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ABSTRACT  
   

Jupiter’s moon Europa is an active target of research because of its unique geology 

and its potential for habitability. Europa’s icy chaos disrupts and transforms the previous 

terrain, suggesting melting is involved. Chaos occurs alongside several types of 

endogenic surface features. These microfeatures are under <100 km2 in area and include 

uplifts and domes, pits, spots, and hybrid features. The distribution of microfeatures is 

known in the ~10% of the Europa’s surface that are covered by the regional mosaics 

(“RegMaps”). The efforts to connect microfeature formation to any kind of heat transport 

in Europa are confounded because microfeatures are difficult to identify outside of 

RegMaps because of low image resolutions. Finding microfeatures outside of RegMaps 

would provide new observational constraints for microfeature formation models.  

First, I mapped microfeatures across four of Europa’s RegMaps and validated them 

against other mapping datasets. Microchaos features are the most numerous, followed by 

pits, domes, then hybrids. Spots are the least common features, and the smallest. Next, I 

mapped features in low-resolution images that covered the E15RegMap01 area to 

determine error rates and sources of omission or misclassification for features mapped in 

low-resolution images. Of all features originally mapped in the RegMap, pits and domes 

were the least likely to be re-mapped or positively identified (24.2% and 5%, 

respectively). Chaos, spots, and hybrids were accurately classified over 70% of the time. 

Quantitatively classifying these features using discriminant function analysis yielded 

comparable values of accuracy when compared to a human mapper. Finally, nearest-

neighbor clustering analyses were used to show that pits are clustered in all regions, 

while chaos, domes, and hybrids vary in terms of their spatial clustering.  
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This work suggests that the most likely processes for microfeature formations is either 

the evolution of liquid water sills within Europa’s ice shell or cryovolcanism. Future 

work extending to more areas outside of the RegMaps can further refine microfeature 

formation models. The detection of liquid water at or near the surface is a major goal of 

multiple upcoming Europa missions; this work provides predictions that can be directly 

tested by these missions to maximize their scientific return. 
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CHAPTER 1 

INTRODUCTION 

 It is late on the night of January 8, 1610. Galileo Galilei is peering through his 

occiale, a telescopic instrument of his own creation. He had observed Jupiter the night 

before and made detailed notes about its position relative to the stars in the sky around it. 

This night, however, three of the stars had changed position from the night before. In his 

own words, Galileo was “seeing the same three ‘stars’ as the previous night but [was] 

puzzled by the apparent motion of Jupiter relative to them.” Over the next eight days he 

continued to observe these wandering stars, and even discovered a fourth one that 

appeared to orbit Jupiter. On March 13, 1610, he published his observations in his brief 

paper Sidereus Nuncius, the “Starry Message.” The middle “star” Galileo had first 

observed was the first European observation of the moon known today as Europa. The 

four moons observed were named Io, Europa, Ganymede, and Callisto; today that group 

is collectively called the Galilean satellites after the man credited with their discovery. 

 Four hundred years later, humanity is still fascinated by Jupiter’s moons, 

particularly Europa. Though multiple missions have examined its surface, significant 

questions remain about how it formed, how it has evolved, how its geologic features were 

(or are) created, and what its capacity for extraterrestrial life might be. This work will 

present new evidence about Europa’s geology and address these questions to provide 

more information to the planetary community and help prepare for the upcoming NASA 

missions.  

1.1 Previous Spacecraft Exploration of Europa 
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 The first spacecraft image of Europa was taken in December 1973 by the 

photopolarimeter instrument on the Pioneer 10 mission (Figure 1-1; Fimmel et al., 1974; 

Fimmel et al., 1980). Though the image resolution was coarse (160 km/pix), the images 

showed that Europa’s surface was heterogeneous in albedo. The Pioneer 11 mission 

followed in 1974. One of the biggest findings of the Pioneer missions was that the surface 

of Europa is dominated by water ice (Fanale et al., 1977; Cassen et al., 1979; Cassen et 

al., 1980; Clark, 1980). These missions sent enough data back to intrigue planetary 

scientists and led to proposals to build future missions to target Europa for further 

investigation.  

 The Voyager 1 and 2 missions, both launched in 1977, acquired the highest-

resolution images up to that time of Europa. These images revealed a high-albedo surface 

with long linear ridges that scarred the surface and a surprisingly low number of craters 

(Lucchita and Soderblom, 1982; Alexander et al., 2009). Curved ridges called cycloids 

were also observed, and Europa is still the only known planetary body that has these 

geologic features. The bright surface, the crispness of the ridges, and the lack of craters 

suggested that the surface was geologically young (Lucchita and Soderblom, 1982). 

Modeling work (Zahnle et al., 2003; Bierhaus et al., 2009) has produced estimates that 

the surface is between 40 and 90 million years old, making it one of the youngest 

surfaces in the solar system. Lucchita and Soderblom (1982) also noted the presence of 

dark spots scattered on Europa’s surface and named them lenticulae after the Latin word 

for freckles. Debates began regarding the origin of these linear features and the lenticulae 

(Lucchita and Soderblom, 1982), the thickness of the water ice shell (Squyres et al.,  
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Figure 1-1: The first spacecraft image taken by the 
Pioneer 10 mission. Obtained in December 1973. 
Included here under the commons license. 
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1983; Helfenstein and Parmentier, 1985), and whether this moon could support a liquid 

water ocean (Cassen et al., 1979; Cassen et al., 1982). 

The Galileo mission was sent to resolve, or at least address, these questions. After 

a six-year journey, Galileo arrived at Jupiter in 1995 and took measurements and 

photographs of all four Galilean satellites until its descent into Jupiter’s atmosphere in 

2003. Galileo’s camera, the Solid State Imager (SSI; Belton et al., 1992) took images of 

Europa’s surface at a range of resolutions ranging from 9 m/pix to 30 km/pix. The dark, 

mottled areas noted by Lucchita and Soderblom (1982) were found to be an entirely new 

feature type called icy chaos, another geologic feature unique to Europa (Figure 1-2). SSI 

also revealed a hemispheric dichotomy in albedo. In the images with resolutions under 

250 m/pix, individual features such as domes and pits became visible, as well as smaller 

chaos features and low-albedo, small features called spots. These features were studied 

and detailed in multiple scientific papers in the post-Galileo age (Pappalardo et al., 1998; 

Rathbun et al., 1998; Greenberg et al., 1999; Greeley et al., 2000; Spaun, 2002; 

Greenberg et al., 2003; Singer et al., 2010; Culha and Manga, 2016; Noviello et al., 2019; 

Singer et al., in review). Evidence from the magnetometer instrument indicated that 

Europa had an electrically conducive interior (Khurana et al., 1998; Kivelson et al., 1999; 

Kivelson et al., 2000). This evidence, combined with the information regarding its 

density and moment of inertia, suggests that Europa has a layer of salty liquid water that 

spanned globally. The characterization of this global ocean and how it interacts with the 

surface have driven much of the investigation of Europa in the past two decades and led 

to new questions. How is heat transferred through the ocean and the ice shell? Does water 

or other material from the ocean enter the ice shell or reach the surface? If so, then under  
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Figure 1-2: Icy chaos on Europa. This is Murias Chaos, found in the 
northern leading hemisphere in the E15RegMap02 area. This feature is 
elevated an estimated 400-600 m above the surrounding terrain. Images: 
4326r and 4300r from the Galileo mission. Illumination from the left, north 
is up. 

20 km 
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what conditions? What features are most closely associated with heat and material 

transport?  

Many of these questions may be answered by studying Europa’s icy chaos. Chaos 

itself is a thoroughly scrutinized geologic feature on Europa because it shows clear 

evidence of melt via some form of heating. Some chaos features exhibit rafts, which are 

pieces of the pre-existing ice shell that have been translated and rotated as the chaos 

feature formed; a good example of this is Conamara chaos (Figure 1-3). These rafts could 

only exist if the feature had at some point melted at least the top layer of the ice shell, 

moved the pieces around, and then froze them into place. For this reason, chaos has been 

linked with heat transport on Europa. When heat and ice meet, the result is often liquid 

water, which makes chaos an interesting target for astrobiology studies as well. Large 

chaos features have been studied extensively (Greenberg et al., 1999; Riley et al., 2000; 

Greeley et al., 2000; Spaun, 2002; Figueredo et al., 2002; Figueredo and Greeley, 2004; 

Collins and Nimmo, 2009; Schmidt et al., 2011; Bunte, 2013), but descriptions of smaller 

chaos features are less common in the literature. Small chaos features occur alongside 

pits, domes, and spots; in this work they are collectively referred to as microfeatures, to 

emphasize that these features include some which are not albedo-dominated features. 

Whatever process is driving Europa’s geologic surface evolution, these microfeatures are 

a part of that story.  

1.2 Europa’s Physical Properties 

 Europa’s radius is accepted as 1561 km (Seidelmann et al., 2007), about the same 

size as Earth’s moon. Despite a global water/ice layer, its bulk density is accepted at 3.0 

g/cm3, and it has a moment of inertia factor of C = 0.346 ± 0.005, which both suggest that  
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Figure 1-3: Conamara Chaos as imaged by the Galileo mission. This is an archetype 
for bright, platy chaos on Europa. The polygonal structures in its interior are called 
rafts, and the low-lying material they sit in is called the hummocky matrix. The red 
indicates the presence of salts (enhanced color in the image). Illumination from the 
right. Image credit: NASA/JPL/University of Arizona. 

N 
15 km 
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Europa is compositionally heterogeneous and differentiated (Anderson et al., 1998; 

Kivelson et al., 2000; Kargel et al., 2000). Data from the Galileo mission’s 

magnetometers detected a small induced magnetic field, suggesting the presence of a 

global, liquid water ocean laden with salts underneath the ice shell (Khurana et al., 1998). 

Gravity data was used to probe the moment of inertia of the moon (Anderson et al., 1998; 

Kivelson et al., 2000; Kargel et al., 2000) and constrained the combined thickness of the 

ice shell and ocean to be between 80 and 180 km (Anderson et al., 1998), although the 

most widely accepted value is 160 km (Figure 1-4). Many subsequent questions therefore 

focused on estimating the thickness of the ice shell in an effort to better understand the 

physical characteristics of the ocean itself and the processes that affect Europa. Estimates 

of ice shell thickness range between 3 km and 30 km (Ojakangas and Stevenson, 1989; 

Pappalardo et al., 1998; Greeley et al., 2000; Greenberg et al., 2002; Hussman et al., 

2002; Tobie et al., 2003). A thick silicate mantle likely encompasses a metallic core; the 

boundary layer between this silicate layer and the bottom of the liquid water ocean 

remains uncharacterized. 

 Europa’s position near Jupiter and other Galilean satellites causes interesting 

gravitational interactions. Like Earth’s moon, Europa is tidally locked, meaning the same 

side of Europa faces Jupiter throughout its orbit. Its orbital period around Jupiter is 

roughly 3.5 days, and its average orbital radius is 670,900 km. Its orbital path is slightly 

elliptical (eccentricity of 0.009). As such, Europa’s orbital angular frequency is not 

constant, and it cannot always point the same face exactly toward Jupiter, and Europa’s 

tidal bulge shifts east and west as Europa orbits Jupiter. As well, the small variation in the 

distance from Jupiter, a massive planet, causes the ice shell itself to flex up and down 30  
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Figure 1-4: Cross-section of Europa’s theorized ice shell, ocean, and ocean 
floor, along with some speculations as to the underlying activity. Credit: 
Hand et al., 2017; NASA. 
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m during every orbit. This amount of flexure creates much heat via friction; this kind of 

heat generation is called tidal heating and is the dominant source of heat on Europa. Tidal 

dissipation would eventually circularize Europa’s orbit, except for Europa’s interaction 

with Io and Ganymede. Europa is locked into a Laplace resonance (Laplace, 1805) with 

these two moons. For every one orbit Ganymede makes, Europa makes two, and Io 

makes four, putting these three into a 1:2:4 resonance with each other. The resonant 

interactions between the moons maintain Europa’s non-zero eccentricity and sustain tidal 

heating. The heating and flexing are thought to drive the tectonics and geologic 

formations of microfeatures on Europa.  

1.3 Context for this work 

 Understanding the origin of the microfeatures and their role in Europa’s tidal 

heating beings with mapping. Mapping and classification of microfeatures mapped in the 

regional mosaics on Europa (the “RegMaps”) is a relatively straightforward method and 

has been completed by at least four independent teams. The ones discussed most 

extensively in this work are: Greenberg et al., 2003; Culha and Manga, 2016; Singer et 

al., in review; and the one created by this author. These RegMaps in total cover ~10% of 

Europa’s surface (Doggett et al., 2009); in this work, the total area mapped and analyzed 

amounts to 6.8% of Europa’s surface because of the exclusion of RegMap-resolution 

images that cover large chaos areas (Conamara, Mannanán, etc.). These maps have been 

used to formulate theories as to how these features have formed and to provide 

observational constraints for formation models.  

 Chaos and microfeature formation models were first proposed in the late 1990s, 

soon after the first data from the Galileo mission arrived on Earth. At that point, little was 
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known about any of the features on Europa’s surface, but the details of microfeatures—

then called lenticulae in the literature—were obscured by the more fundamental questions 

related to Europa’s overall structure and underlying geologic processes. Chaos is thought 

to be at least partially associated with heat and material transport, so studying chaos 

could lead to a deeper understanding of Europa’s internal processes and its evolution. 

Chaos could also be related to tectonics on Europa, but more work is needed to clarify 

this. Other features, primarily domes, were also examined for any clues related to 

Europa’s subsurface.  

 In the late 1990s and early 2000s, two main ideas regarding chaos formation 

competed for acceptance in the Europa community, and their implications regarding ice 

shell thickness and Europa’s endogenic processes differ greatly. What these two ideas 

have in common is that neither can fully explain all instances of chaos and microfeatures, 

and without imaging data from more of Europa’s surface, it is difficult to determine 

which model is superior. The two most prominent theories at the time of this writing are 

diapirism and liquid water sills. The most prominent models, their assumptions, and their 

predictions are detailed here. 

1.4 Summary of Models 

The following is a review of the literature surrounding potential ideas for 

microfeature formation processes. Table 1-1 summarizes the main ideas of these 

formation models, the major evidence for and against them, and the predictions they 

make that can be tested with available observational data. 

1.4.1 Convection and diapirism formation models 
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One of the earliest proposed models involved solid-state convection-driven transport of 

heat and material through the ice shell. In this model, warm ice rises through the 

surrounding colder, denser ice shell, similar to how magma rises through Earth’s brittle 

lithosphere. It was first proposed by Pappalardo et al. (1998) in a Nature paper, based on 

the widespread distribution of chaos and domes, their apparent random spacing, and what 

they observed to be a generally uniform size. This paper was also the first to suggest that 

chaos and other microfeatures could be genetically related. From their observations, they 

proposed that these features form when a warm ice diapir rises through an ice shell 

between 3 and 10 km thick and causes the overlying surface to warp upwards (domes) 

and/or break to form the rafts observed in some chaos.  

This work was expanded on by Rathbun et al. (1998), who specifically examined 

the sizes of 42 domes in the immediate vicinity of Conamara chaos (10°N, 275°W). This 

area was not studied in this body of work. They noted that some of these domes were 

simple uplifts, and that some appear “as though something is disrupting the terrain,” 

which could imply cracked domes (Rathbun et al., 1998). They too noted that some 

domes have smooth, surrounding moats of low-albedo material. They also noted that the 

domes’ radii peaked between 3 and 4 km. From these observations, Rathbun et al. (1998) 

suggested that a Europan diapir that forms a feature less than 10 km in radial size must be 

formed by a diapir with a radius less than 4 km that originates at a depth of no more than 

“a few tens” of kilometers (Rathbun et al., 1998), and that it could take between 104 and 

105 years to form a dome. On a broader scale, they also suggested the ice itself may be 

convecting, but pointed out a potential issue in the diapirism hypothesis: a small diapir 

will cool faster than a large one because it has a larger surface area to volume ratio. This 
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means that small diapirs might cool down and stop rising before they reach Europa’s 

surface, or even close to it. Rathbun et al. (1998) suggested that this could account for the 

isolated nature of domes and could lead to a restriction in the overall number of domes in 

general.  

Modeling work built on these observations and looked more closely at the factors 

that could contribute to diapirism within the ice shell, particularly thermal and 

compositional variations. One study found that partial melt produced in the rising diapirs 

will disrupt the surface, creating different lenticulae and chaos, even when the average 

ice thickness is over 20 km (Sotin et al., 2002). This process may be exacerbated by 

localized heating from tidal heating effects within a diapir, and that it is this localized 

heating that is much more responsible for forming microfeatures (Mitri and Showman, 

2008). This study said that chaos and domes could form on Europa by this process but 

failed to explain how they form. This paper also failed to explain, or even mention, how 

pits and spots may form, suggesting that chaos formation may be a different process from 

the one that forms other microfeatures.  

A later study specifically connected domes to diapirism, stating that domes and 

other lenticulae are formed by diapirism related to solid-state convection within the ice 

shell, potentially along with partial melting and disaggregation of the icy lithosphere 

(Pappalardo and Barr, 2004). These authors also note that there are two types of domes. 

Domes of the first type have different textures from the surrounding ridged plains and a 

typically lower albedos, with heights estimated between 40 and 100 m. These domes may 

have been formed from extrusions related to diapiric upwellings (Pappalardo and Barr, 

2004). Domes of the second type preserve the pre-existing terrain, where the older 
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surfaces are warped upwards, but not destroyed. Pappalardo and Barr (2004) called these 

the intrusive domes. They also introduced the possibility that impurities in the ice could 

be responsible for forming domes around the observed sizes and topographies seen in the 

actual lenticulae, suggesting a thermally-induced compositional buoyancy (Pappalardo 

and Barr, 2004). This detail could be applicable to large chaos areas on Europa as well 

(Schenk and Pappalardo, 2004). 

A successful model needs to consider both the thermal environment of the ice 

shell and the composition of the ice itself, as these parameters are coupled together 

through equations that describe the strength of the ice and any convection occurring 

within it. Han and Showman (2005) used numerical simulations to study the effects of 

salinity on convection within Europa’s ice shell. Their numerical models produced uplifts 

and pits with 100–500 m of topographic relief, with diameters that ranged between 10–30 

km. These diameters belong to features that are too large to be considered microfeatures. 

Additionally, there is a clear drop-off in the numbers of both domes and pits as the 

diameters approach 10 km, suggesting that there are few, if any, domes and pits that 

would fit into that size range. What this paper did conclude is that the ice needs a 

temperature and a compositional (salinity) contrast to get any buoyancy to raise a diapir 

through the ice shell. Concurrent work by the same team focused on chaos formation, 

specifically the effects that the rigidity of the ice has on the ice shell has on the process 

(Showman and Han, 2005). They found that rafty and hummocky chaos can be formed if 

there is melt in the presence of “substantial surface strain” generated by stresses that they 

modeled in the range of 0.2–1 bar. The source of this strain is the tidal flexing that 

Europa experiences as it orbits Jupiter, and evidence of these stresses is seen in the many 
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bands, cycloids, and ridges that cross Europa’s surface. This model struggles to explain 

pits and domes however, as the ones produced in the models are too large (30–100 km in 

diameter) and never occur in isolation at any diameter.  

If stress and strain could be involved in chaos formation, then tidal heating and 

dissipation may be involved as well, an idea originally proposed by Sotin et al. (2002). 

Han and Showman (2010) used a series of two-dimensional numerical simulations to 

study tidal dissipation in Europa’s ice shell, and found that temperatures within plumes 

can reach melting temperatures under “plausible tidal flexing amplitude” (1.25 x 10-5 in 

Han and Showman, 2010), which could lead to partial melting and the formation of 

chaos. Pre-existing fracture zones greater than 6 km deep can concentrate tidal 

dissipation, increasing the size of a chaos feature. While this addition can explain well the 

formation of large chaos features, it fails to explain domes, pits, spots, or microchaos. 

Furthermore, any model that predicts tidal heating plays an important role in chaos 

formation would imply that there should be more chaos near the poles of Europa, as the 

tidal strain rates would be highest there (Collins and Nimmo, 2009).  

There are several problems with the diapirism hypothesis. One, the sizes of 

diapirs would not be expected to vary. The size of a diapir is controlled by the thermal 

boundary layer of the setting. Europa’s environment as a whole will not change much; 

even variation in the thickness of the ice shell will change the diapir’s size by, at most, 

tens of percent. The large range of chaos features is a problem diapirism models have yet 

to overcome. As discussed previously, the composition of the ice can change its rheologic 

properties in ways that are not yet well-constrained. The hummocky interiors of chaos 

features are often lower in elevation than the surrounding terrain or rafts, but no models 
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have explained why without invoking some element of material removal. Moreover, this 

material should be higher than the background and plates if compositional convection and 

plastic yielding are important in chaos formation. The rafts within chaos could also be 

difficult to explain; as the plates translate and tilt, they may sink into the warm ice 

substrate (Collins et al., 2000).  

Diapiric activity should also vary with regard to location on Europa; for example, 

diapirism should be more active at the poles (Collins and Nimmo, 2009). If diapirism is 

responsible for creating microfeatures on Europa, then there should be more 

microfeatures in areas where there should be more diapiric activity. Finding more chaos 

features outside of the RegMap areas of Europa would directly test predictions made 

regarding the locations of chaos on Europa, helping to support or refute the diapirism 

hypothesis. 

1.4.2 Cryovolcanism 

 Ice-dominated volcanism, or cryovolcanism, is an offshoot from diapirism. 

Cryovolcanism is defined as “…the eruption of liquid or vapor phases (with or without 

entrained solids) of water or other volatiles that would be frozen solid at the normal 

temperature of the icy satellite’s surface” (Geissler, 2000). In this model, instead of 

simply pushing the surface up and melting it passively, as happens in diapirism, the 

cryomagma breaches the surface and exudes out as cryolava. The confirmation of a 

cryovolcano on the dwarf planet 1 Ceres (Neveu and Desch, 2015; Ruesch et al., 2016) 

and dwarf planet Pluto (Singer et al., 2016) and Charon (Desch and Neveu, 2017) shows 

that this process is present in the solar system. The question is whether or not it is at least 

possible on Europa. Cryovolcanism was suggested as a source for the mottled terrain 
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visible in the Voyager (Lucchita and Soderblom, 1982) and Galileo (Greeley et al., 1998) 

data, though in many cases the inspection of these potential cryovolcanic features in 

higher-resolution images revealed them to be something unrelated. Certain domes and 

dome-like features on Europa have been included as evidence for this process (Fagents, 

2003; Quick and Marsh, 2016; Quick et al., 2017), along with discoloration on bands and 

ridges (Buratti and Golombek, 1988) that are also present on Europa’s surface. These 

domes are 3–10 km in diameter and are estimated from photoclinometry studies to be 40 

to 100 m tall (Fagents et al., 1998; Singer et al., in review). While some domes exhibit 

characteristics consistent with effusive cryovolcanism (Fagents, 2003; Quick and Marsh, 

2016), other origins of these features cannot be ruled out.  

 One of the biggest obstacles for understanding cryovolcanism is how liquid water 

ascends through an ice shell. As liquid water is denser than water ice (the dominant 

component of Europa’s ice shell), the liquid water should remain in the gravitationally 

stable position underneath the ice shell. The presence of salts, particularly ammonia 

(Croft et al., 1988; Kargel, 1992; Kargel, 1995), would increase the buoyancy of the 

fluid, causing it to rise more easily through the ice; however, there is little evidence for 

significant amounts of ammonia, methane, nitrogen, or methanol on Europa. The 

materials that do exist—sulfur compounds (Carlson et al., 1999; Carlson et al., 2002) and 

magnesium and sodium salts (McCord et al., 1998a; McCord et al., 1998b; McCord et al., 

2002)—would not significantly decrease the density of the liquid. Instead, Fagents (2003) 

investigated the possibility that salty, liquid water was pressurized, either directly from 

the ocean or from a pocket of liquid water in the ice shell, and pushed out to the surface, 

causing the potentially cryovolcanic features (Greenberg et al., 1998). The excess 
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pressurization could come from tidal stresses flexing the ice shell, from liquid water 

freezing into water ice, or from a combination of the two. While the models themselves at 

this time were simple, they did show that cryovolcanism is possible on Europa under a 

range of conditions, but is likely a localized event (Fagents, 2003).  

 To continue this earlier work, Quick and Marsh (2016) performed many 

numerical simulations to determine in cryomagma could travel through Europa’s ice shell 

and showed that it is possible on Europa. They tracked the evolution of the cryomagma to 

determine its potential to carry material to the surface, particularly salts, as this 

knowledge would determine whether the salt present on Europa’s surface is endo- or 

exogenic in origin. This paper also built on the ideas proposed by Fagents (2003) that 

fractures and dikes could be used by more than one cryomagmatic ascension, and that 

domes and uplifts could be the result of multiple magmatic ascensions. A follow-up paper 

specifically examined this question, and whether domes could be the result of 

cryovolcanism on Europa (Quick et al., 2017). Previous papers (Greenberg et al., 2003; 

Pappalardo and Barr, 2004) noted the presence of cracked domes on Europa, which are 

domes that retain the original terrain and appear as “punched up” through the ice shell. 

These may be the result of diapirism. Instead, Quick et al. (2017) focused on the domes 

that appear to have cracks and surfaces that are inconsistent with the surrounding terrain, 

as their origins are less clear. They gave particular attention to the rates of dome 

relaxation, assuming certain viscosities, temperatures, and crystallization percentages, 

important and interconnected parameters in any rheological study. They found that their 

modeled domes matched a Europan dome after 1.5 simulation years of relaxation, and 

that the domes’ average radius was 3 km, a size consistent with previous results. While 
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the authors do acknowledge early that at least some of the domes could be formed from 

diapirism, the range of dome morphologies could suggest more than one process at work. 

 Cryovolcanism is still a relatively young model idea for microfeature formation 

on Europa, and much work still needs to be done to fully understand its implications for 

Europa’s subsurface. One shortcoming of the model at the moment is that it fails to 

explain the occurrence of pits and spots, and most instances of chaos. It is also not clear if 

cryovolcanism has a role in forming larger chaos features (e.g., Figueredo et al., 2002) or 

if it is strictly limited to dome formation.  

1.4.3 Melt-through Model 

 The melt-through model was a prominent idea for chaos formation on Europa in 

the late 1990s and early 2000s. It was inspired by icebergs floating in Earth’s high-

latitude oceans (Carr et al., 1998; Greeley et al., 1998), which could explain the relative 

positions of rafts within chaos and their positive relief relative to the matrix surrounding 

them. It would also explain the low albedo of and the presence of salts within some 

chaos, as these could be the result of the salty ocean spilling out onto the surface. This 

arrangement necessitates a thin ice shell and a high heat flux to melt large areas of the 

ice, in direct contrast with the thick ice shell and slow movement of diapirism. While the 

melt-through model is conceptually easier to grasp, the problems with it are more 

extensive, and the more recent literature all but ignores it.  

 The most serious problem with the melt-through model is that of the heat source. 

For the ice shell to melt and stay at least semi-solid for long enough to move and rotate 

rafts, an enormous amount of energy is required (Pappalardo et al., 1999; Collins et al., 

2000). Maintaining the temperature of Europa’s surface at 270 K would take a heat flux 
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of approximately 300 W m-2 (Goodman et al., 2004), roughly 1000 times as high as the 

estimated amount of heat produced from tidal flexing (Nimmo and Giese, 2005) and 25 

times the solar insolation. A thicker shell would also have the problem that the bottom of 

the heating column would infill from the bottom up as the melting moves towards the 

surface (Collins and Nimmo, 2009); above a certain shell thickness, this infilling will 

happen faster than the melting, and the melt-through model will fail. 

 Hydrothermal plumes could be a source of heating on the bottom of the ice shell. 

To understand how, consider a source of heat on Europa. If Europa’s silicate mantle is as 

dissipative as Io’s, its sister moon, then it could generate as much as 7 TW of heat from 

tidal flexing. This heat would then have to travel from the mantle/ocean boundary to the 

bottom of the ice shell, a journey of more than 100 km. Thomson and Delaney (2001) 

first suggested that these hydrothermal plumes would rise through the ocean, which was 

itself undergoing stratification and destratification events. They proposed that chaos 

formed during periods where the ocean allowed for the efficient transfer of heat from the 

mantle to the bottom of the ice shell. After reaching the base of the ice shell, the 

hydrothermal plume would begin to melt the ice. Goodman et al. (2004) showed that 

even when the hydrothermal plumes began as a narrow cylinder, once it reached the base 

of the ice shell, the heat would begin to spread laterally out, thus decreasing the heat 

supplied to any particular spot. This lowered heat flux (0.1–10 W m-2) is insufficient to 

cause melt-through. Supplying more heat to the initial plume would only increase the 

lateral extent of the plume at the base of the ice shell. Goodman et al. (2004) also 

attempted to estimate the expected chaos size-frequency distribution given constraints on 

hydrothermal plume size and found that while a power-law distribution of plume 
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lifetimes could explain large chaos areas, it failed to explain chaos areas smaller than 10 

km in diameter. Finally, Lowell and DuBose (2005) showed that the lower gravity on 

Europa as compared to Earth would actually create weaker hydrothermal plume sources. 

