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ABSTRACT

The main part of this work establishes existence, uniqueness and regularity prop-

erties of measure-valued solutions of a nonlinear hyperbolic conservation law with

non-local velocities. Major challenges stem from in- and out-fluxes containing nonze-

ro pure-point parts which cause discontinuities of the velocities. This part is preceded,

and motivated, by an extended study which proves that an associated optimal control

problem has no optimal L1-solutions that are supported on short time intervals.

The hyperbolic conservation law considered here is a well-established model for

a highly re-entrant semiconductor manufacturing system. Prior work established

well-posedness for L1-controls and states, and existence of optimal solutions for L2-

controls, states, and control objectives. The results on measure-valued solutions

presented here reduce to the existing literature in the case of initial state and in-flux

being absolutely continuous measures. The surprising well-posedness (in the face of

measures containing nonzero pure-point part and discontinuous velocities) is directly

related to characteristic features of the model that capture the highly re-entrant

nature of the semiconductor manufacturing system.

More specifically, the optimal control problem is to minimize an L1-functional

that measures the mismatch between actual and desired accumulated out-flux. The

focus is on the transition between equilibria with eventually zero backlog. In the case

of a step up to a larger equilibrium, the in-flux not only needs to increase to match

the higher desired out-flux, but also needs to increase the mass in the factory and to

make up for the backlog caused by an inverse response of the system. The optimality

results obtained confirm the heuristic inference that the optimal solution should be

an impulsive in-flux, but this is no longer in the space of L1-controls.

The need for impulsive controls motivates the change of the setting from L1-

controls and states to controls and states that are Borel measures. The key strategy is
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to largely abandon the Eulerian point of view and first construct Lagrangian solutions.

The final section proposes a notion of weak measure-valued solutions and proves

existence and uniqueness of such. In the case of the in-flux containing nonzero pure-

point part, the weak solution cannot depend continuously on the time with respect

to any norm. However, using semi-norms that are related to the flat norm, a weaker

form of continuity of solutions with respect to time is proven. It is conjectured that

also a similar weak continuous dependence on initial data holds with respect to a

variant of the flat norm.
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Chapter 1

INTRODUCTION

1.1 Problem Setting

Hyperbolic conservation laws are commonly used to describe traffic flow, pedestri-

an motion, sedimentation models and many other applications. A continuum model

was introduced in Armbruster et al. (2006) to describe highly re-entrant semiconduc-

tor manufacturing systems (see section (1.2)) which produce a large number of items

in a large number of steps. Denote by x ∈ [0, 1] the degree of completion in the

semiconductor factory. That is, x = 0 represents the beginning of the production line

and x = 1 the end. Let ρ : [0,∞) × [0, 1] → [0,∞), (t, x) 7→ ρ(t, x) be the density

variable which describes the work in progress (WIP) density of the product at stage x

of the production at time t. A characteristic feature of the model is that the velocity

at time t is non-local and depends on the the total load W (t) =
∫ 1

0
ρ(t, x)dx. This

reflects the highly re-entrant nature of the product flow in semi-conductor manufac-

turing systems. The velocity is a positive, decreasing function v = α(W ) of the total

load. The time evolution of the product density ρ was described in Armbruster et al.

(2006) by the scalar hyperbolic conservation law

0 = ∂tρ(t, x) + ∂x(α(W (t))ρ(t, x)) for (t, x) ∈ [0, T ]× [0, 1], (1.1a)

W (t) =

∫ 1

0

ρ(t, x) dx for t ∈ [0, T ], (1.1b)

ρ0(x) = ρ(0, x) for x ∈ [0, 1], (1.1c)

u(t) = ρ(t, 0)α(W (t)) for t ∈ [0, T ], and (1.1d)

y(t) = ρ(t, 1)α(W (t)) for t ∈ [0, T ]. (1.1e)
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Here u is a natural boundary control in-flux at x = 0 and y is the actual out-flux x = 1.

Motivated by business objectives of the semiconductor manufacturing company, for

a given forcasted demand out-flux yd and the actual out-flux y(t) = ρ(t, 0)α(W (t)),

denote by Yd(t) =
∫ t

0
yd(s) ds and Y (t) =

∫ t
0
y(s) ds the accumulated demand out-

flux and the accumulated actual out-fluxes, respectively. Natural control objectives

are to minimize the mismatch between the accumulated demand and accumulated

actual out-flux. An alternative to this problem is to model a perishable demand and

minimize in a suitable sense the size of the different error signal
∫ T

0
|yd(t)− y(t)|p dt,

p = 1 or p = 2. In this thesis, we mainly consider the case when the backlog

β = Yd − Y is eventually zero. The control problem associated to the nonlinear

hyperbolic conservation law (1.1) is to find an optimal control u∗ in a set of admissible

controls such that the control objective functional

J(u) =

∫ ∞
0

|β(t)|p dt, with typically p = 1 or p = 2 (1.2)

is minimized by u∗.

1.2 Semi-conductor Manufacturing System

The descriptions of the semi-conductor manufacturing system in this section are

mostly from the articles (Hsieh and Hsieh, 2018) and (Armbruster et al., 2006).
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Figure 1.1: Wafer Fab Manufacturing
†
www.semiwiki.com

The manufacturing process of semiconductor chips often involves hundreds of pro-

cessing steps being executed layer by layer onto a bare wafer. The whole process is

composed of a few repeating unit processes: thin film, photolithography, chemical

mechanical planarization, diffusion, ion implantation, and etching. This nature of

semiconductor manufacturing leads to long cycle times but also reduces production

cost per chip.
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Figure 1.2: Machine-based and Process-based Views of Wafer Fab Manufacturing

In a modern semiconductor factory, we are interested in modeling and simulation

on the order of 250 production steps executed on about 100 machines, with a re-

entrant part of the production line that repeats about 15-20 times. In addition, the

life cycle of a product is of the order of one year, whereas the through time lies
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between 40 and 60 days.

1.3 Literature Review and Distinctive Features of Our Problem

Various different choices of the space of admissible controls and objectives are of

both practical and mathematical interest. Each space leads to distinct mathematical

problems.

The original work Armbruster et al. (2006) validated the model using numerical

simulations, comparing with discrete-event systems and with real factory data. In

the context of L2-data (p = 2 in equation (1.2)) ρ0, u, yd and an L2-control objec-

tive, the article La Marca et al. (2010) derived adjoint equations and computed the

approximations of optimal controls numerically.

The article Coron et al. (2010) proved well-posedness for the Cauchy problem (1.1a)-

(1.1d) (disregarding the out-flux) in the context of L1-data (thus implying well-

posedness for L2-data), analyzed the regularity of solution curves ρ : [0, T ] 7→ L1([0, 1]),

and established existence of optimal controls for the original L2-problem. Well-

posedness of a elaborate multi-dimensional uncontrolled problem with unbounded

spatial dimensions and was also demonstrated in Colombo et al. (2011), proving local

existence of a weak entropy solutions and examining differentiability with respect to

initial data.

It has been conjectured that for the more meaningful L1-objective (p = 1 in

equation (1.2)) and L1-data (u ∈ L1((0,∞)) and ρ0 ∈ L1([0, 1]), optimal controls

need not exist unless one requires the control to be bounded. Thus it is natural to

recast the problem in the setting of controls and states being Borel measures.

In recent years the analysis of similar hyperbolic conservation laws in the setting

of measures has seen substantial attention and progress. Here we briefly mention a

few, and point the interested readers to many related references in these articles.
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Motivated by earlier work on interactions of densities and point masses in the con-

text of prey and predators Colombo and Lécureux-Mercier (2012), the article Crip-

pa and Lécureux-Mercier (2013) established the well-posedness of similar nonlinear

hyperbolic conservation laws (1.1) with non-local velocity in the setting of measure-

valued data. The Wasserstein metric is a popular tool for models that use probability

measures. Furthermore, in (Crippa and Lécureux-Mercier, 2013), the vector field v

depends on time t, position x and the convolution product η ∗ ρ which represents

the spatial average of the density ρ with convolution kernel η. This is more adapted

to the case of panic in which pedestrains adapt their velocity to the average density

rather than the nonlocal model in (Coron et al., 2010) where the integral
∫ 1

0
ρ(t, x) dx

replaces the convolution product.

In order to allow for sources, and nonconstant total mass a generalized Wasserstein

metric was introduced and studied in Piccoli and Rossi (2013, 2014). But it is

restrictive since the article Piccoli and Rossi (2013, 2014) was only considering the

measures on R that is absolutely continuous with respect the Lebesgue measure and

is with compact support. Closely related are the Kantorovich-Rubinstein norm and

the dual Lipschitz-norm or flat norm, see Gwiazda et al. (2018) for a careful study of

continuity of semi-flows on the space of Borel measures endowed with the flat norm.

The article Evers et al. (2016) introduces an innovative concept of sticky boundaries to

deal with flux boundary conditions. Other very recent closely related articles Keimer

and Pflug (2017); Keimer et al. (2018) consider system with the velocity being a

weighted functional of the work in progress.

The problem addressed in this thesis has several distinctive features that signifi-

cantly set it apart from the recent literature. Foremost, due to generally the influx

being different from the outflux, the total mass is not constant. Consequently, most

tools available for probability measures such as the Wasserstein metric do not ap-
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ply here. Even more importantly, as a characteristic feature of the highly re-entrant

semiconductor manufacturing system Armbruster et al. (2006), the velocity depends

on the total load as in (1.1b), whereas in most popular traffic models it is governed by

local interactions which are modeled by convolutions (naturally smoothen the velocity

as a function of time). However, impulsive influxes and outfluxes cause the total load,

and hence the velocity, to be discontinuous as functions of time. Consequently, weak

measure-valued solutions of (1.1) are no longer meaningful in the usual distributional

sense (formal integration by parts).

The thesis is organized as follows: We fix notation and discuss several commonly

used distances of measures in Chapter 2. In chapter 3, we mainly study the case of

transferring between equilibria with zero backlog at the terminal time and minimize

the L1-norm (p = 1 in equation (1.2)) of the backlog over a family of L1-functions. In

chapter 4, we reinterpret the hyperbolic conservation law (1.1a)-(1.1c) in the setting of

Borel measures. Taking a Lagrangian point of view, we define a notion of Lagrangian

solution to the system (1.1) and prove its existence and uniqueness. We also define

a new notion of weak solution to the system (1.1) and establish its existence and

uniqueness. In the case of the in-flux containing nonzero pure-point part, the weak

solution can not depend continuously on the time with respect to any norm. We

prove the continuity of solutions with respect to time by using a carefully crafted

semi-norm that is a modification of the flat norm. We also conjecture that a similar

weak continuous dependence on initial data holds by using a variant of the flat norm.

In chapter 5, we make a conclusion on the thesis and outline plans for future research.
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Chapter 2

GENERAL NOTATION AND COMMONLY USED DISTANCES OF MEASURES

In this section, we fix notation and discuss different distances defined on measure

spaces.

2.1 General Notation

For the general notation this thesis uses, please refer the following table. In

particaular, we take the production time t ∈ [0,+∞) and the degree of completion

in the semiconductor wafer fab x ∈ [0, 1]. That is, x = 0 represents the beginning of

the production line and x = 1 the end.
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Table 2.1: General Notations

Symbols Description

x the degree of completion in the semiconductor wafer fab

t time

ρ density of work in process

W total load

v velocity field

u or µ the boundary in-flux (control)

y actual out-flux

yd demand out-flux

Y accumulated actual out-flux

Yd accumulated demand out-flux

β the backlog

(S, d) metric space S with metric d

M+(S) the set of positive finite regular Borel measures on S

M(S) the set of finite Borel measures on S

P(S) the set of probability measures

BL(S) the set of bounded real-valued functions that are Lipschitz on S

λ Lebesgue measure

2.2 Commonly Used Distances of Measures

We list and compare several different distances defined on measures in this sub-

section.
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2.2.1 The Wasserstein Distance

The contents in this subsection generally follow the text book Villani (2008). We

start with Monge’s optimal transportation problem.

For every Borel measurable map γ : R → R and every finite Borel measure

µ ∈M(R), the pushforward of µ by γ is defined as: for every Borel set E ⊂ R,

γ#µ(E) := µ(γ−1(E)).

In this case, we also say that γ takes µ to γ#µ. And for every ψ ∈ C∞c (R),

∫
R
ψ(y)γ#dµ(y) =

∫
R
ψ(γ(x))dµ(x).

Note that γ#µ ∈M(R) and the mass of µ is identical to the mass of γ#µ. Now,

given two measures µ, ν ∈ M(R) with the same mass, it is reasonable to ask if

there exists a Borel measurable map γ : R → R such that ν = γ#µ. By the Jordan

decomposition theorem, for any measure µ ∈M(R), there exist positive measures µ+

and µ− such that µ = µ+ − µ−. Denote by |µ| = µ+(R) + µ−(R), the total mass of

µ. Now, we can add a cost to such γ if it exists as following:

I(γ) := |µ|−1

∫
R
c(x, γ(x))dµ(x),

where c : R × R → [0,∞) is the cost function and informally c(x, γ(x)) tells how

much it costs to transport one unit of mass from locaton x to location γ(x). Also we

assume that c is nonnegative and measurable.

The Monge’s optimal transportation problem can be stated as:

Minimize I(γ) := |µ|−1

∫
R
c(x, γ(x))µ(dx)

over the set of all Borel measurable maps γ such that γ#µ = ν.
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In fact, there exist examples of µ and ν for which such γ dose not exist. For

example, on the real line, let µ = 2δ1 and ν = δ0 + δ2. There is no Borel measurable

map γ which can take µ to ν since it can not separate masses. A simple condition

that ensures the existence of a minimizing γ is that µ and ν are absolutely continuous

with respect to Lebesgue measure.

This naturally suggests to generalize Monge’s optimal transportation problem to

Kantorovich’s optimal transportation problem.

Given a probability measure π on the product space R×R, one can interpret it as

a way of transportation. Informally, for every x, y ∈ R, dπ(x, y) measures the amount

of mass transferred from location x to location y. The marginal measures µ and ν of

a probability measure π are defined as∫
y∈R

dπ(x, y) = dµ(x),

∫
x∈R

dπ(x, y) = dν(y),

That is to say, for every Borel measurable subsets E,F ⊂ R, we have

π(E × R) = µ(E), π(R× F ) = ν(F ).

Equivalently, for all φ, ϕ ∈ C∞c (R),∫
R×R

(φ(x) + ϕ(y))dπ(x, y) =

∫
R
φ(x)µ(dx) +

∫
R
ϕ(y)dν(y).

Such a π is called a admissible transference plan from µ to ν. The set of such

transference plans is denoted as Π(µ, ν).

The Kantorovich’s optimal transportation problem can be stated as:

Minimize J(π) =

∫
R×R

c(x, y)dπ(x, y) for π ∈ Π(µ, ν).

As stated in Piccoli and Rossi (2014), a minimizer of J in Π(µ, ν) always exists.

Note that Monge’s problem is a special case of Kantorovich’s problem. Indeed, the
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main restriction is that Monge’s problem does not allow masses to be split. In other

words, each location x is associated with a unique destination γ(x) with γ : R → R

being Borel measurable. In terms of transference plan, we can ask for π to be defined

in a special from

dπγ(x, y) := |µ|−1dµ(x)δ0(y − γ(x)).

Then for every nonnegative and measurable function on R× R, ζ, we have,∫
R×R

ζ(x, y)dπγ(x, y) = |µ|−1

∫
R
ζ(x, γ(x))dµ(x).

In particular, we have

J(πγ) =

∫
R×R

c(x, y)dπγ(x, y) = |µ|−1

∫
R
c(x, γ(x))dµ(x) = I(γ).

Now let us define the Wasserstein distance between two measures with the same

mass in M(R).

Denote the space of finite Borel measures on R with finite p -th moment byMp(R),

that is,

Mp :=

{
µ ∈M(R) :

∫
R
|x|pdµ(x) <∞

}
.

This is a natural space on which J is finite. Consider a particular cost function

c(x, y) = |x − y|p, with p ≥ 1 and two measures µ, ν of the same mass in Mp, we

define p-th order Wasserstein distance as follows:

Wp(µ, ν) := |µ|
(

min
π∈Π(µ,ν)

J(π)

)1/p

= |µ|
(

min
π∈Π(µ,ν)

∫
R×R
|x− y|pdπ(x, y)

)1/p

.

for every φ ∈ C0
c (R), the minimal Lipschitz constant for φ is defined as

‖φ‖Lip := sup
x 6=y

|φ(x)− φ(y)|
|x− y|

.

The dual formulation for the first order Wasserstein distance W1 can be stated as

the following theorem:
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Theorem 2.2.1. (Kantorovich - Rubinstein Theorem, Villani (2008)) For all µ,

ν ∈M1 with |µ| = |ν|,

W1(µ, ν) = sup

{∫
R
φd(µ− ν)(x) | φ ∈ C0

c (R), ‖φ‖Lip ≤ 1

}
.

The Wasserstein distance on the subspace of measures in Mp with a given mass

has revealed itself to be a powerful tool especially in dealing with the dynamics of

measures, for example in the article Crippa and Lécureux-Mercier (2013). But the

main restriction of this approach is that the Wasserstein distance is only defined

between the measures with the same mass.

2.2.2 Total Variation Distance

Let A represent the Borel σ- algebra on R. The total variation distance between

µ and ν in M(R) is

‖µ− ν‖TV = 2 sup
A∈A
|µ(A)− ν(A)|

= sup

{∫
R
φd(µ− ν)(x) | φ ∈ C0

c (R), ‖φ‖∞ ≤ 1

}
. (2.1)

The second equality in (2.1) is the dual formulation for the total variation distance.

In some literature, for example in Piccoli and Rossi (2014), the total variation distance

is also called as L1 distance.

However the variation distance is too strong for the some applications. Consider

the Dirac measures δ1, δ2, δ5 in B(R). It is easy to see that

‖δ1 − δ2‖TV = ‖δ2 − δ5‖TV = 2.

But this is not natural with respect to our intuition. In fact, the p-th order Wasserstein

distance gives us a better model in this case. That is,

Wp(δ1 − δ2) = 1, Wp(δ2 − δ5) = 3.

12



2.2.3 Generalized Wasserstein Distance

Probability measures do not apply in the cases of nontrivial control in-flux and out-

flux or source terms, since the total mass varies over time. As the intrinsic limitations

of the Wasserstein distance and the total variation distance mentioned above, the

generalized Wassertein distance was introduced in the article Piccoli and Rossi (2014)

by combing the standard Wasserstein distance and total variation distance. Roughly

speaking, given two measures µ, ν inM(R), an infinitesimal mass δν of µ can either

be removed at cost a|δµ|, or moved from µ to ν at cost bWp(δµ, δν). Formally, the

generalized Wasserstein distance is defined as:

Given a, b ∈ (0,∞) and p ≥ 1 and for every two measures µ, ν ∈ M(R), the

generalized Wasserstein distance between µ and ν is

W a,b
p (µ, ν) = inf

µ̃,ν̃∈Bp,|µ̃|=|ν̃|
(a(‖µ− µ̃‖TV + ‖ν − ν̃‖TV ) + bWp(µ̃, ν̃)) .

2.2.4 Dual Bounded Lipschitz Norm (Flat Norm)

The dual bounded Lipschitz norm ‖ · ‖∗BL on M(R) is defined as: for every µ ∈

M(R),

‖µ‖∗BL = sup

{∫
R
fdµ(x) : f ∈ BL(R), |f |Lip ≤ 1, ‖f‖∞ ≤ 1

}
.

Then the dual bounded Lipschitz distance between µ, ν ∈M(R) is defined as:

‖µ− ν‖∗BL = sup

{∫
R
fd(µ− ν)(x) : f ∈ BL(R), |f |Lip ≤ 1, ‖f‖∞ ≤ 1

}
.

It was proved in the article Piccoli and Rossi (2014) that the dual formulation of

the generalized Wasserstein distance W 1,1
1 coincides with the dual bounded Lipschitz

distance.
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Theorem 2.2.2. (Theorem 13, Piccoli and Rossi (2014)) for every µ, ν ∈M(R),

W 1,1
1 (µ, ν) = ‖µ− ν‖∗BL.

Now let us consider the Dirac measure at x ∈ R, δx. for every a, b ∈ R, we have

‖δa − δb‖∗BL = min{1, |a− b|}.

Thus the dual bounded Lipschitz distance is in line with the intuition compared to

the total variation distance in this case.

The dual bounded Lipschitz norm in also called flat norm, Fortet-Mourier norm,

Dudley norm or Kantorovich-Rubinstein norm. For more versions of flat norm, we

refer the interested reader to (Gwiazda et al., 2018). In this thesis, we chose the

version of flat norm ‖ · ‖[ on M(S) that only involve nonnegative bounded Lipschitz

continuous functions,

‖µ‖[ = sup

{∣∣∣∣∫
S

f dµ

∣∣∣∣ ; f : S 7→ [0, 1], |f(x)− f(y)| ≤ d(x, y) for x, y ∈ S
}
. (2.2)

We also collect some facts onM+(S) endowed with the flat norm (2.2) from Gwiazda

et al. (2018).

Theorem 2.2.3 (Theorem 4.22, (Gwiazda et al., 2018)). Let S be complete and

separable and (µn) be a tight (inner regular) sequence in M+(S) such that µn(S) is

bounded. Then (µn) has a converging subsequence (with the limit measure being tight

as well).

Theorem 2.2.4 (Theorem 4.23, (Gwiazda et al., 2018)). If S is compact, then every

bounded closed subset of M+(S) is compact and M+(S) is locally compact.
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Chapter 3

NON-OPTIMALITY OF A FAMILY OF L1-CONTROLS

3.1 Introduction: L1-setting

Compared with the work done by the articles (Armbruster et al., 2006) and (Coron

et al., 2010) in the L2-setting, both, more meaningful from the business point of

view, and mathematically more challenging is the optimal control problem with an

L1-objective. From a business perspective, an important problem is the transfer

between equilibria with zero backlog at the terminal time and minimizing the L1-

norm of the backlog, that is, the difference between the desired cumulative out-flux

Yd(t) =
∫ t

0
yd(τ) dτ and the actual cumulative out-flux Y (t) =

∫ t
0
y(τ) dτ . In this

chapter, we demonstrate progress towards proving the conjectured non-existence of

optimal L1-controls for the optimal control problem with p = 1 in equation (1.2).

In this chapter, we consider a demand out-flux yd that is piecewise constant and

increases with a jump at time t∗, i.e.,

yd(t) =

 y1 if t < t∗

y2 if t ≥ t∗,
(3.1)

with y1, y2 ∈ [0, 1).

Additionally, we work with the fixed model v = α(W ) = 1
1+W

for the velocity

v as a function of the total load W , as in Coron et al. (2010). For arbitrary but

fixed initial condition ρ0 ∈ L1([0, 1]) and in-flux u ∈ L1([0, T ]) (with T being large

but fixed), the total load W is bounded above by
∫

[0,1]
ρ0(x) dx +

∫
[0,T ]

u(t) dt. This

implies that v is bounded away from 0, i.e., there exists some v0 > 0 such that the

velocity v ≥ v0. This model assumes that all parts move through the factory with the
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t

yd

t∗

yd(t) = y1

yd(t) = y2

Figure 3.1: The Piecewise Demand Out-flux yd

same velocity v and any increase of total load W at any stage slows down the entire

production line. Denote the constant densities at the equilibrium states when t < t∗

and when t ≥ t∗ by ρ1 and ρ2, respectively. (It will be clear from the context that

these are not ρt at times t = 1 and t = 2.) Then for k = 1, 2, the constant densities

at the equilibrium states are ρk = yk
1−yk

.

This chapter is organized as follows: In section (3.2), we explicitly calculate the

constant backlog under a natural control u when the system transfers from a smaller

to a larger equilibrium. In section (3.3), we justify the existence of the additional

mass M∗ and prove the nonexistence of optimal control in a family of L1-controls.

In section (3.4), we numerically illustrate that a control taking zero in-flux from

some time minimizes the cost functional J when the system transfers from a larger

equilibrium to a smaller equilibrium.

