as:

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′)
, (3.16)

3As mentioned above, the average clustering performance across different time stamps is reported.
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where H(C) and H(C ′) represent the entropies of clusterings C and C ′, respectively.

Let pi and qi be the clustering result and the ground truth label for instance ui,

respectively. Then, clustering accuracy (ACC) is defined as:

ACC =
1

n

n∑
i=1

δ(qi,map(pi)), (3.17)

where n is the total number of instances, δ(.) is an indicator function such that

δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0. map(x) permutes the predicted cluster

labels to match the ground truth as much as possible.

The proposed NetFS is measured against the following state-of-the-art unsuper-

vised feature selection algorithms:

• LC: Laplacian score (He et al., 2005) evaluates feature importance via its ability

of locality preservation.

• SPEC: It is an extension of Laplacian Score where features are selected using

spectral analysis (Zhao and Liu, 2007).

• NDFS: Features are selected via joint nonnegative spectral analysis and `2,1-

norm regularization (Li et al., 2012).

• LUFS: Social dimensions are first extracted from link information, then they are

utilized to guide feature selection in the content space (Tang and Liu, 2012b).

In LS and NDFS, as suggested by the original papers (He et al., 2005; Li et al., 2012),

we set the number of neighborhood size as 5 to construct the affinity matrix. For

NDFS, LUFS, and NetFS, the number of clusters or pseudo labels is specified to be

the number of classes. NDFS and LUFS have different regularization parameters,

we set these parameters by the suggestions from the original papers (Li et al., 2012;

Tang and Liu, 2012b). In the proposed NetFS, we also have two regularization

parameters α and β. In the experiments, we empirically set α as 10 and β as 0.1.
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Table 3.2: Clustering Results Evaluation of NetFS and Baselines on BlogCatalog.

metric ACC (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 26.83 28.41 27.34 24.35 31.87 27.62 28.05 29.47 30.81 31.98

SPEC 18.34 18.01 18.65 19.32 21.01 22.87 21.65 22.32 24.50 24.37

NDFS 24.12 30.82 32.56 31.78 34.35 32.95 33.85 44.67 41.67 43.22

LUFS 21.30 21.89 31.65 32.01 32.36 33.45 34.12 42.40 41.34 43.83

NetFS 49.99 43.04 43.25 42.89 42.09 43.56 43.44 43.31 43.08 43.59

metric NMI (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 8.21 7.54 5.86 4.54 7.93 5.03 5.55 5.64 6.06 6.83

SPEC 0.21 0.19 0.54 0.68 0.81 1.90 3.11 2.15 5.43 3.36

NDFS 10.19 16.50 18.67 13.68 17.05 14.36 14.98 22.77 23.20 25.51

LUFS 4.21 4.05 14.19 14.98 16.11 16.98 18.93 27.61 26.79 24.48

NetFS 33.21 23.45 24.04 23.18 23.83 23.63 25.49 25.98 23.85 24.72

Each feature selection algorithm is first applied to select features, then K-means

clustering is performed based on the selected features. Since K-means may converge

to local minima, we repeat the process 20 times and report the average. Normally,

the higher the ACC and NMI values are, the better the selected features are.

Quality of Selected Features by NetFS. We compare the quality of selected fea-

tures by NetFS and other baseline methods on the three aforementioned datasets.

The number of selected features are varied among {200, 400, ..., 2000}. The compari-

son results are shown in Table 3.2, Table 3.3, and Table 3.4.

We make the following observations: (1) NetFS outperforms traditional unsuper-

vised feature selection algorithms in almost all cases by obtaining better clustering

performance. We also perform pairwise Wilcoxon signed-rank test (Demšar, 2006)

between NetFS and these baseline methods, the test results show NetFS is sig-

nificantly better, with a 0.05 significance level. A major reason is that traditional
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Table 3.3: Clustering Results Evaluation of NetFS and Baselines on Flickr.

metric ACC (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 12.26 12.71 12.38 13.07 13.26 13.09 14.25 15.88 17.23 16.60

SPEC 12.14 12.42 13.18 13.53 14.61 14.36 14.51 14.69 14.92 14.36

NDFS 15.41 17.25 26.27 28.56 35.54 33.24 37.90 38.65 41.57 44.28

LUFS 11.89 19.24 20.08 22.56 23.24 28.58 28.52 31.44 34.79 39.72

NetFS 23.04 31.52 33.60 36.21 35.52 42.56 46.46 41.35 47.42 35.78

metric NMI (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 0.67 0.72 0.64 1.55 1.81 2.49 2.50 4.31 4.67 3.38

SPEC 0.18 0.54 0.74 1.55 1.41 1.38 1.68 1.64 1.72 1.81

NDFS 3.49 5.82 9.00 10.72 17.44 16.21 18.92 22.77 24.06 30.68

LUFS 1.52 7.98 9.56 13.21 12.88 14.62 14.41 15.88 20.04 25.20

NetFS 11.61 16.55 20.28 20.56 21.67 23.38 26.54 25.40 28.91 25.42

Table 3.4: Clustering Results Evaluation of NetFS and Baselines on Epinions.

metric ACC (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 15.29 13.45 13.08 12.81 11.47 11.62 12.26 12.95 12.86 11.06

SPEC 14.20 12.87 12.76 11.08 10.26 10.08 10.55 11.26 11.50 10.64

NDFS 12.81 11.82 12.41 12.40 12.63 14.52 14.02 15.46 14.75 14.89

LUFS 13.21 11.28 11.42 11.59 12.56 14.37 13.54 14.32 13.61 16.88

NetFS 14.04 16.66 18.27 20.48 20.46 20.98 24.82 23.79 23.91 27.32

metric NMI (%)

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

LS 1.42 2.05 2.28 2.72 2.08 2.13 2.22 2.31 2.28 2.13

SPEC 1.80 2.07 2.38 2.53 2.58 2.87 2.82 2.39 2.61 2.64

NDFS 2.29 2.50 2.92 3.23 3.83 4.00 4.24 4.49 4.98 5.67

LUFS 2.32 2.52 2.40 2.71 3.33 3.87 3.92 4.42 4.39 5.13

NetFS 3.87 5.80 6.91 6.93 8.92 10.04 10.83 11.45 11.65 10.26
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Figure 3.2: Parameter Study of NetFS on Epinions Dataset.

algorithms can only handle i.i.d. data while NetFS exploits both content informa-

tion and network structure to obtain good features. (2) NetFS and LUFS deal with

network and content information differently. LUFS performs network structure mod-

eling and feature selection separately and the feature selection performance is highly

dependent on the quality of extracted latent representations, thus it is very sensitive

to the noise among the links. In contrast, NetFS embeds the latent representation

learning phase into the feature selection. Therefore, content information is used adap-

tively to obtain better latent factor representations because better latent factors can

contribute to selecting more relevant features. (3) On BlogCatalog, NetFS works

well with only a few hundred of features. Flickr and Epinions datasets have more

features than BlogCatalog, but NetFS still achieves good clustering performance

with only around 1/8 and 1/7 of total features, respectively.

Parameter Sensitivity Study. NetFS has two important parameters - α controls

the sparsity of the model while β balances the latent representation learning and

feature selection phases. We fix one parameter each time and vary the other one

to see how it affects the feature selection performance. As the settings mentioned
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above, we assess the feature selection performance in terms of clustering with different

number of selected features. In Figure 3.2(a), we present the clustering performance

of NetFS on Epinions dataset in terms of ACC. We first fix the parameter β to be

0.1 and vary the other parameter α as {0.001, 0.01, 0.1, 1, 10, 100, 1000}. As shown

in Figure 3.2(a), with an increase of α, the clustering performance first increases

then becomes stable between 1 and 1000. The reason is that when α is small, the

sparsity of the model is low, which is not suitable for feature selection. Then we fix

α to be 10 and vary β in {0.001, 0.01, 0.1, 1, 10, 100, 1000}, the results are presented

in Figure 3.2(b), we can observe that the clustering performance is less sensitive to

β compared with α, the performance is relatively better when β is around 1. The

clustering performance is relatively more sensitive to the number of selected features,

which is still an open problem in unsupervised feature selection.

3.4 Proposed Adaptive Framework - ADAPT

In this section, we present the proposed adaptive unsupervised feature selection

framework ADAPT. Even though the aforementioned robust framework NetFS (Li

et al., 2016b) and several other research efforts (Tang and Liu, 2012b; Wei et al.,

2015, 2016) enable the selection of relevant features in an unsupervised manner, these

attempts, however, overwhelmingly focus on binary relations (e.g., coauthors or not)

among nodes which only yield a coarse indication of the heterogeneity of relations.

As indicated by tie strength theory (Gilbert and Karahalios, 2009; Granovetter, 1973;

Xiang et al., 2010), the strength of links could vary remarkably over the full spectrum

(e.g., from close friends to acquaintances), thus treating all links equally may result

in the selection of a suboptimal feature set. For example, in academic collaboration

networks, informative features such as research interests should not only be able to

make a distinction between coauthors and non-coauthors but also should distinguish

34



network reconstruction
feature subset 

adaptive neighborhood characterization

minimize    the difference

Figure 3.3: An Illustration of the Adaptive Feature Selection Framework ADAPT.

collaborators with strong ties from the ones with weak ties.

ADAPT assumes that the observed features can be employed to obtain the adap-

tive neighborhood structure around each node. Then to find a subset of the most

informative features, ADAPT further assumes that the network structure can be

regenerated (i.e., network reconstruction) through these informative features via a

probabilistic framework. At last, to capture the inherent correlation between net-

work structure and node attributes, ADAPT imposes a constraint on the network

reconstruction process to ensure that it preserves the adaptive neighborhood struc-

ture measured by the tie strength. An illustration of these three aforementioned steps

of ADAPT is shown in Figure 3.3.

3.4.1 Problem Formulation

Here, we will elaborate on these three aforementioned phases in detail.

Characterizing the Adaptive Neighborhood. First, we embark on the definition

of the adaptive neighborhood structure around each node.

Definition 3. Adaptive Neighborhood Structure: The adaptive neighborhood

structure around the node vi is encoded in the tie strength vector ai = [ai1, ...ain]′ ∈ Rn

with the following constraints: (i) 1′ai = 1; (ii) aij ≥ 0, ∀vj ∈ N (vi); (iii) aij = 0,
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∀vj /∈ N (vi). We denote the constraint that is imposed on ai as Ωi.

Motivated by the dyadic hypothesis (Granovetter, 1973) in sociology, the charac-

terization insinuates that the strength of a tie is largely determined by how similar

the characteristics of two end nodes are w.r.t. node attributes (Xiang et al., 2010).

However, it faces several unique challenges. Firstly, as label information of nodes is

both time and labor intensive to acquire, we are in short of reliable ground truths to

measure whether a node pair is indeed similar or not. Second, for each individual on

the network, the number of its strongly connected nodes and the number of weakly

connected nodes could differ remarkably.

To tackle these challenges, we introduce the concept of pseudo class labels to

portray the characteristics of nodes. For each node vi, we use yi ∈ {0, 1}c to denote

its pseudo class label vector (c is the number of pseudo classes) and we assume it can

be obtained by applying a mapping function f(.) : Rd → Rc on its feature vector xi:

yi = f(xi) + εi (∀i = 1, ..., n), (3.18)

where εi ∈ R (i = 1, ..., n) are independent noisy terms.

With the concept of pseudo labels, we can characterize the adaptive neighborhood

structure around each node. Specifically, we assume that the pseudo label of each

node vi (i = 1, ..., n) can be estimated via a weighted average of the noisy pseudo

labels of its neighbors on the attributed network. Let the estimated pseudo class label

vector of node vi be f̂(xi), then it holds that f̂(xi) ≈
∑n

j=1 aijyj. More concretely,

to obtain the optimal weight vector ai, we can minimize the Manhattan distance4

between the estimator and the ground truth pseudo class label (without noise) as:

min ‖
n∑
j=1

aijyj − f(xi)‖1 s.t. ai ∈ Ωi, (∀i = 1, ..., n). (3.19)

4We choose to use the Manhattan distance for the sake of simplicity, but it can be extended to

other distance measures.
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In particular, the node vj has a stronger tie with node vi (w.r.t. the pseudo label

estimation) if the corresponding value aij is higher, and vice versa. It is also in line

with the dyadic hypothesis (Granovetter, 1973) as higher node attribute similarity

implies similar pseudo labels, which leads to stronger tie strength.

Reconstruct the Network. Our target is to find a subset of features S that are the

most tightly correlated to the network structure, thus we assume that the observed

links E on the network can be reconstructed from the feature subset S. We first define

how to measure the node similarity w.r.t. a subset of informative features S.

Definition 4. (Node Similarity w.r.t. S): Given a feature subset S and the

corresponding feature indicator vector w ∈ {0, 1}d, the node similarity between two

nodes vi and vj on the attributed network G is defined as sij = x′idiag(w)xj.

From a generative point of view, given the node vi, we assume that the probability

of an edge (e.g., (vi, vj)∈ E) can be decided by quantifying how similar the two end

nodes vi and vj are in the feature space S. Then for each observed link (vi, vj) ∈ E ,

the probability that vj is in the context of vi is determined by the softmax function

as follows:

p(vj|vi) =
exp(x′idiag(w)xj)∑n

m=1 exp(x′idiag(w)xm)
. (3.20)

The above formulation implies that the more similar node vj and node vi is in the

feature space S, the more likely we can reconstruct the observed link (vi, vj) ∈ E .

Capturing the Correlation between Network and Node Attributes. To

capture the correlation between node attributes and network structure, for each node

vi, we enforce its conditional distribution vector pi = [p(v1|vi), ..., p(vn|vi)]′ to preserve

the optimal adaptive neighbor structure specified by the tie strength vector ai. This

target can be achieved by minimizing the KL divergence between the distributions pi
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and ai. By summing up the KL divergence for all nodes, we obtain:

min
n∑
i=1

γiDKL(ai||pi) s.t. 1′w = m; wm ∈ {0, 1}, (∀m = 1, ..., d), (3.21)

where γi is introduced to show the prestige of node vi, and its value can be determined

by various node centrality measures such as degree centrality and PageRank (Zafarani

et al., 2014). We can further expand the above objective function value as follows:∑
(i,j)∈E

γiaijlog(aij)−
∑

(i,j)∈E

γiaijlogp(vi|vj). (3.22)

In the above equation, the computation of the conditional probability p(vj|vi) is very

expensive due to the summation of all possible terms
∑n

m=1 exp(x′idiag(w)xm) in

the denominator of the softmax function, especially when the number of nodes n is

large. To address this issue, we make use of the negative sampling approach proposed

in (Mikolov et al., 2013) to reformulate the optimization problem in Eq. (3.21):

min
∑

(i,j)∈E

γiaijlog(aij)−
∑

(i,j)∈E

γiaij
(

logσ(sij) +
K∑
m=1

Evm∼Pv [logσ(−sim)]︸ ︷︷ ︸
Θij

)

s.t. 1′w = m; wm ∈ {0, 1}, (∀m = 1, ..., d).

(3.23)

where σ(x) is the sigmoid function, and K is the number of negative samples. Given

the node vi, the task now is to distinguish its neighborhood nodes vj from other K

nodes randomly drawn from the noisy distribution Pv – proportional to the node

degree distribution raised to the power of 3/4 (Mikolov et al., 2013).

The optimization problem in Eq. (3.23) is NP-hard due to the discrete nature of

w. Thus we relax the discrete constraint on w by reformulating it as a real-valued

vector in the range of [0, 1] (Wei et al., 2015). Furthermore, we rewrite the constraint

1′w = m in the Lagrangian, resulting in the following optimization problem:

min
∑

(i,j)∈E

γiaijlog(aij)−
∑

(i,j)∈E

γiaijΘij + α‖w‖1

s.t. 0 ≤ wm ≤ 1 (∀m = 1, ..., d),

(3.24)
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where α controls the sparsity of feature indicator vector w.

3.4.2 Optimization Solution

We discuss how to obtain the adaptive neighborhood structure ai for each node

vi and the feature indicator vector w.

First, we learn the optimal adaptive neighborhood structure ai for each node

through Eq. (3.19). However, it is difficult as ai is related to the mapping function f(.)

and the noisy pseudo class label yi, both are unknown in an unsupervised scenario.

Following (Anava and Levy, 2016), we reformulate the problem in Eq. (3.19) into the

following one which yields an upper bound guarantee of high confidence:

min
ai

‖ai‖2 +M
n∑
j=1

aijd(xj,xi), s.t. ai ∈ Ωi, (3.25)

where M is a positive constant and d(., .) is a distance function. The Lagrangian of

the above problem is as follows:

L = ‖ai‖2 + a′iui + λ(1−
n∑
j=1

aij)−
∑

vj∈N (vi)

θjaij +
∑

vj /∈N (vi)

ηjaij, (3.26)

where ui = [M.d(x1,xi), ...,M.d(xn,xi)]
′. The parameters λ, ηj (∀vj /∈ N (vi)) and

θj ≥ 0 (∀vj ∈ N (vi)) are the Lagrange multipliers. As Eq. (3.25) is convex, thus any

solution that satisfies the KKT condition guarantees a global optimum. By setting

the derivative of the Lagrangian w.r.t. ai to zero, we obtain:

aij
‖ai‖2

=

 λ+ θj − uij, ∀vj ∈ N (vi)

λ− ηj − uij, ∀vj /∈ N (vi).
(3.27)

Let a∗i be the optimal solution, according to the complementary slackness condition,

for any a∗ij > 0, we obtain a∗ij/‖a∗i ‖2 = λ− uij. And the optimal solution of a∗i is:

a∗ij =
{λ− uij} · 1{λ > uij}∑n
j=1{λ− uij} · 1{λ > uij}

, (3.28)
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for ∀vj ∈ N (vi). According to the definition of ai, it has a cutoff effect as aij = 0 if

vj /∈ N (vi). In addition to that, it can be observed that ai also has a cutoff effect for

vj ∈ N (vi) when the condition λ > uij is satisfied. In other words, for each node vi,

there exists 0 ≤ k∗i ≤ |N (vi)| such that only the tie strengths to these k∗i neighbors

are nonzero. Then by squaring and summing Eq. (3.28) over all nonzero entries in a∗i

and solving the equation5, we have:

λ =
1

k∗i

( k∗i∑
i=1

uij +

√√√√(

k∗i∑
j=1

uij)2 − k∗i
k∗i∑
j=1

u2
ij + k∗i

)
. (3.29)

Following (Anava and Levy, 2016), a greedy algorithm is leveraged to add neighbors

vj of node vi according to the value of uij until the optimal number of neighbors k∗i

is fulfilled (until the condition λ > uij does not hold any more).

Second, to update the feature indicator vector w, we plug the optimal solution of

a∗i into Eq. (3.24), resulting in the following optimization problem:

min
w

∑
(i,j)∈E

γia
∗
ijlog(a∗ij)−

∑
(i,j)∈E

γia
∗
ijΘij + α‖w‖1

s.t. 0 ≤ wm ≤ 1 (∀m = 1, ..., d).