None of these papers considered the presence of currents in Europa’s oceans, which 

would dissipate heat within the ocean and prevent the top of the plume from ever 

reaching the bottom of the ice shell at all (Soderlund et al., 2014). With all this evidence 

stacked against them, it seems unlikely that hydrothermal plumes are directly responsible 

for chaos formation on Europa. 

 Still, many people have tried to make this model work. O’Brien et al. (2002) 

studied the melting process and determined that an ice shell 6 km thick could be 

completely melted through in ~104 years by concentrating all of Europa’s heat output into 

an area 200 km across. They also demonstrated that the melting would happen 

significantly faster than the ice infilling would, thus surmounting both of the main 

problems with the model. However, this study had serious flaws. One, the amount of 

heat, while large, is insufficient to retain open water at Europa’s surface (Goodman et al., 

2004). Two, the grid spacing in the code used was too spatially coarse to resolve the heat 

conduction as it neared the surface, and caused the grid spacing to become numerically 

unstable. Further study (Goodman et al., 2004) using an adaptive grid spacing showed 

that the ice will reach an equilibrium thickness on the order of 100 m for the values used 

in O’Brien et al. (2002), but failed to show that the melt-through model as originally 

proposed (Carr et al., 1998; Greenberg et al., 1999; Thomson and Delaney, 2001), in 

which liquid water is directly exposed at Europa’s surface, could physically happen. 
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Recent analysis by Soderlund et al. (2014) investigated the idea that Europa’s 

ocean currents could be a previously unrecognized heat source. Due to Europa’s rotation, 

the ocean should have hemispherical currents similar to Hadley cells on Earth. According 

to their models, the ocean in the equatorial region should, in a time-averaged sense, 

convect more vigorously than in other places, which will lead to a homogeneous 

temperature at the base of the ice shell (the top of the ocean). This increase in heat flux 

could intensify melting near the equator, eventually lead to thinning and breaching of the 

ice shell in low-latitude regions (Soderlund et al., 2014). If this is true, then more chaos 

or microfeatures in general should be found closer to the equator than elsewhere.  

More chaos in the equatorial region is not a conclusive sign of melt-through, 

however, as there could be ice pumps active on Europa. Ice pumps in Antarctica are 

responsible for more than a 50% contribution to the thickness of marine ice in certain ice 

shelves (Oerter et al., 1992), and could be thickening Europa’s ice shell in certain places. 

As currents move within Europa’s oceans, they carry colder, fresher water from high 

latitudes to lower latitudes, where it then freezes, negating any thinning brought about by 

a higher heat flux (Soderlund et al., 2014).  Because water will preferentially reject 

impurities when freezing, the new ice is fresher than the older ice, and could be a trigger 

for compositionally-driven diapirism in Europa’s ice shell. Thus, a large population of 

chaos at low latitudes on Europa could suggest either melt-through or diapirism.  

 While the melt-through model has flaws, it does a good job of explaining certain 

characteristics of chaos. If the icy shell is melted, the rafts should be able to move, rotate, 

and tilt fairly easily, even if the driving mechanism behind it is not well-constrained. Pits 

will form as a consequence of melting, but how melting can form domes and chaos 
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features that are higher than the surrounding terrain is unknown. The presence of salts is a 

hard constraint that at least some liquid water is associated with chaos formation; this 

model explains how the liquid water breaches the surface. Most relevant to this study, 

however, is the connection between tidal heating and chaos formation. Melt-through 

events may be more common in areas where tidal heating is concentrated, but in the 

presence of strong oceanic currents, melt-through events could be more common around 

the equator (Soderlund et al., 2014). If locations of chaos are well-correlated with these 

areas of increased tidal heating, then it follows that chaos formation and tidal heating are 

related. Yet again, finding chaos across a wide range of sizes would significantly improve 

the understanding of chaos formation.  

1.4.4 Sill Formation Model 

 The final major, relevant model for potential microfeature formation on Europa is 

the sill model (Schmidt et al., 2011; Michaut and Manga, 2014; Manga and Michaut, 

2017), partially inspired by subglacial lakes on Earth. The early steps of this process are 

the same as that of diapirism: a thermal plume rises through the ice shell and melts some 

of the surrounding ice, downwarping the surface above the head of the plume because of 

the volume change associated with pressure melting. The pressurized lens is then 

“sealed” by the resulting hydraulic gradients and driving forces. The brittle ice shell 

above the lens is cracked by the combined stressors of diurnal tides, transient pressure, 

wedging in preexisting cracks, and interactions with preexisting terrain, allowing some of 

the briny liquid in the lens to spill out onto the surface. The stressors and the temperature 

gradient of the liquid infilling can also cause the edges of the surface expression of the 

lens to calve off. Finally, the lens freezes and the surface above it is modified a final time.   
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Figure 1-5: Thera Macula chaos on Europa. The northern region of this 
feature is a potential area of active chaos formation currently happening on 
Europa. Thera Macula is low-lying relative to the surrounding terrain, 
suggesting that the ice shell is being forced down. The color is artificial 
enhancement to emphasize topography; purples and reds indicate higher 
elevations. Illumination from the top right. Image credit: Paul 
Schenk/NASA.  
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 This model in its entirety was first proposed by Schmidt et al. (2011), though the 

framework comes from the diapirism model (Pappalardo et al., 1998; Head and 

Pappalardo, 1999; Rathbun et al., 1998; Collins et al., 2000; Sotin et al., 2002; Schenk 

and Pappalardo, 2004; Pappalardo et al., 2004; Han and Showman, 2005; Collins and 

Nimmo, 2009; Han and Showman, 2010), with aspects of briny liquid mobilization (Head 

and Pappalardo, 1999; Collins et al., 2000; Fagents, 2003; Han and Showman, 2005; 

Collins and Nimmo, 2009; Buffo et al., 2019) incorporated. 

The original sill model focused on large chaos features on Europa, particularly 

Conamara Chaos and Thrace and Thera Maculae. The most important prediction of this 

model is that Thera Macula (Figure 1-5) is actively forming chaos; its concentric fracture 

system surrounding the feature and the absence of a continuous moat implies that ice 

disaggregation is currently happening. This chaos formation is likely most concentrated 

towards the northern end of Thera Macula, as there are aspects that suggest that it was 

still actively freezing at the time of the Galileo mission. If the lens was still liquid when 

Galileo visited this region of Europa, then there should be visible changes in the 

morphology of Thera Macula upon return. Documenting the changes of this feature 

between past and future missions would be strong evidence in favor of the sills model. 

Finally, the ice may not have to be melted by the diapir to create a liquid water sill within 

Europa’s ice shell; a pressurized ocean may be able to push liquid water up through 

fractures within the ice shell, with the momentum from the ocean pressure overcoming 

any negative buoyancy (Collins et al., 2000; Fagents, 2003; Michaut and Manga, 2014). 

The ocean pressure is caused by the thickening of the ice shell (Manga and Wang, 2007; 

Allu Peddinti and McNamara, 2019), which reduces the available volume of the ocean 
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layer, forcing the incompressible water to expand into fractures and move upward as a 

vertical dike. When it reaches a height of neutral buoyancy in the ice shell, the water 

layer begins to extend laterally, forming a sill (Michaut and Manga, 2014; Manga and 

Michaut, 2017).  

 One failing of the model as described by Schmidt et al. (2011) is that is does not 

explicitly describe how pits, domes, spots, and small chaos features form, though they 

note that their model “could be extended to other features.” Subsequent papers worked to 

connect microfeatures on Europa to the sills model (Michaut and Manga, 2014; Manga 

and Michaut, 2017). In forming these microfeatures, a general series of events needs to 

occur (Michaut and Manga, 2014):  

1. Liquid water must intrude into the ice shell. Note that this water could be 

melted in situ by a diapir (Schmidt et al., 2011) or pushed up through a 

fracture by a pressurized ocean (Michaut and Manga, 2014; Manga and 

Michaut, 2017). 

2. The weight of the liquid water then deforms the elastic layer of the ice shell, 

and the ice above will experience viscous relaxation.  

3. Stresses from the sill’s formation widen the opening, allowing some material 

to spill out onto the surface and creating a disrupted surface. 

4. The sill begins to solidify. Depending on the depth of the sill within the elastic 

layer, the ice above will either depress and form a pit (deep sill), or the 

freezing ice will increase the volume of the sill, warping the surface upwards 

and forming a dome (shallow sill; Manga and Michaut, 2017). 
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The timescales of these steps depend on the volume of the sill, the injection rate 

of the dike, the depths of the sill, the overpressure of the ocean, the viscosity of the 

ascending fluid, the size of the fracture or diapir, the strength of the ice surrounding the 

sill, and the temperature gradient within the ice shell. Michaut and Manga (2014) 

estimated some of these parameters to place time constraints on microfeature formations. 

This analysis was limited in that they used a two-dimensional code to estimate these 

values; hence the units for volume and volume injection rates are m2 and m2 s-1, 

respectively. Michaut and Manga (2014) estimated that to create the observed sizes and 

heights of a typical dome or pit, the sill volume must range between 106 and 107 m2. For a 

sill injection rate of 1 m2 s-1, that puts the time for sill emplacement between 106 and 107 

seconds, or between 11.6 and 116 days, assuming the dike width is between 0.1 and 1 m. 

The time to freeze this sill was modeled as a function of sill thickness and evaluated for 

different depths from Europa’s surface. All of these timescales were on the order of 1013 

seconds, or 3.17 x 105 years, significantly longer than the time it took to inject the sill. On 

these long timescales the ice shell can behave elastically, allowing for the formation of 

domes and pits that can retain the preexisting terrain (Michaut and Manga, 2014). The 

potential for uneven freezing within the sill could mean that some areas of the overlying 

ice shell experience more fracturing as a result of the freezing, and this coupled with 

localized effects of diurnal stresses could lead to the surface breaking down to the sill, 

allowing some of the liquid to spill out. In this way, chaos can be formed.  

 The final main sill-model paper expanded on the nature of the sills themselves, 

suggesting that the could be saucer-shaped (Manga and Michaut, 2017), a model based 

on seismic images in sedimentary basins on Earth. In this model, the initial intrustion of 
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water rises until it is no longer buoyant or rheologically constrained, after which it forms 

a laterally-extended ellipsoidal shell. The transition between crack and laccolith comes 

when the free-surface of the elastic ice layer affects stresses and their upward 

propagation. Like the previous model, the sill is at a shallow enough depth in the elastic 

sheet that the overlying ice drives deformation. In this model, domes and chaos are more 

readily formed at the surface because the overlying ice bends readily as it becomes easier 

for stresses to propagate upwards rather than out. When radial stress is maximum, the 

overlying ice layer fractures and can form inclined sheets, in some cases creating the rafts 

observed in some chaos features.  

Assuming that the volume and pressure of the sill doesn’t change in the transition 

between original crack to final laccolith, then a consistent relationship between the depth 

of the sill (d) and the radius (R) of the feature it creates can be expressed as: 

!	 ≈ 2.4	' 

This implies that features of the same size should be formed by sills at the same depth, 

where depth is defined as the top of the sill. The variation in final morphology is 

determined by the way the sill’s weight is compensated, as will be explained later. 

According to this model, this laccolith-formation stage is a relatively short one, estimated 

to range between 16 minutes and 2.75 hours (Manga and Michaut, 2017). At this stage, 

the surface relief caused by the intrusion of liquid water into the ice shell is estimated at 

23 m at the most (Manga and Michaut, 2017), too small to explain the ~102 m estimated 

from photoclinometry (Fagents et al., 1998; Singer et al., 2010; Singer et al., in review). 

The observation that there are inclined ice sheets implies that the overlying ice is 

fractured, so the thickness of the elastic ice layer decreases over time.  
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Eventually, the liquid in the sill will begin to freeze. At this point the overlying 

ice is likely to fracture, and the likelihood increases as R increases. Assuming that the ice 

tensile strength is on the order of 106 Pa, then the overlying ice will begin to fracture 

when the stresses from a freezing sill exceed this limit, which will happen in a freezing 

time that ranges from 106–108 seconds (12 days to 3 years), a time range that is an order 

of magnitude longer than the previous model version suggested. At this point the 

formation mechanics of domes and pits vary. If water intrudes into the ice shell and if 

part of the weight of the sill is supported by elastic flexure, then the surface will rise and 

form a dome. This step can add additional height to the already upwarped surface, 

allowing the dome to reach the observed heights (Fagents et al., 1998; Singer et al., 2010; 

Singer et al., in review). If the sill is isostatically compensated, then there should be little, 

if any, topographic relief. If the underlying ice layer cannot support the weight of the sill, 

then the weight will cause the ice to warp downwards, and a pit will form (Figure 1-6). 

An important point is that this model predicts that a sill that forms a pit must still be 

liquid at the time a pit forms, else the freezing sill will push the overlying ice upwards 

until there is little to no visible relief.  

As more liquid freezes, the ice above the sill cracks, temporarily reducing stress. 

This increase in pressure squeezes out some liquid onto the surface, which forms chaos 

and spots. This version also explains an additional microfeature class introduced in Culha 

and Manga (2016) called hybrids, which have attributes of both domes and chaos 

features. These hybrid features may represent a transitional state between domes and 

chaos, but if they do, then the question is whether the hybrid is a dome changing into a 

chaos or a chaos turning into a dome. These features typically also have a low albedo like  
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Figure 1-6: Schematic of the liquid water sill mode’s implications for ice 
shell thickness on Europa. In this model, microfeatures of the same size will 
be formed by sills at equivalent depths in Europa’s ice shell. The difference 
in microfeature type is determined by the way the weight of liquid water is 
compensated by the elastic ice layer. If it is thin underneath the sill, the sill 
will warp the ice shell down and form a pit. If the elastic ice layer is thick 
underneath the sill, then the weight will be compensated from below and 
force expansion upwards, forming domes and chaos features. Model by 
Manga and Michaut (2017), figure by J. L. Noviello. 
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chaos and spots, suggesting at least some commonalities. This model explains the 

formation of all types of microfeatures and is directly applicable to small-scale features, 

though they do suggest that large chaos terrains have a different origin (Manga and 

Michaut, 2017).  

Manga and Michaut (2017) suggested four testable hypotheses from their 

modeling studies. The first is that pits should have smaller mean radii than domes, as the 

downward deflection of the sill during a pit’s formation should contract the lateral extent 

of the sill. The second is that domes should be more numerous than pits because domes 

should be easier to form in general. Domes work after intruding water has frozen and has 

not been isostatically compensated, while a pit forms when the liquid water is still liquid 

and the underlying ice has a thin elastic thickness, hence why the weight fails to be 

compensated. As the freezing time for a sill is not indefinite, then pits should be short-

lived, hence they should be less numerous. The third prediction is that pits should be 

clustered in space, as the sills are likely to form where there is a thin lithosphere and a 

high heat flux. As these places are presumably not widespread or large on Europa, and 

assuming that pits form in this way, then observable pits should be expected to be 

clustered together in areas that meet these conditions. Finally, the larger sills that form 

the larger microfeatures should lead to larger blocks and a greater degree of disruption, as 

the stresses on the overlying ice shell from a freezing sill should increase as the radius of 

the sill increases. They also suggest how large chaos features form, and predict that this 

could be the result of multiple sills merging together and collectively disrupting a surface 

larger than one sill alone could (Manga and Michaut, 2017). 
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1.5 Future Mission Plans 

 Some of the predictions made by these microfeature formation models can be 

tested using the data that has already been returned from previous missions, but the 

sparseness of the data prevents definitive conclusions. Near-future missions to Europa 

will provide new observations of Europa’s surface, garnering evidence for and against 

heating, tidal, and feature formation models by providing observational constraints. Both 

the National Aeronautics and Space Administration (NASA; NRC, 2011) and the 

European Space Agency (ESA, 2005) have named Europa as an important target of future 

exploration; these missions are detailed here.  

 NASA’s Flagship class Europa Clipper mission will focus almost exclusively on 

this icy moon, unlike the JUICE mission (Figure 1-7). As of 2019, the updated trajectory 

for Europa Clipper begins with a launch in 2022 and contains a total of 46 Europa flybys, 

4 of Ganymede, and 9 of Callisto over 3.7 years of flight, including travel time (Bayer et 

al., 2018). In July 2015 nine instruments were selected to fly on this mission; in March 

2019, the ICEMAG magnetometer instrument was descoped to a smaller magnetometer, 

leaving eight instruments as proposed on the mission. These instruments will study the 

plasma environment of the Jupiter system (PIMS; Westlake et al., 2016), the chemical 

properties of Europa’s atmosphere (SUDA, Kempf et al., 2014; Europa-UVS, Pappalardo 

et al., 2017) and surface (MISE, Pappalardo et al., 2017; SUDA; Europa-UVS), the 

thickness and structure of the ice shell (REASON, Schroeder et al., 2016), the thermal 

properties of Europa’s surface (E-THEMIS, Christensen et al., 2017), and Europa’s 

geology (EIS; Turtle et al., 2016). Combined, these instruments will provide the clearest 

picture of Europa and touch on the major questions of the solar system, including  
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Figure 1-7: Proposed instruments of the Europa Clipper Flagship mission. As of March 
2019, the ICEMAG magnetometer has been descoped in to a smaller magnetometer. The 
other instruments are still slated to fly. Figure from NASA. 
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whether or not Europa is capable of supporting life and the geophysics of ocean moons in 

the outer solar system. 

 The final planned step for future Europa exploration is the Europa Lander, which 

is currently in the development stage. This mission would have three main goals: to 

search for evidence of life on Europa, to assess the habitability of Europa via in situ 

techniques, and to characterize the surface and subsurface to enable future robotic 

exploration (Hand et al., 2017). The proposed instruments it would carry include an 

organic compositional analyzer, a microscope for life detection, a vibrational 

spectrometer, a contextual remote sensing instrument, and geophysical sounding system, 

and infrastructure sensors for science (Pappalardo et al., 2013; Hand et al., 2017). The 

target launch date for this mission is later than 2025, meaning it will follow the Europa 

Clipper mission at a much later date. This dataset would further constrain ice shell 

properties from a structural and compositional standpoint, refining existing models and 

opening the possibility for additional models to be developed. 

Concurrently with these NASA missions, ESA’s Jupiter Icy Moons Explorer 

(JUICE) is currently under development with a selected launch window in 2022. This 

mission will last for 11 years, 3.5 of which will be spent in the Jupiter system. Thought 

JUICE’s main target will be Ganymede, the mission will do two flybys of Europa over 36 

days in early 2030. Its main purpose will be to study the composition of Europa’s non-ice 

chemicals with a particular focus on the chemistry “essential to life, including organic 

molecules” (Grasset et al., 2013). It will also image the surface geology to identify 

appropriate landing sites for future exploration, and attempt subsurface measurements of 

Europa’s ice shell thickness in its most active locations using subsurface radar sounding 
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at closest approach (Grasset et al., 2013). This mission will complement the data 

collected by the Clipper and Lander missions, and provide a short time gap between 

subsequent measurements, allowing for a constrained estimation of the rates of certain 

geologic processes on Europa, including microfeature formation. 

1.6 Organization of Dissertation 

 This thesis is broken down into the major components of the work done in 

fulfillment of the requirements for the doctoral degree in geological sciences 

(concentration: planetary geology) of the School of Earth and Space Exploration at 

Arizona State University. This chapter served as the introduction to the work, providing 

contextual background on the history of Europa exploration, the geology observed on the 

surface, the proposed formation models for some of these geologic features, and the 

potential for future exploration. The first main chapter is an in-depth description of the 

acquisition and morphometric analysis of the microfeature dataset used in further analysis 

in the rest of the thesis. This dataset was collected in RegMap images and validated 

against three additional, independently collected datasets. The second main chapter is a 

description of the collection and analysis of a second microfeature dataset, this one in 

low-resolution (≥1.5 km/pix) images, rather than RegMap images. This second dataset 

was collected in an area for which microfeatures had already been mapped in the 

RegMap images, allowing for a direct calculation of omission and classification errors to 

be calculated. The third main chapter introduces a multivariate classification analysis that 

can sort quantitatively the microfeatures identified on Europa. The test is first trained on 

the RegMap dataset and then used to classify the low-resolution features, allowing for a 

comparison between human and computer accuracy rates. The fourth main chapter 
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returns to the RegMap dataset and performs multiple clustering analyses on them to 

determine the spatial clustering of different microfeature types across RegMaps. Finally, 

the conclusion summarizes the results and offers predictions that can be directly tested 

with images and data taken by the Europa Clipper and potential Europa Lander missions. 

This work is intended to be used in mission planning for these missions, as well as model 

constraints, expansion of a usable dataset to previously unmapped areas of Europa, and 

the introduction of robust statistical tests to the study of icy satellites. 

1.7 Brief Summary of Results 

 Four of Europa’s RegMaps areas were mapped, and together this area accounts 

for 6.43% of Europa’s total surface area. A total of 691 classified microfeatures were 

identified and validated. The most numerous feature type was microchaos (239), almost 

equaled in number by pits (217), followed by domes (116), hybrids (90), and spots (29). 

Chaos and hybrid features are larger on average than the other microfeatures, and also 

have lower average normalized reflectance values. Pits and domes are around the same 

size, aspect ratios, and normalized reflectances. Spots are the fewest, smallest, and 

darkest of all the microfeature types studied. In addition, there are two distinct types of 

hybrid features, one more chaos-like and the other more dome-like. This work suggests 

that the underlying microfeature formation process or processes are more consistent with 

cryovolcanism and the sills models than with diapirism. 

 Much of the uncertainty in microfeatures formation models lies in the lack of 

data, specifically images where these microfeatures are apparent. Low-resolution images 

present an opportunity to potentially map additional microfeatures outside of the 

traditional RegMap areas. To investigate the different sources of error and the 
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corresponding error rates, an independent dataset was created of the E15RegMap01 

region mapping features in four low-resolution images; this dataset was then compared to 

the RegMap dataset. Roughly 70% of chaos, spots, and hybrids that were originally 

mapped in the RegMap dataset were also mapped in the low-resolution dataset. 

Moreover, chaos features were accurately classified as chaos 60% of the time in low-

resolution images. Pits and domes were mapped as little as 5% of the time, and were 

never recognized correctly as pits or domes. As many as 25% of the microfeatures that 

were mapped in low-resolution ended up being false positive “phantom” microfeatures 

that were not associated with any microfeature in the RegMap dataset. This work 

provides confidence levels to studies that seek to map microfeatures outside of RegMap 

areas. 

 It may be possible to increase the accuracy of these mapping tests if there was a 

quantifiable classification framework for these microfeatures, even in low-resolution 

images. This would reduce the overall uncertainty in mapping outside of RegMaps and 

the variability between different mapping datasets. Using a selected multivariate analysis 

(discriminant function analysis, or DFA), the microfeatures were evaluated for their 

statistically significant quantitative differences and how well those differences separated 

the microfeature groups. Except in cases where the groups being compared were very 

similar (e.g., the pits and domes), the quantitative classification was able to sort between 

the feature types with an accuracy that was above and beyond what could be expected 

from random chance. Overall the computer is adept at separating between 

chaos/spots/hybrids and pits/domes, but is less successful when sorting features within 

those groups. The accuracy rate of sorting features using this quantitative classification 
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approach was also compared to a human using a traditional mapping and classification 

approach. In the end, the computer was more accurate at identifying pits and domes out 

from the LowRes dataset than the human did, but otherwise was comparable to a human 

mapper.  

 Finally, the predictions of one formation model in particular were examined in 

more detail. The sills model implies that liquid water exists underneath certain features, 

mainly pits, on Europa. Determining the likelihood of this being true is critical to 

understand more about Europa’s potential for habitability, as well as how heat and 

material transfer potentially work in ice shells. The different microfeature types across 

the four RegMaps were analyzed for degree of clustering via a nearest neighbor 

clustering analysis, and the average minimum distances between features types were 

computed. Monte Carlo simulations were also run to provide synthetic datasets to allow 

for comparisons to the observed dataset. While in general all microfeature types were 

reported as clustered, pits were the only ones that were clustered in all four RegMaps 

studied. The average minimum distances between pits to other pits were consistently 

lower than the average minimum distances between pits to any other feature type. 

Finally, the Monte Carlo runs consistently had average minimum distances that were 

significantly larger than the observed distances. This all suggests that pits are definitely 

clustered on Europa. This document concludes with a summary of the chapters and 

predictions for future Europa missions to evaluate.  
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CHAPTER 2 

MICROFEATURE MAPPING IN REGMAP IMAGES 

2.1 Introduction 

Europa’s surface is peppered with hundreds of endogenic features including chaos 

features, which are present across a large range of sizes, and small features collectively 

referred to as lenticulae. Chaos features are defined as irregular polygons with a 

hummocky or platy interior texture and are often but not always associated with areas of 

low albedo (Greenberg et al., 1999; Prockter et al., 1999; Greeley et al., 2000; Figueredo 

et al., 2002) and a higher concentration of salts (Hand and Carlson, 2015). The rafts 

inside of platy chaos features are the remains of previous terrain that the chaos feature 

disrupted during its formation. Chaos features have been extensively studied in terms of 

their morphology (Head et al., 1999; Greenberg et al., 1999; Spaun, 2002; Figueredo et 

al., 2002; Collins and Nimmo, 2009; Singer et al., in review), potential formation 

mechanisms (Head and Pappalardo, 1999; Greeley et al., 2000; Riley et al., 2000; Spaun 

2002; Figueredo et al., 2002; Collins and Nimmo, 2009; Schmidt et al., 2011), locations 

and clustering (Greenberg et al., 1999; Spaun et al., 1999; Riley et al., 2000; Soderlund et 

al., 2014; Culha and Manga, 2016; Leonard et al., 2017; Noviello et al., 2017), 

observational constraints (Neish et al., 2012; Bunte, 2013; Noviello et al., 2018; Leonard 

et al., 2018), and relation to Europa’s geologic history (Head and Pappalardo, 1999; 

Prockter et al., 1999; Greeley et al., 2000; Spaun, 2002; Greenberg et al., 2003; 

Figueredo and Greeley, 2004; Spaun et al., 2004; Collins and Nimmo, 2009; Schmidt et 

al., 2011; Leonard et al., 2018; Singer et al., in review). This terrain type is estimated to 

cover between 20% (Figueredo and Greeley, 2004) and 40% (Riley et al., 2000) of 
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Europa’s surface. Chaos is easily identifiable in the moderate resolution (220–230 m/pix) 

images of Europa across most lighting angles (Neish et al., 2012), enabling detailed data 

collection efforts across ~10% of Europa’s surface (Doggett et al., 2009; Neish et al., 

2012). Large chaos features are visible in low resolution (≥1.5 km/pix) images (Neish et 

al., 2012), so these features have been mapped globally (Riley et al., 2000; Bunte, 2013; 

Leonard et al., 2017), but little is known about their details or the global distribution of 

any other non-linear feature type. 

Other features occur alongside chaos, and have been subdivided into specific 

types (Pappalardo et al., 1998; Greeley et al., 2000; Figueredo and Greeley, 2004; Spaun, 

2002; Greenberg et al., 2003; Collins and Nimmo, 2009; Culha and Manga, 2016) 

primarily based on qualitative assessment of their morphologies (Figure 2-1). Small 

chaos (microchaos) are small areas with disrupted terrain and often irregular edges 

(Figure 2-1A). Uplifts and domes are features with positive relief (Figure 2-1B; Greeley 

et al., 2000; Greenberg et al., 2003; Singer et al., 2010;). Uplifts are usually more 

polygonal, while domes are more elliptical. Pits are generally elliptical features with 

negative topographical relief (Figure 2-1E; Greeley et al., 2000; Greenberg et al., 2003; 

Singer et al., 2010; Singer et al., in review). Spots are elliptical areas that have low 

albedo, but without any discernable interior structure (i.e. a hummocky interior or rafts) 

and no obvious topography (Figure 2-1F; Greeley et al., 2000; Greenberg et al., 2003; 

Singer et al., 2010; Singer et al., in review). A recent mapping study of selected regions 

of Europa revealed an additional category of hybrid features, in which a distinct dome or 

uplift is present within a chaos feature (Figure 2-1C and Figure 2-1D; Culha and Manga, 

2016). Some of these features had previously been considered domes or uplifts with  
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Figure 2-1: Examples of microfeatures seen in the four RegMaps on Europa’s 
surface. A) Chaos, classified as such by the hummocky interior and clear disruption of 
the previous terrain (sun from right). B) A dome, characterized by its positive 
topography (sun from right). C) Type I hybrid morphology, characterized by a 
positive topographic feature inside of a dark “halo” (sun from right). The halo can be 
smooth or have a hummocky appearance. D) Type II hybrid morphology, 
characterized by a positive topographic feature with a fully disrupted surface, akin to 
the hummocky interior of the chaos feature in A (sun from bottom right). The visible 
cracks are inconsistent with the surrounding terrain. E) A pit, characterized by its 
negative topography (sun from top left). F) A spot, characterized by consistent albedo 
and lack of interior disruption (sun from bottom right). G) A crater on Europa (sun 
from top left). 
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cracked surfaces (Rathbun et al., 1998; Greenberg et al., 2003; Quick et al., 2017), but 

not until recently were they considered a separate type. Much of the literature refers to 

these features, especially pits, spots, and domes, as lenticulae. This language is avoided 

here, so as not to exclude small chaos features and to emphasize that not all of these 

features studied are albedo features.  

