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ABSTRACT

In recent years, the rise in social media usage both vertically in terms of the number

of users by platform and horizontally in terms of the number of platforms per user

has led to data explosion. User-generated social media content provides an excellent

opportunity to mine data of interest and to build resourceful applications. The rise in

the number of healthcare-related social media platforms and the volume of healthcare

knowledge available online in the last decade has resulted in increased social media

usage for personal healthcare. In the United States, nearly ninety percent of adults,

in the age group 50-75, have used social media to seek and share health information.

Motivated by the growth of social media usage, in this thesis, we focus on healthcare-

related applications, study various challenges posed by social media data, and address

them through novel and effective machine learning algorithms.

The major challenges for effectively and efficiently mining social media data to

build functional applications include: (1) Data reliability and acceptance: most social

media data (especially in the context of healthcare-related social media) is not regu-

lated and little has been studied on the benefits of healthcare-specific social media;

(2) Data heterogeneity: social media data is generated by users with both demo-

graphic and geographic diversity; (3) Model transparency and trustworthiness: most

existing machine learning models for addressing heterogeneity are considered as black

box models, not many providing explanations for why they do what they do to trust

them.

In response to these challenges, three main research directions have been investi-

gated in this thesis: (1) Analyzing social media influence on healthcare: to study the

real world impact of social media as a source to offer or seek support for patients with

chronic health conditions; (2) Learning from task heterogeneity: to propose various

models and algorithms that are adaptable to new social media platforms and robust

i



to dynamic social media data, specifically on modeling user behaviors, identifying

similar actors across platforms, and adapting black box models to a specific learn-

ing scenario; (3) Explaining heterogeneous models: to interpret predictive models in

the presence of task heterogeneity. In this thesis, we propose novel algorithms with

theoretical analysis from various aspects (e.g., time complexity, convergence proper-

ties). The effectiveness and efficiency of the proposed algorithms is demonstrated by

comparison with state-of-the-art methods and relevant case studies.
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Chapter 1

INTRODUCTION

In recent years, social media has gained significant popularity and become an

essential medium of communication. According to a survey, about 88% of the pub-

lic in the United States use some form of social media, a 53% growth in the last

decade. Also, the average number of accounts per user has increased from two in

2012 to seven in 2016 (Pew Research Center, 2018a). Rise in social media usage both

vertically in terms of the number of users by platform and horizontally in terms of

the number of platforms per user has led to data explosion. Popular social media

platforms like Facebook, Instagram and Twitter manage tens of petabytes of infor-

mation with daily data flows of hundreds of terabytes and a continually expanding

userbase (Pew Research Center, 2018b). Such huge volumes of user-generated con-

tent provide an excellent opportunity to mine data of interest. We can, thus, look

for valuable nuggets of information by applying diverse search (information retrieval)

and mining techniques (data mining, text mining, web mining, opinion mining).

User-generated content is diverse based on the need the social media platform

caters to. Per one survey, amongst those who use social media roughly 67% stated

staying in touch with current friends and family as a major reason, while 17% felt

social media enabled them to connect with friends they have lost touch with (Pew

Research Center, 2011). Another research indicated about 67% of the United States

population use social media to stay updated on the latest news and seniors are driving

that number up (Pew Research Center, 2017).

Social media usage has also seen a spike when it comes to personal healthcare.

In the United States, nearly 90% of adults, in the age group 50-75, have used social
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media to seek and share health information (Tennant et al., 2015a). Research demon-

strates that online social support programs like health care forums and social media

websites (e.g. Facebook and Twitter) can help patients gain knowledge about their

diseases and cope better with their daily management routine (Petrovski et al., 2015).

Effectively mining information from these healthcare-related social media platforms

can, thus, have a wide range of applications resulting in improved healthcare. For ex-

ample, healthcare social networks can connect patients suffering from major chronic

diseases such as Diabetes Mellitus, with physicians as well as other patients. Com-

pared to generic social networks such as Twitter and Facebook, disease-specific social

networks (e.g., TuDiabetes1 and DiabetesSisters 2) have a greater concentration of

patients with similar conditions and relevant resources. However, when it comes to

such social networks, the patient is likely to be sticky to a single social network, and

would rarely look at other networks, thus limiting their access to online resources,

especially patients with similar questions and concerns. Identifying patient groups

with similar conditions can help connect patients across networks, thereby opening

doors for knowledge sharing to help the community as a whole. Additionally, in a

world of “fake news”, a lot of health information is misrepresented and calls for au-

thenticity. Motivated by the immense scope of leveraging social media information

for healthcare and addressing underlying challenges with usage and reliability, in this

thesis we explore answers to the following questions:

• Can social media serve as a platform for improved healthcare? Specifically, why

would patients leverage social media and how would it impact their health-

care?; Would it equip them to make better choices? And finally, does it help in

communicating effectively with doctors and health care providers?

1http://www.tudiabetes.org/
2https://diabetessisters.org/
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• How to efficiently learn and build algorithms to mine knowledge from these

healthcare-dedicated social networks? What are the challenges involved?

• Finally, how to provide meaningful explanations to justify the behavior of algo-

rithms and learning methods?

Unlike traditional mining settings where data is considered to be homogeneous for

most mining tasks, user-generated social media data is intrinsically heterogeneous and

thus poses a set of challenges. It can be both structured (ratings, tags, links) as well

as unstructured (text, audio, video). Similar health-related social media websites that

cater to users from different geographical locations can suffer from a distributional

shift in user-generated data, either features or class labels. This shift could also be

due to user bias or personal preferences. Transfer learning addresses the problem of

distribution shift in data (Pan and Yang, 2010). In particular, task heterogeneity is

reflected in inconsistent user behaviors across social media platforms, similar actors

across social networks, etc. Therefore, in this thesis work, we aim to design efficient

models and tools to help us leverage and learn from data heterogeneity in real-world

scenarios that help in improving healthcare.

In scenarios where parts of data in one social network are hidden, missing or not

available, leveraging it partially for mining is very challenging and has not been well

studied. Motivated by the applications of task heterogeneity, in this thesis work,

I present my dissertation on techniques for addressing task heterogeneity and the

underlying challenges in social media analytics.

In lieu of the above questions and challenges for this research, three main research

directions have been investigated:

D1. Social media in healthcare: To study the real-world impact of social media

as a source to seek and offer support to patients with chronic health conditions.
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D2. Learning from task heterogeneity: To propose various models and algo-

rithms to learn and model user behaviors on social media platforms, to identify

similar actors across social networks, to adapt and leverage information from ex-

isting black-box models to improve classification accuracy under domain adap-

tation settings.

D3. Model explainability: To provide interpretable explanations for heteroge-

neous predictive models in the presence of task heterogeneity.

The dissertation is organized as follows. The related work, Chapter 2, discusses

existing research and how the proposed methods differ from it. Chapter 3, discusses

the impact of social media on patients with diabetes mellitus. Chapter 4, presents

algorithms and models to learn from task heterogeneity in social media. Chapter

5, discusses methods to explain task heterogeneity. Finally, chapter 6 concludes my

research.

4



Chapter 2

LITERATURE SURVEY

Since 2004, the growth of social media has been near exponential (We Are So-

cial, 2019). According to a survey, about 88% of the public in the United States use

some form of social media, a 53% growth in the last decade (Pew Research Center,

2018a). This growth in social media usage led to an information explosion. Mining

valuable nuggets of data from such information generated through social media have

immense applications (Zafarani et al., 2014). Machine learning techniques have been

widely adopted to mine and analyze the large social media data to address many

real-world problems. Mining from social media platforms has many applications, (1)

Event detection - Social networks enable users to freely communicate with each other

and share their recent news, ongoing activities or views about different topics. As

a result, they can be seen as a potentially viable source of information to under-

stand the current emerging topics/events (Nurwidyantoro and Winarko, 2013); (2)

Community detection - identifying communities on social networks, how they evolve,

and evaluating identified communities, often without ground truth (Zafarani et al.,

2014); (3) Recommendation in social media - recommending friends or items on social

media sites Ricci et al. (2011); (4) Sentiment and opinion mining - identifying collec-

tively subjective information, e.g. positive and negative, from social media data (Liu,

2012); (5) Network embedding - assigning nodes in a network to low-dimensional

representations and effectively preserves the network structure(Cui et al., 2017).

As mentioned earlier in the introduction chapter, the intrinsic property of data

heterogeneity in social media data poses a set of challenges. In this chapter, we

present the existing research on handling data heterogeneity and study the impact
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of social media. In this chapter, we present existing work on impact of social media

and its implications in Section 2.1, Section 2.2 presents existing research addressing

data heterogeneity with a focus on task heterogeneity. Finally, we discuss the existing

research on explaining models under task heterogeneity in Section 2.3.

2.1 Impact of Social Media

The growing popularity in the usage of social media platforms and applications

has an impact on the individuals and society as a whole (Bishop, 2017). These plat-

forms have revolutionized the way we view ourselves, the way we see others and the

way we interact with the world around us. Social media has many positive implica-

tions. Khurana (2015) studied the impact of social networking sites on the youth, it

was showed that social media enables connecting with people all across the globe by

not hampering their work hours and schedules and it also helps in education. Hudson

and Thal (2013) studied the impact of social media on the Consumer Decision Process

and its implications for tourism marketing. Pew Research Center (2017), showed that

about 67% of the United States population uses social media to stay updated on the

latest news. Also, the use of social media in politics including Twitter, Facebook,

and YouTube has dramatically changed the way campaigns are run and how Ameri-

cans interact with their elected officials (Bonilla and Rosa, 2015). Social media usage

has also seen a spike when it comes to personal healthcare. Tennant et al. (2015b)

showed that nearly 90% of adults who use the internet and social media platforms like

Facebook and Twitter used these platforms to find and share healthcare information.

With a lot of growing interest and immense benefits from healthcare applications to

society, we are motivated to work on addressing challenges in healthcare-related social

media platforms.

Research demonstrates that online social support programs like health care fo-
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rums and social media websites (e.g. Facebook and Twitter) can help patients gain

knowledge about their diseases and cope better with their daily management rou-

tine (Petrovski et al., 2015). Patel et al. (2015) studied the impact of social networks

on perceived social support (e.g., of patients with chronic diseases). Researchers also

studied how social media users gather and exchange health-related information and

share personal experiences (Naslund et al., 2016; Shepherd et al., 2015). Fung et al.

(2016) researched the spread of misinformation about disease outbreaks to inform

public health communication strategies. Though there exists a lot of research –

2.2 Heterogeneous Learning and Social Media

Mining from healthcare-related social media platforms is challenging. The key to

building applications from social media data is User-behavior modeling. Social media

data is intrinsically heterogenous - generated by users from different demographical

locations, speak different languages and from different cultural backgrounds. This

makes user-behavior modeling under heterogeneity very challenging. Further, to mine

across multiple social media platforms, the likelihood of the same user having multiple

accounts is very low. Often they stick to one or two platforms that are popular based

on the geographical location or demographics. To efficiently design applications that

serve across multiple platforms, it is essential to identify similar users across the

networks. Finally, it is very costly to collect labels for data from multiple platforms.

A more practical approach would be to leverage knowledge from one platform to

another. Motivated by this we identified three major problems: (1) Modeling user-

behavior; (2) Identifying similar actors and (3) adaptable to new domains. In this

section, we discuss existing research on each of the problems.

In traditional machine learning models, it is considered that the training data

on which the model is trained has similar data distributions to the data at the test
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time. Due to data heterogeneity and dynamic nature of social media platforms, it

is not possible to use traditional machine learning models. In the past, researchers

have addressed these issues through a new branch of machine learning called Transfer

Learning. In transfer learning, given data from the source domain and target domain,

models are trained on a source domain and the underlying knowledge is transferred to

target domain (Pan and Yang, 2010). Different supervised, unsupervised and semi-

supervised methods have been proposed for a wide variety of applications such as

image classification (Tan et al., 2015), WiFi-localization on time variant data (Pan

et al., 2008), and web document classification (He et al., 2009; Pan et al., 2010).

Transfer learning is broadly classified into inductive, transductive and unsupervised

transfer learning (Pan and Yang, 2010). In inductive transfer learning, the distri-

bution of the data in the source domain and target domain are considered to be

similar, but the machine learning task varies from the source domain to the target

domain. Self-taught learning (Raina et al., 2007) and Multi-task learning (Zhang and

Yang, 2017) are a few examples of inductive transfer learning. Whereas in transduc-

tive transfer learning, the tasks are the same but the data distributions vary from

the source domain to the target domain. Domain adaptation based methods (Jiang,

2008), correcting co-variate bias, cross-domain sentiment classification (Blitzer et al.,

2007) and cross-domain recommendation are a few examples of transductive learning.

In unsupervised transfer learning, the labels in the source domain and target domain

are not observable. Self-taught clustering (STC) (Dai et al., 2008) and transferred

discriminative analysis (TDA) (Wang et al., 2008) algorithms are proposed to trans-

fer clustering and transfer dimensionality reduction problems, respectively. Given

the heterogeneous nature of the data on social media platforms, we are interested in

transductive learning in this research work.
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2.2.1 Transductive Transfer Learning

In transductive transfer learning, the data distributions vary across the source

and target domains, but the learning task, sentiment analysis is the same in both

the domains. Sentiment classification in a cross-domain set up is a well-studied prob-

lem. For example, structural correspondence learning (SCL) generates a set of pivots

using common features in both the source and target domains using mutual infor-

mation and a set of classifiers on the common features (Blitzer et al., 2007); spectral

feature alignment (SFA) splits the feature space into domain independent features

and domain-specific features, then aligns the domain-specific features into unified

clusters by using domain independent features as a bridge through spectral feature

clustering (Pan et al., 2010); Transfer component analysis (TCA) utilizes both the

shared and the mapped domain-specific topics to span a new shared feature space for

knowledge transfer (Li et al., 2012); labeled-unlabeled-feature tripartite graph-based

approach called TRITER was proposed to transfer sentiment knowledge from labeled

examples in both the source and target domains to unlabeled examples in the target

domain He et al. (2009).

Prior research has shown that user information combined with linguistic features

improved sentiment classification. Li et al. (2014) proposed a user-item based topic

model which can simultaneously utilize the textual topic and latent user-item factors

for sentiment analysis; Tang et al. (2015a) incorporated user- and product- level infor-

mation using vector space models into a neural network approach for document-level

sentiment classification. Motivated by prior work which demonstrated the usefulness

of user information in single-domain sentiment classification, we propose U-Cross to

explicitly model the user behaviors by borrowing information from the source domain

to help construct the prediction model in the target domain. Tan et al. (2011) used

9



a factor-graph model for user labels in a transductive learning setting for a short-text

sentiment classification task. It is likely that the user behavior can vary across the

source and target domains, if not handled well it can lead to the negative transfer of

knowledge. Our work on cross-domain sentiment classification varies from Tan et al.

(2011) as we carefully model the user behavior based on the relatedness between the

source and target domains, which prevents the ‘negative transfer’.

2.2.2 Source-free Transfer Learning

Source-free transfer learning is a special case of transductive transfer learning,

where there is limited to no knowledge of labeled examples and also the feature

distribution of the examples from one or more source domains. Yang et al. (2007)

proposed the Adaptive-SVM framework where the goal is to learn the target clas-

sification function by adapting the pre-trained classifiers to the labeled examples in

the target domain. Papers Duan et al. (2012) and Xiang et al. (2011) proposed the

variants of “Domain Adaptation Machine”(DAM) to learn the target classification

function. They assume that there exists multiple source classifiers (black box), and

access to a few labeled examples and all the unlabeled examples in the target domain.

They extend the Adaptive SVM by introducing a data dependent regularizer on all

the examples in the target domain and the labeled examples in the target domain.

Our work is significantly different from the DAM, as we consider only one off-the-

shelf classifier compared to multiple SVM classifiers used in DAM and also provide a

drift correction framework to adapt the off-the-shelf classifier to labeled examples. Lu

et al. (2014) proposed a source domain free approach by leveraging the information

from existing knowledge sources like WWW or Wikipedia. They build a large label

knowledge base with 50,000 category pairs and train classifiers for each of the category

pair. The goal is to compute the latent features on the labels, which is further used
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to compute the target labels from unlabeled examples. The problem of ”Source-free

transfer learning” in Lu et al. (2014) and Xiang et al. (2011) is different from the

problem of off-the-shelf classifier adaptation, instead of building a knowledge base we

simply make use of an existing off-the-shelf black-box classifier to improve accuracy

on the set of unlabeled examples. In the paper Chidlovskii et al. (2016), authors con-

sider three different scenarios, (1) The parameters of the source classifiers are known;

(2) Source classifiers as a black box; (3) Class distribution of the source classifier is

known. The case 2 is very relevant to our work. They employ marginalized denoising

auto-encoders to denoise the source classifier labels using unlabeled data in the target

domain. Our approach is semi-supervised and leverages the similarity between the

examples which varies with Chidlovskii et al. (2016) as it is an unsupervised setting.

2.2.3 Identifying Similar Actors Across Networks

Identifying similar actors across networks can be considered as a cross-n etwork

link prediction problem. Link prediction is a widely studied problem in the field

of Social Network Analysis (Liben-Nowell and Kleinberg, 2007; Al Hasan and Zaki,

2011; Wang et al., 2014). Link prediction can be broadly classified into two types: (1)

Classical link prediction which aims at predicting the missing links in a given social

network Al Hasan et al. (2006); Fortunato (2010); (2) Cross network link prediction

that recommends the links across two or more social networks. Tang et al. (2012)

modeled users as a feature vector within-domain and cross-domain topic distribu-

tions, and used it to learn associations between users across the source and target

domains. Kong et al. (2013) suggested a multi-network anchoring algorithm to dis-

cover the correspondence between accounts of the same user in multiple networks.

Zhang et al. (2015) proposed an energy-based framework COSNET for cross-network

link prediction in heterogeneous networks. Our problem of network link prediction
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differs with previous cross network link prediction problems, as we recommend links

between similar actors across social networks.

Non-negative matrix factorization (NMF) is widely used for co-clustering prob-

lems. Li and Ding (2006) demonstrated a NMF framework for document-word co-

clustering. Cai et al. (2011) improved Li and Ding (2006) framework by adding a

graph regularizer which captures geometric information embedded in the data. Gu

et al. (2011) proposed an orthogonal framework to fix scaling problem in Cai et al.

(2011). Wang et al. (2015) proposed an NMF based Dual Knowledge Transfer ap-

proach for cross-language Web page classification. Our approach differs from previ-

ous works as we jointly factor user-keyword matrices from multiple social networks

to learn latent features on the combined set of keywords from all the social networks

and users from each social network. Chakraborty and Sycara (2015) proposed a con-

strained NMF framework for community detection in social networks which is closely

related to our work. Our problem is different from the community detection problem,

which finds communities of closely related users inside a social network.

2.3 Explaining Task Heterogeneity

Machine learning, today is being used for a wide range of practical decision-making

applications. In most cases, the models were considered as black boxes and the

decisions made by the system are not explainable. With an increase in research

on building more complex models like Deep Neural Networks for improving model

performance, there is a need to build techniques to explain the complex models.

There are mainly two approaches for explaining the model’s performance, via relevant

features or through the importance of training samples. The first approach examines

the importance of different features to model predictions. To work for any complicated

model, LIME Ribeiro et al. (2016) was proposed as a model-agnostic explanation
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model to learn an interpretable model locally around the prediction for a specific test

sample. In some cases, the features may have an indirect influence on the model

prediction via other related features. Such indirect influence can be quantified based

on differential analysis of feature influence before and after obscuring the feature

influence on the model outcome Adler et al. (2018). The second popular approach to

model interpretability is to generate explanations by understanding the influence of

training examples. Influence functions Koh and Liang (2017), as a classic technique

from robust statistics, was used to trace a models prediction through the learning

algorithm back to its training data. The key idea is to compute the change of the loss

at a test sample should a training example is up-weighted by some small ε. Graph

signal process has also been used for influential sample analysis where the influence

metric is used as a function at the nodes in the data graph Anirudh et al. (2017).

The most influential samples would be those critical to the recovery of high-frequency

components of the function. While most of the existing work on interpretability

and model explanation looked into machine learning models in general, we focus on

explaining the transfer learning models.

Various methods have been recently proposed to explain such complex models.

Ribeiro et al. (2016) proposed a model-agnostic framework that can identify the im-

portant features for classification. Tolomei et al. (2017) proposed a technique that

exploits the internals of a tree-based ensemble classier to offer recommendations for

transforming true negative instances into positively predicted ones. Lundberg and

Lee (2017) proposed a unified framework for interpreting predictions, SHAP (Shap-

ley Additive exPlanations). The SHAP framework assigns each feature an importance

value for a particular prediction. Also, they demonstrated that SHAP value estima-

tion methods are better aligned with human intuition as measured by user studies

and more effectually discriminate among model output classes than several existing
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methods. Koh and Liang (2017) used the classic technique from robust statistics –

influence functions, to identify the set of examples that influence the classification

and use them to explain the models. Most of the work in the past has focused only

on regular machine learning settings. We would like to work on model explainability

in transfer learning settings. The data in transfer learning settings are inherently

inhomogeneous, leading to differences in the feature and class distribution making

the model explainability more challenging in this case.
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Chapter 3

SOCIAL MEDIA FOR DIABETES MANAGEMENT

The emergence of the internet has made it possible for people to go online to

seek answers to their health related questions. Many patients use the Internet to find

and join communities of individuals with similar health conditions in order to share

information, and to provide and receive advice on management. However, little data

is available on whether patients with diabetes mellitus (DM) utilize social media. The

aim of our study was to investigate the likelihood of patients utilizing social media

to offer or seek support from others for their diabetes management.