(3.30)

We apply projected stochastic gradient descent method to optimize the above objec-

tive function, by sampling a mini-batch of edges each step. Suppose the edge (vi, vj)

is sampled, then the objective function in Eq. (3.30) is reduced to:

L(i, j) = γia
∗
ijlog(a∗ij)︸ ︷︷ ︸
L1(i,j)

+ (−γia∗ijlogσ(sij))︸ ︷︷ ︸
L2(i,j)

+ (−γia∗ij
K∑
m=1

Evm∼Pv [logσ(−sim)])︸ ︷︷ ︸
L3(i,j)

+α‖w‖1.

(3.31)

The first term L1(i, j) is independent of w, while the partial derivative of L2(i, j),

5Without the loss of generality, we assume that for each node vi, the index of the other nodes

are ordered in an ascending order w.r.t. uij ,
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and L3(i, j) w.r.t. wk can be calculated as follows:

∂L2(i, j)

∂wk
= −γia∗ij(1− σ(sij))xikxjk

∂L3(i, j)

∂wk
= γia

∗
ij

K∑
m=1

Evm∼Pvσ(sim)xikxmk.

(3.32)

Normally, the `1-norm regularization term on w is not smooth and its derivative is

not achievable everywhere over its feasible region. However, as we relax the constraint

on w to make it in the range of [0,1], the partial derivative of α‖w‖1 w.r.t. wk is α.

With the above partial derivatives, the update step of wk is given as follows:

wk ← P
[
wk − ρ

∂L(ij)

∂wk

]
, (3.33)

where P [x] maps x ∈ R in the bounded region of [0,1]. Meanwhile, ρ is the learning

rate, and can be adaptively adjusted to facilitate the convergence.

3.4.3 Time Complexity Analysis

The detailed pseudocode of ADAPT is illustrated in Algorithm 2. We first make

use of the observed features to update the tie strength vector ai for each node. The

complexity of updating ai is O(ki + d|N (vi)|+ |N (vi)| log |N (vi)|), where ki denotes

the optimal number of neighbors for node vi on the attributed network. Then in

each epoch, we update the feature indicator vector w by sampling a mini-batch of

edges and the negative samples. For each epoch, the complexity of updating w is

O(edK) +
∑n

i=1O(dki|N (vi)|). The negative sampling in each epoch takes O(e) with

the alias table (Li et al., 2014a).

3.5 Experimental Evaluation of ADAPT

We perform experiments on real-world attributed networks of various types to

validate the effectiveness of the proposed ADAPT framework.
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Algorithm 2 Proposed Feature Selection Framework ADAPT.

Input: Attributed network G, the number desired features m, parameters α and M .

Output: The top-m ranked features.

1: Initialize the feature indicator vector w;

2: Update ai via the greedy algorithm in section 3.4.2 (∀i = 1, ..., n);

3: for epoch = 1 : maxepoch do

4: for batch = 1 : numbatch do

5: Sample a mini-batch of edges and negative samples;

6: Update wk (∀k = 1, ..., d) according to Eq. (3.33) ;

7: end for

8: end for

9: Rank features according to the entries in w.

Datasets. As we focus on unsupervised feature selection in a static setting, in

addition to the aforementioned BlogCatalog and Flickr, we also use another two

static attributed networks Wiki (Yang et al., 2015) and ACM (Huang et al., 2018) for

evaluation. Wiki is a collection of Wikipedia documents that are inherently connected

with each other via hyperlinks. Each document is categorized into a number of

predefined classes. The dataset contains 2,405 Wikipedia documents from 19 different

classes. Each document is described by 4,973-dimensional TF-IDF features. In total,

there are 12,178 hyperlinks among these Wikipedia documents. ACM is a subgraph

of citation network of papers published before 2016 in ACM organized venues. Each

publication is described by the bag-of-words features based on the abstract and is

categorized into one of the 9 predefined classes such as machine learning and data

mining. In the dataset, we have 16,484 publications, 8,337 features, and 71,980 links.

Experimental Settings. The experimental settings are the same as the evaluation

of NetFS. The following baseline methods of different categories are compared:
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• LS (He et al., 2006): It is a baseline method mentioned previously in section 3.3.

• MCFS (Cai et al., 2010b): It performs feature selection based on spectral

analysis and sparse regression.

• GreedyFS (Farahat et al., 2013): It selects features in a greedy manner by

measuring the reconstruction error of the data.

• LUFS (Tang and Liu, 2012b): It is also a baseline method mentioned previously

in section 3.3.

• NetFS (Li et al., 2016b): It is our developed robust feature selection framework

for attributed networks.

• MMOP (Wei et al., 2015): It selects features on attributed networks that can

maximally preserve the partial order relations among nodes.

• GFS (Wei et al., 2016): It finds relevant features on attributed networks by

modeling network and attributes with a generative process.

Among them, LS, MCFS, GreedyFS are conventional methods with node at-

tributes only. They respectively belong to the similarity based, sparse learning based,

and reconstruction based methods, which are the three most widely used categories

of unsupervised feature selection methods. LUFS and NetFS exploit the link infor-

mation at a coarse granularity level via community analysis, while MMOP and GFS

directly make use of the link information for unsupervised feature selection but treat

all links equally. As these methods are from different categories, their comparisons

against ADAPT could further reveal the superiority of the developed framework.

For LS and MCFS, we set the number of neighborhood size to be 5. In GreedyFS,

the number of feature partitions is specified as 5. For MCFS, LUFS, and NetFS,
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Figure 3.4: Clustering Results (ACC) Evaluation of ADAPT and Baselines.

the number of clusters or pseudo labels is the true number of classes. In ADAPT,

the number of negative samples K is 5. In addition, different methods have different

sets of regularization parameters, to have a fair comparison, we tune these parameters

via grid search and the best average clustering results are reported.

Quality of Selected Features by ADAPT. We investigate the effectiveness of

the proposed ADAPT by comparing the clustering performance against other base-

line methods after feature selection. The number of selected features is varied in

the range of {200, 600, 1000}. The comparison results are shown in Figure 3.4 and

Figure 3.5. We make the following observations from these figures: (1) ADAPT

obtains the best clustering performance in almost all cases w.r.t. different numbers

of selected features and the improvement is statistically significant at the level of 0.05
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Figure 3.5: Clustering Results (NMI) Evaluation of ADAPT and Baselines.

(with pairwise Wilcoxon signed rank test). (2) ADAPT is superior to LUFS and

NetFS which model the network information at the community level. Meanwhile,

it also achieves better performance than MMOP and GFS which treat all observed

links equally. The improvement of ADAPT over these methods corroborate the

importance of characterizing adaptive neighborhood structure around each node for

feature selection. As LUFS is very sensitive to the noisy and incomplete network

structure, its performances are the worst among these five methods. (3) LS, MCFS,

and GreedyFS are conventional unsupervised feature selection methods which only

make use of the node attribute information. Their performance is inferior to NetFS,

MMOP, and GFS in many cases. The observation supports the assumption that net-

work structure complements node attribute information for feature selection. (4) The
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improvement of feature selection algorithms with network information (i.e., ADAPT,

NetFS) over conventional feature selection methods (i.e., LS, MCFS, GreedyFS)

is relatively higher on the BlogCatalog and Flickr datasets. The reason is that the

density of networks (the ratio between the number of edges and the number of nodes)

is much higher on these two datasets, thus network information could provide more

constraints in finding relevant features.
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Figure 3.6: Parameter Study of ADAPT on ACM Dataset.

Parameter Sensitivity Study.ADAPT has two important model parameters: (1)

M controls the number of optimal neighbors around each node for tie strength char-

acterization; and (2) α controls the sparsity of the feature indicator vector w. To

investigate how the variation of these two model parameters affects the feature selec-

tion performance, we vary them among {0.001, 0.01, 0.1, 0.5, 1, 10, 100, 1000}. We only

show the parameter study results on the ACM dataset (with 1000 selected features)

as we have similar observations on the other datasets. Firstly, as can be observed

from Figure 3.6, when we vary the value of M , the clustering performance first in-

creases, then reaches its peak, and then gradually decreases. It implies that finding

a suitable number of optimal neighbors around each node could advance feature se-

lection. Secondly, we can observe that when the parameter α is between 0.1 and 10,
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the clustering performance is relatively stable. Hence, it is safe to tune α in a wide

range without jeopardizing the clustering performance too much.

3.6 Summary

Two distinct but highly correlated data representations are naturally observed

on real-world attributed networks. In many cases, high-dimensional node attributes

increase the possibility of including noisy, redundant, and network topologically ir-

relevant features, which hinder us to gain insights from such networks. Without

the label supervision, we make several efforts to find a subset of features that are

can be fused with network topology seamlessly for synergistic knowledge discovery.

We first develop a robust unsupervised feature selection framework NetFS. NetFS

first uses latent representations to capture the inherent correlations of nodes on the

network, then we propose to embed the latent representation learning process into

feature selection. Therefore, these two phases could help and boost each other to

obtain good features, and the proposed model is more robust to noisy links. Later

on, to capture the finer-grained tie strength information embedded on the network,

we make the initial investigation to develop a principled adaptive unsupervised fea-

ture selection framework ADAPT on attributed networks. Specifically, the proposed

framework characterizes the optimal adaptive neighborhood structure around each

node for unsupervised feature selection on attributed networks. We also perform em-

pirical evaluations on various real-world attributed networks, and the experimental

results demonstrate the effectiveness of the proposed frameworks.
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Chapter 4

NETWORK EMBEDDING ON ATTRIBUTED NETWORKS

Aside from feature selection which investigates the attributed networks at the at-

tribute level, network embedding yields a different angle to scrutinize task-agnostic

learning algorithms on attributed networks at the node level. Specifically, we aim to

map each node to a low-dimensional vector space such that node proximity in terms

of both network topology and node attributes are both well preserved. Since the

node embeddings are obtained independent of any specific learning tasks, they can

be generalized to a wide range of downstream applications.

4.1 Overview

Network embedding (Grover and Leskovec, 2016; Perozzi et al., 2014b; Tang et al.,

2015b) has attracted a surge of research attention in recent years. The basic idea is

to preserve the node proximity in the embedded Euclidean space, based on which the

performance of various network mining tasks such as node classification (Aggarwal

and Li, 2011; Bhagat et al., 2011), community detection (Tang et al., 2008; Yang

et al., 2009), and link prediction (Barbieri et al., 2014; Liben-Nowell and Kleinberg,

2007; Wang et al., 2011) can be enhanced. However, a vast majority of existing

work are predominately designed for plain networks. They inevitably ignore the node

attributes that could be potentially complementary in learning better embedding

representations, especially when the network suffers from high sparsity. However, as-

sessing a vector representation for each node in the joint space of geometrical structure

and node attributes is difficult due to the bewildering combination of heterogeneous

sources. Thus, it is challenging for existing network embedding algorithms to be
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directly applied. To handle the challenge, we present a novel attributed network

embedding framework DANE-O (Li et al., 2017c) to learn discriminative node em-

bedding representations. Even though network topology and node attributes are two

distinct data representations, they are inherently correlated. In addition, the raw

data representations could be noisy and even incomplete, individually. Hence, it is of

paramount importance to seek a noise-resilient consensus embedding to capture their

individual properties and inherent correlations.

We first illustrate the studied problem of attributed network embedding before

presenting the details of the proposed solution DANE-O.

Problem 2. Network Embedding for Static Attributed Networks

Given: An attributed network G represented by the content matrix X ∈ Rn×d and

the adjacency matrix A ∈ Rn×n
≥0 , where n and d denote the number of nodes and

features, respectively1. The dimensionality of final consensus node embeddings

is specified as l.

Learn: Embedding representation Y ∈ Rn×l for all nodes by preserving the node

proximity w.r.t. two different sources of information2.

4.2 Proposed Consensus Framework - DANE-O

In this section, we present an offline model DANE-O that works in a static setting

in finding a consensus embedding representation for nodes on attributed networks.

An illustration of the proposed DANE-O framework is shown in Figure 4.1. As

we can see from the figure, the whole framework consists of two steps. In the first

step, we attempt to learn the intermediate embedding representations for each data

1We adopt the same strategy as Chapter 3 to convert directed networks into undirected ones.
2The exact optimization function is given in the following subsections.

49



+

Attributed Network

Affinity Similarity Matrix 

Intermediate 
Embeddings

Consensus 
Embeddings

Adjacency Matrix 

Figure 4.1: An Illustration of the Consensus Embedding Framework DANE-O.

modality by reducing the noise. Then in the second step, we aim to leverage the

inherent correlations among these two intermediate embeddings for a final consensus

embedding of all nodes on the attributed network. In the consensus embedding space,

the node proximity information w.r.t. both the network structure and node attribute

similarity are well preserved.

4.2.1 Problem Formulation

We present the details of learning intermediate node embeddings and learning

consensus node embeddings.

Learning Intermediate Node Embeddings. Network topology and node at-

tributes on attributed networks are presented in different representations. Typically,

either of these two representations could be incomplete and noisy, presenting great

challenges to embedding representation learning. For example, social networks are

very sparse as a large amount of users only have a limited number of links (Adamic

and Huberman, 2000). Thus, network embedding could be jeopardized as links are

inadequate to provide enough node proximity information. Fortunately, rich node at-
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tributes are readily available and could be potentially helpful to mitigate the network

sparsity in finding better embeddings. Hence, it is more desired to make these two

representations compensate each other for consensus embeddings. However, as men-

tioned earlier, both representations could be noisy and the existence of noise could

degenerate the learning of consensus embedding. Hence, it motivates us to reduce the

noise of these two raw data representations before learning consensus embeddings.

Let A ∈ Rn×n
≥0 be the adjacency matrix and DA be the diagonal matrix with

DA(i, i) =
∑n

j=1 A(i, j), then LA = DA−A is a Laplacian matrix. According to the

spectral theory (Belkin and Niyogi, 2002; Von Luxburg, 2007), by mapping each node

on the network to a k-dimensional embedded space, i.e., yi ∈ Rk (k � n), the noise

on the network can be substantially reduced. A rational choice of the embedding

YA = [y1,y2, ...,yn]′ ∈ Rn×k is to minimize the following loss function:

1

2

∑
i,j

A(i, j)‖yi − yj‖2
2. (4.1)

It ensures that connected nodes are close to each other in the embedded space. Mean-

while, the orthogonal constraint Y′ADAYA = I is often imposed to avoid arbitrary

scaling factor of the embedding. Thus, the problem boils down to solving the following

generalized eigen-problem:

LAa = λDAa. (4.2)

Let a1, a2, ..., an be the eigenvectors of the above generalized eigen-problem and

the corresponding eigenvalues are sorted in an ascending order 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

It is easy to verify that 1 is the only eigenvector for the eigenvalue λ1 = 0. Then the

k-dimensional embedding YA ∈ Rn×k of the network structure is given by the top-k

eigenvectors starting from a2, i.e., YA = [a2, ..., ak, ak+1]. For the ease of presentation,

in the following part, we refer these k eigenvectors and their eigenvalues as the top-k

eigenvectors and eigenvalues, respectively.
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Akin to the network structure, noise in the node attribute space can be reduced

in a similar fashion with spectral embedding. Specifically, we first normalize the

attributes of each node and obtain the cosine similarity matrix S. Afterwards, we

obtain the top-k eigenvectors YX = [b2, ...,bk+1] of the generalized eigen-problem

corresponding to the cosine similarity matrix S.

Learning Consensus Node Embeddings. The noisy data problem is resolved by

finding two intermediate embeddings YA and YX. We now take advantage of them to

seek a consensus embedding. However, since they are obtained individually, these two

embeddings may not be compatible and in the worst case, they may be independent

of each other. To capture their interdependence and to make them compensate each

other, we propose to maximize their correlations (or equivalently minimize their dis-

agreements) by Canonical Correlation Analysis (Hardoon et al., 2004). In particular,

we seek two projection vectors pA and pX such that the correlation of YA and YX

is maximized after projection. It is equivalent to solving the following optimization

problem:

max
pA,pX

p′AY′AYApA + p′AY′AYXpX + p′XY′XYApA + p′XY′XYXpX

s.t. p′AY′AYApA + p′XY′XYXpX = 1.

(4.3)

Let γ be the Lagrange multiplier for the constraint, by setting the derivative of

the Lagrange function w.r.t. pA and pX to zero, we obtain the solution for [pA; pX],

which are the eigenvectors of the following generalized eigen-problem:Y′AYA Y′AYX

Y′XYA Y′XYX


pA

pX

 = γ

Y′AYA 0

0 Y′XYX


pA

pX

 . (4.4)

Later on, to obtain a consensus embedding representation, we could take the top-l

eigenvectors of the above generalized eigen-problem and stack them together. Suppose

the projection matrix P ∈ R2k×l is the concatenated top-l eigenvectors, the final

consensus embedding representation can be computed as Y = [YA,YX]×P.
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4.2.2 Time Complexity Analysis

The complexity of computing the attribute similarity matrix is O(n2d). Later on,

the computation of obtaining the two intermediate embeddings requires O(n2k), and

the computation of the final consensus embedding needs O(k2l).

4.3 Experimental Evaluation

We evaluate the effectiveness of the proposed consensus embedding framework

DANE-O in a static setting. The details of the used datasets and experimental

settings are introduced before presenting details of the experimental results.

Datasets. We use four datasets BlogCatalog, Flickr, Epinions, and DBLP for exper-

imental evaluation. The BlogCatalog and Flickr datasets have been introduced before

in Chapter 3. Similar as NetFS, to facilitate the comparison between DANE-O and

its online version DANE (will be introduced later in Chapter 6), we first apply the

perturbation by adding 0.1% new edges and changing 0.1% attribute values on Blog-

Catalog and Flickr datasets across 20 time stamps to generate two semi-synthetic

datasets. In the Epinions dataset, the nodes denote users and the links represent

the trust relations among users, the attributes of users are obtained using the bag-

of-words model from users’ reviews on products. The major category of reviews on

products is taken as ground truth. The dataset spans over 16 time stamps and was

collected a different period of time against the Epinions dataset in Table 3.1. In the

last dataset DBLP, we extracted a DBLP co-author network for the authors that

publish at least two papers between the years of 2001 and 2016 from seven differ-

ent areas. Bag-of-words model is applied to the paper title to obtain the attribute

information, and the major area the authors publish is considered as ground truth.

Then we rerun DANE-O and baseline methods on these datasets at each time stamp
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Table 4.1: Detailed Information of the Datasets Used for DANE-O and DANE.

BlogCatalog Flickr Epinions DBLP

# of nodes 5,196 7,575 14,180 23,393

# of features 8,189 12,047 9,936 8,945

# of links 173,468 242,146 227,642 289,478

# of classes 6 9 20 7

# of time stamps 10 10 16 16

and the average evaluation performance is presented. The detailed statistics of the

datasets are shown in Table 4.1.