3.2 Transfer from a Smaller to a Larger Equilibrium with Nonzero Backlog

In this section, we consider the case of the system transferring from a smaller

to a larger equilibrium, i.e., 0 ≤ y1 < y2 < 1, with a nonzero backlog. To meet

the requirement that the system arrives at another equilibrium at time t = t∗, the
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operator in factory needs to start to increase the total load W at some time t∗ < t∗

such that ∫ t∗

t∗

α(W (t)) dt = 1. (3.2)

For our calculations, it is more convenient to instead consider the demand out-flux

jump time t∗ as a function of t∗, y1, and y2. Additionally, the densities at the equi-

librium states when t < t∗ and when t ≥ t∗ are

ρ(t, x) =

 ρ1 if t < t∗, 0 ≤ x ≤ 1;

ρ2 if t ≥ t∗, 0 ≤ x ≤ 1,

with ρk = yk
1−yk

, k = 1, 2.

Intuitively, a reasonable control in-flux u(t) to the special demand out-flux yd is

that u(t) = ρ(t, 0)α(W (t)) with

ρ(t, 0) =

 ρ1 if t < t∗,

ρ2 if t ≥ t∗,
(3.3)

with t∗ ≤ t∗ and
∫ t∗
t∗
α(W (t))dt = 1.

Remark. By Theorem (2.3) in the article Coron et al. (2010), the hyperbolic conser-

vation law (1.1) has a unique solution with the initial condition ρ0(x) = ρ1, x ∈ [0, 1]

and the in-flux u(t) = ρ(t, 0)α(W (t)) with ρ(t, 0) defined as in equation (3.3).

Remark. The control in-flux u coincides with the demand out-flux yd for t < t∗ and

t > t∗. That is, u(t) = yd(t) for t < t∗ and t > t∗.

Correspondingly, the actual out-flux is y(t) = ρ(t, 1)α(W (t)) with

ρ(t, 1) =

 ρ1 if t < t∗,

ρ2 if t ≥ t∗.
(3.4)
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t

u

t∗ t∗

u(t) = yd(t) = y1

u(t) = yd(t) = y2

u(t) = ρ2α(W (t))

Figure 3.2: The In-flux u to Transfer from a Smaller to a Larger Equilibrium

t

y

t∗ t∗

u(t) = y(t) = y1

u(t) = y(t) = y2

y(t) = ρ1v(W (t))

Figure 3.3: The Out-flux y When Transferring from a Smaller to a Larger Equilib-
rium

Remark. The actual out-flux y coincides with the the demand out-flux yd for t < t∗

and t > t∗. That is, y(t) = yd(t) for t < t∗ and t > t∗.

With out loss of generality, we assume that t∗ > 0. Taking the control in-flux u

as in figure (3.2), We justify the existence of the demand out-flux jump time t∗.

Lemma 3.2.1. For any t∗ > 0, the demand out-flux jump time, t∗, is finite, i.e.,

t∗ <∞.

Please find the proof of this lemma in appendix (B).
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We derive the explicit expression of t∗ through the relation defined in equation

(3.2). For t ∈ [0, t∗], the production line is at the equilibrium state with constant

product density ρ1. Thus the total load is W (t) =
∫ 1

0
ρ1dx = ρ1 for any t ∈ [0, t∗].

Combined with equation (B.1), we have the flowing Cauchy problem:

W
′
(t) =

ρ2 − ρ1

1 +W (t)
for t ∈ (t∗, t

∗) (3.5)

W (t∗) = ρ1. (3.6)

An explicit solution of the Cauchy problem (3.5) and (3.6) is

W (t) = −1 +
√

(ρ1 + 1)2 + 2(ρ2 − ρ1)(t− t∗), t ∈ [t∗, t
∗].

Thus the velocity field is

α(W (t)) =
1

1 +W (t)
=

1√
(ρ1 + 1)2 + 2(ρ2 − ρ1)(t− t∗)

, t ∈ [t∗, t
∗].

By equation (3.2) we have,∫ t∗

t∗

α(W (t))dt =

∫ t∗

t∗

1√
(ρ1 + 1)2 + 2(ρ2 − ρ1)(t− t∗)

dt

=
1

ρ2 − ρ1

(√
(ρ1 + 1)2 + 2(ρ2 − ρ1)(t∗ − t∗)− (ρ1 + 1)

)
= 1.

Hence,

t∗ = t∗ +
ρ1 + ρ2 + 2

2

= t∗ +
(1− y1) + (1− y2)

2(1− y1)(1− y2)
.

Note: Since 0 ≤ y1 < y2 < 1, we have,

(1− y1) + (1− y2) ≥ (1− y1)2 + (1− y2)2 ≥ 2(1− y1)(1− y2)

which implies that t∗ ≥ t∗ + 1.
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Next, we find an expression for the backlog β. Recall that Yd(t) and Y (t) represent

the accumulated demand out-flux and the accumulated actual out-flux at time t

respectively. The backlog of a production system at time t, β(t), is defined as the

accumulated demand out-flux minus the accumulated actual out-flux up to that time,

i.e., β(t) = Yd(t)− Y (t).

The accumulated demand out-flux is

Yd(t) =

∫ t

0

yd(s) ds =

 y1t if 0 ≤ t < t∗,

y1t
∗ + y2(t− t∗) if t ≥ t∗.

The accumulated actual out-flux is

Y (t) =

∫ t

0

y(s)ds =

∫ 1

0

ρ(s, 1)α(W (s)) ds

=


y1t if 0 ≤ t ≤ t∗,

y1t∗ +
∫ t
t∗
ρ1α(W (s))ds if t∗ < t ≤ t∗,

y1t∗ +
∫ t∗
t∗
ρ1α(W (s))ds+ y2(t− t∗) if t ≥ t∗.

Thus the backlog is

β(t) =


0 if 0 ≤ t ≤ t∗,

y1(t− t∗)−
∫ t
t∗
ρ1α(W (s))ds if t∗ < t ≤ t∗,

y1(t∗ − t∗)−
∫ t∗
t∗
ρ1α(W (s))ds if t ≥ t∗.

Since
∫ t∗
t∗
α(W (t))dt = 1, the backlog is constant for t ≥ t∗, that is,

β(t) = y1(t∗ − t∗)− ρ1

= y1

(
(1− y1) + (1− y2)

2(1− y1)(1− y2)

)
− y1

1− y1

,

=
y1(y2 − y1)

2(1− y1)(1− y2)
> 0.

Conclusion: The control in-flux as in figure (3.2) causes an inverse response

to the production system: as in-flux increases, out-flux decreases temporarily. This
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is because the velocity of the system decreases due to the increase of the total load

and this results in nonzero backlog to the system. More specifically, for the piecewise

constant demand out-flux yd (3.1), the control in-flux

u(t) =

 ρ1α(W (t)) if 0 ≤ t < t∗,

ρ2α(W (t)) if t ≥ t∗,
(3.7)

with t∗ = t∗ − (1−y1)+(1−y2)
2(1−y1)(1−y2)

produces a constant backlog for t ≥ t∗ such that

β(t) =
y1(y2 − y1)

2(1− y1)(1− y2)
.

3.3 Transfer from a Smaller to a Larger Equilibrium with Eventually Zero Backlog

In this section, we still consider the case when the system transferring from a

smaller to a larger equilibrium, i.e., 0 ≤ y1 < y2 < 1, but with eventually zero

backlog. To cancel the backlog produced by the control in-flux u(t) (3.7), one needs

to modify this control in-flux by increasing it, i.e., by adding additional mass M > 0

at x = 0 over some time interval [0, ε). This results in an even larger inverse response

due to the fact that velocity α further decreases as the total load W increases. In

addition, the higher demand out-flux at a later time requires higher in-flux at some

earlier time. Thus the additional mass M must not only make up for the further

backlog caused by M itself, but must also make up for the missing out-flux due to the

step up of the demand out-flux. In this thesis, we consider the case when ε ∈ (0, 1] so

that none of the in-flux over the time interval [0, ε] exits from the system before time

ε. It is not a prior clear that for every ε ∈ (0, 1], such a mass M exists. Furthermore,

the requirement that the system reaches another equilibrium at time t∗ forces us to

choose the control in-flux as u(t) = ρ2α(W (t)) for t > ε, with t∗ < ε < t∗. Without

loss of generality, we assume that the action time t∗ = 0, that is,∫ t∗

0

α(W (t)) dt = 1. (3.8)
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Note that since the velocity is bounded away from 0, that is, α(W (t)) ≥ vmin > 0,

there is a unique t∗ that satisfies equation (3.8).

Note that in the situation with a modified control in-flux, the system reaches its

new equilibrium state at time T ∗ defined by∫ T ∗

ε

α(W (t)) dt = 1, (3.9)

with zero backlog β(T ∗) = 0.

The time T ∗ at which the backlog becomes zero also depends on both the shape of

the control variation, and on the amount of the additional mass M . Given a direction

h ∈ L1([0, 1]; [0,+∞)) with

∫ 1

0

h(t) dt = 1, (3.10)

and for any ε ∈ (0, 1], we consider the curve of modified L1-control in-fluxes

uε(t) =

 ρ2α(W (t)) + M∗(h,ε)
ε

h( t
ε
) if 0 ≤ t ≤ ε;

ρ2α(W (t)) if t > ε,
(3.11)

with M∗(h, ε) > 0. Here the L1-function h and the number M∗(h, ε) represent the

shape and the amount of the additional mass respectively.

3.3.1 Existence of M∗(h, ε)

One may want to ask: For every h satisfying equation (3.10) and every ε ∈ (0, 1],

does there exist an additional mass M∗(h, ε) such that the control in-flux uε (3.11)

results in zero backlog in finite time? To show the existence of such M∗(h, ε), we

need to verify that the backlog β depends continuously on the additional mass. It

looks like a very standard procedure, but much more tedious than expected due to

the complexity of function h.

The accumulated demand out-flux Yd(t) is

Yd(t) =

 y1t if 0 ≤ t < t∗,

y1t
∗ + y2(t− t∗) if t ≥ t∗,
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where t∗ is defined in (3.8).

The accumulated actual out-flux is

Y (t) =

∫ t

0

y(s)ds

=


∫ t

0
ρ1α(W (s)) ds if 0 ≤ t ≤ t∗,∫ t∗

0
ρ1α(W (s)) ds+

∫ t
t∗
ρ(s, 1)α(W (s)) ds if t∗ < t ≤ T ∗,∫ t∗

0
ρ1α(W (s)) ds+

∫ T ∗
t∗

ρ(s, 1)α(W (s)) ds+
∫ t
T ∗
ρ2α(W (s)) ds if t ≥ T ∗.

Thus for all times t ≥ T ∗ the backlog, β(t), is

β(t) = Yd(t)− Y (t)

= y1t
∗ + y2(t− t∗)−

∫ t∗

0

ρ1α(W (s)) ds−
∫ T ∗

t∗
ρ(s, 1)α(W (s)) ds−

∫ t

T ∗
ρ2α(W (s)) ds.

By equation (3.8), we have,
∫ t∗

0
ρ1α(W (s)) ds = ρ1. The integral

∫ T ∗
t∗

ρ(s, 1)α(W (s)) ds

represents the total out-flux over the time interval [t∗, T ∗] which is equal to the total

in-flux from over the time interval [0, ε]. That is,∫ T ∗

t∗
ρ(s, 1)α(W (s)) ds =

∫ ε

0

u(t) dt =

∫ ε

0

ρ2α(W (t)) dt+M. (3.12)

Additionally, ρ2α(W (t)) = y2 for t ≥ T ∗ implies that
∫ t
T ∗
ρ2α(W (s)) ds = y2(t− T ∗).

Therefore, for all t ≥ T ,

β(t) = y1t
∗ + y2(T ∗ − t∗)− ρ1 −M −

∫ ε

0

ρ2α(W (s)). (3.13)

Lemma 3.3.1. Given ε > 0, for any M > 0, T ∗−t∗ is bounded above by
(

1+ρ2+M
1+ρ1

)
ε,

i.e., T ∗ − t∗ ≤
(

1+ρ2+M
1+ρ1

)
ε.

Please find the proof of this lemma in appendix (B).

Remark. Rearranging the terms ,we have T ∗ − t∗ ≤ ε(1+ρ2+M)
1+ρ1

=
1

1+ρ1
1

1+ρ2+M

(ε− 0).
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Remark. Note that 1
1+ρ1

is the upper bound of the velocity on the time interval [0, ε]

and 1
1+ρ2+M

is the lower bound of the velocity on the time interval [t∗, T ∗]. The ratio

between T ∗ − t∗ and ε − 0 is bounded above by the ratio between the upper bound of

the velocity at the time interval [0, ε] and the lower bound of the velocity at the time

interval [t∗, T ∗]. That is,

T ∗ − t∗

ε− 0
≤

1
1+ρ1

1
1+ρ2+M

.

Lemma 3.3.2. Given ε > 0, for any M > 0, t∗ is bounded above by ε+ 1
2
(ρ2− ρ1) +(

1 + ρ1 +M + ρ2−ρ1
1+ρ1

ε
)

, i.e., t∗ ≤ ε+ 1
2
(ρ2 − ρ1) +

(
1 + ρ1 +M + ρ2−ρ1

1+ρ1
ε
)

.

Please find the proof of this lemma in appendix (B).

Lemma 3.3.3. Given a function h as in (3.10), for every ε ∈ (0, 1], if M is suffi-

ciently large, then the backlog β(t) < 0 for t ≥ T ∗.

Proof. From lemma (3.3.1) and (3.3.2), we have, for t ≥ T ,

β(t) ≤ ρ1

1 + ρ1

(
ε+

1

2
(ρ2 − ρ1) +

(
1 + ρ1 +M +

ρ2 − ρ1

1 + ρ1

ε

))
, (3.14)

+
ρ2

1 + ρ2

ε(1 + ρ2 +M)

1 + ρ1

− ρ1 −M,

=
ρ1

1 + ρ1

(
ε+

1

2
(ρ2 − ρ1) +

(
1 + ρ1 +

ρ2 − ρ1

1 + ρ1

ε

))
+

ρ2

1 + ρ2

ε(1 + ρ2)

1 + ρ1

− ρ1,

+

(
ρ1

1 + ρ1

+
ερ2

(1 + ρ1)(1 + ρ2)
− 1

)
M.

Note that for the coefficient of M ,

ρ1

1 + ρ1

+
ερ2

(1 + ρ1)(1 + ρ2)
− 1 =

(ε− 1)ρ2 − 1

(1 + ρ1)(1 + ρ2)
< 0, 0 < ε ≤ 1

so the right hand side of the inequality (3.14) is negative if M is large enough. Hence,

for a fixed 0 < ε ≤ 1, M large enough implies that β(t) < 0 for t ≥ T .

The following lemma is from the Ordinary Differential Equation text book (Meiss,

2007). For sake of completeness, we recall the proof of the argument here.
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Lemma 3.3.4 (Grönwall’s Inequality). Suppose the functions g, k : [0, a] 7→ R are

continuous, a > 0, k(t) ≥ 0, and g obeys the inequality

g(t) ≤ G(t) ≡ c+

∫ t

0

k(s)g(s) ds (3.15)

for all t ∈ [0, a] and c being a constant. Then for all t ∈ [0, a],

g(t) ≤ ce
∫ t
0 k(s) ds.

Proof. Since both g and k are continuous, then G is C1 and G(0) = c. Furthermore,

differentiating equation (3.15) gives

Ġ(t) = k(t)g(t) ≤ k(t)G(t);

Consequently,

Ġ− kG ≤ 0.

Multiplying both sides of the above inequality by the positive ”integrating factor”

e−
∫ t
0 k(s) ds, we obtain

e−
∫ t
0 k(s) ds(Ġ− kG) =

d

dt

(
G(t)e−

∫ t
0 k(s) ds

)
≤ 0.

Integrating the above inequality,

G(t)e−
∫ t
0 k(s) ds ≤ G(0),

which implies

g(t) ≤ G(t) ≤ ce
∫ t
0 k(s) ds.

Lemma 3.3.5. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1], for

every time t ∈ [0, ε], the total load W (t) depends continuously on the additional mass

M .
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Proof. Over the time interval [0, ε], the total load W satisfies the following Cauchy

problem:

W ′(t) =
ρ2 − ρ1

1 +W (t)
+
M

ε
h(
t

ε
) (3.16)

W (0) = ρ1.

Suppose that Wk(t,Mk), k = 1, 2, is the solution to the Cauchy problem (3.16) with

parameter M = Mk. We show that for every σ > 0, there exists some δ > 0, such

that if |M1 −M2| < δ, then for every t ∈ [0, ε], |W1(t,M1)−W2(t,M2)| < σ.

Note that for every t ∈ [0, ε], k = 1, 2,

Wk(t,Mk) = ρ1 +

∫ t

0

ρ2 − ρ1

1 +Wk(τ,Mk)
+
Mk

ε
h(
τ

ε
) dτ. (3.17)

Therefore, for every t ∈ [0, ε],

|W1(t,M1)−W2(t,M2)| (3.18)

=

∣∣∣∣∫ t

0

(
ρ2 − ρ1

1 +W1(τ,M1)
− ρ2 − ρ1

1 +W2(τ,M2)

)
dτ +

∫ t

0

1

ε
h(
τ

ε
) dτ(M1 −M2)

∣∣∣∣ (3.19)

≤
∫ t

0

(ρ2 − ρ1) |W1(τ,M1)−W2(τ,M2)| dτ + |M1 −M2|
∫ t

ε

0

h(s) ds (3.20)

≤ |M1 −M2|+
∫ t

0

(ρ2 − ρ1) |W1(τ,M1)−W2(τ,M2)| dτ. (3.21)

By lemma (3.3.1), we have,

|W1(t,M1)−W2(t,M2)| ≤ |M1 −M2| e(ρ2−ρ1)t ≤ |M1 −M2| e(ρ2−ρ1)ε.

Thus for every σ > 0, let δ = σe−(ρ2−ρ1)ε, then |M1 −M2| < δ implies that for every

t ∈ [0, ε], |W1(t,M1)−W2(t,M2)| < δ.

Lemma 3.3.6. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1],

and fixed t ∈ [0, ε], the density ρ(t, 0) over the time interval [0, ε] is continuous with

respect to the additional mass M(h, ε).
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Proof. The density at the location x = 0 at time t ∈ [0, ε] is

ρ(t, 0) =
u(t)

α(W (t))

= ρ2 +
M
ε
h( t

ε
)

α(W (t))
.

By lemma (3.3.5) and the fact that α is bounded away from 0, we have, ρ(t, 0) is

continuous with respect to the additional mass M over the time interval [0, ε].

Lemma 3.3.7. Suppose the function f : [0,+∞) × [0,+∞) 7→ [0,+∞); (t, x) 7→

f(t, x) is integrable with respect to the first variable t and continuous with respect

to the second variable x uniformly in t and bounded away from zero, i,e., there exists

some v0 > 0, such that, for every t ∈ [0,∞) and x ∈ [0,∞), f(t, x) > v0. Suppose

that the function g : [0,∞) 7→ (a,∞) with a > 0 is bounded above by T > 0. If the

following function is continuous:

F : [0,∞) 7→ [0,∞);x 7→
∫ g(x)

a

f(t, x) dt, (3.22)

then, g is also continuous with respect to x.

Proof. For arbitrary but fixed ε > 0, let σ = v0
T+1

ε. Then the continuity of function

F implies that there exists some δ1 > 0, such that, for every x1, x2 ∈ [0,∞), if

|x1 − x2| < δ1, then

|F (x1)− F (x2)| =

∣∣∣∣∣
∫ g(x1)

a

f(t, x1) dt−
∫ g(x2)

a

f(t, x2) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ g(x1)

a

f(t, x1) dt−
∫ g(x1)

a

f(t, x2) dt+

∫ g(x1)

a

f(t, x2) dt−
∫ g(x2)

a

f(t, x2) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ g(x1)

a

f(t, x1)− f(t, x2) dt+

∫ g(x1)

g(x2)

f(t, x2) dt

∣∣∣∣∣ < σ.
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Furthermore, for all t ∈ [a, T ], there exist some δ2 > 0, such that, if |x1 − x2| < δ2,

then |f(t, x1)− f(t, x2)| < σ. Let δ = min{δ1, δ2}, then by the triangle inequality and

the fact that the function f is bounded below by v0 > 0, we obtain if |x1 − x2| < δ,

then

v0 |g(x1)− g(x2)| ≤

∣∣∣∣∣
∫ g(x1)

g(x2)

f(t, x2) dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ g(x1)

a

f(t, x1)− f(t, x2) dt

∣∣∣∣∣+ σ

≤ (T + 1)σ.

Therefore,

|g(x1)− g(x2)| ≤ T + 1

v0

σ = ε

Lemma 3.3.8. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1], the

time t∗ when the demand out-flux jumps depends continuously on the additional mass

M(h, ε).

Proof. From equation (3.8), we have∫ ε

0

α(W (t)) dt+

∫ t∗

ε

α(W (t)) dt = 1.

Let F (M) =
∫ ε

0
α(W (t)) dt and G(M) =

∫ t∗
ε
α(W (t)) dt, then

G(M) = 1 − F (M). Furthermore, from lemma (3.3.5), we have that the function F

is continuous with respect to M , and thus the function G is also continuous.

Again by lemma (3.3.5), equation (B.3) and (B.9), we have, the total load W is

continuous with respect to the additional mass M , thus the velocity α(W ) is also

continuous with respect to the additional mass M on the time interval [ε, t∗].

By lemma (3.3.7), the time t∗ when the demand out-flux jumps depends continu-

ously on the addition mass M .
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Lemma 3.3.9. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1],

the time T ∗ at which the system reaches its new equilibrium state is continuous with

respect to the additional mass M .

Please find the proof of this lemma in appendix (B).

Lemma 3.3.10. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1],

the backlog β(t) for t ≥ T ∗ is continuous with respect to the additional mass M .

Proof. By equation (3.13), lemma (3.3.5), lemma (3.3.8), and lemma (3.3.9), it is

easy to see that the backlog β(t) for t ≥ T ∗ depends continuously on the additional

mass M .

Theorem 3.3.11. Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1],

there exists a M∗(h, ε) > 0, such that if M = M∗(h, ε), then the control in-flux uε as

defined in (3.11) leads to zero backlog β in a finite time.

Proof. If M = 0, then the modified control input uε (3.11) is the same as the nat-

ural control input (3.7). From section (3.2), we can see that the backlog is positive

eventually. Hence by lemma (3.3.3), (3.3.10) and the intermediate value theorem, we

have, given 0 < ε ≤ 1, there exists a M∗(h, ε) > 0, such that if M = M∗(h, ε), then

the backlog β is zero after certain time t = T ∗(ε).

For ε ∈ (0, 1] sufficiently small and arbitrary but fixed, the objective functional

J(uε) for uε is defined in equation (3.11). For convenience, we use M∗ to represent

M∗(h, ε).

We calculate the total load at time t = ε, W (ε), and the distance traveled during
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the time interval [0, ε],
∫ ε

0
α(W (t)) dt. For ε ≤ t ≤ t∗, by conservation of mass, W

′
(t) = ρ2−ρ1

1+W (t)
,

W (ε) = ρ1 +M∗ + (ρ2 − ρ1)
∫ ε

0
α(W (t))dt.

(3.23)

Solving the Cauchy problem (3.23) yields

W (t) =
√

2(ρ2 − ρ1)(t− ε) + (1 +W (ε))2 − 1, t ∈ [ε, t∗].

Thus the velocity is given by,

α(W (t)) =
1√

2(ρ2 − ρ1)(t− ε) + (1 +W (ε))2
, t ∈ [ε, t∗].

By the definition of t∗, we have,

1 =

∫ t∗

0

α(W (t))dt =

∫ ε

0

α(W (t))dt+

∫ t∗

ε

α(W (t))dt

=

∫ ε

0

α(W (t))dt+

∫ t∗

ε

1√
2(ρ2 − ρ1)(t− ε) + (1 +W (ε))2

dt

=

∫ ε

0

α(W (t))dt+

√
2(ρ2 − ρ1)(t∗ − ε) + (1 +W (ε))2

ρ2 − ρ1

− 1 +W (ε)

ρ2 − ρ1

.