Diabetes mellitus (DM) is a chronic illness that can be effectively managed through

physical activity, healthy dietary habits, and the appropriate and timely use of phar-

macotherapies to lower blood glucose levels. Research has demonstrated that online

social support programs like health care forums and social media websites (e.g. Face-

book and Twitter) can help patients gain knowledge about DM and cope better with

their daily management routine (Petrovski et al., 2015). Such platforms allow patients

to share personal clinical information, request disease-specific advice, and even receive

the emotional support that they need for diabetes management and self-care (Greene

et al., 2011).

Most of the research on the influence of social media on DM care has focused on

widely used platforms without a clear focus on a specific disease (Petrovski et al.,

2015; Ravert et al., 2004). Research has shown that such generic social media plat-

forms have lots of promotional activity and personal data collection but no checks for

authenticity. On the other hand, most of the diabetes-specific social media platforms

are moderated and enforce measures on patient privacy. Often moderated platforms
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ensure authenticity and correctness in the information delivered to users. Another

study of preferences for online DM support found that adults generally preferred pro-

fessionally moderated discussions. So we focus our study on diabetes-specific social

media platforms. Little is known about specific reasons why individuals with DM

utilize social media, or if use of social media is associated with DM specific behaviors.

In order to answer these questions, and to gain valuable insight on social media use,

the aim of this study was to assess the behaviors of individuals with DM who either

offered or sought information on diabetes specific social media websites.

3.1 Methodology

Information regarding DM was collected through an anonymous web-based survey.

The data were collected through a self-administered Qualtrics platform, advertised

through DM dedicated healthcare forums. As part of the survey, participants were

asked to answer questions broadly classified as 1) demographic information, 2) di-

abetes specific information (e.g., diabetes diagnosis, most recent HbA1c value), 3)

nature and frequency of diabetes-specific social networking site usage, and 4) di-

etary habits and diabetes self-care activities (Toobert et al., 2000). Participation was

anonymous and required individuals to be at least 18 years old. Once individuals

read a brief online consent document and agreed to participate, they proceeded with

the survey. No compensation was offered for participation. The study was approved

by the Baruch University Integrated Institutional Review Board (IRB# 2015-0767).

The demographic, DM-specific and social media usage information were analyzed

using descriptive statistics. Associations between the use of DM-specific social me-

dia website and DM-related behaviors were analyzed using correlation analysis with

Pearsons correlation coefficient. The responses to the survey questions (Figure 1) on

social media website usage contain both ordinal and categorical Likert scale based
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responses. For convenience the responses were converted into a numerical scale with

order and rank preserved. Questions with ordinal responses (e.g. Questions 3-5) were

represented using a numerical [1-8] scale as follows: 1: Less than once a month; 2:

Once a month; 3: 2-3 times a month; 4: Once a week; 5: 2-3 times a week; 6: 4-5

times a week; 7: Once a day; 8: More than once a day. Similarly, for questions where

responses utilized a Likert scale (e.g. Questions 6-9), the responses were represented

using a numerical [1-5] scale as follows: 1: Not at all likely; 2: Slightly likely; 3:

Moderately likely; 4: Very likely; 5: Most likely. For analysis on descriptive statis-

tics, Likert scale based questions were split into two groups: 1) Not at all likely -

Moderately likely 2) Very likely Most likely. Similarly, ordinal responses were split

into two groups: 1) Less than once a month - once a week 2) 2-3 times a week - more

than once a day. Questions and their responses were assumed independent of each

other. Tests of significance were based on alpha of 0.05.

3.2 Results

A total of 45 participants (mean age=57±13.4 years) from the United States

and United Kingdom combined submitted their responses (Table 1). Among the 45

participants most were women, identified themselves as white, had attended college

(38/45 or 84%), and were retired (25/45 or 56%). The participant pool consisted of

a balanced mix of patients who reported they had type 1 DM and type 2 DM. The

average self-reported hemoglobin A1c was 7.0% (53 mmol/mol) , and 28 participants

had a self-reported hemoglobin A1c of less than that value. Patients with DM who

monitored their hemoglobin A1c at least once every three months reported having the

lowest hemoglobin A1c levels (r = 0.45, p = 0.01). There were 50 responses (mean

age=62±13.2 yrs, 26 women). Most (61%) had type 2 DM, were Caucasian (66%),

and were on insulin (58%). Mean hemoglobin A1c was 7.46±1.61%.
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Characteristic Mean (SD) or N (%)

Age,(years) 57 (14.3)

Sex, No. Women 30 (66.7 %)

Men 15 (33.3 %)

Race White 45 (100 %)

Diabetes Duration, (years) 16.78 (14.1)

Diabetes Diagnosis Type 1 21 (46.7 %)

Type 2 22 (48.9 %)

Other 2 (4.4 %)

Prescribed insulin for diabetes Yes 29 (64.4 %)

No 16 (35.6 %)

Hemoglobin A1C Mean 7.0% (2.2%)

<7.0 % 28

>= 7.0% 17

Education, No. Did not complete high school 1

Completed high school 4

Completed vocational training 2

Some college (less than 4 years) 15

Completed college 15

Graduate or professional degree 8

Employment Status Working full-time 8

Working part-time 4

Not currently working 7

Student 1

Retired 25

Table 3.1: Descriptive Statistics of Diabetes Survey Participants
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Analysis showed that most of the respondents (45 out of 50) do not actively

utilize social media to offer advice or seek support from others for their diabetes

management. Also, 5 patients out of 45 patients reported that they do not access

social media but would like to get support from the social media for their diabetes

management. Table 3.1 shows the descriptive statistics of the online survey.

Of the DM-specific websites listed in the survey, the ones reportedly visited

most were Tudiabetes.org (15 respondents), Diabetesdaily.com (11 respondents) and

Diabetes-support.org.uk (11 respondents). When asked when they started visiting

their typical DM website, most (32/45 or 71%) indicated they had begun using it

more than 12 months prior to the survey. The majority (29/45 or 64%) reported

posting a question on that website less than one month ago, and approximately half

(21/45 or 47%) post information or advice 2-3 times per week. Figure 3.1 shows the

4 most common reasons respondents indicated they would be more than moderately

likely to visit the website were to offer support or encouragement, to share personal

experiences, or seek support or advice for themselves .

The authors were interested in exploring the reasons why survey respondents went

to social media website to post information on DM. We considered individuals with

DM who frequently (at least 2-3 times a week) log in to the DM-specific social media

website and analyzed the top reasons to offer and seek information. The top 3 reasons

respondents indicated they would be moderately-extremely likely to visit the website

and share the information was to offer support or encouragement to other individuals

with DM, to share personal experiences and to offer advice about clinical diabetes

care. Similarly, top 3 reasons to visit the website and seek information is to seek

support or encouragement from individuals with DM, to seek advice about clinical

diabetes care and life style changes (Figure 3.2).
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Figure 3.1: Top 4 Reasons DM Survey Participants Reportedly Visit Social Media

Websites.

Figure 3.2: 3 Reasons DM Survey Participants Who Login to the Social Media

Websites at Least 2-3 Times a Week to (a) Post Information and (b) Seek Advice.

Next we examined the relationships between social media use and specific DM

health behaviors. Significant correlations were observed between respondents offering

advice on social media sites and their own self-reported eating and exercise habits over

the prior 7 days. Furthermore, using the website to obtain information on lifestyle

changes for diabetes management was significantly associated with following that
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advice and using the website to obtain advice about clinical diabetes care (e.g. blood

glucose monitoring) was correlated with perceptions of how helpful this information

was when communicating with health care provider about diabetes (Figure 3.3).

Figure 3.3: Correlation Results Between Information or Advice Offering and

Seeking Behavior and Other Behavioral Traits of Dm Survey Participants. The

Correlation Parameters R and P-value Are Shown in the Sub-figure Title. The

Symbols Represent Number of Respondents (Circle=1 Response, Triangle=2,

Diamond=3, and Hexagon=4).

Survey data showed that 39/45 (87%) of respondents were moderately-extremely

likely to follow the advice they received from the website about lifestyle changes for
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DM management, and 38/45 (84%) were moderately-extremely likely to follow the

advice received from the website about clinical DM care (e.g., blood sugar monitoring,

medications). Moreover, the information obtained from the websites helped about

37/45 (82%) of DM survey participants in communicating with their health care

provider about their DM.

3.3 Discussion

We assessed DM-specific social media website use to gain insight into how people

with diabetes utilize these resources. Approximately half of the participants reported

posting information or advice 2-3 times per week or more and posts were most likely

to be about offering support or encouragement to other user, share personal stories

about diabetes care and to seek support or advice about DM. Results suggested that

respondents frequency of using a social media site was motivated by their own desire

to offer support or encouragement to other users with DM. In addition, positive asso-

ciations were found between likelihood of offering information or advice about lifestyle

change and frequency of engaging in lifestyle change for diabetes management. It is

possible that these individuals had discovered successful coping or treatment strate-

gies they wished to pass on to the wider DM online community. Study results also

showed an association between seeking online information and following management

recommendations. Moreover, a majority of participants reported that the informa-

tion they obtained facilitated communication with their health care providers. Future

research that examines the relationship between online posting and diabetes-related

self-care behaviors in a longitudinal design would help to clarify the role of website

use in diabetes management.

It can be hypothesized that the more active a user is (e.g., offering information or

advice about different aspects of DM, sharing personal stories), the more likely they
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would respond to another user’s question or concern. For example, when a website

user posts a question on the social media, it may lead to a conversation resulting in

increased usage of the website for DM management. Such online interactions may

help to inform both diabetes management behaviors and communication with health

care providers.

There are limitations to the current study. For instance, the sample size is small

and the data are self-reported. Moreover, a selection bias exists in that those who

responded could have been individuals who were more motivated to manage their DM.

An additional limitation is that all study participants were Caucasian. Extending

this study to minority and under-served groups to better understand the impact of

diabetes online social networks in these populations is an important next step. Finally,

a control group of individuals who did not use social media was lacking. Repeating

the survey in a clinic based population could help better delineate differences in self-

management behavior between social media users and non-users.

Despite the limitations, results of this study showed that individuals with DM

who are active in using DM related social media tend to seek and offer information to

others. Greater self-reported adherence to DM management behaviors was associated

with a greater likelihood of offering information or advice to others on social media

about DM care.

3.4 Challenges in Real-world Applications

Effectively leveraging data mined form healthcare-related social platforms pose a

set of challenges. They are as follows:

1. Identifying similar patients across networks - most users of these healthcare-

related platforms are likely to be stick to a single social network, and would

rarely look at other networks, thus limiting their access to online resources, es-
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Figure 3.4: Three Challenges in Leveraging Social Media Data for Healthcare

Applications.

pecially patients with similar questions and concerns. Identifying patient groups

with similar conditions can help connect patients across networks, thereby open-

ing doors for knowledge sharing to help the community as a whole.

2. Modeling user behavior - The data in these healthcare-related social media plat-

forms is intrinsically heterogeneous. Patients, healthcare providers, and other

users come from different backgrounds and demographics. Also, their dietary

habits and methods to cope with chronic diseases might vary from region-to-

region. Data heterogeneity brings many challenges in modeling user behavior.

3. Time evolving - Healthcare-related platforms are dynamic in nature. The so-

cial media data evolves over time, for example, topics of discussion, treatment

methodologies, and self-care practices. This calls for applications to be robust

and adapt to the change in data distributions.
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Efficiently addressing the above challenges can have many applications. Figure 3.4

illustrates various challenges. Identifying similar actors can help in recommending

health buddies with similar questions and concerns. Also, in our research, it was

seen that social media platforms act as a source for offering and seeking support

to individuals. Identifying similar actors can help form support groups, and bring

people together with similar interests and demographics. Modeling user behavior

through social media data can help identify widely followed chronic care practices

and best health-care products. Opinion mining on feature-rich platforms can help in

recommending best practices to users on other social media platforms. Knowledge

from one healthcare social-media platform can be transferred to other platforms.

In the following chapters, we provide algorithms to address the above mentioned

challenges along with case-studies on applications related to healthcare.
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Chapter 4

LEARNING FROM TASK HETEROGENEITY

4.1 Cross-domain User Behavior Modeling

Sentiment analysis, or opinion mining, is extremely useful in many real applica-

tions such as media monitoring, which allows us to gain an overview of public opinion

on stocks, products, movies, politicians, or any other topic that is being discussed. For

example, the Obama administration used sentiment analysis to gauge public response

to campaign messages during the 2012 presidential election; nonprofit organizations,

such as the American Cancer Society, have employed sentiment analysis to gauge

feedback on their fundraising programs; and Expedia Canada was able to quickly

identify and react to the fact that one of their television advertisements was consid-

ered to be annoying 1. In sentiment analysis, when the target domain (e.g., review

articles written in Chinese) has only limited amount of labeled data, and it is both

costly and tedious to collect more labeled information, a common practice is to apply

transfer learning, or domain adaptation, which borrows information from a relevant

source domain with abundant labeled data (e.g., review articles written in English)

to help improve the prediction performance in the target domain (Wan, 2009).

However, most existing transfer learning techniques for sentiment analysis largely

overlooked an important factor, the human factor, which is usually associated with

the degree of sentiment or opinion making (Blitzer et al., 2007; Pan et al., 2010;

Glorot et al., 2011). In other words, users who are optimistic and positive tend to

1http://www.marketingmag.ca/brands/expedia-ca-responds-to-angry-social-media-feedback-

with-new-ads-99039
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give high ratings, and vice versa. This bias can also be due to users associated with

a company or brand usually post positive reviews for their products and negative

reviews for their competitors. Therefore, the human behavior should be explicitly

modeled in transfer learning to effectively leverage such information.

In this work on user behavior modeling, we propose a new graph based transfer

learning approach: User-guided Cross-domain sentiment classification (U-Cross). It

constructs a user-example-feature tripartite graph, and imposes a set of constraints

such that: (1) the sentiment of content generated by the same user is consistent;

(2) label information is propagated from the source domain to the target domain

via the common keywords; and (3) the subtle language differences between domains

are identified by exploiting the label information (abundant from the source domain,

and limited from the target domain). This approach is non-parametric and semi-

supervised in nature. Furthermore, we address the problem of ‘negative transfer’ by

excluding a set of common users across different domains with known inconsistent

behaviors. To demonstrate the effectiveness of the proposed U-Cross approach, we

test it on three different datasets of varied sizes, and compare it with state-of-the-

art techniques on cross-domain sentiment classification. The following are the major

contributions towards modeling user behavior in cross-domain settings:

1. A novel graph based framework for cross-domain sentiment classification, lever-

aging user-example-feature relationships.

2. A novel user selection approach to avoid negative transfer through soft-score

reweighting, and to gauge the consistency of users across the source and target

domains.

3. Extensive experimental analysis to demonstrate the effectiveness of U-Cross

over state-of-the-art cross-domain sentiment classification approaches.
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The rest of the work on user behavior modeling is organized as follows. In Sub-

section 4.1.1, we introduce our proposed graph-based approach U-Cross, algorithm

and proof of its convergence. A special case of the proposed approach is discussed in

Subection 4.1.2, which is equivalent to an existing method TRITER (He et al., 2009).

Then we demonstrate the effectiveness of U-Cross in Subsection 4.1.3 on multiple real

datasets.

4.1.1 Proposed Approach

In this subsection, we propose a novel graph-based transfer learning approach,

which takes into consideration the human factor by modeling the task relatedness via

both the shared users and keywords from both the domains.

Notation

Let X S denote the set of examples from the source domain, i.e X S = {xS1 , ..., xSm} ⊂

Rds, where m is the number of examples from the source domain, and ds the di-

mensionality of the feature space. Let YS denote the labels of these examples, i.e

YS = {yS1 , ..., ySm} ⊂ {−1, 1}m, where ySi is the class label of xSi , 1 ≤ i ≤ m. Similarly

for the target domain X T denote the set of examples from the target domain, i.e

X T = {xT1 , ..., xTn} ⊂ Rdt, where n is the number of examples from the target domain,

and dt the dimensionality of the feature space. Let YT denote the labels of target

domain examples, i.e YT = {yT1 , ..., yTεn} ⊂ {−1, 1}εn, where yTi is the class label of

xTi , 1 ≤ i ≤ εn. Let d = ds ∪ dt be the combined feature space for the source and

target domains. For convenience we represent the features in the shared feature space

of size d. Let U denote the set of users who posted the content of examples both in

the source and target domains, i.e U = {u1, ..., uu} ⊂ [0, 1]u, where u is the num-

ber of unique users from the source and target domain. Among the target domain
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examples only the first εn are labeled, and ε = 0 corresponds to no labels from the

target domain. Let e = m + n the total number of examples in source and target

domain combined. Further the examples are split into labeled examples e = m + εn

and unlabeled examples eu = (1− ε)n. Our goal is to find a sentiment classification

function feu → {yTεn+1, ..., y
T
n } for all the unlabeled examples in the target domain X T

with a small error rate. Table 4.1 describes the notation for the proposed approach.

Table 4.1: Notation for the Proposed U-Cross framework

Notation Description

X S Set of m examples from the source domain with d features.

YS Labels of m examples from the source domain.

X T Set of n examples from the target domain with d features.

YT Labels of n examples from the target domain.

U Set of users from the source and target domains combined.

e, el, eu # of examples, # of labeled examples and # of unlabeled examples

respectively

A(3),D(3),S(3) Affinity, Degree and Symmetric laplacian matrices

User-Example-Feature Tripartite Graph

The tripartite graph consists of three different types of nodes: users, examples and

keyword features extracted from examples of both the domains. LetG(3) = {V (3), E(3)}

denote the undirected tripartite graph, where V (3) is the set of nodes in the graph,

and E(3) is the set of weighted edges. Users are connected to examples in the source

and target domain, i.e. there exists an edge between every example and the user who

posted the example. Moreover, it is also possible to have a set of users who have
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examples only in source domain or target domain but not in both. All the labeled

and unlabeled example nodes are connected to corresponding feature nodes, i.e. there

exists an edge between every labeled or unlabeled node to a feature node only if the

feature has a positive weight associated with that example. The labeled and the

unlabeled example nodes are not connected to each other. The edges between user

nodes and examples have a weight vj ⊂ [0, 1]. In the case of example and feature

nodes, the edge weights can either be a real valued or binary values. To explain this

with regards to the sentiment classification task and real data, examples correspond

to Amazon reviews, features represent the n-gram keywords of each review and user is

the one who wrote the review. Figure 4.1 shows the example of user-example-feature

tripartite graph.

Figure 4.1: User-example-feature Tripartite Graph. Circles Represent Users;

Squares Are the Source Domain Examples; Triangles Are the Target Domain

Examples; Diamonds Represent the Keyword Features. Different Sizes of Squares

Represent the Reweighted Source Domain Examples. Filled Squares and Triangles

Represent the Labeled Examples.
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Given the tripartite graph G(3) we define the symmetric affinity matrix A(3) of size

(u+ e+d). The first u nodes correspond to the users, the next e nodes correspond to

examples and the last d nodes represent keyword features extracted from examples.

Considering m examples from the source domain and n examples from the target

domain, the e examples consists of el = m + εn labeled examples followed by eu =

n− εn unlabeled examples. The affinity matrix has the following structure:

A(3) =


0u×u A

(1,2)
u×e 0u×d

A
(2,1)
e×u 0e×e A

(2,3)
e×d

0d×u A
(3,2)
d×e 0d×d


where 0a×b is an a× b zero matrix, Au×e is a non-zero user-example affinity matrix,

Ae×d is a non-zero example-keyword affinity matrix. Au×e and Ae×d are the sub-

matrices of the affinity matrix A(3). The matrix A(3) is symmetric matrix such that

Ai,j = Aj,i where Ai,j is a submatrix of A(3). We also define a diagonal matrix D(3)

of size (u+e+d) with a diagonal element D
(3)
i =

u+e+d∑
j=1

A
(3)
i,j , i = 1, ..., u+e+d, where

A
(3)
i,j denote the element in the ith row and jth column of A(3). The diagonal matrix

has the following structure:

D(3) =


D

(1,1)
u×u 0u×e 0u×d

0e×u D
(2,2)
e×e 0e×d

0d×u 0d×e D
(3,3)
d×d


where D(1,1), D(2,2) and D(3,3) are submatrices of diagonal matrix D(3) which equals

row sums of affinity submatrices A(1,2), (A(1,2))T + A(2,3) and (A(2,3))T respectively.

Finally we define S(3) = (D(3))−1/2A(3)(D(3))−1/2. Similar to A(3), S(3) is a symmetric

matrix with non-negative elements S
(3)
i,j such that the sub matrices S(1,2) = (S(2,1))T

and S(2,3) = (S(3,2))T .
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Objective Function

The goal of building a tripartite graph is to learn the sentiment classification function

on unlabeled target domain data. We define four functions fu, fel, feu and fd that

take values on users, labeled examples from the source and target domains, unlabeled

examples from the target domain and feature nodes respectively, and define f as:

f = [(fu)
T , (fel)

T , (feu)
T , (fd)

T ]T . We also define four column vectors yu, yel, yeu and

yf of size u, el, eu and d respectively. We merge all the column vectors into a single

column vector y = [(yu)
T , (yel)

T , (yeu)
T , (yd)

T ]T .