Experimental Settings. One commonly adopted way to evaluate the quality of

the embedding representations (Perozzi et al., 2014b; Tang et al., 2015b) is by the

following two unsupervised and supervised tasks: network clustering and node clas-

sification. First, we validate the effectiveness of the embedding representations of

the proposed framework on the network clustering task. Two standard clustering

performance metrics, i.e., clustering accuracy (ACC) and normalized mutual infor-

mation (NMI) are used. In particular, after obtaining the embedding representation

of each node on the attributed network, we perform K-means clustering based on

the embedding representations. The K-means algorithm is repeated 10 times and the

average results are reported since K-means may converge to the local minima due to

different initializations. Normally, better clustering performance implies better node

embedding representations. Another way to assess the embedding is by the node

classification task. Specifically, we split the embedding representations of all nodes

via a 10-fold cross-validation, using 90% of nodes to train a classification model by

logistic regression and the rest 10% nodes for the testing. The whole process is re-

peated 10 times and the average performance are reported. Three evaluation metrics,
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classification accuracy (AC), F1-Macro and F1-Micro are used. F1-Macro can be

considered as a weighted average of F1-measure over all c class labels:

F1-Micro =

∑c
i=1 2TPi∑c

i=1(2TPi + FPi + FNi)
. (4.5)

F1-Macro is an arithmetic average of F1-measure of all output labels:

F1-Macro =
1

c

c∑
i=1

2TPi

(2TPi + FPi + FNi)
. (4.6)

TPi, FPi and FNi denote the number of true positives, false positives and false

negatives in the i-th class label, respectively. The higher the classification accuracy,

F1-Macro, and F1-Micro values are, the better the learned embeddings are.

How to determine the optimal number of embedding dimensions is still an open

research problem, thus we vary the embedding dimension as {10, 20, ..., 100} and the

best evaluation results are reported.

The proposed consensus embedding framework DANE-O is measured against the

following baseline methods on the two aforementioned tasks:

• Deepwalk (Perozzi et al., 2014b): It learns network embeddings by the usage

of word2vec (Mikolov et al., 2013) and truncated random walk techniques.

• LINE (Tang et al., 2015b): It learns embeddings by preserving the first and

second-order node proximity information.

• DANE-N: It is a variation of DANE-O with only network information.

• DANE-A: It is a variation of DANE-O with only attribute information.

• CCA (Hardoon et al., 2004): It directly uses the network structure and at-

tributes for a joint low-dimensional representation.
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Table 4.2: Clustering Results Evaluation of DANE-O and Baselines.

Datasets BlogCatalog Flickr Epinions DBLP

Methods ACC NMI ACC NMI ACC NMI ACC NMI

Network

Deepwalk 49.85 30.51 40.70 24.29 13.31 12.72 53.61 32.54

LINE 50.20 29.53 42.93 26.01 14.34 12.65 51.61 30.74

DANE-N 37.05 21.84 31.89 18.91 12.01 11.95 56.61 31.54

Attributes DANE-A 62.32 45.95 63.80 48.29 16.12 11.62 47.37 20.64

Network+Attributes

CCA 33.42 11.86 24.39 10.89 10.85 8.61 26.42 18.60

LCMF 55.72 40.38 27.03 13.06 12.86 10.73 42.27 26.48

LANE 65.06 48.89 65.45 52.58 32.18 22.09 55.80 31.84

DANE-O 80.31 59.46 67.33 53.04 34.11 23.07 59.14 35.31

Table 4.3: Classification Results Evaluation of DANE-O and Baselines.

Datasets BlogCatalog Flickr Epinions DBLP

Methods AC Micro Macro AC Micro Macro AC Micro Macro AC Micro Macro

Network

Deepwalk 68.05 67.15 68.18 60.08 58.93 59.08 22.12 17.43 20.10 74.38 69.65 72.37

LINE 70.20 69.88 70.91 61.03 60.90 60.01 23.54 17.17 21.05 72.97 67.56 70.97

DANE-N 66.97 66.06 67.78 49.37 47.82 49.34 21.25 20.57 21.88 71.99 65.33 71.94

Attributes DANE-A 80.23 79.86 80.23 76.66 75.59 76.60 23.76 21.57 22.00 63.92 54.80 62.97

Network+Attributes

CCA 48.63 49.96 49.63 27.09 26.54 26.09 11.53 9.43 10.56 45.67 42.08 43.83

LCMF 84.41 89.01 89.26 66.27 66.75 65.71 19.14 9.22 10.14 69.71 68.01 68.42

LANE 87.52 87.52 87.93 77.54 77.81 77.26 27.74 28.45 28.87 72.15 71.09 73.48

DANE-O 89.34 89.15 89.23 79.68 79.52 79.95 31.23 31.28 31.35 77.21 74.96 75.48

• LCMF (Zhu et al., 2007): It maps network and attributes to a shared latent

space by collective matrix factorization.

• LANE (Huang et al., 2017b): It is a label informed attributed network embed-

ding method, and we use the variant LANE w/o Label.

We follow the suggestions of the original papers to set the parameters of all these

baseline methods for network embedding.

Quality of Learned Embeddings. To evaluate the effectiveness of embedding rep-

resentations, we first compare DANE-O with baseline methods on network clustering
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which is naturally an unsupervised learning task. The average clustering performance

comparison w.r.t. ACC and NMI are presented in Table 4.2. We make the following

observations: (1) DANE-O consistently outperforms all baseline methods on four

datasets by achieving better clustering performance. The Wilcoxon signed-rank test

is performed between DANE-O and other baselines and shows that DANE-O is

significantly better with both 0.01 and 0.05 significance levels. (2) DANE-O and

LANE achieve better clustering performance than network embedding methods such

as Deepwalk, LINE, and DANE-N; and attribute embedding method DANE-A.

The improvements indicate that attribute information is complementary to pure net-

work topology and can help learn more informative embedding representations. (3)

Meanwhile, DANE-O also outperforms the CCA and LCMF which also leverage

node attributes. The reason is that although these methods learn a low-dimensional

representation by using both sources, they are not explicitly designed to preserve the

node proximity. Also, their performance degenerates when the data is very noisy.

Next, we assess the effectiveness of embedding representations on a supervised

learning task - node classification. The classification results in terms of three differ-

ent measures are shown in Table 4.3. The following findings can be inferred from the

table: (1) Generally, we have similar observations as the clustering task. The meth-

ods which only use link information or node attributes (e.g., Deepwalk, LINE,

DANE-N, DANE-A) and methods which do not explicitly model node proximity

(e.g., CCA, LCMF) give poor classification results. (2) The embeddings learned by

DANE-O help train a more discriminative classification model by obtaining higher

classification performance. In addition, pairwise Wilcoxon signed-rank test shows that

DANE-O is significantly better. (3) For the node classification task, the attribute

embedding method DANE-A works better than the network embedding method in

the BlogCatalog, Flickr, and Epinions datasets. The reason is that in these datasets,
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the class labels are more closely related to the attribute information than the network

structure. However, it is a different case for the DBLP dataset in which the labels of

authors are more closely related to the coauthor relationships.

4.4 Summary

The prevalence of attributed networks in many real-world applications presents

new challenges for many graph mining problems because of its natural heterogeneity.

In this chapter, we investigate the attributed networks from a new perspective at the

node level by developing novel network embedding algorithms. The main target is

trying to map each node on the attributed network into a new low-dimensional feature

space while we want to ensure that in the new feature space the node proximity w.r.t.

the original network structure and attribute similarity can be well preserved. Later on,

we can leverage the learned embeddings for various applications by applying off-the-

shelf machine learning and data mining algorithms. Methodologically, we propose a

consensus embedding framework DANE-O to fuse topological structure and instance

attributes into a unified embedding space by maximizing their interactions, and the

problem boils down to solving a series of generalized eigen-problems. To validate the

effectiveness of the learned consensus embeddings, we conduct experiments on two

learning tasks - network clustering and node classification. Empirical experimental

evaluations show the promising performance of the proposed framework DANE-O.
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Part II

Learning Algorithms in A Dynamic

Environment
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Chapter 5

FEATURE SELECTION ON DYNAMIC ATTRIBUTED NETWORKS

Feature selection has shown to be useful in deriving actionable patterns from at-

tributed networks. Nonetheless, most of existing methods predominantly focus on a

static setting, while fail to characterize the evolution facts of network structure and

node features. Given the dynamic nature of attributed networks, it is necessary and of

vital importance to perform feature selection incrementally to adapt the changes in a

timely manner, which is of fundamental importance in many time-critical applications

such as disaster relief and viral marketing.

5.1 Overview

As per the dynamic network theory (Westaby, 2012) in psychology and social

science, network and features often co-evolve over time, and a small disturbance of

network structure may result in a ripple effect on the drifts of feature patterns, and

vice versa. With these unique characteristics, existing approaches probing dynamic

networks are either correcting and adjusting the staleness of network mining algo-

rithms or understanding the underlying evolution mechanisms (Aggarwal and Sub-

bian, 2014). Despite the fundamental importance of analyzing attributed networks

in a dynamic environment, the development of sophisticated learning models to find

relevant features in an online fashion is still in its infancy. In this chapter, we study a

novel problem about how to perform online feature selection on dynamic attributed

networks. We also focus on an unsupervised scenario as label information of nodes

is time and labor intensive to obtain. In particular, we present an online framework

TeFS to employ the temporal smoothness property of attributed networks between
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consecutive time stamps in updating the feature selection results incrementally.

We use Gt to represent the attributed network observed at time stamp t, and use

the adjacency matrix At ∈ Rn×n
≥0 and Xt ∈ Rn×d to represent the corresponding net-

work structure and node feature information, respectively. For the ease of discussion,

we assume that the number of nodes and the number of features are constant between

two consecutive time stamps. The studied problem is formally defined as follows.

Problem 3. Feature Selection on Dynamic Attributed Networks

Given: A dynamic attributed network that is observed at a series of time stamps t,

t + 1, ..., t + i, where the node feature information is represented by a set of

content matrices {Xt,Xt+1, ...,Xt+i} (where the content feature space is F) and

network structure is encoded in a set of adjacency matrices {At,At+1, ...,At+i}.

The number of selected features is specified as m.

Select: A subset of most relevant features St ⊂ F ,St+1 ⊂ F , ...,St+i ⊂ F that is

tightly correlated with the network structure at each time stamp in a timely

manner.

5.2 Proposed Online Framework - TeFS

One widely adopted framework to analyze evolutionary network is to leverage the

temporal smoothness property (Aggarwal and Subbian, 2014) which assumes that the

structure of the network does not change significantly within a short period of time. In

particular, given two consecutive time stamps t1 and t2, it attempts to incrementally

adjust the data mining results at time stamp t1 by taking advantage of the results

from t1 and the small perturbations between t1 and t2. Specifically, we build our

model on the basis of the previously proposed NetFS framework and employ the

temporal smoothness in updating the feature selection results incrementally. Also,
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Figure 5.1: An Illustration of the Online Feature Selection Framework TeFS.

we present an efficient optimization schema to solve the optimization problem of the

proposed TeFS. An illustration of the proposed TeFS is shown in Figure 5.1.

5.2.1 Problem Formulation

Here, we present the detailed formulation of the proposed TeFS framework of

online feature selection on dynamic attributed networks.

Modeling the Temporal Smoothness for Online Feature Selection. Regard-

ing the temporal smoothness assumption, at a new time stamp t + 1, both network

structure and feature information evolve smoothly, i.e., ‖Xt+1−Xt‖0 and ‖At+1−At‖0

are very small. Therefore, we have:

Xt+1 = Xt + ∆X, At+1 = At + ∆A, (5.1)
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where ∆X and ∆A indicate the changes between t and t+ 1, respectively. Then the

feature selection problem at the new time stamp t + 1 can be formulated by solving

the following optimization problem:

min
Ut+1≥0,Wt+1

J (Wt+1,Ut+1) =‖(Xt + ∆X)Wt+1 −Ut+1‖2
F + α‖Wt+1‖2,1

+
β

2
‖(At + ∆A)−Ut+1Ut+1′‖2

F .

(5.2)

Let Wt+1 and Ut+1 be represented as:

Wt+1 = Wt + ∆W, Ut+1 = Ut + ∆U, (5.3)

then Eq. (5.2) can be reformulated as:

min
Ut+∆U≥0,Wt+∆W

‖(Xt + ∆X)(Wt + ∆W)− (Ut + ∆U)‖2
F

+
β

2
‖(At + ∆A)− (Ut + ∆U)(Ut + ∆U)′‖2

F + α‖Wt + ∆W‖2,1.

(5.4)

Lemma 2. `2,1-norm on matrix is a valid norm and it satisfies the triangle inequality

‖A + B‖2,1 ≤ ‖A‖2,1 + ‖B‖2,1.

Proof. The `p-norm of a vector x ∈ Rn is defined as ‖x‖p = (
∑n

i=1 ‖xi‖p)1/p and it

satisfies the triangle inequality such that (
∑n

i=1 ‖xi + yi‖p)1/p ≤ (
∑n

i=1 ‖xi‖p)1/p +

(
∑n

i=1 ‖yi‖p)1/p for any vectors x ∈ Rn and y ∈ Rn. By setting xi = ‖ai‖2 and

yi = ‖bi‖2, we obtain the following inequality:( n∑
i=1

|‖ai + bi‖2|p
)1/p ≤

( n∑
i=1

|‖ai‖2 + ‖bi‖2|p
)1/p ≤

( n∑
i=1

‖ai‖p
)1/p

+
( n∑
i=1

‖bi‖p
)1/p

,

(5.5)

which is equivalent to ‖A + B‖2,1 ≤ ‖A‖2,1 + ‖B‖2,1 when p = 1. �

According to triangle inequality of Frobenius norm and the above lemma, we have

the following from Eq. (5.4):

‖XtWt + ∆X(Wt + ∆W) + Xt∆W −Ut −∆U‖2
F

≤‖∆XWt + Xt∆W + ∆X∆W −∆U‖2
F + ‖XtWt −Ut‖2

F ,

(5.6)
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‖At + ∆A−Ut(Ut′ + ∆U′)−∆U(Ut′ + ∆U′)‖2
F

≤‖∆A−∆UUt′ −Ut∆U′ −∆U∆U′‖2
F + ‖At −UtUt′‖2

F ,

(5.7)

and

‖Wt + ∆W‖2,1 ≤ ‖Wt‖2,1 + ‖∆W‖2,1. (5.8)

Integrating Eq. (5.6), Eq. (5.7) and Eq. (5.8), we find that the solutions of Wt and

Ut in the following part

min
Wt,Ut≥0

J (Wt,Ut) = ‖XtWt −Ut‖2
F +

β

2
‖At −UtUt′‖2

F + α‖Wt‖2,1 (5.9)

can be obtained from the previous time stamp t. Therefore, we can only optimize the

following part to approximate the solution of Eq. (5.4):

min
Ut+∆U≥0,∆W

‖∆XWt + Xt∆W + ∆X∆W −∆U‖2
F

+
β

2
‖∆A−∆UUt′ −Ut∆U′ −∆U∆U′‖2

F + α‖∆W‖2,1.

(5.10)

In the above objective function, the model parameters are the perturbation variables

∆W and ∆U.

5.2.2 Optimization Solution

The objective function in Eq. (5.10) is also not a convex function w.r.t. ∆W

and ∆U simultaneously. Thus we adopt the alternating optimization algorithm as

NetFS (Li et al., 2016b) to solve this problem. After the objective function converges

to a local optimal solution, we sort the features in descending order according to the

new transformation matrix Wt + ∆W and return top-m ranked features. Typically,

the larger the value ‖(Wt + ∆W)(i, :)‖2 is, the more important the i-th feature is.
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5.2.3 Time Complexity Analysis

The detailed online feature selection framework TeFS that performs feature se-

lection in an incremental manner at each time stamp is illustrated as follows. We

first obtain Wt and Ut at the first time stamp t by NetFS for a good initialization.

Then in each iteration, we first fix ∆U to update ∆W which needs O(d3) operations.

The term of ∆XW can be pre-computed before iteration to improve the computa-

tional efficiency. Assume that the total number of nonzero elements in ∆U−∆XW

and Ut are ã and a, respectively. Then the number of operations to obtain ∆W is

O(nd2 + ãd). Otherwise, the cost is O(nd2 + ad) if we rerun NetFS. Next, we fix

∆W to update ∆U, the major computational cost involves in the computation of

the gradient for the projected gradient descent method. Suppose the total number

of nonzero elements in ∆A and At are b̃ and b, respectively. The computation cost

of gradient of J (∆W,∆U) w.r.t. ∆U is O(nc2 + b̃c + n2d + nã). On the other

hand, if we do not choose the incremental method, the cost of obtaining gradient is

O(nc2 + bc+n2d+na). Since ã < a and b̃� b, TeFS is more efficient than its offline

counterpart NetFS.

5.3 Experimental Evaluation

We conduct experiments to assess the performance of the proposed TeFS. In

particular, we attempt to answer the following two research questions: (1) How is

the quality of selected features by TeFS? (2) How efficiency is the proposed online

feature selection framework TeFS compared with its offline version NetFS?

Datasets. The experiments are conducted on the three datasets BlogCatalog, Flickr,

and Epinions introduced in section 3.3. It should be noted that the evolution of

network structure and node attributes of these datasets are all very smooth.
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Table 5.1: Clustering Results Comparison Between TeFS and NetFS.

# of features 200 400 600 800 1000 1200 1400 1600 1800 2000

BlogCatalog – ACC (%)

NetFS 49.99 43.04 43.25 42.89 42.09 43.56 43.44 43.31 43.08 43.59

TeFS 50.13 42.70 42.46 42.96 43.35 42.45 43.20 43.42 43.27 44.18

Flickr – ACC (%)

NetFS 23.04 31.52 33.60 36.21 35.52 42.56 46.46 41.35 47.42 35.78

TeFS 23.14 31.40 34.28 35.49 35.28 41.89 45.88 42.21 46.90 36.17

Epinions – ACC (%)

NetFS 14.04 16.66 18.27 20.48 20.46 20.98 24.82 23.79 23.91 27.32

TeFS 14.03 16.87 18.30 20.29 20.70 21.06 24.79 23.62 23.94 27.78

BlogCatalog – NMI (%)

NetFS 33.21 23.45 24.04 23.18 23.83 23.63 25.49 25.98 23.85 24.72

TeFS 34.72 24.03 22.89 23.48 25.25 22.71 25.40 25.75 24.22 26.00

Flickr – NMI (%)

NetFS 11.61 16.55 20.28 20.56 21.67 23.38 26.54 25.40 28.91 25.42

TeFS 11.92 15.89 21.25 20.89 21.34 22.48 27.51 25.46 29.28 25.29

Epinions – NMI (%)

NetFS 3.87 5.80 6.91 6.93 8.92 10.04 10.83 11.45 11.65 10.26

TeFS 4.56 5.76 6.55 6.82 8.99 11.30 10.47 12.42 11.48 10.75

Experimental Settings. Firstly, we follow the same evaluation mechanism as

NetFS to assess the quality of selected features. The average clustering performance

on the selected features at different time stamps are presented. Here, we mainly

compare the performance of TeFS and NetFS as NetFS have already shown to

outperform many other baseline methods. Secondly, to assess the efficiency of the

proposed online framework TeFS, we record its cumulative running time over all

time stamps and compare it with its offline counterpart NetFS that reruns at each

time stamp. In the experiments, we set α = 10 and β = 0.1.