Now consider the initial condition in equation (3.23), from the last equality of the

above relation we obtain,∫ ε

0

α(W (t))dt+

√
2(ρ2 − ρ1)(t∗ − ε) + (1 +W (ε))2

ρ2 − ρ1

−1 + ρ1 +M∗

ρ2 − ρ1

−
∫ ε

0

α(W (t))dt = 1

which implies that

W (ε) =
√

(ρ2 +M∗ + 1)2 − 2(ρ2 − ρ1)(t∗ − ε)− 1.

Again considering the initial condition in equation (3.23), we get,∫ ε

0

α(W (t))dt =

√
(ρ2 +M∗ + 1)2 − 2(ρ2 − ρ1)(t∗ − ε)− (ρ1 +M∗ + 1)

ρ2 − ρ1

. (3.24)
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Lemma 3.3.12. For ε ∈ (0, 1] sufficiently small and arbitrary but fixed, we have

ρ1 + ρ2 + 2M∗ + 2

2
− M∗

1 + ρ1

ε+ o(ε) ≤ t∗ ≤ ρ1 + ρ2 + 2M∗ + 2

2
+ o(ε), (3.25)

and

M∗ ≥ρ1(ρ2 − ρ1)

2
−
(
ρ2

1(ρ2 − ρ1)

2(1 + ρ1)
+ ρ2

)
ε+ o(ε) (3.26)

M∗ ≤ρ1(ρ2 − ρ1)

2
+

(
ρ1ρ2(ρ2 − ρ1)

2(1 + ρ2)
+ ρ2

)
ε+ o(ε).

Please find the proof of this lemma in appendix (B).

Now we calculate the control objective functional J(uε) when ε > 0 but sufficiently

small. From the definition of J ,

J(uε) =

∫ T ∗

0

(Yd(t)− Y (t)) dt =

∫ T ∗

0

(∫ t

0

yd(s)ds−
∫ t

0

y(s)ds

)
dt (3.27)

=

∫ t∗

0

(
y1t−

∫ t

0

ρ1α(W (s))ds

)
dt

+

∫ T ∗

t∗

(
y1t
∗ + y2(t− t∗)− ρ1 −

∫ t

t∗
ρ(s, 1)α(W (s))ds

)
dt.

By lemma 3.3.1,

T ∗ − t∗ ≤
(

1 + ρ2 +M∗

1 + ρ1

)
ε,

That is T ∗− t∗ is at most of order o(ε). Furthermore, for any t ∈ [t∗, T ∗], y1t
∗+y2(t−

t∗)− ρ1−
∫ t
t∗
ρ(s, 1)α(W (s))ds is bounded (since t∗, M∗ and α is bounded above and

below), which implies that∫ T ∗

t∗

(
y1t
∗ + y2(t− t∗)− ρ1 −

∫ t

t∗
ρ(s, 1)α(W (s))ds

)
dt

is of order o(ε).
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For the first integral in equation (3.27),∫ t∗

0

(
y1t−

∫ t

0

ρ1α(W (s))ds

)
dt (3.28)

=

∫ t∗

0

y1tdt−
∫ t∗

0

∫ t

0

ρ1α(W (s))ds dt

=
1

2
y1(t∗)2 −

∫ t∗

0

ρ1α(W (s))(t∗ − s)ds

=
1

2
y1(t∗)2 −

∫ ε

0

ρ1α(W (s))(t∗ − s)ds−
∫ t∗

ε

ρ1α(W (s))(t∗ − s)ds

=
1

2
y1(t∗)2 −

∫ t∗

ε

ρ1α(W (s))(t∗ − s)ds+ o(ε),

The last equality in the above is because that the integral
∫ ε

0
ρ1α(W (s))(t∗ − s)ds is

of order o(ε).

Also recall that for t ∈ (ε, t∗),

α(W (t)) =
1√

(M∗ + ρ2 + 1)2 + 2(ρ2 − ρ1)(t− ε)
,

therefore,

J(uε) =
1

2
y1(t∗)2 −

∫ t∗

ε

ρ1(t∗ − s)√
(M∗ + ρ2 + 1)2 + 2(ρ2 − ρ1)(s− ε)

ds+ o(ε). (3.29)

where M∗ and t∗ satisfy the inequalities (B.24) and (3.25).

3.3.2 Non-optimality of a Family of L1-controls

For any s ∈ R, denote by δs the Dirac delta centered at s. Formally consider the

impulsive control

u0(t) =


M0δ0(t), t = 0,

ρ2α(W (t)), t > 0.

(3.30)

where M0 > 0 is such that the backlog β reaches 0 at time t = T ∗ = t∗0 (from lemma

(3.3.1), we obtain that T ∗ = t∗0 by taking ε to be zero). Note that u0 6∈ L1([0, T ]).
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We first find M0 and t∗0.

For t ∈ (0, t∗0), by the conservation of mass, W
′
(t) = ρ2−ρ1

1+W (t)
,

W (0) = M0 + ρ1.
(3.31)

Solving the Cauchy problem (3.31), for every t ∈ (0, t∗0),

W (t) = −1 +
√

(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)t.

By the definition of t∗0,

1 =

∫ t∗0

0

α(W (t))dt =

∫ t∗

0

1

1 +W (t)
dt

=

∫ t∗0

0

1√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)t

dt

=
1

ρ2 − ρ1

(√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)t∗0 − (m0 + ρ1 + 1)

)
,

which implies

t∗0 =
1

2
(ρ2 − ρ1) + (M0 + ρ1 + 1). (3.32)

Note that the backlog β(t∗0) = 0 implies

y1t
∗ − ρ1 = M0. (3.33)

Combine (3.32) and (3.33),

t∗0 =
1

2
(1 + ρ1)(ρ2 − ρ1 + 2),

M0 =
ρ1(ρ2 − ρ1)

2
.

Lemma 3.3.13. For every function h as in (3.10), the modified control in-flux uε

(3.11) converge to the impulsive control u0 (3.30) in the sense of distribution as ε

approaches to 0 from the right.
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Proof. For every function φ ∈ C∞c ((0,+∞)) that is smooth on (0,+∞) with compact

support, we claim that

lim
ε→0+

∫ ∞
0

uε(t)φ(t) dt =

∫ ∞
0

u0(t)φ(t) dt. (3.34)

For the left hand side of equation (3.34),

lim
ε→0+

∫ ∞
0

uε(t)φ(t) dt

= lim
ε→0+

(∫ ε

0

(
ρ2α(W (t)) +

M

ε
h

(
t

ε

))
φ(t) dt+

∫ ∞
ε

ρ2α(W (t))φ(t) dt

)
=

∫ ∞
0

ρ2α(W (t))φ(t) dt+ lim
ε→0+

∫ ε

0

M

ε
h

(
t

ε

)
φ(t) dt

=

∫ ∞
0

ρ2α(W (t))φ(t) dt+ lim
ε→0+

M lim
ε→0+

∫ ε

0

1

ε
h

(
t

ε

)
φ(t) dt

=

∫ ∞
0

ρ2α(W (t))φ(t) dt+ lim
ε→0+

M lim
ε→0+

∫ 1

0

h (s)φ(εs) ds

=

∫ ∞
0

ρ2α(W (t))φ(t) dt+ lim
ε→0+

M

∫ 1

0

h (s)φ(0) ds

=

∫ ∞
0

ρ2α(W (t))φ(t) dt+ lim
ε→0+

Mφ(0).

Here, limε→0+ M is the amount of mass instantly added to the system at time t = 0

such that the backlog β reaches zero in finite time. Thus,

lim
ε→0+

M = M0.

Additionally, for the right hand side of equation (3.34),∫ ∞
0

u0(t)φ(t) dt =

∫ ∞
0

ρ2α(W (t))φ(t) dt+M0φ(0).

Therefore, we have uε → u0 as ε → 0+ in the sense of distribution (see Definition

(A.1.15)).

Next, we study the control objective function J(u0). Since the mass M0 leaves

the system instantly at time t = t∗0, we have

J(u0) =

∫
[0,t∗0)

Yd(t)− Y (t) dt−M0.
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Note that for t ∈ [0, t∗0), the accumulated demand out-flux Yd is

Yd(t) = y1t,

and the accumulated actual out-flux Y is

Y (t) =

∫ t

0

ρ1α(W (s))ds

=

∫ t

0

ρ1√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds.

Thus, the control objective functional J(u0) is,

J(u0) =

∫
[0,t∗0)

y1tdt−
∫

[0,t∗0)

∫ t

0

ρ1√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds dt−M0

=

∫
[0,t∗0)

y1tdt−
∫ t∗0

0

∫ t∗0

s

ρ1√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

dt ds−M0

=

∫
[0,t∗0)

y1tdt−
∫ t∗0

0

ρ1(t∗0 − s)√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds−M0

with

t∗0 =
1

2
(1 + ρ1)(ρ2 − ρ1 + 2),

M0 =
ρ1(ρ2 − ρ1)

2
.

Next, we compare the control objective functional J(uε) with ε > 0 being sufficiently

small and the control objective J(u0). Let M1 =
ρ21(ρ2−ρ1)

2(1+ρ1)
+ρ2 and M2 = ρ1ρ2(ρ2−ρ1)

2(1+ρ2)
+

ρ2. Then equation (B.24) implies

M0 −M1ε+ o(ε) ≤M∗ ≤M0 +M2ε+ o(ε). (3.35)

Furthermore, the range of t∗ is

t∗0 −
(
M1 +

M0

1 + ρ1

)
ε+ o(ε) ≤ t∗ ≤ t∗0 +M2ε+ o(ε). (3.36)
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Let J1 = 1
2
y1 (t∗)2 and J2 =

∫ t∗
ε

ρ1(t∗−s)√
(M∗+ρ2+1)2+2(ρ2−ρ1)(s−ε)

ds, then

J(uε) = J1 − J2 + o(ε).

By equation (3.36),

J1 =
1

2
y1 (t∗)2

≥ 1

2
y1

(
t∗0 −

(
M1 +

M0

1 + ρ1

)
ε

)2

+ o(ε)

=
1

2
y1

(
(t∗0)2 − 2t∗0

(
M1 +

M0

1 + ρ1

)
ε

)
+ o(ε)

=
1

2
y1 (t∗0)2 − y1t

∗
0

(
M1 +

M0

1 + ρ1

)
ε+ o(ε).

Note that there exist ε0 > 0, such that, if ε < ε0, then y1t
∗
0

(
M1 + M0

1+ρ1

)
ε < M0

8
.

Thus, we have a lower bound for J1, that is,

J1 >
1

2
y1 (t∗0)2 − M0

8
.

Therefore,

J(uε) >
1

2
y1 (t∗0)2 − M0

8
− J2 + o(ε).

Take ε1 > 0, such that, if ε < ε1, the term o(ε) in the above equation is bounded

above by M0

2
.

For J2, we have,

J2 =

∫ t∗

ε

ρ1(t∗ − s)√
(M∗ + ρ2 + 1)2 + 2(ρ2 − ρ1)(s− ε)

ds

≤
∫ t∗0

0

ρ1 (t∗0 +M2ε+ o(ε)− s)√
(M0 −M1ε+ o(ε) + ρ2 + 1)2 + 2(ρ2 − ρ1)(s− ε)

ds

+

∫ t∗0+M2ε+o(ε)

t∗0

ρ1 (t∗0 +M2ε+ o(ε)− s)√
(M0 −M1ε+ o(ε) + ρ2 + 1)2 + 2(ρ2 − ρ1)(s− ε)

ds.

Note that if 0 < ε < ρ2−ρ1
M1

, then −M1ε+ ρ2 > ρ1.
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Let

J2,1 =

∫ t∗0

0

ρ1 (t∗0 − s)√
(M0 + ρ1 + 1 + o(ε))2 + 2(ρ2 − ρ1)(s− ε)

ds,

J2,2 =

∫ t∗0

0

ρ1M2ε+ o(ε)√
(M0 + ρ1 + 1 + o(ε))2 + 2(ρ2 − ρ1)(s− ε)

ds,

and

J2,3 =

∫ t∗0+M2ε+o(ε)

t∗0

ρ1 (t∗0 +M2ε+ o(ε)− s)√
(M0 + ρ1 + 1 + o(ε))2 + 2(ρ2 − ρ1)(s− ε)

ds,

then,

J2 ≤ J2,1 + J2,2 + J2,3.

For J2,1,

lim
ε→0

J2,1 =

∫ t∗0

0

ρ1 (t∗0 − s)√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds,

thus, there exists ε2 > 0, such that, if ε < ε2, then

J2,1 <

∫ t∗0

0

ρ1 (t∗0 − s)√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds+
M0

8
.

For J2,2 and J2,3,

lim
ε→0

J2,2 = lim
ε→0

J2,3 = 0,

thus, there exists ε3 > 0, such that if ε < ε3, then J2,2 <
M0

4
and J2,3 <

M0

8
. Hence,

we have an upper bound for J2, that is,

J2 ≤
∫ t∗0

0

ρ1 (t∗0 − s)√
(M0 + ρ1 + 1)2 + 2(ρ2 − ρ1)s

ds+
3M0

8
.

Let δ = min{ε0, ε1, ε2, ε3,
ρ2−ρ1
M
}, then if ε < δ, then J(uε) > J(u0).

Theorem 3.3.14. Given a function h as in (3.10), there exists εh > 0, such that

for every ε1 ∈ (0, εh), there is ε2 < ε1, such that the functional J satisfies J(u0) <

J(uε2) < J(uε1).
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Proof. From the discussion before, we have, given a function h as in (3.10), there

exist εh > 0, such that the function J satisfies

J(uε) > J(u0), for every ε ∈ (0, εh). (3.37)

By the squeeze theorem and inequalities (3.35) and (3.36), we have,

lim
ε→0

J(uε) = J(u0). (3.38)

Now suppose there exists some ε1 ∈ (0, εh), such that for very ε2 ∈ (0, ε1), the

function J satisfies J(uε2) ≥ J(uε1). Then

lim
ε→0

J(uε) ≥ J(uε1),

which is a contradiction to equations (3.37) and (3.38).

Conclusion: Theorem (3.3.14) formally analyzed the directional derivatives of

the objective functional J at u0 (a Borel measure on [0, T ]) in the directions of ab-

solutely continuous Borel measures that correspond to L1-functions. Furthermore,

theorem (3.3.14) strongly suggests that there is no optimal control in the class of

L1-functions defined as in equation (3.11) when ε is sufficiently small. Intuitively,

there is no J(uε) that is smaller than J(u0) for ε large. But this is not yet proved by

theorem (3.3.14).

Heuristically the only reasonable candidate of L1-controls u for which J(u) is even

close to J(u0) are of the above form uε with {t > 0: uε(t) 6= ρ2α(W (t))} contained in

an interval as short as possible. The impulsive control which can be understood as

a Dirac measure (not in L1) input would lead to a lower cost than any L1-control of

the form uε. This suggests us to consider controls and initial values in the setting of

finite Borel measures, M+.
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3.4 Transfer from a Larger to a Smaller Equilibrium

In this section, we work with the velocity v = α(W ) that satisfies the conditions

after equation (3.1) in section 3.1. Consider the case when the initial density of the

factory is ρ1, and the demand out-flux yd is yd(t) = y2 = ρ2
1+ρ2

, with ρ1 > ρ2 ≥ 0.

Then for t ≥ 0, the accumulated demand out-flux Yd is

Yd(t) = y2t,

the accumulated actual out-flux Y is

Y (t) =

∫ t

0

ρ(s, 1)α(W (s)) ds,

and the backlog β is

β(t) = Yd(t)− Y (t).

We aim to minimize the control objective functional J : =
∫∞

0
|β(t)| dt by choosing

an optimal control u∗.

Note that the special demand out-flux forces us to choose the control in-flux as

u(t) = ρ2α(W (t)) for some time t > t0 ≥ 0. Denote by t1 the time at which all of the

initial mass has exited the system and the characteristic curve by ξ : [0,∞] 7→ [0,∞]

to track the position of the items that initially were located at x = 0 at t = 0. Thus

the following relations hold:∫ t1

0

α(W (t)) dt = 1, ξ(t1) = 1.

Denote by T ∗ the time at which the system reaches its new equilibrium and the

backlog reaches zero, that is,∫ T ∗

t0

α(W (t)) dt = 1, β(T ∗) = 0.
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3.4.1 A Conjecture of the Optimal Control

If the initial density of the factory ρ1 is larger than the density in the new equilib-

rium ρ2, then we can not use a ”negative” Dirac delta. A natural candidate for the

optimal solution is to apply zero in-flux for some time. In this section, we consider

the case when ρ1 − ρ2 is not too large and thus the operator in the factory needs to

take action at some time before all the initial mass exits from the factory, i.e., t0 < t1.

We illustrate the following conjecture numerically.

Conjecture: The following control u∗ leads to the minimal cost J∗:

u∗(t) =


0 if 0 ≤ t ≤ t0,

ρ2α(W (t)) if t0 < t ≤ T ∗.

(3.39)

We consider the case when ρ1 = 10 and ρ2 = 8.7. Correspondingly, t0 = 5.5983,

t1 = 6.1750 and T ∗ = 11.1494.

Under the control of u∗, the total load W (figure (3.4)) is continuous on [0, T ∗],

decreases with an increasing rate over the time interval [0, t1] and increases with a

decreasing rate over the time interval [t1, T
∗]. Furthermore, the deceasing rate of the

total load decreases at time t0 since the operator started to put u(t) = ρ2α(W (t)) at

time t0 into the system.
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Figure 3.4: The Graph of the Total Load W Under the Control u∗

The characteristic curve ξ (figure (3.5)) is continuous and increasing over the time

interval [0, T ∗], and reaches 1 at time t1.
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Figure 3.5: The Graph of the Characteristic Curve ξ Under the Control u∗
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Over the time interval [0, T ∗], the system produces more than the demand until

time T ∗. That is, for every t ∈ [0, T ∗), Y (t) > Yd(t) and Y (T ∗) = Yd(T
∗) (figure (3.6)).

Thus the backlog β (figure((3.7))) is negative for every t ∈ [0, T ∗) and β(T ∗) = 0.
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Furthermore, the value of the cost functional J at the control u∗ is

J(u∗) = 17.2968.

3.4.2 A Control with Positive Impulsive Mass

Now to illustrate that the conjectured control, taking zero in-flux over the time

interval [0, t0], is optimal in the sense of leading to minimal cost, we consider the con-

trol u with a positive impulsive mass M at some time t0 with t0 ∈ [0, t0]. Specifically,

the needle variation like control u is defined as

u(t) = Mδt0(t) + ρ2α(W (t))χ(t0,T ∗], (3.40)

where χ is the indicator function. Additionally, denote by t1 the time when the

impulsive mass M exits from the system. We consider the case when ρ1 = 10,

ρ2 = 8.7, M = 0.5, t0 = 1.5. Correspondingly, t0 = 6.1099, t1 = 6.5161, t1 = 7.0098,

and T ∗ = 11.7069.
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Under the control of u, the total load W (figure (3.4.2)) is continuous over the

time interval [0, T ∗] except at time t0 and t1 when the impulsive mass M entered into

the system or exited from the system.
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Figure 3.8: The Graph of the Total Load W Under the Control u

The characteristic curve ξ (figure (3.9)) is continuous and increasing on [0, T ∗] and

reaches 1 at time t1.
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Figure 3.9: The Graph of the Characteristic Curve ξ Under the Control u

Over the time interval [0, T ∗], the accumulated actual out-flux Y is greater than

the accumulated demand out-flux Yd except at t = T ∗ when Y (T ∗) = Yd(T
∗). But

the accumulated actual out-flux Y has a jump at time t1 when the impulsive mass

exited from the system, thus, so does the backlog β.
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The value of the cost functional J at the control u is

J(u) = 17.7575.

Furthermore, we sample more values for the densities, ρ1, ρ2, at the equilibria and

compare the values of the cost function J with the above controls u∗ and u.

Table 3.1: The Comparison of the Values J(u∗) and J(u)
PPPPPPPPPPPPPPP
Densities

Costs
J(u∗) J(u)

ρ1 = 10, ρ2 = 9.3 11.5600 11.7195

ρ1 = 10, ρ2 = 9.0 16.3400 17.7156

ρ1 = 10, ρ2 = 8.7 17.2968 17.7575

ρ1 = 10, ρ2 = 8.4 14.3360 16.0046

ρ1 = 10, ρ2 = 8.0 12.9728 13.2942

Hence the numerical results suggest that the control u∗ may minimize the cost

functional J .

3.5 Discussion and Conclusion

For the case of transferring from a smaller to a larger equilibrium with nonzero

backlog, we explicitly calculated the constant backlog β under the control u (figure

(3.2)).

we analytically proved that no optimal control exists in a family of L1-controls for

the case of transferring from a smaller to a larger equilibrium with zero backlog. The

minimizing sequences converges in distribution to an impulsive control (not in L1).

Thus it is natural to recast the problem in the setting of controls and states being

Borel measures.
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For the case of transferring from a larger to a smaller equilibrium with zero back-

log, since we could not symmetrically take a negative impulsive control, a reasonable

prediction would be that a control taking zero in-flux for some time minimizes the

cost functional J . Numerically, we illustrated this conjecture by comparing the costs

under the conjectured control u∗ (3.39) and a control with positive impulsive mass u

(3.40).
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Chapter 4

WEAK MEASURE-VALUED SOLUTION

4.1 Introduction: Measure-setting

The conjectured nonexistence of optimal solutions in the L1-setting and sugges-

tive optimal impulsive controls might lead one to consider multiple, or even countably

many of such point masses. A model for this, in Lagrangian form, might be a com-

bination of hyperbolic conservation laws in L1-setting as in Coron et al. (2010) and

a sequence of ODEs coupled by total mass and velocity.

Throughout we will assume that the velocity v = α(·) is positive (hence bounded

away from zero on compact sets), decreasing, attains its maximum at α(0) = 1, and

is Lipschitz continuous with Lipschitz constant L: For all W1,W2 > 0, ‖α(W1) −

α(W2)‖ ≤ L‖W1 − W2‖. Whereas the first article Armbruster et al. (2006) used

α(W ) = max{0, 1 − W
W0
}, a much more common choice in subsequent work was

α(W ) = 1
1+W

. The results presented here only use the above stated properties of α.

Staying close to the features of the original manufacturing system modeled by (1.1),

provides both advantages that suggest carefully tailored approaches, but also leads

to technical complications that prevent application of standard tools. In particular,

we chose the underlying spaces for our measures to be the noncompact intervals [0, 1)

and (0, T ]. This is essential for obtaining the desired contractions needed for the fixed

point argument and for avoiding double counting. Another simple and strong argu-

ment for this choice is the common choice of the CONWIP dispatch policy (constant

work in progress) for factories that are performing well: Use the most simple output

feedback law imaginable, u = y, in-flux equals out-flux. With impulsive out-fluxes, if
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using [0, 1] instead, this would lead to awkward total loads which are constant except

for possibly countably many jump discontinuities.

Suppose the initial condition ρ0 consists of a function ρ0L1 ∈ L1([0, 1)) and a

sequence of point masses mi located at xi ∈ [0, 1), i = 1, 2, · · · with
∞∑
i=1

mi < ∞.

Similarly, the in-flux consists of a function uL1 ∈ L1((0, T ]) and a sequence of point

masses Mj entering the system at time tj ∈ (0, T ], j = 1, 2, · · · with
∞∑
j=1

Mj < ∞.