Example function fel and column vector yel are comprised of the first m+εn values

for labeled examples, similarly function feu and column vector yeu are comprised of

n− εn values for unlabeled examples. Vectors yu, yel, yeu and yd represent the prior

knowledge of users, labeled examples, unlabeled examples and features respectively.

If we do not have any prior knowledge we set the vectors to zero. The vector yel is

set to sentiment labels {−1, 1} corresponding to the labeled examples.

In regular supervised learning problems the training data and test data are usually

from the same distribution, but in a situation when training data and test data are

from different distributions, it is called covariate shift. In transfer learning tasks,

distribution of data in the source domain varies with distribution of data in the target

domain. In such scenarios reweighting training data w(x) = ptest(x)/ptrain(x) to fit

test data distribution often resulted in increased classification performance (Bickel

et al., 2009; Huang et al., 2006; Sugiyama et al., 2008). We used the reweighting

technique as suggested in Sugiyama et al. (2008) to reweight the source domain

examples based on entire set of examples from the target domain.
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We propose to minimize the following objective function with respect to f .

Q1(f) =
1

2

e∑
i

wi

u∑
j

vjA
(3)
i,j (

fi√
D

(3)
i

− fj√
D

(3)
j

)2

+
1

2

e∑
i

wi

d∑
j

A
(3)
i,j (

fi√
D

(3)
i

− fj√
D

(3)
j

)2

+ µ

u+e+d∑
k

(fk − yk)2

= fT (I(u+e+d)×(u+e+d) − S(3))f + µ||f − y||2

where wi is the example reweighting parameter to reduce the covariate shift between

the source and target domain examples, wi = 1 for the target domain examples, vj

is the user soft-score weight to ensure user consistency across the source and target

domains, µ is a small positive parameter and I is the identity matrix. The objective

function has three terms. The first and second terms in the equation measures the

label smoothness of the function f w.r.t users with labeled examples and keywords

with labeled examples respectively. The second term represents the consistency of

the function f with label information and prior knowledge.

User Soft-score Weights

Our proposed approach utilizes user behavior from labeled examples in computing the

sentiment of the posts from the target domain. It is very likely that the sentiment

labeling behavior of a user might vary across the source and target domains. For

example, it is possible that a certain user has more positive reviews in the source

domain and more negative reviews in the target domain. Such users degrade the

performance of the classifier due to inconsistency in user behavior across the source

and target domains. In extreme cases such inconsistency might lead to negative

transfer learning.
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In our approach we handle this issue by assigning non-negative soft-weights vcu ∈

[0, 1] to the set of common users cu ∈ Uc and Uc ⊆ U from the source and target

domains. We use the labeled examples from the source and target domains along

with their keywords and sentiment labels to assign a soft-score to each shared user.

The user soft-score weight calculation mechanism for each shared user across domains

is as follows:

vcu =
elS∑
i

elT∑
j

sim(xi,xj) ∗ yi ∗ yj (4.1)

where elS and elT represent the set of labeled examples for the user u in the source and

target domains respectively, xi ∈ X S and xj ∈ X T represent the feature vectors for the

examples in the source and target domains, sim(xi,xj) is the cosine similarity between

the feature vectors xi and xj, finally, yi and yj are the corresponding sentiment labels

for the examples i and j. In order to avoid negative transfer due to inconsistent

user behavior across domains, the approach assigns smaller weights to inconsistent

users. From the eq (4.1), the more consistent users have a positive value and more

inconsistent users have a negative value. As the edge weights are always positive, we

scale the user weights vcu from [−1, 1] to [0, 1].

U-Cross Algorithm

To minimize Q1, we first set fel = yel, which requires the outputs of the classification

function to be consistent with the known labels in the source and target domains,

and then solve for feu, fu, and fd from the following lemma.

Lemma 1. If fel = yel, Q1 is minimized at:

f ∗eu = [α(S(1,2)
eu )TP + α(S(1,2)

eu )TP +R]

[I − α2(S(1,2)
eu )TS(1,2)

eu − α2S(2,3)
eu (S(2,3)

eu )T ]−1

(4.2)

f ∗u = P + αS
(1,2)
el f ∗eu (4.3)
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f ∗d = Q+ α(S
(2,3)
el )Tf ∗eu (4.4)

where α = 1
1+µ

, P = αS
(1,2)
el yel + (1 − α)yu, Q = α(S

(2,3)
el )Tyel + (1 − α)yd and

R = (1− α)yeu

Proof. After setting fel = yel in Q1, we get

Q1 = fTu fu + yTelyel + fTeufeu + fTd fd

− 2fT3 S
(2,3)fd − 2fTu S

(1,2)yel − 2fTu S
(1,2)feu

− 2yTelS
(2,3)fd + µ||fu − yu||2 + µ||feu − yeu||2

+ µ||fd − yd||2

(4.5)

Minimizing by partial differentiation w.r.t fu, feu and fd equating the terms to zero,

we can find the optimal values f ∗u , f ∗eu and f ∗d .

∂Q1

fu
= 2fu − 2S(1,2)yel − 2S(1,2)feu − 2µyu

∂Q1

fd
= 2fd − 2S(2,3)yel − 2S(2,3)feu)− 2µyd

∂Q1

feu
= 2feu − 2(S(1,2))Tfu − 2(S(3,2))Tfd

− 2µyeu

Equating the above equations to zero, and substituting the parameter α = 1
1+µ

,

we get equations 3, 4 and 5:

fu = αS
(1,2)
el yel + αS(1,2)

eu feu + (1− α)yu (4.6)

fd = α(S
(2,3)
el )Tyel + α(S(2,3)

eu )Tfeu + (1− α)yd (4.7)

feu = α(S(1,2)
eu )Tfu + αS(2,3)

eu fd + (1− α)yeu (4.8)

Solving equations (4.6), (4.7) and (4.8) leads to the optimal values f ∗u , f ∗eu and f ∗d .
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From the equations (4.2), (4.3) and (4.4) computing f ∗u , f ∗eu and f ∗d requires solving

matrix inversions which is a computationally intensive operation given the large size

of the unlabeled examples and keyword features. To address this issue we consider

the following iteration steps obtained after minimizing Q1 to compute the optimal

solution.

feu(t+ 1) = (1− α)yeu − α((S(1,2)
eu )Tfu(t) + S(2,3)

eu fd(t)) (4.9)

fu(t+ 1) = (1− α)yu − α(S
(1,2)
el yL + S(1,2)

eu feu(t)) (4.10)

fd(t+ 1) = (1− α)yd − α((S
(2,3)
el )Tyel + (S(2,3)

eu ))Tfeu(t)) (4.11)

where t is the number of iterations. The following theorem guarantees the convergence

of these iteration steps:

Theorem 1. When t goes to infinity, feu(t) converges to f ∗eu, fu(t) converges to f ∗u

and fd(t) converges to f ∗d .

Proof. Substituting equations (4.10) and (4.11) into (4.9),

feu(t) = α2[(S(1,2)
eu )TS(1,2)

eu + S(2,3)
eu (S(2,3)

eu )T ]feu(t− 2)

+R + α(S(1,2)
eu )TP + αS(2,3)

eu Q

= α2Gfeu(t− 2) +H

= (α2G)
t
2feu(0) + (

t
2
−1∑
i=0

(α2G)i)H

where G = [(S
(1,2)
eu )TS

(1,2)
eu +S

(2,3)
eu (S

(2,3)
eu )T ] and H = R+α(S

(1,2)
eu )TP +αS

(2,3)
eu Q. Since

µ > 0 and α = 1
1+µ

, 0 < α < 1. As given in Lemma 2 of the paper He et al. (2009),

the eigenvalues of G are in [-1,1]. Therefore we have,

lim
t→∞

(α2G)
t
2feu(0) = 0
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lim
t→∞

(

t
2
−1∑
i=0

(α2G)i) = (I − α2G)−1

Hence, if t is an even number,

lim
t→∞

feu(t) = feu(t)
∗

Based on the above discussion, we present the U-Cross algorithm in Algorithm 1.

Our algorithm U-Cross takes as input a set of m labeled examples as an example-

keyword sparse binary matrix from the source domain, set of n examples as an

example-keyword sparse binary matrix from the target domain among which a small

subset nε are labeled examples and the set of users U who authored the examples

from the source and target domains. The algorithm outputs the labels of all the

unlabeled examples from the target domain.

As an initial data processing step, we construct the affinity matrix A(3) from the

user-example and example-keyword affinity matrices. And then compute the degree

matrix D(3) and normalized symmetric matrix S(3). As a preprocessing step, we

calculate the covariate shift parameter weights wi as discussed in subection 4.1.1 to

reweight all the source domain examples. In Step 1, we calculate the soft-score weights

for all the shared users across the source and target domains to ensure consistency in

sentiment labeling behaviors. As the only known prior values are the labels from the

source domains, we initialize the function for labeled examples fel to the known set

of labels yel and initialize the rest of the prior values and corresponding functions to

0. In Step 2, we learn the functions for users, unlabeled examples and keywords by

label propagation using gradient method over t iterations. The functions are updated

using the eq (4.10), eq (4.11) and eq (4.9). Finally, in the last step the sign of the

function value for each unlabeled example is set as the sentiment label.
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Algorithm 1: U-Cross Algorithm

Input: Set of m labeled examples from source domain X S and their labels YS;

set of n examples from target domain X T and labels for first εn

examples YT ; Users who authored the examples U ; the number of

iterations t.

Output: Labels of all unlabeled examples in X T

1 Calculate the soft-score weights vu for all the shared users according to

eq (4.1). Set weights of user-user adjacency matrix Au from vu.

2 Set labeling function fel to given labels yel, fel = yel; Set initial user

information yu, unlabeled values yeu and feature values yd to zero if their prior

values are not available. Initialize the corresponding functions fu(0), feu(0)

and fd(0) to yu, yeu and yd respectively.

3 for i← 1 to t do

4 Calculate fu(i) and fd(i) according to eq (4.10) and eq (4.11).

5 Calculate feu(i) according to eq (4.9) and using the functions fu(i) and

fd(i) calculated in previous step.

6 end

7 for i← (εn+ 1) to n do

8 If feu(t) at xTi > 0 then set yTi = 1 else set yTi = −1

9 end

Based on the notation in Section 4.1.1, the following lemma shows the computa-

tional complexity of U-Cross:

Lemma 2. The computational complexity of the U-Cross is given by O
(
t(n+m)(u+

d) + (pmax)2 ∗ (dmax)2 ∗ u
)
, where t is the number of U-Cross iterations, pmax is the

maximum number of posts generated by a user, and dmax is the maximum number of
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keywords in a post.

Proof. The proposed U-Cross algorithm has two main steps. The first step is to

calculate the soft-score weights for all the shared users which takes about O((pmax)2 ∗

(dmax)2 ∗ u) time. In general, the cosine similarity function takes O((dmax)2) in the

worst case. For all the data sets we choose, the number of posts for each user is

no more than pmax. So calculating the pairwise similarities between posts of a user

will result in less than (pmax)2 cosine similarity calculations. The second step is to

find the function on unlabeled target domain data through a set of iterative updates.

The time complexity for the updates with a set of matrix multiplications at its core

is O
(
t(n + m)(u + d))

)
. The last step is to assign the class labels to the target

domain unlabeled examples based on the sign of function feu with a time complexity

of O(n).

From this lemma, we can see that U-Cross scales linearly with respect to the

problem size (e.g., the number of examples in the source domain and the target

domain, the size of the combined vocabulary space). Therefore, it can be naturally

applied to large datasets.

4.1.2 Case Study

In this subsection we discuss how an existing method named TRITER (He et al.,

2009) can be seen as a special case of U-Cross. TRITER uses both the keywords-

labeled-unlabeled examples tripartite graph and a labeled-unlabeled examples bipar-

tite graph to model the relationship between the source and the target domains,

using high weights for examples from the target domain. However, in scenarios where

a target domain example is mapped to both positive and negative examples from the

source domain, the inclusion of bipartite graph could even harm the performance.
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Therefore, we ignore the bipartite graph (i.e., setting the corresponding weight to 0),

and use a reweighting scheme to connect examples from the source domain and the

target domain. More specifically, using the same notation as in the previous section,

the objective function of TRITER can be written as follows.

Q2(f) =
1

2

e∑
i

wi

d∑
j

A
(3)
i,j (

fi√
D

(3)
i

− fj√
D

(3)
j

)2

+ µ

e+d∑
i

(fk − yk)2 − γ
e∑
l

(fTl fu(l))
2

= fT (I(e+d)×(e+d) − S(3))f + µ||f − y||2

+ β||fU ||2 − γ(||fTelUT
elfU ||2 + ||fTeuUT

eufeu||2)

where µ, β and γ are positive parameters, wi is the instance weight for labeled and

unlabeled nodes and I is an identity matrix. Uel and Ueu are matrices of size u×m and

u×n respectively that map users to labeled and unlabeled examples. Matrices Uel and

Ueu can be compared to A
(1,2)
el and A

(1,2)
eu matrices in the tripartite graph mentioned

in previous section. The extension includes adding a regularizer on user behavior

function and also on the user-example interaction. The last equation in minimization

functionQ2 captures the interaction between users and different labeled and unlabeled

examples in the graph which needs to be maximized.

Comparing all the terms in Q1 and Q2, we can see that both equations are similar.

By setting β = 1 and γ = 2, it is possible to rewrite equation Q2 in terms of Q1 with

minimal difference. The major difference between U-Cross and TRITER is that

TRITER does not model user behavior. From the objective function Q2, it can be

seen that TRITER is a special case of U-Cross without user behavior. Therefore,

U-Cross is expected to perform better that TRITER since it explicitly models the

human factor.
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4.1.3 Results

In this subsection we report the experimental results. We first introduce three real-

world cross-domain sentiment datasets related to product reviews. Then we compare

different user soft-weight scoring approaches. Finally, we compare the U-Cross with

other state-of-the-art methods to demonstrate its effectiveness.

Data Sets

To compare our transfer learning approach U-Cross we perform experiments on three

different real-world datasets. User reviews from three different product review web-

sites are used for the sentiment classification task. Table 4.2 describes the dataset

statistics. The dataset details are as follows:

1. Amazon product reviews2: The dataset is a part of Stanford Network Analysis

Project (McAuley and Leskovec, 2013a) and includes amazon product reviews

from 28 different product categories. For experimental evaluation, we created

six different datasets with varying common user frequency from office products,

software, toy games, video games, electronics, amazon videos, kitchen, movies

and music product categories.

2. Yelp reviews3: The data set is from Yelp Data set challenge and includes user

reviews from restaurants and shopping domains.

3. CIAO dataset4: The dataset is crawled from the CIAO website and consists of

consumer reviews of books and beauty products.

2http://www.amazon.com
3http://www.yelp.com/dataset_challenge
4http://www.ciao.co.uk
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Source domain Target domain Examples Examples Unique Users Source Users Target Users Common Users Features

Amazon

office products software 2225 3968 1362 588 832 58 9069

toy games video Games 5760 16700 3937 1153 3127 343 26982

electronics amazon Video 41340 72976 21102 9632 12770 1300 144669

electronics kitchen 44518 56296 15126 9279 8952 3105 118418

amazon videos music 73448 478414 78842 11538 74149 6845 1704032

amazon videos movies 73177 533418 82665 17799 79677 14811 1908543

Yelp restaurants shopping 5502 19338 622 510 345 310 95094

CIAO beauty books 3524 6734 339 217 195 73 64429

Table 4.2: Dataset Statistics

Several preprocessing steps were taken before experiments. Words were converted

to lower cases and then stemmed to terms. All the stop words, punctuation and

symbols are removed. Binary feature vector as a bag of words on n-grams n = {1, 2, 3}

was extracted for each review. Also, we dropped those users with less than three

reviews and more than hundred reviews in the source and target domains to ensure

consistent and unbiased user contribution. Features with document (product reviews)

frequency less than 10 are also dropped. Table 4.2 reports the size of the feature vector

on the entire vocabulary space for the source and target domains combined. Moreover

as explained in Section 4.1.1, the source domain examples are reweighted to reduce

the covariate shift across the domains.

User Selection

As prior research demonstrated that by using user information along with linguistic

features improved the performance of sentiment classifiers, we employ a robust user

selection approach proposed in Section 4.1.1 to assign soft-score weights to all the

common set of users Uc in the source and the target domains. In order to avoid

negative transfer due to inconsistent user behavior across domains, the approach

assigns larger weights to more consistent users with similar product labeling behavior
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across domains and smaller weights to inconsistent users.

Figure 4.2: Comparison of User Selection Approaches Usw1, Usw2 and Usw3. The

X-axis Represents # of Labeled Examples from the Target Domain and the Y-axis

Represents Test Error on the Target Domain Data.

Let US and UT be the set of unique users in the source and target domains

respectively. To evaluate the effectiveness of our user selection approach, we consider

the following variations of the soft-score user weights:

1. USW1: The baseline approach that assigns unit weights to all the users U .

vu = 1,∀u ∈ {US ∪ UT}

2. USW2: Set all the user weights for shared users across domains as per the
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Figure 4.3: Performance Evaluation on Various Datasets. In Each Subfigure, the

Title Represents the Source and Target Domains, the X-axis Represents # of

Labeled Examples from the Target Domain and the Y-axis Represents Test Error

with Error Bars on the Target Domain over 20 Runs. In Each Run the Labeled

Data from Target Domain Is Resampled.

proposed approach and the rest to 0.

vu =


vcu, ∀u ∈ Uc

0, ∀u ∈∈ {US ∪ UT}\Uc

3. USW3: Set all the user weights for shared users across domains as per the
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proposed approach and the non-shared users in the target domain to 1.

vu =


vcu, ∀u ∈ Uc

0, ∀u ∈ US\Uc

1, ∀u ∈ UT\Uc

Figure 4.2 compares the performance of different user soft-score weighting ap-

proaches USW1, USW2 and USW3 on the Amazon reviews data set (electronics

→ amazon videos). It can be observed that USW3 performs the best compared to

USW1 and USW2. In congruence with previous findings, leveraging the knowledge

from associations between users and examples USW3 performed better compared to

not using the associations between users and examples USW2. The approach with

equal weights to all the users (consistent and inconsistent) performed the worst be-

cause of the negative transfer effect often associated with transfer learning. In all

the following experiments, unless specified otherwise, the user soft-score weights in

U-Cross refers to USW3.

Empirical Analysis

Source domain Target domain SCL TCA TRITER ULSA U-Cross

Office Products Software 0.414 ± 0.007 0.358 ± 0.005 0.349 ± 0.006 0.381 ± 0.001 0.301 ± 0.005

Toy Games Video Games 0.430 ± 0.006 0.381 ± 0.005 0.367 ± 0.006 0.358 ± 0.001 0.315 ± 0.004

Electronics Amazon Videos 0.424 ± 0.005 0.351 ± 0.003 0.255 ± 0.001 0.351 ± 0.003 0.234 ± 0.001

Electronics Kitchen 0.367 ± 0.003 0.298 ± 0.004 0.147 ± 0.001 0.302 ± 0.004 0.132 ± 0.001

Amazon Videos Music 0.367 ± 0.004 0.298 ± 0.003 0.233 ± 0.001 0.302 ± 0.002 0.203 ± 0.001

Amazon Videos Movies 0.335 ± 0.003 0.268 ± 0.004 0.221 ± 0.001 0.261 ± 0.003 0.196 ± 0.001

Restaurants Shopping 0.404 ± 0.006 0.358 ± 0.004 0.228 ± 0.001 0.351 ± 0.004 0.201 ± 0.001

Beauty Books 0.358 ± 0.005 0.351 ± 0.004 0.261 ± 0.001 0.302 ± 0.003 0.234 ± 0.001

Table 4.3: Performance Comparison of U-Cross with Other Methods.
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To show the robustness of U-Cross approach we run the experiments by resampling

the labeled examples from the target domain. We report the results with confidence

scores from 20 runs. The target domain examples are carefully chosen to minimize

the class- and user-bias. By class bias we choose target domain examples with fairly

equal proportions of positive and negative class labels. Also we ensure that the chosen

labeled target examples maximize the set of common users across the source and tar-

get domains. We compare our U-Cross approach with other state-of-the-art methods

and report the test error on the unlabeled examples from the target domain. The

methods to be compared include: SCL (Blitzer et al., 2011), where for each data

set, 2000 pivot features are selected from the source and target domains; TCA (Li

et al., 2012), which utilizes both the shared and the mapped domain-specific topics

to span a new shared feature space for knowledge transfer; TRITER which leverages

labeled-unlabeled-keywords to propagate sentiment information from labeled exam-

ples to unlabeled examples; and ULSA (Tan et al., 2011), which performs user-level

sentiment analysis incorporating social networks with user-user relationship parame-

ter λk = 0.

The parameter selection for U-Cross is performed through 10-fold cross validation

on labeled examples from the source and target domains on different datasets. Labeled

examples from target domain are randomly sampled over 20 runs to ensure robust

parameter selection. A total of 1000 examples are sampled from target domain for

parameter selection. From the empirical results, setting the regularization parameter

to α = 0.1 resulted in best performance. So, we have set the regularization parameter

of U-Cross to α = 0.1 for comparison with other state-of-the-art methods.

The experimental results are summarized in Table 4.3. Figure 4.3 compares the

performance of U-Cross on different datasets from Table 4.2. In each figure, the x-

axis represents number of labeled examples from the target domain and the y-axis
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represents test error with error bars on the target domain over 20 runs. First, our

U-Cross approach outperforms all other methods in terms of test error on unlabeled

examples from target domain in all the datasets. This validates the effectiveness of

leveraging user information for cross-domain sentiment classification of user reviews.