Effectiveness Evaluation. We first compare the clustering performance between

66



Iteration Step

20 40 60 80 100

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

 V
a

lu
e

×10
4

1.59

1.6

1.61

1.62

1.63

1.64

1.65

1.66

1.67
Convergence of NetFS on BlogCatalog

(a) NetFS on BlogCatalog.

Iteration Step

2 4 6 8 10 12 14 16 18 20

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

 V
a

lu
e

31.8

32

32.2

32.4

32.6

32.8

33
Convergence of TeFS on BlogCatalog

(b) TeFS on BlogCatalog.

Iteration Step

20 40 60 80 100 120

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

 V
a

lu
e

8300

8400

8500

8600

8700

8800

8900

9000

9100

Convergence of NetFS on Epinions

(c) NetFS on Epinions.

Iteration Step

2 4 6 8 10 12 14 16 18 20

O
b

je
c

ti
v

e
 F

u
n

c
ti

o
n

 V
a

lu
e

18.8

19

19.2

19.4

19.6

19.8
Convergence of TeFS on Epinions

(d) TeFS on Epininons.

Figure 5.2: Convergence Rate Comparison Between NetFS and TeFS.

the online method TeFS and the offline method NetFS. The comparison results

are shown in Table 5.1. We can also find that TeFS achieves comparable clustering

performance as NetFS. It indicates that even though we adopt an approximation

method to reduce the computational cost, it does not bring any negative effects by

jeopardizing the clustering performance.

Efficiency Evaluation. In this part, we first investigate the convergence rate of

TeFS and its offline version NetFS. Figure 5.2 shows the convergence comparison

results on BlogCatalog and Epinions datasets at a specific time stamp. It can be

clearly seen from the figure that the objective function value of TeFS decreases and
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Figure 5.3: Cumulative Running Time Comparison Between NetFS and TeFS.

reaches a stable state much more quickly than its offline version NetFS. TeFS con-

verges within 20 iterations while NetFS needs more than 100 iterations to converge.

This observation suggests that TeFS has a faster convergence rate. Also, we compare

their cumulative running time on all these three dynamic attributed datasets. The

cumulative running time comparison results are shown in Figure 5.3, the results show

that the proposed TeFS is significantly more efficient than NetFS, the speedup is

4.3×, 6.6× and 5.3× on BlogCatalog, Flickr, and Epinions, respectively.

5.4 Summary

In this chapter, we investigate the attributed networks in a dynamic environment

and propose an online unsupervised feature selection framework TeFS for real-time

insights. The proposed framework takes both the content drift and the network

structure changes into account to find relevant features in an online manner. In

particular, the proposed framework is based on the temporal smoothness property

of dynamic networks. Instead of rerunning the offline model from scratch each time

stamp when variations happen, we propose an efficient way to update the feature

selection results from previous time stamps incrementally. Experimental results on
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real-world dynamic attributed networks validate the effectiveness and efficiency of the

proposed online feature selection framework TeFS.
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Chapter 6

NETWORK EMBEDDING ON DYNAMIC ATTRIBUTED NETWORKS

Attributed network embedding seeks low-dimensional node vector representations in

which the network topological structure and node attribute proximity can be max-

imally preserved. Despite its empirical success, a fundamental assumption behind

existing efforts is that the data is static and given a prior. Nonetheless, most real-

world attributed networks are intrinsically dynamic with both structure and content

changes. These changing characteristics motivate us to seek an effective yet efficient

embedding presentation to capture the evolving patterns timely, which is of funda-

mental importance for learning in a dynamic environment.

6.1 Overview

More often than not, attributed networks often exhibit high dynamics. On one

hand, we often observe the addition/deletion of edges and nodes, examples include

co-author relations between scholars in an academic network and friendships among

users in a social network. Meanwhile, node attributes also change naturally such

that new content patterns may emerge and outdated content patterns will fade. For

example, humanitarian and disaster relief related topics become popular on social

media sites after the earthquakes as users continuously post related content. One

natural question to ask is when attributed networks evolve, how to correct and adjust

the staleness of the end embedding results for network analysis, which will shed light

on the understanding of their evolving nature. Hence, it necessitates the design of

an efficient online algorithm that can give embedding representations promptly. The

studied problem is formulated as follows.
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Figure 6.1: An Illustration of the Online Embedding Framework DANE.

Problem 4. Network Embedding for Dynamic Attributed Networks

Given: A dynamic attributed network that is observed at a series of time stamps t,

t + 1, ..., t + i, where the node feature information is represented by a set of

content matrices {Xt,Xt+1, ...,Xt+i} and network structure is encoded in a set of

adjacency matrices {At,At+1, ...,At+i}. The dimensionality of final consensus

node embeddings is specified as l.

Learn: Embedding representation Yt ∈ Rn×l for all nodes at each time stamp.

6.2 Proposed Online Framework - DANE

The proposed online embedding model DANE is motivated by the observation

that most of the real-world networks, with no exception for attributed networks, often
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evolve smoothly in the temporal dimension between two consecutive time stamps (Ag-

garwal and Subbian, 2014; Chi et al., 2007; Li et al., 2016a). Previously in Chapter 4,

we have presented an effective consensus embedding framework for static attributed

networks, which boils down to solving a series of generalized eigen-problems. There-

fore, the core idea to enable online update of the embeddings is to develop an efficient

way to update the top eigenvectors and eigenvalues of the generalized eigensystem.

Otherwise, we have to perform generalized eigen-decomposition each time stamp,

which is not practical due to its high time complexity. The workflow of the proposed

online embedding model is shown in Figure 6.1.

6.2.1 Problem Formulation

Without loss of generality, we use the network topology as an example to illustrate

the proposed algorithm for online embedding.

We use ∆A and ∆X to denote the perturbation of network structure and node

attributes between two consecutive time stamps t and t+1, respectively. With these,

the diagonal matrix and Laplacian matrix of A and X also evolve smoothly such that:

Dt+1
A = Dt

A + ∆DA, Lt+1
A = Lt

A + ∆LA,

Dt+1
X = Dt

X + ∆DX, Lt+1
X = Lt

X + ∆LX.

(6.1)

By the matrix perturbation theory (Stewart and Sun, 1990), we have the following

equation in embedding the network structure at the new time stamp:

(Lt
A + ∆LA)(a + ∆a) = (λ+ ∆λ)(Dt

A + ∆DA)(a + ∆a). (6.2)

For a specific eigen-pair (λi, ai), we have the following equation:

(Lt
A + ∆LA)(ai + ∆ai) = (λi + ∆λi)(D

t
A + ∆DA)(ai + ∆ai). (6.3)

The problem now is how to compute the change of the i-th eigen-pair (∆ai,∆λi) by

taking advantage of the sparse perturbation matrices ∆D and ∆L.
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Computing eigenvalue change ∆λi. By expanding the above equation, we have:

Lt
Aai + ∆LAai + Lt

A∆ai + ∆LA∆ai = λiD
t
Aai + λi∆DAai + ∆λiD

t
Aai

+ ∆λi∆DAai + (λiD
t
A + λi∆DA + ∆λiD

t
A + ∆λi∆DA)∆ai.

(6.4)

The higher order terms, i.e., ∆λi∆DAai, λi∆DA∆ai, ∆λiD
t
A∆ai, and ∆λi∆DA∆ai

can be removed as they have limited effects on the accuracy of the generalized eigen-

system (Golub and Van Loan, 2012). With the fact that Lt
Aai = λiD

t
Aai, we have:

∆LAai + Lt
A∆ai = λi∆DAai + ∆λiD

t
Aai + λiD

t
A∆ai. (6.5)

Multiplying both sides with a′i, we now have:

a′i∆LAai + a′iL
t
A∆ai = λia

′
i∆DAai + ∆λia

′
iD

t
Aai + λia

′
iD

t
A∆ai. (6.6)

Since both Lt
A and Dt

A are symmetric, we have a′iL
t
A∆ai = λia

′
iD

t
A∆ai. Therefore,

Eq. (6.6) can be reformulated as follows:

a′i∆LAai = λia
′
i∆DAai + ∆λia

′
iD

t
Aai. (6.7)

Through this, the variation of eigenvalue, i.e., ∆λi, is:

∆λi =
a′i∆LAai − λia′i∆DAai

a′iD
t
Aai

. (6.8)

Lemma 3. In the generalized eigen-problem Av = λBv, if A and B are both Her-

mitian matrices and B is positive semidefinite, the eigenvalue λ are real; and eigen-

vectors are B-orthogonal, i.e., v′iBvj = 0 and v′iBvi = 1 (i 6= j) (Parlett, 1980).

Corollary 1. a′iD
t
Aai = 1 and a′iD

t
Aaj = 0 (i 6= j).

Proof. Both Dt
A and Lt

A are symmetric and are also Hermitian matrices. Meanwhile,

the Laplacian matrix Lt
A is a positive semidefinite matrix, which completes the proof.

�
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Therefore, the variation of the eigenvalue λi is as follows:

∆λi = a′i∆LAai − λia′i∆DAai. (6.9)

Computing eigenvector change ∆ai. As the network structure often evolves

smoothly between two consecutive time stamps, we assume that the perturbation of

the eigenvectors ∆ai lies in the column space that is composed by the top-k eigen-

vectors at time stamp t such that ∆ai =
∑k+1

j=2 αijaj, where αij is a weight indicating

the contribution of the j-th eigenvector aj in approximating the new i-th eigenvector.

Next, we show how to determine these weights such that the perturbation ∆ai can

be estimated. By plugging ∆ai =
∑k+1

j=2 αijaj into Eq. (6.5) and using the fact that

Lt
A

∑k+1
j=2 αijaj = Dt

A

∑k+1
j=2 αijλjaj, we obtain the following:

∆LAai + Dt
A

k+1∑
j=2

αijλjaj = λi∆DAai + ∆λiD
t
Aai + λiD

t
A

k+1∑
j=2

αijaj . (6.10)

By multiplying eigenvector a′p (2 ≤ p ≤ k + 1, p 6= i) on both sides of Eq. (6.10), and

with the orthonormal property from Corollary 6.2.1, we obtain the following:

a′p∆LAai + a′pD
t
A

k+1∑
j=2

αijλjaj = λia
′
p∆DAai + ∆λia

′
pD

t
Aai + λia

′
pD

t
A

k+1∑
j=2

αijaj

⇒ a′p∆LAai + αipλp = λia
′
p∆DAai + αipλi.

(6.11)

Hence, the weight αip can be determined by:

αip =
a′p∆LAai − λia′p∆DAai

λi − λp
. (6.12)

After eigenvector perturbation, we still need to make the orthonormal condition holds

for new eigenvectors, thus we have (ai + ∆ai)
′(DA + ∆DA)(ai + ∆ai) = 1. By

expanding it and removing the second-order and third-order terms, we obtain:

2a′iD
t
A∆ai + a′i∆Dt

Aai = 0. (6.13)
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Then the solution of αii is αii = −1
2
a′i∆DAai. With the above solutions, the pertur-

bation of eigenvector ai is given as follows:

∆ai = −1

2
a′i∆DAaiai +

k+1∑
j=2,j 6=i

(
a′j∆LAai − λia′j∆DAai

λi − λj
)aj. (6.14)

Overall, the i-th eigen-pair (∆λi,∆ai) can be updated on the fly by Eq. (6.9) and

Eq. (6.14), the pseudocode of the updating process is illustrated in Algorithm 3. The

first input is the top-k eigen-pairs of the generalized eigen-problem, and they can

be computed by standard methods like power iteration and Lanczos method (Golub

and Van Loan, 2012). Another input is the variation of the diagonal matrix and the

Laplacian matrix. For the top-k eigen-pairs, we update eigenvalues in Line 2 and

update eigenvectors in Line 3.

Algorithm 3 Updating of Embedding Results of the Network by DANE.

Input: Top-k eigen-pairs of the generalized eigen-problem {(λ2, a2),...,(λk+1, ak+1)}

at time t, variation of the diagonal matrix ∆LA and Laplacian matrix ∆DA.

Output: Top-k eigen-pairs {(λ(t+1)
2 , a

(t+1)
2 ),...,(λ

(t+1)
k+1 , a

(t+1)
k+1 )} at time step t+ 1.

1: for i = 2 to k + 1 do

2: Calculate the variation of ∆λi by Eq. (6.9);

3: Calculate the variation of ∆ai by Eq. (6.14);

4: λ
(t+1)
i = λi + ∆λi; a

(t+1)
i = ai + ∆ai;

5: end for

6.2.2 Time Complexity Analysis

Firstly, we need to compute the perturbation terms ∆A and ∆X. ∆A can be

directly computed while ∆X can also be computed efficiently in an incremental way

by focusing on the nodes whose attributes or connections change. As both ∆A

and ∆X are very sparse, it also enables us to compute ∆LA, ∆LX, ∆DA, and
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∆DX efficiently. Later on, to update the top-k eigenvalues of the network and node

attributes in an online fashion, it requires O(k(da+la)) and O(k(dx+lx)), respectively.

Also, the online updating of the top-k eigenvectors for the network and attributes are

O(k2(da + la + n)) and O(k2(dx + lx + n)), respectively. After that, the complexity

for the consensus embedding is O(k2l). Therefore, the computational complexity of

the proposed online model over T time stamps are O(Tk2(n+ l+ la + lx + da + dx)).

As can be shown, since ∆LA, ∆LX, ∆DA, and ∆DX are often very sparse, thus la,

lx, da, dx are usually very small, meanwhile we have k � n and l � n. Based on

the above analysis, the proposed online embedding algorithm DANE is much more

efficient than rerunning the offline method DANE-O repeatedly.

6.3 Experimental Evaluation

We evaluate the effectiveness and efficiency of the proposed online embedding

framework DANE on dynamic attributed networks. In particular, we attempt to

answer the following two research questions: (1) How effective are the embeddings

obtained by DANE on different learning tasks? (2) How fast is the proposed frame-

work DANE compared with other offline embedding methods?

Datasets. We use the same datasets that appear in section 4.3 for the evaluation.

Among them, BlogCatalog and Flickr are semi-synthetic dynamic attributed networks

while Epinions and DBLP are real-world dynamic attributed networks. On these

datasets, the evolution is very small between two consecutive time stamps.

Experimental Settings. The experimental protocol is also the same as that in

section 4.3. We first compare the embeddings learned by DANE and DANE-O on

two different learning tasks - node classification and network clustering. Secondly,

we also compare the cumulative running time between DANE and other baseline

methods mentioned in section 4.3.
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Table 6.1: Clustering Results Comparison Between DANE and DANE-O.

Datasets BlogCatalog Flickr Epinions DBLP

Methods ACC NMI ACC NMI ACC NMI ACC NMI

DANE-O 80.31 59.46 67.33 53.04 34.11 23.07 59.14 35.31

DANE 79.69 59.32 67.24 52.19 34.52 22.36 57.68 34.87

Table 6.2: Classification Results Comparison Between DANE and DANE-O.

Datasets BlogCatalog Flickr Epinions DBLP

Methods AC Micro Macro AC Micro Macro AC Micro Macro AC Micro Macro

DANE-O 89.34 89.15 89.23 79.68 79.52 79.95 31.23 31.28 31.35 77.21 74.96 75.48

DANE 89.09 88.78 88.94 79.56 78.94 79.56 30.87 30.93 30.81 76.64 74.53 75.69

Effectiveness Evaluation. We compare the proposed DANE with the aforemen-

tioned offline framework DANE-O on the network clustering and node classification

tasks. In particular, we need to rerun the offline method DANE-O at each time

stamp and the average performance across different time stamps is compared. The

comparison results are shown in Table 6.1 and Table 6.2. From these two tables, we

can find that even though DANE leverages matrix perturbation theory to update the

embedding representations, its performance is very close to DANE-O which reruns

at each time stamp. It implies that the online embedding model does not sacrifice

too much informative information in terms of embedding.

Efficiency Evaluation. We report the cumulative running time (in log scale) of

different embedding methods in Figure 6.2. As can be observed, DANE is much

faster than all these comparison methods. In all these datasets, it terminates within

one hour while some offline methods need several hours or even days to run. It can

also be shown that both DANE and DANE-O are much faster than all other of-

77



Time Steps
1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e
 R

u
n

n
in

g
 T

im
e
(s

)

10
2

10
3

10
4

Running Time Comparison on BlogCatalog

CCA

LCMF

LANE

DANE-O

DANE

(a) BlogCatalog

Time Steps
1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e
 R

u
n

n
in

g
 T

im
e
(s

)

10
3

10
4

Running Time Comparison on Flickr

CCA

LCMF

LANE

DANE-O

DANE

(b) Flickr

Time Steps
2 4 6 8 10 12 14 16

C
u

m
u

la
ti

v
e
 R

u
n

n
in

g
 T

im
e
(s

)

10
3

10
4

Running Time Comparison on Epinions

CCA

LCMF

LANE

DANE-O

DANE

(c) Epinions

Time Steps
2 4 6 8 10 12 14 16

C
u

m
u

la
ti

v
e
 R

u
n

n
in

g
 T

im
e
(s

)

10
4

Running Time Comparison on DBLP

CCA

LCMF

LANE

DANE-O

DANE

(d) DBLP

Figure 6.2: Cumulative Running Time of Different Network Embedding Methods.

fline methods. To be more specific, for example, DANE is 84×, 21× and 14× faster

than LCMF, CCA, and LANE respectively on Flickr dataset. To further investi-

gate the superiority of DANE against its offline version DANE-O, we compare the

speedup rate of DANE against DANE-O w.r.t. different embedding dimensions in

Figure 6.3. As can be observed, when the embedding dimension is small (around 10),

DANE achieves around 8×, 10×, 8×, 12× speedup on BlogCatalog, Flickr, Epinions,

and DBLP, respectively. When the embedding dimensionality gradually increases,

the speedup of DANE decreases, but it is still significantly faster than DANE-O.

With all the above observations, we can draw a conclusion that the proposed DANE

framework is able to learn informative embeddings for attributed networks efficiently

without jeopardizing the classification and the clustering performance.
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Figure 6.3: Running Time Speedup of DANE Against DANE-O.