The process of chaos formation disrupts and transforms the previous terrain. This 

can be interpreted as evidence that some kind of melting is involved, implying the 

presence of liquid water or warm ice near Europa’s surface. Initial models for chaos 

formation invoked full melt through of a thin ice shell (Greenberg et al., 1999; Collins et 

al., 2000; O’Brien et al., 2002; Nimmo and Giese, 2005) or a warm-ice diapir rising 

through a thick ice shell (Pappalardo et al., 1998; Figueredo et al., 2002; Schenk and 

Pappalardo, 2004; Showman and Han, 2005; Singer et al., 2010; Soderlund et al., 2014; 

Singer et al., in review). These two models explained some characteristics of chaos 

features, but there remained other aspects that neither model could fully explain (Collins 

and Nimmo, 2009).  

A more recent model, specifically designed to address the formation of large 

chaos features, invokes local melt water formed by a rising diapir that disaggregates the 

overlying ice (Schmidt et al., 2011). As the convective plume reaches its minimum depth 

in the ice shell, the overlying surface is deflected downward to compensate for the 

decrease in volume caused by the ice melting into a liquid melt lens. As the melt lens 

begins to collapse, ice blocks cleave off from the surrounding ice shell. As the water lens 

refreezes, the blocks above rotate, and domes form in between the disrupted ice blocks 

and at the margins of hummocky chaos. This mandates that the sill is much larger than 
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the domes themselves, as the domes form in between the large ice blocks. It is not clear if 

this method of dome formation can account for domes that appear isolated, or if it 

necessitates that domes must be clustered above the location of the sill. The work also 

briefly notes that the scale of the ascending plumes and the preexisting terrain accounts 

for the range of chaos morphologies, and could explain domes, but does not explain pits 

or spots. Finally, while the model can explain the formation of larger chaos features such 

as Conamara and Thera Macula, it is unclear if this model could be applied to microchaos 

(chaos under 100 km2 in area) or any of the microfeatures. As this work is focused on 

microfeatures, the Schmidt et al. (2011) sills model is disregarded at present, but is 

included in the suite of models that invoke liquid water in the formation of surface 

features. Another liquid water model, discussed in more detail later, specifically focuses 

on microfeatures and their relationship to each other (Manga and Michaut, 2017); this 

model is explored in detail. 

The similar range of sizes and clustering patterns of small chaos features, domes, 

pits, and spots have led to the hypothesis that they may be genetically related (Pappalardo 

et al., 1998; Rathbun et al., 1998; Collins and Nimmo, 2009; Singer et al., 2010; Schmidt 

et al., 2011; Michaut and Manga, 2014; Manga and Michaut, 2017; Noviello et al., 2017; 

Singer et al., in review). Understanding how one forms could lead to an understanding of 

the entire microfeature formation process. Similar to large chaos features, one proposed 

mechanism for microfeature formation is solid-state convection, in which a warm-ice 

diapir rises through Europa’s ice shell (Pappalardo et al., 1998; Rathbun et al., 1998). The 

warm ice will rise until it reaches a point of neutral buoyancy, at which point it will begin 

to spread out laterally. Additional studies have suggested that variations of this process 
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could partially melt the ice above the diapir’s head, either due to localized compositional 

impurities and brine mobilization (Head and Pappalardo, 1999; Pappalardo et al., 2004) 

or from the localized effects of tidal heating (Sotin et al., 2002). Further work 

demonstrated that tidal heating can enhance the effects of partial melting (Sotin et al., 

2002; Mitri and Showman, 2008; Han and Showman, 2010), which may concentrate melt 

within the diapir, creating chaos and potentially other microfeature types.  

Another proposed mechanism for forming microfeatures involves liquid water 

rather than warm ice (Schmidt et al., 2011; Manga and Michaut, 2017). In this model, an 

over-pressurized ocean (Manga and Wang, 2007; Michaut and Manga, 2014) pushes 

liquid into Europa’s ice shell via a conduit or a pre-existing fracture (Quick and Marsh, 

2016; Craft et al., 2016; Culha and Manga, 2016; Manga and Michaut, 2017). The liquid 

water eventually reaches a point of neutral buoyancy within the ice shell, and spreads out 

laterally to form a subsurface volume of liquid water (i.e. a sill). The mass influx from 

the liquid water and subsequent freezing changes the water volume and, consequently, 

the morphology at the surface. Different stages of the sill’s evolution can cause different 

microfeatures to form on the surface above it. Early in the process, a pit or dome forms, 

depending on how the liquid water pocket is compensated (Manga and Michaut, 2017). 

Then during freezing, either a dome forms (Schmidt et al., 2011; Manga and Michaut, 

2017), or the surface is breached to form a chaos feature (Manga and Michaut, 2017), 

depending on whether or not part of the weight is supported by elastic flexure in the 

ductile upper ice shell.  

More recent work (Quick and Marsh, 2016; Quick et al., 2017) has examined the 

possibility that some domes are the result of cryovolcanism on Europa. Previous studies 
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(Rathbun et al., 1998; Pappalardo and Barr, 2004) have noted that domes can present in 

slightly different morphologies; some are texturally different material from the 

surrounding plains, typically with a lower albedo. These domes may also occur with 

surrounding “moats” of lower albedo, which may be more consistent with hybrid 

features. The other type of domes retains the pre-existing terrain on the upwarped 

surfaces (called “punched through” in Quick et al., 2017). The domes that retain the 

original terrain may have been created as the result of viscous extrusions of cryolava onto 

Europa’s surface (Quick et al., 2017), an idea expressed earlier for the large chaos feature 

Murias chaos (Figueredo et al., 2002). Cryovolcanism can also explain the dark “moats” 

around some of the hybrid features, as it is merely the extent of the cryolava flow. If 

correct, cryovolcanism can potentially explain both hybrid features and domes, and may 

even explain bands and ridges as manifestations of subsurface cryomagmatic processes 

associated with diapirism (Quick and Marsh, 2016).  

Each of these proposed formation mechanisms is associated with predictions and 

assumptions for microfeature characteristics, discussed in detail in Section 2.4.2. Hence, 

geographical and morphological information about microfeatures can help constrain their 

formation mechanism. Chaos clustering near the poles could imply that tidal heating is 

necessary to form chaos (Collins and Nimmo, 2009), while a more random or dispersed 

global distribution could implicate sills, as they could form anywhere. Although 

microfeatures have been mapped in several studies, there is significant variation between 

individual mapping data sets, especially as technology has improved to allow for more 

quantitative studies to be conducted.  
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Having one complete, validated geomorphic map of microfeatures on Europa that 

represents all previous work can facilitate discussions regarding feature distribution, size, 

and morphologies, and could help form and focus science objectives for the upcoming 

Europa Clipper mission (Phillips and Pappalardo, 2014; Pappalardo et al., 2016). To 

fulfill this need, geomorphic map of Europa’s microfeatures, including small chaos 

features (≤ 100 km2), has been created and merged with three previous maps (Greenberg 

et al., 2003; Culha and Manga, 2017; Singer et al., in review) to create a validated, 

digitized map of microfeatures on Europa within the regional mosaics (“RegMaps”) that 

cover ~10% of the surface. Next, morphological information was obtained for each 

feature, including area, diameter, and normalized reflectance. Finally, these observational 

findings and their implications for formation models are presented. This work seeks to 

improve the understanding of how Europa’s microfeatures form, and assess whether 

different types of features form in related or distinct processes, by identifying statistically 

significant morphologic indicators of each type. This work presents new constraints that 

future modeling efforts on microfeature formation should address and serves as the basis 

for future work on quantitative classification of these features. 

2.2 Materials and Methods 

2.2.1 Data and mapping 

All the images used in this study came from the Galileo SSI instrument. Only 

images taken with the clear filter (611 nm; Belton et al., 1992) were used. Images were 

taken in Galileo’s 15th and 17th orbits, both of which had Europa as its central target; 

these images make up the regional map mosaics. Table 2-1 shows the average image 

characteristics for the images included in each RegMap; for details of each image used,  
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Figure 2-2: Mapped areas on Europa. Top: The USGS (2002) basemap of Europa. 
Bottom: The same basemap with polygons overlain to show our study areas. Pink: 
E15RegMap01. Green: E15RegMap02. Yellow: E17RegMap01. Blue: 
E17RegMap02. 
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Table 2-1: Average characteristics of the RegMap images used for mapping 

 

Table 2-2: The central meridians used for projecting the RegMap images 

Region Central Meridian Mapping 
Longitude 

E15RegMap01 (trailing, northern 
hemisphere) 222°W 

E15RegMap02 (leading, northern 
hemisphere) 83.5°W 

E17RegMap01 (trailing, southern 
hemisphere) 220.7°W 

E17RegMap02 (leading, southern 
hemisphere) 79.5°W 

 

  

Region Average 
Resolution 

(m/px) 

Average 
Phase Angle 

(deg) 

Average 
Emission 

Angle (deg) 

Average 
Incidence 

Angle (deg) 
E15RegMap01 231.12 63.15 37.60 77.46 
E15RegMap02 237.33 100.54 37.47 78.12 
E17RegMap01 218.20 72.35 20.30 77.92 
E17RegMap02 222.31 92.62 28.15 79.51 



  50 

see Appendix B. This data set enables mapping of both the northern (0° to 55°N) and 

southern (0° to 65°S) latitudes at two separate longitudes (~90°W and ~230°W) on 

Europa. For a visual representation of the areas mapped, see Figure 2-2. 

Because the resolutions of regional mapping images were degraded for inclusion in 

the USGS basemap of Europa (USGS, 2002), the raw Galileo images were imported and 

tied to the basemap at full resolution, which involved a series of steps. First, the raw 

regional mapping images were downloaded from the Planetary Data System (PDS) and 

converted into cube files for processing using the open-source United States Geological 

Survey (USGS) software ISIS3 (Torson and Becker, 1997; Anderson et al., 2004). 

Pointing information was attached to the raw cubes and basic I/F calibration was 

completed; see Appendix C for a more detailed explanation. Once the images were 

photometrically corrected, they were each imported into ArcGIS and aligned to their 

respective locations, using the USGS Europa basemap (USGS, 2002) as reference. The 

boundaries of potential features were mapped as polygons in ArcGIS. Each feature was 

then classified into one of seven categories, based on its apparent morphology (Fig. 2-1).  

 

1. Chaos: a feature with a clear disruption of its interior area, with no clear evidence 

of topographic changes (i.e. shadows) across the feature, and without evidence of 

an elevation change within the feature. No distinction is made here between platy 

chaos and hummocky chaos (Spaun 2002; Prockter and Schenk, 2005). 

2. Dome: a feature with an apparent shadow gradient across it, with the bright side 

on the sun-facing side, indicating positive topography. While previous work 

(Greenberg et al., 2003; Singer et al., in review) noted all features that exhibit 



  51 

positive topography, some of them were classified as uplifts, rather than domes, 

due to their angular shape. Some of these features are included in this data set if it 

is clear that the uplift is its own independent feature (i.e. distinct from a nearby 

ridge system). There is no distinction noted here between domes and uplifts in the 

overall analysis done here, but the differences are noted in the data set itself.  

3. Pit: an oval- to circle-shaped feature with an apparent shadow gradient across it, 

with the dark side on the sun-facing side, indicating negative topography. 

4. Spot: an enclosed feature with consistent, dark albedo across the entirety of the 

feature. Presumably the formation of the spot modified the surface to the point 

where the previous terrain is completely erased because the present spot lacks any 

obvious signs of further disruption or topography changes. 

5. Hybrid: a feature with the typical disrupted interior of chaos that surrounds a 

topography high or low. Culha and Manga (2017) first identified this microfeature 

type as dome/chaos, which can appear as hummocky or smooth. This definition 

differs from theirs in that here a feature is only classified as hybrid if there was 

clearly a dome/pit inside of the confines of the surrounding chaos, or if a feature 

appeared to be a dome/pit with a disrupted surface inconsistent with the 

appearance of the surrounding terrain. Thus, two two different morphologies for 

hybrid features are reported (Figure 2-1C and 2-1D). Note: only dome/chaos 

hybrids were observed in the study areas, although it doesn’t rule out the 

possibility of a pit/chaos hybrid feature outside of the areas of study.  

6. Unclassified: a feature with characteristics indicative of a microfeature (e.g., 

small, round or polygonal, clear delineation from other features) that could not be 
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confidently classified into a specific morphological type at the resolutions 

available. 

7. Crater: a circular feature with negative topographic relief with a well-defined 

edge (crater rim). This rim is elevated along the entire perimeter of the feature. A 

central peak may or may not be present, and its absence does not preclude the 

classification of a crater. Though craters were noted in the data set, they were not 

included in the analyses as they are formed by an exogenic process, and it is 

assumed that microfeatures are formed from an endogenic one.  

 

In selecting which quantitative characteristics to extract from the maps, focus was 

placed on those that seem to vary between feature types and are easily obtained using 

native ArcGIS tools. Area and perimeter were calculated with the Shapes and Graphics 

tool (see below). The minimum bounding geometry (MBG) tool was used to extract the 

maximum length and maximum width of the smallest rectangle that encloses each feature 

(Figure 2-3), dimensions which we used to calculate the aspect ratio of these rectangles 

(henceforth called eccentricity): the ratio of the maximum width of a feature divided by 

its maximum length. Finally, the zonal statistics (ZS) tool was used to retrieve 

information about the normalized reflectance (the apparent albedo) of each feature. Note 

that the normalized reflectance of a feature, while similar to, is not equivalent to a 

feature’s albedo, as it requires photometric corrections that were not performed on the 

images here because of a lack of photometric constraints for Europa. 

The ZS tool notes the digital number (DN) value of each pixel within a feature and 

calculates a number of metrics about that group of pixels. Here only mean, median, 



  53 

standard deviation, and range are reported, though ZS has the ability to output many more 

metrics. The DNs in this case represent the I/F of the pixel as captured by the Galileo SSI 

camera and corrected using commands in USGS ISIS3 (Anderson et al., 2004); see 

Appendix C for more information. The final numbers are divided by 65,536, the 

maximum DN a 16-bit pixel can have, so that all normalized reflectance values are a 

ratio. A smaller ratio indicates that a feature has a lower overall normalized reflectance 

(i.e. appears darker). In order to map the entirety of the elliptical domes and pits, parts of 

the feature that were covered in shadow were also included, lowering the normalized 

reflectance values for those features. Therefore, the numbers presented here could be 

considered a minimum value for normalized reflectance. In particular, values for pits and 

domes may be more representative of the shadows caused by topography than the true 

albedo of Europa’s surface within the feature. Shadowing from topography increases near 

the terminator, but features are spread throughout the images so there should be no bias 

towards additional shadowing from topography for any given feature type. 

Before extracting data from the images, four sinusoidal projections were applied, one 

centered on the central meridian of each of the regions studied (Snyder and Voxland, 

1994). Table 2-2 shows the central meridian of each region studied. The sinusoidal 

projection preserves both shape and size, with the distortion of features increasing with 

lateral distance from the central meridian, and at high latitudes (poleward of ±60°) 

(Snyder and Voxland, 1994). However, as different projections yield different values for 

area and perimeter, the best measurements are those that are independent of projection. 

The Graphics and Shapes tool (Jenness, 2011) was used in place of the usual Area and 

Perimeter calculations tools, which calculates the true area of polygons and lengths of 
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lines as they lay on the sphere independent of projection. Unfortunately, the tool was not 

able to calculate the maximum length and width of each polygon, so for those 

measurements; the value computed in the sinusoidal projection was chosen instead. When 

comparing the areas and perimeters of the features calculated using the sinusoidal 

projection to those acquired using the Graphics tool, the values were similar to within <1 

km2 (for area) and <1 km (for perimeter), and the majority were the same to within half 

those values. Because of the similarities in the values, and because only those two 

measurements could not be acquired with the Graphics tool, the few measurements that 

are projection-dependent can be used with confidence.  

As an aside, the images were also processed using a series of custom codes written in 

MATLAB to remove the linear “darkening” trend. When the data of the apparent albedos 

was collected from the zonal statistics, there was no significant relative difference 

between the values collected from the ISIS3 corrected images reported later in this 

document and the values collected from the MATLAB corrected images (i.e. the overall 

differences between the microfeature groups were constant). Because the ISIS3 software 

is widely used in the community, the only values reported here are the normalized 

reflectance values taken in the ISIS3 corrected images; however, the MATLAB code is 

provided in Appendix D for completeness. 

2.2.2 Validating the data set 

 To ensure accuracy in the classifications of mapped features, the feature data set 

was compared to three other data sets (Greenberg et al., 2003; Culha and Manga, 2016; 

Singer et al., in review), which first required that the data set collected by Greenberg et 

al. (2003) was digitized. In general, the features that were included in the final analysis 
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were those that were mapped in at least two out of the four datasets, allowing for 

exceptions if a feature is clearly present but only included in any one of the four data sets. 

The reason for this level of validation is primarily to account for the advance in 

technology that occurred between the creations of different data sets, and to allow for the 

maximum number of verified features to be counted in the final tally. The largest 

difference between the data sets is the number of features. Some data sets completely 

omitted features that at least two others included. The oldest data set (Greenberg et al., 

2003) was most prone to this. Another reason for omission of features between data sets 

is that different data sets mapped in slightly different areas. For example, even if all data 

sets included the same RegMap, there were some areas within the RegMap where only 

two data sets overlapped. It was not clear if the other data sets failed to map features 

because they were outside of a predetermined study range, or if the creators did not see 

any features there. There were also some features that are clearly present, but extend 

beyond the RegMap images. Such features were excluded from the data set on the basis 

that one could not retrieve complete information about those features within images of 

the same resolution. Finally, Greenberg et al. (2003) did not include spots and chaos in 

their data set, so those feature types could only be compared between three data sets 

overall. Singer et al. (in review) included spots as a separate category, but they were 

analyzed as part of the chaos group because they were so few in number. Similarly, the 

only two data sets that included “hybrids” as a category were ours and the Culha and 

Manga (2017) data set, though the definitions of a hybrid feature presented here are 

different. As a result, some flexibility was built-in to accommodate the differences in the 

data sets.  
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 The second difference between data sets lay in determining the boundaries of the 

features. The largest variation existed in the chaos features, especially in both RegMap02 

regions, where there are multiple large chaos features—larger than the area covered by 

the RegMap images—that intersect the RegMap. Chaos features are irregularly shaped, 

and it is not clear in some cases where the boundary of one chaos feature ends and 

another begins. In these cases, only chaos features that were clearly distinct from one 

another were mapped in the data set. This led to some chaos features being omitted. The 

chaos feature sizes and shapes also varied between data sets, as the boundaries 

themselves were often inconsistent between data sets, especially between that of ours and 

Culha and Manga’s (2016). In those cases, the polygons from the data set belonging to 

this author were included for consistency. Because the Greenberg et al. (2003) data set 

was digitized by this author, the features are not exactly the same shape and size as the 

authors originally mapped them, though every effort was taken to remain as true to the 

original as possible. In some cases, it was unclear what feature they mapped, and 

therefore some of their features (~5% of the total) were omitted from the digitization. For 

the most part, pits and domes were consistent in shape and size across data sets, as were 

spots when they were noted. Slight variations existed in orientation of the pits and domes, 

but the overall location was consistent across datasets. 

 Once the final data set was validated, all features larger than 100 km2 in area were 

removed, which is equivalent to a circle with a diameter of 11.2 km. This size cut-off was 

chosen to narrow the data set to a size range that was applicable to all microfeatures in 

order to explore the relationship between feature types. Because this smaller size range is 

the focus, these features are collectively referred to as microfeatures. This term is based 
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on the fact that these features look small in the images of Europa that are currently 

available. Note that the Europa Clipper mission will return images with resolutions better 

than 50 m/pix over 95% of the surface (Turtle et al., 2016; Bayer et al., 2018), at least 

four times better than the resolution of the images used here. The higher resolution 

images may reveal even smaller features that were not visible in the currently available 

images; therefore, the term “microfeature” is likely a temporary one.  

 Finally, after validating the data sets and setting the size range, the characteristics 

of the data were determined. In the context of statistics, the sample refers to the features 

mapped in this study, which represent a subset of the entire population of features. For 

each characteristic we quantified, an “error” was computed that estimates the expected 

amount of variation in the measurements within each microfeature group. To calculate 

error, the standard error (SE) equation of () = 	 +
√-./ was used, where 0 is the sample 

standard deviation of the data and N is the total number of features being analyzed. The 

factor of /
√-./ converts the sample standard deviation into the unbiased estimate of the 

true population standard deviation from the available sample. 

Reported here (Table 2-3) are the overall number of features of each type in each 

RegMap, and the average areas, diameters, eccentricities, and normalized reflectances of 

each of these feature types. Also included is how many features were excluded from the 

study as a result of the size cut-off, and to what category they belonged. In the case of 

chaos, the number that contained any evidence of rafts are also reported. Also included is 

information on the maximum lengths of these features overall, as this may be the 

measurement used to determine average feature sizes in previous studies (Carr et al.,   
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Figure 2-4: Visualization of the irregularity measurement using two features from 
E15RegMap01. These two features have the same equal area diameter, but their 
different shapes mean they have very different irregularity measurements. These 
features are both chaos, illustrating some of the variety of chaos feature shapes. 

Figure 2-3: FID #52 and 53 in E15RegMap02. Some polygons drawn in 
ArcGIS overlying the rectangles created by the minimum bounding 
geometry (MBG) tool. The maximum length of a feature is defined as the 
length of the rectangle. Sun angle is from the top. 
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1998; Greeley et al., 1998; Pappalardo et al., 1998; Spaun, 2002); the visual of this 

measurement is shown in Figure 2-3.  

Also developed here is a method to quantify the shapes of microfeatures, 

specifically a feature’s irregularity. Qualitatively speaking, chaos features in particular 

tend to have irregular shapes whereas other microfeature types are more elliptical. 

Initially the diameter of a circle of equal area is calculated, represented by the equation: 

1234.= 	2 ∗ 6789:
; , for each microfeature as a way to consistently speak about the size 

of the feature. This information is used again to calculate the circumference of an equal-

area circle. A feature’s perimeter is then divided by the equal-area circle circumference. 

This will yield a ratio with a minimum value of 1.0, indicative of a perfect circle. A 

feature with a higher perimeter-to-circumference ratio will be more irregularly shaped 

(Figure 2-4).  

2.3 Results 

2.3.1 E15RegMap01, northern trailing hemisphere 

All four data sets included features in this region (Figure 2-5). There are 306 total 

verified features in E15RegMap01 (Table 2-3). 27 chaos features and two hybrid features 

were excluded because they exceeded the size limit of 100 km2, leaving 277 features in 

the data set. The most numerous feature type was pits (119), followed by chaos (68); 

domes, hybrids, and spots were less numerous and had similar numbers of features (33, 

34, and 23, respectively). Chaos and hybrid features in this region are significantly larger 

than the domes, pits, and spots, which are all around the same size in both area and 

diameter. The eccentricities of all microfeature types do not differ significantly. Out of all
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Figure 2-5: E15RegMap01, with mapped features shown as polygons. Purple 
polygons are chaos. Orange polygons are domes. Blue polygons are hybrids. 
Red polygons are pits. Green polygons are spots. Yellow polygons are potential 
features that were mapped, but left unclassified. No craters were observed in 
this region. 
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68 microchaos features mapped, 11 (16%) had evidence of rafts, but all features only had 

one or two, and the resolution of the images made it difficult to resolve any details about 

them. 

In this region, the spots have the lowest mean normalized reflectance (i.e. they 

appear darker), followed by chaos and hybrids. Pits and domes have significantly higher 

normalized reflectance values than chaos, spots, and hybrids, making them appear 

brighter overall, although the reflectance values are affected by shadows and brightening 

related to their topography. As one side of pits and domes is directly illuminated, while 

chaos, hybrids, and spots are generally flat, the observation that pits and domes are 

brighter is consistent lighting and imaging geometries of the images. Pits and domes do 

differ significantly from each other in terms of normalized reflectance, with pits having 

the higher normalized reflectance.  

2.3.2 E15RegMap02, northern leading hemisphere 

All four studies mapped in this region (Figure 2-6), but each study had slightly 

different boundaries, resulting in some areas where this data set only overlapped with one 

other. There are 282 total verified features in E15RegMap02, with 160 that are less than 

100 km2 (Table 2-3), fewer than were in E15RegMap01. Chaos features are by far the 

most numerous feature type in this region (89), with similar, smaller numbers of domes 

and hybrids (30 and 24, respectively). In stark contrast to E15RegMap01, there were only 

10 pits and 1 spot identified in this region, and 7 craters. This region sits within what 

appears to be a larger platy chaos region that extends well beyond the limits of the 

RegMap (Riley et al., 2000; Leonard et al., 2017; Leonard et al., 2018), which may 

contribute to the high number of features that are over 100 km2. Chaos formation  
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Figure 2-6: E15RegMap02, with mapped features shown as polygons. Purple 
polygons are chaos. Orange polygons are domes. Blue polygons are hybrids. 
Red polygons are pits. Green polygons are spots. Pink polygons are craters. 
Yellow polygons are potential features that were mapped, but left unclassified. 
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destroys preexisting terrain, so the presence of a large zone of chaos likely contributed to 

the overall lower numbers of identifiable microfeatures in this region. The eccentricities 

of all microfeature types do not differ significantly in this region either. Out of all the 

microchaos features mapped, 30 (34%) of them had evidence of rafts.  

The chaos features are significantly affected by the size cut-off; 120 chaos 

features and one hybrid feature were removed when the size cut-off was imposed. Even 

below the size cut-off, chaos and hybrids are on average larger than the domes, pits, and 

spots, which are all around the same size in both area and diameter. This is consistent 

with the results in E15RegMap01. Pits in this region are 2 to 4 times smaller, on average, 

than pits in all other regions. The feature types with the lowest normalized reflectance 

values are spots, hybrids, and chaos features, with pits and domes both significantly 

brighter, and pits having the highest normalized reflectance.  

2.3.3 E17RegMap01, southern trailing hemisphere 

All four studies mapped in this region (Figures 2-7A and B), but not all mapped 

down to the same latitude. There are 216 total verified features in this region, including 

one crater, and 149 of these are less than 100 km2 (Table 2-3). Chaos features are the 

most numerous (69), with about half as many domes (32) and a third as many pits and 

hybrids mapped and validated (22 and 21, respectively). Of the features that exceeded the 

size limit, all but two were chaos. One of the remaining features belonged to the hybrid 

class, and one was a particularly large uplift, the only one over 100 km2 in any of the four 

mapped regions. Once again, the chaos and hybrid features are significantly larger than 

the domes and pits, which are all around the same size in both area and diameter, 

consistent with the results from other regions. The spots (4 in total) are significantly  
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Figure 2-7A: The top section of E17RegMap01, with mapped features shown as 
polygons. Purple polygons are chaos. Orange polygons are domes. Blue polygons 
are hybrids. Red polygons are pits. Green polygons are spots. Pink polygons are 
craters. Yellow polygons are potential features that were mapped, but left 
unclassified. 
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Figure 2-7B: The bottom section of E17RegMap01, with mapped features 
shown as polygons. Purple polygons are chaos. Orange polygons are domes. 
Blue polygons are hybrids. Red polygons are pits. Green polygons are spots. 
Pink polygons are craters. Yellow polygons are potential features that were 
mapped, but left unclassified. 
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smaller in area and diameter than any other feature type, another consistent result across 

the regions. The domes and pits in this region also have an eccentricity that is 

significantly different from chaos, hybrids, and spots. Spots have a significantly lower 

eccentricity than all other microfeatures. Out of all microchaos features mapped, 21 

(30%) had evidence of rafts. 

The normalized reflectance of chaos is the lowest of all the features, followed by 

hybrids. Domes and pits are around the same normalized reflectance value, though domes 

are slightly brighter. This could indicate that the pits in this region are deeper than in 

other regions, and their large shadows are lowering the overall mean normalized 

reflectance values. According to these values, the spots have the highest normalized 

reflectance in this region, but this could be because of a small sample size, which is 

associated with higher errors.  

2.3.4 E17RegMap02, southern leading hemisphere 

In this region (Figures 2-8A and B), there are significantly fewer features than in any 

other, and they are consistently smaller than in the other regions. Out of the 125 total 

features in E17RegMap02, only one – a crater - was excluded based on size (Table 2-3). 