Second, the variation is significant in datasets with large user network which shows

that user behavior plays significant role in large scale sentiment classification tasks.
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4.2 Similar Actor Recommendation

Cross-network link prediction has immense applications in the current social media

driven world. For example, Tang et al. (2015b) showed that document level sentiment

classification can be improved by associating users across networks; through cross-

network link prediction, better expert matching for collaborations in academia is made

possible by integrating the author collaboration networks with professional networks

like ResearchGate and LinkedIn Zhang et al. (2015); a good music recommender

system can be built by studying music interests of users across Twitter, Last.fm and

Facebook Su et al. (2013).

Cross-network link prediction is often challenging due to sparsity of the cross-

network data. In most cases, the links across social networks are either extremely

sparse or non-existent making it difficult to learn associations from one network to

the other. We address this issue by leveraging the shared features across the social

networks. We assume that there exists a shared feature space across the social network

based on which associations can be learnt. In the case of diabetes forum posts,

the users post about their diabetes information like symptoms, self-care habits and

health care measures which have common keywords across the networks. The goal

of the algorithm is to first learn the latent features on the keywords and then learn

the associations between the members of the social network through keyword latent

features on the shared feature space. The goal of the algorithm is to learn associations

between the members of the social network through associations learnt from shared

features. It can be realized that the performance of the cross-network link prediction

algorithm depends on the quality of the shared feature space.

In this paper, we propose CrossNet framework to predict links between similar

actors across networks. We organize social relations as an user-user bipartite graph
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and user-generated keywords as an user-keyword bipartite graph for each social net-

work. We perform co-clustering on user-keywords graph to learn the representation of

users and keywords in a latent feature space. We propose a constrained non-negative

matrix tri-factorization (NMTF) approach with a graph regularizer to integrate such

graphs from multiple social networks. We predict the links between the similar ac-

tors across the networks through the respective user latent features learned from each

network and user-user associations in each network. We employ Random walks with

restarts (RWR) Sun et al. (2005a) to learn the cross-network user-user associations.

Notice that this problem is different from cross-domain link prediction, where given

social networks from different domains, the task is to leverage the knowledge from one

social network to predict the missing links in other social network. Also this problem

is different from author link prediction, which involves identifying user’s accounts in

multiple social networks.

The main contributions of this paper are as follows:

1. CrossNet – a novel non-negative matrix tri-factorization based approach to co-

cluster users and keywords from multiple social networks simultaneously.

2. As the proposed problem is non-convex, we propose multiplicative updates to

efficiently compute the user and keyword latent features.

3. We demonstrate the effectiveness of CrossNet on real world academic networks

data set. Also we perform a case study on diabetes social networks data set.

Nowadays, online social networks has become an important portal for patients

with major diseases, such as diabetes mellitus, to connect with physicians as well

as other patients. Compared with the generic social networks such as Twitter and

Facebook, the disease-specific social networks (e.g., TuDiabetes5 and DiabetesSisters

5http://www.tudiabetes.org/
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6 ) have a greater concentration of patients with similar conditions, and the patients

expect to obtain additional resources from these social networks. However, when it

comes to using these social networks, it is often the case that a patient would stick

to a single social network, and rarely look at the other social networks, thus limiting

their access to the online resources, especially the patients with similar questions

and concerns from the other social networks. Motivated by this application, in this

paper, we focus on cross network link recommendation, which aims to identify similar

actors across multiple heterogeneous social networks. In this way, we will be able to

form support groups consisting of patients from multiple disease-specific networks,

all sharing the same questions and concerns.

The problem setting studied in this paper is similar and yet significantly different

from existing work on cross network link prediction. In particular, existing work either

links different accounts belonging to the same user across multiple social networks

Zhang et al. (2015), or links users with complementary expertise or interest Tang et al.

(2012). In contrast, we aim to find similar users using different social networks, which

enables them to exchange important information regarding their shared questions or

concerns.

Based on the observation that different disease-specific social networks tend to

share the same topics as well as the interests of user groups in certain topics, we

propose to jointly decompose the user-keyword matrices from these social networks,

while requiring them to share the same topics and user group-topic association ma-

trices. To be specific, we form a generic optimization framework, and instantiate it

with variations of the constraints. Then we propose an iterative optimization algo-

rithm and analyze its performance from multiple perspectives. Finally, we test the

performance of this algorithm on various real-world data sets, which outperforms

6https://diabetessisters.org/

50



state-of-the-art techniques.

The rest of the paper is organized as follows, Section 2 discusses the related work in

the field of link prediction and non-negative matrix factorization. Section 3 formalizes

the problem of cross network link prediction and describes the proposed approach as

well as the optimization algorithm. In Section 4, we evaluate the performance of our

proposed algorithm and discuss the results on different data sets. Finally, we conclude

the paper in Section 5.

4.2.1 Problem Definition

In this section, we formally introduce the cross network link recommendation

problem, followed by the proposed generic optimization framework and its instantia-

tions. Then we present the iterative optimization algorithm as well as its performance

analysis.

Notation and Problem Definition

Suppose that we have K disease-specific social networks: Gk = 〈V U
k , E

U
k 〉, k =

1, . . . , K, where V U
k is the set of user nodes |V U

k | = mk and EU
k ⊆ V U

k × V U
k is

the set of edges representing the connection between users in the same social net-

work. Self-connections and multiple links between two user nodes are not allowed.

Let Ak ⊂ {0, 1}mk×mk denote the user-user adjacency matrix for the kth social net-

work k = 1, . . . , K, where the edge weight is set to 1 if there is a connection between

two users. Notice that we focus on the more challenging case where: (1) there are no

shared user nodes across the social networks, i.e., V U
i ∩V U

j = Ø, i 6= j ∀ i, j = 1, . . . , K,

and (2) there are no cross network links available between the users in different social

networks. The goal of cross network link recommendation is to identify similar actors

across multiple social networks. This is different from existing work on cross network
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link prediction which focuses on linking different accounts of the same user, or finding

users with complementary expertise or interest.

Figure 4.4: Cross Network Link Prediction Problem: A) Two Social Networks with

User Nodes Represented by Circles and User-user Associations Represented by

Edges Joining Two Nodes. Different Colors Represent Different User Groups. B)

User-keyword Bipartite Graph, Circles Represent Users from Different Social

Networks, Squares Represent Keywords from Vocabulary Space for Different Social

Networks. Dotted Lines Link the Users to Unique Keywords in a Social Network

and Solid Lines Link Users to Shared Keywords. C) Dotted Lines Represent the

Recommended Links Between Similar Actors Across Social Networks.

Let G ′k = 〈V U
k , V

W
k , EUW

k 〉 denote the undirected user-keyword bipartite graph

for the kth social network, where V W
k is the set of keyword nodes |V W

k | = nk and

EUW
k ⊆ V U

k × V W
k is the set of edges connecting the user nodes and the keyword

nodes. Let Xk ⊂ Rmk×nk be the user-keyword adjacency matrix constructed from the

bipartite graph G ′k, k = 1, . . . , K. Let d be the size of the vocabulary for all the social

networks combined, i.e., |V W
1 ∪ V W

2 ∪ .. ∪ V W
K | = d.
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Figure 4.4 illustrates the cross network link recommendation problem with two so-

cial networks K = 2. Figure 4.4(A) shows the user-user connection graphs G1 and G2.

Figure 4.4(B) represents the user-keyword bipartite graphs G ′1 and G ′2. Figure 4.4(C)

represents the problem of cross network link recommendation that recommends links

between user nodes from different social networks G1 and G2.

Problem 1. Cross network link prediction across multiple social networks.

Input: The input to the problem is a set of user-user adjacency matrices {A1,A2, . . . ,AK}

constructed from user relationship graphs Gk, k = 1, . . . , K and a set of user-keyword

adjacency matrices {X1,X2, . . . ,XK} constructed from user-keyword bipartite graphs

G ′k, k = 1, . . . , K.

Output: A set of cross network links EU ⊆ V U
i × V U

j connecting similar user nodes

V U
i from the social network Gi to user nodes V U

j from the social network Gj, where

i 6= j and i, j = 1, . . . , K.

4.2.2 Proposed Approach

Matrix Factorization for Cross Network Link Recommendation

In order to identify the similar actors across multiple disease-specific social networks,

we propose to perform co-clustering on user-keyword graphs to learn the representa-

tion of users and keywords in a latent feature space, and then recommend the links

between similar actors across the networks through the respective user latent features

learned from each network. To be specific, we propose a constrained non-negative

matrix tri-factorization (NMTF) approach with a graph regularizer obtained from

the user-user adjacency matrices.

We begin by considering existing NMTF approaches and later introduce our ap-

proach for link recommendation. NMTF as shown in eq (4.12) involves decomposing
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a matrix X ⊂ Rm×n, into three non-negative latent factor matrices F ⊂ Rm×p
+ ,

S ⊂ Rp×o
+ and G ⊂ Rn×o

+ that can best approximate X. For example, in the context

of social network analysis, given the user-keyword matrix for a social network, NMTF

co-clusters users and keywords into p user groups and o keyword groups.

X = FSGT (4.12)

Cai et al. (2011) proposed a co-clustering method called Graph based non-negative

matrix factorization (GNMF) that adds a graph regularizer to NMF imposing mani-

fold assumptions. The factors for multiple social networks can be computed individ-

ually through K subproblems as follows:

min
∥∥Xk − FkG

T
k

∥∥2

F
+ αktr

(
FT
kLkFk

)
s.t. Fk ≥ 0, Gk ≥ 0, k = 1, . . . , K

(4.13)

where tr(.) is the trace of the matrix, Lk = Dk −Ak is the graph Laplacian of user-

user adjacency matrix Ak, Dk =
∑

j Aij
k is the degree matrix, αk is the regularization

parameter on the user groups and ||.||2F is the Frobenius norm. The first term in the

objective function minimizes the reconstruction error and the second term is a man-

ifold regularizer on user-user relations which incorporates the geometric information

of the data.If two users are closely connected to each other, they belong to the same

group.

Gu et al. (2011) and Huang et al. (2014) showed that when regularization pa-

rameter αk is set to a large value GNMF ends up in a trivial solution, associating

all the users to one group. Also GNMF is prone to scale transfer problems, when

the parameters in the objective function multiplied by any scalar (γ > 1) results in a

solution which is different from the optimal solution. To fix these two issues, Gu et al.

(2011) proposed a graph based NMTF approach (IGNMTF), with three factors and

orthogonal constraints to allow more degrees of freedom between user and keyword
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latent factors. Huang et al. (2014) added orthogonal constraints to eq (4.13) to fix

scale transfer problems. Similar as before, we have the following K subproblems:

min
∥∥Xk − FkSkG

T
k

∥∥2

F
− αktr

(
FT
kAkFk

)
−
(
GT
kA′kGk

)
s.t. Fk ≥ 0, Sk ≥ 0, Gk ≥ 0, k = 1, . . . , K

FT
kDkFk = I,GT

kD′kGk = I

(4.14)

where A′k is the keyword-keyword adjacency matrix, D′k =
∑

j A′k
ij is the degree

matrix, I is the identity matrix of the appropriate size. The main difference between

GNMF eq (4.13) and IGNMTF eq (4.14) is the orthogonal constraints, which fix

both the scale transfer and trivial solution problems. Without the constraints the op-

timization problem in eq (4.13) can be seen as a special case of eq (4.14) by absorbing

Sk into Fk. Also, as shown in Nie et al. (2010) when orthonormal and non-negative

constraints of Fk and Gk are simultaneously satisfied, then it can be proved that

in each row of Fk and Gk, only one element could be positive and others are zeros,

which can be directly used to assign cluster labels to data points.

Proposed Framework

As shown in the last subsubsection, existing work on NMTF is designed for a single

social network, and cannot be readily applied to model multiple social networks and

identify similar actors. Notice that disease-specific social networks often share the

same set of topics. For example, for diabetes-specific social networks, the set of top-

ics usually include Type I diabetes, Type II diabetes, gestational diabetes, diet and

exercise, etc. Furthermore, the users of these social networks tend to form the same

groups with interest in certain topics. For example, on both TuDiabetes and Dia-

betesSisters, there are user groups associated with Type I diabetes, Type II diabetes
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and gestational diabetes. Based on this observation, in this subsection, we present

our proposed optimization framework named CrossNet, which jointly decomposes the

user-keyword matrices from multiple social networks, while requiring them to share

the same topics as well as user group-topic association matrices.

min
K∑
k=1

{∥∥Xk − FkSGT
∥∥2

F
+ αktr

(
FT
kLF

k Fk

)}
+ βktr

(
GTLG

k G
)}

s.t. NF (Fk), NG(G), NS(S)

OF (Fk), OG(G), k = 1, . . . , K

(4.15)

where LF
k = I−D

− 1
2

k AkD
− 1

2
k is the symmetric normalized Laplacian of the user-user

adjacency matrix Ak, LG
k = I−D

− 1
2

k AG
k D

− 1
2

k is the symmetric normalized Laplacian

of the keyword-keyword adjacency matrix AG
k , NF (·), NG(·), and NS(·) denote the

non-negative constraint on a certain matrix, OF (·) and OG(·) denote the orthogo-

nal constraint on the input matrix. Notice that we use the symmetric normalized

Laplacian as it provides more robust results as compared to the one used in eq (4.13).

Compared with eq (4.13) and eq (4.14), the major difference is that we couple

the K subproblems by requiring them to share the same matrices S and G. This is

because multiple disease-specific social networks tend to share the same topics (G)

as well as the user group-topic matrix S. Depending on the specific form of the

non-negative constraint N(·) and the orthogonal constraint O(·), CrossNet can be

instantiated in four different ways as follows.

CrossNet-I:

Fk ≥ 0,G ≥ 0

FT
kFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . , K.
(4.16)
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CrossNet-II:

Fk ≥ 0,S ≥ 0,G ≥ 0

FT
kFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . , K.
(4.17)

CrossNet-III:

Fk ≥ 0,G ≥ 0

FT
kDFFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . , K.
(4.18)

CrossNet-IV:

Fk ≥ 0,S ≥ 0,G ≥ 0

FT
kDFFk = IF ,

∑
j

Gi,j = 1, k = 1, . . . , K.
(4.19)

Notice that in all four instantiations, the orthogonal constraint on G is designed

in such a way that its row sums are equal to 1. In this way, we allow the keywords

to be part of multiple keyword groups (topics) instead of a single one.

Optimization Algorithm

In this subsubsection we provide the optimization algorithm for CrossNet with the

constraint instantiation in eq (4.19). The algorithm for the other instantiations can

be designed in a similar way. The objective function in eq (4.15) that we minimize is

the following sum of squared residuals:

f =
K∑
k=1

{
tr
(
XT
kXk − 2GTXT

kFkS + FT
kFkSGTGST

)
+ αktr

(
FT
kLF

k Fk

)}
Following the standard theory of constrained optimization, we introduce the fol-

lowing Lagrangian function where Lagrange multiplier Λk enforce the constraints
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FT
kDkFk = I in eq (4.19).

L =
K∑
k=1

{
tr
(
XT
kXk − 2V TXT

kFkS + FT
kFkSGTGST

)
+ αktr

(
FT
kLF

k Fk

)
+ Λk

(
I− FT

kDkFk

)} (4.20)

Computing Fk: Fixing S and G, the gradient ∇L(Fk) is

∇L(Fk) = 2(FkSGTGST + αkL
F
k Fk −XkGST −DkFkΛk)

By the KKT complementary slackness we have ∇L(Fk)
ijFij

k = 0, so

(FkSGTGST + αkL
F
k Fk −XkGST −DkFkΛk)

ijFij
k = 0

The Lagrangian multiplier Λk is calculated as given in the Ding et al. (2006) by

summing up across i index. That gives

Λk = FT
kXkGST − SGTGST − αkFT

kLF
k Fk

As Λk has negative components, it can be expressed as a difference of two non-

negative components Λk = Λ+
k − Λ−k , where Λ+

k = |Λk|+Λk

2
and Λ−k = |Λk|−Λk

2
. Sub-

stituting the non-negative components in the equation (4.2.2) we get

(FkSGTGST + αkL
F
k Fk −XkGST −DkFkΛ

+
k

+DkFkΛ
−
k )ijFij

k = 0

As the constraint, I−FT
kDkFk is symmetric, As suggested in Gu et al. (2011) we

have tr(Λk(I−FT
kDkFk)) = tr((I−FT

kDkFk)Λ
T
k ). Therefore only symmetric part of

Λk contributes to L. So Λk should be symmetric, we use Λ
′

k =
Λk+ΛT

k

2
instead of Λk.

This leads to the following update rule for calculating Fk:

Fij
k ⇐ Fij

k

√√√√√√
{

XkGST + DkFkΛ
′+
k

}ij
{

FkSGTGST + αkLF
k Fk + DkFkΛ

′−
k

}ij (4.21)
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Computing G: Fixing S and Fk, setting ∇L(G) = 0 and following the similar steps

in computing Fk we get the following update rule for G:

Gij ⇐ Gij

√√√√√√
{∑T

t=1 XT
kFkS

}ij
{∑T

t=1 STFT
kFkSG

}ij (4.22)

The orthogonal constraint
∑

j Gi,j = 1 on G is enforced by row normalizing the G

factor after every iteration.

Computing S: Fixing G and Fk, setting ∇L(S) = 0 and following the similar steps

in computing Fk we get the following update rule for S:

Sij ⇐ Sij

√√√√√√
∑K

k=1

{
FT
kXkG

}ij
∑K

k=1

{
FT
kFkSGTG

}ij (4.23)

Theorem 2. The objective function in eq (4.16) is lower-bounded, and monotonically

decreasing (non-increasing) with the update rules eq (4.21), eq (4.22) and eq (4.23).

Hence CrossNet converges.

Proof Sketch. First of all, it is easy to see that the objective function in eq (4.16)

is lower-bounded. Second, it consists of two terms, and it suffices to show that each

of these terms is monotonically decreasing. As the second term depends on U only,

the update functions are similar between CrossNet and general NMTF. Following the

steps in Ding et al. (2006); Gu et al. (2011), it can be shown that the first term is

monotonically decreasing under the update rules. For the second term, by introducing

an auxiliary function as in Cai et al. (2011), it can be shown that the second term is

also monotonically decreasing. Putting everything together, the update rules converge

to the local optimal solution. Hence CrossNet converges. Details omitted due to space

limit.�

With the update rules eq (4.21), eq (4.22) and eq (4.23) the optimization algorithm

for link prediction problem is presented in the Algorithm 2.
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Algorithm 2: CrossNet Algorithm

Input: A set of user-user adjacency matrices {A1,A2, . . . ,AK} constructed

from user relationship graphs Gk, k = 1, . . . , K and a set of

user-keyword adjacency matrices {X1,X2, . . . ,XK} constructed from

user-keyword bipartite graphs G ′k, k = 1, . . . , K. The regularization

parameter αk. Number of iterations t.

Output: The user latent factors Fk for all the disease-specific social networks

k = 1, . . . , K.

1 Initialize the factor matrices Fk and G using k-means.

2 for i← 1 to t do

3 Update S using eq (4.23)

4 Update G using eq (4.22)

5 Update Fk using eq (4.21) ∀ k = 1, . . . , K

6 end

7 Return user latent factors Fk.

Link Recommendation

Using NMTF we represent the users in a latent feature space shared across all the

networks. For link prediction we leverage the learned shared user space along with

user associations in each social network. We combine user-user associations and user-

user latent features space as a graph. We use neighborhood formation using random

walk with restarts (RWR) Sun et al. (2005b) to learn the cross network user-user

relations. As the social networks are dynamic in nature (users join and leave over

time), our approach is more robust and works for new users as we can leverage user-

user associations to predict links between cross network users.
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Complexity Analysis

The user-keyword matrix X ⊂ Rm×n is typically very sparse . Using NMTF, X

is factorized into three latent factors as shown in eq (4.12). Updating Fk, S and

G using a multiplicative update algorithm takes O(k2(m + n)) in each iteration for

computation. And other O(zk) cost for component wise addition where z << mn is

the number of non-zero elements in X. Using the multiplicative algorithms for sparse

computation, the efficiency of our algorithm can be improved tremendously. As the

value of k is very small (usually < 100), we can consider that the algorithm is linear

per computation. Empirically we found that number of iterations it takes to converge

is t < 100. So the total cost of complexity is O(tk2(m+n) + tkz) which is still linear.

So computationally, CrossNet scales to large data sets.

4.2.3 Results

In this section we compare CrossNet with other state-of-the-art approaches on an

academic publications data set. We also demonstrate the effectiveness of CrossNet

through a case study on a diabetes-specific social network data set.

Data Sets

The first data set is from the online repository of electronic preprints - arXiv, which

contains scientific papers related to artificial intelligence (cs.AI), computer vision

(cs.CV), databases (cs.DB), machine learning (cs.LG) and software (cs.SE) categories

in the field of computer science. Each category represents a social network with user-

user associations based on the co-authorship information. Keywords are extracted

from the abstract of each scientific paper. For each author (user), we combine all the

abstracts from the papers authored or co-authored by the author. The ground truth

for this data set is computed from the existing cross network links (authors common
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to different networks). The neighborhood formation algorithm based on RWR is used

to estimate the cross network link associations.