6.4 Summary

Real-world attributed networks are often not static such that interactions among

networked instances tend to evolve gradually, and the attributes also change accord-

ingly. In this chapter, we study a novel research problem: how to learn embedding

representations for nodes on dynamic attributed networks in an online manner to

enable downstream learning tasks. As the offline embedding at each time stamp boils

down to solving a series of generalized eigen-problems, we argue that the core idea to

enable online embedding learning is to incrementally update the solutions of gener-

alized eigen-problems. In particular, we leverage the temporal smoothness properties

of the evolution patterns and update the node embeddings on the fly with matrix

perturbation theory. We also analyze the time complexity of the proposed framework

and show its superiority over offline methods with experimental studies.
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Applications
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Chapter 7

PERSONALIZED RELATIONAL LEARNING ON ATTRIBUTED NETWORKS

We have discussed how to build general and one-size-fits-all feature learning solutions

to enable learning on attributed networks. In this chapter, we focus on one important

application on attributed networks - the relational learning problem and show how

to characterize the inherent properties of the studied problem for a more customized

solution. Relational learning exploits relationships among instances manifested in a

network to improve the predictive performance of many network mining tasks, and it

encompasses node classification as one of the central problems in the network domain1.

In many cases, individuals in a network are highly idiosyncratic. They not only

connect to each other with a composite of factors but also are often described by some

content information of high dimensionality specific to each individual. Therefore, it

would be more appealing to tailor the prediction for each individual while alleviating

the issue related to the curse of dimensionality.

7.1 Overview

Inferring missing labels of nodes in a network could advance many real-world appli-

cations such as recommendation, personalized search, and crowdsourcing. However,

the label information is rather limited on networks as the labeling process requires

human attention and maybe very expensive; or itself is naturally unavailable due to

some privacy issues. The limited access to label information necessities the usage of

relational learning (Koller et al., 2007; Singh and Gordon, 2008; Tang and Liu, 2009),

which leverages the network structure that is readily available and a small subset of

1In this chapter, we use relational learning and node classification interchangeably.
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labeled nodes to assign unlabeled nodes to some predefined groups.

Most, if not all, individuals in a network are highly idiosyncratic. To give a pal-

pable understanding, we can observe that in social media, content information (e.g.,

blogs, posts, images) by different users could be quite diverse and personal, with

a variety of foci. Also, user-generated content is often high-dimensional and may

jeopardize the prediction performance on unseen nodes due to the curse of dimen-

sionality (Li et al., 2017a; Li and Liu, 2017). Therefore, it is desired to tailor the

prediction for each node on the network with only a small subset of relevant features.

In other words, for each instance, we would like to use a subset of discriminative

personalized features in conjunction with some shared features for prediction, while

these personalized features could vary for different nodes. Consequently, the model

is interpretable as we can explain why we make such a prediction.

In this chapter, we study a novel problem of personalized relational learning on

attributed networks. This problem has not been previously studied, mainly because

of the following challenges: (1) As per the fact that labeled nodes are scarce while

network structure is readily observed, it is indispensable to design a relational model

such that nodes could borrow strength from its neighbors in building a more accurate

predictive model. (2) Social identity theory (Tajfel, 2010) suggests that individuals

in a network often exhibit different personalized patterns, but also, they more or less

share some common behaviors to some extent. Relational learning should be able to

seize these natures. (3) Traditional relational learning approaches often use a global

pattern for the prediction purpose. Thus it is still not clear how to customize the

learning and prediction for each individual node. The studied problem of personalized

relational learning is formulated as follows.

Problem 5. Personalized Relational Learning
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Given: An attributed network G represented by the content matrix X ∈ Rn×d and

the adjacency matrix A ∈ Rn×n
≥0 , where n and d denote the number of nodes and

features, respectively. Among these n nodes, assume m nodes are labeled while

the rest n − m nodes are unlabeled. We use Y = {c1, c2, ..., ck} to denote the

label set of these nodes and Y = [y1, ...,ym]′ ∈ {0, 1}m×k is the corresponding

one-hot label indicator matrix for the labeled nodes, where the j-the element in

yi is 1 if the i-th node is associated with class label cj, otherwise 0.

Train: A classifier to predict the missing labels for the unlabeled nodes. During the

learning phase, we would like to tailor the learning process for each node by

employing a subset of features locally associated with the node itself and a small

subset of features relevant to all nodes.

7.2 Proposed Framework - PRL

Labels

Classifier

Training

PredictionTest

Personalized RL

Figure 7.1: An Illustration of the Personalized Relational Learning Framework PRL.

In this section, we show how to build a personalized learning model to address

relational learning problem in detail. The workflow of the proposed PRL framework

is illustrated in Figure 7.1. From the figure, we can see that in the training phase, we

have three sources of information, i.e., the network structure A for all nodes, feature

matrix X, and labels Y for labeled nodes. We first show how the proposed PRL

framework finds some relevant features shared by all nodes (e.g., feature f2) and also,
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a small subset of discriminative features that are locally associated with each specific

node (e.g., feature f4 for u1) to build a personalized predictive model, i.e., a classifier.

Second, as label information is rather limited on real-world networks, we show how

PRL makes use of rich network structure to make nodes borrow strength from each

other to improve the prediction performance.

Modeling Node Features for Personalized Relational Learning. In order to

infer the missing labels of unlabeled nodes, one simple and straightforward way is

to build a global model for all nodes on the node features. However, one drawback

is that it assumes that all nodes share the exact same patterns. In other words,

it conjectures that all nodes share the same feature weight, and the feature weight

derived from labeled nodes could be directly shifted to unlabeled nodes. Despite

the fact that nodes in a network share some common patterns to some extent, they

are often regarded as being highly idiosyncratic, showing distinct behaviors. The

idiosyncrasy of nodes has been heavily observed in reality and also is supported by

social identity theory (Tajfel, 2010) in sociology. It motivates us to build a predictive

model to capture both global and personalized behaviors of nodes on the network.

Next, we first introduce the framework to model the common node patterns and then

extend it to model the personalized nature of each individual.

To uncover common behaviors shared by all nodes and to alleviate the curse

of dimensionality, we embed feature selection into a linear multi-class classification

model, resulting in the following objective function:

min
W̃

m∑
i=1

‖xiW̃ − yi‖22 + γ‖W̃‖2,1, (7.1)

where W̃ ∈ Rd×k is the global feature weight shared by all nodes, and the term

γ‖W̃‖2,1 is imposed to achieve joint feature sparsity across k different classes.

To apprehend personalized behaviors of each single node, we also assume that
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each node is also associated with a local variable Wi. In this way, the class labels of

labeled nodes can be approximated by a conjunction of global model parameter W̃

and a localized variable Wi. In this way, Eq. (7.1) can be reformulated as:

min
W̃,Wi

m∑
i=1

‖xi(W̃ + Wi)− yi‖22 + γ‖W̃‖2,1. (7.2)

Similar to the modeling of global behaviors, personalized behavior is also encoded

in a small subset of features that is locally associated with each individual. To put

it in another way, we would like to achieve feature sparsity within each localized

model parameter Wi. It can be mathematically formulated by solving an exclusive

group lasso problem (Kong et al., 2014, 2016; Zhou et al., 2010). In particular,

each Wi is regarded as a group, exclusive group lasso encourages intra-group level

competition but discourages inter-group level competition. As a result, a small subset

of discriminative personalized features can be obtained within each Wi. Therefore,

we first impose an `2,1-norm sparse regularization on Wi for intra-group level feature

sparsity across k different class labels. Afterwards, we put `2-norm at the inter-

group level for non-sparsity. With the intra-level sparsity and inter-level non-sparsity

regularization term
∑m

i=1 ‖Wi‖2
2,1, the node features X for personalized relational

learning can be formally formulated as:

min
W̃,Wi

m∑
i=1

‖xi(W̃ + Wi)− yi‖22 + β

m∑
i=1

‖Wi‖22,1 + γ‖W̃‖2,1, (7.3)

where parameters β and γ are used to balance the sparsity of personalized and shared

features, respectively.

Modeling Network Information for Personalized Relational Learning. The

objective function in Eq. (7.3) builds a predictive learning model with the supervision

of node labels Y. However, as mentioned above that in many cases, the portion

of labeled nodes is very limited, either because of the labor and time consuming

labeling process or labels themselves are just unavailable due to some privacy issues.
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Fortunately, a rich source of network structure is readily observable and could be

potentially helpful to build a more informative predictive model.

Even though individuals in a highly connected network exhibit some unique behav-

iors, as indicated by social categorization theory (Hornsey, 2008), these personalized

individual behaviors are well organized and can be categorized into various groups.

For example, groups can indicate different foci of user interests, such as sports, liter-

ature, and arts. Here the challenges center around inferring of personalized patterns

and obtaining their group structures simultaneously. In this work, we take advantage

of the network structure to cluster the personalized patterns based on node connec-

tivity. In particular, we force linked nodes to borrow strength from each other in

learning personalized patterns to fortify the prediction model by the network lasso

regularization term (Hallac et al., 2015):

min
W

m∑
i,j=1

Aij‖Wi −Wj‖F . (7.4)

The advantages of the above regularization term are two folds. First, the Frobenius

norm of the difference between Wi and Wj not only makes them close to each other

if they are connected, i.e., Aij = 1, but also incentivizes them to be the same. In

this way, since many localized feature weights Wi are made to be the same, they

are automatically grouped into several clusters. Second, when the label information

cannot provide us enough guide to learn the localized parameter, Eq. (7.4) provides

us a way to borrow strength from neighbors for the model parameter learning.

Learning and Inference. By combing Eq. (7.3) and Eq. (7.4), the final objective

function of the proposed PRL framework can be formulated as:

min
W̃,Wi

J(W̃,Wi) =
m∑
i=1

‖xi(W̃ + Wi)− yi‖22

+α
m∑

i,j=1

A(i, j)‖Wi −Wj‖F + β
m∑
i=1

‖Wi‖22,1 + γ‖W̃‖2,1,
(7.5)
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where α is a model parameter to control the contribution of network structure in

helping personalized relational learning. Also, it controls how the nodes are clustered

according to their localized feature parameters Wi. By solving the above optimization

problem, we can obtain W̃ that captures the global feature pattern and a set of Wi

(i = 1, ...,m) that capture the personalized feature pattern for each labeled node.

Now we discuss how to make a prediction for unlabeled nodes by the built classifier

which is a conjunction of W̃ and Wi. During the prediction phase, we first find the

linked neighbors for a new unlabeled node ul on the network G; then if we successfully

find some labeled neighbors, we take the averaged feature parameters (conjunction of

global and personalized) of its neighbors as the new feature weight W
l
; otherwise, we

use the averaged feature parameters (conjunction of global and personalized) of all

labeled nodes as the new feature weight W
l
. After we obtain the feature weight for the

new unlabeled node ul, its class labels can be predicted by c∗ = arg maxcj∈Y(|xlW
l|j).

Optimization Solution. The objective function of PRL in Eq. (7.5) involves two

sets of variables: (1) the global variable W̃ that captures the global patterns of nodes;

and (2) the localized variable Wi that encodes personalized behaviors of each indi-

vidual node. The objective function is not convex w.r.t. W̃ and Wi (i = 1, ...,m)

simultaneously. In addition to that, the objective function is also not smooth. Moti-

vated by (Yamada et al., 2017), we present an effective alternating algorithm to solve

it, thus in each iteration, the model parameters could be updated with a closed-form

solution. More details about the optimization can be found in (Li et al., 2017e).

7.3 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness of the pro-

posed framework PRL. We first introduce the used datasets, and experimental set-

tings before presenting detailed results of the experiments. At last, we investigate the
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parameter sensitivity study of PRL.

Datasets. We use three real-world networks for evaluation, and all of them are

publicly available. Cora and Citeseer are real-world academic networks (Rossi and

Ahmed, 2015) while BlogCatalog is a social media network (Li et al., 2015). The

Cora dataset is a citation network with 2,708 publications and 5,429 citations. Each

publication is described by a set of 1,433 words which are considered as features.

All these features are 0/1-valued. All publications are categorized into 7 classes

according to their subjects. The Citeseer dataset is another citation network with

3,312 publications and 4,732 links. They are grouped into 6 classes. Similar to

Cora, each publication is associated with a total of 3,703 0/1-valued features. The

BlogCatalog dataset is a social blogging dataset with 5,196 users. The tag information

of blogs by users are regarded as features; the feature number is 1,638. A total number

of 171,743 links are observed. The ground truth is the major category (among 6

categories) of blogs posted by users. We adopt the same mechanism mentioned before

to transform directed networks into undirected ones.

Experimental Settings. We select several representative basline methods for a fair

comparison.

• NMF: Non-negative Matrix Factorization (NMF) (Lee and Seung, 2001) has

proven to be effective in many real-world applications by reducing the feature

dimensionality. We consider it as a baseline method to first obtain the low-rank

node feature representation and then apply discriminative learning methods.

• wvRN: Weighted-Vote Relational Neighbor Classifier (wvRN) (Macskassy and

Provost, 2003) is a local neighborhood based classifier. It makes the prediction

for unlabeled nodes by a weighted vote score of its labeled neighbors.

• SocDim: Social Dimensions (Tang and Liu, 2009) is one of the state-of-the-art
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relational learning approaches with only network information. It first adopts

modularity maximization (Newman, 2006) to extract latent representations and

then utilize them as features for discriminative learning.

• GNMF: Graph Regularized NMF (Cai et al., 2010a) is based on the assumption

that latent representations of connected nodes are also similar to each other.

After getting the low-rank feature representation, we take them as input to a

typical learning method.

• FsNet: It (Gu and Han, 2011) aims to select a subset of relevant features

on the node feature space. In particular, it exploits a linear regression model

to capture the node features and adopt graph regularization to make use of

the network structure. We employ discriminative learning methods to build a

predictive model based on the selected features.

The vast majority of relational learning methods heavily depend on the extracted

feature representations. Among these comparison methods, NMF, SocDim, GNMF,

and FsNet are typical feature-based relational learning methods. They first extract

latent features and then employ typical discriminative methods to build a classifier to

enable the prediction on unlabeled nodes. In the experiments, we follow a commonly

adopted setting (Tang and Liu, 2009) to use linear SVM for discriminative learning.

For each method, we randomly choose p% of nodes for training and the rest 1− p%

for testing. As we often have limited access to labeled nodes in practice, we choose a

relatively small value for p by varying it in the range of {1, 2, ..., 9, 10}. For each p, we

run the experiments 10 times and report the average classification performance. Two

widely used evaluation criteria based on F1-measure, i.e., Micro-F1 and Macro-F1

are used to measure the multi-class and multi-label classification problems.

Effectiveness Evaluation. We evaluate the performance of PRL by comparing its

89



Table 7.1: Classification Results Evaluation of PRL and Baselines on Cora.

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.3914 0.4531 0.4748 0.4980 0.5229 0.5342 0.5402 0.5460 0.5639 0.5494

wvRN 0.3230 0.3402 0.3626 0.3751 0.3929 0.4109 0.4221 0.4399 0.4502 0.4643

SocDim 0.3322 0.3942 0.4414 0.4797 0.4996 0.5315 0.5467 0.5636 0.5872 0.5945

GNMF 0.3936 0.4510 0.4798 0.5137 0.5216 0.5415 0.5477 0.5586 0.5726 0.5740

FsNet 0.3880 0.4516 0.4829 0.5079 0.5231 0.5274 0.5384 0.5413 0.5444 0.5399

PRL 0.4254 0.4908 0.5324 0.5506 0.5688 0.5811 0.5989 0.6170 0.6266 0.6315

Macro-F1

NMF 0.3133 0.3874 0.4178 0.4409 0.4829 0.4960 0.5041 0.5053 0.5262 0.5038

wvRN 0.1198 0.1617 0.2064 0.2374 0.2721 0.3045 0.3273 0.3556 0.3755 0.3979

SocDim 0.3077 0.3808 0.4256 0.4628 0.4814 0.5123 0.5311 0.5469 0.5688 0.5769

GNMF 0.3173 0.3906 0.4300 0.4674 0.4793 0.4999 0.5061 0.5212 0.5340 0.5404

FsNet 0.3074 0.3905 0.4269 0.4626 0.4836 0.4892 0.5040 0.5074 0.5133 0.5109

PRL 0.3833 0.4098 0.4881 0.4968 0.5324 0.5539 0.5637 0.5791 0.5906 0.6039

Table 7.2: Classification Results Evaluation of PRL and Baselines on Citeseer.

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.4236 0.4704 0.4749 0.4926 0.4978 0.5062 0.5264 0.5329 0.5363 0.5412

wvRN 0.2264 0.2412 0.2548 0.2655 0.2779 0.2884 0.3003 0.3118 0.3206 0.3313

SocDim 0.2701 0.2996 0.3254 0.3447 0.3523 0.3682 0.3750 0.3855 0.3934 0.4044

GNMF 0.4296 0.4768 0.4981 0.5124 0.5235 0.5243 0.5253 0.5357 0.5435 0.5535

FsNet 0.4301 0.4657 0.5125 0.5142 0.5202 0.5301 0.5344 0.5417 0.5524 0.5576

PRL 0.4356 0.4851 0.5296 0.5307 0.5505 0.5535 0.5568 0.5691 0.5725 0.5762

Macro-F1

NMF 0.3732 0.4271 0.4347 0.4548 0.4589 0.4671 0.4881 0.4961 0.4977 0.5021

wvRN 0.0887 0.1172 0.1421 0.1626 0.1843 0.2023 0.2221 0.2393 0.2532 0.2700

SocDim 0.2453 0.2815 0.3056 0.3264 0.3333 0.3476 0.3544 0.3644 0.3712 0.3821

GNMF 0.3820 0.4346 0.4565 0.4723 0.4837 0.4862 0.4865 0.4967 0.5061 0.5141

FsNet 0.3677 0.4183 0.4683 0.4714 0.4797 0.4835 0.4949 0.5030 0.5089 0.5167

PRL 0.3993 0.4356 0.4751 0.4862 0.5103 0.5142 0.5220 0.5231 0.5287 0.5295

classification performance with other methods on the three above-mentioned datasets.

The comparison results are shown in Table 7.1, Table 7.2 and Table 7.3. The model

parameters could be determined by cross-validation, and a detailed sensitivity study

will be investigated later. We make the following observations from these three tables.
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Table 7.3: Classification Results Evaluation of PRL and Baselines on BlogCatalog.