This region also had the most overall number of craters (12). Pits are the most numerous 

features (67), and there are a third as many domes (21). In general, all features are 

significantly less numerous than in any other region. Domes outnumber both chaos and 

hybrid features (13 and 10, respectively), the only region where this is observed. The 

chaos and hybrid features are significantly larger than the domes, pits, and spots, which 

are all around the same size in both area and diameter. The eccentricities of chaos and 

hybrids do not differ significantly to any other feature type, but the eccentricities of  



  68 

 

  

Figure 2-8A: The top section of E17RegMap02, with mapped features shown 
as polygons. Purple polygons are chaos. Orange polygons are domes. Blue 
polygons are hybrids. Red polygons are pits. Green polygons are spots. Pink 
polygons are craters. Yellow polygons are potential features that were mapped, 
but left unclassified. 
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Figure 2-8B: The bottom section of E17RegMap02, with mapped features shown 
as polygons. Purple polygons are chaos. Orange polygons are domes. Blue 
polygons are hybrids. Red polygons are pits. Green polygons are spots. Pink 
polygons are craters. Yellow polygons are potential features that were mapped, 
but left unclassified. 
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domes and pits are significantly different from each other. Out of all microchaos features, 

none had clear evidence of rafting. Chaos features, and one spot, are the darkest features 

in this region, and hybrid features are slightly brighter than chaos. Domes and pits are, on 

average, the brightest feature types in this region.  

2.3.5 Overall observations 

Comparing across all four mapped regions, chaos is the most numerous feature 

type, almost equaled in number by pits. However, chaos features are more consistently 

numerous whereas pits are spatially heterogenous. Spots are the least common, overall, 

and most spots are concentrated in one region (E15RegMap01). Domes are most 

consistent in terms of their spatial distributions, with roughly equal numbers in all 

regions, even those with fewer total features. Overall values are provided in Table 2-4. 

In the area histogram (Figure 2-9), the bin sizes are 5 km2, and the data points on 

the histogram represent the centers of the bins. Chaos and hybrid features are 

significantly larger than the domes, pits, and spots, which are all around the same size in 

both area and diameter. The size distribution of pits and domes both indicate a higher 

concentration of features at smaller sizes, but no features under 1 km can be confidently 

measured due to the resolution limit. The size distribution of spots is also clustered at 

small sizes; it both ascends to and descends from its peak more gradually, and there are 

no spots larger than 35 km2. Pits have a definite peak between 10 and 15 km2, while 

domes have a broader peak between 5 and 25 km2. Hybrids have a small peak around 25 

km2, but above this size the distribution is uniform until it gradually drops off at larger 

sizes. Chaos dominates in number at large areas, though there is at least one pit and one   
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Table 2-4: Overall characteristics of microfeatures in the four RegMaps. Italicized text 
represents the subgroups of Type I and Type II hybrid features and are included in the 
hybrid (all) count, as they are not separate features.  

Feature 
Type 

Number 
of 

features 

Average 
Area 
(km2) 

Average 
Diameter 

(km) 
Eccentricity 

Average 
Normalized 
Reflectance 

Average 
Irregularity 

Chaos 239 48.2±1.5 7.6±1.5 0.68±0.04 0.377±0.007 1.16±0.01 

Domes 116 19.1±1.3 4.6±0.2 0.68±0.06 0.427±0.011 1.10±0.01 

Hybrids 
(all) 90 37.5±2.1 6.7±0.2 0.66±0.04 0.374±0.010 1.12±0.01 

Hybrids: 
Type I 25 38.8±5.1 6.7±0.5 0.65±0.11 0.369±0.021 1.15±0.02 

Hybrids: 
Type II 65 37.0±2.2 6.7±0.2 0.66±0.07 0.376±0.022 1.11±0.01 

Pits 217 23.9±1.1 5.2±0.1 0.67±0.05 0.445±0.010 1.10±0.01 

Spots 29 16.9±1.5 4.5±0.2 0.67±0.06 0.295±0.021 1.13±0.02 

TOTAL 691      

 
Total area studied: 2,090,277.94 km2 (6.43% of Europa’s surface area) 
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Figure 2-9: A line histogram showing the areas of microfeatures in the four 
RegMaps studied here, separated by type. Bin sizes are consistent throughout the 
chart and represent areas of 5 km2. 
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hybrid feature that reach at least 90 km2 in area (excluding the dome that was removed 

due to size cut-off constraints in E17RegMap01). Chaos has a roughly normal 

distribution, with a clear peak between 50 and 60 km2. The rise up to the peak is roughly 

linear, and after the peak the counts remain approximately uniform until the upper size 

limit of 100 km2. There is an imposed truncation in the chaos distribution due to the size 

cut-off at 100 km2, which is expected as chaos features are known to exist above the size 

cut-off. All other feature types decline in number at large sizes and are, therefore, 

unaffected by the imposed size limit. There is also a steep drop off in the number of 

features observed below a few km2, which may be a resolution effect (see also, discussion 

in Section 2.4.1). A similar size distribution was reported by Singer et al. (in review). 

The maximum lengths of features (Figure 2-10) were also examined. The 

maximum length of a feature is likely to be larger than the equal area diameter as a 

feature can be eccentric or shaped irregularly. The equal area circle diameter does not 

retain information related to how a feature is shaped, but the maximum length is more 

sensitive to these differences. Maximum length is also an easier measurement to envision, 

and previous studies may have considered the lengths of these features while describing 

their sizes. Like the areas, the majority of the features of all types cluster around small 

sizes. Pits and domes peak between 4 and 7 km in maximum length, while hybrids and 

spots peak between 5 and 7 km. Only chaos features peak around 10 km, a “typical size” 

reported in past studies (e.g., Pappalardo et al., 1998; Riley et al., 2000; Spaun 2002; 

Collins and Nimmo, 2009; see discussion in 2.4.2), though it is noted that only small 

chaos was considered in this study. Even so, these peaks are broader than those seen in 

the area histogram, implying a broad range of sizes. 
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Figure 2-10: A line histogram showing the maximum lengths of microfeatures 
in the four RegMaps studied here, separated by type. The points represent the 
center of the bin. Bins are the same size and represent distances of 1 km in 
length.   
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Overall, spots are the darkest features, although they are also the least numerous 

features, which makes them susceptible to large errors due to a small sample size. In all 

four study areas, chaos and hybrids have around the same normalized reflectance values, 

although chaos is slightly darker. This shared characteristic suggests a common process 

affecting the formation of chaos, spots, and hybrid features. Domes and pits have roughly 

the same values of normalized reflectance, with pits being slightly brighter than domes. 

The higher normalized reflectance of pits may be because of their geometry; there is 

more area within pits that reflects sunlight, which is both a function of their topography 

(i.e. the depth and symmetry of an individual pit) and the lighting angle of the image. An 

asymmetrical pit may have one side that reflects more sunlight than the other, while a 

non-nadir lighting angle could increase the amount of the sunlight in the pit. In 

E15RegMap02, the normalized reflectance values are higher on average than in the other 

regions, indicating that this region was more illuminated than other regions were, which 

resulted in a brighter set of images even after photometric correction. It could also 

increase the length of a dome’s shadow, another reason for why the dome’s average 

normalized reflectance value is slightly lower than that of pits.  

2.3.6 Locations of microfeatures 

In order to compare the number of features below and above the equator, the 

features in the data set were separated into these two latitudinal groups based on its 

latitude, regardless of the RegMap in which a feature was mapped. There are more than 

twice as many features above the equator than below it (480 features above compared to 

211 below), even though the total area mapped in the southern hemisphere was larger 

than the total area mapped in the northern hemisphere. The same was done with longitude 
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to compare the number of features in the leading hemisphere to the number in the trailing 

hemisphere. Once again, there was a large discrepancy in the number of features between 

the two hemispheres; there are 425 features in the trailing hemisphere, and 266 in the 

leading hemisphere. The total area mapped in the trailing hemisphere is smaller than the 

total area mapped in the leading hemisphere. Possible reasons for these population size 

differences are discussed in Section 2.4.1. 

2.3.7 Eccentricity and irregularity of features 

 Overall, eccentricities do not vary between microfeature types, though this does 

not hold true for each region. Domes and pits had the smallest irregularity measurement 

of all the features. Chaos has the highest average irregularity of all the feature types, 

which is significantly higher than pits, domes, and hybrids. Spots have a high irregularity 

value, but with a small data set, the error is high. These results are consistent with the 

qualitative result that chaos is irregularly shaped. It also suggests that the average 

irregularity of chaos features is significantly different from that of domes and pits. Hybrid 

features have an intermediate average irregularity value, but are more similar to the 

average domes and pit irregularity values overall.  

2.3.8 Hybrids 

In simplest terms, hybrids are a blend between a chaos feature and a dome, but 

not all hybrid features combine chaos and domes in the same ratio. What has here been 

defined as Type I hybrid morphology shows an elliptical, topographically-positive feature 

within a dark “moat” that is usually smoother than the surrounding terrain. This “moat” 

can be smooth or hummocky, similar to the interiors of some chaos features. The domes 

and uplifts within these hybrid features usually have a disrupted surface, though it is not 
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true of every case, and are smaller than the full extent of the “moat.” The Type II hybrid 

morphology shows a dome or an uplift with a significantly disrupted surface, and lacks 

the “moat” characteristic of the Type I hybrids. While some domes retain the evidence of 

a cross-cutting ridge or trough, the Type II hybrid features show a disruption pattern that 

is inconsistent with the surrounding terrain. These features have been noted previously in 

the literature; Greenberg et al. (2003) described these kinds of features as cracked domes.  

 Overall, there are 65 Type II hybrids and 25 Type I hybrids, a ratio of about 2.5:1. 

The only region where Type I hybrids outnumber Type II hybrids is E17RegMap01. In 

all regions, there is no significant difference in size between the two hybrid types; indeed, 

the equivalent diameter for both types is identical. There is also no significant difference 

in the eccentricities of the two hybrid types. The Type I hybrid features have a 

significantly lower average normalized reflectance than the Type II hybrids, as the 

“moats” are dark and exhibit little variation in topography or albedo, as opposed to the 

dome-like Type II hybrid features. Type I hybrid features also have higher irregularity 

than the Type II hybrid features, and share a value more similar to that of chaos. 

2.4 Discussion 

In this study, four data sets of microfeatures in Europa’s four RegMap areas were 

merged together to create the most robust data set possible. The shape files are available 

in an online supplement. In total, a total of mapped, validated, and characterized 691 

microfeatures across Europa’s surface. These observations are presented as constraints 

for present and future modeling efforts. 

2.4.1 Implications of microfeatures characteristics 
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Small chaos features and pits are the most numerous types of microfeatures across 

the four regions studied, although pits are spatially heterogeneous whereas chaos is more 

consistently prevalent across all regions. Pits are sometimes numerous even in regions 

that have fewer microfeatures overall, making up anywhere from 6% to 54% of the 

microfeatures in a given region. In contrast, the number of domes and hybrids are 

relatively uniform across all four regions, and spots are always much less prevalent than 

other microfeature types.  

To further explore spatial differences in the number and character of 

microfeatures, it is important to first consider potential sources of observational bias. 

First, there is an extensive area of dispersed chaotic terrain in the leading hemisphere 

between ~10°N and ~30°S (as mapped by e.g., Riley et al., 2000), which reduces the 

mappable area in E15Regmap02 and E17Regmap01. No individual microfeatures could 

be confidently mapped within this broad region of surface disruption, which could 

partially explain why fewer microfeatures were identified in the southern hemisphere and 

the leading hemisphere, and the fewest in the south leading hemisphere (E17RegMap02). 

In addition, the presence of many large chaos features, which were mapped but excluded 

from the reported feature counts, were much more numerous in the north leading 

hemisphere than in other regions. The presence of these larger features leaves less area in 

which to identify microfeatures, so they may also contribute to the smaller number of 

features observed in the leading hemisphere. Therefore, the relative numbers of observed 

microfeatures may be more suggestive of a difference in the character of chaos features, 

from clusters of microchaos to discrete large chaos features to diffuse regions of 

disruption, across Europa’s surface. 
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Separate from the issues of observational bias, there appears to be a spatial 

difference in the character of chaos features. While microfeatures are more concentrated 

in the northern and trailing hemispheres, large chaos features are more numerous in the 

leading hemisphere, especially in the E15RegMap02 area (Riley et al., 2000; Leonard et 

al., 2017). From previous mapping studies (Riley et al, 2000; Figueredo and Greeley, 

2004; Collins and Nimmo, 2009; Culha and Manga, 2016; Leonard et al., 2017), the 

largest chaos features are mapped close to Europa’s equator, including Conamara and 

Manannán. The largest chaos features mapped in this study were in the E15RegMap02 

and E17RegMap01 regions, which are in the northern, leading quadrant and southern, 

trailing quadrants, respectively. Thera and Thrace Maculae lie in between the two 

southern RegMaps studied here, but they are more fully situated in the trailing 

hemisphere.  

It is interesting that the quadrants with the larger features are diagonal to each 

other, which may point to a symmetric heating source driving the formation of these 

larger chaos features. Part of the reason for this could be attributed to differences in the 

ice shell properties in these regions; if fractures penetrate deeper where tidal stresses are 

larger, sills could form in higher numbers or with different depths and sizes that 

contribute to the prevalence of larger chaos. It could also be that there is a concentration 

of heat at low-latitudes on Europa, perhaps as a result of latitudinal heterogeneity 

(Soderlund et al., 2014), and this heat creates the larger chaos features. Concentrations of 

large chaos features have been previously noted (e.g., Schenk et al., 2008) near 120°W 

and 300°W in support of a polar wander scenario, which could be interpreted to support 

diapirism, as tidal heating is most concentrated near the poles (Collins and Nimmo, 
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2009). While there appear to be no obvious correlations between the locations of large 

chaos patches to predictions regarding the equilibrium ice thickness (e.g., Ojakangas and 

Stevenson, 1989), the limited spatial extent of this mapping project makes it difficult to 

address and characterize global processes that could drive microfeature formation, and an 

extensive modeling project addressing these issues is outside the scope of this 

manuscript.  

The morphology of chaos features may also suggest a difference in the formation 

process between large and small-scale features. Chaos has two different, well-

documented morphologies: platy (e.g., Conamara chaos) and hummocky (e.g., Murias 

chaos). Roughly 41% of the surface area of Conamara chaos is platy (Spaun et al., 1998), 

a typical value among larger chaos features (Spaun, 2002). Some clear examples of platy 

chaos were identified at smaller sizes (<100 km2) within the regional mapping data set, a 

result consistent with the identification of individual rafts within some smaller chaos 

features around Conamara (Tognetti et al., 2017; Leonard et al., 2018). Even when 

potential rafts were found, however, they were not numerous and it was difficult to note 

any details about them, a result also reported in Leonard et al. (2018). The lack of 

discernable rafts within small chaos features could potentially be a result of image 

resolution, or it could point to a difference in the way surface disruption occurs during the 

formation of large and small-scale chaos features. The fact that rafts in small-scale 

features have been identified in proximity to the archetypical example of platy chaos (i.e. 

Conamara) may also suggest that microchaos can develop as part of the formation of 

large-scale features, with morphologies dictated by the formation process of the large 

features.   
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In the model of Manga and Michaut (2017), pits form as an intermediate phase of 

microfeature formation in which liquid water is present within the ice shell. That model 

implies that the differences in pit density in different regions represents a heterogeneity in 

the presence of liquid water within the shell, perhaps suggesting that regions with fewer 

pits have not experienced recent endogenic activity. Note that the region with the fewest 

pits (E15RegMap02) also has the largest number of craters, lending credence to the idea 

that the surface is older, with less endogenic activity in the recent past than other regions. 

Although that region is affected by the presence of large chaos features potentially 

reducing the area in which features can be identified, the decline in the number of pits 

relative to other regions is much more drastic than for other feature types.  

No evidence was found to support past assertions that microfeatures have a 

typical diameter of 10 km (Carr et al., 1998; Greeley et al., 1998; Pappalardo et al., 1998; 

Spaun, 2002). Instead, it was found that microfeature types vary in their typical sizes, 

each type presents over a fairly wide range of sizes, and only chaos features display any 

size characteristics consistent with typical diameter of 10 km.  Chaos and hybrid features 

are significantly larger than pits, domes, and spots across all regions studied. The average 

sizes of domes and pits are within each other’s error bars. Even when considering the 

maximum lengths of the features, only chaos features peaked around 10 km, while all 

other features peaked at significantly smaller sizes. A better estimate for the average size 

of microfeatures of all types is 2–6 km in terms of equal area diameter, and 4–9 km in 

terms of maximum lengths. 

Because the pixel scale of the images was at least 218 m/pix, and assuming a five-

pixel detection limit, the smallest feature that could be confidently identified in this study 
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is ~1 km in diameter, as reported by Singer et al. (in review). The rapid decrease in 

number of features observed as area drops below roughly 10 km2 could indicate that there 

is a minimum size associated with the formation of microfeatures, but the detection limit 

within the regional mapping images may also play a role. Singer et al. (2010) looked for 

pits and domes in the limited set of higher resolution images across Europa, including 

ones that cover parts of the RegMaps, and did not find features of increasingly smaller 

size. Even though the results of Singer et al. (2010) and this study are consistent, this 

team has only looked at roughly 7% of Europa’s total surface, and smaller features could 

exist outside of these areas studied.   

Many previous chaos mapping studies (Head and Pappalardo, 1999; Greenberg et 

al., 1999; Prockter et al., 1999; Spaun et al., 1999; Greeley et al., 2000; Riley et al., 2000; 

Spaun, 2002; Figueredo et al., 2002; Greenberg et al., 2003; Figueredo and Greeley, 

2004; Spaun et al., 2004; Collins and Nimmo, 2009; Schmidt et al., 2011; Culha and 

Manga, 2016; Leonard et al., 2017) note that chaos features typically have low albedo, 

although there are counterexamples (e.g., Conamara chaos). A higher albedo does not 

exclude a feature from being classified as chaos, and instead introduces a new dimension 

to understanding chaos and its relation to other microfeatures. Chaos, spots, and hybrid 

features have similar normalized reflectance values, which may support the claim that 

their formation involves a similar process. Additionally, their normalized reflectances are 

lower than those of pits and domes. Comparisons can be made within this data set 

because the imaging geometry is similar and the same photometric corrections were 

applied to all of the images. The normalized reflectance values may not be the same in 
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images with different imaging geometries or lighting conditions, and the normalized 

reflectances reported may not be well-correlated with albedo.  

Lower albedo terrain on Europa is usually associated with reddish-brown 

material, which has been interpreted as evidence of salts on Europa’s surface (McCord et 

al., 2002; Dalton et al., 2005; Carlson et al., 2005; Carlson et al., 2009; Hand and 

Carlson, 2015). Brine inclusion has been suggested as a feature of chaos formation (Head 

and Pappalardo, 1999; Han and Showman, 2005) because the inclusion of salts and other 

impurities will lower the melting temperature of ice, making it easier for surface 

disruption to occur. The fact that domes and pits have higher average normalized 

reflectances than chaos, hybrids, and spots may imply that briny, liquid water is only 

brought to the surface during the formation of the latter features. However, the idea that 

liquid water in the shallow subsurface plays a role in the formation of pits and domes, as 

in the model of Michaut and Manga (2014), cannot be ruled out, particularly because 

normalized reflectance is dependent on photometric correction and viewing geometry, 

and thus, may not be an accurate indicator of lower albedo material. 

The source of liquid water within the ice shell is still undetermined. Liquid could 

form as partial melt at the top of a rising diapir within a convecting ice shell, or ocean 

water could be injected into the ice shell by an overpressurized ocean through a pre-

existing fracture in the ice. Work by Hand and Carlson (2015) shows that the reddish-

brown color is more consistent with sodium chloride irradiated over long periods of time 

in Europa’s environment, and argues that it is evidence that Europa’s ocean is in direct 

contact with the surface. This interpretation is more consistent with the liquid water sill 

hypothesis (Schmidt et al., 2011; Michaut and Manga, 2014; Manga and Michaut, 2017) 
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than with the in situ partial melt one. Still, the possibility that the salts are hydrated 

sulfate salts (McCord et al., 2002; Dalton et al., 2005) or sulfuric acid hydrate (Carlson et 

al., 2005) cannot be ruled out.  

2.4.2 Predictions associated with formation models 

Multiple studies (Pappalardo et al., 1998; Rathbun et al., 1998; Pappalardo et al., 

2004; Collins and Nimmo, 2009, and references therein; Schmidt et al., 2011; Culha and 

Manga, 2016; Manga and Michaut, 2017) have suggested that all of these microfeature 

types are related. They could be different stages of one process occurring on Europa, or 

the same process yielding different results because of the particular environment in a 

certain location. These observations are now compared to the predictions and 

assumptions of the main formation models: diapirism, cryovolcanism, and sill formation. 

 Pappalardo et al. (1998) first suggested that the different microfeatures are 

genetically related, and that domes and chaos were especially indicative of a warm-ice 

diapir within a convecting ice shell between 3 and 10 km thick. One piece of evidence in 

favor of this model was that the microfeatures appeared to be around the same size, 

between 7 and 15 km in diameter, in an area centered at 15°N and 270°W (Conamara 

region). This region is not included in the data set. Broadly speaking, microfeatures are 

similarly sized, but most features are smaller than the range reported by Pappalardo et al. 

(1998), and that chaos features are substantially larger than other feature types. Hence, if 

all microfeatures are formed though diapirism, the diapirs would need to be capable of 

producing smaller surface features (e.g., 4–7 km across), consistent with the sizes 

observed outside the Conamara region. 
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Rathbun et al. (1998) studied 42 domes in the same region. Their findings 

corroborated the diapirism model in that the features were a consistent size, but they 

noted a potential problem: diapirs small enough to have formed the observed domes 

would have lost their heat too quickly, even before they reached the surface. Hence, 

while small diapirs could explain the presence of small isolated domes, the domes should 

be rare. Rathbun et al. (1998) also noted that some of the domes had surrounding 

“moats,” which is more consistent with the definition of hybrids than domes. Domes and 

hybrids are roughly half as numerous than microchaos and pits, but they are much more 

common than spots. 

 Later work examined the roles that concentrated tidal heating (Sotin et al., 2002; 

Mitri and Showman, 2008; Han and Showman, 2010), plasticity of the ice shell 

(Showman and Han, 2005), and salinity (Pappalardo and Barr, 2004; Han and Showman, 

2005) have on the ability of a diapir in a convecting ice shell to produce the observed 

microfeatures. In general, these papers focused primarily on chaos and dome formation, 

and only one explicitly mentioned the formation of pits (Showman and Han, 2004). None 

addressed the formation of spots. Han and Showman (2005) used numerical simulations 

to show that a diapir with sufficient temperature and salinity contrast to the surrounding 

ice would become buoyant enough to form uplifts and pits with 100–500 m of relief, 

consistent with later mapping results (Schenk and Pappalardo, 2004; Singer et al., 2010; 

Singer et al., in review). However, they were unable to create features with the diameters 

observed here; all their features were between 10 and 30 km in diameter (78.5 km2 and 

706.9 km2 in area, respectively), almost exclusively outside of the range examined here. 

While there are chaos features in this size range, there are almost no domes and pits that 
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are those sizes. Furthermore, in a later study, they were unable to produce any isolated 

pits or uplifts/domes of any diameter (Showman and Han, 2005), which is inconsistent 

with the observations. Based on the current modeling results, the small sizes and 

prevalence of pits and domes are inconsistent with the diapir formation model. However, 

because chaos features and hybrids are typically larger than other microfeature types, 

diapirism cannot be ruled out as a formation mechanism for chaos. 

 Quick and Marsh (2016) investigated whether the cracked domes (called Type II 

hybrid features here) could have been formed by cryovolcanism. They used numerical 

simulations to first verify that cryomagma can ascend within Europa’s ice shell. They 

found that warm ice can move through Europa’s lithosphere, and that its speed is 

comparable to ascent velocities of terrestrial magma diapirs moving through Earth’s 

mantle (Quick and Marsh, 2016). On Earth, dikes and pre-existing fractures can be used 

repeatedly by multiple magma ascensions, eventually forming features such as shield 

volcanoes. A similar process could happen on Europa, and domes could be the result of 

repeated eruptions of cryolava on the surface (Quick and Marsh, 2016). Later work on 

dome relaxation revealed that the model dome topographic profiles match the estimated 

dome heights observed on Europa. Moreover, they found that the average dome radius is 

3 km, consistent with these observations (Quick et al., 2017). They also investigated the 

compositional evolution of the cryomagma inside of a diapir, as an eruption could bring 

material to the surface from Europa’s interior, and provided more evidence that the salts 

observed on Europa’s surface are endogenic (Quick and Marsh, 2016). Cryovolcanism is 

consistent with the sizes of domes and hybrid features, and it provides a natural 

explanation for the lower normalized reflectance of hybrid features. However, this model 
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does not provide a natural mechanism for forming chaos features, pits, or spots, which 

would suggest multiple processes or different manifestations of cryovolcanism in order to 

explain all microfeature types. Additionally, no evidence of flow features was observed. 

Additionally, work by Rathbun et al. (2010) that studied the thermal inertia of Europa’s 

surface was not able to detect any thermal evidence of recent (< 100 years) outflows, 

even though there was evidence to suggest that flows as small as 100 km2 should have 

been visible.  

The microfeature formation model proposed by Manga and Michaut (2017) 

invokes the presence of a liquid water sill, in which the depth of the sill relative to the 

surface and the strength of the ice layer containing the sill control whether a dome or a pit 

is formed. A sill that forms at a shallower depth will have more support from the ice 

beneath it, allowing it to expand upwards and outwards, increasing the positive relief of 

the overlying ice and the lateral extent of the feature itself. This arrangement will form a 

dome. A sill that forms deeper in the ice shell, near the boundary between brittle and 

ductile ice layers, will not have the bottom support to grow, so it will instead become 

deeper, with a lesser lateral extent. This negatively warps the surface above the sill, 

forming a pit. However, the evolutionary stage of the sill and the radius of the sill itself 

can affect the appearance and size of the feature it potentially creates; as the liquid water 

freezes, the model predicts that pits will evolve into domes. Hence, pits could indicate 

pockets of deeper liquid water whereas domes could indicate shallow liquid water or 

frozen sills that initially created pits.  

This model also predicts that domes should be larger than pits (Manga and 

Michaut, 2017). The model first relates the depth of the sill to the size of the feature. If 
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there exist two sills at the same depth in the ice shell where, because of differences in the 

depth of the elastic layer of Europa’s ice shell, one sill formed a dome and the other 

formed a pit, then the dome should have a larger diameter despite the same sill depth. 

This is because the weight of the liquid water in the sill will cause the ice underneath the 

sill to warp downward, causing “the intrusion’s lateral extent [to] decrease a few tens of 

percent” (Manga and Michaut, 2017). Pits and domes are not significantly different in 

either average overall area or average diameter, which disagrees with the model 

prediction. Additionally, the model suggests that larger water bodies are more likely to 

lead to disaggregation of the surface, forming chaos features. Because larger sills form 

larger surface features, chaos features should be larger on average than the other 

microfeature types. These results are consistent with this prediction. Chaos is, on average, 

larger than domes and pits, implying that the sills that form chaos are larger than sills that 

form pits and domes. Smaller chaos features may be formed from a single sill or a 

combination of a couple of small sills, while larger chaos (e.g., Thrace Macula) may be 

formed from many sills merging together to form a sill complex, or via a separate process 

altogether. The ratio between blocky and hummocky chaos at various sizes could provide 

more clues to the formation of chaos features. 

The sill model (Manga and Michaut, 2017) also supplies a continuum of 

microfeature formation involving the evolution of liquid water pockets within Europa’s 

ice shell. The model states that chaos and domes are both end-stage microfeature types, 

and both pits and domes can form as an intermediate stage. Assuming the process takes 

less time than Europa’s surface age, the most numerous feature type is most likely to 

represent the end stage of this continuum process. Therefore, these results would imply 
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that microchaos is the most common end stage, as it outnumbers all other features. It 

could also be that it is easier to create microchaos from domes than Manga and Michaut 

(2017) suggest. If the shallow water sills create domes that crack while the liquid water is 

freezing (effectively overpressurizing the sill itself), fractures would be created on the 

dome’s surface, which could be the origin of the cracked dome Type II hybrid feature. 

The overpressures in the freezing sill could also lead to the remaining liquid to escape 

through the fractures, where it could become the low-albedo material seen around the 

Type I hybrid features and within the matrix of microchaos (Manga and Michaut, 2017).    

Careful attention should be paid to hybrid features in general. Their classification 

has evolved from domes with “moats” (Rathbun et al., 1998; Quick et al., 2017) and 

cracked domes (Pappalardo et al., 2004; Greenberg et al., 2003) to an independent feature 

type (Culha and Manga, 2016; this study). The range of hybrid morphologies and the fact 

that hybrid features exhibit similarities to both chaos and domes support the idea that they 

are intermediate features between domes and small chaos. According to the Manga and 

Michaut model (2017), domes may turn into chaos features, and hybrids could represent 

this transition. Hybrids are similar in number to domes, and have intermediate sizes 

between domes and chaos features. The presence of two different morphologies also 

supports this idea. The formation ideas from the previous paragraph could apply, but they 

are not the only explanations for hybrids. The Type I hybrid features with their dark 

“moats” could reflect the progressive cracking of the surface from the outside in, as 

would happen as the sill freezes and overpressure increases. This explains why the dome 

in the center is often disrupted as well, as the surface would have been affected at an 

earlier stage as the sill was growing. Cryovolcanism cannot be ruled out either, especially 
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in the formation of hybrids and domes, as the “moats” could be interpreted as the 

surface’s response to an effusion of cryolava (Quick et al., 2017). Without more 

information, it is difficult to say for sure which formation mechanism is more likely. 