Furthermore, let ξi : [0, T ] 7→ [0,+∞) and ηj : [0, T ] 7→ [0,+∞) trace the location of

the masses mi and Mj, respectively. This suggests the following coupled model

0 = ∂tρL1(t, x) + ∂x(α(W (t))ρL1(t, x)) for (t, x) ∈ [0, T ]× [0, 1], (4.1a)

ξ′i(t) = α(W (t)) for almost all t ∈ [0, T ] and i = 1, 2, · · · , (4.1b)

η′j(t) = α(W (t)) for almost all t ∈ [tj, T ] and j = 1, 2, · · · , (4.1c)

W (t) =

∫ 1

0

ρL1(t, x) dx+
∑

{i : ξi(t)∈[0,1)}

mi +
∑

{j : ηj(t)∈[0,1)}

Mj for t ∈ [0, T ], (4.1d)

ρ0L1(x) = ρL1(0, x) for x ∈ [0, 1), (4.1e)

ξi(0) = xi for i = 1, 2, · · · , (4.1f)

ηj(tj) = 0 for j = 1, 2, · · · , and (4.1g)

uL1(t) = ρL1(t, 0)α(W (t)) for t ∈ [0, T ]. (4.1h)

Note that due to for every fixed t ∈ [0, T ] the velocity α(W (t)) being constant with

respect to the location x ∈ [0, 1], there really is only one single ordinary differential

equation. All ξi and ηj are translates of each other.

This model, combining densities with point masses, convincingly reflects natural

features of the original manufacturing system. Mathematically, it naturally suggests

to combine the densities and point masses and informally write ρ0 = ρ0,L1 +
∑
i

miδxi

and u = uL1 +
∑
j

Mjδtj (with δs denoting the Dirac distribution centered at s).

More satisfactorily, we combine the L1-densities and point masses into a measure and
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consider a single hyperbolic conservation law like (1.1) for data and states that are

Borel measures. From now on, we will assume that both the initial data ρ0 and the

control in-flux (we will write µ instead of u) are finite positive regular Borel measures

in M+([0, 1)) and M+((0, T ]), respectively.

Furthermore, we will assume throughout that all initial data and in-fluxes have

zero singular continuous part, i.e., they are sums of only an absolutely continuous

measure (w.r.t Lebesgue measure) and a pure point measure (a countable sum of

positive multiples of Dirac deltas). This assumption is motivated by the original

industrial optimal control problem where singular continuous measures seem to not

make much sense, and the desire to avoid unnecessary technical complications in the

sequel. This is well in line with much of recent literature, e.g. Piccoli and Rossi (2013,

2014).

For any Borel measurable map γ : S ⊆ R 7→ U ⊆ R and any finite Borel measure

ν ∈M+(S), the push forward of ν by γ is defined as: for every Borel set E ⊆ U

γ#ν(E) : = ν(γ−1(E)).

Thus the push forward of the initial datum ρ0 ∈ M+([0, 1)) by a Borel measurable

map

X(t; 0, ·) : [0, 1) 7→ [0, 1) (t ∈ [0, T ]) is defined for every Borel set E ⊆ X(t; 0, ·)([0, 1))

by

(X(t; 0, ·)#ρ0) (E) = ρ0

(
X(t; 0, ·)−1(E)

)
=

∫
[0,1)

χE (X(t; 0, x0)) dρ0(x0). (4.2)

Similarly, the pushforward of the control in-flux µ ∈ M+((0, T ]) by a Borel measur-

able map

X(t; ·, 0) : [0, t] 7→ [0, 1) (t ∈ [0, T ]) is for every Borel set E ⊆ [0, 1),

(X(t; ·, 0)#µ) (E) = µ
(
X(t; ·, 0)−1(E)

)
=

∫
[0,t)

χE (X(t; s, 0)) dµ(s). (4.3)
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As a formal reference, we restate the problem (1.1) in the context of Borel mea-

sures. For every fixed ρ0 ∈M+([0, 1)) and µ ∈M+((0, T ]), a solution of the problem

will be phrased in term of curves ρ : [0, T ] 7→ ρ0 ∈ M+([0, 1)). Their regularity will

be addressed in subsection 4.3.3. We may interchangeably use both notation ρt and

ρ(t) depending on which is easier to read.

For every fixed ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]), consider the problem of

finding a curve ρ : [0, T ] 7→ M+([0, 1)) and a map ξ̃ : {(t, r) : 0 ≤ r ≤ t ≤ T}×[0, 1) 7→

[0,∞) that formally satisfy:

0 = ∂tρ(t) + ∂x(α(W (t))ρ(t)) for a.e. t ∈ [0, T ], (4.4a)

W (t) = ρ(t)([0, 1)) for t ∈ [0, T ], (4.4b)

ρ0 = ρ(0), (4.4c)

ρ(t)(E) = µ({r ∈ (0, T ] : ξ̃(t; r, 0) ∈ E}) + ρ0({x ∈ [0, 1) : ξ̃(t; 0, x) ∈ E}),

for t ∈ [0, T ], and E ⊂ [0, 1) Borel set, (4.4d)

d

dt
ξ̃(t; r, x) = α(W (t)) for almost every 0 ≤ r ≤ t ≤ T, for x ∈ [0, 1) and (4.4e)

ξ̃(r; r, x) = x for r ∈ [0, T ] for x ∈ [0, 1). (4.4f)

Equation (4.4d) relates the in-flux µ ∈ M+((0, T ]) to the state ρt ∈ M+([0, 1)) and

best captures the sense of conservation of mass. However, this problem statement

comes at the cost of presupposing part of the form of the Lagrangian solution defined

in the next section.

Informally, to connect system (4.4) for Borel measures to system (1.1) for inte-

grable functions, the boundary condition (4.4d) might be interpreted (in terms of the

Lebesgue decomposition µ = µac + µpp and ρt = ρt,ac + ρt,pp) as

µpp({t}) = ρt,pp({0}) (4.5)

ũL1(t) = ρ̃t,ac(0)α(W (t)). (4.6)
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Here ρ̃t,ac = dρt,ac
dλ

and ũacL1 = dµ
dλ

are the Radon-Nikodym derivatives of ρt,ac and µac

with respect to Lebesgue measure λ. For Lebesgue measurable sets, and thus also

Borel sets E ⊂ (0, T ] and F ⊂ [0, 1), these satisfy

µac(E) =

∫
E

ũL1dλ and ρt,ac(F ) =

∫
F

ρ̃t,acdλ. (4.7)

Of course, as L1 functions, the Radon-Nikodym derivatives only have values at

Lebesgue points. It could well be that, e.g., ρ̃t,ac(0) is not defined for any t at all,

i.e., if for no t ∈ [0, T ] is x = 0 a Lebesgue point of ρ̃t,ac. Thus we consider this

only an informal discussion, to motivate the precise statement of notions of solutions

in the forthcoming sections. Note that from this point of view, the pure point part

simply copies from the time to the space direction, whereas the velocity multiplies the

L1-functions associated to the absolutely continuous parts - which is commensurate

with ρt being the push foreword of µ by the semi-flow as defined in the next section.

4.2 Lagrangian Solutions

In this section, we prove existence of unique solutions of a related scalar ordinary

differential equation first. Then we define a Lagrangian solution to system (4.4) and

establish its existence and uniqueness.

4.2.1 Existence of Unique Short Time Solutions

In this subsection, we prove local existence of unique solutions of a related scalar

ordinary differential equation by using contraction mapping argument. For any fixed

ρ0 ∈M+([0, 1)) and µ ∈M+((0, T ]) consider the Cauchy problem

ξ̇(t) = α(µ((0, t]) + ρ0([0, 1− ξ(t)))) for 0 ≤ t ≤ 1, together with ξ(0) = 0. (4.8)

While still involving the in-flux µ, the key difference is that this is a scalar ordinary

differential equation with a single fixed measure ρ0 ∈ M+([0, 1)) as a parameter,
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rather than a hyperbolic conservation law and for which we are trying to find a

solution, that is a curve t 7→ ρt ∈ M+([0, 1)). (The measure µ drops out in the

contraction mapping argument for small times.) The price to pay for this is that

instead of the vector field v that is constant in x, the fixed initial measure ρ0 now

enters this ordinary scalar differential equation as a parameter, which causes the

velocity v(t, x) = α(µ((0, t]) +ρ([0, 1−x))) to generally be discontinuous in the space

variable.

A key insight is that the usual contraction mapping argument can be modified

to accommodate even an infinite number of discontinuities of the time-varying vector

field v(t, x). However, one will need to restart the argument at times when v(t, x) has

large discontinuities, caused by large point masses exiting the system.

The Hypotheses for the Contraction Mappings

Let T > 0, and α : [0,∞) 7→ (0, 1] be a strictly decreasing Lipschitz continuous

function with α(0) = 1 and Lipschitz constant L > 0. Let ρ0 ∈ M+([0, 1)) and

µ ∈ M+((0, T ]) be arbitrary but fixed measures with zero singular continuous part.

Fix

vmin = α(1 + ρ0([0, 1]) + µ([0, T ])) > 0. (4.9)

Denote the Lebesgue decomposition of the initial condition ρ0 and the in-flux µ by

ρ0 = ρ0,ac + ρ0,pp and µ = µac + µpp. (4.10)

Thus there exist at most countably many mi, Mj > 0, xi ∈ [0, 1) and tj ∈ (0, T ] such

that

ρ0,pp =
∑
i

miδxi , and µpp =
∑
j

Mjδtj . (4.11)
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Since the measures ρ0 and µ are bounded, there exist N1, N2 ∈ N such that

∑
i>N1

mi <
vmin

4L
and

∑
j>N2

Mj <
vmin

4L
. (4.12)

Without loss of generality, after possible renumbering, we may assume that xi+1 < xi

for all i ≤ N1 and tj < tj+1 for all j ≤ N2, the natural orderings in which the corre-

sponding point masses will exit the system (if they do). Henceforth we will informally

call the masses mi, i ≤ N1 and Mj, j ≤ N2 large masses.

Choose 0 < t00 ≤ 1 such that for every interval I ⊆ [0, 1) of length less than t00,

and every interval J ⊆ [0, T ] of length less than t00/vmin

ρ0,ac(I) <
vmin

4L
and µac(J) <

vmin

4L
. (4.13)

Let Ω be the set of functions on [0, t00] that are Lipschitz continuous with Lipschitz

constant bounded above by 1, and whose inverses are Lipschitz continuous with Lip-

schitz constant no larger than v−1
min, that is,

Ω = {η : [0, t00]→ [0, 1] : η(0) = 0, and vmin ≤
η(s)− η(t)

s− t
≤ 1 for all 0 ≤ s < t ≤ t00}.

(4.14)

Since every η ∈ Ω is strictly increasing, each is absolutely continuous, and differen-

tiable almost everywhere.

Lemma 4.2.1. The set Ω defined as in (4.14) is closed under maxima and minima.

That is, for every two functions η1, η2 in Ω, set η̂(t) = max{η1(t), η2(t)} and η̌(t) =

min{η1(t), η2(t)}. Then both η̂ and η̌ are in Ω.

Proof. For two arbitrary but fixed two functions η1, η2 in Ω, set η̂(t) = max{η1(t), η2(t)}

and η̌(t) = min{η1(t), η2(t)}. We will show first that η̂ ∈ Ω.
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It is obvious that η̂ : [0, τ0] 7→ [0, 1] and η̂(0) = 0. For arbitrary but fixed s, t ∈

[0, τ0] such that 0 ≤ s < t ≤ τ0, if η̂(s) = ηk(s) and η̂(t) = ηk(t) for k = 1 or k = 2,

then clearly η̂ ∈ Ω.

Without loss of generality, we assume that η̂(s) = η1(s) and η̂(t) = η2(t). Then

η̂(s)− η̂(t)

s− t
=
η1(s)− η2(t)

s− t
≤ η1(s)− η1(t)

s− t
≤ 1.

Furthermore,

η̂(s)− η̂(t)

s− t
=
η1(s)− η2(t)

s− t
≥ η2(s)− η2(t)

s− t
≥ vmin.

Thus η̂ ∈ Ω.

Similarly, to show η̌ ∈ Ω, we just need to consider the case when η̌(s) = η1(s) and

η̌(t) = η2(t). Note that

η̌(s)− η̌(t)

s− t
=
η1(s)− η2(t)

s− t
≤ η2(s)− η2(t)

s− t
≤ 1

and

η̌(s)− η̌(t)

s− t
=
η1(s)− η2(t)

s− t
≥ η1(s)− η1(t)

s− t
≥ vmin.

Hence η̌ ∈ Ω.

Lemma 4.2.2. For every fixed ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]), the metric

space (Ω, ‖ ·‖∞) with Ω defined as in equation (4.14) and the supremum norm defined

by

‖η‖∞ := sup
t∈[0,τ0]

|η(t)| (4.15)

is complete.

Proof. Let (ηn)∞n=1 be a Cauchy sequence in (Ω, ‖ · ‖∞). We claim that ηn → η for

some η ∈ Ω. Since for every fixed t ∈ [0, τ0], (ηn(t))∞n=1 is a Cauchy sequence in [0, 1]
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and since [0, 1] is complete, for every t ∈ [0, τ0] the pointwise limit limn→∞ ηn(t) is in

[0, 1]. Denote the pointwise limit by η : [0, τ0]→ [0, 1], i.e. for all t ∈ [0, T ],

η(t) = lim
n→∞

ηn(t). (4.16)

We first show that (ηn)∞n=1 converges to η in norm, i.e., ‖ηn − η‖∞ → 0 as n → ∞.

Let ε > 0 and N be such that for all n,m ≥ N , we have ‖ηn − ηm‖∞ < ε. Then for

all n ≥ N , and for each t ∈ [0, τ0],

|η(t)− ηn(t)| = lim
m→∞

|ηm(t)− ηn(t)| ≤ ε, (4.17)

hence ‖η − ηn‖∞ ≤ ε.

To finish the proof, we need to show that η ∈ Ω. Note that η(0) = lim
n→∞

ηn(0) =

lim
n→∞

0 = 0. For all fixed 0 ≤ t < s ≤ τ0 and for every ε > 0, there exists N > 0, such

that ‖ηN − η‖∞ < (s−t)ε
2

. Thus

η(s)− η(t)

s− t
=
η(s)− ηN(s)

s− t
+
ηN(s)− ηN(t)

s− t
+
ηN(t)− η(t)

s− t
< 1 + ε. (4.18)

Similarly, for every ε > 0, we have η(s)−η(t)
s−t > vmin − ε.

Lemma 4.2.3. For fixed ρ0 ∈M+([0, 1)) and µ ∈M+((0, T ]) and vmin, 0 < τ0 ≤ 1,

and Ω as above, define the map F : Ω→ C([0, τ0]) by

F (η)(t) =

∫ t

0

α (ρ0([0, 1− η(s))) + µ((0, s])) ds. (4.19)

Then for every η ∈ Ω, F (η) ∈ Ω.

Proof. Let ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]) be arbitrary but fixed, and vmin,

0 < τ0 ≤ 1, Ω, and F as above as above. Clearly, for every η ∈ Ω, F (η)(0) = 0. Note

for every s̄ ∈ [0, T ],

vmin ≤ α(ρ0([0, 1]) + µ([0, T ])) ≤ α (ρ0([0, 1− η(s̄))) + µ((0, s̄])) ≤ 1, (4.20)
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and thus, for all s 6= t ∈ [0, τ0]

vmin ≤
F (η)(s)− F (η)(t)

s− t
≤ 1.

Now we show that for any fixed measures ρ0 (or ρi) and µ (or µi) that contain

zero singular continuous parts, there exists a time 0 < τi ≤ t00 < 1 and a unique

Lipschitz continuous function ξi : [0, τi] 7→ [0, 1] such that for every t ∈ [0, τi],

ξi(t) =

∫ t

0

α(µi((0, s]) + ρi([0, 1− ξi(t)))) ds. (4.21)

The proof and this equation only involve a fixed measure ρ0 (or ρi), no mention

of a curve of measures t 7→ ρt. In general, ξi is constructed as the restriction of

a curve ξ̃i ∈ Ω to a shorter time interval [0, τi] ⊆ [0, t00], and thus it inherits the

bi-Lipschitzness properties from ξ̃i ∈ Ω.

Theorem 4.2.4. For every µ( or µi) ∈ M+((0, T ]) and ρ0( or ρi) ∈ M+([0, 1))

that contain zero singular continuous parts, there exists a unique characteristic curve

ξi : [0, τi] ⊆ [0, t00]→ [0, 1] that satisfies (4.21).

The general strategy of the proof is a classic application of the contraction mapping

theorem, similar to Coron et al. (2010). However, a naive argument breaks down over

time intervals in which large point masses exit from the system. Thus we carefully

demonstrate that the usual map is a contraction over intervals during which no large

point masses exit from the system, and then restart the argument after the mass has

left the system.

A small problem is that it is not a priori known when the large masses leave

exit from the system. This can be overcome by a nice little trick: Replace the initial

datum ρ0 by a modified ρ̃0 for which contractions can be established over a larger time
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interval, and whose characteristic curves agree with those for the original datum ρ0

until the exactly computable time when the first large mass would have exited. Since

there is only a finite number of large masses, one can guarantee that there is a positive

lower bound for the lengths of the time intervals on which no large mass exits from

the system. Such a lower bound can be easily calculated in terms of lower and upper

bounds of the velocity α, and min{xi−1 − xi : i ≤ N1} and min{tj − tj−1 : i ≤ N2}

where we conveniently added x0 = 1 and t0 = 0 to the sets of xi and tj defined below

in (4.12). This lower bound is essential to guarantee a solution over the whole interval

[0, T ] by using only finitely many restarts.

Proof. Let ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]) (contain zero singular continuous

part) be arbitrary but fixed, and vmin, 0 < τ0 ≤ 1, Ω, and F as in (4.9), (4.13), (4.14),

and (4.19).

A key innovation is to introduce a modification ρ̃ of the initial condition ρ0 such

that no large masses will leave the system in the time interval [0, 1). Define the new

initial condition which agrees mostly with ρ0, except that all N1 large masses have

been moved to x = 0

ρ̃0,pp =

(
N1∑
i=1

mi

)
δ0 +

∑
i>N1

miδxi and ρ̃0 = ρ0,ac + ρ̃0,pp. (4.22)

Since the velocity v = α(W (t)) only depends on the total load at time t, the charac-

teristic curves ξ and ξ̃ corresponding to initial conditions ρ0 and ρ̃0 coincide over a

small time interval until [0, τ̃1] defined by ξ̃(τ̃1) = 1− x1 at which time the mass m1

would leave the original system at x = 1.

Next, for the initial condition ρ̃0 (and in-flux µ) define vmin, τ0, Ω, and F as

in (4.9), (4.13), (4.14), and (4.19). We will demonstrate existence and uniqueness of

a corresponding characteristic curve ξ̃ over the time interval [0, τ0]. For arbitrary but
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fixed η1, η2 ∈ Ω, we will show that

‖F (η1)− F (η2)‖∞ ≤
1

2
‖η1 − η2‖∞. (4.23)

Since the velocity α is a Lipschitz continuous function with Lipschitz constant L we

have for every fixed t ∈ [0, τ0]

|F (η1)(t)− F (η2)(t)| =

=

∣∣∣∣∫ t

0

α (ρ̃0([0, 1− η1(s))) + µ((0, s])) ds−
∫ t

0

α (ρ̃0([0, 1− η2(s))) + µ((0, s])) ds

∣∣∣∣
≤

∫ t

0

|α (ρ̃0([0, 1− η1(s))) + µ((0, s]))− α (ρ̃0([0, 1− η2(s))) + µ((0, s]))| ds (4.24)

≤ L

∫ t

0

|(ρ̃0([0, 1− η1(s))) + µ((0, s]))− (ρ̃0([0, 1− η2(s))) + µ((0, s]))| ds

= L

∫ t

0

|ρ̃0([0, 1− η1(s)))− ρ̃0([0, 1− η2(s)))| ds.

Choosing η̂(t) = max{η1(t), η2(t)} and η̌(t) = min{η1(t), η2(t)}, rewrite the last ex-

pression as a double integral

L

∫ t

0

|ρ̃0([0, 1− η1(s)))− ρ̃0([0, 1− η2(s)))| ds

= L

∫ t

0

∣∣∣∣∫
[1−η̂(s),1−η̌(s))

1 dρ̃0(x0)

∣∣∣∣ ds
= L

∫ t

0

∫
[1−η̂(s),1−η̌(s))

1 dρ̃0(x0)ds. (4.25)

Since the regions are bounded by bi-Lipschitz curves, we may change the order of

integration as illustrated in the figure below (compare FIGURE 1 in Coron et al.
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η̂−1(η̌(t))

1− η̂(t) 1− η̌(t)

s

x

s = t

x = 1− η2(t)

x = 1− η1(t)

Figure 4.1: Change the Order of Integration

(2010))

L

∫ t

0

∫
[1−η̂(s),1−η̌(s))

1 dρ̃0(x0)ds=

= L

(∫
[1−η̂(t),1−η̌(t)]

∫
[η̂−1(1−x),t]

1 dt dρ̃0(x0)

+

∫
[1−η̌(t),1)

∫
[η̌−1(1−x),η̂−1(1−x))

1 dt dρ̃0(x0)

)
≤ L

(∫
[1−η̂(t),1−η̌(t)]

(t−η̂−1(1−x)) dρ̃0(x0) (4.26)

+

∫
[1−η̌(t),1)

(
η̌−1(1−x)−η̂−1(1−x)

)
dρ̃0(x0)

)
≤ L

(∫
[1−η̂(t),1−η̌(t)]

(η̌−1(η̌(t)−η̂−1(η̌(t))) dρ̃0(x0)

+

∫
[1−η̌(t),1)

(
η̌−1(1−x)−η̂−1(1− x)

)
dρ̃0(x0)

)
≤ L (ρ̃0([1− η̂(t), 1))) sup

0≤y≤η̌(t)

(η̌−1(y)− η̂−1(y)).

To find an upper bound for the last term, use the Lipschitzness of the curves and their

inverses, and simple geometric arguments relating the vertical offsets of the curves
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to their horizontal offsets. By the definition of η̂, η̌, we have, for every y ∈ [0, η̌(t)],

(compare Equation (23) in Coron et al. (2010) )

0 ≤ η̌−1(y)− η̂−1(y)

=

(
η̌−1(y)− η̂−1(y) + η̌−1(y)

2

)
+

(
η̂−1(y) + η̌−1(y)

2
− η̂−1(y)

)
≤ 1

vmin

(
y − η̌

(
η̂−1(y) + η̌−1(y)

2

))
+

1

vmin

(
η̂

(
η̂−1(y) + η̌−1(y)

2

)
− y
)

(4.27)

=
1

vmin

(
η̂

(
η̂−1(y) + η̌−1(y)

2

)
− η̌

(
η̂−1(y) + η̌−1(y)

2

))
≤ 1

vmin

‖η1 − η2‖∞.

Hence,

|F (η1)(t)− F (η2)(t)| ≤ L

vmin

(ρ̃0([1− η̂(t), 1))) ‖η1 − η2‖∞. (4.28)

By the choice of τ0 (4.13), for the absolutely continuous part ρ̃0,ac = ρ0,ac, and for

every t ∈ [0, τ0),

ρ̃0,ac([1− η̂(t), 1)) ≤ ρ̃0,ac([1− η̂(τ0), 1)) ≤ vmin

4L
. (4.29)

Note that due to their relocation and τ0 < 1, none of the large point masses in ρ̃0,pp

have exited in the interval [0, τ0]. Formally, since for every t ∈ [0, τ0), 0 < 1 − η̂(t),

we conclude that ρ̃0,pp([1− η̂(t), 1)) < vmin

4L
. Combining these,

ρ̃0([1− η̂(t), 1)) = ρ̃0,ac([1− η̂(t), 1))+ρ̃0,pp([1− η̂(t), 1)) <
vmin

2L
, for t ∈ [0, τ0). (4.30)

Hence L
vmin

ρ̃0([1− η̂(t), 1)) < 1
2

showing that F is a contraction on Ω. By the contrac-

tion mapping theorem, with the initial condition ρ̃0, there exists a unique fixed point

ξ̃ in Ω such that ξ̃ = F (ξ̃) over the time interval [0, τ0].

If ξ̃(τ0) < 1− x1 (the distance of the first large point mass of the initial condition

from the exit point x = 1), then define ξ = ξ̃ on [0, τ0] and let τ1 = τ0. On the other

hand, if ξ̃(τ0) ≥ 1−x1, there exists a unique time τ1 ∈ (0, τ0] such that ξ̃(τ1) = 1−x1.