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.5342 0.5938 0.6235 0.6531 0.6570 0.6617 0.6739 0.6787 0.6854 0.6938

wvRN 0.2516 0.3181 0.3511 0.3928 0.4204 0.4372 0.4598 0.4727 0.4849 0.5026

SocDim 0.3697 0.4419 0.4741 0.5078 0.5340 0.5502 0.5680 0.5831 0.5947 0.5952

GNMF 0.5632 0.6063 0.6504 0.6587 0.6634 0.6743 0.6771 0.6873 0.6880 0.6927

FsNet 0.5363 0.6096 0.6240 0.6308 0.6467 0.6359 0.6422 0.6444 0.6408 0.6433

PRL 0.6009 0.6127 0.6341 0.6622 0.6767 0.6939 0.7117 0.7184 0.7235 0.7365

Macro-F1

NMF 0.5279 0.5856 0.6184 0.6479 0.6529 0.6579 0.6693 0.6748 0.6804 0.6885

wvRN 0.2276 0.3043 0.3416 0.3836 0.4123 0.4299 0.4495 0.4607 0.4722 0.4902

SocDim 0.3651 0.4372 0.4690 0.5023 0.5293 0.5429 0.5599 0.5754 0.5863 0.5869

GNMF 0.5533 0.6006 0.6236 0.6544 0.6571 0.6689 0.6733 0.6819 0.6925 0.6963

FsNet 0.5189 0.6010 0.6175 0.6306 0.6452 0.6338 0.6417 0.6436 0.6398 0.6426

PRL 0.5720 0.6153 0.6447 0.6697 0.6661 0.6923 0.7143 0.7153 0.7228 0.7335

(1) In most cases, when we gradually increase the number of labeled nodes from 1%

to 10%, the classification performance increases for all methods in the table. (2) Our

proposed personalized relational learning framework PRL outperforms all baseline

methods in almost all cases. Meanwhile, PRL is significantly better with a signifi-

cance level in both 0.01 and 0.05, with Wilcoxon signed-rank test. (3) Both wvRN

and SocDim are relational learning methods with only network information; their

classification performance is inferior to relational learning approaches incorporating

node features such as GNMF, FsNet, and PRL. The results support the importance

of leveraging both sources of information for relational learning. (4) GNMF is an

extension of NMF that uses graph regularization to make the latent representation

consistent with the network topological structure. It obtains higher Micro-F1 and

Macro-F1 than NMF in most cases, suggesting that the exploration of rich network

information is helpful and could improve relational learning. (5) FsNet selects a

common set of relevant features, while our proposed method could be regarded as a

personalized feature selection framework. The improvement of PRL over FsNet val-
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Figure 7.2: Parameter Study of PRL on Citeseer Dataset.

idates the necessity of employing personalized features for relational learning, which

has an added value over a set of shared features.

Parameter Sensitivity Study. In PRL, α balances the contribution of node fea-

tures and network structure for relational learning, β and γ controls the sparsity of

personalized features of each individual and the common feature in the model learning

phase. To investigate the effects of these three parameters, we fix one parameter each

time and vary the other two to see how it affects the classification performance. The

portion of training data in the study is set to be 5%. First, we fix the parameters β

as 1 and γ as 0.1 and vary the value of α among {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.

As can be observed from Figure 7.2(a), when we gradually increase α, the classifica-

tion performance first increases and reaches its peak and then gradually decreases.

The best performance is achieved when α is between 1 and 5. Next, we fix α = 1

and γ = 0.1 and vary β as {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}. The study results are

shown in Figure 7.2(b). We observe that when β is small, the classification perfor-

mance is relatively lower. The reason is that when β is small, the contribution of the

personalized feature selection is limited; on the other hand, a reasonable β enables us

to find better localized features customized for each node, which in turn benefit the

prediction performance. At last, we fix α = 1 and β = 1, and vary the third variable
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γ. In particular, when γ is small, personalized features will dominate the objective

function, the performance is high. As we continuously increase γ, the performance

gradually decreases, but the change is small.

7.4 Summary

Node classification targets to use network structure and node features of a small

number of labeled nodes (if available) to build a predictive learning model; then

employs the built model to infer missing labels for unlabeled nodes. Existing methods

on this line assume that all nodes have a common pattern by sharing the same feature

weight. However, as nodes on networks are highly idiosyncratic, their associated node

features are quite diverse and personalized. Hence, it would be appealing to tailor the

learning and prediction by using a set of personalized features specific to the node, and

a set of common features shared by all nodes. Toward this goal, we propose a novel

personalized relational learning framework PRL. As we can customize the learning

and prediction for each individual, the proposed model is also human interpretable.

Experiments on real-world networks show the effectiveness of the proposed model.
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Chapter 8

ANOMALY DETECTION ON ATTRIBUTED NETWORKS

In this chapter, we investigate another important problem on attributed networks

- the anomaly detection problem. Attributed networks are pervasive in different

domains, ranging from social networks, gene regulatory networks, to financial trans-

action networks. This kind of rich network representation presents challenges for the

anomaly detection problem due to the heterogeneity of two data representations. A

vast majority of existing algorithms assume certain properties of anomalies are given a

prior and attempt to detect anomalies within a specific context. Since various types

of anomalies in real-world attributed networks co-exist, the assumption that prior

knowledge regarding anomalies is available does not hold. To solve the challenge, we

study the anomaly detection problem generally from a residual analysis perspective,

which has been shown to be effective in traditional anomaly detection problems –

with a mild assumption that residuals of anomalies have a significant deviation from

the normal samples.

8.1 Overview

Anomaly detection (a.k.a. outlier detection) (Aggarwal, 2015; Chandola et al.,

2009) aims to discover rare instances that do not conform to the patterns of majority.

Recently, there is a growing interest to perform anomaly detection on attributed

networks (Gao et al., 2010; Perozzi et al., 2014a; Perozzi and Akoglu, 2016; Sánchez

et al., 2014). To facilitate the detection of anomalous nodes, a straightforward way is

to assume that some properties of anomalies are known in advance, examples include

structural anomaly, contextual anomaly, and community anomaly, among others. In
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fact, different types of anomalies are often mixed together on attributed networks, and

it is hard to identify all of them when we have no prior knowledge of data. Besides,

new types of anomalies may continuously arise over time especially in an adversarial

environment. Therefore, it is beneficial and desirable to explore and spot anomalies in

a general sense. Residual analysis (Cook and Weisberg, 1982; She and Owen, 2011),

which is initiated to study the residuals between true data and estimated data for

regression problems, provides a mild assumption for anomaly detection – instances

with large residual errors are more likely to be anomalies. Although it provides a

general way to find anomalies, it is a non-trivial to be applied on attributed networks:

(1) we have heterogeneous data sources on attributed networks, it is insufficient to

consider residuals from a single data source; (2) instances on attributed networks

are not independent and identically distributed (i.i.d.), the interactions among them

further complicate the residual modeling process.

In this chapter, we provide a principled way to identify and detect anomalies via

the principle of residual analysis. In particular, we develop a novel framework Radar

by investigating: (1) How to characterize the residuals of attribute information to

spot anomalies when there is no prior knowledge of anomalies? (2) How to exploit

coherence between attribute residuals and network information to identify anomalies?

The problem statement is formulated as follows.

Problem 6. Anomaly Detection on Attributed Networks

Given: An attributed network G represented by the content matrix X ∈ Rn×d and

the adjacency matrix A ∈ Rn×n
≥0 , where n and d denote the number of nodes and

features, respectively.

Find: A set of nodes that are rare and differ singularly from the majority reference

instances. In particular, we would like to rank the nodes by their degree of
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abnormality such that the abnormal ones are ranked in higher positions.

8.2 Proposed Framework - Radar

In this section, we give details about how to model attribute information and net-

work information to detect anomalies generally from a residual analysis perspective.

Modeling Attributed Information. We start from the situation when only at-

tribute information is available. Let X̃ denotes the estimated attribute information,

then the approximation error X − X̃, i.e, residuals, can be exploited to determine

contextual anomaly as content patterns of anomalies deviate significantly from ma-

jority normal instances (Tong and Lin, 2011). One natural way to build X̃ is by

using some representative instances (Yu et al., 2006). For a certain instance, if its

attribute information can be approximated by some representative instances, it is of

low probability to be anomalous. On the opposite side, if the instance cannot be

well represented by some representative instances, its attribute information does not

conform to the patterns of majority reference instances. In other words, we would

like to use the attribute information of some representative instances to reconstruct

X. Mathematically, it is formulated as:

min
W
‖X−W′X‖2

F + α‖W‖2,0, (8.1)

where W ∈ Rn×n is a coefficient matrix such that the attribute information of each

instance (a row of X) can be reconstructed by a linear combination of other instances;

the row sparsity constraint ‖W‖2,0 ensures that only the attribute information of a few

representative instances are employed to reconstruct X, α is a parameter to control

the row sparsity. However, the problem in Eq. (8.1) is NP-hard due to the `2,0-norm

term. ‖W‖2,1 is the minimum convex hull of ‖W‖2,0 and we can minimize ‖W‖2,1 to

obtain the same results as ‖W‖2,0, and it is also widely used in other learning tasks
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such as feature selection. In this way, we reformulate Eq. (8.1) as:

min
W
‖X−W′X‖2

F + α‖W‖2,1. (8.2)

Let Θ = X−W′X−R be a random error matrix. Θ is usually assumed to follow a

multi-dimensional normal distribution. R is the residual matrix from the reconstruc-

tion process in Eq. (8.2). The residual matrix R can be used to determine anomalies

since the attribute patterns of anomalous instances and normal instances are quite

different, a large norm of R(i, :) indicates the instance has a higher probability to

be an anomaly (Tang and Liu, 2013). In addition, in many applications like rumor

detection (Wu et al., 2017), malicious URL detection (Sahoo et al., 2017), and rare

category detection (Zhou et al., 2015), the number of anomalies is much smaller than

the number of normal instances, therefore we add ‖R‖2,1 on the basis of Eq. (8.2) to

achieve row sparsity to constrain the number of abnormal instances. The objective

function can be reformulated as:

min
W,R
‖X−W′X−R‖2

F + α‖W‖2,1 + β‖R‖2,1. (8.3)

where β controls the row sparsity of residual matrix R.

Modeling Network Information. We model the residuals of attribute informa-

tion to spot anomalies in Eq. (8.3). However, on attributed networks, some types of

anomalies are not solely described at a contextual level. Therefore, we need to ex-

ploit the correlation between attribute and network information to detect anomalies

in a more general way. According to well-received social science theory such as ho-

mophily (McPherson et al., 2001), instances with similar patterns are more likely to

be linked together on attributed networks. Similarly, when we reconstruct X by the

attribute information of some representative instances, the homophily effect should

also hold. It indicates that if two instances are linked together on the network, after
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attribute reconstruction by representative (normal) instances, their attribute patterns

in the residual matrix R should also be similar. If the attributed network is an undi-

rected network, it can be mathematically formulated by minimizing the following

term:

1

2

n∑
i=1

n∑
j=1

A(i, j)‖R(i, :)−R(j, :)‖2
2

= tr(R′(D−A)R) = tr(R′LR),

(8.4)

where D is a diagonal matrix with D(i, i) =
∑n

j=1 A(i, j), L is a Laplacian matrix.

If the attributed network is a directed network, the graph regularization term in

Eq. (8.4) cannot be used directly since the adjacency matrix A is not symmetric.

To model the network information on directed networks, we follow (Li et al., 2016b)

to use A = max(A,A′). Then the Laplacian matrix is in the same form as the

undirected networks.

The Joint Framework for Anomaly Detection. The objective function in

Eq. (8.3) is based on a strong assumption that instances are independent and identi-

cally distributed (i.i.d.). However, it is not the case on networks such that instances

are interconnected with each other, the interactions among instances also complicate

the residual modeling process. Therefore, we propose to integrate the network mod-

eling term in Eq. (8.4) on the basis of Eq. (8.3) to capture the coherence between

attribute residual information and network information, the objective function of the

Radar framework can be formulated as follows:

min
W,R
‖X−W′X−R‖2

F + α‖W‖2,1 + β‖R‖2,1 + γtr(R′LR), (8.5)

where γ is a parameter to balance the contribution of attribute reconstruction and

network modeling.

It can be observed that without any prior knowledge about anomalies, we build

a general learning framework (Eq. (8.5)) to detect anomalous instances generally by
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exploiting both attribute and network information as well as their correlations. By

learning and analyzing the residual matrix R, it enables the ranking of anomalies ac-

cording to their residual values. Different from making a binary decision of anomalies,

anomaly ranking is easier to be interpreted. It makes further exploration possible as

decision markers can check the degrees of deviation manually.

The objective function in Eq. (8.5) is not convex in terms of W and R simultane-

ously. Besides, it is also not smooth due to the existence of `2,1-norm regularization

term. We use an alternating way to optimize this problem and more details of the

optimization process and its convergence analysis can be found in (Li et al., 2017b).

8.3 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness of the pro-

posed anomaly detection framework Radar. In particular, we investigate the fol-

lowing two research questions: (1) How is the anomaly detection performance of

the proposed Radar when measured against other representative anomaly detec-

tion methods? (2) Does the utilization of coherence between attribute residuals and

network information help find anomalous instances otherwise remain undiscovered?

Before discussing details of the experiments, we first introduce the datasets and the

experimental settings.

Datasets. We use three real-world attributed network datasets for the evaluation,

and all these datasets have been used in previous research (Müller et al., 2013; Sánchez

et al., 2013). Among them, Disney dataset and Books dataset come from the Amazon

co-purchase networks. Disney is a co-purchase network of movies, the attributes

include prices, ratings, number of reviews, etc. The ground truth (anomalies) are

manually labeled by high school students. The dataset contains 124 nodes, 334 edges,

28 attributes, and the ratio of anomalies is 4.8%. The second dataset, Books, is a
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co-purchase network of books, it has similar attributes as Disney dataset. The ground

truth (anomalies) are obtained by amazonfail tag information. There are 1,418 nodes,

3,695 edges, 21 attributes in total. And 28 nodes are considered to be anomalous.

Enron is an email network dataset, spam messages are taken as ground truth. There

are 13,533 nodes (including 6 anomalies), 176,987 edges and 18 attributes.

Experimental Settings. The criteria of AUC (Area Under ROC Curve) is ap-

plied to evaluate the performance of anomaly detection algorithms. According to the

ground truth and the results by anomaly detection algorithms, there are four possible

outcomes: anomaly is recognized as anomaly (TP), anomaly is recognized as normal

(FN), normal is recognized as anomaly (FP), and normal is recognized as normal

(TN). Therefore, the detection rate (dr) and false alarm rate (flr) are defined as:

dr =
TP

TP + FN
, flr =

FP

FP + TN
. (8.6)

Then the ROC curve is a plot of detection rate (dr) vs. false alarm rate (flr). From

the statistical perspective, AUC value represents the probability that a randomly

chosen abnormal instance is ranked higher than a normal instance. If the AUC value

approaches 1, the method is of high quality.

We compare the proposed Radar with four baseline methods:

• LOF (Breunig et al., 2000): LOF detects anomalies in a contextual level and

only uses attribute information.

• SCAN (Xu et al., 2007): SCAN detects anomalies in a structural level and

only considers network information.

• CODA (Gao et al., 2010): CODA detects anomalies within the context of

communities where these instances deviate significantly from other members in

the same community.
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Figure 8.1: Anomaly Detection Results Evaluation by Radar and Baselines.

• ConSub+CODA (Sánchez et al., 2013): It performs subspace selection as a

pre-processing step and then applies CODA to detect subspace community

anomalies on attributed networks.

Among them, LOF, SCAN, CODA covers three types of widely defined anoma-

lies on attributed networks (contextual anomaly, structural anomaly, and community

anomaly). Consub+CODA is able to find subspace community anomalies by tak-

ing subspace selection as a pre-processing step. The proposed Radar framework

has three different regularization parameters, for a fair comparison, we tune these

parameters by a “grid-search” strategy from {10−3, 10−2, ..., 102, 103}. Details about

the effects of these parameters will be investigated later.

Effectiveness of Radar. The experimental results in terms of AUC values are

presented in Figure 8.1. By comparing the performance of different methods, we

can observe that the proposed Radar framework always obtains the best anomaly
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detection performance. The reason is that on real-world attributed networks, nodes

are annotated as anomalies due to a variety of reasons. Our Radar algorithm pro-

vides a general way to detect anomalies globally and does not depend on specific

properties of anomalies. We also perform one-tailed t-test between Radar and other

baseline methods and the test results show that Radar is significantly better (with

a 0.05 significance level). Therefore, we can get an answer for the first question that

the proposed Radar framework outperforms other representative anomaly detection

algorithms for attributed networks.

Effectiveness of Coherence Modeling. We study the second question to investi-

gate how the coherence between attribute residuals and network information affects

anomaly detection. We compare Radar with the following variants by varying γ:

• Residual-based method : We set the parameter γ to be zero, therefore, only

residuals of attribute information is taken into consideration. The detected

anomalies can be considered as contextual anomalies.

• Network-based method : We set the parameter γ to be a large number, there-

fore, the contribution from attribute residuals can be ignored. The detected

anomalies can be considered as structural anomalies.

First, we compare the anomaly detection results by the proposed Radar, the

residual-based method, and the network-based method on Disney dataset. The AUC

values of these three methods are 87.1%, 77.68%, 74.29%, respectively. It indicates

that by exploiting the correlation between attribute residuals and network informa-

tion, the anomaly detection performance indeed improves. We only present the com-

parison results on Disney dataset as we have similar observations on the other two

datasets. Second, we compare the overlap of detected anomalies by each pair of

method (Radar and residual-based method, Radar and network-based method,
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Figure 8.2: Anomalies Overlap Comparison between Radar and Its Variants.

residual-based method and network-based method) in Figure 8.2. As can be observed,

when we vary the number of detected anomalies, the overlap of anomalies between

Radar and residual-based method, Radar and network-based method are always

larger than the overlap between residual-based method and network-based method.

This phenomenon shows that by exploiting the correlation between attribute residu-

als and network structure, we can find anomalies otherwise undiscovered by a single

source of information. It also shows the potential to detect anomalies generally via

residual analysis.

Parameter Study. There are three parameters in the proposed framework. Among

them, β and γ are relatively more important. The parameter β controls the number

of anomalies, while γ balances the contribution of attribute information and network

information for anomaly detection. We investigate how these two parameters affect

the anomaly detection results on Disney dataset. The performance variance result

is shown in Figure 8.3 (α is fixed to be 0.5). We observe that when β is small, the
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Figure 8.3: Parameter Study of Radar on Disney Dataset.

AUC values are relatively low, the anomaly detection performance is not sensitive

to the parameters when β and γ are in the range of 0.1 to 1000, and 0.001 to 10,

respectively. The performance is the best when both β and γ are around 0.2.