Both pits and domes are supposed to form as intermediate features, while the 

weight of the liquid water sill warps the surface before it later freezes. However, pits are 

almost as numerous as small chaos features, whereas domes are only half as numerous as 

microchaos or pits. Hence, these results suggest that domes are not the most common end 

state and calls into question the hypothesis that domes would form during multiple phases 

of microfeature evolution. Instead, these results support the idea that the formation of 

pits, and not domes, is the more-commonly taken route between an unaltered surface and 

the conclusion of microfeature emplacement, likely as a chaos feature. Alternatively, it is 

also possible that the domes that would form from the sills underneath current pits simply 

have not frozen yet to form the domes, suggesting that microfeature formation is 

relatively recent. 

This begs the question of why there are fewer domes than expected, relative to 

chaos and pits. Domes are predicted to form as an intermediate stage of microfeature 

evolution when a sill in emplaced higher in the ice shell (Manga and Michaut, 2017). It is 

more challenging to get large volumes of water to a higher level in the ice shell, which 

means that it would be harder to form domes than pits. Domes are also hypothesized to 

form when the sill freezes, even if the surface expression of the sill had been a pit during 

the liquid phase. Hence, some pits may have turned into domes. Therefore, one might 

expect a correlation between older surfaces (i.e., those less affected by recent endogenic 
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activity) and higher numbers of domes relative to pits. In any case, the reduced number of 

domes compared to chaos and pits must be fully explained by any formation model. 

One observation that could shed more light on the relationship between hybrids, 

domes, and chaos features is the potential change in the numbers of features in the same 

regions studied here once Europa Clipper returns data from Europa in the mid- to late-

2020s. If the number of hybrids relative to domes has increased, then it could mean that 

domes are changing into hybrid features. Recalculating the ratio between Type I and 

Type II hybrid features could also be telling. If it is assumed that the microfeatures form 

along a continuum, then the end stage feature type should be the most numerous. If there 

are more Type I hybrids relative to Type II hybrids or vice versa in the future, it could be 

interpreted as evidence for the progression of microfeature formation, and for the 

direction of formation (i.e., do domes turn into chaos or does chaos turn into domes?). If 

the ratio remains roughly the same, it could mean that there is no continuum, or that these 

features form at the same rate.  

2.4.3 Implications for formation of microfeatures 

Several key characteristics of microfeatures have been identified, some of which have 

not been previously noted in the literature, that can serve as constraints for future 

modeling efforts.  

1. Chaos and hybrid features are larger than pits, spots, and domes. Chaos is 

the only microfeature that presents at scales larger than 100 km2, and the peak 

size is larger than that of domes and pits. This indicates that whatever process 

creates chaos and hybrids typically affects a larger area on Europa’s surface 

during their formation. The relative sizes of different feature types may indicate 
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that disruption events are more likely to occur for larger features. One hypothesis, 

presented by Manga and Michaut (2017), is that the merging of multiple sills 

would weaken the overlying ice, leading to the cracked and hummocky surfaces 

characteristic of chaos and hybrid features. However, any formation model would 

also need to explain smaller chaos features and the domes that form within Type I 

hybrids. 

2. Chaos is the most common type of microfeature, and the second most 

common is pits. The relatively high frequency of chaos features may indicate that 

chaos formation is the most likely end state in a progression of microfeature 

formation, as suggested by Manga and Michaut (2017), or that conditions for 

chaos formation are more readily met than for other feature types. A future model 

needs to explain why chaos is more common than other features, and why pits are 

more numerous than domes, which is counter to the prediction of Manga and 

Michaut (2017). The relative ages of different regions – with high pit density 

indicative of more recent endogenic activity – could potentially account for the 

larger number of pits relative to domes. However, the region that had the highest 

number of craters, E17RegMap02, had the fewest overall features but the second 

highest number of pits, so the relationship between crater-based age and the 

presence of liquid water within the shell is not obvious. 

3. Chaos and hybrid features are irregularly shaped. The irregularity of 

microfeatures is now quantified and reveals that pits, spots, and domes are 

generally more elliptical in nature (though they can be polygonal), while chaos 

and hybrid features often have irregular shapes and wavy perimeters, even if they 
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are not bounded by a ridge system. Merging sills (e.g., Manga and Michaut, 2017) 

could be useful in explaining this observation. Multiple ellipsoidal-shaped sills 

could merge to make an irregular surface expression, depending on their sizes, 

depths in the ice shell, and relative orientations. Furthermore, microchaos features 

are far more likely to have hummocky, rather than platy, interiors. 

4. Hybrid features come in two distinct types. What here has been termed Type I 

hybrids have a dome surrounded by a dark “moat,” which presents as hummocky 

chaos. In this case, the majority of the domes inside of the hybrids show a 

disrupted surface themselves, indicating that the dome is simply raised from the 

previous chaotic terrain. This interpretation implies that the domes are younger 

than the chaos feature, although the domes may have formed in direct response to 

chaos formation. Type II hybrids present as domes with severely disrupted 

surfaces, which have higher normalized reflectance than the Type I hybrids. 

Because features tend to darken over time when exposed to radiation (Hand and 

Carlson, 2015), the fact that these Type II hybrids are not as dark as Type I 

hybrids or chaos suggests that the Type II hybrids could be younger than the Type 

I hybrids. Another possibility is that Type II hybrids have simply not experienced 

any surface rupture that allowed material to flow over the surface, since that is the 

material that would darken over time.  

5. Spots are the rarest and smallest of all microfeature types. Spots also have 

consistently low normalized reflectance value across all four RegMaps, similar to 

chaos features and hybrids, perhaps indicating a common process that occurs in 

the formation of all three types. Previous models (Schmidt et al., 2011; Manga 
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and Michaut, 2017) have posited that spots are formed when the surface is 

minimally disrupted after the spot is formed, such that it remains mostly flat. An 

alternative hypothesis is that spots are the result of surface disruption but that the 

scale of the event is below the resolution limit of currently available images. In 

that case, spots are simply small chaos features whose interiors have not been 

fully resolved, rather than a distinct feature type.  

2.5 Conclusion 

In an effort to understand the underlying process or processes that govern 

microfeature formation on Europa, all visible microfeatures in the E15RegMap01, 

E15RegMap02, E17RegMap01, and E17RegMap02 regions were mapped. These 

microfeatures were classified into chaos, domes, hybrids, pits, spots, or left them 

unclassified; craters were also noted where present. Data sets from other studies 

(Greenberg et al., 2003; Culha and Manga, 2016; Singer et al., in review) were 

incorporated to validate these features and ensure high robustness and accuracy of the 

final feature database. These results show that chaos and hybrids are larger than all other 

microfeature types, while pits and domes are around the same size, and spots are the 

smallest overall. Pits and domes are smaller than the “typical” size reported in past 

studies (Greenberg et al., 2003; Culha and Manga, 2016). Chaos is the most numerous 

microfeature, followed by pits, then domes, then hybrids, and finally, spots. The average 

normalized reflectance values of chaos, spots, and hybrid features are significantly lower 

than pits and domes, consistent across all regions studied. It was also found that there are 

more microfeatures in the northern hemisphere than the southern, and more in the trailing 
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hemisphere than the leading one, although the presence of large chaos features may be 

introducing an observational bias.  

 These results were compared to predictions made by some microfeature formation 

models. Diapirsm may explain microchaos and domes, but the predicted sizes of these 

features are larger than the observed sizes, and numerical models of diapirism have not 

reproduced pits and spots. Extrusive expressions of cryovolcanism on Europa (Quick et 

al., 2017) may explain the formation of domes, as their predicted heights and radii match 

the profiles of those domes produced by the model. Unfortunately, this model does not 

yet explain pits, spots, or microchaos, and is presently only supported by observations of 

domes, equivalent to diapirism. Finally, a sill model (Manga and Michaut, 2017) explains 

the presence of all microfeature types as part of the sill’s evolution, including the 

presence of hybrids as a transitional feature type, and can explain the overall numbers 

and sizes of microfeatures observed. However, the large number of pits relative to domes 

in some areas suggests that regional characteristics may exert some control on whether 

domes form or that some regions may have experienced less endogenic modification in 

the recent past than others. From these observations, the cryovolcanism and sill models 

are most consistent with these results.  

 Future mapping work should address whether or not microfeatures can occur on 

Europa at sizes smaller than 1 km in diameter and the degree of clustering of 

microfeatures on Europa. Mapping efforts can also be expanded to areas that were not 

included in this study, with particular attention paid to the appearance and morphology of 

hybrid features and the addition of normalized reflectance measurements. This data set 

will serve as the basis of future geophysical and statistical modeling efforts, which will 
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inform future mission planning including both the upcoming Europa Clipper and 

potential future lander missions.  
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CHAPTER 3 

MICROFEATURE MAPPING IN LOWRES IMAGES 

3.1 Introduction 

 The RegMap mosaics on Europa only account for ~10% of its total surface area 

(Doggett et al., 2009), and while they are good resources for geomorphic mapping on 

Europa, their value is limited by their extent. Most of the images outside the RegMaps 

are significantly lower resolutions (>1 km/pix). This does not preclude the ability to 

measure large-scale features such as cycloids or ridges, but smaller features are difficult 

to find and identify, as many of them are below the resolution limit of the image. Many 

microfeature formation models would benefit from additional observational constraints, 

including but not limited to the locations of additional microfeatures outside of RegMap 

areas.  

Many studies have mapped the locations of large chaos features (Greeley et al., 

2000; Riley et al., 2000; Spaun, 2002; Figueredo et al., 2002; Figueredo and Greeley, 

2004; Soderlund et al., 2014; Leonard et al., 2017; Leonard et al., 2018), but the results of 

mapping studies in general are greatly affected by the imaging parameters. Hoppa et al. 

(2001) described the limitations on accurate chaos identification, and concluded that the 

identification of chaotic terrain is strongly dependent on the observational parameters of 

the area, particularly the resolution and the incidence angle of the image. When the 

incidence angles in images were increased from 75° to 82° in one area, 33% more regions 

of chaos were identified. When the resolution was increased by a factor of 3.6 in a 

different region, the amount of chaos identified increased seven-fold.  
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To account for these potential inconsistencies, Riley et al. (2000) placed firm 

constraints on the images selected for use in their chaos mapping study and only used 

images with <200 m/pixel resolution and incidence angles >55°. Similarly, Figueredo and 

Greeley (2004) included only high-resolution, high incidence angle RegMap images of 

Europa acquired during several of Galileo’s Europa flybys. However, more work needed 

to be done to address observational constraints on chaos to expand mapping to include 

non-RegMap images. Neish et al. (2012) performed a comparative analysis to find the 

identification limits for chaos mapping as a function of resolution and incidence angle. 

To study the effects of observational parameters on chaos identification, they mapped 

chaos regions in RegMap images, RegMap images artificially degraded to the level of a 

low-resolution image, and images originally taken at low-resolutions. In cases when the 

resolution was low (~1.5 km/pix) but the incidence angle was high (about ≥70°), large 

chaos was easily identified. In images with low incidence angles (≤30°), however, chaos 

could not be identified if the resolution was 250 m/pix or less (Neish et al., 2012).   

As detailed as that study was, there are still unknown limits on microfeature and, by 

extension, microchaos identification. The chaos regions identified in Neish et al. (2012) 

were all upwards of 1500 km2, significantly larger than the microchaos features that were 

identified in the RegMaps and described in earlier text. It is therefore unclear if the limits 

described in the paper can equally apply to microchaos. Additionally, this and other 

papers have focused only on chaos; none have mentioned the identification limits for 

other microfeature types in low-resolution images.  

Learning how to correctly interpret the low-resolution Galileo images opens up a 

significant amount of usable data that has not yet been fully studied. Increasing the 
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amount of data about the locations and characterizations of known features helps to 

constrain models that predict how these features formed, which connects to the amount of 

heat and materials are transported within Europa’s ice shell, and to the geophysics of an 

icy world. Geologic and geomorphic maps of Europa (USGS, 2002; Bunte, 2013) show 

the locations of the largest and most obvious geologic features on Europa. One of the 

features that could be connected to both heat and material transport is chaos. Large chaos 

features have been mapped and characterized (Greenberg et al., 1999; Collins et al., 

2000; Riley et al., 2000; Figueredo et al., 2002; Collins and Nimmo, 2009), but little 

attention has been paid to the smaller chaos features scattered across the surface. Other 

studies have reported on the characteristics and locations of pits and domes (Rathbun et 

al., 1998; Greenberg et al., 2003; Singer et al., 2010; Noviello et al., 2019).  

 This chapter is devoted to addressing the limits of microfeature identification in 

low-resolution images by creating a dataset of features in low-resolution images and 

comparing them to the dataset collected in the RegMap images for the same area. 

Directly comparing these two datasets will help determine the main sources of error and 

quantify uncertainty when mapping microfeatures in low-resolution images. These errors 

are that of omission, where a feature is entirely excluded from a dataset because it is 

invisible in the images; that of misclassification, where a feature is identified but assigned 

to a group that is inconsistent with the same microfeature in a RegMap; and that of false 

positives, where a feature is mapped in a low-resolution but has no corresponding 

microfeature in RegMap images. These error rates can then be applied to future efforts to 

map microfeatures outside of RegMap areas to provide additional constraints for 

microfeature formation and heat and material transfer models. 
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3.2 Methods 

3.2.1 Image selection 

 One RegMap region was selected as a low-resolution (LowRes” mapping “test 

case.” E15RegMap01 was selected because it contained the highest number of 

microfeatures and an absence of large chaos features, as the locations of large chaos has 

been reported on previously (Riley et al., 2000; Greeley et al., 2000; Spaun, 2002; Bunte, 

2011; Neish et al., 2012; Leonard et al., 2017; Leonard et al., 2018). As with the RegMap 

images, only images taken with the Galileo SSI (Belton et al., 1992) were included, and 

only those taken with the clear filter. Based on parameters provided by Neish et al. 

(2012), the LowRes images that were included in the analysis had to cover at least part of 

the RegMap, have resolutions between 1.4 and 1.7 km/pixel, and have similar incidence 

angles to those of the images used in the RegMaps.  

Because of the lack of images of this area of Europa, no single image exists that 

meets all three criteria. Instead, four images were used for the LowRes mapping, as they 

collectively cover the full study area; details are provided in Table 3-1. Maps showing the 

E15RegMap01 study area and the LowRes images’ overlap with E15RegMap01 are 

shown in Figures 3-1 and 3-2. Two of the images have similar incidence angles, but the 

other two have significantly lower incidence angles. A change in the lighting conditions 

on any planetary body, especially a high-albedo target such as Europa, can enhance or 

obscure shadows and albedo features to an observer, significantly changing the geologic 

and geomorphic interpretations of the surface. For areas covered with images with 

different parameters, the error rates will be different. Thus, the results presented here 

should be considered the minimum error rates for global studies of microfeatures. 
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Table 3-1: Average characteristics of the LowRes images used for mapping 

  

Image ID 
Galileo 
Orbit 

Acquired 

Phase 
Angle (°) 

Emission 
Angle (°) 

Incidence 
Angle (°) 

Incidence 
Angle 

Range (°) 

Pixel 
Resolution 

(m) 

5139r G1 37.72 32.36 30.29 2.1416–
69.86 1572.85 

5126r C3 37.72 24.15 21.14 0.02–
54.31 1571.76 

5113r G1 37.30 27.41 61.65 36.73–
116.92 1572.13 

5100r G1 37.25 35.43 67.68 38.39–
120.74 1573.27 
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Figure 3-1: The E15RegMap study area (with navy blue outline) with LowRes 
images overlain. No single image covered the entire study area, hence why four 
total images were used. Details about these images are provided in Table 1. 



  103 

  

Figure 3-2: The E15RegMap study area (navy blue outline) with LowRes coverage 
polygons overlain. This represents which parts of E15RegMap01 were mapped in 
which image. 
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3.2.2 Mapping in LowRes images 

To place observational constraints on identifying and classifying microfeatures in 

low-resolution images, a new dataset was collected, this time using LowRes images that 

covered the same areas as the RegMaps. The LowRes data were collected using the same 

mapping protocols as was used in the RegMap mapping approach and applying the same 

classification parameters to the mapped features. Another category, Phantom Features, is 

added in the LowRes mapping to reflect features that were mapped in LowRes but that 

corresponded to areas that lacked any detectable feature in the RegMap images. This is a 

better choice for three distinct reasons: 1) there now exist two datasets collected at 

different image resolutions, allowing for easy comparison between features mapped at 

both levels; 2) the number of features mapped in the RegMap images that were not 

mapped in the LowRes images, and the reasons for these omissions, can now be 

constrained; and 3) the number of false positive “features” mapped in LowRes images 

that were not mapped in the RegMap images can now be constrained. 

The same parameters were calculated for the LowRes data as the RegMap data so 

as to allow for easy comparison. These are: spherical area, spherical perimeter, maximum 

length, maximum width, aspect ratio (eccentricity), the morphometric ratios, mean 

normalized reflectance, median normalized reflectance, range of normalized reflectance 

values, and standard deviation of normalized reflectance values. One caveat is that even 

though some feature types (e.g., chaos) had features above and below the 100 km2 area 

size cut-off, only true microfeatures were analyzed. 

A rule of thumb in mapping is that it should be possible to identify and map any 

feature that is larger than five times the resolution of the image. In the case of this 
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LowRes mapping, the images had an average resolution of 1.57 km/pix, meaning that any 

feature with a lateral extent ≥ 7.85 km should be visible, even in low-resolution images. 

This number can change based on the way that lateral extent is defined. Here, the 

estimated minimum detection size of a feature was lowered to 7.5 km across because the 

“size” used here is the equal area diameter. This value is usually smaller than the 

maximum distance across, but better accounts for the two-dimensional reality of a 

mapped feature. For completeness, the number of microfeatures that exceed this detection 

limit are discussed in the next section.  

3.2.3 Review of the E15RegMap01 dataset 

The RegMap dataset was used to assess the LowRes dataset for completeness and 

accuracy. The total number of mapped features in E15RegMap01 is 339, and 310 of these 

features were under the size cut-off of 100 km2. Of these microfeatures, 277 of them are 

classified, meaning there are 33 mapped but unclassified features included in the 

E15RegMap01 dataset. These included the 68 microchaos features, the 33 domes, the 34 

hybrids, the 119 pits, and the 23 spots described in detail in Chapter 2. There are two 

ways to describe size: the diameter of a circle with equal area to the feature, and the 

maximum length of the feature.  The total number of microfeatures of any type in this 

dataset (including unclassified) that were larger than 7.5 km in equal area diameter is 81, 

26.1% of the total number of mapped features. The total number of features of any type 

in this dataset (including unclassified) that were over 7.5 km in maximum length is 165, 

53.2% of the total number of mapped features. Thus, before the LowRes mapping begins, 

it is already expected that at least 112 features will be omitted, more if the unclassified 
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features are included, and will likely be closer to 200 depending on which definition of 

size is applied. 

3.3 Results 

3.3.1 LowRes mapping and identification 

In total, 214 features were mapped in LowRes; this map is shown in Figure 3-3. 

The equivalent diameter of these features ranged from 2.33 km to 21.25 km (Figure 3-4). 

The features were then given provisional classifications based on their appearance in the 

low-resolution images which were then checked against their classifications from the 

RegMap mapping, which is assumed to be more robust. The type breakdowns of these 

features are provided in Table 3-2, but as they are not all true microfeatures, they are not 

considered further. 

This left 186 microfeatures in the analyzed dataset; their type breakdowns are 

provided in Table 3-3. The LowRes-mapped microfeatures contained 84 features 

classified as chaos, 11 features classified as domes, six features classified as hybrids, six 

features classified as pits, 53 features classified spots, and 26 features that were mapped 

but left unclassified. Of these 186 microfeatures, 70 (37.6%) of the features mapped are 

above 7.5 km under the assumption that diameter is equal to that of a circle of equivalent 

area. These 70 features include: 55 chaos (78.6%), two domes (2.9%), four hybrids 

(5.7%), no pits, two spots (2.9%), and seven unclassified features (10.0%). A histogram 

of all microfeature diameters including unclassified is shown in Figure 3-5. As a large 

part of the dataset would have been excluded if the five-pixel detection limit was 

followed, the rule was disregarded. Indeed, the smallest feature mapped in this dataset 

was 2.33 km in diameter, well below the five-pixel detection limit. A more appropriate 
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Figure 3-3: A map showing all features mapped in the LowRes dataset. The features 
whose boundaries extend outside of the RegMap limits were excluded from the dataset 
prior to analysis, as well as any features whose area was above 100 km2.   
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Figure 3-4: Histogram of equal-area circle diameters, all mapped LowRes 
features. These are all features mapped, including those above the microfeatures 
size cut-off. Bin sizes are 1 km. 



  109 

rule for detecting features on a bright surface such as Europa could therefore be as small 

as 2.5 km in diameter if the feature has an apparent albedo that differs significantly from 

the background. Out of the 186 features mapped in LowRes, 46 were ultimately classified 

as “phantom” features, meaning they were mapped as a feature in the LowRes mapping, 

but upon closer inspection using RegMap images were not associated with a 

microfeature. 

3.3.2 Missed features 

A total of 195 features that were mapped in the RegMap were not mapped in the 

LowRes (Figure 3-6). Out of these 195 missed features, 193 are under the microfeature 

size cut-off, and 187 are above 2.5 km in diameter. The distribution of the diameters of 

the missed features is Gaussian with a peak between 5 and 6 km (Figure 3-7) and 

qualitatively matches with the distribution of the microfeatures mapped in LowRes. Out 

of all the missed features, 15 (7.8%) of them were chaos, 25 (13.0%) of them were 

domes, 12 (6.2%) of them were hybrids, 113 (58.5%) of them were pits, six (3.1%) of 

them were spots, and 22 (11.4%) were unclassified. 

3.3.3 Find rates 

To better assess the completeness of the LowRes dataset compared to a RegMap 

dataset, a “find rate” was calculated using this formula:  

!"#$	&'() = +1 − . /012)3	1"44)$
56('7	#012)3	"#	&)89':;< ∗ 100 

The find rates for all categories are given in the last row of Table 3-3. Only true 

microfeatures were considered in the find rate calculation, as this study is focused on 

finding microfeatures outside of RegMap areas. 
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Figure 3-5: Histogram of equal-area circle diameters, all mapped LowRes 
microfeatures. Bin sizes are 1 km. 
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Figure 3-6: All features (in orange) of the E15RegMap01 study area missed 
in LowRes mapping of the same area.  
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Figure 3-7: Histogram of equal-area circle diameters, all missed RegMap 
microfeatures. Bin sizes are 1 km. 
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Only features that were mapped in both LowRes and had a corresponding feature 

in the RegMap dataset, regardless of the accuracy of the classification, were considered 

as “found,” else they were considered “missed.” This is to reflect the presence of false 

positives (the phantom features) in the LowRes dataset that were mapped as features but 

had no corresponding morphology in the RegMap images. Accuracy of mapping is 

discussed in a later section. For some microfeature groups, the number of features 

mapped in LowRes exceeds the total number of features that were mapped in the 

RegMap and the number of missed features. Spots are an ideal example of this; the 53 

spots identified in low res far exceeds the total number of mapped spots in the RegMap 

images. In some of these cases, the features were misclassified, falsely increasing the 

number of spots reported in that microfeature type. In other cases, the features belonged 

to the phantom category because they did not correspond to a microfeatures in the 

RegMap. Chaos, hybrids, and spots were found at relatively high rates (65.7–77.9%), 

even if these features were misclassified, but domes and pits were found at very low 

rates, 24.2% and 5.0%, respectively. The hybrid features that were omitted all belonged 

to the Type II (cracked dome) subcategory. 

3.3.4 Accuracy  

Showing that features can be found at all is the beginning. The next step is to 

determine how often the classifications done in LowRes are consistent with the RegMap 

classifications. When considering microfeatures mapped and classified in LowRes, the 

number of matches becomes 61 out of 186 (32.8%) when including unclassified features, 

and 61 out of 160 (38.1%) when unclassified features were excluded. Some microfeatures 

groups were mapped more accurately than others. Chaos features were correctly mapped 
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and classified 50 out of 84 times (59.5%), domes were correct one out of 11 times 

(9.1%), hybrids were correct one out of six times (16.7%), pits were correct zero out of 

six times (0.0%), and spots were correct nine out of 53 times (17.0%). The decision to 

divide by the total number of features identified for that type in LowRes is motivated by 

the need to know how many features can be expected to be misclassified rather than 

simply omitted. This information is included in Table 3-4 in the boxes highlighted in 

green. 

It is important to note that these numbers merely reflect the number of 

microfeatures found. When the features above the size cut-off are included, the number 

of correctly classified features and the percentage classified correctly also increase, but 

not significantly. This result is not surprising; larger features are easier to identify, and 

their defining attributes are also more visible than smaller features. The overall number 

correct in the entire population, including features over 100 km2, is 80 out of 214 

(37.4%). Chaos are correctly mapped 66 out of 108 times (61.1%), but the total number 

of “chaos” found in LowRes (108) is higher than the number found in the RegMap 

images (95, with 68 of them considered microchaos). Domes, hybrids, pits, and spots do 

not change the number correctly identified, but as there are more features included, these 

percentages either decrease or remain the same.  

There appears to be a correlation between size of a feature and the chance it is 

accurately classified in LowRes images. As area increased from 10 to 100 km2, the 

accuracy of the classification increased. A simple linear model (slope = 16.15, 95% 

CI:[0.80, 31.51]; y-intercept = 0.6679, 95% CI:[0.38, 0.96]) yields a high positive  
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Table 3-4: Classification accuracy breakdown of all microfeatures mapped in LowRes. 
The columns across represent the classifications in the RegMap dataset, and the rows 
down represent the classifications made in the LowRes dataset. The values highlighted in 
green are the ones whose classifications matched between the two datasets. 
 

 Total 
Chaos 
Counts 

(%) 

Dome 
Counts 

(%) 

Hybrid 
Counts 

(%) 

Pit 
Counts 

(%) 

Spot 
Counts 

(%) 

Unclassi-
fied 

Counts 
(%) 

Phantom 
Counts 

(%) 

Micro-
chaos 84 

50 
(59.5) 

9 
(10.7) 6 (7.1) 0 (0.0) 6 (7.1) 6 (7.1) 7 (8.3) 

Dome 11 1 (9.1) 1 (9.1) 1 (9.1) 0 (0.0) 0 (0.0) 2 (18.2) 6 (54.5) 

Hybrid 6 
3 

(50.0) 
2 

(33.3) 
1 

(16.7) 
0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Pit 6 
1 

(16.7) 
1 

(16.7) 
0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (66.7) 

Spot 53 
7 

(13.2) 
8 

(15.1) 
1 (1.9) 4 (7.5) 

9 
(17.0) 

7 (13.2) 17 (32.1) 

Unclassi-
fied 

26 
8 

(30.8) 
3 

(11.5) 
0 (0) 1 (3.8) 2 (7.7) 0 (0.0) 12 (46.2) 

Phantom 46 
7 

(15.2) 
6 

(13.0) 
0 (0) 4 (8.7) 

17 
(37.0) 

12 (26.1) x 
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correlation (rsq = 0.78, rsq., adj.= 0.75) between accuracy and size. Figure 3-8 shows the 

number of correct classifications per bin, where each bin represents 10 km2, the (61.1%), 

but the total number of “chaos” found in LowRes (108) is higher than the number found 

in the RegMap images (95, with 68 of them considered microchaos). Domes, hybrids, 

pits, and spots do not change the number correctly identified, but as there are more 

features included, these percentages either decrease or remain the same.  

Relative accuracy is the percentage of classifications correct versus the total 

number of features within that size bin. What these graphs show is that the size of a 

feature contributes to how accurately that feature is classified, though a relatively large 

feature area is no guarantee of correctness. 