In this case let ξ be the restriction of ξ̃ to the interval [0, τ1].
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4.2.2 Existence of Unique Solutions for Large Times

We start this subsection by the following lemma.

Lemma 4.2.5. Given a map

X : {(t, r) : 0 ≤ r ≤ t ≤ T} × [0,∞) 7→ [0,∞); (t, r, x0) 7→ X(t; r, x0)

that is monotone and bi-Lipschitz in terms of the first two variables and for fixed

(t, r) ∈ [0, T ] × [0, t] and every x0 ∈ [0,∞), X(t; r, x0) = X(t; r, 0) + x0 and given

arbitrary but fixed Borel measures ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]) with zero

singular continuous part, that is, ρ0,sc = 0 and µsc = 0, the measure

X(t; 0, ·)#ρ0 +X(t; ·, 0)#µ (4.31)

also contains zero singular continuous part.

Proof. For arbitrary but fixed t ∈ [0, T ] and every Borel set E ⊂ [0, 1), with λ(E) = 0,

Let E1 = {X(t; 0, x) : x ∈ supp ρ0,pp} and E2 = {X(t; τ, 0) : τ ∈ suppµpp}. Set Ẽ =

E \ (E1 ∪ E2). It is clear that λ(Ẽ) = 0. Furthermore,

(X(t; 0, ·)#ρ0 +X(t; ·, 0)#µ) (Ẽ) = (X(t; 0, ·)#ρ0) (Ẽ) + (X(t; ·, 0)#µ) (Ẽ)

=ρ0

({
x ∈ [0, 1) : X(t; 0, x) ∈ Ẽ

})
+ µ

({
τ ∈ (0, t] : X(t; τ, 0) ∈ Ẽ)

})
.

Let F1 =
{
x ∈ [0, 1) : X(t; 0, x) ∈ Ẽ

}
=
{
x ∈ [0, 1) : x+ ξ(t) ∈ Ẽ

}
, then F1 =

Ẽ − ξ(t). Since Lebesgue measure is translation invariant, λ(F1) = 0. By the con-

struction of Ẽ, ρ0(F1) = ρ0,ac(F1) + ρ0,pp(F1) = 0 + 0 = 0.

Let F2 =
{
τ ∈ (0, t] : X(t; τ, 0) ∈ Ẽ)

}
, then F2 is the preimage of the Lebesgue

measure zero set Ẽ under the map X(t; ·, 0) : (0, t] 7→ [0,+∞). Note that the map

X(t; ·, 0) : (0, t] 7→ [0,+∞) is monotone and bi-Lipschitz, thus both itself and its
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inverse are absolutely continuous. Hence, λ(F2) = 0. Again by the construction of

Ẽ, µ(F2) = µac(F2) + µpp(F2) = 0 + 0 = 0.

Therefore, (X(t; 0, ·)#ρ0 +X(t; ·, 0)#µ) (Ẽ) = 0 which implies that the measure

X(t; 0, ·)#ρ0 +X(t; ·, 0)#µ contains zero singular continuous part.

To prove the existence of unique solutions of ordinary differential equations for

large time intervals, one customarily iterates the fixed-point argument, with suitably

modified initial data. We will do this here, too. But before we can do this, after each

iteration construct a new measure that serves as a parameter in the next iteration.

The key for this argument is that each iteration only involves a single fixed measure

ρi. After a unique solution curve ξi : [0, τi] 7→ [0, 1] of the ordinary differential equation

has been obtained, this is used to extend the curve t 7→ ρt from the interval [0, Ti−1]

to a larger interval [0, Ti].

The curve ξ is constructed on each interval [Ti−1, Ti] from the unique solutions

of ξ̇i = α(µi((0, s]) + ρi([0, 1 − ξi(t))). Afterwards, ρt is constructed from ξ for that

same time interval. Thus one still needs to verify that indeed ξi also satisfies ξ̇i =

α(ρt([0, 1)) on each new interval, or that the curve ξ satisfies the related equation

ξ̇(t) = α(µ((max{0, ξ−1(ξ(t)− 1)}, t]) + ρ0([0, 1− ξ(t)))).

The total number N of iterations needed to get a solution ρ for all of [0, T ] is a

priori bounded above by ceil(T/t00) +N1 +N2 (only exiting masses stemming from µ

matter). The maximal number N of iteration may be smaller than this bound, e.g.,

if at the end ρT still contains large point masses.

In the sequel we shall construct

• finite sequences (τi)
N
i=0 and (Ti)

N+1
i=0 of nonnegative numbers,
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• finite sequences of Lipschitz continuous functions ξi : [0, τi] 7→ [0, 1), and ξ : [0, Ti] 7→

[0,∞),

• a finite sequence of maps X : {(t, r, x) : 0 ≤ r ≤ t ≤ Ti, x ∈ [0,∞)} 7→ [0,∞),

• finite sequences of measures ρi ∈M+([0, 1)) and µi ∈M+((0, T − Ti−1]), and

• a finite sequence of curves ρ : [0, Ti] 7→ M+([0, 1)).

Strictly speaking, one should also index the curves ξ and ρ, and the maps X by i

as they are defined on different domains. But it will be clear that they just denote

the usual extensions of each other to larger domains. As is customary, we will omit

such extra indexing. The members of these sequences and the curves will be shown

to have the following properties for every 0 ≤ i ≤ N (or 1 ≤ i ≤ N for µi, ρi). Some

of these properties actually will be used to construct these in the sequel.

(P1). If i ≥ 1, then 0 < τi < 1.

(P2). Ti =
∑

j≤i τj and TN+1 = T .

(P3). For every t ∈ [0, τi],

ξi(t) =

∫ t

0

α(µi((0, s]) + ρi([0, 1− ξi(s)))) ds. (4.32)

(P4). For every s ∈ [0, τi], ξ(Ti−1 + s) = ξ(Ti−1) + ξi(s).

(P5). For all 0 ≤ r ≤ s ≤ t ≤ Ti and all x ∈ [0,∞), X(t; s,X(s; r, x)) = X(t; r, x).

(P6). The measure µi is the push-forward (by a translation) of a restriction of the

original in-flux, defined for any F ∈M+((0, T−Ti]) by µi(F ) = µ({t : t−Ti−1 ∈

F})
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(P7). For every 0 ≤ s ≤ τi, ρTi−1+s is the sum of the push-forward (by a translation)

of a restriction of the measure ρi, and by the push-forward by the map X of a

restriction of the measure µi, defined for every Borel set E ⊆ [0, 1)) by

ρTi−1+s(E) = µi({r ∈ (0, s] : X(Ti−1 + s;Ti−1 + r, 0) ∈ E}) (4.33)

+ρi({x ∈ [0, 1) : X(Ti−1 + s;Ti−1, x) ∈ E}). (4.34)

(P8). For every 0 ≤ t ≤ Ti and every Borel set E ⊆ [0, 1))

ρt(E) = µ({r ∈ (0, t] : X(t; r, 0) ∈ E}) + ρ0({x ∈ [0, 1) : X(t; 0, x) ∈ E}).

(4.35)

(P9). For every t ∈ [0, Ti] and for every interval I ⊆ [0, 1), if the length of I is less

than t00 then ρt,ac(I) < vmin

4L
.

(P10). The measure ρi = ρTi−1
is used as the new initial condition ρi (if 1 ≤ i ≤ N).

(P11). The measures µi, ρi, and ρt have zero singular continuous part (lemma 4.2.5).

(P12). For almost every 0 ≤ t ≤ Ti, ξ̇(t) = α(ρt([0, 1))).

(P13). For almost every 0 ≤ t ≤ Ti,

ξ̇(t) = α(µ((max{0, ξ−1(ξ(t)− 1)}, t]) + ρ0([0, 1− ξ(t)))). (4.36)

Note that if ξ(t) ≥ 1 then ρt([0, 1− ξ(t))) = ρt(∅) = 0).

For i = 0 set τ0 = T0 = 0, take the trivial curves ξ0(0) = ξ(0) = 0 and the identity

X(0; 0, x) = x for all x ∈ [0, 1]. For i = 1 use the original measures as data ρ1 = ρ0

and µ1 = µ.

Now suppose 0 < i ≤ N is arbitrary but fixed and for all 0 ≤ j < i all the

above have been constructed, and have been shown to have the asserted properties

(P1)–(P13).
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First define the new data ρi = ρTi−1
and µi as in (P11) and (P6). Both have

zero singular continuous part and their combined total mass is less or equal to the

combined mass of the original measures ρ0 and µ. In particular, the estimate (P9) for

the absolutely continuous part of ρTi−1
still holds. Moreover, the combined number

of large point masses of ρi and µi cannot exceed the combined number of large point

masses of the original measures ρ0 and µ. Thus using the same set Ω (with same vmin

and same uniform initial choice for t00, the fixed point theorem yields the existence

of a τi > 0 and a unique curve ξi : [0, τi] 7→ [0, 1) that satisfies (P3).

Now use the formula in (P4) to extend the curve ξ from the interval [0, Ti−1] to

[0, Ti−1 + τi] = [0, Ti].

Next extend the map X from {(r, t) : 0 ≤ r ≤ t ≤ Ti−1} × [0,∞) to {(r, t) : 0 ≤

r ≤ t ≤ Ti} × [0,∞) by first setting for all 0 ≤ r ≤ Ti−1 ≤ t ≤ Ti and every

x ∈ [0,∞), X(t; r, x) = X(Ti−1; r, x) + ξi(t− Ti−1), and then, in a second step, for all

0 ≤ Ti−1 ≤ r ≤ t ≤ Ti and every x ∈ [0,∞), X(t; r, x) = x+ξi(t−Ti−1)−ξi(r−Ti−1).

Using the property (P4), alternatively the above may be written in term is ξ. Indeed,

for 0 ≤ r ≤ Ti−1 ≤ t ≤ Ti and x ∈ [0,∞)

X(t; r, x) = X(Ti−1; r, x) + ξi(t− Ti−1) (4.37)

= x+ (ξ(Ti−1)− ξ(r) + (ξ(t)− ξ(Ti−1)) = x+ ξ(t)− ξ(r).

Similarly, for 0 ≤ Ti−1 ≤ r ≤ t ≤ Ti and x ∈ [0,∞)

X(t; r, x) = x+ ξi(t− Ti−1)− ξi(r − Ti−1) (4.38)

= x+ (ξ(t)− ξ(Ti−1)− (ξ(r)− ξ(Ti−1) = x+ ξ(t)− ξ(r).

The semi-group property of the map X on the larger domain follows immediately.

(It is simply a consequence of the additivity of integral over disjoint intervals in
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equation (4.21).) Let 0 ≤ r ≤ s ≤ t ≤ Ti} and x ∈ [0, 1] be arbitrary but fixed. Then

calculate

X(t; s,X(s; r, x)) = (x+ξ(s)−ξ(r))+ξ(t)−ξ(s) = x+ξ(t)−ξ(r) = X(t; r, x). (4.39)

Since the solution curves ξi (and their inverses) all satisfy the same Lipschitz bounds

specified in the same set Ω (except for possible different final times), the curve ξ

satisfies the same conditions. Thus the map X is Lipschitz and therefore absolutely

continuous in each of its variables separately. Hence the push-forwards by scalar func-

tions obtained from X (by holding two arguments fixed) of measures are well defined.

Moreover, measures with zero singular continuous part are mapped to measures with

zero singular continuous part (lemma 4.2.5), and absolutely continuous measures and

pure point measures mapped to measures of the same kind.

Use the equation (4.33) in item (P7) to extend the curve ρ : t 7→ ρt from the

interval [0, Ti−1] to the interval [0, Ti].

Note that, by hypothesis, (4.35) already holds for every 0 ≤ t ≤ Ti−1 and for every

Borel set E ⊆ [0, 1)). In particular, ρTi−1
(E) = µ({r ∈ (0, Ti−1] : X(Ti−1; r, 0) ∈ E})+

ρ({x ∈ [0, 1) : X(Ti−1; 0, x) ∈ E}). Now let t ∈ [Ti−1, Ti] and Borel set E ⊆ [0, 1))

be arbitrary but fixed. The using the definitions of ρt for t in the new interval, the
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definitions of ρi and µi, and the induction hypothesis, calculate:

ρt(E) = µi({s ∈ (0, t− Ti−1] : X(t;Ti−1 + s, 0) ∈ E}) (4.40)

+ρi({x ∈ [0, 1) : X(t;Ti−1, x) ∈ E})

= µ({r ∈ (Ti−1, t] : X(t; r, 0) ∈ E}) + ρTi−1
({x ∈ [0, 1) : X(t;Ti−1, x) ∈ E})

= µ({r ∈ (Ti−1, t] : X(t; r, 0) ∈ E})

+µ({r ∈ (0, Ti−1] : X(t;Ti−1, X(Ti−1; r, 0) ∈ E})

+ρ0({x ∈ [0, 1) : X(t;Ti−1, X(Ti−1, 0, x) ∈ E})

= µ({r ∈ (0, t] : X(t; r, 0) ∈ E}) + ρ0({x ∈ [0, 1) : X(t; 0, x) ∈ E}). (4.41)

Note that there is no need to consider special cases, e.g., whether any of ξ(Ti−1) ≤

xi(t) ≤ ξ(Ti) is less or larger or equal to 1. If ξ(t) < 1 then {r ∈ (0, t] : X(t; r, 0) ∈

[0, 1)} = (0, t] and {x ∈ [0, 1) : X(t; 0, x) ∈ [0, 1)} is nonempty. If ξ(t) ≥ 1 then {r ∈

(0, t] : X(t; r, 0) ∈ [0, 1)} = (t − ξ−1(ξ(t) − 1), t] and {x ∈ [0, 1) : X(t; 0, x) ∈ [0, 1)}

is empty. Using slightly different notation , taking E = [0, 1), it is an immediate

corollary that for all t ∈ [0, Ti], ρt([0, 1)) = µ(max{0, ξ−1(ξ(t)−1)}, t)+ρ0([0, 1−ξ(t))).

Since the map r 7→ X(Ti−1 +s; r, 0) reduces distances, intuitively ∆x = v∆t < ∆t,

the push forward by this map of µi restricted to (0, s] concentrates the absolutely

continuous part of µ when becoming part of ρt. Now suppose I ⊆ [0, 1) is on interval

of length at most t00. Then J = X(Ti−1 + s; ·, 0)−1(I) is an interval of length at most

t00/vmin. Therefore µ(i(J) < vmin

4L
, and thus ρTi−1

(I) < vmin

4L
.

The next to last item is to verify that for almost every t ∈ [0, Ti] this curve satisfies

ξ̇(t) = ρt([0, 1)). By hypothesis, this equation holds for for almost every t ∈ [0, Ti−1].

By construction, see item (P4), for every s ∈ [0, τi], ξ(Ti−1 + s) = ξ(Ti−1) + ξi(s).

Denoting differentiation by s again by a dot, using equation (4.32) in (P3), it follows
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that at every s ∈ [0, τi] at which the integrand of (4.32) is continuous. Note that

ξ̇(Ti−1 + s) = ξ̇i(s)

= α(µi((0, s]) + ρi([0, 1− ξi(s)))),

and

ρTi−1+s([0, 1)) =µi ({r ∈ (0, s] : X(Ti−1 + s;Ti−1 + r, 0) ∈ [0, 1)})

+ ρi ({x ∈ [0, 1) : X(Ti−1 + s;Ti−1, x) ∈ [0, 1)})

=µi ({r ∈ (0, s] : ξ(Ti−1 + s)− ξ(Ti−1 + r) ∈ [0, 1)})

+ ρi ({x ∈ [0, 1) : ξ(Ti−1 + s)− ξ(Ti−1) + x ∈ [0, 1)})

=µi ({r ∈ [0, s] : ξ(Ti−1) + ξi(s)− ξ(Ti−1)− ξi(t) ∈ [0, 1)})

+ ρi ({x ∈ [0, 1) : ξi(s) + x ∈ [0, 1)})

=µi ({r ∈ (0, s] : ξi(s)− ξi(r) ∈ [0, 1)}) + ρi([0, 1− ξi(s))

=µi((0, s]) + ρi([0, 1− ξi(s)).

Thus,

ξ̇(Ti−1 + s) = α
(
ρTi−1+s([0, 1))

)
. (4.42)

This iterative procedure may be continued until Ti = T naturally working with

t00 replaced by T − Ti if the latter is smaller. Since there still may be several large

point masses exiting the system in these last intervals, there may be several such i

such that T − Ti−1 < t00.

4.2.3 The Semi-flow and Lagrangian Solutions

It is convenient to formally fix notation for an ODE semi-flow for a vector field.

In the sequel we are only interested in the special case of the time-varying vector field
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v = α(W (t)) that is constant in space (for every fixed time t), defined originally on

[0, T ] × [0, 1), but naturally extended to [0, T ] × [0,+∞). As we will see, the vector

field will be integrable and bounded. Thus we dispense stating the definition for more

general regularity hypotheses.

Definition 4.2.1 (Semi-flow). Suppose v : [0, T ] × [0,∞) 7→ [0, 1) is integrable with

respect to the first variable, and constant with respect to the second variable. A map

X : {(t, r) : 0 ≤ r ≤ t ≤ T}× [0,∞)→ R+ is called the semi-flow of the time-varying

vector field v if it satisfies for all r ∈ [0, T ] and all x0 ∈ [0,∞)

Ẋ(t; r, x0) = v(t, 0) for almost every t ∈ [r, T ], and (4.43a)

X(r; r, x0) = x0 (4.43b)

with Ẋ denoting the derivative of X with respect to the first variable t.

Note that in this special case the semi-flow of a vector field satisfying the stated

hypotheses is clearly unique (since v is Lipschitz).

Definition 4.2.2 (Lagrangian Solution). Suppose ρ0 ∈M+([0, 1)) and µ ∈M+((0, T ])

are fixed Borel measures. We say a function Φ : [0, T ]→M+([0, 1)) is a Lagrangian

solution of the system (4.4) if for every t ∈ [0, T ] and every Borel set E ⊂ [0, 1)

Φt(ρ0, µ)(E) =

∫
[0,1)

χE(X(t; 0, x0)) dρ0(x0) +

∫
(0,t]

χE(X(t; s, 0)) dµ(s). (4.44)

where the map X : {(t, r) : 0 ≤ r ≤ t ≤ T} × [0, 1] → R+ is the semi-flow of the

vector field v(t, 0) = α(W (t)) with W (t) = ρt([0, 1)) and χE is the indicator function

of set E.

Remark. From definition (4.2.2), the Lagrangian solution Φ of the system (4.4) can

also be interpreted as the following:
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Given arbitrary but fixed Borel measures ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]),

for every t ∈ [0, T ],

Φt(ρ0, µ) = X(t; 0, ·)#ρ0 +X(t, ·, 0)#µ.

In addition, the procedure in subsection 4.2.2 yields a semi-flow X : {(r, t) : 0 ≤

r ≤ t ≤ T} × [0,∞) 7→ [0,∞) with the semi-group property, and a curve of positive

measures t 7→ ρt ∈ M+([0, 1)) which satisfies for almost all 0 ≤ r ≤ t ≤ T and all

x ∈ [0,∞)

d

dt
X(t, r, x) =

d

dt
(x+ ξ(t)− ξ(r)) = ξ̇(t) = α(ρt([0, 1)) (4.45)

=α(µ ({r ∈ (0, t] : X(t; r, 0) ∈ [0, 1)})

+ ρ0 ({x ∈ [0, 1) : X(t; 0, x) ∈ [0, 1)}))

=α(µ ({r ∈ (0, t] : (ξ(t)− ξ(r)) ∈ [0, 1)})

+ ρ0 ({x ∈ [0, 1) : (x+ ξ(t)) ∈ [0, 1)}))

=α(µ(max{0, ξ−1(ξ(t)− 1)}, t] + ρ0([0, 1− ξ(t)))).

In particular, by construction and Definition 4.2.2, the curve t 7→ ρt ∈M+([0, 1)) is a

Lagrangian solution of the system (4.4). Furthermore, the existence and uniqueness of

the characteristic ξ implies that there is a unique semi-flow X that satisfies equation

(4.45). Thus for fixed Borel measures ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]), ρt =

Φt(ρ0, µ) is the unique Lagrangian solution of the system (4.4).

Now we will study the semi-group property of the Lagrangian solution of the

system (4.4) as defined in Definition 4.2.2. For convenience, we temporarily change

the notation of the Lagrangian solution of the system (4.4) as for 0 ≤ r ≤ t ≤ T , for

arbitrary but fixed ρr ∈ M+([0, 1)) and µr ∈ M+((r, T ]) (here we fix the in-flux by
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taking µ0 = µ and µr = µ0 �(r,T ] ), and every Borel set E ⊂ [0, 1),

ρt(E) = Φ(t; r, ρr)(E) (4.46)

=

∫
[0,1)

χE(X(t; r, x0)) dρr(x0) +

∫
(r,t]

χE(X(t; τ, 0)) dµr(τ)

= (X(t; r, ·)#ρr)(E) + (X(t; ·, 0)#µr)(E).

In particular, if r = 0, we have ρt(E) = Φ(t; 0, ρ0)(E) = Φt(ρ0, µ)(E).

Lemma 4.2.6. For 0 ≤ r ≤ s ≤ t ≤ T , the Lagrangian solution of the system (4.4)

satisfies Φ(t; s,Φ(s; r, ρr)) = Φ(t; r, ρr).

Proof. The proof uses by the notation of push-forward.

By equation (4.46),

Φ(s, r, ρr) = X(s; r, ·)#ρr +X(s; ·, 0)#µr.

Thus,

Φ(t; s,Φ(s; r, ρr)) =X(t; s, ·)#(X(s; r, ·)#ρr +X(s; ·, 0)#µr) +X(t; ·, 0)#µs

=X(t; s, ·)#(X(s; r, ·)#ρr)

+X(t; s, ·)#(X(s; ·, 0)#µr) +X(t; ·, 0)#µs.

Let Φ1,t = X(t; s, ·)#(X(s; r, ·)#ρr), then for every Borel set E ⊂ [0, 1),

Φ1,t(E) = X(t; s, ·)#(X(s; r, ·)#ρr)(E)

= (X(s; r, ·)#ρr) ({x ∈ [0, 1) : X(t; s, x) ∈ E})

= ρr ({x ∈ [0, 1) : X(t; s,X(s; r, x)) ∈ E})

= ρr ({x ∈ [0, 1) : X(t; r, x) ∈ E})

= (X(t; r, ·)#ρr)(E).
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The above second to last equality uses the semi-group property of the semi-flow

X. Therefore, Φ1,t = X(t; r, ·)#ρr.

Let Φ2,t = X(t; s, ·)#(X(s; ·, 0)#µr) +X(t; ·, 0)#µs, then for every Borel set E ⊂

[0, 1),

Φ2,t(E) =X(t; s, ·)#(X(s; ·, 0)#µr)(E) +X(t; ·, 0)#µs(E)

=(X(s; ·, 0)#µr) ({x ∈ [0, 1) : X(t; s, x) ∈ E}) +X(t; ·, 0)#µs(E)

=µr ({τ ∈ (r, s] : X(t; s,X(s; τ, 0)) ∈ E}) +X(t; ·, 0)#µs(E)

=µr ({τ ∈ (r, s] : X(t; τ, 0) ∈ E})

+ µs ({τ ∈ (s, t] : X(t; τ, 0) ∈ E})

=

∫
(r,s]

χE(X(t; τ, 0))dµ(τ) +

∫
(s,t]

χE(X(t; τ, 0))dµ(τ)

=

∫
(r,t]

χE(X(t; τ, 0))dµ(τ)

=(X(t; ·, 0)#µr)(E)

The above fourth equality uses the semi-group property of the semi-flow X. Hence,

Φ2,t = X(t; ·, 0)#µr.

Therefore, Φ(t; s,Φ(s; r, ρr)) = X(t; r, ·)#ρr +X(t; ·, 0)#µr = Φ(t; r, ρr).

4.3 Weak Measure-valued Solutions

4.3.1 Definition and Existence of Weak Measure-valued Solutions

This section defines a notion of weak solution to the hyperbolic conservation

law (4.4), and proves that the Lagrangian solution is indeed a weak solution.