8.4 Summary

In this chapter, we study the application of anomaly detection on attributed net-

works, and our goal is to detect the nodes whose behaviors or patterns deviate sig-

nificantly from other majority nodes on the network. Methodologically, we propose

a learning framework Radar to characterize attribute reconstruction residual and

its correlation with network information to detect anomalies. Through learning and

probing the residuals of the reconstruction process, we are able to spot anomalies in

a global view when properties of anomalies are unknown. Experiments on real-world
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datasets show that our framework yields better AUC values compared to baseline

methods which define anomalies in a specific context. Besides, the coherence between

attribute residuals and network structure can help uncover anomalies otherwise undis-

covered by a single source of information.
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Chapter 9

STREAMING LINK PREDICTION ON DYNAMIC ATTRIBUTED NETWORKS

Link prediction targets to predict the future node interactions mainly based on the

current network snapshot. It is a key step in understanding the formation and evo-

lution of the underlying networks; and has practical implications in many real-world

applications, ranging from friendship recommendation, click through prediction, to

targeted advertising (Getoor and Diehl, 2005). Most existing efforts are devoted to

plain networks and assume the availability of network structure in memory before link

prediction takes place. However, this assumption is untenable as many real-world net-

works are affiliated with rich node attributes, and often, the network structure and

node attributes are both dynamically evolving at an unprecedented rate. Even though

recent studies show that node attributes have an added value to network structure

for accurate link prediction, it still remains a daunting task to support link predic-

tion in an online fashion on such dynamic attributed networks. As changes in the

dynamic attributed networks are often transient and can be endless, link prediction

algorithms need to be efficient by making only one pass of the data with limited

memory overhead.

9.1 Overview

As per the fact that node attributes are complementary for link prediction while

both network structure and node attributes exhibit high dynamics, we investigate a

novel problem of streaming link prediction on dynamic attributed networks in this

chapter. The following challenges have to be addressed simultaneously: (1) Near

Real-Time Prediction: Dynamic attributed networks are characterized by stream-
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ing nodes/edges of high velocity. Also, the evolution of networks is often mixed with

the changes of node attributes at an unsynchronized rate. As changes are essential

components of the system and could occur at any time, link prediction algorithms re-

quire to be efficient and are performed in a streaming fashion to predict missing links

in close to near real-time. (2) One-Pass of the Data: The entire size of the network

and affiliated node attributes are often unknown at a particular moment and could

even be infinite in the worst case. Hence, the streaming link prediction algorithms

need to be pass-efficient to make only one pass of the data as the further passes are

either expensive or naturally impossible. (3) Space Efficiency: Data is continuously

being generated, the huge volume of data makes the dynamic attributed network hard

to be materialized in memory, which necessitates the design of a cost-effective data

synopsis with limited memory overhead to summarize the ever-increasing network

structure and node attributes. (4) Concept Drift: With the accumulation of new

nodes/edges and the changes of node attributes, the underlying network topology

and the content patterns continuously evolve over time, resulting in the emerging of

unseen patterns and the fading of existing patterns, which may significantly impact

the link prediction performance. This phenomenon is often referred to as concept

drift in data stream mining. In this regard, link prediction algorithms should be able

to tackle the issue of concept drift. (5) Data Heterogeneity: Even though network

structure and node attributes are presented in different modalities, they are often not

mutually independent and could influence each other. Link prediction algorithms are

supposed to seize the inherent interconnections for accurate prediction.

Here, we present the problem formulation for the studied problem.

Problem 7. Streaming Link Prediction on Dynamic Attributed Networks

Given: A dynamic attributed network G = (Gt0 , Gt1 , ...) with fast-evolving node/edge
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Figure 9.1: An Illustration of the Studied Problem of Streaming Link Prediction on

Dynamic Attributed Networks.

streams and changes of node attributes across multiple time stamps (t0, t1, ...).

Predict: If there exists an edge e = (u, v) for a pair of nodes (u, v) at a particular

time stamp t, which are not connected previously before time stamp t.

An illustration of the studied problem is shown in Figure 9.1. The streaming link

prediction problem supports the prediction of missing links in an online fashion. For

example, as shown in the figure, given a dynamic attributed network at three different

time stamps t0, t1, and t2 with both network structure and node attribute changes,

the streaming link prediction problem predicts the missing links that may appear at

time stamp t, where t > t2.

9.2 Proposed Framework - SLIDE

Notations We first introduce some basic concepts and notations that will be used

in this chapter. The SVD of A ∈ Rn×m is denoted as SVD(A) = UΣV′, U is an

n× n orthogonal matrix with the columns being left singular vectors [u1,u2, ...,un],

V is a m ×m orthogonal matrix with the columns being the right singular vectors

[v1,v2, ...,vm], Σ = diag(σ1, ..., σn) is a n × m diagonal matrix, where σ1 ≥ σ2 ≥

, ...,≥ σr are the singular values of A and r is the rank of matrix A. The best rank-k

(k ≤ r) approximation of matrix A ∈ Rn×m is Ak = argminrank(X)≤k ‖A −X‖F and
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it can be computed as Ak = UkΣkV
′
k =

∑k
i=1 σiuiv

′
i, where Uk, Σk, Vk are the

truncated matrices consisting of the top-k left singular vectors, singular values, and

right singular vectors, respectively.
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Figure 9.2: An Illustration of the Streaming Link Prediction Framework SLIDE.

In this section, we present the proposed framework SLIDE for streaming link pre-

diction on dynamic attributed networks. The basic idea is to maintain and update a

low-rank sketching matrix with limited memory overhead to summarize the currently

observed links and node attributes. Then given the attributes of a pair of uncon-

nected nodes, we leverage the low-rank sketching matrix to determine if there exists

a link between these two end nodes in the future. The low-rank sketching matrix is

continuously being updated when new links and new node attributes are observed.

The workflow of the proposed SLIDE is shown in Figure 9.2. As can be observed

from the figure, the proposed framework consists of three essential components: (1)

maintain and update a sketching matrix to summarize the currently observed data,

including all the observed links and node attributes; (2) predict missing links on the

fly with the up-to-date sketching matrix; (3) calculate and update the threshold which

is used to determine the existence of links.
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Summarization with Matrix Sketching. On a typical dynamic attributed net-

work, a massive amount of edges are continuously arriving at a fast pace. Meanwhile,

node attributes also change naturally such that new content patterns may emerge and

outdated content patterns will fade. To explicitly store such a dynamic attributed

network at a particular time stamp t, we need O(n2
t +ntd) space in the worst case (d

is often much smaller than nt), where nt is the number of nodes on the network until t

and d is the dimensionality of node attributes. The materialization of the attributed

networks becomes infeasible when nt is very large. Hence, it is of vital importance

to use cost-effective data synopsis to summarize all observed data including the links

and node attributes. Nonetheless, designing a full streaming model with limited and

constant memory space is a challenging problem and most of the existing efforts on

graph streams are devoted to the so-called semi-streaming models (Feigenbaum et al.,

2005; McGregor, 2014), which requires O(ntpolylog(nt)) space. These semi-streaming

models are intractable if the available memory is not proportional to the number of

nodes nt on the network. In addition, due to the heterogeneity of two information

sources on attributed networks, the resulted data synopsis is expected to summarize

both information sources simultaneously.

Motivated by the recent advances in full streaming models for conventional data

streams, we propose to use the frequent directions algorithm (Liberty, 2013) to main-

tain a low-rank sketching matrix (with limited memory overhead) to make a structural

summary of the currently observed data. One major merit of the frequent directions

algorithm is that it operates in a streaming fashion and makes only one pass of the

data. However, the frequent directions algorithm cannot be directly applied to dy-

namic attributed networks for a low-rank approximation in real-time. The reason

is that frequent directions algorithm is proposed to summarize conventional data

streams where columns of the input matrix are added incrementally and the row of
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the input matrix is fixed. On dynamic attributed networks, even though the node at-

tributes are presented as a data stream (if the number of node attributes is fixed), the

changes of the underlying network structure (often encoded in an adjacency matrix),

per se, cannot be simply generalized as a conventional data stream. To this end, we

propose to represent the dynamic attributed networks as the feature representation

based on the observed links. The similar feature representation mechanism is also

widely used in many other learning tasks, such as factorization machines (Rendle,

2010) and contextual-bandit collaborative filtering (Li et al., 2010a).

Definition 5. (Feature Representation of Dynamic Attributed Networks):

Given a dynamic attributed network across multiple time stamps G = (Gt0 , Gt1 , ...), its

feature representation at a particular time stamp t is represented Ft ∈ R2d×|Et|. Each

column f ∈ R2d in the feature representation Ft corresponds to an edge in Gt. Now

assume that two end nodes of the edge is ui and uj (i < j), then the corresponding

feature representation, i.e., f , can be represented as f = [Xt
i∗,X

t
j∗]
′, where Xt is the

node attributes of the dynamic attributed network at time stamp t.

By transforming the dynamic attributed networks into feature representations, the

changes can be presented as new columns in a conventional data stream. In particular,

new columns are introduced in two scenarios: (1) the arrival of new edges; and (2)

node attribute information changes. The first scenario is straightforward and easy to

understand. Regarding the second scenario, if the node attributes change, then the

feature representations of edges that these nodes involved in should also change, and

we represent these changes as new columns in the data stream. Now we assume that

we can store all the historically generated data, and the feature representation of the

dynamic attributed networks until time stamp t is represented as Gt ∈ R2d×ct , where

ct is the number of columns in Gt, and ct ≥ |E t|.
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Even though we have reformulated the changes in the dynamic attributed networks

as new columns in a data stream, the number of columns in Gt are still too large to

be stored in memory, especially when the number of edges is in the scale of billion

or trillion. Instead of storing the feature representations of the underlying dynamic

attributed network, the frequent directions algorithm is employed to maintain a low-

rank sketching matrix, and the sketching matrix can well summarize the observed data

with a theoretical guarantee. Specifically, the low-rank sketching matrix Bt ∈ R2d×l

(l is often small) approximates the matrix Gt well such that Bt(Bt)′ ≈ Gt(Gt)′.

More accurately, the approximation error is bounded by the conditions that: (1)

Gt(Gt)′ � Bt(Bt)′; and (2) ‖Gt(Gt)′ −Bt(Bt)′‖ ≤ 2‖Gt‖2
F/l (Liberty, 2013).

Let Dt ∈ R2d×mt denote the new columns generated between time stamp t − 1

and the following time stamp t such that Gt = [Gt−1,Dt], where mt is the number

of new columns generated between time stamps t − 1 and t. As mentioned above,

the generation of new columns pertains to the arrival of new edges or the changes of

node attributes. Here the challenges center around how to maintain and update the

sketching matrix Bt based on the newly generated data in Dt. At the very beginning,

the sketching matrix Bt (t = 0) is set to be empty, then new columns presented

in a data stream are continuously being inserted into the sketching matrix Bt until

there are no empty columns anymore. Then frequent directions algorithm “shrinks”

l orthogonal vectors by the same amount to make space for new data in the future.

Concretely, the computation of SVD is necessary each time when the sketching matrix

Bt is full. The original frequent directions algorithm assumes that one column arrives

at each time stamp, (Huang and Kasiviswanathan, 2015; Huang et al., 2015) further

extended it to tackle the case when more than one columns arrive at each time stamp.

As we have more than one column in Dt in most cases, we leverage this general

solution to maintain and update the low-rank sketching matrix Bt, upon which the
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Algorithm 4 Maintain and Update the Sketching Matrix Bt.

Input: Sketching matrix Bt−1 ∈ R2d×l, new data Dt ∈ R2d×mt .

Output: New sketching matrix Bt ∈ R2d×l, and Ũt
l ∈ R2d×l.

1: Ct = [Bt−1,Dt] ∈ R2d×(l+mt);

2: [Ũt
l , Σ̃

t
l , Ṽ

t
l ] = SVDl(C

t);

3: Σ̂t
l = diag(

√
σ̃2

1 − σ̃2
l ,
√
σ̃2

2 − σ̃2
l , ...,

√
σ̃2
l−1 − σ̃2

l , 0);

4: Bt = Ũt
lΣ̂

t
l ;

patterns in the observed links and node attributes can be summarized accurately. The

detailed pseudocode of the summarization phase using matrix sketching is presented

in Algorithm 4. As the number of new columns mt is much smaller than the number

of columns in Gt, we only need to perform SVD on a low-rank matrix (Line 2); its

computation is efficient with a complexity of O(2d(mt+ l)l). Also, it is space efficient

with a maximum overhead of O(2d(maxt{mt}+ l)) across all time stamps. All in all,

the summarization phase makes only one pass of the data and is both computational

and space efficient.

Infer Missing Links with Sketching Matrix. The low-rank sketching matrix

Bt makes a structural summarization of the up-to-date observed data on dynamic

attributed networks. Hence, we can leverage it to predict missing links on the fly.

To show the underlying mechanism of the link prediction phase, we first assume that

the feature representation Gt of the dynamic attributed network until time stamp

t is available (which actually not). The original feature representation Gt could be

very noisy, containing a certain amount of noisy and irrelevant attributes which may

degrade the link prediction performance. On top of that, the link information of

networks may also be noisy and even erroneous from a network analysis perspec-

tive. To alleviate the negative impacts from these noisy attributes and noisy links,

we propose to use principal component analysis (PCA) (Jolliffe, 2011) to reduce the
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noise hidden in the data stream. Formally, PCA projects the data in Gt onto sev-

eral principal components such that the total data variance is minimized, and these

principal components correspond to the top-k eigenvectors of the estimated covari-

ance matrix 1
ct

Gt(Gt)′, which is also equivalent to find the top-k left singular vectors

of the matrix Gt. Here, we denote the concatenation of the top-k eigenvectors as

Ut
k ∈ R2d×k, and the principal components Ut

k is often regarded as a good rank-k

basis to reconstruct all the data in the original representation Gt. In addition, by

using the linear combination of columns in Ut
k to represent columns in Gt, the noisy

information contained can be greatly reduced. As Ut
k provides a noise-resilient ab-

straction of patterns of connected node pairs, we can leverage the orthogonal basis to

predict missing links for unconnected node pairs. In particular, let y ∈ R2d denotes

the feature representation of an unconnected node pair for testing, if y is close to

the space composed of columns in Ut
k, most likely there will be a link between the

starting node and the ending node of y; otherwise, if y cannot be well reconstructed

by the orthogonal basis Ut
k, it implies that y deviates from the patterns of connected

node pairs and the possibility that the two end nodes of y connected in the near

future is low (Huang and Kasiviswanathan, 2015). The residual error of the recon-

struction phase is ‖I −Ut
k(U

t
k)
′y‖2

2. It can be observed that to obtain the residual

error for each pair of unconnected nodes, only low-rank matrix multiplication opera-

tions are involved, and the computation cost is O(2dk). Afterwards, we can use the

residual error to predict whether there exists a link between a pair of unconnected

nodes. Specifically, the smaller the residual error of a pair of unconnected nodes is,

the higher the chance that they will be linked together in the near future.

The above phase assumes that the feature representation Gt is readily available

before the link prediction takes place and the orthogonal basis Ut
k is the top-k left

singular vectors of Gt. However, as mentioned previously, the storage of the whole
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feature representation Gt is intractable when the underlying attributed network is

large; while on the other hand, the sketching matrix Bt is not only a low-rank matrix

with light memory overhead, but also can approximate the original matrix Gt well.

In this regard, we attempt to perform SVD on the low-rank matrix Bt instead of Gt

to obtain the orthogonal basis, i.e., the top-k left singular vectors. Here, we denote

these k left singular vectors of Bt as Ũt
k ∈ R2d×k. And according to Algorithm 4,

the sketching matrix Bt can be efficiently maintained and updated, and its top-l left

singular vectors are Ũt
l . In this way, the approximation of the top-k left singular

vectors of Gt can be directly obtained from Ũl as long as the condition of k ≤ l is

satisfied. And the residual error of the feature vector y is ‖I− Ũt
k(Ũ

t
k)
′)y‖2

2.

Threshold Determination. For the above phase, the potential links between un-

connected nodes can be determined by verifying if the residual error is below a thresh-

old. One simple solution to specify the threshold is to set it as a fixed value. Nonethe-

less, with the accumulation of new edges and new node attributes in a data stream

over time, the intrinsic patterns of data change over time, and this phenomenon is

often referred to as concept drift in data stream mining (Tsymbal, 2004). To this end,

it is more appealing to continuously update the threshold value for link prediction

such that the up-to-date patterns of data can be well captured. Concretely, we pro-

pose to obtain the threshold automatically from the presented data stream instead

of manually setting it up. For each observed link, i.e., a column in Gt, we calculate

its residual error, where Ũt
k can be obtained by the top-k left singular vectors of the

current sketching matrix Bt (Algorithm 4). Let us denote the collection of resid-

ual errors of links in Gt as R = {error1, error2, ..., errorct}, then the residual error

threshold that is used to check the existence of new links can be determined as the

largest error among R. In this way, we do not need to manually specify the threshold

value and it can be automatically determined from the observed links. Hence, the

115



Algorithm 5 SLIDE to Predict Missing Links at Time Stamp t.

Input: Sketching matrix Bt−1 ∈ R2d×l and its top-l left singular vectors Ũt−1
l , new data

Dt ∈ R2d×mt , residual error threshold εt−1, feature representation y of an unconnected

node pair.

Output: If there exists a link between the two end nodes of y.

1: Obtain the new sketching matrix Bt and its top-l left singular vectors Ũt
l by Algorithm 4;

2: Obtain the top-k singular vectors Ũt
k from Ũt

l (k ≤ l);

3: Calculate the residual error of links in Dt;

4: Update the residual error threshold εt;

5: Calculate the residual error of y by ‖I− Ũt
k(Ũ

t
k)
T )y‖22;

6: if error of y≤ εt then

7: There exists a future link between the two end nodes of y;

8: else

9: The two end nodes of y will not be connected;

10: end if

whole procedure of the proposed SLIDE is summarized in Algorithm 5.

9.3 Experimental Evaluation

We perform experiments on real-world dynamic attributed networks to validate

the effectiveness and efficiency of the proposed SLIDE framework. We attempt to

answer two research questions: (1) How accurate is SLIDE in predicting missing

links? (2) How efficient is SLIDE when measured against other offline methods?

Datasets. We collect three real-world dynamic attributed networks for experimental

validation, these datasets range from social media networks to coauthor networks.

The detailed descriptions of these three dynamic attributed networks are listed below.

(1) Epinions is a product review site in which users build trust relationships to seek
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advice from others and share their reviews about products. We take each user as

a node and regard his/her reviews as node attributes. In particular, we first use

the bag-of-words model to extract features from user reviews and then employ the

above-mentioned unsupervised feature selection methods for networked data (Li et al.,

2016b) to find the top 100 important features closely correlated with the network

topology. Both the network structure and the node attributes are evolving over time.

In the collected dataset, there are 25 time stamps (with an interval of one month),

the total number of nodes is 14,180 and the total number of edges is 308,136. (2)

DBLP is an extracted coauthor network for the authors who publish at least three

papers from the year of 1995 to 2011. On the network, each author corresponds to a

node. And similar to Epinions, we apply the bag-of-words model and feature selection

on the title of their publications to find the most relevant 100 node attributes, i.e.,

words. As authors gradually form new coauthor relations and their research interests

evolve over time, the underlying network is naturally a dynamic attributed network.