3.3.5 Chaos identification 

As chaos is the focus of many formation models that imply liquid water, heat, and 

material transport on Europa, special attention is paid to them. In the LowRes mapping 

dataset, chaos is correctly identified and classified as chaos 66 out of 108 times (61.1%) 

when all potential chaos features are considered. 24 potential chaos features were above 

the 100 km2 size cut-off and were removed from further analysis. The number of 

potential chaos features that were truly chaos in the RegMap images is 50 out of 84 

(59.5%). Chaos mapped in LowRes was most often misclassified as a hybrid (6 out of 84 

times, 7.1%) and as a spot (6 out of 84, 7.1%). Once, two hybrid features near each other 

were classified as a larger chaos feature in LowRes mapping. Chaos was never 

misclassified as a pit but was misclassified as a dome nine out of 84 times (10.7%). When 

it was misclassified as a dome, the “chaos” feature mapped corresponded to the dome’s 

shadow in all but one of the cases. Seven out of 84 times (8.3%) a potential chaos feature  
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Figure 3-8: Accuracy of LowRes classification as a function of size, shown as a 
line histogram. The bins represent 10 km2 in area, and are plotted at the left edge 
of the bin (e.g., the measurements for the 20–30 km2 bin are plotted on the 20 
km2 line). Accuracy is defined as when a feature mapped and classified in 
LowRes is mapped in the same place as another feature with the same 
classification. The black line represents the raw counts per bin (number of 
correct cross-classifications), and the red line represents the cumulative number 
of correct cross-classifications for all the bins. The blue line represents the 
percentage of correct cross-classifications per bin relative to the total number of 
cross-classifications per bin. The blue line follows the scale on the right y-axis. 
The trend is that as microfeature size increases, the number of correct 
classifications (the accuracy) also increases. 
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belonged to the “unclassified” group in the RegMaps. Six out of 84 times (7.1%), a 

feature called chaos in LowRes was revealed as a phantom feature in the RegMap. These 

phantoms were associated with ridges three times (50%) of the time, with a generally 

rough area on Europa’s surface once (16.7%). The other two times (33.3%) were both 

associated with low albedo areas of the plains, but where there were no obvious 

microfeatures. These numbers are provided in Table 3-4. 

3.3.6 Other microfeature types 

 Hybrids were correctly identified once out of six times (16.6%). Features mapped 

as hybrid features were truly chaos features three out of six times (50%), and twice a 

hybrid feature was mapped as a dome (33.3%). Hybrids mapped in LowRes were never 

truly an unclassified or a phantom feature. Spots were correctly classified as spots nine 

out of 53 times (17.0%). They were misclassified as chaos seven out of 53 times (13.2%), 

as hybrids once (1.9%), as domes eight times (15.1%), as pits four times (7.5%), and as 

an unclassified feature nine times (17.0%). Out of all microfeatures, spots had the highest 

chance of truly being a phantom feature in the RegMaps, as this occurred 17 out of 53 

times (32.1%).  

Out of the 11 domes in the LowRes microfeature dataset, only one (9.1%) of them 

was also classified as a dome in the RegMap images. One (9.1%) of these false domes 

was truly a chaos feature, one (9.1%) was truly a hybrid feature, two (18.2%) were 

mapped but unclassified, and 6 (54.6%) were phantom features. Two of these phantom 

features were revealed as a bright spot within a ridge that was obscured in the LowRes 

images. Similarly, though six features were called pits in LowRes, none were truly pits in 

the RegMap images. One (16.7%) was a dome, where the dark shadow of the dome was 
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interpreted as the dark area within a pit, one (16.7%) was a chaos, and the remaining four 

(66.7%) were all phantom areas in the RegMap. This, coupled with the knowledge that 

domes and pits both had a low find rate, suggests that information necessary to accurately 

map and identify pits and domes is obscured or absent in the LowRes images. These 

numbers are given in Table 3-4. 

3.3.7 Unclassified features 

 There was a total of 26 unclassified features in the LowRes dataset. Roughly half 

(14 out of 26, 53.8%) of these LowRes unclassified features were mapped features in the 

RegMap images. Eight of these (30.8%) were chaos, three (11.5%) were domes, none 

were hybrids, one (3.8%) was a pit, and two (7.7%) were spots in the RegMap dataset. 

The remaining 12 features that were unclassified in the LowRes dataset belonged to the 

phantom feature category, which is examined further in the next section. Examining the 

classifications from the RegMap dataset, a total of fifteen unclassified features were 

identified as potential features in LowRes imaging. Six of these (40%) were misclassified 

as a potential chaos feature, two (13.3%) were misclassified as potential domes, and the 

remaining seven (46.7%) were misclassified as potential spots. This information is 

provided in Table 3-4. 

3.3.8 Phantom features 

 The phantom features are those that were mapped as features in LowRes but had 

no corresponding microfeature in the RegMaps. A total of 51 of these are reported here 

out of 214 features mapped in LowRes (23.8%). This number initially suggests that 

roughly a quarter of features mapped in LowRes have a chance of being a non-feature in 

higher resolution images. Five out of the 51 features were above the 100 km2 maximum 
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size for microfeature classification, and the remaining 46 features (90.2%) are examined 

further to determine common reasons for mapping a featureless area as a feature in 

LowRes. A brief breakdown of these numbers is provided in Table 3-4. 

As stated previously when discussing the other microfeature types, seven of these 

phantom features (15.2%) were classified as chaos features in LowRes. Six were 

classified as domes (13.0%), none were classified as hybrids, four were classified as pits 

(8.7%), 17 were classified as spots (37.0%), and 12 of these features (26.1%) were left as 

unclassified in LowRes. Spots is therefore the category most likely to have these false 

positives, though the possibility is present in every feature group. This finding is 

consistent with the expectations prior to mapping, as the number of features called spots 

was known to be higher than the true number of spots mapped in the RegMap.  

 Often (16 out of 51 times, 31.4% for all phantom features; 12 out of 46, 26.1% for 

phantom microfeatures), a phantom feature was associated with a ridge on Europa, either 

the shadow of a single or a location where multiple ridges intersect. While all efforts 

were made to exclude ridges from being misclassified as microfeatures, in low-resolution 

images with inconsistent lighting, ridges are not always recognizable. This is especially 

true for the thinner ridges (total width less than 2 km) or where dark spots that could 

indicate a feature juts out perpendicularly to the ridge; this is shown in Figure 3-9. Four 

out of 46 times (8.7%) there was an anomalous dark spot in otherwise smooth terrain or 

there was a feature mapped in an area that was full of generally rough (though not fully 

chaotic) terrain. These dark areas were mistakenly classified as chaos or spots because of 

their low apparent albedo. Twice (4.3%), a bright spot within a ridge was mistaken for 

the bright side of a pit or a dome. The remaining 28 times a potential feature was mapped 
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Figure 3-9: Example of a false positive (ridge) in a LowRes image of Europa. Top: 
two potential features (within the boxes) mapped in LowRes imaging in the 
E15RegMap01 region (image 5126r). Bottom: the same areas in the RegMap 
images. The yellow box represents a true feature even in RegMap images, but the 
white box outlines a non-feature. This is an example of mistaking shadows from a 
ridge as an independent feature in LowRes mapping.  
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and turned out to be a featureless area of Europa are true errors. These were marked as 

phantom regions with no obvious morphology to reference in the RegMaps. These 

account for 60.9% of all of the phantom feature areas. An example of this is shown in 

Figure 3-10. 

3.4 Discussion  

Part of the issue for why there are so many competing ideas for chaos formation 

models is the lack of data. Efforts to map microchaos outside of the RegMap areas 

(Bunte, 2013; Leonard et al., 2017; Leonard et al., 2018) have been completed, but at the 

time of this writing there is no certain way to verify that the features called microchaos 

on these maps are truly microchaos. Lighting conditions and the subjective approaches 

between individual mapping datasets can also affect the identification of chaos, and 

microfeatures in general (Hoppa et al., 2001; Neish et al., 2012). This study helps to put 

constraints on the certainty of these classifications, identifies the limitations of such an 

approach, and provides suggestions for further work. The ultimate deliverable of this 

work will be a map of all chaos, micro- and otherwise, with a confidence level attached to  

all the features represented on the map. These robust observations will provide firm 

limitations that need to be explained by chaos and microfeature formation models, in turn 

advancing the state of knowledge of Europa’s geophysics, heat and material transport 

processes, and surface evolution.  

Chapter 2 of this dissertation presented information about features in the 

RegMaps, and this chapter presents the information in a new dataset mapped in low-

resolution images covering the same areas for comparison purposes. The numbers 

presented and discussed here represent the maximum average error rate for LowRes 
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Figure 3-10: Example of a false positive (phantom feature) in a LowRes image 
of Europa. Top: a potential chaos feature (within green box) mapped in LowRes 
imaging in the E15RegMap01 region (image 5113r). Bottom: the same area in 
the RegMap images. This is an example of mistakenly mapping an area in the 
LowRes images that has no corresponding morphology in the RegMap images. 
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mapping studies. E15RegMap01 was selected because it had the highest number of 

microfeatures in the RegMap mapping project, and thus the most opportunity to find 

multiple features in LowRes images. It also provided the most chances for mistakes, and 

the best chance of quantifying those mistakes, hence why these values represent what is 

probably a typical error rate for LowRes mapping of microfeatures on Europa’s surface. 

This approach is most successful in regions that have not been severely disrupted by large 

chaotic terrain and chaos features, linear geologic features such as bands and ridges, or 

areas of proposed tectonic activity, including subsumption (Kattenhorn and Prockter, 

2014). These areas are likely to have few microfeatures in general because of large-scale 

surface modifications, and as the presence of ridges is a significant source of error in 

mapping, are best avoided for maximal success in microfeature mapping. 

3.4.1 Mapping study 

 Out of the all the microfeatures initially mapped in the E15RegMap01 region, 

including those left unclassified initially, number 310. Out of these, 193 were not mapped 

in the LowRes data set. These missed features are curious, as there does not appear to be 

a clear size cut-off below which a majority of features are missed. If it was difficult to 

identify features below a certain diameter size, the histogram of missed features would 

show a plateau in the histogram up to that size, and above that the missed counts would 

start to decrease, signaling few missed features. This is not observed. This suggests that 

the five-pixel rule of thumb often used in mapping studies is not valid for Europa, so long 

as the mapped feature has an apparent albedo that is significantly different from the 

background. On Europa, it is possible to map down to as small as 2.5 km, though the 

accuracy of these classifications is likely very low. 
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Some feature types were more easily mapped. Chaos, hybrids, and spots were all 

identified at relatively high rates that range from 65.7% to 77.9%. Conversely, pits and 

domes were found at very low rates, 5.0% and 24.2%, respectively. This implies that 

chaos and chaos-related features are relatively easy to find, even in low-resolution 

images. Pits and domes, however, even when they are large, are difficult to map in low-

resolution images. When they are mapped, it is mostly by accident, as they are often 

confused as a chaos or a chaos-related feature because the shadow of the pit or dome is 

mapped instead and misclassified as a chaos, hybrid, or spot. 

 This segues into an important point: that not all dark features mapped in low-

resolution images are chaos or chaos-related features. Out of the 84 so-called microchaos 

features mapped in LowRes, 50 of them (59.5%) were verified as chaos in the RegMap 

dataset. Out of the remaining 34 false positives, roughly a third were either truly a hybrid 

feature or a spot in the RegMap images. The remaining 22 false positive features turned 

out to be either domes (9), unclassified (6), or phantom (7). Unclassified features are 

those that were mapped but not confidently assigned to a group even in the RegMap 

dataset, suggesting that there will be features present for which significantly higher 

resolution images are needed to resolve the presence and/or type of feature. The final 

class, the phantom features, is particularly interesting and deserves its own elaboration; 

this discussion is provided later in this section. 

17 chaos features that were mapped in the RegMap images were missed in the 

LowRes mapping. Two of them were larger than 100 km2 in area, so were not included in 

the RegMap microfeature dataset. The remaining 15 were then examined more closely to 

determine why they were missed. Two of these chaos features were associated with an 
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anomalously bright spot in the LowRes images; these bright spots corresponded to the 

illumination of a topographic high nearby, and the chaos feature’s shape and relatively 

low normalized albedo was lost. This is likely a result of the change in illumination 

angles between the RegMaps and the LowRes imaging. Two more chaos features were 

too close to ridges and did not appear as a separate feature in the LowRes images. Four of 

these chaos features were indistinguishable from the background terrain in the LowRes 

images. When examining these features more closely, these chaos features also had 

higher median and mean normalized reflectances, emphasizing the importance of a 

change in the albedo of a surface to identify a feature. The remaining nine chaos features 

should have been mapped and were simply omitted. One of these features was in an area 

covered by two different images. That chaos was clearly visible in one of these images 

and invisible in the other. Future mappers should utilize the simultaneous information 

from all images available, even if the area is already thought of as “covered” to minimize 

errors like this in the future.  

This is yet more information to show how important imaging angles are for 

identifying microchaos features in LowRes images. The feature that was missed in one 

image but visible in another is an interesting example. At first glance, the results seem to 

contradict the findings of Neish et al. (2012), as the feature was missed in the image with 

the higher incidence angle (5113r, inc. angle = 61.65°) and was found in an image with a 

much lower incidence angle (5139r, inc. angle = 30.29°). Importantly, these values only 

represent the average incidence angle across an image that spans thousands of square 

kilometers. A subsequent inspection of the incidence angles of specifically the parts of 

the LowRes images that cover the E15RegMap01 region show that the incidence angle is 
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consistently upwards of 50° in 5139r and below 30° in 5113r. This is the opposite of what 

the average incidence angle measurement would suggest, and can help explain why these 

chaos features were missed. To drive this point home, all except one of microchaos 

features that were omitted in the LowRes dataset were found in either 5100r or 5113r, 

both images that had a high incidence angle on average but a low incidence angle in the 

pieces of the images that covered parts of E15RegMap01. Future mapping efforts should 

pay careful attention to the lighting conditions of individual pixels and regions, and 

should restrict mapping to areas that meet particular criterion; a strong one to start with is 

to have incidence angles above 50°. This could also avail more images for mapping in 

future work. 

 The remaining microfeature types were found and identified correctly at varying 

rates. Both the rate for finding and correctly classifying domes (24.2% and 9.1%, 

respectively) are relatively low. These numbers together suggest that domes are difficult 

to identify in low-resolution images. Similarly, pits are also difficult to find and identify, 

with a find rate of only 5.0% and an identification accuracy of 0%. Because pits and 

domes are both small-scale topographic features, this suggests that low-resolution images 

are insufficient to pick up slight topographic variation, leading to a significant under-

reporting of domes and pits in LowRes microfeature maps. Indeed, even if a feature is 

found and identified as a dome or a pit in a LowRes image, it is very unlikely that this 

feature’s original classification will remain valid upon studying the feature in a higher 

resolution image.  

 Hybrids and spots are found at higher rates than domes and pits, but their 

identification rates are still relatively low. Hybrids were found at a rate of 65.7% but 
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accurately classified as hybrid features only once out of six times. Instead, hybrid 

features were incorrectly classified as chaos features or domes. All of the hybrid features 

that were missed in the LowRes mapping were characterized as Type II hybrid features, 

which appear as domes with cracks on their surfaces that are inconsistent with the 

surrounding terrain. While there is no significant difference between the normalized 

reflectances of Type I and Type II hybrid features, it underlines the conclusion that 

domes and dome-like features are generally hard to find in low-resolution images.  

Spots are the rarest feature type in the RegMap dataset, so even prior to analysis, 

it was known that the LowRes dataset overreported the number of spots. Spots were 

fairly easy to find in the LowRes images (find rate = 73.9%), but roughly half of the 

“spots” identified in LowRes were either unclassified or phantom features (45.3%). A 

feature called a spot in LowRes had a high chance, roughly one in three, of being a 

phantom feature in RegMap images. Additionally, at least one spot was misclassified into 

every potential microfeature group, though the most common aside from phantom or 

unclassified was dome (15.1%) and chaos (13.2%). In the cases when a spot was 

considered a dome or a pit, it was the shadow of the topographic feature that was mapped 

as a spot. The LowRes “spots” that were misclassified chaos in the RegMap images adds 

weight to an idea from Chapter 2: that some spots could be chaos features whose interior 

disruption is under the resolution of the image. This is true of “spots” mapped in LowRes 

and RegMap images, and might explain why there appear to be a lack of small chaos 

features (those with less than 15 km2; see Chapter 2 and Zamora et al. (2019) for more 

detail).  
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An argument can be made that chaos, spots, and hybrid features are inherently 

related due to their similar characteristics. If chaos-related features are considered 

approximate chaos features in RegMaps, then the chaos accuracy rate increases to 62 out 

of 84 times, or 73.8%. This is strong evidence that if a feature called chaos is mapped in 

LowRes, it has a roughly 3/4 chance of truly being chaos or a chaos-related feature. If 

chaos features of all sizes are considered instead of limiting it to only microchaos, then 

the accuracy rate for chaos and chaos-related features rises slightly to 81 out of 108 

(75%).  

A final important note is that the accuracy rate for microfeatures increases as size 

increases. This makes sense, as larger features should be easier to identify because it is 

possible to see more of it and details should be more apparent. There is also a size bias in 

microfeature type, as chaos and hybrid features tend to be significantly larger in size that 

pits, domes, and spots. Prior knowledge of this fact could lead to larger features being 

called chaos by default, unless it is clear that the feature fits better in another group. By 

example, in the LowRes dataset, every feature above 50 km2 was classified as either a 

chaos or hybrid, despite no knowledge of the size of a feature being available until all 

mapping was completed. Out of the 56 microfeatures above 50 km2, 26 features mapped 

in LowRes were classified incorrectly. Exactly half (13) of the time, a LowRes chaos or 

hybrid feature was mistaken for the other type. One of these “chaos” features was 

actually two individual hybrid features that are close together on Europa’s surface; this is 

the only time it happened in the entire LowRes mapping project. The remaining times a 

larger microfeature was misclassified, it was a chaos or hybrid feature being called either 

a dome (in which case the shadow of the dome was mapped as a potential feature), an 
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unclassified feature, or a phantom feature. Future work will identify any commonalities 

in these misclassified features and provide guidelines for future LowRes mapping efforts.  

3.4.2 Phantom features 

The phantom features are the most concerning errors in the LowRes dataset, as 

they represent false positives and would greatly skew estimates of the number and 

locations of microfeatures on Europa’s surface. A total of 51 of these features were 

mapped, and 46 were under the microfeature definition size cut-off. LowRes “spots” 

accounted for slightly more than a third of the phantom features, but features that were 

left unclassified in LowRes images accounted for the next largest fraction (17, or 26.1%). 

Following this, LowRes “chaos” features had the largest percentage (7, 15.2%). The 

LowRes microchaos and spots mistaken for phantom features is consistent with the high 

number of features reported in these categories in the LowRes dataset. These numbers 

suggest that as many as 37% of potential spots and roughly 15% of potential chaos 

features are truly non-features when viewed in superior resolution images. 

About one quarter of these phantom features were truly ridges or places on 

Europa where multiple ridges intersect. Ridges on Europa present challenges for mapping 

microfeatures in LowRes images; it is possible to completely miss a feature in a mapping 

project if the feature is too close to the ridge and the mapper fails to recognize it as an 

independent feature, or a ridge could itself appear invisible aside from intermittent, dark 

pixels. The way to minimize this is to avoid mapping near ridges in general, or at least 

have as solid an understanding of where these linear features could be. This is easier to 

accomplish in areas for which good imaging already exists, and while this could 
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eliminate the need to use LowRes images in the first place, it is at least worth considering 

for areas that lack these images. 

The other risk is that many of these phantom features are areas on Europa’s 

surface that have no corresponding microfeature. An example of this was shown in 

Figure 3-9, where a darker spot in a LowRes image turned out to be a slight albedo 

variation in the background plains of Europa’s surface. This category accounted for more 

than half of all phantom features. These features are primarily attributed to the difference 

in lighting conditions between the LowRes and RegMap images. At this time there are no 

obvious and quantifiable differences in the characteristics between true microfeatures and 

these non-features, but this could be an important area for future work. 

3.4.3 Error rates 

 This project sought to constrain omission, accuracy, and error rates on future 

mapping studies that utilize low-resolution images of Europa. In terms of omission, 

domes and especially pits are mostly missed in low-resolution images. This suggests that 

for pits and domes to be found in images, there needs to be a clear topographic change in 

the landscape, and this change is obscured in low-resolution images. Chaos, hybrids, and 

spots are relatively easy to find, but 25–35% of these features are still missed in low-

resolution mapping. This suggests that about a third of these microfeatures are missed in 

any mapping done in low-resolution. Some of these microfeatures were missed because 

their albedo was not significantly different in the low-resolution images, and thus did not 

stand out as an independent feature. The lighting conditions also contributed to some of 

the features, particularly chaos, going unnoticed in the low-resolution images. To 
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minimize this, mapping should be restricted as much as possible to areas in images where 

the incidence angles are above 50°. 

 In terms of accuracy, there is a moderate chance that if a feature is mapped as a 

chaos, it is truly a chaos, as chaos has a relatively high accuracy rate (59.5%). Even if a 

feature classified as chaos in low-resolution images is not chaos, it is most likely either a 

spot or a hybrid feature, which share similarities with chaos. The chance of a “chaos” 

feature truly being chaos or a chaos-related feature is 73.8%. 

Mapping other microfeature types is less successful. Hybrids were identified as 

hybrids only once, but as a chaos half the time, meaning that a hybrid was identified as a 

chaos-related feature in 66% of cases. Spots were recognized as a spot or a chaos-related 

feature in roughly 33% of cases, the lowest of all the chaos-related features. A potential 

reason for that is because spots are defined as smooth areas of apparent low albedo. 

While this definition does indeed capture spots, it also means that some shadows are 

being confused for spots, as they are also dark areas with no apparent disruption. It is 

difficult to tell the difference in low-resolution images because much of the topographic 

information that would define a dome or a pit is under the resolution limit of the image. 

“Spots” in low-resolution images can also be mistaken for phantoms in RegMap images. 

In all but one case, a dome was not both mapped and classified as a dome, again 

suggesting that domes are difficult not only to find, but to accurately identify. In no cases 

was a pit accurately identified. The shadow of the pit or dome was mapped as a chaos, 

hybrid, or spot because it was distinct from the background terrain, but these 

classifications were false, and contribute to the more moderate accuracy rate for chaos 

and chaos-related features.  
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In terms of false positives (phantom features), there are some in particular to 

focus on. From this work the estimates for false positive rates are either 23.8% (for all 

214 features) or 24.7% (for 186 microfeatures). Roughly a third of those features were 

revealed as ridges in higher resolution images, and the pieces that were mapped were the 

dark shadows of the ridges or an area where multiple smaller ridges intersected. While 

large ridges are visible even in low-resolution images, thin ridges are not always visible, 

contributing to this false positive rate. In areas with more ridges, this error rate is 

expected to be higher. Around 60% of these false positives are associated with areas on 

Europa’s surface with no obvious microfeature present. These areas present in low-

resolution images as grey smudges on the surface rather than distinct black spots. This 

could be a hint to future mapping studies that a feature might not be there, but albedo 

should not be the only reason to include or exclude a feature; some chaos features are not 

dark, after all. It depends on the goals of the project in question: is it better to find every 

potential feature, even if it means including more false positives, or to only include the 

features that are most likely to be a real feature? This is something to decide before 

mapping begins to ensure consistency within a dataset. 

3.5 Conclusion 

 Chaos features have been mapped in multiple studies across a majority of 

Europa’s surface, to varying success. Subsequent studies (Hoppa et al., 2001; Neish et al., 

2012) show that imaging angles have a significant effect on chaos identification, more so 

in some cases than the resolution of the images themselves. While chaos features have 

been studied intently, comparatively little attention has been paid to small chaos features, 

domes, hybrids, pits, or spots. This work sought to fill this knowledge gap and provide 
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constraints for future mapping studies. The results of these mapping studies will help 

refine models that attempt to explain how these microfeatures form and what that implies 

about heat and material transport on Europa and its surface evolution.  

 An independent dataset was created of the E15RegMap01 region mapping 

features in four low-resolution images. This dataset was then compared to the 

E15RegMap01 dataset (see Chapter 2). Chaos, spots, and hybrid features were relatively 

easy to find, while pits and domes were most often missed. Chaos was also fairly easy to 

recognize as chaos, and approximately 60% of potential chaos features were verified as 

true chaos in the RegMap dataset. If hybrids and spots are considered as chaos-related 

features, then the accuracy rate for chaos rises to almost 75%. Pits and domes were 

almost never recognized as pits or domes, and thus have very low accuracy rates. On top 

of low find rates for both of these features, it is fair to say that pits and domes are 

virtually unable to be confidently found in low-resolution images. One warning is that not 

all dark features in low-resolution images are chaos or chaos-related features. Some of 

these false positives were associated with ridges, some were associated with the shadows 

of topographic highs and lows, and some were anomalously dark areas in Europa’s plains 

regions that have no associated microfeature. This false positive rate could be as high as 

25%. 

 Future mapping studies should decide in advance whether to include all potential 

features or to only focus on the ones that are most likely to be true features. This will 

affect the error rates for which This project also emphasizes the finding from Neish et al. 

(2012) that chaos is most easily identified in images with high (> 50°) incidence angles. 

This includes restricted areas within low-resolution images that otherwise have 
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inappropriate average incidence angles. With this knowledge there are many more places 

where potential microfeatures could be mapped on Europa’s surface, thus dramatically 

increasing the amount of information available on microfeatures and providing solid 

constraints for modeling studies. This work will also allow for predictions to be made 

ahead of the Europa Clipper Flagship mission. Some of these predictions are addressed 

formally in the Conclusion of this document. 
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CHAPTER 4 

QUANTITATIVE CLASSIFICATION OF MICROFEATURES 

4.1 Introduction 

From the mapping work presented in Chapter 2, it is clear that two main obstacles 

exist that prevent the identification of microfeatures in areas of Europa’s surface that are 

not covered in RegMap mosaics: 1) the images that cover the area of Europa outside of 

RegMap areas are low-resolution, where microfeatures are difficult to find, let alone 

identify, and 2) variations always arise between qualitative datasets, creating uncertainty 

in classification, even in RegMap-resolution images. These problems are intertwined; 

quantitatively classifying features based on a series of parameters increases the accuracy 

on the identification of features in low-resolution (LowRes) images, and finding more 

features in LowRes images strengthens the classification metrics. It makes sense, 

therefore, to consider these questions simultaneously.  

From the mapping project, there already exists a validated dataset compiled from 

four independently collected datasets, and there are significant differences between the 

microfeature groups. These differences together could be advantageously used to 

quantitatively classify features not just in RegMaps, but LowRes images as well. The 

LowRes images mapping project (Chapter 3) showed that there are many instances where 

one microfeature type is mistaken for another, particularly chaos being mistaken for a 

non-feature such as a ridge. There could be morphometric similarities in these false 

positives that a multivariate statistical classification approach could better detect these 

differences than a human could. This is the motivation behind applying multivariate 

statistical analyses to mapped datasets on Europa. The focus of this chapter is to 
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determine how useful an approach of this kind can be by developing an appropriate 

methodology, determining how effective and accurate this approach is, and offering 

suggestions for future work. 

4.2 Statistical Classification Introduction 

The selected multivariate analysis is a hierarchical classification analysis called 

discriminant function analysis (DFA). DFA is a type of multivariate analysis that is used 

to quantitatively sort data points of unknown origin or morphology into one of two or 

more user-specified groups based on similarities of the individual data point to the 

characteristics of those groups (Tabachnick and Fidell, 2013). It is a standard hierarchical 

analysis in most statistical software; the package used here is IBM SPSS 25. So long as 

there are significant differences between the groups, a new data point can be sorted in and 

assigned a most probable group. DFA has been used in other disciplines before, including 

geology (e.g., Roser and Korsch, 1988), but this is the first time that this kind of 

quantitative classification approach has been used in planetary science. The main 

question answered by this analysis is: can microfeatures on Europa be sorted above and 

beyond simple chance using a set of quantified metrics in a classification approach?  

The first step in a DFA is to define the groups by populating them with the most 

robust features. The features mapped, classified, and defined in Chapter 2 provide the 

quantitative framework for these groups. A linear DFA then uses the characteristics of 

features within predetermined groups to test whether the discriminating variables that 

describe each feature can be linearly combined to separate the groups in a statistically 

significant way. These groups are mutually exclusive, meaning no one data point can 

belong to two different groups at the same time. Variables must be continuous and should 
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be as independent as possible, though the test is robust against variables with linear 

correlations less than 0.8 (Tabachnick and Fidell, 2013). Depending on the variables, the 

analysis may sort the data well or poorly, causing misclassification among grouped data 

and weak group assignments to unclassified data. Here, unclassified data refers to 

features that were placed into the unclassified category, while misclassification refers to 

data that were placed into a group originally and failed reassignment into the same group 

under the cross-validation test run by the DFA. In the dataset described in Chapter 2, 

mapped features that could not be confidently classified into one of the microfeature 

groups were designated as “unclassified.” These features were not included in the 

original analysis, as they could not be used to describe the quantitative characteristics of a 

microfeature group, and they are not included in the DFA here. 