Let Ψ be the set of functions ϕ : [0, T ]× [0, 1] 7→ R such that for every t ∈ [0, T ],

ϕ(t, ·) is differentiable and ∂ϕ
∂x

is continuous (jointly in (t, x)) and for every x ∈ [0, 1],
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ϕ(·, x) is Lipschitz continuous. That is,

Ψ = {ϕ : [0, T ]× [0, 1] 7→ R | for every t ∈ [0, T ], ϕ(t, ·) is differentiable

and ∂xϕ is continuous (jointly in (t, x)),

and for every x ∈ [0, 1], ϕ(·, x) is Lipschitz continuous } .

Definition 4.3.1 (Measure-Valued Weak Solution). A measure-valued weak solution

to equation (4.4) with the initial condition ρ0 ∈M+([0, 1)) and the boundary condition

µ ∈M+((0, T ]) is a function ρ : [0, T ]→M+([0, 1)), such that W : [0, T ] 7→ ρt([0, 1))

is integrable and such that for every τ ∈ [0, T ] and for every ϕ ∈ Ψ that satisfies

ϕ(t, 1) = 0, for all t ∈ [0, τ ], (4.47)

one has∫
(0,τ ]

∫
[0,1)

(∂tϕ(t, x) + α(W (t))∂xϕ(t, x)) dρt(x) dt+

∫
(0,τ ]

ϕ(t, 0) dµ(t)

−
∫

[0,1)

ϕ(τ, x) dρτ (x) +

∫
[0,1)

ϕ(0, x) dρ0(x) = 0. (4.48)

Lemma 4.3.1. Let ρ0 ∈ M+([0, 1)) and µ ∈ M+((0, T ]) be arbitrary but fixed. Let

X : {(t, r) : 0 ≤ r ≤ t ≤ T} × [0, 1] → R+ be the semi-flow of the vector field

v = α(W (t)) with W (t) = Φt(ρ0, µ)([0, 1)). Then for almost every t ∈ [0, T ] and

every x0 ∈ [0, 1), every test function ϕ in Ψ satisfies

dϕ(t,X(t; 0, x0))

dt
= ∂tϕ(t,X(t; 0, x0)) + α(W (t))∂xϕ(t,X(t; 0, x0)).

Proof. Fix a test function ϕ ∈ Ψ. We will show that for almost every t ∈ [0, T ], every

x0 ∈ [0, 1), arbitrary but fixed ε > 0, there exists δ > 0, such that, if |∆t| < δ, then∣∣∣∣ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t,X(t; 0, x0))

∆t

−∂tϕ(t,X(t; 0, x0))− α(W (t))∂xϕ(t,X(t; 0, x0))| < ε.
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Since for every x ∈ [0, 1], ϕ(·, x) is Lipschitz continuous and thus differentiable

almost everywhere and the map ξ : [0, T ] 7→ [0,∞) is also differentiable almost ev-

erywhere, we can choose (t, x0) ∈ [0, T ]× [0, 1] be arbitrary but fixed such that both

∂tϕ(t,X(t; 0, x0)) and ∂tX(t; 0, x0) = ξ̇(t) exist. Let ε > 0 be arbitrary but fixed.

Since ∂tϕ(t,X(t; 0, x0)) exists, there exists δ1 > 0, such that, if |∆t| < δ1, then∣∣∣∣ϕ(t+ ∆t,X(t; 0, x0))− ϕ(t;X(t; 0, x0))

∆t
− ∂tϕ(t,X(t; 0, x0))

∣∣∣∣ < ε

4
. (4.49)

Since for every t + ∆t ∈ [0, T ], the map ϕ(t + ∆t, ·) : [0, 1] 7→ R is differentiable,

there exists δ2 > 0, such that if |∆x| < δ2, then∣∣∣∣ϕ(t+ ∆t,X(t; 0, x0) + ∆x)− ϕ(t+ ∆t,X(t; 0, x0))

∆x
− ∂xϕ(t+ ∆t,X(t, 0, x0))

∣∣∣∣ < ε

4
.

(4.50)

Note that if |∆t| < δ2, then |X(t+ ∆t; 0, x0)−X(t; 0, x0)| ≤ |∆t| < δ2. Let ∆x =

X(t+ ∆t; 0, x0)−X(t; 0, x0). From equation (4.50), we obtain∣∣∣∣ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t+ ∆t,X(t; 0, x0))

X(t+ ∆t; 0, x0)−X(t; 0, x0)
− ∂xϕ(t+ ∆t,X(t, 0, x0))

∣∣∣∣ < ε

4
.

(4.51)

In addition, since ∂xϕ is continuous on [0, T ]×[0, 1] and hence bounded, from equation

(4.51), we have, there exists some U > 0 such that∣∣∣∣ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t+ ∆t,X(t; 0, x0))

X(t+ ∆t; 0, x0)−X(t; 0, x0)

∣∣∣∣ < U. (4.52)

Since ∂tX(t; 0, x0) = ξ̇(t) exists at t, there exists δ3 > 0, such that, if |∆t| < δ3,

then ∣∣∣∣X(t+ ∆t; 0, x0)−X(t; 0, x0)

∆t
− α(W (t))

∣∣∣∣ < ε

4U
. (4.53)

Since ∂xϕ is continuous (jointly in (t, x)), there exists δ4 > 0, such that, if |∆t| <

δ4, then

|∂xϕ(t+ ∆t,X(t; 0, x0))− ∂xϕ(t,X(t; 0, x0))| < ε

4
. (4.54)
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Choose ∆t such that |∆t| < min{δi : i = 1, 2, 3, 4}. Then from equations (4.49),

(4.51), (4.52), (4.53) and (4.54), and α(W (t)) ∈ [0, 1], we obtain∣∣∣∣ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t,X(t; 0, x0))

∆t

−∂tϕ(t,X(t; 0, x0))− α(W (t))∂xϕ(t,X(t; 0, x0))|

≤
∣∣∣∣ϕ(t+ ∆t,X(t; 0, x0))− ϕ(t;X(t; 0, x0))

∆t
− ∂tϕ(t,X(t; 0, x0))

∣∣∣∣
+

∣∣∣∣(ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t+ ∆t,X(t; 0, x0))

X(t+ ∆t; 0, x0)−X(t; 0, x0)

)
α(W (t))

− ∂xϕ(t+ ∆t,X(t, 0, x0))α(W (t))|

+

∣∣∣∣ϕ(t+ ∆t,X(t+ ∆t; 0, x0))− ϕ(t+ ∆t,X(t; 0, x0))

X(t+ ∆t; 0, x0)−X(t; 0, x0)

∣∣∣∣∣∣∣∣X(t+ ∆t; 0, x0)−X(t; 0, x0)

∆t
− α(W (t))

∣∣∣∣
+ |(∂xϕ(t+ ∆t,X(t; 0, x0))− ∂xϕ(t,X(t; 0, x0)))α(W (t))|

<ε.

By the definition of differentiability, we have for almost all t ∈ [0, T ],

dϕ(t,X(t; 0, x0))

dt
= ∂tϕ(t,X(t; 0, x0)) + α(W (t))∂xϕ(t,X(t; 0, x0)).

The following theorem guarantees the existence of weak measure-valued solutions.

Theorem 4.3.2. Every Lagrangian solution of (4.44) is a measure-valued weak so-

lution that satisfies (4.48).

Proof. We conveniently extend the functions ϕ, ∂tϕ and ∂xϕ to [0,∞) with value zero

for x > 1.

Suppose Φ is a Lagrangian solution that satisfies (4.44). Evaluate the left hand
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side of equation (4.48) at ρ = Φ,∫
(0,τ ]

∫
[0,1)

(∂tϕ(t, x) + α(W (t))∂xϕ(t, x)) dΦt(ρ0, µ)(x) dt

=

∫
(0,τ ]

∫
[0,1)

(∂tϕ(t,X(t; 0, x0)) + α(W (t))∂xϕ(t,X(t; 0, x0))) dρ0(x0) dt (4.55)

+

∫
(0,τ ]

∫
(0,t]

(∂tϕ(t,X(t; s, 0)) + α(W (t))∂xϕ(t,X(t; s, 0))) dµ(s) dt

Note ∫
(0,τ ]

∫
[0,1)

(∂tϕ(t,X(t; 0, x0)) + α(W (t))∂xϕ(t,X(t; 0, x0))) dρ0(x0) dt

=

∫
(0,τ ]

∫
[0,1)

dϕ(t,X(t; 0, x0))

dt
dρ0(x0) dt

=

∫
[0,1)

∫
(0,τ ]

dϕ(t,X(t; 0, x0))

dt
dt dρ0(x0)

=

∫
[0,1)

(ϕ(τ,X(τ ; 0, x0))− ϕ(0, X(0; 0, x0))) dρ0(x0) (4.56)

=

∫
[0,1)

ϕ(τ,X(τ ; 0, x0)) dρ0(x0)−
∫

[0,1)

ϕ(0, X(0; 0, x0)) dρ0(x0)

=

∫
[0,1)

ϕ(τ,X(τ ; 0, x0)) dρ0(x0)−
∫

[0,1)

ϕ(0, x) dρ0(x).

And, ∫
(0,τ ]

∫
(0,t]

(∂tϕ(t,X(t; s, 0)) + α(W (t))∂xϕ(t,X(t; s, 0))) dµ(s) dt

=

∫
(0,τ ]

∫
(0,t]

dϕ(t,X(t; s, 0))

dt
dµ(s) dt

=

∫
(0,τ ]

∫
(s,τ ]

dϕ(t,X(t; s, 0))

dt
dt dµ(s) (4.57)

=

∫
(0,τ ]

(ϕ(τ,X(τ ; s, 0))− ϕ(s,X(s; s, 0))) dµ(s)

=

∫
(0,τ ]

ϕ(τ,X(τ ; s, 0)) dµ(s)−
∫

(0,τ ]

ϕ(t, 0) dµ(t).
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In addition, ∫
[0,1)

ϕ(τ, x) dΦτ (ρ0, µ)(x)

=

∫
[0,1)

ϕ(τ,X(τ ; 0, x0)) dρ0(x0) +

∫
[0,1)

ϕ(τ,X(τ ; s, 0)) dµ(s). (4.58)

Thus, every Lagrangian solution (4.44) is a weak measure-valued solution.

4.3.2 Uniqueness of the Weak Measure-valued Solution

Now we will show that every weak measure-valued solution is also a Lagrangian

solution to the hyperbolic conservation law (4.4). From theorem (4.2.4) in section

(4.2), we could obtain the uniqueness of the weak measure-valued solution.

Theorem 4.3.3. Given the initial condition ρ0 ∈ M+([0, 1)) and the boundary con-

dition µ ∈ M+((0, T ]), the weak measure-valued solution (4.48) to equation (4.4) is

unique.

Proof. We will show the uniqueness of the weak measure-valued solution ρ̂ over the

small time interval [0, τ0] first, with τ0 defined as in (4.13). By the definition of the

weak measure-valued solution, for arbitrary but fixed τ ∈ (0, τ0] and every ϕ ∈ Ψ

such that ϕ(t, 1) = 0, and for every t ∈ [0, τ ],∫
(0,τ ]

∫
[0,1)

(
ϕt(t, x) + α(Ŵ (t))ϕx(t, x)

)
dρ̂t(x)dt+

∫
(0,τ ]

ϕ(t, 0) dµ(t)

−
∫

[0,1)

ϕ(τ, x) dρ̂τ (x) +

∫
[0,1)

ϕ(0, x) dρ0(x) = 0, (4.59)

where Ŵ (t) = ρ̂t([0, 1)) is integrable.

Consider a C1 function with compact support in (0, 1), ϕ0, i.e., ϕ0 ∈ C1
0(0, 1) and

let ξ̂(t) : =
∫ t

0
α(Ŵ (s)) ds, t ∈ [0, τ ]. Choose the test function

ϕ(t, x) =


ϕ0(ξ̂(τ)− ξ̂(t) + x), if 0 ≤ x ≤ ξ̂(t)− ξ̂(τ) + 1, 0 ≤ t ≤ τ,

0, if 0 ≤ ξ̂(t)− ξ̂(τ) + 1 ≤ x ≤ 1, 0 ≤ t ≤ τ.
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Note that the test function ϕ ∈ Ψ and satisfies the following Cauchy problem
∂tϕ+ α(Ŵ (t))∂xϕ = 0, if 0 ≤ t ≤ τ, 0 ≤ x ≤ 1,

ϕ(τ, x) = ϕ0(x), if 0 ≤ x ≤ 1

ϕ(t, 1) = 0, if 0 ≤ t ≤ τ.

From equation (4.59), we obtain∫
[0,1)

ϕ0(x) dρ̂τ (x)

=

∫
(0,τ ]

ϕ0(ξ̂(τ)− ξ̂(t)) dµ(t) +

∫
[0,1−ξ̂(τ))

ϕ0(ξ̂(τ) + x) dρ0(x).

Since ϕ0 ∈ C1
0(0, 1) and τ ∈ [0, τ0] were arbitrary, we have, for every Borel set

E ⊂ [0, 1), and every t ∈ [0, τ0],

ρ̂t(E) =

∫
(0,t]

χE(ξ̂(t)− ξ̂(s)) dµ(s) +

∫
[0,1)

χE(ξ̂(t) + x) dρ0(x).

Therefore,

Ŵ (t) = ρ̂t([0, 1))

=

∫
(0,t]

χ[0,1)(ξ̂(t)− ξ̂(s)) dµ(s) +

∫
[0,1)

χ[0,1)(ξ̂(t) + x) dρ0(x)

= µ((0, t]) + ρ0([0, 1− ξ̂(t)).

Furthermore,

ξ̂(t) =

∫ t

0

α(Ŵ (s)) ds

=

∫ t

0

α(µ((0, s]) + ρ0([0, 1− ξ̂(s))) ds

= F (ξ̂)(t).
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It is easy to check that ξ̂ ∈ Ω. Since ξ is the unique fixed point of function F in Ω,

ξ̂ = ξ. Thus ρ̂t = ρt over the time interval [0, τ0] which implies the uniqueness of the

weak measure-valued solution to equation (4.4) over the small time interval [0, τ0].

Similar to the discussion in subsection 4.2.2, one can obtain the uniqueness of

the weak measure-valued solution to equation (4.4) defined on all of [0, T ] in a finite

number of iterations.

4.3.3 Regularity of the Weak Measure-valued Solution

For the special case of finite signed Borel measures on the interval [0, 1) briefly

recall the definition of the flat norm. Denote by F the set of nonnegative Lipschitz

continuous function with Lipschitz constant 1 that are bounded above by 1 by

F = {f : [0, 1) 7→ [0, 1] : for all x, y ∈ [0, 1), |f(x)− f(y)| ≤ |x− y|}. (4.60)

On the space M([0, 1)) of signed measures, define for ν ∈M([0, 1)) its flat norm

‖ν‖[ = sup
f∈F

∣∣∣∣∫
[0,1)

f dν

∣∣∣∣ . (4.61)

For applications and a careful discussions of properties of the flat norm in general

settings see, e.g..

The following simple example shows that in general the solution t 7→ ρt need not be

continuous under the flat norm ‖ · ‖[.

Example. Consider the case of trivial in-flux µ = 0 and initial datum ρ0 = δ0

consisting of a single unit mass at x = 0. Then for every t < 2, the solution ρt = δt/2

consists of a single mass at x = 1
2
t, whereas for all t ≥ 2, the solution ρt = 0 is the

trivial measure. Using the function f ≡ 1 it is easily seen that for every t < 2 we

have ‖ρt − ρ2‖[ = ‖δt/2‖[ = 1, and hence t 7→ ρt is not continuous at t = 2.
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In order to discount the importance of the exact time at which point masses enter

the system or exit from it, we introduce a variation of the flat norm. First, denote

by g : R 7→ R, the piecewise linear hat-function defined by

h(x) =


1
2
− |1

2
− x| if x ∈ [0, 1]

0 otherwise
(4.62)

Define the map φ :M([0, 1)) 7→ [0,∞) by

φ(ν) = sup
f∈F

∣∣∣∣∫
[0,1)

fh dν

∣∣∣∣ . (4.63)

Note: If f and h are both nonnegative Lipschitz continuous functions with Lipschitz

constant 1 and both are bounded above by 1 then their product fh is Lipschitz with

Lipschitz constant 2 and is also bounded by 1. It is immediate to see that:

Lemma 4.3.4. The map φ defines a semi-norm on the space M([0, 1)).

Example. Continuing the example 4.3.3, it is easy to calculate that for all t < 2 one

has φ(ρt − ρ2) = 1
2
−
∣∣1

2
− t

2

∣∣ while for all t ≥ 2 one has φ(ρt − ρ2) = 0, and for these

special data the solution t 7→ ρt is a continuous curve inM([0, 1)) when endowed with

the semi-norm φ.

Theorem 4.3.5. For every fixed µ ∈M+((0, T ]) and ρ0 ∈M+([0, 1)), the unique so-

lution ρ : [0, T ] 7→ M+([0, 1))) of system (4.4), and thus also of (4.48), is continuous

under the semi-norm φ.

Proof. Let T > 0, µ ∈ M+((0, T ]), ρ0 ∈ M+([0, 1)) be arbitrary but fixed and

let ρ : [0, T ] 7→ M+([0, 1))) be the unique solution of system (4.4), and thus also of

(4.48), and let X be the associated semi-flow. Without loss of generality consider

times 0 ≤ t2 < t1 ≤ T = 1. (For times larger than 1, the continuity follows from the

semi-flow property of t 7→ ρt, via composition of continuous functions.)
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By the choice of the time T ≤ 1, there exists locations 0 ≤ x1 < x2 < 1 such

that X(t1; 0, x1) = X(t2; 0, x2) = 1. We will show that for every ε > 0, if t1 − t2 is

sufficiently small, then φ(ρt1 − ρt2) < ε. In particular for any arbitrary fixed f ∈ F

we will find an upper bound for
∣∣∣∫[0,1)

fh d(ρt1 − ρt2)
∣∣∣. For those parts that are in the

factory at both times t2 and t1, a simple Lipschitz estimate will do the job. However,

for parts that entered, or exited from the factory between these times, we will use

that for all x ∈ [0, 1), h(x) ≤ x and h(x) ≤ 1 − x. The first step uses that ρt is

constructed from the push forwards of the data ρ0 and µ.∣∣∣∣∫
[0,1)

f d(ρt1 − ρt2)
∣∣∣∣ =

∣∣∣∣∫
[0,1)

f(x)h(x) dρt1(x)−
∫

[0,1)

f(x)h(x) dρt2

∣∣∣∣ (4.64a)

=

∣∣∣∣∫
[0,x1)

(fh)(X(t1; 0, x0)) dρ0(x0)−
∫

[0,x2)

(fh)(X(t2; 0, x0)) dρ0(x0)

+

∫
(0,t1]

(fh)(X(t1; s, 0)) dµ(s)−
∫

(0,t2]

(fh)(X(t2; s, 0)) dµ(s)

∣∣∣∣ (4.64b)

≤
∫

[0,x1)

|(fh)(X(t1; 0, x0))− (fh)(X(t2; 0, x0))| dρ0(x0)

+

∫
[x1,x2)

(fh)(X(t2; 0, x0)) dρ0(x0)

+

∫
(0,t2]

|(fh)(X(t1; s, 0))− (fh)(X(t2; s, 0))| dµ(s)

+

∫
(t2,t1]

(fh)(X(t2; s, 0)) dµ(s) (4.64c)

≤ 2

∫
[0,x1)

|X(t1; 0, x0)−X(t2; 0, x0)| dρ0(x0) +

∫
[x1,x2)

h(X(t1; 0, x0)) dρ0(x0)

+ 2

∫
(0,t2]

|X(t1; s, 0)−X(t2; s, 0)| dµ(s) +

∫
(t2,t1]

h(X(t2; s, 0)) dµ(s) (4.64d)

In the last step, for the first and third integral in equation (4.64d) use the Lipschitz

constant 2 for fh, whereas for the other two use that f is bounded above by 1. For

the first and third integral in equation (4.64d) use that the semi-flow X is Lipschitz

continuous (for fixed second and third variables) with Lipschitz constant 1, and hence

the integrals are bounded above (t1 − t2) · ρ([0, x)) and (t1 − t2) · µ((0, T ]), respec-
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tively. For the second integral in equation (4.64d) note that for every x ∈ [x1, x2),

X(t2; 0, x) ≥ 1−(t1−t2) and hence the integral is bounded above by (t1−t2)·ρ([0, x)).

For the fourth integral note that for every s ∈ [t2, t1], X(t1; s, 0) < t1− t2n and hence

the integral is bounded above by (t1 − t2) · µ((0, T ]).

Thus given any ε > 0, choose δ = ε/(2ρ([0, 1)) + 2µ((0, T ]). Then for all 0 ≤

t2 ≤ t1 < 1, if t1 − t2 < δ, and for every f ∈ F ,
∣∣∣∫[0,1)

fh d(ρt1 − ρt2)
∣∣∣ < ε and hence

φ(ρt1 − ρt2) ≤ ε.

Thus we have continuity of the solution t 7→ ρt using the semi-norm φ. The

ultimately desirable joint continuity of the semi-flow with respect to time, the in-flux,

and the initial conditions appears elusive. However, we present in theorem 4.3.8 that

appears close to the continuity result of the semi-flow on initial conditions. It requires

a slightly different semi-norm as illustrated in the following two examples.

Example. Consider the case of α(W ) = 1
1+W

, trivial in-flux µ = 0 and trivial initial

datum ρ̃0 = 0, 0 < T ≤ 1, ε = 1
2T

and 0 < δ < 1 arbitrary but fixed. Set x0 = δ
2

and let ρ0 ∈M+([0, 1)) be the measure consisting of the unit point mass at x0. Then

φ(ρ0−ρ̃0) = x0 < δ, yet the respective solutions at time T are ρ̃T = 0 and ρT consisting

of a unit point mass at (x0 + 1
2
T ) and hence φ(ρT − ρ̃T ) = x0 + 1

2
T ≮ 1

2
T = ε.

As established in the example above, the semi-norm φ used (and needed) to es-

tablish continuity of the solution ρt with respect to time, will not provide continuity

with respect to initial conditions using the semi-norm φ. However, using a similar

semi-norm that only discounts variations close to the exit point x = 1 appears better

suited. In analogy with (4.62) define g : R 7→ R by g(x) = 1− x and correspondingly

to (4.63) define the variant of the flat norm ψ on M([0, 1)) by

ψ(ν) = sup
f∈F

∣∣∣∣∫
[0,1)

fg dν

∣∣∣∣ . (4.65)

Now, we recall the following lemma (Proposition 2.2 from Gwiazda et al. (2018)).
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Lemma 4.3.6. The indicator function of every closed (open) set in [0, 1) is the

pointwise limit of a decreasing (respectively increasing) sequence of bounded Lipschitz

continuous functions (fn), where each fn has Lipschitz constant n and takes values

between 0 and 1.

Theorem 4.3.7. The variant of the flat norm defined in equation (4.65) is a norm.

Proof. Clearly, equation (4.65) defines a semi-norm. It remains to be verified that for

every ν ∈M+([0, 1)), ψ(ν) implies ν = 0.

Let ν ∈M+([0, 1)) be arbitrary but fixed such that ψ(ν) = 0. Then for every Borel

set T ⊆ [0, 1) and for every function f that is Lipschitz continuous with Lipschitz

constant 1 and with values between 0 and 1,
∫
T
fg dν = 0, where T ⊆ [0, 1) is a

Borel set. In addition, for arbitrary but fixed ε > 0, there exists δ ∈ (0, 1), such that

ν((1− δ, 1)) < ε. Since ν is regular, for every Borel set A ⊆ [0, 1),

ν(A) = inf {ν(G) : A ⊆ G ⊆ [0, 1), G is an open set } .

Now fix Borel set A ⊆ [0, 1) and let G ⊇ A be an open set in [0, 1). Then

ν(G) = ν(G ∩ [0, 1− δ]) + ν(G ∩ (1− δ, 1)) < ν(G ∩ [0, 1− δ]) + ε.