The resulted dataset has 100,924 nodes and 764,392 edges over 17 time stamps. (3)

ACM is a similar coauthor network as DBLP. We extract a subgraph consisting of

the authors who publish at least three papers in the year of 1995 and 2015, and apply

the same mechanism as before to extract 100 important node attributes. Therefore,

we obtain a dynamic attributed network with a total amount of 122,567 nodes and

1,551,554 edges over 16 different time stamps.

Experimental Settings. To verify the effectiveness and efficiency of the proposed

SLIDE framework, we compare SLIDE with the following baseline link prediction

methods from three different categories: (1) with only network structure; (2) with

only node attributes; and (3) with both sources of information.

• Common Neighbors (CN) (Liben-Nowell and Kleinberg, 2007): CN quantifies

the number of common users between node pairs for link prediction.

117



• Jaccard Coefficient (JC) (Liben-Nowell and Kleinberg, 2007): JC calculates

the similarity of pairs of nodes for link prediction with Jaccard coefficient.

• Adamic-Adar (AA) (Liben-Nowell and Kleinberg, 2007): AA is an extension

of CN which penalizes the common neighbors with high node degrees.

• Rooted PageRank (Tong et al., 2006): It performs random walk with start

from a root node and then determines the scores of links to other nodes from

the root node.

• NMF (Lin, 2007): It conducts non-negative matrix factorization on the adja-

cency matrix of the network to calculate the scores of unconnected node pairs.

• SimAttr (Yin et al., 2010): It calculates cosine similarity on node attributes

and uses the similarity score to rank links.

• FactLog (Menon and Elkan, 2011): It adopts matrix factorization and incor-

porates both network structure and node attributes in a joint framework for

link prediction. The loss function is set to be the log loss.

• AttriRank (Hsu et al., 2017): It performs PageRank on the attributed net-

works and then the score of each node pair is determined as the product of the

PageRank scores of two end nodes.

Among them, CN, JC, AA, Rooted PageRank, and NMF use only network in-

formation; SimAttr on the other hand only takes advantage of node attribute infor-

mation; FactLog, AttriRank, and SLIDE are in the third category by combining

both sources of information together for link prediction.

We first investigate the effectiveness of the proposed framework SLIDE. Given

a dynamic attributed network with T different time stamps, for each time stamp t
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(1 ≤ t ≤ T ), in the training phase, we first perform link prediction with the attributed

network Gt, and then test the link prediction performance on Gt+1. It should be noted

that as most of these baseline methods cannot handle cold-start nodes, we choose to

predict the missing links for the nodes that appear in both Gt and Gt+1. More

investigation on the link prediction for cold-start nodes will be presented later. As a

final result, we output the average link prediction performance over T−1 test periods.

In the experiments, we set the number of columns in the sketching matrix l according

to the suggestions of (Huang and Kasiviswanathan, 2015). Meanwhile, we specify the

parameter k the same as l.

Suppose the number of new links for testing between time stamp t and t + 1 is

et, all these baseline methods can be regarded as a ranking model which returns the

top et possible links from Gt and then compares with the ground truth links in Gt+1.

To make a fair comparison between SLIDE and baseline methods, in the evaluation,

we do not use the residual error threshold ε, instead, we rank the candidate links

according to the residual errors. Three commonly used evaluation metrics are used to

compare the link prediction performance of different methods. They are area under

the curve (AUC) (Chang et al., 2016), mean average precision (MAP) (Li et al.,

2010b), half-life utility (HLU) (Pan et al., 2008). The higher the values of AUC,

MAP, and HLU are, the better the prediction performance is. Specifically, at each

time stamp during the testing phase, we treat all the et links that will happen at the

next time stamp t+ 1 as positive samples, and the other links as negative links.

Different from SLIDE that only makes one pass of the data to predict missing

link on the fly, all baseline methods are offline methods that require the access of the

whole historical data each time when changes occur. In other words, they need to

explicitly materialize the whole attributed networks in memory before link prediction

takes place. To have a fair comparison between SLIDE and the baseline methods in
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terms of efficiency, we allow the storage of the historical data for baseline methods in

memory and compare their cumulative running time over all time stamps.

Effectiveness of SLIDE. First, we investigate the effectiveness of SLIDE by com-

paring its link prediction performance with the aforementioned baseline methods. The

average link prediction results over multiple time stamps are presented in Figure 9.3.

We make the following observations from the figure: (1) The proposed streaming link

prediction framework SLIDE outperforms all baseline methods in almost all cases.

We also perform a pairwise Wilcoxon signed-rank test between SLIDE and these

baseline methods. The comparison results indicate that the proposed SLIDE frame-

work is significantly better than others, with a significance level of 0.05. (2) CN, AA,

JC, Rooted PageRank and NMF only leverage network structure for link predic-

tion, and their performance is superior to SimAttr which relies on node attributes.

It implies that the link prediction performance is influenced more by the network

structure rather than the node attributes. (3) The methods FactLog, AttriRank

and SLIDE that leverage two sources of information achieve better link prediction

performance than methods with only one source of information. The observation

supports the assumption that node attribute information compliments to network

structure for link prediction. (4) We do not report the link prediction results of

NMF and FactLog on DBLP and ACM datasets as we run out of memory for these

two methods. The reason is that these two methods are both matrix factorization

based methods and cannot be easily scaled to large-scale networks.

Efficiency of SLIDE. We investigate the second research question about the ef-

ficiency of SLIDE. Specifically, we report the cumulative running time of different

methods across all time stamps in Table 9.1. As all the baseline methods mentioned

are designed for static networks by assuming the materialization of the network struc-

ture in memory, we have to rerun these baseline methods repeatedly each time when
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Link Prediction Performance of Different Methods in terms of AUC
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Figure 9.3: Link Prediction Results Evaluation Between SLIDE and Baselines.
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Table 9.1: Cumulative Running Time Comparison Between SLIDE and Baselines.

Epinions DBLP ACM

CN 1245.41s > 3 hours > 3 hours

AA 6243.32s > 3 hours > 3 hours

JC 1489.81s > 3 hours > 3 hours

Rooted PageRank 305.41s > 3 hours > 3 hours

NMF 774.7s > 3 hours > 3 hours

SimAttr 259.09s > 3 hours > 3 hours

FactLog 7140.18s > 3 hours > 3 hours

AttriRank 2081.53s > 3 hours > 3 hours

SLIDE 25.67s 291.31s 689.93s

there are changes on the attributed networks. As can be observed from the table, our

proposed SLIDE framework is significantly faster than all baseline methods. The

overall running time of SLIDE on Epinions, DBLP, and ACM are 25.67 seconds,

291.31 seconds and 689.93 seconds, respectively. Specifically, SLIDE is 49×, 243×,

58×, 12×, 30×, 10×, 278×, and 81× faster than CN, AA, JC, Rooted PageRank,

NMF, SimAttr, FactLog, AttriRank, respectively in Epinions. On DBLP and

ACM datasets, the cumulative running time of all baseline methods cost more than 3

hours while our method finishes within minutes. In addition to that, as our proposed

SLIDE framework maintains and updates a low-rank sketching matrix with light

memory overhead, it is also much more space efficient than most baseline methods.

All in all, SLIDE achieves promising link prediction performance within a favorable

amount of running time with limited memory costs.

Link Prediction for Cold-Start Users. It has been widely known that in conven-

tional link prediction problems, new users often suffer from the cold-start problems
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Table 9.2: Link Prediction Results Evaluation for Cold-Start Users on Epinions.

Metrics AUC MAP HLU

SimAttr 0.6828 0.0286 3.60

AttriRank 0.7067 0.0409 4.29

SLIDE 0.7532 0.0523 4.94

since we often do not have any data about newly joined users. Fortunately, the rich

node attributes can help mitigate this critical issue when link information is not avail-

able. To investigate how well the proposed SLIDE framework handles new users for

cold-start link prediction problem, we compare SLIDE with SimAttr and Attri-

Rank, as these two methods can also handle the cold-start problem by leveraging

node attributes. We focus on the Epinions dataset to investigate the cold-start prob-

lem as in DBLP and ACM datasets, authors create coauthor relations with other

scholars the same time when they publish a paper and is therefore not suitable for

cold-start problem study. In particular, in Epinions, users can first write reviews

about products and then build trust relations with others, and we predict missing

links for these new users by using their attribute information before they build any

trust relations. The link prediction performance comparison in terms of these new

users is illustrated in Table 9.2. It can be shown that SLIDE obtains better link

prediction performance than SimAttr and AttriRank for the cold-start problem.

The reason is that SLIDE summarizes the connectivity patterns of linked nodes in

the sketching matrix; the orthogonal basis from the sketching matrix is noise resilient

and can help us predict missing links more accurately.
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9.4 Summary

A vast majority of existing link prediction algorithms are designed for static net-

works and assume that the whole network structure is materialized in memory before

link prediction happens. However, many real-world networks are naturally dynamic

and are characterized by frequent updates. The updates are often transient and

could even be infinite, which puts the applicability of conventional link prediction

algorithms in jeopardy. In addition to that, rich node attributes are prevalent and

often have a strong connection with the network topology, and they may also change

adaptively over time. It remains a daunting task to support the link prediction on

such dynamic attributed networks in an online fashion due to some unique chal-

lenges. In this chapter, we study the novel problem of streaming link prediction on

dynamic attributed networks and propose a sophisticated link prediction framework

- SLIDE. In particular, we leverage a cost-effective matrix sketching technique to

make a summarization of the current observed data by making only one pass of the

data, and the sketching matrix, in turn, is used to infer the missing links. We also

perform empirical experimental evaluations on real-world datasets, the results imply

that SLIDE not only can predict the missing links more accurately but also is much

more computationally efficient than competitors.
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Part IV

Conclusion and Future Work
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Chapter 10

CONCLUSION AND FUTURE WORK

In this chapter, we summarize the key contributions made in this dissertation and

discuss promising future research directions.

10.1 Conclusion

Attributed networks naturally appear in a variety of high-impact domains and

pose a number of fascinating research questions. In this dissertation, we are dedicated

to developing principled learning algorithms and investigate novel applications on

attributed networks, in order to have a better computational understanding and gain

deeper insights into such unique data representation. The main thrusts of our research

work in exploring attributed networks are summarized as follows.

• Learning Algorithms in A Static Environment: The first part of the

dissertation focuses on developing principled learning algorithms for attributed

networks in a static environment from two aspects with feature selection and

network embedding. These research efforts are essential in building generaliz-

able learning algorithms on attributed networks, especially when the supervision

information is not available. Meanwhile, the end results of feature selection and

network embedding can facilitate various downstream applications. For feature

selection, we first propose a robust unsupervised framework for attributed net-

works - named NetFS (Chapter 3). Without label information to provide the

guidelines, NetFS regards the latent representation of nodes as pseudo class

labels and then embeds them as constraints to steer the selection of informa-
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tive features. To fully exploit the finer-grained tie strength of links embedded

on the network, we also propose an adaptive unsupervised feature selection

framework ADAPT (Chapter 3). ADAPT assumes that the observed links in

the network can be generated through informative features with a probabilistic

framework. Then, to capture the inherent correlation between network struc-

ture and node attributes, ADAPT imposes a constraint on the link generation

process to ensure that it preserves the adaptive neighborhood structure mea-

sured by the tie strength over the full spectrum. Different from feature selection

which keeps a subset of original features, we also propose a noise-resilient con-

sensus attributed network embedding framework DANE-O (Li et al., 2017c)

(Chapter 4) to project two different data modalities of attributed networks into

a consensus space while maximizing their correlations. The utility of devel-

oped learning algorithms is demonstrated by their superior performance in the

network clustering and node classification tasks.

• Learning Algorithms in A Dynamic Environment: Given the rapidly

evolving nature of real-world attributed networks, conventional offline learning

algorithms would suffer from serious computational bottlenecks, especially when

fast-response is desired. Hence, it is of vital importance to develop online al-

gorithms to quickly adapt the changes for real-time insights. My contributions

in building online algorithms for attributed networks in a dynamic environ-

ment are in the following two aspects. Firstly, we investigate how to model the

temporal dynamics of node attributes and network structure for online feature

selection. The key idea of the developed online algorithm TeFS (Chapter 5)

is to leverage the temporal smoothness property by assuming small changes of

attributed networks within a short period of time. We also study attributed
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network embedding in a dynamic setting by presenting an online embedding

learning framework - DANE (Chapter 5). The essential idea is to replenish the

freshness of the end embedding results with matrix perturbation theory. The

effectiveness and efficiency of the developed online feature selection and network

embedding algorithms are validated on various real-world datasets.

• Applications of Attributed Networks: In addition to building general

learning algorithms through feature learning (including feature selection and

attributed network embedding), tailoring the learning process for specific appli-

cations is another research direction we have pursued. Developing application-

aware learning algorithms is more desired when we have a clear understanding

of the application domain and its unique needs. We have worked on a variety

of different applications on the attributed networks and in this dissertation,

we will use three representative applications - personalized node classification,

anomaly detection, and streaming link prediction to showcase how application

understanding and learning algorithms mutually enhance each other. Firstly, we

argue that the attribute information of different nodes could be quite diverse

and even the same content could convey entirely different meanings. Hence,

it would be more appealing to customize the learning and prediction for each

node on the network by capturing its unique patterns. To solve this problem,

we propose a personalized node classification framework PRL (Chapter 7) by

finding a small subset of features customized for each individual and some com-

mon features shared by all for the node categorization. The proposed model

not only makes accurate predictions but also is interpretable as we can explain

why we make such a prediction. Secondly, we investigate the anomaly detec-

tion problem on attributed networks, where different types of anomalies are
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often mixed together. Hence, we develop a general framework Radar (Chap-

ter 8) that explores and spots anomalies through the means of residual analysis.

Empirical studies not only show the promising detection performance of the de-

veloped framework but also demonstrate its capability in finding anomalies that

are otherwise undiscovered by other methods. At last, we study the streaming

link prediction problem to support the prediction of missing links in an on-

line fashion on dynamic attributed networks. The proposed SLIDE framework

(Chapter 9) maintains and updates a low-rank sketching matrix to summarize

all observed data, and we further leverage the sketching matrix for inference on

the fly. The whole procedure is cost-effective, effective, and efficient.

10.2 Future Work

Attributed networks provide a powerful tool to model various modern information

infrastructures, while effective and efficient learning algorithms play a central role

in distilling insights or values from such networks in making impacts. My current

research on attributed networks and feature learning poses a wealth of fascinating

but challenging research questions that I plan to address in the future.

• Scalable Feature Learning on Dynamic Attributed Networks. Even

though we have proposed a number of online algorithms to handle the dynamics

of attributed networks for knowledge discovery on the fly. Most of these algo-

rithms, however, are required to store the data in memory and access the data

multiple times. In fact, real-world applications such as social media consistently

and continuously generate massive semi-structured and unstructured data at an

unprecedented rate, and the size of data is often measured in terabytes or even

petabytes. These large-scale user-generated data is difficult to be materialized

in memory; thus dynamic feature learning algorithms (including feature selec-
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tion and embedding learning) need to be pass-efficient to make only one pass of

the data as the further passes are either expensive or naturally impossible. To

tackle the challenges, on one hand, we attempt to design cost-effective data syn-

opsis with limited memory overhead to summarize the ever-increasing network

structure and node attributes for learning. On the other hand, we also plan to

study how dynamic feature learning algorithms can be designed in a distributed

manner to deal with the massive amount of evolving and connected data. Hence,

I plan to establish fundamental dynamic models on distributed platforms (e.g.,

Spark and Hadoop) to support the online processing of attributed networks for

real-time insights.

• Adversarial Attack and Learning on Attributed Networks. Many

researchers have shown that machine learning models, especially deep learn-

ing architectures, can be easily fooled or attacked. It results in serious soci-

etal concerns as machine learning models are often deployed in security-related

applications, such as spam detection, financial fraud, and system diagnosis.

Meanwhile, as most machine learning models are black-box in nature, it further

exacerbates the vulnerabilities of the underlying system without intuitive model

interpretation. Due to the strong modeling power of attributed networks in the

physical world, we plan to investigate the adversarial learning on attributed

networks, which is more challenging than attack and defense research on image

and text data due to the discrete nature of node connections, as well as the

bewildering combination of heterogeneous information sources. Our investiga-

tions will be in two folds: (1) Attack - Whether the attributed networks are

vulnerable to data poisoning attacks? How to attack the attributed network

when it is fast evolving? What kind of attacks (e.g., addition/deletion of edges,
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perturbation of node features) has the highest catastrophic effects? (2) Defense

- How to learn task-agnostic feature representations on attributed networks in

the presence of adversarial attacks? How to build more robust task-oriented

learning algorithms on attributed networks? How to measure the robustness of

the dynamic system?

• Interplay between Feature Selection and Deep Learning. The success

of deep learning can partly be attributed to the carefully designed deep neural

network architectures. However, when there is little prior knowledge about the

underlying characteristics of data structure, the quality of input features can

be instrumental for deep learning’s success. Meanwhile, deep learning models

require more training samples to train a generalizable model to prevent overfit-

ting, while in many applications such as health informatics and bioinformatics,

we often only have a limited amount of data, far from sufficient. In this regard,

we will investigate how to leverage the strength of feature selection to shatter

the barriers of deep learning for small data. Another challenge deep learn-

ing users often face is model interpretability, or a black box, in the sense that

the learned feature representation is generally not understandable by human

experts. The success of feature selection in building interpretable model moti-

vates us to research if feature selection can help improve the comprehensibility

of deep learning to make its models more transparent. Besides, we plan to lay

down the theoretical foundations of feature selection for deep learning. Many

intriguing questions await: (1) Do we really need so much data to perform deep

learning? (2) How many instances do we need to guarantee a certain level of

generation accuracy? (3) How to measure the feasibility of feature selection for

deep learning?
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• Facilitate Human-in-the-Loop Learning for Graph Mining. Graph or

network data accounts for a large portion of real-world datasets. The ultimate

goal of graph mining is to develop principled learning algorithms to help users

to better understand and make sense of network data. However, most of the

current methodologies are mostly data-driven and conducted in a passive fash-

ion, and thus are inadequate to apprehend idiosyncratic human intents and

demands. In other words, network mining algorithms will work much better

when accounting the valuable human cognition and physiological characteris-

tics, by continuously adapting the learning strategies driven by human feedback.

Hence, we attempt to develop human-centric learning frameworks and proto-

type systems to facilitate human-in-the-loop learning on networks. We hope

the research can fundamentally change the sense-making process of humans in

various domains (e.g., social media, e-commerce, education, and security) and

improve the utilities of existing data-driven network mining algorithms and sys-

tems. We have done some preliminary work on human-in-the-loop learning in

anomaly detection (Ding et al., 2019), and questions recommendation of online

education (Teng et al., 2018). In the future, we will continue our explorations

to investigate: (1) How to transform the human cognition into concrete data

or knowledge to advance human-in-the-loop learning on networks? (2) How to

incorporate the diversified human needs into the interactive learning process?

(3) How to adapt the human-in-the-loop learning to large-scale, heterogeneous,

and dynamic networks?
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