ArXiv data set # papers # nodes # edges

Artificial Intelligence (cs.AI) 6972 10272 31266

Computer Vision (cs.CV) 5321 10156 19284

Databases (cs.DB) 2070 4297 6492

Machine Learning (cs.LG) 7321 11103 39349

Software (cs.SE) 2753 5514 18462

Diabetes data set # posts # nodes # edges

Diabetes Sisters 2643 750 4118

TuDiabetes 3742 1032 6323

Table 4.4: Statistics of Arxiv and Diabetes-specific Social Network Data Sets.

We also demonstrate the applicability of CrossNet to a real world setting through

a case study on diabetes-specific social networks. The user posts from two diabetes-

specific social networks – TuDiabetes and Diabetes Sisters are crawled. The user-user

associations in the forums are missing, so we considered the users who post in any

given thread as related, i.e., there exists an edge between the users responding to

the same thread. Keywords are extracted from the posts. Several pre-processing

steps were taken before the experiments, including stemming, stop word removal,

etc. Each user is represented as a binary feature vector with bag of words with

n-grams n = {1, 2, 3}. Table 4.4 shows the data set statistics.
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DB - SE DB - LG LG - SE AI - LG AI - CV CV - LG

P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20 P@10 P@20

GNMF 15.48 12.84 12.88 12.77 8.64 8.77 18.72 17.47 15.03 14.9 11.73 11.9

IGNMTF 26.28 18.36 18.92 16.3 24.25 18.96 33.23 30.26 22.08 19.02 32.9 25.73

CoupledLP 23.4 20.28 31.58 21.77 24.64 24.12 37.86 40.87 36.84 25.4 33.43 32.73

COSNET 31.68 29.88 35.8 26.56 31.99 28.64 47.58 45.86 41.76 30.99 43.4 38.85

CrossNet - I 35.28 30.48 36.71 32.95 33.8 31.48 44.62 42.73 42.83 38.44 45.85 42.7

CrossNet - II 36.12 30.59 36.94 33.29 34.06 31.61 44.77 42.32 43.09 38.84 46.2 42.88

CrossNet - III 35.28 30.36 36.59 33.17 33.93 31.48 44.77 42.54 42.69 38.7 46.03 42.7

CrossNet - IV 35.41 30.63 37.05 33.63 34.19 31.73 45.08 42.81 43.23 39.24 46.38 43.05

Table 4.5: Arxiv Results

topic-1 topic-2 topic-3 topic-4 topic-5 topic-6 topic-7

healthy eating insurance exercise products diet diagnosis research

food12 medical insurance12 running12 pump12 insulin12 diagnosed12 patients study1

healthy eating12 cost information12 ginger2 cgm12 dose12 diabetes12 levels12

carbs12 money12 training1 minimed12 carbs12 family doctor12 doctor12

protein2 insulin supplies12 yoga12 infusion pumps1 low carb12 hospital12 ADA 1

veggies1 strips2 gym12 insulin use12 high day2 symptoms12 people12

bread12 companies12 workout12 omnipod12 bg12 months12 clinical treatment1

diet12 doctors12 muscle2 pumping set12 basal hours12 told diabetic12 disease research2

Table 4.6: Diabetes Keyword Groups (Top 7). < .. >1 Represents Keywords from

Diabetes Sisters, < .. >2 from Tudiabetes and < .. >12 from Both.

Experiment Setup

We compare the proposed CrossNet approaches with other state-of-the-art approaches

including: (1) GNMF (Cai et al., 2011); (2) IGNMTF (Gu et al., 2011); (3) Cou-

pledLP (Dong et al., 2015) modified for cross network links; and (4) COSNET (Zhang

et al., 2015).
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We have used Precision at K (P@K) as an evaluation metric to compare the

performance of different algorithms. It computes the percentage of the relevant links

among the top-K links predicted by the algorithm. For evaluation we compute P@10

and P@20 for all the algorithms and data set combinations. Here relevant links refer

to the links between similar actors across the networks.

Regarding the parameters, we use grid-search to set regularization parameters

α1 = α2 = 0.01 for CrossNet, the number of user groups and keyword groups o =

p = 40 and iterations t = 100. From the results in Table 4.5 CrossNet outperforms

all other approaches. Jointly factorizing keywords across all the networks through G

resulted in significant improvement over GNMF and IGNMF approaches. CrossNet

outperformed modified CoupledLP as it uses both the user-user associations and user-

keyword bipartite graphs unlike CoupledLP that relies on user-user network structure

only. COSNET performs closely as it leverages both the user-user and user-keyword

graphs, but it identifies the distinct user-user links across networks to the similar ones.

Among the four constraint instantiations, setting S ≥ 0 and orthogonal constraint

with degree matrix led to a better performance.

Case Study

We also conduct a case study on diabetes-specific social networks. Notice that Cross-

Net has two steps: (1) jointly decomposing the user-keyword matrices from each

network into respective user factors and a combined keyword latent factor matrix;

(2) using RWR on user-user associations and user factor matrices for each network to

recommend links between similar actors across different networks. Table 4.6 shows

the keyword latent factors from all the networks combined (K = 2, p = 7). It can be

observed that our joint factorization approach clustered similar keywords from dif-

ferent networks into one group. The following is an example of two posts generated
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by two users from different social networks, between whom CrossNet recommends a

link.

User A: I have been diagnosed with Type 1 for about 5 years. I had my blood glucose

with an A1C over 9. I am worried! User B: I am a 22 year old female recently

diagnosed type 1 diabetic. I found out that my blood glucose was over 400. I came

here looking for support.

As we can see, both users are concerned about their blood glucose level and have

been diagnosed with Type I diabetes.
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4.3 Source-free Domain Adaptation

In the past decades, the advancements in the field of machine learning have led to

their wide adoption to solve different real world applications. In general, training a

new machine learning model needs large amount of labeled data. In some applications,

such large-scale annotated data sets are readily available, giving rise to an increasing

number of off-the-shelf tools For example, the Caffe Model Zoo(Caffe Model Zoo,

????) hosts different models that can be readily used for various classification tasks;

language processing tools such as Stanford NLP Toolkit (Manning et al., 2014) come

with various models for natural language processing tasks. However, many of these

machine learning tasks are time-evolving in nature due to, e.g., the emergence of new

features and the shift in class conditional distribution. As a result, the off-the-shelf

tools may not be able to adapt to such changes in a timely fashion, and will suffer

from sub-optimal performance in the learning task.

On the other hand, existing work on transfer learning, cannot be readily applied to

improve the performance of the off-the-shelf tools due to the lack of the training data

for obtaining these tools, i.e., the lack of source domain data. More specifically, due

to licensing or other copyright restrictions, the labeled data sets sometimes are not

released but the underlying models are made available to use as a black-box classifier

(Viola and Jones, 2001). Therefore, given these black box classifiers, is it possible

to leverage these classifiers to improve the classification performance on the evolved

source domain, i.e., the target domain, given limited amount of training data from the

target domain? To this end, we are facing two major challenges: (1) Label deficiency

happens when new features appear, or the relationship between individual features

and the class labels changes in the target domain; (2) Distribution shift happens when

the class conditional distribution in the target domain is different from the training
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data used by off-the-shelf classifiers, potentially changing the optimal predicted label.

In this paper we address the above mentioned challenges of label deficiency and

distribution shift through the proposed Adaptive Off-The-shelf classification (AOT)

framework. In our case, we consider that there exists a black-box classifier that gives

out the classification labels for the target domain examples, and no other information

about the black-box is known. In particular, we assume that the training data used to

obtain the off-the-shelf classifiers are not available, and we aim to leverage the noisy

class labels predicted by the black-box classifier and very few labeled examples from

the target domain to improve the classification performance of the unlabeled data

in the target domain. Given an unlabeled document from the target domain, these

tools are able to predict the polarity of the text without taking into consideration the

unique characteristics of this domain. The proposed framework is able to effectively

integrate the information from these tools as well as the few labeled examples from

the target domain to construct a classification model for the target domain with

significantly improved performance.

The following are the main contributions of our paper; (1) A novel problem setting

of source free domain adaptation, where the goal is to leverage the output of an off-

the-shelf classifier and a few labeled examples from the target domain, in order to

obtain a significantly better classification model for the target domain, as compared

to the off-the-shelf classifier; (2) A generic optimization framework named AOT to

adapt an off-the-shelf classifier to the target domain by explicitly addressing the two

major types of changes from the source domain to the target domain, i.e., label

deficiency and distribution shift; (3) Analysis on the performance of the proposed

AOT framework in terms of convergence to the global optimum, and the complexity

of the proposed algorithm.
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4.3.1 Problem Definition

In this section, we introduce the notation used in the paper and formally define

the problem of source free domain adaptation with an off-the-shelf classifier. Let

DL = {(xi, yi)}mi=1 be the set of m labeled examples from the target domain; DU =

{(xi)}m+n
i=m+1 be the set of n unlabeled examples from the target domain, where xi ∈

Rd is a real valued vector of size d; and yi ∈ {−1, 1}, ∀i ∈ 1, . . . ,m is the binary

class label. We consider the number of labeled examples to be much smaller than

the number of unlabeled examples, i.e., m � n. Let f0 = [y0
1, . . . , y

0
m+n]T be a

(m + n)-dimensional vector consisting of the pseudo-labels generated by the off-the-

shelf classifier, where y0
i ∈ {−1, 1}, i ∈ 1, . . . ,m+ n, and ci ∈ [0, 1), i = 1, . . . ,m+ n,

be the confidence score for each of the m+ n examples (DL ∪ DU).

First of all, we represent all m + n examples from the target domain as a graph

G = (V,E), where V is the set of nodes, and E is the set of edges. In this graph,

each node corresponds to an example, labeled or unlabeled, i.e., |V | = m+n, and the

weight associated with each edge measures the similarity between a pair of nodes. Let

W be the affinity matrix of this graph, whose non-negative element Wij in the ith row

and jth column is the weight of the edge connecting the examples xi and xj. Let D be

the (m+ n)× (m+ n) degree matrix whose diagonal elements are set to be
∑

j Wij.

The normalized Laplacian of the affinity matrix W is given by S = D−
1
2 WD−

1
2 .

The problem of source free domain adaptation is to adapt the noisy pseudo-labels

f0 from the off-the-shelf classifier to the examples in the target domain by leveraging

the information of a small number of labeled examples DL from the target domain,

without having access to the source domain data based on which the off-the-shelf

classifier was trained. More specifically, given a set of m labeled examples DL; the

n unlabeled examples DU ; the normalized affinity matrix for the m + n examples S;
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and the noisy pseudo-labels f0 from the off-the-shelf classifier; the goal of source free

domain adaptation is to learn a classification vector f ∈ Rm+n to correctly classify

all the m + n examples. Notice that unlike f0, the elements of f may not be binary.

Therefore, the predicted class label ŷi of the unlabeled examples DU is set as ŷi =

+1, if fi ≥ 0, i ∈ m+1, . . . ,m+n, and ŷi = −1 otherwise, where fi is the ith element

of f .

4.3.2 Proposed Approach

In this section, we propose our AOT framework. The goal of the AOT framework

is to learn the classification vector f for all the m+ n examples based on f0. Usually

the pseudo-labels from the black-box classifier f0 are noisy due to label deficiency and

distribution shift. As shown in eq. (4.24), we decompose the classification vector f

into the sum of noisy pseudo-labels from off-the-shelf classifier f0 and two residual

vectors:

f = f0 + ∆1f + ∆2f (4.24)

where ∆1f ∈ Rm+n and ∆2f ∈ Rm+n are the residual vectors that address label

deficiency and distribution shift respectively. More specifically, the residual vector

∆1f accounts for the change in the relationship between features and class labels in

the target domain. For example, in sentiment classification, with the emergence of

new words in the target domain, ∆1f will provide correcting information regarding

the relationship between the new words and the class labels. On the other hand,

the residual vector ∆2f addresses the changes in class conditional distribution in

the target domain compared to the source domain data used to train the off-the-shelf

classifier. For example, in sentiment classification, ∆2f will provide insights regarding

the potentially different sentiment polarity for certain combination of keywords that

are specific to the target domain.
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In our framework, we propose to solve for both residual vectors via the following

generic optimization problem.

Q(∆1f ,∆2f) = Q1(∆1f ,∆2f) +Q2(∆1f) +Q3(∆2f) (4.25)

where Q1 takes into consideration both residual vectors, and it aims to enforce label

consistency on all the examples along the data manifold; Q2 is a sparsity constraint

on the label deficiency residual vector ∆1f ; and Q3 is the objective function of ∆2f

for addressing the distribution shift. The optimal residual vectors (∆1f
∗,∆2f

∗) is

computed as follows:

(∆1f
∗,∆2f

∗) = argmin
∆1f∈Rm+n,∆2f∈Rm+n

Q(∆1f ,∆2f) (4.26)

To solve this optimization problem, we propose to use the alternating minimization

strategy. More specifically:

∆1f t+1 = argmin
∆1f∈Rm+n

Q1(∆1f ,∆2ft) +Q2(∆1f) (4.27)

∆2f t+1 = argmin
∆2f∈Rm+n

Q1(∆1ft,∆2f) +Q3(∆2f) (4.28)

where t = 0, . . . , T − 1, T is the total number of iterations, and ∆1ft (∆2ft) is the

vector ∆1f (∆2f) in the tth iteration. The proposed AOT algorithm (Algo. 3) runs

till convergence or the max number of iterations is reached. It takes the normal-

ized affinity matrix S and the set of noisy class labels generated by the off-the-shelf

classifier f0 as input, and outputs the classification vector f for the examples in the

target domain. After the initialization step (Step 1), the algorithm iteratively up-

dates ∆1f and ∆2f in Steps 3 and 4. After T iterations or convergence, the AOT

algorithm outputs the vector f for all the examples in the target domain. As dis-

cussed earlier, the predicted class label ŷi of the unlabeled examples DU is set as
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Algorithm 3: AOT : Adaptive Off-the-shelf Classifier

Input: (1) The normalized affinity matrix S for the m+ n examples in the

target domain; (2) The noisy class labels f0 generated by the

off-the-shelf classifier; (3) The max number of iterations T

Output: f : The classification vector for all the examples in the target domain.

1 Initialize ∆f0 = 0m+n

2 for t = 1 to T do

3 Fix ∆1f , compute ∆2f using AddressLabDef

4 Fix ∆2f , compute ∆1f using AddressDisShift

5 end

6 return f = f0 + ∆1f + ∆2f

ŷi = +1, if fi ≥ 0, i ∈ m + 1, . . . ,m + n, and ŷi = −1 otherwise, where fi is the ith

element of f .

Next, we introduce the proposed techniques for computing the residual vectors

∆1f and ∆2f in Subsections 6 and 12 respectively, the convergence analysis of the

proposed AOT framework in Subsection 11.

Label Deficiency

In this subsubsection, we introduce our proposed techniques to solve for residual

vector ∆1f , which addresses label deficiency. Based on eq. (4), this involves the

minimization of both Q1 and Q2.

To instantiate Q1, notice that the key to semi-supervised learning is the consis-

tency assumption (Zhou et al., 2003). When we have access to small amount of

labeled data and lots of unlabeled data, the classification function can be enforced to

be sufficiently smooth on the intrinsic structure of the data manifold. According to

the consistency assumption, if two examples are similar to each other, they should
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belong to the same class. So in a scenario where the examples are similar and the

corresponding pseudo labels are different, the overall classification vector f should

address the discrepancy in the class labels. More specifically, we have,

Q1 =
1

2

m+n∑
i,j=1

Wij

(f0
i + ∆1fi + ∆2fi√

Di

−
f0
j + ∆1fj + ∆2fj√

Dj

)2

+
m∑
i=1

µ1(f0
i + ∆1fi + ∆2fi − yi)

2

=
1

2
(f0 + ∆1f + ∆2f)T (I− S)(f0 + ∆1f + ∆2f)

+ µ1||f0
L + ∆1fL + ∆2fL − yL||2

(4.29)

where µ1 > 0 is the regularization parameter. The objective function in eq. (4.29) has

two terms. The first term is the smoothness constraint which ensures the class labels

of the similar examples are similar to each other. The second term is the regularizer

constraint which ensures that the optimal classification function should not change

too much from the class labels of the labeled examples.

On the other hand, to instantiate Q2, we enforce the residual vector ∆1f to be

sparse. The sparsity constraint ensures that this residual vector is non-zero only

when the corresponding example contains changed relationship between features and

class labels, or the example has new features. To be specific, we add the elastic-net

regularizer to enforce sparsity in the residual vector ∆1f as follows:

Q2(∆1f) = µ2||∆1f ||1 + (1− µ2)||∆1f ||22 (4.30)

where µ2 is the elastic-net coefficient. As the L1 norm term in the sparse regularizer

Q2(∆1f) is not continuously differentiable and discontinuous at ∆1fi = 0, we employ

the proximal gradient descent (Boyd et al., 2011) to estimate the residual vector ∆1f .

As shown in eq. (4.27), the combined cost function to address the label deficiency is

the sum of regularization term and the sparsity constraint given as follows:

QLabDef(∆1f ,∆2f̂) = Q1(∆1f ,∆2f̂) +Q2(∆1f) (4.31)

72



where ∆2f̂ is the fixed distribution shift residual vector.

It can be seen that, the component Q1 is a differentiable convex function, detailed

proof is omitted due to space constraints. Also, the elastic-net sparsity constraint term

Q2 is closed, convex and non-differentiable over ∆1f . The proximal gradient method

can be applied to minimize the cost function in eq. (4.31). The proximal gradient step

to compute ∆1f is ∆1fk = proxtkQ2

(
∆1fk−1− tk∇Q2(∆1f)

)
where tk is the step size.

For the ith example in the target domain, with elastic-net coefficient µ2, the proximal

mapping for the elastic-net regularizer Q2 is proxtkQ2
(fi) =

(
1

µ2+2t−2tµ2

)
(fi − t)+ −

(−fi−t)−. The residual vector ∆1f is iteratively computed through proximal gradient

descent using a variant of fast iterative shrinkage thresholding algorithm (Beck and

Teboulle, 2009).

The algorithm to address label deficiency is illustrated in Algo. 4. The algorithm

takes as input the normalized affinity matrix S for the m+n examples from the target

domain, the noisy pseudo-labels f0 from the off-the-shelf classifier, the residual vector

for distribution shift, ∆2f and the max iteration number K. It outputs the residual

vector ∆1f for addressing label deficiency. In the algorithm, we first initialize the

parameters, and set the initial label deficiency residual vector to ∆1f0 = 0, a zero

vector. The Lipschitz constant for the iteration is computed through line search

using the proximal gradient mapping. For any l > 0, consider the proximal gradient

mapping at any given point γ is given by Gl(∆1f , γ) := Q1(γ) +∇Q1(γ)T (∆1f − γ) +

l
2
||∆1f − γ||2 +Q2 where l is the Lipschitz constant. Considering L = I−S, the term

Gl(∆1f , γ) can be computed from Q1(∆1f) and ∇Q1(∆1f) terms. In each iteration

the Lipschitz constant for the iteration is computed and the residual vector ∆1f is

updated through proximal gradient descent steps. As shown in (Beck and Teboulle,

2009), the proposed variant of fast iterative shrinkage thresholding algorithm (Algo. 4)

ensures the cost function QLabDef is monotonically decreasing and converges to the
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Algorithm 4: AddressLabDef - Addressing Label Deficiency

Input: (1) The normalized affinity matrix S for the m+ n examples; (2) The

noisy pseudo-labels f0 from the off-the-shelf classifier; (3) The residual

vector for distribution shift, ∆2f ; (4) The max iteration number K

Output: ∆1f : The residual vector to address label deficiency.

1 l0 = 1, η = 2

2 ∆1f0 ← 0, γ1 = ∆1f0 and t1 = 1

3 for k ← 1 to K do

4 l̂ = ηilk−1

5 while QLabDef(∆1f ,∆2f̂) > G(proxλl(γk−1), γk−1) do

6 i← i+ 1

7 l̂ = ηilk−1

8 end

9 lk = l̂; ∆1fk = proxλl(γk); tk+1 = 1+
√

1+4tk∗tk
2

10 γk+1 = ∆1fk + tk−1
tk+1

(∆1fk −∆1fk−1)

11 end

12 return ∆1fK

global optimal ∆1f
∗.

Distribution Shift

In traditional machine learning, often the data distribution of training and test data is

considered to be the same. When the distributions are different, the trained classifica-

tion model may not perform well on the test data. In source free domain adaptation,

the off-the-shelf classifier is trained on a data set with a different distribution from

the given data set DL ∪ DU in the target domain. This leads to a distribution shift

as the class conditional distribution in the target domain is different from the train-
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ing data used by off-the-shelf classifiers, potentially changing the optimal predicted

labels. The inconsistency in the class labels can be modeled as a residual vector ∆2f .

Similar as in the last subsubsection, the cost function to address the distribution shift

is the sum of the regularization term Q1 and Q3, which measures the prediction loss

on the labeled examples from the target domain:

QDisShift(∆1f̂ ,∆2f) = Q1(∆1f̂ ,∆2f) +Q3(∆2f)

= Q1(∆1f̂ ,∆2f) +
1

m

m∑
i

(
yi − f 0

i −∆1f̂i −∆2fi

)2

(4.32)

where ∆1f̂ is the fixed label deficiency residual vector. Notice that the cost function

QDisShift is smooth and ∇QDisShift exists for ∆2f ∈ Rm+n. And the term ∇QDisShift

can be computed as follows:

∇QDisShift = 2(I− S)∆2f + 2µ1I(f0 + ∆1f + ∆2f − y) (4.33)

We employ the gradient boosting approach to compute the residual vector ∆2f

that minimizes this cost function. Like other boosting methods, gradient boosting

combines a set of weak learners into a single strong learner in an iterative fashion. The

algorithm for the gradient boosting is shown in Algo. 5. Using the labeled examples,

we train a set of gradient boosted regressors and update the residual function ∆2f for

all the examples ∆2fi = F(xi), i ∈ 1 . . . (m+ n) and where ∆2fi is the ith element of

∆2f . The gradient boosted regressor is an ensemble of SVM tree regressors trained

on the m labeled examples.