 The DFA constructs orthogonal mathematical functions that include the 

potentially discriminating variables, with each variable assigned a coefficient based on 

the effect it has on the particular discriminating function. Discriminating functions are 

also known as roots, canonical values, principal components, and/or dimensions 

depending on the statistical context in which they are formed (Tabachnick and Fidell, 

2013). The number of functions produced is the lesser of either the number of 

discriminating variables (the predictors) or k-1, where k is the number of groups 

(Tabachnick and Fidell, 2013). The number of data points in the smallest group should be 

larger than the total number of predictors (Tabachnick and Fidell, 2013); otherwise, the 

results of the DFA become so overfitted that the functions are no longer generalizable to 

other datasets. The best functions result in well-separated groups. Functions are linearly 

independent from each other (orthogonal) and are linear functions, meaning no variable is 
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raised to a power greater than 1. The coefficient is equivalent to a weight in something 

like a weighted average or weighted probability calculation. Each discriminant function is 

designed to separate one group apart from the others in a statistically significant way 

(Tabachnick and Fidell, 2013). As adept as this approach is at examining relationships 

between groups in a multi-parameter space, the DFA is only capable of identifying linear 

trends in the data. Other tests such as logistic regression should be used to find non-linear 

patterns in the data; this can be the focus of future work. 

To identify the most discriminating functions based on the predictors, the DFA 

evaluates each function for the individual features in the data set. If at least two functions 

can be produced, results are plotted with the two functions with the highest eigenvalues 

on each axis. Function 1 has the highest eigenvalue from the covariance matrix, function 

2 has the second highest eigenvalue; this pattern continues down until all functions have 

been accounted for. The larger the eigenvalue of the function and the higher the canonical 

correlation, the better that function is at separating the groups. Even though only two 

functions can be displayed in a figure, mathematically there is the equivalent number of 

axes to the number of discriminant functions produced. To show the relationships 

between all the functions, multiple plots need to be produced. In the case where there is 

only one function calculated, no plot is produced, as the groups would be separated along 

a straight line, and values such as sensitivity and specificity are calculated instead. 

Sensitivity and specificity are discussed in more detail later. 

 The measure of the accuracy of these analyses is done automatically in SPSS via 

Leave-One-Out Cross-Validation (LOOCV). After the initial DFA is complete, each data 

point is removed from the dataset, and the DFA is run again, excluding that point. The 
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excluded point is then sorted into one of the predetermined groups, based on its function 

values and which probabilistic rule has been selected as part of the test: 

1. Equal probability: the data point has an initially equal chance of being sorted into 

any of the predetermined groups  

2. Weighted probability: the data point has a higher chance of being sorted into a 

group that has more data points in it 

When the groups are close to the same size, weighted probability and equal probability 

will have roughly the same LOOCV percentage. A data point is sorted into the 

microfeature type whose group centroid (the average of the discriminant scores for each 

of the discriminant functions) is the least distance away from the average of the data 

point’s discriminant scores in the k-dimensional space. Once the data point has been re-

sorted, the program notes whether or not the new group matches the group the data point 

originally belonged to. If the two classifications match, the cross-validation was 

successful. There are no special problems that arise from unequal sample sizes except in 

the case of a priori classification (Tabachnick and Fidell, 2013), so weighted probability 

is used in this analysis. 

In any statistical analysis, there is the possibility that a correct result is found by 

random chance. The number correct from random chance should be compared to the 

number that was sorted correctly overall to determine if the DFA did a better job of 

sorting than random chance could have done. LOOCV is one metric for this. An 

independent metric is to calculate the expected number sorted correctly and compare it to 

the actual overall sorted correctly. In the equal probability sorting case, the chance of 

sorting into any particular group is k-1. This means that for any group, the size of that 
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group multiplied by k-1 is the number of sorted cases that could be attributed to chance. 

The sum of these numbers is the expected number. In the weighted probability case, 

calculating the expected number of sorted cases that could be attributed to chance is a bit 

more involved. The probability of a point being sorted into a particular group is 

determined as !" = 	
%&
'

, where N is the total number of data points in the analysis and ni is 

the number of data points in that particular group. These probabilities are multiplied by 

the number of data points in their respective groups, and the numbers are summed to the 

total number of groups included in the analysis (represented by j). If the calculated 

number is a decimal value, the number is rounded up in every case. The equation for 

calculating the expected number of correctly sorted data points in a weighted probability 

case is therefore:  
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Other metrics of success are specificity and sensitivity, but they are values that are 

only calculated in two-group DFAs. In a two-group test, one group is considered the 

positive group, and the other, the negative. Specificity is the percentage of features sorted 

into the positive group that originally belonged to that group, or the true positives. The 

difference of this percentage from perfect is the probability of a Type I error, or the 

number of false positives that the test misclassified. Using Table 4-1, specificity is 

calculated as 100*(a/(a+c)). Sensitivity is the percentage of features sorted into the 

negative group that originally belonged to that group, or the true negatives. The 

difference of this percentage from perfect is the probability of a Type II error, or the 
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number of false negatives that the test misclassified. Using Table 4-1, sensitivity is 

calculated as 100*(d/(b+d)). 

These numbers illustrate how likely a certain feature truly is what the test says it 

is, thus putting a measure of statistical confidence to the classifications. Depending on the 

goals of the analysis, the level of specificity and sensitivity necessary may change. A test 

with a high sensitivity means that many things are being classified into the positive 

group, but false positives are more likely as a result. The flip side of this is that if a high 

sensitivity test indicates that a data point belongs to the negative group, it is very likely 

that that data point is a true negative. Simply put, a high sensitivity test will also have a 

low Type II error rate. The same logic can be applied to the specificity measurements, 

where there will be more false negatives and a higher Type I error. This case would yield 

the conservative estimate for feature classification, as the ones that are classified as 

positive have a very high probability of being a true positive.  

Finally, there is the overall measure of accuracy, which is simply the number of 

correctly classified data points divided by the total number of data points, n. Using Table 

4-1, this value is calculated as 100*((a+d)/N), where N is the total number of features 

included in the analysis. This metric differs from LOOCV because it does not remove a 

point and reclassify it using the reassessed discriminant functions; rather, it directly 

calculates the classification success with all points included. 

4.3 RegMap Dataset 

 The dataset used here is the same one that was described in Chapter 2. Univariate 

histograms of the area, perimeter, eccentricity, and normalized reflectance for each of the 

microfeature groups were produced to identify any outliers and to examine the 
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distribution of the histograms for significant deviations from a normal (Gaussian) 

distribution (Tabachnick and Fidell, 2013). Neither outliers nor non-normality were 

discovered in the microfeatures group, though when all features of all sizes were 

considered, the area and perimeter histograms were very right-skewed (large outliers at 

large sizes). This is another reason why only microfeatures should be considered in DFA 

analyses, especially if raw size is used as a metric. Robustness against variations in 

normality is highest when the number of data points in the smallest group is at least 20 

and when there are five or fewer predictors (Tabachnick and Fidell, 2013). Spots is the 

group that fails this parameter in some cases, hence they are excluded in analyses where 

spots are fewer than 20 in number. For more details on this dataset, please refer back to 

Chapter 2. 

4.4 Methods 

 Multiple DFAs were run in with a variety of different parameters. Only those 

features with areas under 100 km2 were studied, following the definition of a 

microfeature. Area, perimeter, diameter, three ratios, irregularity, and eccentricity are 

collectively called the morphometric variables, as they are related to the size and shapes 

of the features. The mean, median, standard deviation, and range of a feature’s 

normalized reflectance are collectively called the “darkness” variables. Radius was not 

included as a variable because it fails the statistical tolerance test, as is not linearly 

independent from all other variables (it is half of the diameter), and thus does not provide 

any new information that cannot be fully explained by another variable. Including it 

would violate the assumption of absence of multicollinearity in the DFA. 
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The three ratios are unitless ratios designed to quantify the shape of each feature 

in a slightly different way. Ratio 1 is calculated by the square root of the area divided by 

the perimeter, and relates the enclosed area to the perimeter of a feature. Ratio 2 is the 

length of a feature as determined by the Minimum Bounding Geometry (MBG) tool in 

ArcGIS divided by the perimeter of the feature, and relates the maximum lateral extent of 

a feature to its perimeter. Ratio 3 is calculated by the area of a feature divided by the 

maximum length and maximum width of a feature as determined by the MBG tool; 

effectively, it estimates the percentage of area that the feature covers within the rectangle 

made up of its maximum extent in two directions. For completeness and to refresh the 

reader’s memory, the parameters irregularity and eccentricity are also described here. 

Irregularity is calculated by dividing the perimeter by the circumference of the circle with 

a diameter equal to the equal area diameter, which in itself is calculated from the area of 

the feature. The eccentricity, more accurately called the aspect ratio of a feature, is the 

maximum width divided by the maximum length of rectangle that encloses the feature, as 

determined by the MBG tool. The formulae for these metrics are given in Table 4-2. 

 The variables first included in all analyses were spherical area, spherical 

perimeter, equal area diameter, Ratio 1, Ratio 2, Ratio 3, irregularity, eccentricity (i.e., 

the aspect ratio), mean normalized reflectance, median normalized reflectance, standard 

deviation of normalized reflectance, and the total range of normalized reflectance. All of 

these variables were included in every analysis initially, and from each analysis a base 

LOOCV percentage was determined for the group combination. After the base LOOCV 

percentage was calculated, the non-significant and highly correlated variables were 

removed. The non-significant variables were determined within SPSS as part of a  
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Table 4-2: The formulae for the morphometric variables describing features in the      
DFA.  

Metric Formula 

Ratio 1 

 
√<2*=

>*2?0*,*2 

 

Ratio 2 

 
@=)?0/0	A*.B,ℎ

>*2?0*,*2  

 

Ratio 3 

 
<2*=

@=)?0/0	A*.B,ℎ ∗ @=)?0/0	D?-,ℎ 

 

Irregularity 

 
>*2?0*,*2

E ∗ (F/=G	H?=0*,*2 
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univariate analysis of variance (ANOVA) using a simple F-test. Any sample of any size 

will have some amount of variation within a particular metric. The F-test is a basic 

statistical test that tests if the variation observed is above and beyond the amount of 

variation expected in any randomly selected sample. If the variance observed is more 

than could be expected from a random sample, then that variable is interpreted to sort 

between the microfeature groups at a statistically significant level. The chosen alpha (I) 

value is 0.05, so any variable with a calculated significance level ≥ 0.05 was removed 

because it did not significantly contribute to the separation between the groups. 

The significant variables were reduced again to remove any that had a moderate 

correlation (over 0.4) with another. This value is conservative, as the DFA would have 

performed with variables that had correlations up to 0.8, and was chosen because it 

provides the most-conservative LOOCV with the fewest variables. In general, one 

variable was chosen to represent a feature’s size, one was chosen to represent the 

normalized reflectance measurement, and one was chosen to represent its shape or 

irregularity. One special case of variable selection is that of mean and median of 

normalized reflectance. In most cases, mean and median are highly correlated (≥0.9), and 

thus only one was included. Median was preferred over mean because it is resistant to 

any outliers that may exist in the data, another conservative decision. Performing this 

down-selection allowed for maximum separation between the groups with the fewest 

number of variables. If this method is to be expanded to other areas, especially those 

where it is not possible to get accurate measurements for all the metrics, it is 
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advantageous to require the fewest number of variables that will still yield useful 

information.  

 Two-group analyses were performed first for each region individually. This 

means that every two-group combination for chaos, domes, hybrids, pits, and spots was 

tested, and for each test, LOOCV, overall success, sensitivity, and specificity were 

recorded. In all cases except E15RegMap01, spots were excluded from the two-group 

analyses because their sample size was too small for the DFA to be run. Each region was 

initially analyzed separately. Weighted probability was used in every analysis as it is a 

better reflection of the observations taken on Europa’s surface than the equal probability 

would imply. First all two group combinations were run, excepting spots in all but 

E15RegMap01, as there were too few of them to run a DFA. Once the two-group tests 

were run, one three group test was run. These analyses included the larger supergroups of 

chaos/spots and pits/domes as the first two groups and hybrids as the third group. Next, 

either a four or five group test was run for each region individually. In the five group 

cases, only LOOCV and overall success were calculated, as specificity and sensitivity 

cannot be calculated in DFAs with more than two groups. Again, spots were excluded in 

most cases as there were too few of them to run a DFA with spots as a distinct group. 

Once all the individual regions were analyzed, multiple grand DFAs were run by 

combining the data from all four RegMaps into large, comprehensive groups. Following 

the pattern from the RegMap analyses, first two group tests were run, followed by a three 

group test, and finally a five group DFA. The canonical discriminant values for each 

coefficient in each test, the functions’ eigenvalues and canonical correlations, specificity 

and sensitivity (when calculated), overall accuracy, expected accuracy, and LOOCV (also 
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called cross-validation success rate) are given for all these analyses in Tables 4-3 to 4-7 

for the Grand DFA. The results of the other tests are included in Appendix E.  

4.5 Results 

4.5.1 Two group tests, Grand DFA 

 Two group tests were run for every combination of microfeature group to get the 

two-group Grand DFA results. In every case, the quantitative sorting was able to sort 

between the groups better than simple random chance, though sometimes the difference 

between the expected percentage correct and the overall accuracy was not very large. In 

the cases where the group sizes were roughly equal, the chance of a single data point 

being sorted into either group during LOOCV was roughly 50%. In the cases where 

group sizes were greatly different, the probability of a data point being sorted into either 

group during LOOCV made it far more likely that the larger group would absorb more 

data points. Under the weighted probability sorting rules, it makes sense that more 

features would be sorted correctly by chance if the group sizes were exceptionally 

different. This is seen in cases where spots are one of the groups. 

Under LOOCV, the groups that are well-sorted under LOOCV (above 80.0% 

correct) are chaos vs. domes, chaos vs. spots, hybrids vs. spots, and pits vs. spots. In the 

case of chaos vs. another microfeature type, the larger diameter of a chaos feature was the 

main driver of the separation in the eigenfunction; that is, it had the largest coefficient in 

the linear discriminant function. This was not true in the chaos vs. pits case, where it was 

the median normalized reflectance that drove the separation. For the other microfeature 

combinations, the DFA was able to separate the groups moderately well (between 60 and 

80%). The DFA struggled the most with separating pits and domes, as this combination 
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Table 4-7: Group classifications for the microfeatures using the Grand DFA framework, 
all microfeatures from all regions included. Variables are feature area, ratio 3, and 
median normalized reflectance. These only include features that were already classified 
in the RegMap images and reflects what the computer thought these features were. Green 
highlighted boxes are those that were classified correctly. 
 

Original 
Group 

Membership 

Predicted Group Membership 

Chaos Domes Hybrids Pits Spots Total 

Chaos 174 
(72.8%) 0 0 63 

(26.4%) 2 (0.8%) 
239 

Domes 16 
(13.8%) 0 0 99 

(85.3%) 1 (0.9%) 
116 

Hybrids 52 
(57.8%) 0 2 (2.2%) 36 

(40.0%) 0 
90 

Pits 36 
(16.6%) 0 0 176 

(81.1%) 5 (2.3%) 
217 

Spots 7 
(24.1%) 0 1 (3.4%) 18 

(62.1%) 
3 

(10.3%) 

29 
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had the lowest eigenvalue and canonical correlation out of all combinations. Moreover, 

none of the means of the variables were significantly different between domes and pits, 

which underlines how difficult it was to separate these groups. In the end, only diameter 

was included as a discriminating variable, but it was insufficient information to yield 

strong separation between pits and domes.  

 The trend seen in the eigenvalues and canonical correlations is mirrored in the 

values for specificity and sensitivity. In the cases where LOOCV was only moderately 

successful, either the sensitivity or the specificity was very high while the other remained 

relatively low (under 50%). In the chaos vs. spots case, for example, the specificity was 

very high, while the sensitivity was low (33.3%). This indicates that many of the chaos 

features are mistaken for chaos features, leading to more false positives (Type I error) in 

this case. This is especially apparent in the case of domes vs. pits, where the sensitivity is 

100.0% but the specificity is only 4.2%. A key observation is that there are 101 more data 

points in the pits group than in the domes group, which is partially responsible for the 

high sensitivity value (large number of false negatives, Type II error), as there are 

preferentially more data points being sorted into the pits group rather than the domes 

group. This is true of the chaos vs. hybrids, spots vs. chaos and spots vs. pits cases as 

well, as there are significantly more features in the larger group than in the smaller group, 

but even in those cases there are slightly more equal values for sensitivity and specificity.  

 Initially it seems like the DFA struggles most to separate between chaos, hybrids, 

and spots, and between pits and domes. To test the test’s effective at sorting between 

these two larger groups, a special two-group DFA was run between Chaos/Hybrids/Spots 
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and Domes/Pits. This analysis yielded moderate values for the eigenvalue and the 

canonical correlation, and high values for both specificity and sensitivity. It also had a 

higher-than-expected accuracy rate, where 75.7% of the features were correctly sorted 

against an expected correct rate of 50.1%. Thus, the DFA is able to sort between the 

supergroups of Chaos/Hybrids/Spots and Domes/Pits with roughly 75% confidence. 

4.5.2 Three group test, Grand DFA 

 The three group test was made up of chaos/spots, pits/domes, and hybrids. Three 

is the minimum number of groups to develop a plot, as it will reveal two separate 

eigenfunctions. The more dominant function (F1) has an eigenvalue of 0.478 and a 

canonical correlation of 0.569, and explains 98.4% of the variance seen in the data. The 

first function was most strongly dominated by the diameter of the groups, followed by the 

median normalized reflectance measurement, and lastly by the area:perimeter ratio (Ratio 

1). The second function (F2) had an eigenvalue of only 0.008 and a canonical correlation 

of 0.089. Nevertheless, it explains the remaining 1.6% of variance. The first two 

functions combined were significant at the a = 0.05 level [!"(6) = 278.133, p < 0.001]. 

The second function independently is not significant at the a = 0.05 [!"(2) = 5.489, p = 

0.064], but is just beyond statistical significance. For a higher a value, the function could 

be interpreted as significant. 

 Figure 4-1 shows the plot for the three group DFA, and reveals that the 

chaos/spots group (purple circles) distinctly separates from the domes/pits group (red 

diamonds), though not completely. The hybrids group (blue triangles) almost equally 

straddle both groups. The LOOCV success rate of this test was 64.7%, and overall, 

66.0% of the features were sorted correctly, against the expected correct sorting rate of  
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Figure 4-1: Three group Grand DFA plot. This plot combines all the 
microfeatures mapped in all four RegMap areas and evaluates them for 
differences. The three groups were selected based on the results of the two-
group tests (Tables 4-3 and 4-4), and are: chaos/spots, hybrids, and domes/pits. 
The numerical results are given in Table 4-5. 
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39.9%. This test was able to correctly sort chaos/spots 184/268 times (67.9%) of the time, 

and was able to sort pits/domes correctly 268/333 times (80.4%). Hybrids were never 

correctly sorted. The reasons for this could be that the test was biased towards sorting 

into the two significantly larger supergroups of chaos/spots and pits/domes, but with a 

sample size of 90, hybrids were a sufficient group size to perform the DFA in the first 

place with them as a separate group. More hybrids were sorted into the chaos/spots group 

(54) than into the pits/domes group (36). 

4.5.3 Five group test, Grand DFA 

 In the five group test, all microfeature types were included in the analysis as 

separate groups, meaning there was a total of 691 classified microfeatures included in the 

analysis. Such a relatively large sample size is ideal for yielding fairly robust results. As 

one cautionary word, the group size of spots (29) was the smallest so the results for that 

group are therefore the most uncertain.  

 The first eigenfunction (F1) was dominated by the size measurement of the 

feature, which in this case was the area rather than the diameter. There was no statistical 

reason for choosing area over diameter aside from the increased success rate of the 

LOOCV using area instead of diameter. F1 had an eigenvalue of 0.546 and a canonical 

correlation of 0.594, and explained 86.0% of the total variance in the data. The second 

function (F2) was dominated by the median normalized reflectance, and had an 

eigenvalue of 0.078, had a canonical correlation of 0.269, and explained 12.3% of the 

total variance in the data. The third eigenfunction was dominated by the shape ratio, 

Ratio 3, and had an eigenvalue of 0.011, had a canonical correlation of 0.102, and 

explained the remaining 1.7% of total variance in the data. All three functions together 
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Figure 4-2: Five group Grand DFA plot. This plot combines all the 
microfeatures mapped in all four RegMap areas and evaluates them for 
differences. Each microfeature type is considered a separate group. The 
numerical results are given in Tables 4-6 and 4-7. 
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are statistically significant at the a = 0.05 level [!"(12) = 359.078, p < 0.001]. Functions 

2 and 3 are also statistically significant at the a = 0.05 level [!"(6) = 59.014, p < 0.001], 

and Function 3 on its own is also significant at the a = 0.05 level [!"(2) = 7.209, p = 

0.027].  

The plot (Figure 4-2) for the five group DFA shows large amounts of overlap 

between the groups, though the same pattern of chaos separating out from pits/domes is 

also present. In this case, the spots appear to be more closely associated with the 

pits/domes group along the x axis (F1: feature area-dominated function), but they sort out 

towards the lower end of the y axis (F2: normalized reflectance dominated function). The 

LOOCV success rate of this test was 50.4%, and overall 51.4% of the features were 

sorted correctly, against the expected correct sorting rate of 26.4%. This classification 

was able to correctly sort chaos 174/239 times (72.8%), correctly sort hybrids 2/90 times 

(2.2%), correctly sort pits 175/217 times (81.0%), and correctly sort spots 3/29 times 

(10.3%). Domes were never sorted correctly in this analysis using these variables, despite 

the adequate group size. As was seen in the three group case, hybrids were split between 

the chaos and pits group, which are the two largest groups and therefore had the highest 

weighted probabilities. More hybrid features sorted into the chaos group (57.8%) than 

into the pits group (40.0%). The tabular write up for these overall classifications is given 

in Table 4-7. 

4.6 Discussion 

4.6.1 Summary of Results 

While these features may look different to a human in RegMap images, teaching a 

computer to recognize these differences is a separate task. Nevertheless, all these 
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numbers point to a simple conclusion: that a quantitative, computer-driven classification 

system for microfeatures on Europa is capable of sorting between microfeature types. 

The effectiveness of these classifications varies based on which groups are included and 

which discriminant variables are used, but this classification system consistently 

performs at a rate that is better-than-expected from simple random guessing. This is only 

the first pass of classification analysis on a planetary body such as Europa, but the results 

are already impressive. 

 At the beginning, all variables were considered as potentially discriminating and 

were included in the initial classification. This resulted in a base LOOCV percentage. 

Subsequent analyses only included those which revealed a significant difference between 

the means of the groups for that variable (the ANOVA univariate analysis) and those that 

were not highly correlated to avoid any unseen errors as a result of multicollinearity. This 

resulted in a second LOOCV percentage. In most of the cases studied in the Grand DFAs, 

this new LOOCV percentage was lower than the base LOOCV. On the surface, this 

means the classification analysis is less effective at sorting the features in the case where 

only some variables are considered rather than all of them. In these cases, all it means is 

that the inclusion of additional variables could account for and describe more of the 

variation seen within the dataset. Sometimes this inherent random variation is correlated 

positively with excluded variables, which explains why excluding these variables 

decreases the LOOCV. To tailor a single model to describe a single population perfectly 

is overfitting. The goal of this work is to generalize to new populations, so overfitting a 

model based on a sample population would be antithetical to this work’s purpose. While 

it is a good idea to have multiple variables at one’s use, the most generalizable model is 
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the one with the fewest variables, thus requiring the least amount of information to still 

be effective at classification.  

Consistently, a measure of the size of a feature, a measure of the normalized 

reflectance (a variable related to albedo), and a measure of the shape of the features is 

sufficient to create a significant degree of separation between the groups, though in some 

cases only one or two of these categories had a statistically significant variable and was 

used in the subsequent classification test. Overall, the classification analysis is best at 

sorting between chaos/spots/hybrids and pits/domes, but is less successful at sorting 

within those groups. This is a result that is consistent in the Grand DFA tests and in the 

DFAs run for each RegMap region (see Appendix E for more detail). In the test where 

chaos, spots, and hybrids were included in the same group and pits and domes in the 

second, the specificity and sensitivity values were both roughly equal and high (75.1% 

and 73.8%, respectively), and the LOOCV was also high at 74.2%. The accuracy is 

higher than could be expected from random chance. All these numbers together suggest 

that there are significant and important differences between these two supergroups that 

could be investigated further within the realm of machine learning and statistical 

classification analyses. 

The groups where the DFA was least effective at sorting was between domes and 

pits. These groups are effectively identical across every variable, with non-significant 

ANOVA results for every potential discriminating variable. One analysis was done with 

one variable to have an idea of the results of a scenario with too-similar groups. The 

overall accuracy was above what could have been expected from random chance (66.7% 

vs. 54.7%, respectively), but this vastly different values between sensitivity and 
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specificity indicate a high chance (95.8%) of incorrectly assigning domes to the pits 

category. In this case, there are many falsely classified pits (false negatives). When a 

human mapper is identifying a pit or a dome, it is the topographical data (e.g., the 

position of the shadow) that informs whether or not a feature is a pit or a dome. This 

information is not easily attainable from simple mapping efforts that do not include 

photometry or some kind of altimetry measurement. In the case where this information is 

available, the computer should easily be able to sort these features, as the height or depth 

measurements would be significantly different between the two groups (negative or 

positive). In the absence of topography data, a human is still the best classifier. 

Other cases with large differences between the sensitivity and specificity values 

are those where the two groups are not sufficiently different enough in one of the 

discriminating variables. For example, the chaos vs. spots has a high LOOCV percentage 

(90.0%), but a large difference between the specificity and sensitivity values (97.5% and 

33.3%, respectively). The disparity could partially be attributed to the difference in group 

sizes, as that is what drives the weighted probability measurements and prior probabilities 

for group classification. It is not clear whether the difference in group size is, in itself, a 

significant result of a preferential formation process on Europa, or if it is a result of 

insufficient imaging of a majority of its surface, leading to an observationally-biased 

result that chaos is far more common on Europa. Regardless of the underlying reason, the 

result within the DFA is that some spots are incorrectly sorted into the chaos group, 

despite the fact that chaos is significantly larger than spots. The addition of median 

normalized reflectance, where chaos and spots differ less, could be confusing the 

analysis. To test this, a final DFA was run with only diameter and ratio 1 included as 



  164 

discriminating variables. In this case, the LOOCV rose to 91.0%, the specificity rose to 

99.2%, and the sensitivity dropped to 27.6%. All this shows is that excluding the 

normalized reflectance information did not serve to make the analysis significantly more 

accurate. It was better at finding chaos, perhaps, but at the cost of having more false 

positives. Depending on the purpose of the study, this result could be seen as an 

advantage (in the case where every potential chaos feature should be identified) or a 

disadvantage (if only the most assured chaos features should be identified).  

4.6.2 Using unclassified LowRes data in a DFA 

 The ultimate purpose of this project is to be able to confidently classify mapped 

but unclassified features. Out of the 214 features that were mapped in the LowRes 

dataset, 111 of them were classified in both the LowRes and E15RegMap01 datasets, 

allowing for a direct comparison between human and computer classification according 

to the methodology discussed in this chapter. The 111 microfeatures were made up of 62 

chaos features, 21 domes, nine hybrids, four pits, and 15 spots. No features that were 

unclassified or unmapped in the RegMap dataset were included. Overall, 61 out of 111 of 

the LowRes feature classifications (55.0%) matched their RegMap classifications. 50 out 

of 62 chaos features (80.6%) were accurately classified, along with one dome (4.8%), one 

hybrid (11.1%), nine spots (60%), but no pits. The average accuracy percentage within 

the microfeature groups is 31.3%. This number differs from the overall percentage 

correct because it examines how well a human does at classifying a data point to on 

particular group rather than how often the classifications were correct overall. Both 

numbers should be treated as important because they each address a slightly different 

aspect of the analysis, providing further constraints on the analysis. 
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The LowRes data was included in the DFA along with the microfeatures from all 

RegMaps (the Grand DFA dataset) as unclassified data (e.g., no prior group assignation). 

The LowRes data accounted for 13.8% of the data included in the total analysis (total n = 

802). All data from all regions and all microfeature groups was included to set up the 

statistical framework for this analysis. The discriminating variables used for this analysis 

are the same three that were used in the initial Grand DFA to allow for direct comparison: 

a feature’s area, the median normalized reflectance, and ratio 3. The combined group 

DFA plot for this analysis is shown in Figure 4-3; the black stars represent the LowRes 

data. A breakdown of these classifications by type and comparison to human-determined 

classification is provided in Table 16. 

The LowRes data tend to associate more closely with the chaos and hybrid 

features than with the pits and domes, but there are a significant number that are located 

in the overlap area that includes features from all microfeature groups. Overall, the 

LowRes features sorted through the Grand DFA framework were all sorted into either the 

chaos group (64.9%) or into the pits group (35.1%). This is partially because the chaos 

and pits groups are the largest groups, and therefore pull the largest weighted 

probabilities of all the groups, but these groups are close to equal in size, and therefore 

have similar weighted probabilities. For so many features to be preferentially sorted into 

the chaos class in spite of this points again to significant and recognizable differences 

between the groups. 

Assuming that the classification made in the RegMaps is perfectly correct, then 

overall, 52 out of 111 (46.8%) LowRes features were sorted correctly using only the 

DFA. This test was able to accurately classify 48 out of 62 chaos features (77.4%) and all  
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Figure 4-3: Five group Grand DFA plot with LowRes microfeatures 
included as unclassified data. All RegMap features made up the 
classification framework. 
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of the pits, but did not classify any of the features in any other microfeature group 

correctly. This averages to be a 35.5% correct classification rate across all microfeature 

groups, but is a bimodal distribution with values at the extreme ends of the distribution. 