By lemma 4.3.6, there exists an increasing sequence of bounded Lipschitz contin-

uous functions (fn) such that fn → χG pointwisely. Let f ∗n = 1
g
fn. Since the function

1
g

is continuously differentiable and bounded above by 1
δ

over the interval [0, 1−δ], f ∗n

is bounded above by 1
δ

and Lipschitz continuous with Lipschitz constant n · 1
δ

+ 1 · 1
δ2

over the interval [0, 1− δ]. Note that 1
1
δ (n+ 1

δ )
f ∗n is Lipschitz continuous with Lipschitz

constant 1 and with values between 0 and 1 on [0, 1− δ]. Thus,∫
[0,1−δ]

f ∗ng dν = 0.
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By the monotone convergence theorem,∫
[0,1−δ]

χG dν = lim
n→∞

∫
[0,1−δ]

fn dν = lim
n→∞

∫
[0,1−δ]

f ∗ng dν.

Thus,

ν(G ∩ [0, 1− δ]) =

∫
[0,1−δ]

χG dν = 0.

Therefore,

ν(G) < ε

which implies that ν(A) = 0 and thus ν = 0.

The following example illustrates how this norm ψ avoids the problems of the

semi-norm φ with regards to continuity with respect to initial conditions.

Example. Consider the case of α(W ) = 1
1+W

, trivial in-flux µ = 0 and initial data

ρ10 and ρ20 consisting of point masses of sizes M ≥ m ≥ 1 located at 0 ≤ a ≤ b < 1
2
,

respectively. Then

ψ(ρ20 − ρ10) = M(1− a)−m(1− b) +m(1− b)(b− a) (4.66)

which may be rewritten as

ψ(ρ20 − ρ10) = (M −m)(1− a) +m(b− a)(2− b) (4.67)

Suppose that δ > ψ(ρ20 − ρ10). Then, in particular, M −m < 2δ and b − a < δ. At

any small time 0 ≤ t ≤ 1 (before either mass exists the system), the measures ρ1t

and ρ2t are point masses of sizes M and m at the locations (a + t
1+M

) ≤ (b + t
1+m

),

respectively. It is easily seen that

ψ(ρ2t−ρ1t) = M(1−(a+
t

1 +M
))−m(1−(b+

t

1 +m
))(1−((b+

t

1 +m
)−(a+

t

1 +M
))).

(4.68)
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Evaluating this at m = 1, M = m + x, b = a + y gives a simple rational expression

in x, y, t, δ whose numerator vanishes at x = y = 0 (and denominator bounded away

from zero). In particular if 2|x|, |y| < δ then

ψ(ρ2t − ρ1t) ≤
2δ(2δ2 + (4a+ 2t− 2)δ + 1

2
t2 + (a+ 2)t+ 8a− 12)

8 + 4δ
. (4.69)

Thus it is clear that for every t > 0 and every ε > 0 it is possible to choose δ > 0

such that if the initial data M,m = 1, a, b as above satisfy ψ(ρ20 − ρ10) < δ, then

ψ(ρ2t − ρ1t) < ε.

This example shows that replacing the semi-norm φ by the semi-norm ψ on

M([0, 1)) provides some hope for continuity with respect to initial conditions. This

semi-norm preserves the features of φ by discounting the importance of the specif-

ic exit times of large masses, but it avoids the trouble presented in the preceding

example.

We have not been able to show that, in general, the semi-flow (t, ρ0) 7→ ρt is

continuous with respect to the initial datum ρ0 and the semi-norm ψ. However, we

have the following result which is weaker than continuity.

Theorem 4.3.8. For every µ ∈ M+((0, T ]) and ρ0 ∈ M+([0, 1)), the unique weak

solution ρ : [0, T ] 7→ M+([0, 1))) of system (4.4) satisfies: For every initial condition

ρ̃0 ∈M+([0, 1)) and every ε > 0, there exist δ > 0 and τ > 0 such that if φ(ρ̃0−ρ0) <

δ, then for all t < τ , φ(ρ̃t − ρt) < ε.

Proof. Consider the control input in-flux µ and two initial conditions ρ1
0, ρ2

0 ∈M+([0, 1)).

For k = 1, 2, denote by ρkt , Wk and Xk the weak measure-valued solution, the total

load and the semi-flow to the initial condition ρk0 respectively. For convenience, for

87



t ∈ [0, T ], let ξk(t) = Xk(t; 0, 0) be the characteristic as in section (4.2.3). Thus
ξ′k(t) = α(Wk(t)) for a. e. t ∈ [0, T ],

ξk(0) = 0.

(4.70)

Since the velocity αk is positive and bounded above by 1, we have for every t ∈ [0, T ],

|ξ1(t)− ξ2(t)| ≤
∫ t

0

|α(W1(s))− α(W2(s))| ds ≤ t.

Furthermore, for every x0 ∈ [0, 1),

|X1(t; 0, x0)−X2(t; 0, x0)| = |ξ1(t)− ξ2(t)| ≤ t,

and for every s ∈ [0, t],

|X1(t; s, 0)−X2(t; s, 0)| = |ξ1(t)− ξ1(s)− (ξ2(t)− ξ2(s))|

= |ξ1(t)− ξ2(t) + ξ2(s)− ξ1(s)|

≤ |ξ1(t)− ξ2(t)|+ |ξ1(s)− ξ2(s)|

≤ t+ s ≤ 2t.

In addition, there exist t1, t2 ∈ [0, 1], such that X1

(
t1; 0, 1

2

)
= 1 and X2

(
t2; 0, 1

2

)
= 1.

For an arbitrary but fixed ε > 0, consider the time interval [0, τ ] where

τ = min

{
1, t1, t2,

ε

15 (ρ1
0([0, 1)) + ρ2

0([0, 1)))
,

ε

10ρ2
0([0, 1))

,
ε

20µ([0, T ])

}
.

For arbitrary but fixed t ∈ [0, τ ] there exists locations x1
0, x

2
0 ∈ [0, 1) such that

X1(t; 0, x1
0) = 1 and X2(t; 0, x2

0) = 1. Without loss of generality, we assume that

x1
0 < x2

0. Note that x1
0, x

2
0 ∈ (1

2
, 1).

We will now show that if δ = ε
5
> 0, then for every t ∈ [0, τ ], if φ(ρ1

0 − ρ2
0) < δ,
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then φ(ρ1
t − ρ2

t ) < ε. For arbitrary but fixed f ∈ F , and for every t ∈ [0, τ ], we have∣∣∣∣∫
[0,1)

fh d(ρ1
t − ρ2

t )

∣∣∣∣ =

∣∣∣∣∫
[0,1)

f(x)h(x) dρ1
t (x)−

∫
[0,1)

f(x)h(x) dρ2
t (x)

∣∣∣∣ (4.71a)

=

∣∣∣∣∣
∫

[0,x10)

(fh)(X1(t; 0, x0)) dρ1
0(x0)−

∫
[0,x20)

(fh)(X2(t; 0, x0)) dρ2
0(x0)

+

∫
[0,t)

(fh)(X1(t; s, 0)) dµ(s)−
∫

[0,t)

(fh)(X2(t; s, 0)) dµ(s)

∣∣∣∣ (4.71b)

=

∣∣∣∣∣
∫

[0,x10)

(fh)(X1(t; 0, x0)) dρ1
0(x0)−

∫
[0,x10)

(fh)(X1(t; 0, x0)) dρ2
0(x0)

+

∫
[0,x10)

(fh)(X1(t; 0, x0)) dρ2
0(x0)−

∫
[0,x10)

(fh)(X2(t; 0, x0)) dρ2
0(x0)

−
∫

[x10,x
2
0)

(fh)(X2(t; 0, x0)) dρ2
0(x0)

+

∫
[0,t)

(fh)(X1(t; s, 0)) dµ(s)−
∫

[0,t)

(fh)(X2(t; s, 0)) dµ(s)

∣∣∣∣ (4.71c)

≤

∣∣∣∣∣
∫

[0,x10)

(fh)(X1(t; 0, x0)) dρ1
0(x0)−

∫
[0,x10)

(fh)(X1(t; 0, x0)) dρ2
0(x0)

∣∣∣∣∣ (4.71d)

+

∫
[0,x10)

|(fh)(X1(t; 0, x0))− (fh)(X2(t; 0, x0))| dρ2
0(x0) (4.71e)

+

∫
[x10,x

2
0)

(fh)(X2(t; 0, x0)) dρ2
0(x0) (4.71f)

+

∫
[0,t)

|(fh)(X1(t; s, 0))− (fh)(X2(t; s, 0))| dµ(s). (4.71g)

By the triangle inequality, we obtain,∣∣∣∣∣
∫

[0,x10)

(fh)(X1(t; 0, x0)) dρ1
0(x0)−

∫
[0,x10)

(fh)(X1(t; 0, x0)) dρ2
0(x0)

∣∣∣∣∣∣∣∣∣∣
∫

[0,x10)

(fh)(X1(t; 0, x0)) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣∣ =

=

∣∣∣∣∣
∫

[0,x10)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0) +

∫
[0,x10)

((fh)(X1(t; 0, x0))− (fh)(x0)) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[0,x10)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣∣+

∣∣∣∣∣
∫

[0,x10)

((fh)(X1(t; 0, x0))− (fh)(x0)) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣∣ .
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Let I1 =
∣∣∣∫[0,x10)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0)
∣∣∣. Then

I1 ≤
∣∣∣∣∫

[0,1)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣+

∣∣∣∣∣
∫

[x10,1)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣∣
≤
∣∣∣∣∫

[0,1)

(fh)(x0) d(ρ1
0 − ρ2

0)(x0)

∣∣∣∣+

∣∣∣∣∣
∫

[x10,1)

(fh)(x0) dρ1
0(x0)

∣∣∣∣∣+

∣∣∣∣∣
∫

[x10,1)

(fh)(x0) dρ2
0(x0)

∣∣∣∣∣ .
Using that the function f is bounded above by 1, h is decreasing over the interval

(1
2
, 1) and x1

0 ∈ (1
2
, 1), we have,∣∣∣∣∣
∫

[x10,1)

(fh)(x0) dρ1
0(x0)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

[x10,1)

h(x0) dρ1
0(x0)

∣∣∣∣∣
≤ h(x1

0)ρ1
0([0, 1))

= (1− x1
0)ρ1

0([0, 1))

≤ tρ1
0([0, 1))

Similarly, we obtain ∣∣∣∣∣
∫

[x10,1)

(fh)(x0) dρ1
0(x0)

∣∣∣∣∣ ≤ tρ2
0([0, 1)).

By the expression of the semi-norm φ,

I1 ≤ φ(ρ1
0 − ρ2

0) + t
(
ρ1

0([0, 1)) + ρ2
0([0, 1))

)
.

Let I2 =
∣∣∣∫[0,x10)

((fh)(X1(t; 0, x0))− (fh)(x0)) d(ρ1
0 − ρ2

0)(x0)
∣∣∣. Using that the func-
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tion fh is Lipschitz continuous with Lipschitz constant 2, we have,

I2 ≤

∣∣∣∣∣
∫

[0,x10)

((fh)(X1(t; 0, x0))− (fh)(x0)) d(ρ1
0)(x0)

∣∣∣∣∣
+

∣∣∣∣∣
∫

[0,x10)

((fh)(X1(t; 0, x0))− (fh)(x0)) d(ρ2
0)(x0)

∣∣∣∣∣
≤
∫

[0,x10)

|(fh)(X1(t; 0, x0))− (fh)(x0)| d(ρ1
0)(x0)

+

∫
[0,x10)

|(fh)(X1(t; 0, x0))− (fh)(x0)| d(ρ2
0)(x0)

≤2

(∫
[0,x10)

|X1(t; 0, x0)− x0| dρ1
0(x0) +

∫
[0,x10)

|X1(t; 0, x0)− x0| dρ2
0(x0)

)

≤2t
(
ρ1

0([0, 1)) + ρ2
0([0, 1))

)
.

Therefore, by the definition of the semi-norm φ, the expression (4.71d) is bounded

above by φ(ρ1
0 − ρ2

0) + 3t (ρ1
0([0, 1)) + ρ2

0([0, 1))).

Using that the function fg is Lipschitz continuous with Lipschitz constant 2, we

obtain the integral (4.71e) is bounded above by

2

∫
[0,1)

|X1(t; 0, x0)−X2(t; 0, x0)| dρ2
0(x0) ≤ 2tρ2

0([0, 1)),

and the integral in (4.71g) is bounded above by

2

∫
[0,t)

|X1(t; s, 0)−X2(t; s, 0)| dµ(s) ≤ 4tµ([0, T )).

For the integral (4.71f), use that the function f is bounded above by 1 we have∫
[x10,x

2
0)

(fh)(X2(t; 0, x0)) dρ2
0(x0) ≤

∫
[x10,x

2
0)

h(X2(t; 0, x0)) dρ2
0(x0).

Since the semi-flow X2 is increasing with respect to the third variable, for x0 ∈ [x1
0, x

2
0),

X2(t; 0, x0) ∈ [X2(t; 0, x1
0), 1) ⊂ (1

2
, 1). Note also that the function h decreases over

the interval (1
2
, 1). Thus
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∫
[x10,x

2
0)

h(X2(t; 0, x0)) dρ2
0(x0) ≤

∫
[x10,x

2
0)

h(X2(t; 0, x1
0)) dρ2

0(x0)

=

∫
[x10,x

2
0)

(
1−X2(t; 0, x1

0)
)
dρ2

0(x0) ≤
∫

[x10,x
2
0)

(
1− x1

0

)
dρ2

0(x0)

≤ tρ2
0([0, 1)).

The last inequality above is due to the fact that the velocity α1 is bounded above by 1.

4.4 Discussion and Conclusion

We substantially relaxed the regularity hypothesis under which well-posedness is

guaranteed for the model (1.1) from Armbruster et al. (2006) for highly re-entrant

manufacturing systems, a model that has spawned much follow-up research. By close-

ly adhering to the features of the original industrial problem, primarily by focusing on

the Lagrangian point of view, we established well-posedness for Borel measure-valued

data. Note that products of discontinuous velocities and atomic measures conflict

with the usual distributional interpretation of weak solutions of the conservation law

from a Eulerian point of view. In particular, if the initial condition ρ0 and in-flux µ

are Borel measures that are absolutely continuous with respect to Lebesgue measure,

then our result reduces to the existence and uniqueness results proven in (Coron et al.,

2010) for L1 data. Due to the discontinuity of the velocity v with respect to time t,

we consider slightly different test functions for the definition of the weak solution.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Transitions between equilibria of the hyperbolic conservation law model were an-

alyzed in Chapter 3. In the case of transferring from a smaller to a larger equilibrium

with nonzero backlog, due to the fact that the velocity of the system decreases with

respect to the total load W , a control influx u defined in equation (3.7) results in an

inverse response to the production system. In the case of transferring from a smaller

to a larger equilibrium with zero backlog at the final time, the optimal control dose

not exist in a family of L1-controls, {ε ∈ [0, 1) : µε defined in equation (3.11)}. The

suggestive impulsive control (not in L1) leads us to generalize the set of controls and

states to be Borel measures.

Staying close to the original manufacturing system modeled by (1.1), in Chapter

(4), we reinterpret the hyperbolic conservation law (1.1a)-(1.1c) in the setting of

Borel measures. The key is to temporarily abandon the Eulerian point of view, and

instead focus on the Lagrangian point of view, which tracks the locations of parts

(or particles), also known as method of characteristics. We establish the existence of

unique solutions for the Cauchy problem from the Lagrangian point of view for the

system with data that are Borel measures. The usual contraction argument breaks

down due to the fact the large impulses leave the system at a-priori unknown time. We

obtain a uniform lower bound for the lengths of time-intervals by an innovation that

replace the initial datum ρ0 by a modified ρ̃0. The construction takes advantage of the

characteristic curves being bi-Lipschitz, a key feature of the model. We also define a
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notion of weak measure-valued solution for the system (1.1) with data that are Borel

measures, and demonstrates that the Lagrangian solutions are weak solutions. In

particular, in the case of initial state and in-flux being absolutely continuous measures,

the weak measure-valued solution for the system (1.1) reduces to the weak solution in

L1-setting as in Coron et al. (2010). Commensurate with the weaker regularity of the

Lagrangian solution, the notion of weak solutions utilizes a class of the test functions

that is slightly larger than usual. Finally, regularity properties of the solutions are

established. In the case of the in-flux containing nonzero pure-point part, the weak

solution cannot depend continuously on the time with respect to any norm. Given

the noncompact domain, this is expressed using a weighted version of the flat metric,

defined in terms of a semi-norm that accounts for impulses entering and leaving the

system.
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APPENDIX A

REVIEW OF MEASURES AND MEASURABLE FUNCTIONS
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A.1 Disambiguation of Terminology

In this section, we generally adopt the terminology in measure theory from the
classical text book on Real Analysis by Royden and Fitzpatrick (1988). We list some
related well-known facts without proof.

Definition A.1.1. Let (X,Σ) be a measurable space. Let x ∈ X be any point in X.
Then the Dirac measure at x, denoted by δx is the measure defined by

δx : Σ→ R̄, δx(E) :=

{
0 if x 6∈ E
1 if x ∈ E

where R̄ denotes the extended set of real numbers.
In fact, Dirac measure is a probability measure.

Definition A.1.2. Let (X,Σ, µ) be a measure space. Then µ is a discrete measure,
iff it is a countable linear combination of Dirac measures. That is, iff there exist a
sequence (xn)n∈N in X and a sequence (λn)n∈N in R such that

for every E ∈ Σ : µ(E) = Σn∈Nλnδxn(E).

Definition A.1.3. Let X be a locally compact Hausdorff space. The σ-algebra of
Borel sets B(X) is the smallest σ-algebra that contains the open sets of X. A Borel
measure is any measure µ defined on the σ-algebra of Borel sets.

Definition A.1.4. Let µ be a measure on a measurable space (X,Σ). Then µ is a
finite measure iff

µ(X) <∞,
and is a σ-finite measure iff there is an increasing sequence (En)n∈N of subsets of
X in Σ, whose union is X such that

for any n in N : µ(En) <∞.

Remark. Any finite measure is also a σ-finite measure.

Definition A.1.5. Let (X, T ) be a Hausdorff topological space and let Σ be a σ-
algebra on X that contains the topology T . Then a measure µ on the measurable
space (X,Σ) is called inner regular if, for every set A in Σ,

µ(A) = sup{µ(F ) : F ⊂ A,F compact and measurable},

and called outer regular if for every set A in Σ,

µ(A) = inf{µ(G) : A ⊂ G,G open and measurable}.

A measure is called regular if it is both inner regular and outer regular. Mathemati-
cally, a regular measure on a topological space is a measure for which every measurable
set can be approximated from above by open measurable sets and from below by com-
pact measurable sets.

A measure µ defined on Σ is called locally finite if for every point p in X, there
is an open neighborhood Np of p such that the µ-measurable of Np is finite.
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Definition A.1.6. A Borel measure µ is called a Radon measure if it is both inner
regular and locally finite.

Definition A.1.7. A measure λ is absolutely continuous with respect to another
measure µ if for every set E with µ(E) = 0, λ(E) = 0.

Definition A.1.8. A map γ : X → Y with X, Y being two topological spaces is
called Borel measurable if for every open set A ⊂ Y , γ−1(A) ⊂ X is a Borel set.

Remark. For every Borel set B in Y , γ−1(B) is a Borel set in X; All monotone
functions mapping from R→ R are Borel measurable.

Definition A.1.9. Let (X,M) be a measurable space and f a real-valued function
on X. Then f is Lebesgue measurable if for each open set O in real numbers,
f−1(O) is Lebesgue measurable.

Remark. Every Borel measurable function is Lebesgue measurable; If f : R 7→ R is
Borel measurable and g : Rn 7→ R is Lebesgue (Borel) measurable, then the composi-
tion f ◦ g is Lebesgue (Borel) measurable since for every Borel set B of R,

(f ◦ g)−1(B) = g−1(f−1(B)),

is Lebesgue measurable; If f : R 7→ R is Lebesgue measurable and g : Rn 7→ R is
Lebesgue or Borel measurable, then f ◦ g need not be Lebesgue or Borel measurable
since f−1(B) need not be a Borel set even if B is a Borel set.

Definition A.1.10. Let (X,M, µ) be a measure space and f a non-negative real
valued measurable function on X. Then f is integrable over X with respect to µ
provided

∫
X
fdµ <∞.

Remark. Let f : R 7→ R be a continuous function and g : [a, b] 7→ R a Lebesgue
integrable function. If there exist constants c and d such that for every x ∈ R,
|f(x)| < c+ d |x|, then f ◦ g is Lebesgue integrable over [a, b].

Definition A.1.11. A function f : S ⊂ Rn 7→ Rm is called a Lipschitz function
if there is a constant C such that for all x, y ∈ S,

‖f(y)− f(x)‖ ≤ C‖y − x‖.

Definition A.1.12. A function f : [a, b] 7→ R is absolutely continuous on [a, b]
if, given ε > 0, there exists some δ > 0 such that

n∑
i=1

|f(yi)− f(xi)| < ε,

whenever {[xi, yi] : i = 1, · · · , n} is a finite collection of mutually disjoint subintervals

of [a, b] with
n∑
i=1

|yi − xi| < δ.
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Remark. Every absolutely continuous function on [a, b] is uniformly continuous; Ev-
ery Lipschitz continuous function on [a, b] is absolutely continuous.

Definition A.1.13. The function f : [a, b] 7→ R is of bounded variation on [a, b]
if and only if there is a constant M > 0 such that

n∑
i=1

|f(xi)− f(xi−1)| ≤M

for all partitions P = {x0, x1, · · · , xn} of [a, b].

Remark. A function is of bounded variation if and only if it is the difference of
two increasing functions; If a function is of bounded variation, then it is differntiable
almost everywhere; Every absolutely continuous function is of bounded variation and
hence is differentiable almost everywhere.

Definition A.1.14. The Dirac delta distribution δ is a linear functional from
the space of all smooth functions on R with compact support. Specifically, for every
smooth function f on R with compact support, and for arbitrary but fixed a ∈ R,∫ ∞

−∞
f(x)δ(x− a) dx = f(a).

Definition A.1.15. A sequence of functions {fn} converges to function f on R in
the sense of distribution if for every function φ ∈ C∞c (R) that is smooth on R
with compact support,

lim
n→∞

∫ ∞
−∞

fn(x)φ(x) dx =

∫ ∞
−∞

f(x)φ(x) dx.

A.2 Some Theorems from Measure Theory

We recall some theorems that are used in this thesis from measure theory in this
section.

Theorem A.2.1 (Refined Lebesgue Decomposition Theorem). Every regular Borel
measure µ on the real line can be decomposed in the following way,

µ = µac + µsc + µpp

where µac is the absolutely continuous part, µsc is the singular continuous part, and
µpp is the pure point part (a discrete measure).

Theorem A.2.2 (Radon-Nikodym Theorem). Let (X,Σ) be a measurable space and
µ, ν are two σ-finite measures. If ν is absolutely continuous with respect to µ, then
there is a unique measurable function f : X → [0,∞), such that for every measurable
set A ⊂ X,

ν(A) =

∫
A

fdµ.

The function f is called the Randon-Nikodym derivative and is denoted by dν
dµ

.
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Theorem A.2.3. Let (X,M, µ) be a measure space and ν a finite measure on the
measurable space (X,M). Then ν is absolutely continuous with respect to µ if and
only if for each ε > 0, there is a δ > 0 such that for every set E ∈M,

if µ(E) < δ, then ν(E) < ε.

Theorem A.2.4 (Regularity theorem for Lebesgue measure). The Lebesgue measure
on the real line R is a regular measure. That is, for all Lebesgue measurable subsets
A of R, and ε > 0, there exist closed subsets C and open subsets U of R such that
C ⊂ A ⊂ U and the Lebesgue measure of U \ C is strictly less than ε.
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APPENDIX B

PROOFS OF SOME LEMMAS IN CHAPTER (3)
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Proof of Lemma (3.2.1)

For any t∗ > 0, the demand outflux jump time, t∗, is finite, i.e., t∗ <∞.