Algorithm AddressDisShift (Algo. 5) shows the details for computing the resid-

ual vector ∆2f to address the distribution shift. The input to the algorithm are the

example feature matrices for the labeled examples XL, and the unlabeled examples

XU , the noisy pseudo-labels f0 from the off-the-shelf classifier, the residual vector for

label deficiency, ∆1f . The gradient boosting is performed by fitting all the labeled
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Algorithm 5: AddressDisShift - Addressing Distribution Shift

Input: (1) Example feature matrices XL and XU ; (2) Noisy pseudo-labels f0

from the off-the-shelf classifier; (3) Residual vector for label deficiency,

∆1f̂ ; (4) Max iterations K

Output: ∆2f : The residual vector to address distribution shift.

1 Initialize F0

2 for k ← 1 to K do

3 rk = −∇QDisShift(∆f̂ ,∆2fk)

4 Learn a base learner hk on labeled examples

5 γk = argmin
γ

∑m
i ∇QDisShift(∆1f̂i,Fk−1 + γhk(xi))

6 Fk = Fk−1 + γkhk

7 end

8 for i← 1 to m+ n do

9 ∆2fi = Fk(xi)

10 end

11 return ∆2f

examples DL to an SVM regressor and the residual value is computed for all the

unlabeled examples DU . Finally, the algorithm outputs the residual vector ∆2f .

Convergence of AOT

In this subsubsection we formally discuss the convergence of the proposed AOT al-

gorithm. As discussed earlier in AOT algorithm (Algo. 3), we employ an alternative

minimization strategy to compute the residual vectors ∆1f and ∆2f . We follow the

existing work (Beck, 2015) to prove the convergence of the proposed alternative min-

imization framework in Theorem. 3.

Theorem 3. Let ∆1fk,∆2fk be the sequence generated by the proposed alternating

76



minimization based AOT framework. Then for any k > 0, L1 > 0, L2 > 0 and for

finite values of L1 and L2, the rate of convergence is given by

Q(∆1fk+1,∆2fk)−Q(∆1f
∗,∆2f

∗) ≤ ||G1
L1
||.||∆1fk + 1−∆1f

∗|| (4.34)

Q(∆1fk,∆2fk+1)−Q(∆1f
∗,∆2f

∗) ≤ ||G2
L2
||.||∆2fk + 1−∆2f

∗|| (4.35)

where G1
L1

and G1
L1

is the proximal gradient mapping, ∆1f
∗ and ∆2f

∗ are the local

optimal residual functions. With the above rate of convergence, the residual functions

∆1fk and ∆2fk computed iteratively converge to ∆1f
∗ and ∆2f

∗ respectively.

Proof. The cost function for the manifold regularization term Q1(∆1f ,∆2f) is a con-

tinuously differentiable convex function over domain of Q2, Rm+n and over domain

of Q3, Rm+n. The gradient of Q1 is (uniformly) Lipschitz continuous with respect

to ∆1f over the domain of Q2 with constant L1 ∈ (0,∞). Also, the gradient of

Q1 is (uniformly) Lipschitz continuous with respect to ∆2f over domain of Q3 with

constant L2 ∈ (0,∞). Therefore, ||∇1Q1(∆1f + d1) − ∇1Q1(∆1f)|| ≤ L1||d1|| and

||∇2Q1(∆2f +d2)−∇2Q1(∆2f)|| ≤ L2||d2|| where the Lipschitz constants L1 = L2 =

2tr((1 + µ1)I − S) ≥ 0, d1 ∈ Rm+n, d2 ∈ Rm+n, ∆1f + d1 and ∆2f + d2 is in do-

main of Q2 and Q3 respectively. The proposed alternating minimization framework

AOT adheres to the framework proposed in the paper Beck (2015). From Lemma

3.4 in the alternating minimization framework proposed in Beck (2015), the sequence

∆1fk,∆2fk generated by the proposed AOT framework converges to ∆1f
∗,∆2f

∗.

4.3.3 Results

In this subsection we present the experimental results to demonstrate the perfor-

mance of the proposed AOT framework from multiple aspects. We first introduce

seven real-world data sets, including four text data sets and three image data sets.
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Then we compare our AOT framework with other state-of-the-art approaches.

Data sets: The performance of the proposed AOT framework is evaluated on seven

real world data sets. The statistics of all the data sets are shown in Table 4.7. The

Stanford sentiment classification tool is used to compute the off-the-shelf classification

ratings for all the text data sets. The details of the data sets are as follows:

• IMDB movie reviews (Maas et al., 2011a): A binary sentiment classification

data set. The Stanford sentiment classification tool is used to compute the

off-the-shelf classification ratings for this data set.

• Amazon fine food reviews (McAuley and Leskovec, 2013b): A binary sen-

timent classification data set, where all the reviews with 4-5 star ratings are

considered as positive and reviews with 1-2 star ratings are considered negative.

The Stanford sentiment classification tool is used to compute the off-the-shelf

classification ratings for this data set.

• Convex- non convex images (Erhan, 2007): A binary image classification

data set. The off-the-shelf classifier is on a held out data set with a different

SIFT feature set. Fig 4.5 shows images from the data set.

Figure 4.5: Example Images From the Convex and Nonconvex Data Set.
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• Cats and dogs images (Elson et al., 2007): A binary image classification data

set. The data from Imagenet (Deng et al., 2009) with synsets cats and dogs are

used to train the off-the-shelf classifier. Fig 4.6 shows images from the data set.

Figure 4.6: Example Images From the Cats and Dogs Data Set.

• News articles: News articles related to illegal immigration and cartel wars in

Mexico have been crawled from various news websites from United States and

Mexico. The binary classification task for this data set is to identify whether

the content of the news article is related to illegal immigration or cartel wars.

The news articles in Spanish are translated to English using Google translation

service, and used to train the black-box off-the-shelf classifier.

• Amazon product reviews (McAuley and Leskovec, 2013a): A multiclass

sentiment classification data set. The reviews ratings to class mappings are as

follows: 1-most negative, 2-negative, 3-neutral, 4-positive and 5-most positive.

The Stanford sentiment classification tool is used to compute the off-the-shelf

classification ratings for this dataset.

• Office-Caltech dataset (Hoffman et al., 2013): A multiclass image classifi-
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cation data set with 10 overlapping categories between the Office data set and

Caltech256 data set. The off-the-shelf black-box classifier is trained on the office

dataset. The Caltech images are used as the target domain.

Preprocessing: For textual features, words were converted to lower case and then

stemmed. All the stop words, punctuation and symbols were removed. The tf-idf

feature vector as a bag of words on n-grams n = {1, 2, 3, 4} were extracted for each

review. For the images, SIFT features for each image were calculated. Then each

image is represented as a tf-idf feature vector on Bag of Visual Words (BoVW). The

BoVW are computed through K-Means on SIFT descriptors for each image. The

number of clusters for convex non-convex data set is st to 100, and for cats and dogs

data set the number of clusters is set to 600. The cluster size is chosen based on the

10-fold cross validation.oss validation.

Data set Type # of examples

Binary data sets

IMDB movie reviews Text 10000

Amazon fine food reviews Text 10000

Convex-non convex images Image 3000

Cats and dogs images Image 3000

News articles Text 1395

Multiclass data sets

Amazon product reviews Multiclass Text 3521

Office-Caltech data set Multiclass Image 2533

Table 4.7: Statistics of the Seven Data Sets

Comparison methods: The effectiveness of the proposed framework is demon-
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strated by comparing with the baseline off-the-shelf classifier and the strong baseline

of SVM. The various methods compared in the experiments and their setup is as

follows:

1. FastDAM: Fast Domain Adaptation Machine Duan et al. (2009). To compare

with the proposed AOT framework, only one set of classification labels from

the off-the-shelf classifier were considered for FastDAM.

2. SVM: Strong baseline SVM trained on the known labeled examples from the

target domain.

3. OTSC: Off-the-shelf classifier. The Stanford sentiment classification toolkit is

used as the off-the-shelf classifier for the binary sentiment classification data

sets. For the image data sets, a logistic regression model trained on the similar

images as the target domain is used as the off-the-shelf classifier.

Effectiveness of AOT : Effectiveness of the proposed AOT framework is eval-

uated by comparing with other methods. For all the experiments, the regularization

parameters in the label deficiency AddressLabDef are set to µ1 = 0.7 and µ2 = 0.5.

For all the experiments, the results are reported after 30 different runs on randomly

sampled data from the training set. The effectiveness of the proposed AOT approach

is evaluated from a sample of 10-140 labeled examples for the binary data sets, 20-280

examples for the multi-class data sets.
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(a) Text dataset - Amazon Fine Food Reviews
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Figure 4.7: Classification Accuracy on Binary Amazon Fine Foods Text Data Set

With 10-140 Labeled Examples

Figures Fig 4.7-Fig 4.11 shows the results on effectiveness for binary data sets.

Figures Fig 4.12 and Fig 4.13 shows the effectiveness for multi-class data sets.
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(b) Text dataset - IMDB Movie Reviews
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Figure 4.8: Classification Accuracy on Binary IMDB Text Data Set With 10-140

Labeled Examples
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(c) Image dataset - Convex or Non-convex Images
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Figure 4.9: Classification Accuracy on Binary Convex and Non-convex Images Data

Set With 10-140 Labeled Examples
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(d) Image dataset - Cats and Dogs
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Figure 4.10: Classification Accuracy on Binary Cats and Dogs Image Data Set With

10-140 Labeled Examples
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(e) Text dataset - Immigrants vs Cartels
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Figure 4.11: Classification Accuracy on Binary News Articles Text Data Set With

10-140 Labeled Examples
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(f) Text dataset - Amazon product reviews
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Figure 4.12: Classification Accuracy on Multi-class Amazon Product Reviews Text

Data Set With 20-280 Labeled Examples

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

# of labeled examples

0.35

0.40

0.45

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

(g) Images dataset - Office caltech data set
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Figure 4.13: Classification Accuracy on Multi-class Office-caltech Image Data Set

With 20-280 Labeled Examples
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From the results in the Fig. 4.7, the proposed AOT framework performs better

than all the competitors on both the text and image data sets. Its performance is

very close to that of FastDAM on both image data sets. This is because the labels

generated by the baseline off-the-shelf classifier are very noisy on the image data sets,

and the gain achieved by the proposed AOT framework is limited by the quality of

the labels generated by the off-the-shelf classifier.

Two Stage Analysis

We analyze the benefit of addressing label deficiency and distribution shift individu-

ally. The number of labeled examples is set to m = 140. We evaluate the performance

of algorithms AddressLabDef, AddressDisShift and AOT on Amazon fine food

reviews and Cats and dogs data sets.
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Text dataset - Amazon Fine Food Reviews
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Figure 4.14: Two Stage Analysis for the Amazon Fine Foods Binary Text Data Set.

From figures Fig. 4.14 and Fig. 4.15, it can be observed that addressing label

deficiency through manifold regularization alone is more helpful than addressing dis-
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tribution shift. Also combining both algorithms performs better than the performance

of the individual algorithms. This demonstrates the power of combining both algo-

rithms together for better adaptation results.
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Image dataset - Cats and Dogs
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Figure 4.15: Two Stage Analysis for the Cats and Dogs Binary Image Data Set.

Sensitivity Analysis

In this subsubsection, we analyze the influence of hyper-parameters on the proposed

AOT framework. We analyze the influence of hyper-parameters through grid search.

Both parameters µ1 and µ2 in the objective function taking values in the interval

[0, 1] are analyzed. In general, the performance of the proposed framework is robust

to small perturbations in the parameters. Furthermore, it was observed that the

parameter µ1 which controls the influence of the regularizer on the labeled examples

gives good results with higher values µ1 ≥ 0.6 and performs poorly with smaller

values. Also, the parameter µ2 which controls the sparsity has a better accuracy for

a balance elastic net regularizer around µ2 = 0.5.
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Figure 4.16: Sensitivity Analysis of the Aot on Imdb Data Set.

Convergence Analysis

In this subsubsection, we analyze the convergence of the proposed AOT framework.

Fig. 4.17 shows the convergence of the cost function from eq. (4.25) on IMDB data

set. The number of iterations for the algorithms AddressLabDef and Address-

DisShift is set to k = 10. It can be seen that the algorithm converges around T = 60

iterations.
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Figure 4.17: Convergence of the Aot on Imdb Data Set.

Runtime Analysis

Fig. 4.18 shows the runtime in seconds for varying sizes of the data set.
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Figure 4.18: Running Time of the Addresslabdef and Aot Algorithms on Imdb

Data Set.
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The number of labeled examples is set to m = 140 for all the cases, the remaining

examples are considered as unlabeled. In our experiments, the AOT algorithm

converges after T = 60 iterations. For AddressLabDef we have set the max number

of iterations K = 100.
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Chapter 5

EXPLAINABLE TRANSFER LEARNING

Traditional machine learning typically requires a large amount of quality labeled

data to obtain reliable predictive models. Finding such quality labeled data can

be expensive and time-consuming, sometimes requiring inputs from domain experts,

such as health imagery like MRI scans (Liu et al., 2018) and fine-grained classification

(Zhao et al., 2017). This has motivated the research on transfer learning (Pan and

Yang, 2010), which leverages the knowledge and insights obtained from a source

domain with plenty of labeled data to help build predictive models in a target domain

with limited or even no labeled data at all. The major challenge here is how to

model the relatedness between the source and target domains despite the different

data distributions. Up until now, various transfer learning techniques have been

proposed and successfully applied to a wide variety of real-world problems such as

machine translation (Wu et al., 2008), image classification (Long et al., 2016), web

document classification (Weiss et al., 2016), etc. With the recent advances in deep

learning techniques, a variety of deep neural network models have been proposed

for transfer learning, often leading to significant improvement in the performance.

(Hoffman et al., 2017) showed that knowledge is transferable from synthetic to real-

world domains, Long et al. (2015) proposed a deep adaptation network that can learn

transferable features from pre-trained models, popularly known as fine-tuning, Young

et al. (2018) examined that deep learning based approaches were effective on natural

language processing tasks.

On the other hand, with increasingly complex predictive models, it becomes more

and more challenging to explain the model outputs to end users in such a way that
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can be comprehended by non-experts of data mining. To address this challenge, quite

a few efforts have been made to explain model outputs in recent years. For exam-

ple, Ribeiro et al. (2016) proposed an explanation framework to explain individual

predictions of black box models; in (Lundberg and Lee, 2017), the authors proposed

a unified approach connecting game theory with local explanations; Koh and Liang

(2017) proposed a framework based on influence functions, using which the influence

of training examples on test data can be efficiently computed; Selvaraju et al. (2017)

showed that the activation weights in convolution neural networks could be learned

using the gradients on the activation maps without retraining the model. However, in

the context of transfer learning, due to the difference in data distribution between the

source and target domains, existing explanation techniques cannot be readily applied

to interpret the transfer learning models. In other words, the key challenge here is

how to provide the explanation for the predictive model in the target domain using

the information obtained from the source domain (e.g., the influence of examples,

relevance of features.) In particular, some source domain examples might contribute

more to the predictive model in the target domain, whereas others might be irrelevant

or even cause the negative transfer (Pan and Yang, 2010). Similarly, some features

may provide more meaningful information, possess more discriminative power com-

pared to other background or unnecessary features (Blitzer et al., 2006; Weiss et al.,

2016). A good explanation model should capture the information on important ex-

amples and relevant features to provide coherent explanations on the model behavior

(Doshi-Velez and Kim, 2017). Motivated by this, we learn the importance weights,

and the set relevant features associated with the source domain examples and use

them to interpret the behavior of the transfer learning model.

In this chapter, we propose an explainable Transfer Learning framework (exTL

) that learns importance weights from the source domain examples and identifies the
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relevant set of features that are conducive to transfer. In our approach we sample a

mini-batch of examples from the source and target domains, perturbing the source

domain examples by a small weight and estimate its influence through performance

on the set of labeled examples in the target domain. The key idea here is that

those examples that are similar to the examples in the target domain need to be

up-weighted. The optimal weights are computed in an online fashion, and the model

parameters are updated based on the reweighted cost function. We also enforce a

regularizer that helps in learning a domain invariant feature space which further

enables transfer from the source domain to the target domain. Using only a small set

of labeled examples in the target domain can lead to model overfitting, we prevent

this by considering a set of unlabeled examples in the mini-batch with low entropy.

This set of unlabeled examples helps in learning a more generalizable model to the

target domain and also in learning the domain invariant space between the source and

target domains. To be specific, the novel contributions of the work on explainable

transfer learning are as follows:

1. exTL : A novel semi-supervised transfer learning framework that learns the

importance weights in an online fashion along with a set of relevant features

conducive to transfer and a domain invariant space spanning the source and the

target domains.

2. An algorithm that applies to shallow and deep neural network models for ex-

plainable transfer learning. Theoretical analysis with the shallow network ex-

ample and exhaustive empirical analysis on two text and one image data set to

demonstrate the performance of the proposed approach on multiple baselines

and widely used transfer learning approaches.

3. A novel approach to use the importance weights on the source domain examples
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and the features to interpret the underlying transfer learning model. We provide

analysis on the reliability of the model and demonstrate the superiority of our

approach through visualization of important features on the image data set.

The rest of the chapter is organized as follows. We discuss the proposed framework

along with the algorithm and theoretical analysis in Section 5.1. In Section 5.2, we

perform an empirical analysis of two text data sets and an image data set.

5.1 Proposed Approach

In this section, we propose our novel approach exTL to learn importance weights

and relevant features that foster knowledge transfer from the source to the target

domain. We start by introducing the notation, the exTL framework, online algorithm

to compute weights and relevant features and finally discuss our set up with an

example using a shallow neural network.

Notation

Let S denote the source domain and T denote the target domain. We consider that

the labeled source data is abundant and the labeled data in the target domain is

scarce. Let DS = {XS,YS} represent the examples from the source domain, i.e.,

XS = {xS1 , . . . ,xSm} ⊂ Rd be the set of m labeled examples from the source domain,

and d be the dimensionality of the feature space. Let YS = {yS1 , . . . , ySn} ⊂ 0, 1m×|C|,

where |C| is cardinality of set of classes {1, . . . , C}. For convenience we represent

features in the shared feature space of size d. Similarly, let DT = {X l
T ,Y lT} ∪ {X u

T }

represent the union of small set of labeled examples and a large set of unlabeled

examples from the target domain. Let X l
T = {xT1 , . . . ,xTnl

} ⊂ Rd be the set of nl

labeled examples from the target domain, X u
T = {xT1 , . . . ,xTnu

} ⊂ Rd be the set of nu

unlabeled examples from the target domain. Let PS(XS) and PT (XT ) characterize
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the probability distributions of the source and the target domains. In this paper we

consider transfer learning setup where probability distributions PS 6= PT .

exTL framework

Let f(x, θ) be neural network model (shallow or deep network) with model parame-

ters θ and L(y, f(x, θ)) be the loss function, for example entropy loss for multiclass

settings. The goal of the transfer learning is to learn the model that can improve the

classification accuracy on the unlabeled examples in the target domain. The objective

function for empirical risk minimizer that minimizes the loss on the known labeled

examples is given as follows:

θ∗ = argmin
θ

m∑
i=1

L(ySi , f(xSi , θ)) +

nl∑
i=1

L(yTi , f(xTi , θ)) (5.1)

Directly training the classifier on labeled examples may not perform well if a meaning-

ful representation across the domains is not established, it can even lead to overfitting

of the model to data in the source domain. Such overfitting can result in reduced

performance of the classifier on target domain data DT . Our intuition is that if we

can reweight the source domain examples and also simultaneously learn domain in-

variant feature space by minimizing the distribution shift in between the source and

target domains, it is possible to train the classifier on source domain data DS that

performs well on the target domain DT . With that intuition, we propose our novel

transfer learning approach that reweights source domain examples and at the same

time learns the domain invariant representation across the source and target domains.

The loss function L, parameterized by θ and w for our approach is given as follows:

L(θ,w) =
m∑
i=1

L(ySi ,wif(xSi , θ)) +

nl∑
i=1

L(yTi , f(xTi , θ))

+ λd2(XS,XT )

(5.2)
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where wi are the weights for reweighting source domain examples, and the second term

d(XS,XT ) represents the distance between source domain data XS and target domain

data XT with the penalty hyperparameter λ > 0. More details regarding importance

weight computation, domain invariant space and relevant feature identification is

discussed in the following subsubsections.

Reweighting the source domain examples:

In most practical scenarios, not all the examples can be considered equally repre-

sentative towards the target domain. There could be a set of examples with data

distribution similar to target domain which have a positive influence for knowledge

transfer, and examples that are very dissimilar can lead to negative transfer. Identi-

fying and uplifting the contribution of such similar examples will often lead to better

model performance (Shimodaira, 2000; Pan and Yang, 2010). The idea is to learn the

weights on such similar examples and let them guide the model parameter learning

procedure.

Given the source domain data, we aim to minimize the expected loss by reweight-

ing examples of source domain. Let wi be the weight given to example from the

source domain, the objective function that learns the optimal model θ∗ with input

reweighting is given as follows:

θ∗(w) = argmin
θ

m∑
i=1

L(ySi ,wif(xSi , θ)) (5.3)

In our approach the weights {wi}mi=1 are considered to reweight the loss contri-

bution of each of the source domain example. Unlike classical input reweighting

approaches (Shimodaira, 2000) we treat the weights as hyperparameters that drive

in training a better transfer learning model. Given the set of labeled examples from

the target domain, a straight forward way for optimal selection of the weights w is
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based on the performance of the classifier on the known labeled examples (Ren et al.,

2018). The optimal selection of the weights w∗ given as:

w∗ = argmin
w,w≥0

nl∑
i=1

L(yTi , f(xTi , θ
∗(w))) (5.4)

Here we consider the weights to be positive, since minimizing the negative training

loss can result in an unstable behavior. Considering only a small set of labeled

examples for optimal weight selection has two major issues: (1) the number of labeled

examples in the target domain are considered to be very small, therefore it is difficult

to learn optimal weights from such a small set of examples; (2) trying to fit the

weights to the small size of labeled examples can result in overfitting of the model

to the labeled set and therefore not generalizable to the target domain. To avoid

such issues, we propose to leverage the larger set of unlabeled examples, posing our

approach exTL as a semi-supervised learning problem. In our approach, we sample

a small set of unlabeled examples compute the noisy labels for the model and use

that subset of examples with low entropy. For a cross-entropy loss function, low loss

examples can be considered. The authors in (Han et al., 2018) showed that by using

the low loss examples, it is possible to learn a robust classifier. Let n′u represent

the small subset of examples with classification loss less than a threshold τ . The

parameter tau can be set by performance of the model on known labeled examples

from the target domain. The objective function to compute the optimal weights is

w∗ = argmin
w,w≥0

nl∑
i=1

L(yTi , f(xTi , θ
∗(w))) +

n′
u∑

i=1

L(yTi , f(xTi , θ
∗(w))) (5.5)

It can be seen from the equations eq. (5.3) and eq. (5.5), calculating the optimal

weight wi requires two nested loop operations which is very expensive to compute

and hard to scale to large data sets. Instead, we want to follow recent work on

estimating the influence of training examples on test data through perturbation of
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training examples with small weight ε. As shown in (Koh and Liang, 2017), the goal

here is to understand the influence of source domain examples towards the perfor-

mance on the small labeled data set from the target domain. We would give higher

weights to the examples that have more influence which are usually examples similar

to the target domain examples. We consider by perturbing each training example

with a small weight ε, let the reweighted version of the loss function from eq. (5.5)

be Li,ε(θ) = εLi(θ), then the optimal ε∗ can be computed by minimizing the loss on

the set of labeled examples from the target domain.

ε∗t = argmin
ε

1

nl

nl∑
i=1

Li,ε(θt+1(w)) +
1

m′u

m′
u∑

i=1

Li,ε(θt+1(w)) (5.6)

Considering optimization of the model through Stochastic Gradient Descent (SGD),

computing the ε∗ in eq. (5.6) for each mini-batch of examples is expensive, so instead

we take single gradient descent step on a mini-batch of labeled examples from target

domain. For each model training iteration, we inspect the descent direction of a mini-

batch of examples from the source domain locally on the training loss surface and

reweight them according to their similarity to the descent direction of the loss surface

computed on the set of labeled target domain examples. At every step of training

the model, a mini-batch of labeled examples from the source domain is sampled and

the parameters of the model θ are adjusted according to the descent direction of

the expected loss on mini-batch. The gradients are rectified to get a non-negative

weighting. Let blT be the mini-batch of labeled examples from target domain and b′T

be low entropy examples from the mini-batch of buT unlabeled examples. The weight

computation step with (blT +b′T ) mini-batch examples at iteration t is given as follows:

wi,t = −η ∂

∂εi,t

1

(blT + b′T )

(blT +b′T )∑
i=1

L(yTi , f(xTi , θt+1(w)) (5.7)

w̃i,t = max (wi,t, 0) (5.8)
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where η is the descent step size on ε. Further to keep the weights comparable across

the mini-batches, we normalize the weights, to sum up to one for each mini-batch.

Domain invariant representation:

As the data distribution is different between the source and target domains, for an

effective transfer learning it is important to learn a domain invariant feature space.

To minimize the distance between the data distributions, we employ Maximum Mean

Discrepancy (MMD)(Gretton et al., 2012; Tzeng et al., 2014). The distance between

the examples in the source domain and the target domain is computed with the

representation φ(·). The representation φ(·) can be considered as an input feature

mapping, for example word embeddings in the case of text, outputs of hidden layers

in case of deep neural networks. Representation φ(·) on the source domain examples

XS and target domain examples XT . The empirical approximation of the distance dk

for the kernel k is given by:

d2
k =

∣∣∣∣∣∣ 1

|XS|
∑

xS
i ∈XS

φ(xSi )− 1

|XT |
∑

xT
i ∈XT

φ(xTi )
∣∣∣∣∣∣2 (5.9)

From the eq. (5.9) it can be seen that the MMD distance dk between the source

and the target domains is defined as the distance between the mean embeddings.

MMD was earlier studied towards two-sample testing, where acceptance or rejection

decisions are made for a null hypothesis PS = PT , the two samples belong to the same

distribution. In (Gretton et al., 2012), it was shown that the distributions PS = PT ,

if an only if the d2
k = 0. Here k is the characteristic kernel associated with the feature

map φ, given as k(XS,XT ) =< φ(XS), φ(XT ) >. It was theoretically proved that the

kernel for the mean embedding of the two distributions is critical for the test power

and low test error (Tzeng et al., 2014; Long et al., 2015). Empirically the estimate of

MMD computes the square distance between the empirical kernel mean embeddings,

99



expanding eq. (5.9) and applying the definition of kernel function k, we have:

d̂2
k =

1

m2

m∑
i=1

m∑
j=1

k(xSi ,x
S
j ) +

1

n2

n∑
i=1

n∑
j=1

k(xTi ,x
T
j )

− 2

mn

m∑
i=1

n∑
j=1

k(xSi ,x
T
j )

(5.10)

where k is the kernel and d̂k is the unbiased estimator of dk. In practice, a kernel is

chosen based on the model and data set. For example, a distance metric like cosine

similarity can be used for linear models and text data sets. Whereas, for an image

data set a Gaussian kernel, k(xi,xj) = exp−||xi−xj ||2/γ with bandwidth γ set to the

median pairwise distances on the data (Gretton et al., 2012).

Furthermore, we compute the feature relevance scores using the Deep SHAP

(Lundberg and Lee, 2017) approach based on Shapely Values and Deep LIFT(Shrikumar

et al., 2017). Deep SHAP through back propagation, combines SHAP values com-

puted for various neurons in the network into SHAP values for the whole network. In

our approach, we estimate feature relevance scores of the network every p iterations

and remove the set of features with the least contribution. The goal of pruning the

features is to remove the background features that do not contribute substantially to

the model. Also, having smaller features makes it easier to explain the underlying

model (Ribeiro et al., 2016).

Algorithm

In this section, we present our exTL algorithm along with the analysis of the con-

vergence and upper bound on the target domain risk. Algo.6 illustrates the proposed

algorithm. Let T be the number of maximum iterations. For simplicity, we initial-

ize the model parameter to zeros. For each model training iteration, we sample a

mini-batch bS from source domain, blT labeled examples and buT unlabeled examples
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Algorithm 6: exTL Algorithm
1: Input: Source and target domain data sets DS and DT , mini-batch size for sampling source and target domain

examples bS , blT and buT , initial model parameters θ0 and max number of iterations T . Hyperparameters τ , α, β

and η.

2: Initialization:

3: Set t = 0.

4: Repeat:

5: (i). Sample the mini-batch examples from DS and DT .

{X bS
S ,YbS

S } ← mini-batch(DS , bS)

{X blT
T ,YblT

T } ← mini-batch(Dl
T , bTL)

{X buT
T } ← mini-batch(Dl

T , bTU )

6: (ii). Compute θ̂t based on DS .

ŶS
bS ← forward(X bS

S , θt); ε← 0;

LS ← L(ŶS
bS ,YbS

S , ε, θt); θ̂t ← θt − α∇LS

7: (iii). Update the parameters ε based on DT .

ŶT
blT ← forward (X blT

T , θt); ŶT
buT ← forward (X buT

T , θt);

b′ ← H(ŶT
buT ) < τ ; ŶT

bT ← {ŶT
blT , ŶT

b′}

LT ← L(ŶT
bT ,YbT

T , ε);∇ε← ∇LT

w̃ ← max(−∇ε, 0);w ← normalize(w̃)

8: (iv). Reweight the loss for each of the source domain examples using w and update the parameters θ.

L ← L(ŶS
bS ,YbS

S , w, θt); θt+1 ← θt − β∇L

9: (iv). Every p iterations, compute the feature relevance scores using DeepSHAP and prune the feature by

zeroing out their input contributions in further iterations.

10: While t < T − 1

11: Output: The adapted parameters for the model θt

from target domain. Based on eq. (5.3), estimate θ̂ from the mini-batch of source

domain examples. From the mini-batch samples from target domain, filter the set of

unlabeled examples with low entropy (H < τ). Combining the blT labeled examples

and b′T filtered examples from the target domain, let bT = (blT + b′T ), take a gradient

step on the loss function as shown in eq. (5.5). Estimate the weights as shown in the
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equations eq. (5.7) and eq. (5.8). Using the weights estimated we update the model

parameters along with the MMD loss computed over the mini-batch of examples from

the source domain and target domain. It can be seen that the weights are computed

on the mini-batch examples only, considering the random sampling scenario, we ac-

crue the contributions for each example from the mini-batch and average it over all

the iterations for global importance weight computation. The feature importance val-

ues computed in the last iteration are considered as global feature importance values.

All the step-size hyperparameters α, β and η are set using the line-search.

We show that by using the labeled examples from the target domain, the loss

function in the proposed algorithm is monotonically decreasing. As the loss function

on the target domain examples is monotonically decreasing over the iteration steps

it can be considered that the model trained using the source domain examples learns

a good model on the target domain. Also, our algorithm converges as shown in

theorem 4. The pruning of features through feature relevance scores, eliminates noisy

and irrelevant features which also helps in convergence and in most practical cases

does not impact the model. We also provide the upper bound on the expected target

risk of the distribution in theorem 5.

Theorem 4. The risk function R̂T is monotonically decreasing for any sequence of

training batch iterations.

R̂T (θt+1) ≤ R̂T (θt) (5.11)

where t is the training iteration.

Proof. Suppose the loss function is Lipschitz continuous with constant L and the loss

function L(θ) on the set of training examples have bounded gradients, ||∇L(θ)||2 ≤

γ, ∀x ⊂ Rd. Let the learning rate at iteration step t given by αt satisfy the condition

αt ≤ 2bS
Lγ2

, where b is the batch size of mini-batch. For the model f parametrized by
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θ, the risk on the target domain examples can be given as:

L(θ) =
1

nl

nl∑
j=1

L
(
f(θ,xj, yj)

)
(5.12)

For every iteration of the algorithm, as shown in Section 3.2, we also sample a

set of unlabeled examples from the target domain. The total number of examples

considered for every mini-batch is given as bT = (b′T + blT ). We choose b′T such that

the total loss incurred by the examples from examples is less than τ . We set the τ to

be less than the loss incurred by the set of labeled examples from the target domain.

For each iteration t in the algorithm, the risk on the target domain examples for every

mini-batch can be given as:

L(θt) =
1

blT

blT∑
j=1

L
(
f(θ,xj, yj) +

1

blT

blT∑
j=1

L
(
f(θ,xj, yj)

)

≤ 2

blT

blT∑
j=1

L
(
f(θ,xj, yj)

(5.13)

The risk is bounded by a constant factor multiplied with the risk R̂T (θ), so it is

safe to consider that the sampling from the unlabeled examples is similar to the risk

on labeled examples.

Similarly, let empirical loss on the source domain examples is given as:

L(θ) =
1

m

m∑
i=1

L
(
f(θ,xi, yi)

)
(5.14)

Following the computation similar to the shallow neural network example (Section

3.4), the update rule for the computing the model parameters can be given as:

θt+1 = θt −
αt
m

bS∑
i=1

max
(
∇L>j ∇Li, 0

)
Li (5.15)
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which can be rewritten as:

θt+1 − θt =
αt
m

bS∑
i=1

max
(
∇L>j ∇Li, 0

)
Li

= ∆θ

(5.16)

where αt is the learning rate at time-step t.

Since the loss function is lipschitz-smooth, and considering that max
(
∇L>j ∇Li, 0

)
∇L>j ∇Li ≤

max
(
∇L>j ∇Li, 0

)2

, we have:

L(θt+1) ≤ L(θt) +∇L>j ∆θ +
L

2
||∆θ||2

≤ L(θt)−
αt
m

bS∑
i=1

max
(
∇L>j ∇Li, 0

)2

+
L

2

α2
t

m2

bS∑
i=1

max
(
∇L>j ∇Li, 0

)2

(5.17)

If we denote Ωt =
∑bS

i=1 max
(
∇L>j ∇Li, 0

)2

, we can express the loss at iteration

at t+ 1 is given as:

L(θt+1) ≤ L(θt)−
αt
m

Ωt

(
1− Lαtσ

2

2n

)
(5.18)

as Ωt is non-negative and αt ≤ 2n
Lσ2 the target loss converges.

Theorem 5. Let θ ∈ H be a hypothesis, RS(θ) and RT (θ) be the expected risk of the

soruce and target domains respectively, then

RT ≤ RS + 2dk(PS,PT ) + C (5.19)

where C is a constant for the complexity of the hypotheis space H and the risk of an

ideal hypothesis for the source and the target domains.

104



Proof. We present a proof sketch for upper bound the estimated target risk. Following

the work from Ben-David et al. (2010), it shows that theRT ≤ RS+2dH(PS,PT )+C0,

where dH(PS,PT ) is the H-divergence between the probability distributions PS and

PT . Following a similar approach to Longet al. (2016) it can be proved that by using

the MMD based approach the H-divergence between the domains can be reduced and

thereby the estimated target risk can have an upper bound.

Shallow Neural Network: An example

In this example, we show how to compute weights vector w on the source domain

examples for shallow neural network model. The crucial step to computing the weights

is through computing the gradients of the loss on labeled target domain examples

for small perturbation ε. Let d be the input size, h be the number of neurons in

the hidden layer and there is a single output neuron in the output layer. Let us

consider a standard neural network (NN) architecture with a single hidden layer. For

simplicity, consider a binary classification set up, the loss function L is considered to

be the logistic loss. Let x ⊂ Rd represent the input example, y be the true label for

the input x and ŷt is estimated output from the neural network after t iterations for

the input x. The hidden layer learns a function fh : x → Rh that maps the given

input to the h-dimensional representation and is parametrized by W1 ⊂ Rh×d and

bias c1 ⊂ Rh. For an activation function σ, the function fh is given as:

fh(x; W1, c1) = σ(W1x + c1) (5.20)

Similarly, the output layer learns the function fo : Rh → [0, 1] that is parametrized

by a W2 ⊂ R1×h and bias c2 ∈ R. Let the output from hidden layer be represented

by z ⊂ Rh, the function fo is given as:

fo(z; W2, c2) = W2z + c2 (5.21)
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For the logisitic loss function Llog, the loss w.r.t the output fo is Llog = log(1 +

exp(−yfo)). To estimate the optimal ε∗ as shown in eq. (5.6) we can compute the

gradients towards ε for the iteration t and parameters W = {W1,W2} as follows:

∂

∂εi,t
E
[
L
(
W(t+1)(ε)

)∣∣∣
εi,t=0

]
=

1

b′

b′∑
j=1

∂

∂εi,t
Lj
(
W(t+1)(ε)

)∣∣∣
εi,t=0

=
1

b′

b′∑
j=1

∂Lj
(
W
)

∂W

∣∣∣>
W=Wt

∂W(t+1)(εi,t)

∂εi,t

∣∣∣
εi,t=0

∝ − 1

b′

b′∑
j=1

∂Lj
(
W
)

∂W

∣∣∣>
W=Wt

∂Li
(
W
)

∂W

∣∣∣
W=Wt

= − 1

m

b′∑
j=1

exp
(
− y.(W2zj + c2)

)
− yzj∇zj

1 + exp
(
− y.(W2zj + c2)

)
×

exp
(
− y.(W2zj + c2)

)
− yzj∇zj

1 + exp
(
− y.(W2zj + c2)

) + C3dk(zi, zj)

= − 1

m

b′∑
j=1

(
C1zj∇zj

)(
C2zi∇zi

)
+ C3dk(zi, zj)

= − 1

m

b′∑
j=1

C1C2

(
z>j zi

)(
∇z>j ∇zi

)
+ C3dk(zi, zj)

(5.22)

where C1, C2 and C3 are some constants, j represents examples from the target

domain and i represents the example from the source domain for which optimal εi

is being computed. It can be seen from the equation the ε gradient depends on the

dot product between the hidden inputs, the gradients of the hidden inputs and the

distance between the inputs. For a shallow network, if the source domain input and

target domain input is similar, the gradients are also similar and the distance between

the source and target domain is small then corresponding source domain example is

important need to be up-weighted. Otherwise, if they provide opposite gradients or

the distance between the examples is large, they need to be down weighted.
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5.2 Results

In this section, we present our empirical analysis demonstrating the performance

of our proposed exTL approach on both the text and image data sets. For each of

the data set we compare our approach with existing baselines and demonstrate its

effectiveness, we also provide details regarding the reliability of the model along with

visual explanations for image data set.

Text Data

Data sets We analyze the performance on two binary classification data sets: (1)

Amazon product reviews (AMA), the classic data set used for most transfer learning

tasks (Pang and Lee, 2004). The data set contains product reviews from books, dvd,

electronics and kitchen domains. We considered a balanced set of 2000 reviews for

each domain for a sentiment classification task. The bag-of-words feature vectors

with tf-idf feature weighting are considered. We consider the top 5000 features with

uni, bi, and tri-grams; (2) Amazon, IMDB and YELP reviews (AIY): User reviews

for various products from Amazon (Pang and Lee, 2004), restaurant and business

reviews from Yelp (Yelp, 2013) and movie reviews from IMDB (Maas et al., 2011b)

are collected from different data sources. Each of the review ratings are normalized

into a sentiment classification labels positive or negative, and a binary classification

data set is generated from the reviews. We consider a set of 10,000 examples for each

of the domain. The bag-of-words feature vectors with tf-idf feature weighting and top

5000 features with uni, bi and tri-grams are considered for evaluation.

Effectiveness We analyze the effectiveness of our approach in transductive learn-

ing settings through the performance of the classifier for a sentiment classification task

with a small set of labeled examples from the target domain. In the case of AMA
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data set, we consider 100 randomly chosen balanced labeled examples from the tar-

get domain. For the AIY data set, we choose 200 balanced examples. As baselines,

we consider Logistic Regression (LR) and SVM with Linear Kernel, transfer learning

methods Subspace Alignment (SA) (Fernando et al., 2015) with dimensionality 100

and Transfer Component Analysis (TCA) (Pan et al., 2011) with 300 components. In

our approach, we consider a shallow neural network with input layer the size of text

data features and one hidden layer with size 100 and ReLU activation. We have used

the linear kernel for MMD distance regularizer. The model parameters are estimated

by minimizing the logistic loss with SGD optimizer, parameterized with the learning

rate set to 0.1 and drop the learning rate by half every 10 epochs. NN1 represents

the baseline neural network model with one hidden layer. Our proposed method

exTL is run for 40 epochs with 50 low contributing features pruned every epoch. To

demonstrate the efficiency of this method, we also compare our approach with the one

without feature pruning (exTL -AF, all features). The underlying model for exTL

is similar to NN1.

SRC → TGT B → D B → E B → K D → E D → K E → K D → B E → B K → B E → D K → D K → E

LR 83.17 77.87 81.17 79.77 81.77 88.97 80.97 73.77 72.27 75.97 76.97 86.87

SVM 81.96 78.26 81.16 79.86 81.76 89.16 80.76 74.26 73.86 75.46 76.96 87.66

SA 58.74 62.94 63.04 59.84 67.14 69.04 65.04 62.94 58.74 60.34 61.84 71.14

TCA 58.82 63.22 66.32 61.62 64.12 74.02 58.12 52.02 57.52 57.42 60.12 70.52

NN1 83.38 78.98 81.48 79.38 81.48 88.08 73.18 73.88 72.88 76.18 77.18 88.08

exTL-AF 83.30 78.00 81.60 79.30 81.00 88.80 79.80 74.00 72.70 75.80 76.90 87.40

exTL 83.40 77.80 81.10 79.50 81.50 89.40 80.90 74.70 73.20 76.20 77.00 87.40

Table 5.1: Classification Accuracy on Amazon Product Reviews. Domains B:Books,

D:Dvd, E:Electronics and K:Kitchen

In table 5.1, we report classification accuracy for all the pairwise combinations of

domains for the AMA data set. It can be seen that compared to the baselines our
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SRC → TGT A → I A → Y I → A I → Y Y → A Y → I

LR 81.88 83.78 85.21 84.98 77.78 79.98

SVM 82.29 83.89 84.87 84.79 78.29 79.49

SA 66.91 63.81 71.11 69.01 66.91 64.31

TCA 67.25 65.65 68.15 62.15 56.05 61.45

NN1 81.80 83.36 85.46 77.16 77.86 80.16

exTL-AF 82.00 83.30 85.00 83.80 78.00 79.80

exTL 82.96 83.50 85.79 84.90 79.21 80.43

Table 5.2: Classification Accuracy on Amazon Product Reviews, Yelp and Imdb

Movie Reviews. Domains A:Amazon, I:Imdb, Y:Yelp

approach performs in par or better in most cases. The performance of the transfer

learning approaches SA and TCA is worse than naive LR and SVM classifiers on an

average. We presume this happens because only a small number of words are discrim-

inative, and these words carry little weight in the sample transformation measures

used. Moreover, both SA and TCA needs parameter tuning for effective performance.