Combining equation (3.2) and a lower bound for the velocity field α(W (t)) for very
time t ∈ (t∗, t

∗), we calculate an upper bound for t∗.

Proof. Without loss of generality, we restrict the time to t ∈ (t∗, t
∗).

By the conservation of mass, for any time t ∈ (t∗, t
∗), the total load W satisfies

W
′
(t) = u(t)− y(t) = (ρ(t, 0)− ρ(t, 1))α(W (t)) (B.1)

=
ρ(t, 0)− ρ(t, 1)

1 +W (t)
=

ρ2 − ρ1

1 +W (t)

≤ ρ2 − ρ1.

Thus for every t ∈ (t∗, t
∗),

W (t) ≤ W (t∗) + (ρ2 − ρ1)t,

which implies

α(W (t)) ≥ 1

1 +W (t∗) + (ρ2 − ρ1)t
> 0.

Note that the velocity stays strictly positive and decays at most rationally during
the time interval (t∗, t

∗). From the relation defined in equation (3.2), we get, for any
given t∗ > 0, the demand outflux jump time t∗ <∞. Indeed,

1 =

∫ t∗

t∗

α(W (t))dt ≥
∫ t∗

t∗

1

1 +W (t∗) + (ρ2 − ρ1)t
dt,

=
log (1 +W (t∗) + (ρ2 − ρ1)t)

ρ2 − ρ1

∣∣∣∣t∗
t=t∗

,

=
log (1 +W (t∗) + (ρ2 − ρ1)t∗)− log (1 +W (t∗) + (ρ2 − ρ1)t∗)

ρ2 − ρ1

.

After simplification, an upper bounded of t∗ is,

t∗ ≤ eρ2−ρ1 (1 +W (t∗) + (ρ2 − ρ1)t∗)− (1 +W (t∗))

ρ2 − ρ1

,

= eρ2−ρ1t∗ +

(
eρ2−ρ1 − 1

ρ2 − ρ1

)
(1 +W (t∗)),

< ∞.

Proof of Lemma (3.3.1)
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Given ε > 0, for any M > 0, T ∗ − t∗ is bounded above by
(

1+ρ2+M
1+ρ1

)
ε,

i.e., T ∗ − t∗ ≤
(

1+ρ2+M
1+ρ1

)
ε.

Proof. From equations (3.8) and (3.9),∫ ε

0

α(W (s)) ds =

∫ T ∗

t∗
α(W (s)) ds. (B.2)

The total load W increases over the time interval [0, ε], i.e., for every t ∈ [0, ε],
W (0) ≤ W (t) ≤ W (ε). By conservation of mass,

W (ε) = W (0) +

∫ ε

0

u(t) dt−
∫ ε

0

y(t) dt (B.3)

= W (0) +

∫ ε

0

ρ2α(W (t)) dt+M −
∫ ε

0

ρ(t, 1)α(W (t)) dt

= W (0) +

∫ ε

0

ρ2α(W (t)) dt+M −
∫ ε

0

ρ1α(W (t)) dt,

= W (0) +M +

∫ ε

0

(ρ2 − ρ1)α(W (t)) dt.

In addition, for every t ∈ [0,∞), the velocity α(W (t)) is bounded above by 1 and
W (0) = ρ1. Thus

W (ε) ≤ W (0) +M + ε(ρ2 − ρ1)

= ρ1 +M + ε(ρ2 − ρ1).

Thus for every t ∈ [0, ε],

ρ1 ≤ W (t) ≤ ρ1 +M + ε(ρ2 − ρ1).

This implies
1

1 + ρ1 +M + ε(ρ2 − ρ1)
≤ α(W (t)) ≤ 1

1 + ρ1

. (B.4)

Hence ∫ ε

0

α(W (s))ds ≤ ε

1 + ρ1

. (B.5)

The total load W decreases over the time interval [t∗, T ∗], i.e., for every t ∈ [t∗, T ∗],
W (T ∗) ≤ W (t) ≤ W (t∗). Thus.

1

1 +W (t∗)
≤ α(W (t)) ≤ 1

1 +W (T ∗)
. (B.6)

Also by conservation of mass,
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W (t∗) = W (T ∗) +

∫ T ∗

t∗
y(t) dt−

∫ T ∗

t∗
u(t) dt

= W (T ∗) +

∫ T ∗

t∗
ρ(t, 1)α(W (t)) dt−

∫ T

t∗
ρ2α(W (t)) dt

= W (T ∗) +

∫ ε

0

ρ2α(W (t)) dt+M −
∫ ε

0

ρ2α(W (t)) dt

= W (T ∗) +M.

Since at time t = T ∗, the system is at an equilibrium state with constant density ρ2,
we have W (T ∗) = ρ2. Thus W (t∗) = ρ2 +M . By equation (B.6), for every t ∈ [t∗, T ∗],

1

1 + ρ2 +M
≤ α(W (t)) ≤ 1

1 + ρ2

.

Hence ∫ T ∗

t∗
α(W (t))dt ≥ T ∗ − t∗

1 + ρ2 +M
. (B.7)

Combine equations (B.2), (B.5) and (B.7),

T ∗ − t∗

1 + ρ2 +M
≤ ε

1 + ρ1

,

which implies that

T ∗ − t∗ ≤
(

1 + ρ2 +M

1 + ρ1

)
ε.

Proof of Lemma (3.3.2)

Given ε > 0, for any M > 0, t∗ is bounded above by ε + 1
2
(ρ2 − ρ1) +(

1 + ρ1 +M + ρ2−ρ1
1+ρ1

ε
)

, i.e., t∗ ≤ ε+ 1
2
(ρ2−ρ1)+

(
1 + ρ1 +M + ρ2−ρ1

1+ρ1
ε
)

.

Proof. For ε ≤ t ≤ t∗, from equation (B.1) it follows that

W
′
(t) = (ρ2 − ρ1)

1

1 +W (t)
. (B.8)

Thus for every t ∈ [ε, t∗], we have,

W (t) =
√

2(ρ2 − ρ1)(t− ε) + (1 +W (ε))2 − 1. (B.9)

Also from (B.3), (B.4) and w(0) = ρ1, we get the following inequality,

ρ1 +M + (ρ2 − ρ1)
ε

1 + ρ1 +M + (ρ2 − ρ1)ε
≤ W (ε) ≤ ρ1 +M + (ρ2 − ρ1)

ε

1 + ρ1

.
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Let

M1 =

(
1 + ρ1 +M + (ρ2 − ρ1)

ε

1 + ρ1 +M + (ρ2 − ρ1)ε

)2

,

and

M2 =

(
1 + ρ1 +M + (ρ2 − ρ1)

ε

1 + ρ1

)2

.

Then we get the range of the total load, W (t), when ε ≤ t ≤ t∗,√
2(ρ2 − ρ1)(t− ε) +M1 − 1 ≤ W (t) ≤

√
2(ρ2 − ρ1)(t− ε) +M2 − 1.

So the upper and lower bounds for the velocity α(W (t)) for ε ≤ t ≤ t∗ are,

α(W (t)) ≥ 1√
2(ρ2 − ρ1)(t− ε) +

(
1 + ρ1 +M + (ρ2 − ρ1) ε

1+ρ1

)2
, (B.10)

α(W (t)) ≤ 1√
2(ρ2 − ρ1)(t− ε) +

(
1 + ρ1 +M + (ρ2 − ρ1) ε

1+ρ1+M+(ρ2−ρ1)ε

)2
.

From (3.8), (B.4) and (B.10), we have,∫ ε

0

1

1 + ρ1 +M + ε(ρ2 − ρ1)
dt

+

∫ t∗

ε

1√
2(ρ2 − ρ1)(t− ε) +

(
1 + ρ1 +M + (ρ2 − ρ1) ε

1+ρ1

)2
dt ≤ 1,

which implies

1

1 + ρ1 +M + ε(ρ2 − ρ1)
ε− 1

ρ2 − ρ1

(
1 + ρ1 +M + (ρ2 − ρ1)

ε

1 + ρ1

)

+
1

ρ2 − ρ1

√2(ρ2 − ρ1)(t∗ − ε) +

(
1 + ρ1 +M + (ρ2 − ρ1)

ε

1 + ρ1

)2
 ≤ 1

Therefore,

t∗ ≤ ε+

(
(1 + ρ1 +M + ρ2−ρ1

1+ρ1
ε) + (ρ2 − ρ1)(1− ε

1+ρ1+M+(ρ2−ρ1)ε)
)
)2

2(ρ2 − ρ1)
,

−

(
1 + ρ1 +M + ρ2−ρ1

1+ρ1
ε
)2

2(ρ2 − ρ1)

≤ ε+
1

2
(ρ2 − ρ1) +

(
1 + ρ1 +M +

ρ2 − ρ1

1 + ρ1

ε

)
.
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Proof of Lemma (3.3.9)

Given a function h as in (3.10), for arbitrary but fixed ε ∈ (0, 1], the time
T ∗ at which the system reaches its new equilibrium state is continuous
with respect to the additional mass M .

Proof. Similar to lemma (3.3.8), it is enough to show that for arbitrary but fixed
t ∈ (t∗, T ∗], the total load W (t) depends continuously on the additional mass M .

Let t ∈ (t∗, T ∗] be arbitrary but fixed. Then there exists τ(t) ∈ (0, ε], such that∫ t

τ(t)

α(W (s)) ds = 1. (B.11)

Differentiating both sides of equation (B.11) with respect to t,

τ ′(t) =
α(W (t))

α(W (τ(t)))
(B.12)

τ(t∗) = 0.

Thus

τ(t) =

∫ t

t∗

α(W (s))

α(W (τ(s)))
ds. (B.13)

Furthermore, for t ∈ (t∗, T ∗], the total load W satisfies

W ′(t) = −M
ε
h

(
τ(t)

ε

)
τ ′(t) (B.14)

W (t∗) = ρ2 +M,

which implies

W (t) =

∫ t

t∗
−M
ε
h

(
τ(s)

ε

)
τ ′(s) ds+ ρ2 +M

=

∫ τ(t)

0

−M
ε
h
(r
ε

)
dr + ρ2 +M.

Suppose that τk, Wk, k = 1, 2 are the solutions to the Cauchy problems (B.12) and
(B.14) respectively with parameter M = Mk. Without loss of generality, we assume
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that τ1(t) < τ2(t). Therefore,

|W1(t)−W2(t)| =

∣∣∣∣∣
∫ τ1(t)

0

−M1

ε
h
(r
ε

)
dr −

∫ τ2(t)

0

−M2

ε
h
(r
ε

)
dr +M1 −M2

∣∣∣∣∣
(B.15)

≤ |M1 −M2|+

∣∣∣∣∣
∫ τ2(t)

0

1

ε
h
(r
ε

)
M2 dr −

∫ τ1(t)

0

1

ε
h
(r
ε

)
M1

∣∣∣∣∣
≤ |M1 −M2|+

∫ τ1(t)

0

1

ε
h
(r
ε

)
dr |M1 −M2|+

∣∣∣∣∣
∫ τ2(t)

τ1(t)

1

ε
h
(r
ε

)
M2 dr

∣∣∣∣∣
≤ 2 |M1 −M2|+

∣∣∣∣∣M2

ε

∫ τ2(t)

τ1(t)

h
(r
ε

)
dr

∣∣∣∣∣
≤ 2 |M1 −M2|+

M2

ε
|τ2(t)− τ1(t)| .

The third inequality is due to the fact that
∫ τ1(t)

0
1
ε
h
(
r
ε

)
dr < 1 and the last inequality

is due to the fact that h is bounded above by 1.
In addition, let t∗k, k = 1, 2 be the time when all the initial mass exit from the

system with parameter M = Mk. Without loss of generality, we assume that t∗1 < t∗2.

|τ1(t)− τ2(t)| (B.16)

=

∣∣∣∣∣
∫ t

t∗1

α(W1(s))

α(W1(τ1(s)))
ds−

∫ t

t∗2

α(W2(s))

α(W2(τ2(s)))
ds

∣∣∣∣∣ (B.17)

=

∣∣∣∣∣
∫ t∗2

t∗1

α(W1(s))

α(W1(τ1(s)))
ds

∣∣∣∣∣+

∣∣∣∣∣
∫ t

t∗2

α(W1(s))

α(W1(τ1(s)))
− α(W2(s))

α(W2(τ2(s)))
ds

∣∣∣∣∣
≤ 1

vmin

|t∗1 − t∗2|+
1

(vmin)2

∣∣∣∣∣
∫ t

t∗2

α(W1(s))α(W2(τ2(s)))− α(W2(s))α(W1(τ1(s))) ds

∣∣∣∣∣ .
Here vmin is the positive lower bound of the velocity α, that is, for every t ∈ (t∗, T ∗],
α(W (t)) ≥ vmin > 0.

Note that for every s ∈ (t∗2, T
∗],

|α(W1(s))α(W2(τ2(s)))− α(W2(s))α(W1(τ1(s)))|
≤ |α(W1(s))α(W2(τ2(s)))− α(W1(s))α(W1(τ1(s)))|

+ |α(W1(s))α(W1(τ1(s)))− α(W2(s))α(W1(τ1(s)))|
≤ |W2(τ2(s))−W1(τ1(s))|+ |W1(s)−W2(s)|
≤ |W2(τ2(s))−W1(τ2(s))|+ |W1(τ2(s)−W1(τ1(s)))|+ |W1(s)−W2(s)| .

Furthermore, since for every t ∈ [0, ε],

W ′(t) = u(t)− y(t) = ρ2α(W (t)) +
M

ε
h

(
t

ε

)
− ρ1α(W (t)) ≤ ρ2 +

M

ε
,
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we have,

|W1(τ2(s)−W1(τ1(s)))| ≤
(
ρ2 +

M

ε

)
(τ2(s)− τ1(s)).

By equation (B.15), we obtain,

|W1(s)−W2(s)| ≤ 2 |M1 −M2|+
M2

ε
|τ2(s)− τ1(s)| .

Thus,

|τ1(t)− τ2(t)| (B.18)

≤ 1

vmin

|t∗1 − t∗2|+
1

(vmin)2

∫ t

t∗2

|W2(τ2(s))−W1(τ2(s))| ds

+
2

(vmin)2

∫ t

t∗2

|M1 −M2| ds+
1

(vmin)2

∫ t

t∗2

(
ρ2 +

M

ε
+
M2

ε

)
|τ2(s)− τ1(s)| ds.

Recall that we have t∗ depends continuously on the additional massM (lemma (3.3.8))
and for every s ∈ [0, ε], W (s) depends continuously on the additional mass M (lemma
(3.3.5)). Combine with Grönwall’s Inequality (lemma (3.3.4)) and equation (B.18),
we obtain that for arbitrary but fixed t ∈ (t∗, T ∗], τ(t) depends continuously on the
additional mass M , do does the total load W (t).

Proof of Lemma (3.3.12)

For ε ∈ (0, 1] sufficiently small and arbitrary but fixed, we have

ρ1 + ρ2 + 2M∗ + 2

2
− M∗

1 + ρ1

ε+O(ε) ≤ t∗ ≤ ρ1 + ρ2 + 2M∗ + 2

2
+O(ε),

(B.19)
and

M∗ ≥ ρ1(ρ2 − ρ1)

2
−
(
ρ2

1(ρ2 − ρ1)

2(1 + ρ1)
+ ρ2

)
ε+O(ε), (B.20)

M∗ ≤ ρ1(ρ2 − ρ1)

2
+

(
ρ1ρ2(ρ2 − ρ1)

2(1 + ρ2)
+ ρ2

)
ε+O(ε).

Proof. We then find the range of t∗. Recall that when t ∈ [0, ε],

1

1 + ρ1 +M∗ + ε(ρ2 − ρ1)
≤ α(W (t)) ≤ 1

1 + ρ1

,

thus
ε

1 + ρ1 +M∗ + ε(ρ2 − ρ1)
≤
∫ ε

0

α(W (t))dt ≤ ε

1 + ρ1

. (B.21)
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Combining with equation (3.24),√
(ρ2 +M∗ + 1)2 − 2(ρ2 − ρ1)(t∗ − ε)− (ρ1 +M∗ + 1)

ρ2 − ρ1

≥ ε

1 + ρ1 +M∗ + ε(ρ2 − ρ1)√
(ρ2 +M∗ + 1)2 − 2(ρ2 − ρ1)(t∗ − ε)− (ρ1 +M∗ + 1)

ρ2 − ρ1

≤ ε

1 + ρ1

.

Thus, we can obtain a lower bound for t∗,

t∗ ≥ 1

2(ρ2 − ρ1)

(
(ρ2 +M∗ + 1)2 −

(
ε(ρ2 − ρ1)

1 + ρ1

+ (ρ1 +M∗ + 1)

)2
)

+ ε

=
1

2(ρ2 − ρ1)

((
ε(ρ2 − ρ1)

1 + ρ1

+ ρ1 + ρ2 + 2M∗ + 2

)(
ρ2 − ρ1 −

ε(ρ2 − ρ1)

1 + ρ1

))
+ ε

=
1

2

((
ε(ρ2 − ρ1)

1 + ρ1

+ ρ1 + ρ2 + 2M∗ + 2

)(
1− ε

1 + ρ1

))
+ ε

=
1

2

(
ρ1 + ρ2 + 2M∗ + 2 + ε

(
ρ2 − ρ1

1 + ρ1

− ρ1 + ρ2 + 2M∗ + 2

1 + ρ1

)
+O(ε)

)
+ ε

=
1

2
(ρ1 + ρ2 + 2M∗ + 2) +

ε

2

(
ρ2 − ρ1

1 + ρ1

− ρ1 + ρ2 + 2M∗ + 2

1 + ρ1

+ 2

)
+O(ε)

=
ρ1 + ρ2 + 2M∗ + 2

2
− εM∗

1 + ρ1

+O(ε).

For an upper bound of t∗,

t∗ ≤ 1

2(ρ2 − ρ1)

(
(ρ2 +M∗ + 1)2 −

(
ε(ρ2 − ρ1)

1 + ρ1 +M∗ + ε(ρ2 − ρ1)
+ (ρ1 +M∗ + 1)

)2
)

+ ε

=
1

2
(ρ1 + ρ2 + 2M∗ + 2)

+
1

2
ε

(
ρ2 − ρ1

1 + ρ1 +M∗ + ε(ρ2 − ρ1)
− ρ1 + ρ2 + 2M∗ + 2

1 + ρ1 +M∗ + ε(ρ2 − ρ1)
+ 2

)
+O(ε)

=
ρ1 + ρ2 + 2M∗ + 2

2
+O(ε).

Therefore,

ρ1 + ρ2 + 2M∗ + 2

2
− M∗

1 + ρ1

ε+O(ε) ≤ t∗ ≤ ρ1 + ρ2 + 2M∗ + 2

2
+O(ε). (B.22)

Next, we calculate the range of M∗. Recall that the backlog β(T ∗) = 0 indicates that

y1t
∗ + y2(T ∗ − t∗)− ρ1 −M∗ =

∫ ε

0

ρ2α(W (s))ds, (B.23)
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and T ∗ − t∗ ≥ 0. Combine expressions (B.21), (3.25) and (B.23), we have,

y1

(
ρ1 + ρ2 + 2M∗ + 2

2
− M∗

1 + ρ1

ε+O(ε)

)
− ρ1 −M∗ ≤ ρ2

1 + ρ1

ε

=⇒ M∗
(
y1 −

y1

1 + ρ1

ε− 1

)
+ y1

(
ρ1 + ρ2 + 2

2
+O(ε)

)
− ρ1 ≤

ρ2

1 + ρ1

ε.

Note that the coefficient of M∗ is negative, thus,

M∗ ≥
ρ1+ρ2+2

2
y1 − ρ1 − ρ2

1+ρ1
ε+ y1O(ε)

1− y1 + y1ε
1+ρ1

=
ρ1+ρ2+2

2
y1(1 + ρ1)− ρ1(1 + ρ1)− ρ2ε+O(ε)

1 + ρ1 − y1(1 + ρ1) + y1ε

=
ρ1(ρ1+ρ2+2)

2
− ρ1(1 + ρ1)− ρ2ε+O(ε)

1 + y1ε

=

(
ρ1(ρ1 + ρ2 + 2)

2
− ρ1(1 + ρ1)

)(
1

1 + y1ε

)
− ρ2ε

(
1

1 + y1ε

)
+O(ε).

Note that by Taylor’s theorem,

1

1 + y1ε
= 1− y1ε+O(ε),

so,

M∗ ≥
(
ρ1(ρ1 + ρ2 + 2)

2
− ρ1(1 + ρ1)

)
(1− y1ε+O(ε))− ρ2ε(1− y1ε+O(ε)) +O(ε)

=

(
ρ1(ρ1 + ρ2 + 2)

2
− ρ1(1 + ρ1)

)
+

(
−
(
ρ1(ρ1 + ρ2 + 2)

2
− ρ1(1 + ρ1)

)
y1 − ρ2

)
ε+O(ε)

=
ρ1(ρ2 − ρ1)

2
−
(
ρ2

1(ρ2 − ρ1)

2(1 + ρ1)
+ ρ2

)
ε+O(ε).

Again recall the restriction that the backlog β reaches zero at time t = T ∗, i.e.,

β(T ∗) = y1t
∗ + y2(T ∗ − t∗)− ρ1 −M∗ −

∫ ε

0

ρ2α(W (s))ds = 0.

Consider the upper bound for t∗ from the inequality (3.25), the upper bound for
T ∗ − t∗, T − t∗ ≤ 1+ρ2+M∗

1+ρ1
ε, and for any t, 0 < α(W (t)) < 1. Therefore,

y1

(
ρ1 + ρ2 + 2M∗ + 2

2
+O(ε)

)
+ y2

1 + ρ2 +M∗

1 + ρ1

ε− ρ1 −M∗ ≥ β(T ∗) = 0,
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which implies that

M∗
(
y1 +

y2ε

1 + ρ1

− 1

)
+ y1

ρ1 + ρ2 + 2

2
+ y2

(1 + ρ2)ε

1 + ρ1

− ρ1 +O(ε) ≥ 0.

Note that if 0 < ε < (1−y1)(1+ρ1)
y2

, then the coefficient of M∗ is negative. Thus we can

obtain an upper bound of M∗,

M∗ ≤
−y1

ρ1+ρ2+2
2
− y2

(1+ρ2)ε
1+ρ1

+ ρ1 +O(ε)

y1 + y2ε
1+ρ1
− 1

=
−ρ1(ρ2+ρ1+2)

2
− ρ2ε+ ρ1(1 + ρ1) +O(ε)

ρ1 + y2ε− (1 + ρ1)

=
−ρ1(ρ2+ρ1+2)

2
+ ρ1(1 + ρ1)− ρ2ε+O(ε)

y2ε− 1

=

(
−ρ1(ρ2 + ρ1 + 2)

2
+ ρ1(1 + ρ1)

)
(−1)

(
1

1− y2ε

)
+ ρ2ε

(
1

1− y2ε

)
+O(ε)

=

(
ρ1(ρ2 + ρ1 + 2)

2
− ρ1(1 + ρ1)

)
(1 + y2ε+O(ε)) + ρ2ε (1 + y2ε+O(ε)) +O(ε)

=

(
ρ1(ρ2 + ρ1 + 2)

2
− ρ1(1 + ρ1)

)
+

((
ρ1(ρ2 + ρ1 + 2)

2
− ρ1(1 + ρ1)

)
y2 + ρ2

)
ε+O(ε)

=
ρ1(ρ2 − ρ1)

2
+

(
ρ1ρ2(ρ2 − ρ1)

2(1 + ρ2)
+ ρ2

)
ε+O(ε).

Thus,

M∗ ≥ ρ1(ρ2 − ρ1)

2
−
(
ρ2

1(ρ2 − ρ1)

2(1 + ρ1)
+ ρ2

)
ε+O(ε) (B.24)

M∗ ≤ ρ1(ρ2 − ρ1)

2
+

(
ρ1ρ2(ρ2 − ρ1)

2(1 + ρ2)
+ ρ2

)
ε+O(ε).
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