The proposed approach effectively converges and learns the set of important examples

and relevant features with minimal to no parameter tuning.

In table 5.2, we report the classification accuracy for all the pairwise combinations

of domains for the AIY data set. Unlike the AMA data set, the AIY data set has

a broader set of examples, and the domains and the underlying feature distributions

are more diverse. With a larger set of examples and different domains, our approach

could learn better domain invariant representation, and parameter learning through

importance weighting that results in better performance in most cases.

Reliability of the model We evaluate the reliability of the model following

the set up similar to Ribeiro et al. (2016). We compare our approach to widely
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popular interpretable frameworks, LIME Ribeiro et al. (2016) and SHAP Lundberg

and Lee (2017). The reliability is measured based on self-interpretable models Sparse

Logistic Regression (Logistic regression with l1 norm) and Decision Tree Classifier.

We train both classifiers using all the examples from the source domain and the

target domain. Training on the entire data set helps in learning the relevant set of

discriminative features for the entire data set. For both classifiers, only top 20 features

are considered as the gold set for classifying training domain instances. The feature

importance provided LIME and SHAP are computed using a naive LR classifier as

it provided good results in our effectiveness analysis on an average. For each of the

unlabeled instance in the target domain, we compute the feature importance using

the three methods and compute the fraction of the gold features that were recovered.
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Figure 5.1: Recall on the Important Features

Figure fig. 5.1, shows the recall scores for two domain combinations for AMA data

set. In both the cases, our approach that learns the domain invariant space has a

better recall compared to LIME and SHAP. Also, it can be observed that the two
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domain combinations Kitchen to Electronics has the best classification accuracy on

average and Electronics to Books is the least. In the case, when the domains are more

divergent, our approach works better in identifying the relevant features for transfer.

Images

Data sets We analyze the performance of our approach on Office-Caltech data set.

The multi-class data set consists of images gathered from four different sources Hoff-

man et al. (2013) with 10 different classes. A total of 1123 images from Caltech10

data set, 956 samples from Amazon products, 157 samples from DSLR camera and

295 samples from the Webcam.

Effectiveness Study We analyze the effectiveness of our approach in transduc-

tive learning settings through the performance of the classifier on a multi-class image

classification task, with 10% labeled examples from the target domain. We consider

the SURF based in order to compare with other baselines. SURF features are bag-

of-visualwords histograms that are both scale and rotational invariant. Similar to the

text dataset, we consider Logistic Regression (LR) and SVM with RBF Kernel, trans-

fer learning methods Subspace Alignment (SA) with dimensionality 50 and Transfer

Component Analysis (TCA) with 250 components and Gaussian kernel. Parameters

for the baselines are selected through cross-validation on the labeled examples. For

effectiveness analysis, we consider a simple shallow neural network with input layer

the size of 800 and one hidden layer with size 200 and ReLU activation. We have used

the Gaussian kernel with MMD regularizer. The model parameters are estimated by

minimizing the cross-entropy loss with vanilla Stochastic Gradient Descent (SGD)

optimizer, parameterized with the learning rate set to 0.1 and drop the learning rate

by half every 5 epochs. NN1 represents the baseline neural network model with one

hidden layer. Our proposed method exTL is run for 20 epochs with 10 low contribut-
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ing features pruned every epoch. To demonstrate the efficiency of pruning, we also

compare our approach without feature pruning with the model name (exTL -AF, all

features). The underlying model for exTL is similar to a single hidden layer neural

network model NN1.

SRC → TGT A → D A → W A → C D → W D → C W → C D → A W → A C → A W → D C → D C → W

LR 0.382 0.325 0.447 0.688 0.288 0.302 0.281 0.305 0.477 0.809 0.384 0.275

SVM 0.401 0.312 0.443 0.688 0.256 0.279 0.124 0.324 0.507 0.802 0.388 0.288

SA 0.384 0.332 0.437 0.654 0.266 0.291 0.273 0.294 0.485 0.822 0.369 0.271

TCA 0.376 0.288 0.421 0.705 0.32 0.312 0.35 0.332 0.496 0.834 0.388 0.305

NN1 0.376 0.354 0.4255 0.758 0.3165 0.309 0.33 0.331 0.483 0.794 0.421 0.338

exTL-AF 0.426 0.322 0.406 0.688 0.299 0.346 0.278 0.309 0.525 0.815 0.451 0.298

exTL 0.373 0.394 0.450 0.833 0.345 0.323 0.384 0.369 0.462 0.786 0.425 0.400

Table 5.3: Classification Accuracy on Multi-class Classification of Office Caltech

Dataset. Domains A:Amazon, C:Caltech10, D:Dslr, and W:Webcam

In table 5.3, we report the classification accuracy for all the pairwise combinations

of domains for the Office-Caltech data set. It can be seen that in most cases, our

proposed approach performed better than other approaches. Unlike text data, in most

cases the transfer learning approaches perform better than the naive LR and SVM

classifiers, this indicates that SURF descriptors lead to domain dissimilarities which

are captured by the subspace transformations and transfer components effectively. It

is also observed that for domains with dissimilarity, feature pruning lead to decrease

in classification performance.

Importance weights: For analysis of important weights, we train the model

on the AlexNet architecture (Krizhevsky et al., 2012), which is comprised of five

convolutional layers and three fully connected layers. We train the neural network

from scratch instead of using the pre-trained weights of AlexNet to study our method

in isolation. The output layer is connected to the softmax layer, and the cross-entropy
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loss with SGD optimizer with learning rate 0.1 and decay it by 1
10

every 10 epochs.

We have used the Gaussian kernel for MMD regularizer. More details about other

hyperparameters are discussed in the Appendix due to space constraints.

We analyzed the model on Caltech10 as the source domain and Amazon products

as the target domain, we have used the images provided in the data set, re-sized the

images to 256 × 256 and normalized by mean and variance. A peek into the images

in the dataset. It was found that images with a very clean background and clear

image were given higher weights. A peek into the data set revealed that most images

in the Amazon domain are the images of products advertised on their website with

white backgrounds. As shown in Figure fig. 5.2 top row, most images in the Amazon

data set has a white background, the top two images with large weights and the

bottom images from the Caltech10 are shown in the second row. This shows that our

approach rightfully chooses the set of source domain examples that perform well on

the target domain.

Feature visualization: We followed the similar set up based on AlexNet model

(Krizhevsky et al., 2012) as described in the discussion on important weights. Here we

flipped the source and target domains to study how effective our model is in capturing

the relevant set of features. We trained the model on Amazon images as the source

domain and Caltech10 as the target domain with 10% of labeled examples randomly

chosen from the target domain. For the baseline model, we train the AlexNet with the

same parameters as the exTL AlexNet model. For the baseline, we append the set of

labeled examples from the target domain to the training set from the source domain.

After training both the models to convergence (40 epochs), we randomly choose three

images from the cycle class with varying difficulty in terms of classification as follows

(1) clean image with white background; (2) image with parts of the object covered

with other objects and (3) image with parts of it covered with other objects and
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Sample cycle images from Amazon domain

Top 2 and bottom 2 images from Caltech10

Figure 5.2: Top Row: Sample Images for the Class Bike in Amazon Domain.

Bottom Row: Top 2 (Left) and Bottom 2 (Right) Important Examples from

Caltech10 as the Source Domain.

lot of objects in the background too. Results are shown in the fig. 5.3. The top

three rows show the features from the baseline model, and the bottom three rows

show features from the proposed exTL model. It could be seen that the baseline

model performs well on the easy example which is very similar to the examples from

the source domain (fig. 5.2 - top row) and performs poorly on the other two images

overlapping objects and objects in the background. Our approach by learning a better

domain invariant representation between the domains was able to identify and give

scores to the relevant features (fig. 5.3-bottom three rows).
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Figure 5.3: Top (3 Rows): Feature Explanation on Baseline Model, Bottom (3

Rows): Feature Explanation from Our Extl Approach.
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Chapter 6

CONCLUSION

In this dissertation, we have identified a few interesting challenges in learning

from task heterogeneity in real-world applications. We have proposed algorithms

and models along with theoretically backed solutions for learning from task het-

erogeneity (Nelakurthi and He, ????). Also, through empirical analysis, we have

demonstrated the effectiveness of the proposed solutions compared to the existing

state-of-the-art methods.

6.1 User Behavior Modeling in Social Media

The study on the impact of social media on diabetes mellitus patients and their

health care behaviors provided insight into why individuals visit DM-specific social

networking sites (Nelakurthi et al., 2016, 2018b). Moreover, certain self-management

behaviors, such as self-monitoring of blood glucose and insulin administration may be

improved (Nelakurthi et al., 2017a). The results from the in-clinic surveys showed that

only a small number of participants use social media for their diabetes management.

Further work is needed to explore how to incorporate DM-specific social networking

site use into the clinical environment and how to leverage the technology to assist

patients with their condition.

Further, motivated by the use of disease-specific social networks, we studied the

problem of cross-network link recommendation, where we aim to identify similar

patients across multiple heterogeneous networks, such that they can form support

groups to exchange information and resources (Nelakurthi and He, 2017). This is
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different from existing work on cross-network link prediction where the goal is to link

accounts belonging to the same user from different social networks or to find users

with complementary expertise or interests. To address this problem, we propose

an optimization framework named CrossNet with four instantiations, which can be

solved using an iterative algorithm. The performance of the proposed algorithm is

evaluated both analytically in terms of convergence and computational complexity,

and empirically on various real data sets.

Given the data in disease-specific social networks is heterogeneous, modeling user

behavior is challenging. We addressed this by proposing U-Cross, a novel graph-based

transfer learning approach that explicitly models the human factor for cross-domain

sentiment analysis (Nelakurthi et al., 2017b). In U-Cross, we used the user-example-

features tripartite graph to propagate sentiment information from labeled examples,

users and keyword feature to the unlabeled examples. Based on the tripartite graph,

we proposed an effective optimization algorithm, which is guaranteed to converge

to the global optimum. Also, from the time complexity analysis of the algorithm

we showed that U-Cross scales linearly with respect to the problem size (e.g., the

number of examples in the source domain and the target domain, the size of the

combined vocabulary space). We also showed how a previously proposed approach

TRITER is a special case of our non-parametric approach U-Cross. We also proposed

an effective approach to choose common users across the source and target domains to

avoid the negative transfer. Empirical comparison with other state-of-the-art transfer

learning based sentiment classification approaches showed that explicitly modeling

user behaviors leads to improved performance. The U-Cross approach is generalizable

and scalable to multiple sources easily.
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6.2 Addressing and Explaining Task Heterogeneity

Most of the existing research in the past has focused on semi-supervised learning

techniques based on transfer learning and domain adaptation that assumed there

exists a relevant source domain with abundant data. Usually, it is considered that

either the labeled examples or parametric distribution of the labeled examples are

known, which are often leveraged to improve the classification performance on the

target domain. With increasing popularity in using machine learning for solving real-

world issues, a wide range of machine learning tools were employed to build statistical

models for data prediction, forecasting, and analysis. Often these tools are trained

on large labeled datasets and with extensive human and computational resources. To

address this we proposed AOT (Nelakurthi et al., 2018a), a generic framework for

source free domain adaptation, which aims to adapt an off-the-shelf classifier to the

target domain without having access to the source domain training data. In AOT ,

we explicitly address the two main challenges, label deficiency, and distribution shift

by introducing two residual vectors in the optimization framework. Furthermore, we

propose a variant of the iterative shrinkage approach to estimate the residual vectors

that converge quickly. Also, the drift in the class distribution is corrected through

gradient boosting. The empirical study demonstrates the effectiveness and efficiency

of our AOT framework on real-world data sets for text and image classification.

In the last decade, research in the field of machine learning has grown tremen-

dously. Machine learning, today is being used for a wide range of practical applica-

tions. Continued advances promise to produce autonomous systems that will perceive,

learn, decide, and act on their own. However, the effectiveness of these systems is

limited by the machines current inability to explain their decisions and actions to hu-

man users - Why do they do what they do?. ? proposed a model-agnostic framework
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that can identify the important features for classification. Koh and Liang (2017) used

the classic technique from robust statistics – influence functions, to identify the set of

examples that influence the classification and use them to explain the models. Most

of the work in the past has focused only on regular machine learning settings. We

proposed a novel explainable transfer learning framework that learns the importance

weights of the source domain examples with respect to the model in the target domain

and identifies the relevant set of features that are conducive to transfer learning. We

show that with a small set of labeled examples from the target domain along with the

large set of unlabeled examples it is possible to estimate the importance weights for

the source domain examples. An online algorithm with convergence rate O( 1
ε2

) along

with an upper bound on the expected risk for the target domain is proposed. Our

method can be directly applied to any models with SGD optimization. It is proven

to be effective compared to many baseline approaches to text and image data sets.

Finally, we demonstrate that our approach is able to capture the relevant features

through visual analysis of an image data set.

6.3 Limitations

In this section, we discuss a few limitations of the proposed models and algorithms

to learn from task heterogeneity in social media. Specifically, we discuss: (1) impact

of concept drift on the proposed models, (2) addressing model bias and machine

learning fairness, (3) model robustness and negative transfer, (4) ethical concerns

on using machine learning models in healthcare domain and (5) misinformation and

disinformation in social media data.
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6.3.1 Addressing Concept Drift

As discussed in the introduction chapter earlier (Chapter- 1), social media data is

dynamic in nature. Content discussed on the various healthcare-specific social media

forums change from time to time, the topics of discussion evolve over time which is

called as concept drift (Sun et al., 2017). Concept drift is a common phenomenon

in medical informatics, financial data analysis, and social networks. In the existing

research, Incremental learning, which updates learning machines (models) when a

chunk of new training data arrives, is a major learning paradigm for tackling such

tasks. In particular, the learning machines should be updated without access to pre-

vious data, such that there is no need to store or relearn the model using the previous

data. Most research on addressing concept drift can be divided into three categories:

(1) using a sliding window technique to train the models and give importance to

recent data, (2) model for concept drift by considering data chunks at various time

intervals, and (3) ensemble of models from consecutive time stamps and build a pre-

dictive model as a function of ensemble models. Ensemble models are showed to be

better at handling concept drift (Xie et al., 2017). Our work on adapting off-the-shelf

classifiers do not directly address the temporal dynamics involved in Social media

data. Assuming a number of data chunks D1, . . . , Dt, with t sequential time steps,

existing work on ensemble-based methods is useful in learning t sub-tasks, each of

which can be regarded as an adapted model (base learner). These base learners at

various time stamps can be further leveraged to address concept drift.

6.3.2 Model Fairness

Any form of bias in machine learning or data mining models is due to some kind of

bias present in the people working on annotating the data or it lies in the data itself
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due to skewness or missing features or any other reason that needs to be picked up

and Investigated. In many real-world scenarios when the set of features for a predic-

tive model includes human demographic information like race, age, gender, ethnicity,

education level, and income. It is possible for the predictive models to give higher

importance to these demographic features and make a decision with a bias to one of

these features. Biased predictive models may result in making unfair/biased decisions

which would, consequently, impact the end users. Though the proposed methods do

not address model fairness out-of-the-box, the work on explaining task heterogeneity

and SHAP (Lundberg and Lee, 2017) helps in identifying a set of relevant features for

a given model. The set of relevant features can be manually investigated by experts

to evaluate the fairness of the model.

6.3.3 Negative Transfer

Negative transfer occurs if the information from the source training data is not

only unhelpful but actually counter-productive for doing well on the target domain.

In scenarios when the data distributions from the source and target domains are very

dissimilar, the learned model fails to generalize and hurts the performance. In our

work User-guided Sentiment Classification (Nelakurthi et al., 2017b), the objective

is to leverage the user bias in sentiment labeling across the domains. There could

be scenarios where the user might have inconsistent behavior across the domains and

not prone to optimistic/pessimistic bias. In such scenarios, the negative transfer is

prevented by choosing only those users who have consistent labeling behavior above

a certain threshold. The challenge with the negative transfer is that it is hard to eval-

uate on black box models. It is difficult to identify if the performance of the model

is degraded due to the model itself or the data at hand. With recent advances in in-

terpretability for model agnostic(black box) techniques. Machine learning techniques
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that can efficiently gauge feature and example importance can be used to address the

negative transfer. Koh and Liang (2017) proposed a framework based on influence

functions that can compute the influence of an example on the target model. Selecting

the most influential examples will avoid the negative transfer and also give insights

about the model. Inconsistent feature distributions across the domains is another

source of negative transfer. Ribeiro et al. (2016) proposed anchor explanations that

can identify the set of features that guide the discriminatory models. Such discrim-

inatory features are helpful in avoiding inconsistent features and thereby reduce the

effects of negative transfer.

6.3.4 Ethical Issues in Healthcare

A recent United Kingdom survey reports that 63% of the adult population is

uncomfortable with allowing personal data to be used to improve healthcare and is

unfavorable to health care analytics systems replacing doctors and nurses in tasks they

usually perform (McKee, 2013). In the United States, decision-makers at healthcare

organizations are confident that it will improve medicine, but roughly half of them

think it will produce fatal errors, will not work properly, and will not meet currently

hyped expectations. Privacy, data fairness, accountability, and transparency are few

major ethical concerns hindering wide adoption of machine learning and data mining

based tools for healthcare. Though the aspects of privacy and accountability need

much attention and research, data fairness and transparency can be addressed through

explainable/interpretable models. The work on explaining transfer learning helps in

identifying relevant features and important examples from the source domain. These

examples and features can be investigated to evaluate data fairness and transparency

in model behavior.
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6.3.5 Misinformation and Disinformation in Healthcare

With the advent of social media and its usage for healthcare, many users are go-

ing online to learn and share information about their health conditions. Often these

healthcare specific social media platforms lack strict regulation guidelines on infor-

mation being posted. The credibility of the information is questionable and leads to

the spread of misinformation and disinformation. Disinformation can have serious

ill-effects in the field of healthcare (Courtney et al., 2013). For example, in August

2018, the American Journal of Public Health published an article that outlined a dis-

information campaign that used programmed bots and online trolls to purposefully

muddy the waters and rile up controversy between those who advocate for routine

vaccination and those who oppose it. The strategic aim of this particular disinfor-

mation campaign was to use public health as a wedge issue and to fan the flames of

societal discord. The perpetrators of what the authors deemed “weaponized health

communication” carried out their mission internationally through multiple social me-

dia channels. While the investigators did not attribute the campaign to a person or

state, a sizeable portion of these trolls and bots were Russian accounts. Our current

work on models and algorithms for learning from task heterogeneity do not address

misinformation or disinformation. There is a lot of existing work in addressing mis-

information and disinformation in the field of political science. Identifying malicious

users, the source to the information can solve the problem to a larger extent in social

media. We believe that our work on modeling user behavior and identifying similar

actors can be combined to model user behavior in political science and apply it to fix

misinformation and disinformation in healthcare.
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6.4 Future Work

Learning from Task Heterogeneity is an active field of research with applications

to a multitude of areas, teaching, gaming, social networks, print media, self-driving

etc.(Torrey and Shavlik, 2010).

Most of our approaches address major problems in leveraging social media for

chronic healthcare conditions like diabetes mellitus. As per the CDC, chronic diseases

are defined broadly as conditions that last 1 year or more and require ongoing medical

attention or limit activities of daily living or both. Chronic diseases such as heart

disease, cancer, and diabetes are the leading causes of death and disability in the

United States. The work on modeling user behavior and identifying similar actors can

be applied to chronic health conditions like heart disease and cancer. Our approaches

can be applied to build support networks of patients suffering from heart conditions

and cancer to learn and manage their chronic conditions.

Also, not specific to healthcare, the research in this thesis with minor modifica-

tions can be applied to other fields like recommendation systems and tutoring systems.

To recommend products from new domains, identifying similar actors across the do-

mains will help in the cross-domain recommendation and address cold start issues in

new domains. Modeling user behavior on a particular subject and transferring the

learning behavior to other subjects is key to a good tutoring system. Our work on

explainability can be applied to understand important examples and features that

help in learning Zhou et al. (2018).

The role of social media in the management of DM remains relatively unexplored.

Rather than a convenience sample (such as this study), a randomized control trial,

appropriately statistically powered to detect differences in reported self-management

behaviors or HbA1c, would be helpful. DM patients (who are currently nonsocial
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media users) could be randomized to visiting social media sites, with a control group

maintaining usual care. Outcomes such as HbA1c and behaviors as measured here

could be tracked. Future research that examines the relationship between online

posting and diabetes-related self-care behaviors in a longitudinal design would help

to clarify the role of website use in diabetes management. Lastly, including a more

diverse race/ethnic patient population in future studies is needed.
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