As has been noted previously, to the computer, chaos, spots, and hybrids are virtually 

identical, as is the case for pits and domes. When this framework is considered and only 

two groups are identified in the DFA, then the accuracy of the analysis increases to and 

overall value of 69.4%, while the accuracy of correctly attributing a LowRes feature to 

the chaos/spots/hybrids group is 72.1%, and the accuracy of correctly attributing a 

LowRes feature to the pits/domes group is 60.0%.  

 Generally in statistics it is ideal to have the largest sample possible, as that would 

reduce the expected standard error and most instances of non-normality (via the central 

limit theorem). In this case, however, because all the LowRes data points came from a 

particular region rather than a combination of the four RegMaps, the accuracy of the 

classification using the DFA may change if only features from that RegMap were used to 

create the classification framework. In this case, that means only the data from 

E15RegMap01. One such analysis was run, again including the three variables used in 

the original five group Grand DFA: feature area, median normalized reflectance, and 

ratio 3. Because this analysis was done with a different dataset, the canonical values (the 

coefficients of the functions) are slightly different here from what they were in the Grand 

DFA. 

 The combined plot (Figure 4-4) shows the same pattern of chaos and hybrids 

separating out distinctly from pits and domes, with spots clustering near the lower end of 

the y axis. Again, there are large areas of overlap. The LowRes data (black stars) are 
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Figure 4-4: Five group Grand DFA plot with LowRes microfeatures 
included as unclassified data. Only E15RegMap01 features made up the 
classification framework here. 
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 spread out across all microfeature groups, as they were with the overall microfeature 

dataset used for the Grand DFAs. Again, the LowRes features tend to more closely 

associate with the chaos and hybrids group over the pits and domes group (65.8% to 

34.2%, respectively). These values are almost identical to the values acquired from the 

Grand DFA with LowRes data included.  

 The overall accuracy of the DFA with only E15RegMap01 data is 44.1%, with 49 

out of 111 features classified correctly using the quantitative DFA. This value is lower 

than the overall accuracy reported for that of the Grand DFA; however, the E15RegMap 

dataset was able to correctly attribute hybrids and spots to their groups, something the 

Grand DFA framework failed to do. This DFA was able to attribute two hybrid features 

(22.2%) and three spots (20.0%) to their correct groups, leading to an average of 36.7% 

correct classification rate across all microfeature groups.  

This analysis could have been actually been helped by the smaller numbers. In an 

analysis with large numbers of data points, the groups may show a greater degree of 

variation that translates to more overlap between the groups. The microfeatures of a 

particular type in a particular region may show more similarities with themselves, 

similarities that are diluted when combined with the same microfeature types from other 

regions on Europa. The accuracy numbers, however, do not support this overall, as they 

are not significantly different from the values found within the Grand DFA. When 

examining the efficacy of how well the more regional DFA separates between the 

chaos/spots/hybrids and pits/domes supergroup, the numbers are actually either identical 

or slightly lower than they were for the Grand DFA case. Overall, 76 out of 111 features 

(68.5%) were accurately attributed to their correct supergroups, with 62 out of 86 
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(72.1%) classified into the chaos/spots/hybrids supergroup and 14 out of 25 (56.0%) 

classified into the pits/domes group.  

In the absence of significant changes to the accuracy rates of the classification, it 

is recommended that the larger datasets are used to classify features whenever possible to 

account for the most variation seen in between groups and to minimize the error 

estimates. What these DFA comparisons show is that, as of now, a human and the 

computer are roughly equal in their abilities to sort features mapped in low-resolution 

images. Depending on which number is given more weight (overall percentage correct or 

average percentage correct across groups), a human or a computer could be viewed as 

more correct. There is much promise in the heightened accuracy when considering only 

two supergroups, as those results yielded the highest accuracy percentages across all tests 

done including the LowRes dataset. The use of a statistical test that supplies a binary 

output (chaos/spots/hybrids vs. pits/domes) and puts constraints on the likelihood of that 

value being correct would be ideal in this scenario, given the available datasets and the 

relative simplicity of such an approach. This does assume, however, that chaos, spots, 

and hybrids are inherently related to each other, but given their similar morphometric 

characteristics as verified by the multiple two group DFAs and their likelihood to be 

confused for each other in low-resolution images, this is not such a stretch to consider. 

An example of a type of analysis that could be conducted in the future to explore this 

potential further would be a logistic regression test, but this approach is outside the scope 

of this work at present. 

This work could form the basis for future, more advanced applications for 

quantitative classification, including but not limited to logistic regression and machine 
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learning to classify obscured features on the surfaces of planetary bodies. The overall 

goal is to use the dataset described in Chapter 2 to expand mapping to other low-

resolution images across Europa’s surface to search for and classify microfeatures. 

Between the constraints presented and described in Chapter 3 (LowRes mapping dataset) 

and those from here, these microfeatures will be able to be accurately attributed to at least 

a supergroup with upwards of 70% probability of correctness (using the values of 

LOOCV, specificity, sensitivity, and accuracy for the chaos/spots/hybrids vs. pits/domes 

cases). This represents a large increase in the amount of usable data from the low-

resolution Galileo images, especially in terms of microfeature spatial locations. The 

distribution of microfeatures over Europa’s surface could directly point to one of the 

microfeature formation models, as the distribution of microfeatures would vary 

depending on which process is most dominant. For example, if the microfeatures formed 

from diapirism, then there should be more of them in areas where diapirism should be 

most active. A more random distribution, however, could point to the sills model, which 

may not have a geographical preference. In the near future, this work could be used to 

classify the dataset already in existence of proposed microfeatures on Europa’s surface 

(Leonard et al., 2018; Leonard et al., 2019) and provide solid predictions for the Europa 

Clipper mission and constraints for formation models. 

4.8 Conclusion 

 This work sought to determine if microfeatures on Europa can be sorted above 

and beyond simple chance using a set of quantified metrics in a classification approach. 

The answer is an unqualified yes. Except in cases where the groups being compared were 

very similar (e.g., the pits and domes in multiple DFAs), the quantitative classification 
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was able to sort between the feature types with an accuracy that was above and beyond 

what could be expected from random chance. The accuracy of the classification rate 

depended on which groups were included in the analysis and which variables were 

presented as potential discriminators. In most cases, one variable from each of the 

following categories met the discriminating variable criteria and was included as a 

discriminating variable: one from the size category (feature diameter, area, or perimeter); 

feature normalized reflectance (median, mean, standard deviation, and range); and shape 

(one of the ratios, irregularity, and eccentricity/aspect ratio).  

 Overall the computer is adept at separating between chaos/spots/hybrids and 

pits/domes, but is less successful when sorting features within those groups. To the 

computer, pits and domes appear as the same things because of their similar size, shape, 

and normalized reflectance. Chaos, spots, and hybrids can also be confused for each 

other, but not to the degree that pits and domes are confused. In some cases, two or fewer 

variables are capable of sorting between feature types, an advantage in areas where 

detailed information is difficult to acquire because of imaging constraints. 

The accuracy rate of sorting features using a quantitative classification approach 

was compared to a human using a traditional mapping and classification approach. To 

study this, the LowRes dataset was added as unclassified data and classified into groups 

according to the framework created by the DFA. Comparing how often domes and pits 

were mistakenly classified during the human classification approach, the computer 

actually did a better job of identifying pits and domes out from the LowRes dataset than 

the human did.  
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While this work is merely a first pass of using multivariate classification analyses 

and applying them to planetary bodies, there is clearly potential for something more. It 

will be the role of future research to take advantage of the most significant differences 

between the groups in the form of a more precise statistical analysis (e.g., logistic 

regression) and to expand the dataset of features collected in low-resolution images. In 

this way, more information about the spatial distribution of microfeatures on Europa’s 

surface will be collected and used to make predictions ahead of the Europa Clipper 

mission and constrain existing models of microfeature formation.  
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CHAPTER 5 

SPATIAL PATTERNS OF MICROFEATURES 

5.1 Introduction 

 The number, characteristics, and general locations of microfeatures have now 

been discussed extensively in the previous chapters, as have methods designed to explore 

areas on Europa that lie outside of the RegMaps. The goal of this work is to provide 

additional constraints on microfeature formation models. This is important to do because 

certain models imply liquid water near Europa’s surface underneath certain features. If 

this is true, then these targets should be prioritized for future astrobiological study. This 

is, of course, in addition to the better understanding that is obtained in ice-shell dynamics 

on ocean worlds by knowing more about the probable heat and material transport physics 

of these systems. What is known of Europa could then be applied to other ocean worlds 

in the solar system, including but not limited to Saturn’s moon Enceladus fellow Galilean 

satellite Ganymede. Some of the implications for the microfeature formation models that 

the aforementioned observations create have also been discussed, but no observational 

predictions have been directly tested. This chapter focuses on testing predictions made by 

the proponents of one model in particular, as it is relatively new and has yet to be 

scrutinized. 

 The sills model of microfeature formation (Schmidt et al., 2011; Michaut and 

Manga, 2014; Manga and Michaut, 2017) predicts that the presence of liquid water in an 

elliptical sill within Europa’s ice shell and its evolution over time formed the 

microfeatures now observed. First, liquid water enters a hollow area within the ice shell 

and begins to expand. This liquid water could be water that came up from the ocean 
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below via a dike until it reached a point of neutral buoyancy, or the liquid water could be 

the result of concentrated heating within the ice shell, leading to in situ melt. The sill 

grows in size over time. If the weight of this water is compensated by the underlying 

elastic ice shell, then as the sill expands, the surface above will be pushed upwards, 

forming a dome. If this process happens rapidly, the dome can crack, allowing for some 

of the material to spill out, potentially forming chaos and hybrid features. Small 

disruptions become spots. If the weight is not compensated, perhaps because the elastic 

ice shell is thin in that particular area, then the weight of the sill with cause the surface 

above to collapse, forming a pit. Eventually the liquid water will begin to freeze. Domes 

will retain their upwarped shape, and pits will reverse the downwarping and the surface 

will either return to its previous elevation or become slightly domical. The implications 

of this model are such that there could currently be liquid water underneath pits, as the 

weight of liquid water is required to downwarp the ice above, and also that these 

microfeatures are related to each other along a continuum, with domes and chaos being 

the end states. 

 In the paper that explains the details of the saucer sills model, Manga and Michaut 

(2017) outline four predictions that should be observed on Europa if the model correctly 

represents the microfeature formation process. First, that pits should have smaller mean 

radii than domes, as the downward deflection of the sill during a pit’s formation should 

contract the lateral extent of the sill. Second, that domes should be more numerous than 

pits because domes should be easier to form in the ice shell and represent the final end 

state. As the freezing time for a sill is not indefinite, then pits should be short-lived, 

hence they should be less numerous. Third, that the larger sills that form the larger 
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microfeatures should lead to larger blocks and a greater degree of disruption, as the 

stresses on the overlying ice shell from a freezing sill should increase as the radius of the 

sill increases. Finally, that pits are clustered in space, as the sills are likely to form where 

there is a thin lithosphere and a high heat flux. The number of places in Europa’s ice shell 

that meet these conditions is unknown, but so long as these places do not cover the entire 

moon, a distinct pit clustering pattern could hint at where these areas are. 

 It has been shown in previous chapters that pits and domes have very similar 

mean radii, at least to within statistical significance across all four RegMaps regions 

examined: E15RegMap01, E15RegMap02, E17RegMap01, and E17RegMap02. While 

this observation may at first appear to contradict the model’s predictions, the authors 

never say by how much the radii should differ, so it is possible that the difference is 

undetectable even in RegMap images. It is also not generally true that domes outnumber 

pits, though that observation is dependent on where on Europa’s surface one looks. On 

the whole, however, pits do outnumber domes, again contradicting a prediction of the 

model. Testing the third prediction rests outside the scope of this work; as there is a size 

cut-off imposed on the datasets here, detecting an increase in the amount of blocks with 

respect to size would give an incomplete picture. It was noted in Chapter 2 that there are 

some microchaos features that contain rafts, but these rafty microchaos are not in the 

majority in any of the regions studied. The dataset used here is insufficient to test this 

prediction at this time. 

 What the dataset can be used to test is the microfeature clustering prediction. 

Previous authors have qualitatively described microfeatures as clustered (Greeley et al., 

2000; Spaun 2002; Ruiz and Tejero, 2003; Culha and Manga, 2016), but the degree of 
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clustering has never been quantitatively described. This work now seeks to examine to 

what degree microfeatures are clustered, if these clustering patterns vary by type, and if 

these clustering patterns vary by region. Doing so directly tests one of the predictions of a 

microfeature formation model. Determining how valid this assertion is could determine 

how robust the model itself is and suggest potential refinements to better approximate the 

formation processes on Europa. This could directly connect pits to liquid water on Europa 

and name them as astrobiological targets for future flyby (Papplardo et al., 2016; Turtle et 

al., 2016) and lander (Hand et al., 2017) missions, and offer suggestions for heat and 

material transport models for other icy satellites.  

5.2 Dataset and Methods 

5.2.1 Nearest neighbor clustering analysis 

The dataset used here is the dataset described in Chapter 2; for ease of reading, a 

summary table is provided to give the total number of features in each area in Table 5-1. 

Separate analyses were run including all features, including the chaos and hybrid features 

that were above the size cut-off of 100 km2 in area, and for microfeatures only. To test 

for clustering within these feature groups, multiple nearest neighbor clustering analysis 

tests were run. Developed by Clark and Evans (1954) to study the degree of clustering 

within individual species of trees in a forest, their methodology presents a straightforward 

way to quantitatively analyze the degree of clustering or dispersion as compared to a 

random population in a two-dimensional space. A variant of this test has been previously 

used to study the degree of clustering of potential volcanic features on Mars (Baloga et 

al., 2007) and of volcanoes on Europa’s fellow moon Io (Hamilton et al., 2013), so the  
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Table 5-1: Summary of microfeatures by region and study area size 

  

Region 

Chaos 
(number 

excluded based 
on size cut-off) 

Domes 

Hybrids 
(number 

excluded based 
on size cut-off) 

Pits Spots 

E15RegMao01 
Area: 356,529.51 

km2 
95 (27) 33 34 (2) 119 23 

E15RegMap02 
Area: 613,109.02 

km2 
209 (120) 30 25 (1) 10 1 

E17RegMap01 
Area: 630,229.91 

km2 
134 (65) 33 (1) 23 (1) 21 4 

E17RegMap02 
Area: 490,409.50 

km2 
13 21 10 67 1 
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precedent for using this approach on planetary bodies has already been established, with 

the potential for expansion to other problems. 

To understand the logic of the analysis, first assume a sample space of a given 

area with a given number of points contained within it. These points are initially assumed 

to be randomly distributed. Clark and Evans (1954) define a random distribution of points 

as the following:  

“In a random distribution of a set of points on a given area, it is assumed that any 
point has had the same chance of occurring on any sub-area as any other point, that any 
sub-area of specific size has had the same chance of receiving a point as any other sub-
area of that size, and that the placement of each point has not been influenced by that of 
any other point.” 

 
Because the generation of random points is dependent on the size of the given area, this 

test is not scale-invariant; that is, examining some number of points in an area of a certain 

size would yield a different estimate of clustering if the same number of points were in an 

area of a different size. Therefore, it is critical that the user is careful to specify the size of 

the study area correctly and, in the words of Clark and Evans (1954), “with care.” The 

most important detail is to keep the units of distance consistent across all stages of the 

analysis. 

Once the number of points, N, and area have been determined, the next step is to 

calculate the average surficial density of the features per unit area, a unit called #. This 

value is used to calculate the mean distance to a point’s nearest neighbor that would be 

expected in an infinitely large random distribution with the same density. The equation 

for this average value, denoted as $̅&, is: 

$̅& = 	
1

2+#
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The standard error on $̅& in a randomly distributed population of density # is:  
 

,-̅. = 	
0.26136
+3#

 

 
The numerical value in the numerator for the standard error and the equation for expected 

distance between the points are analytically derived in the Appendix of Clark and Evans 

(1954). These values represent an imaginary, random population and are used to compare 

to the observed values of the real population. 

<Special note: If you made it this far into reading the dissertation, thank you! Email me 

to let me know and I will respond to your email with a fun fact about Europa!> 

 To determine the average distance to the nearest neighbor (the average minimum 

difference between points), the distances between one point and every other point are 

calculated, and then the minimum distance is recorded. The average of these minimum 

distances is calculated as a simple average, where r represents the individual minimum 

distances between the points: 

$̅4 = 	
∑ $
3  

Once this value has been calculated, the values for $̅4 and $̅& are directly compared via a 

ratio, R: 

6 = 	
$̅4
$̅&

 

R has a limited range of values. In a randomly distributed population, the value for R will 

be near 1. The minimum value R can take is 0, which signifies that all of the points 

occupy the same location in space. The maximum value R can take is: 
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6 = 	
1.0746
+#

= 2.1491 

This value represents the spread of points in an even hexagonal pattern, the orientation in 

which the points will be maximally separated. In this arrangement, every point is 

equidistant from 6 other points, and thus has a predictable value of # that yields the 

numerical value of 2.1491. The interpretation of that value is that the points are, on 

average, twice as far away from their nearest neighbor as they would be in a randomly 

distributed population. The derivation of this value is included in the Appendix of Clark 

and Evans (1954). Because this analysis is very sensitive to size (e.g., it is not scale-

invariant), if this value of R is higher than the maximum value, it is a sign that the size of 

the area for computing the random sample is too large. 

 Once the value of R is computed, the value is standardized so as to compare it to a 

standard normal curve and yield a probability for observing the calculated value. This 

standardized normal curve has a Gaussian distribution, a mean of 0, and a standard 

deviation of 1. To compare a value on the standard normal curve, it is necessary to 

calculate the z score (standard variate) of an observed value. In this analysis, the standard 

variate (called c in the Clark and Evans (1954) paper) is (Mather 1947): 

: = 	
$̅4 −	 $̅&
,-̅.

 

To find the probability of observing the calculated z score (the p value), a normal 

distribution probability table is used. For the z score to be considered significant, an alpha 

value < is selected ahead of time. Below this < value or above the value of 1 − < in the 

case of a two-tailed test, the clustering or dispersion, respectively, is considered 

significant. In between the limits, the value is non-distinguishable from random, and thus 
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the possibility that a random distribution has been observed cannot be rejected. The < 

considered here is 0.05. 

There is a nearest neighbor analysis tool in ArcGIS that is capable of running this 

test and outputting values for R and it associated p value. To run this analysis in ArcGIS, 

the features were converted to points, with each point representing the geographic center 

of its corresponding feature. The test values calculated within ArcGIS therefore only 

pertain to the centers of the features. There are at least two different ways to measure 

distances between features, then: from the center of a feature to the center of its nearest 

neighbor, and from the closest point along a feature’s edge to the closest point along the 

edge of its nearest neighbor. To provide a complete picture of the degree of clustering 

within the dataset, the ArcGIS Near tool was used to find the minimum distances 

between the centers of features to its nearest neighbor, and the minimum distances 

between a feature’s edge to the closest edge of its nearest neighbor. These values were 

then averaged to provide more detail regarding the average spacing of these features 

under both definitions of “distance to nearest feature.” The standard error of these 

estimates was calculated as => = 	 ?
√ABC

; these values are included alongside the average 

distances.  

5.2.2 Monte Carlo Simulations 

Finally, to fully understand the details of a randomly distributed population of 

features and to compare the observations to a larger range of potential observations, 

multiple Monte Carlo simulations were run. This code was modified from a previous 

variation (Wren, 2018). These codes simulated a population of points equal in number to 

the observed populations across a set rectangle bounded by the user-specified latitude and 
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longitude. For each data point, the code selects a random latitude and longitude value 

within the user-specified limits. These random points are pulled from a uniform 

distribution, so each latitude and longitude value has an equal chance of being selected on 

every iteration. The code is designed to calculate the distance between each point and 

every other point using a great circle distance calculation, find the minimum, repeat the 

process for every point, and then average these minimum values, enabling direct 

comparison to the average minimum distances calculated by the nearest neighbor 

analyses and the distances computed from the Near tool. The code itself is included in 

Appendix F. 

Because of their potential relationship with liquid water, these codes were run 

specifically focusing on pits. One code variation approximated the regional distribution 

of pits in the E15RegMap01 region, which stretched between 18–60° N latitude and 212–

232° W longitude at its maximal extent, covered a total area of 356,529.51 km2, and 

contained 119 pits. This surface area represents 1.16% of Europa’s total surface area. 

Because the E15RegMap01 region tapers near the top, the surface area contained in the 

box made up of the four pairs of latitude and longitude coordinates given previously 

would make a box that is too large in area. It was critical to a correct result that the 

specified latitude and longitude pairs in the code represent a surface area equal in size to 

that of E15RegMap01 relative to its reference sphere. Thus, the latitude remained at 18–

60° N and the longitude was reduced to 217–232° W, a box that represents the same 

fractional area of Europa that E15RegMap01 covers. 

The second code variation was simulated a global pits population across all of 

Europa between 60° S to 60° N latitude and 360° longitude. The surface area of this 
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segment of Europa is calculated as follows, where r = 1561 kilometers, and covers 86.6% 

of Europa’s surface: 

D = 	$" E FG
"H

I
E sin(N)
PH
Q

H
Q

FN 

D = 	2R$"[− cos V
5R
6 X + cos Z

R
6[] 

D = 2R$"[−(−0.866) + (0.866)] 

D = 2.65 ∗ 10_	`a" 

The average pit density was calculated by dividing the number of pits in E15RegMap01 

by the total area of that region, yielding a value of 3 x 10-4 pits/km2, the highest pit 

density of any of the regions studied. This pit density was then multiplied by the total 

area of the region between 60° S to 60° N latitude and 360° longitude to find the total 

number of pits that could be expected, assuming a uniform pit density. This does not take 

into account the areas of Europa’s surface that are covered with chaotic terrain, where 

there are very few, if any, pits to be found. Thus, the total calculated number of simulated 

pits in the “global” scenario is 7950. This number represents a high estimate on the total 

number of pits on Europa’s surface because it was calculated from the highest pit density 

observed in the four regions studied and ignores the presence of large chaotic regions. 

5.3 Results 

5.3.1 Nearest neighbor clustering 

The R values, p-values, and interpretations for degrees of clustering of all features 

studied are shown in Table 5-2. The areas used in the analysis are the corresponding areas 

of the RegMaps provided in Table 5-1. Most of these features have R values less than 1,  
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Table 5-2: The degrees of clustering of microfeatures, as determined by the nearest 
neighbor clustering analysis tool in ArcGIS. 

 

  

Feature 
Type E15RegMap01 E15RegMap02 E17RegMap01 E17RegMap02 

Chaos (all) 
R = 0.852 

p-value = 0.006 
Clustered 

R = 0.739 
p-value < 0.001 

Strongly 
Clustered 

R = 0.838 
p-value = 0.010 

Clustered 

No features 
above 100 km2 
in this region 

Chaos 
(small) 

R = 0.842 
p-value = 0.013 

Clustered 

R = 0.539 
p-value < 0.001 

Strongly 
Clustered 

R = 1.062 
p-value = 0.497 

Random 

R = 0.672 
p-value = 0.024 

Clustered 

Domes 
R = 0.735 

p-value = 0.004 
Clustered 

R = 0.772 
p-value = 0.017 

Clustered 

R = 0.838 
p-value = 0.010 

Clustered 

R = 0.881 
p-value = 0.299 

Random 

Hybrids (all) 

R = 0.664 
p-value < 0.001 

Strongly 
Clustered 

R = 0.476 
p-value < 0.001 

Strongly 
Clustered 

R = 1.065 
p-value = 0.536 

Random 

No features 
above 100 km2 
in this region 

Hybrids 
(small) 

R = 0.638 
p-value < 0.001 

Strongly 
Clustered 

R = 0.442 
p-value < 0.001 

Strongly 
Clustered 

R = 1.048 
p-value = 0.666 

Random 

R = 1.019 
p-value = 0.910 

Random 

Pits 

R = 0.712 
p-value < 0.001 

Strongly 
Clustered 

R = 0.242 
p-value < 0.001 

Strongly 
Clustered 

R = 0.723 
p-value = 0.015 

Clustered 

R = 0.539 
p-value < 0.001 

Strongly 
Clustered 

Spots 
R = 1.163 

p-value = 0.134 
Random 

Too few to run 
analysis 

R = 1.272 
p-value = 0.299 

Random 

Too few to run 
analysis 
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suggesting that they are clustered. Pits in E15RegMap01, for example, have an R value of 

0.712, and the interpretation of that value is that the average spacing between the pits is 

about 71% of the average distance that would be observed in a randomly distributed 

population. The R values differ in significance across regions partially because of the size 

of the study area and partially because of the difference in the number of features.  

 In all regions, all chaos features are observed to be clustered. This is not the case 

with microchaos in E17RegMap01, whose distributions are not distinguishably different 

from a random distribution. Hybrids are clustered in the northern hemisphere regions 

(E15RegMap01 and E15RegMap02), but are not distinct from randomly distributed in the 

southern hemisphere regions (E17RegMap01 and E17RegMap02). One special note is 

that for the E17RegMap02 region, no chaos or hybrid features were excluded based on 

size, hence why the “all” boxes are left blank. In both cases where enough spots were 

reported to run the clustering analysis, the observations suggest that spots are not 

distributed in a way that is different from random. Domes themselves also vary between 

clustered and random. Pits are the only features that were clustered in every region 

studied. The lowest R value reported is for pits in E15RegMap02 (R = 0.242). This is a 

large study area with only ten pits reported in it, an explanation for why the ratio is so 

low. 

5.3.2 Near distances 

The distances of these features to features of the same type are included in Tables 

5-3 to 5-10. Every combination of feature type to feature type was analyzed to provide 

the most information about the spacing of these features relative to every other potential 

feature. An important note is that while it may be expected that the distance observations 
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between the features should be reflexively the same for each combination (e.g., the 

distance between chaos and pits should be the same as the distance between pits and 

chaos), the different sizes of the groups and their varying locations in space on Europa’s 

surface mean that this is not the case. The average nearest neighbor distances are greater 

when measured from the centers of features than they are when distance is measured 

from the edges, as is expected. Features generally tend to be closest to other features of 

their own type, with the exception of spots. 

5.3.3 Monte Carlo Simulations 

 The first Monte Carlo simulation was run approximating the study area 

represented by E15RegMap01. These simulations were iterated 1000 times. The # for 

this area is 3 x 10-4 pits/km2, which makes the $̅& for this area 28.87±1.38 km. The 

average minimum value of distance between the nearest neighbors ranged from 49.74–

65.68 km, with an average minimum distance between two pits of 56.94±2.59 km and the 

R value 1.97, implying that these simulated pits are almost twice as distant from each 

other on average as they would be in a random distribution (e.g., they are dispersed, on 

average). From Table 5-3, the average minimum distance between pits in this area is 

19.48±0.15 km, immediately suggesting that these pits in this region are clustered, 

supporting the observation of the nearest neighbor analysis. This yields a z-score of 20.30 

and a p-value of <0.001 in favor of a dispersed population. 

The second Monte Carlo simulation was run approximating the total area of 

Europa’s surface that ranges between -60° S and 60° N latitude and across the full range 

of longitudes (0°–360° W). Because this run contained 7950 simulated pits and because  
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Table 5-3: Average nearest neighbor distances between centers of features, 
E15RegMap01. Distances are in km. 
 

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

26.11 
±0.22 x 50.80 

±0.32 
50.78 
±0.44 x 35.78 

±0.24 
59.55 
±0.44 

Chaos 
(small) x 30.65 

±0.45 
46.74 
±0.44 x 48.43 

±0.57 
30.84 
±0.25 

53.68 
±0.54 

Domes 30.92 
±0.53 

37.13 
±0.90 

38.21 
±0.87 

47.43 
±1.53 

45.62 
±0.81 

26.35 
±0.54 

71.10 
±1.55 

Hybrids 
(all) 

28.04 
±0.53 x 45.08 

±0.67 
32.07 
±0.66 x 31.98 

±0.47 
60.52 
±1.22 

Hybrids 
(small) x 33.88 

±0.70 
45.15 
±0.71 x 31.68 

±0.67 
30.11 
±0.46 

56.63 
±1.17 

Pits 37.66 
±0.19 

41.08 
±0.20 

49.24 
±0.30 

64.78 
±0.58 

64.78 
±0.58 

19.48 
±0.15 

74.84 
±0.45 

Spots 32.95 
±0.89 

39.71± 
1.54 

53.95 
±1.80 

51.00±1.
52 

51.00 
±1.52 

38.41 
±1.18 

64.00 
±2.10 

  



  189 

 
 
 
 
 
Table 5-4: Average nearest neighbor distances between edges of feature types, 
E15RegMap01. Distances are in km. 

 
 
  

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

15.79 
±0.22 x 42.43 

±0.31 
41.51 
±0.44 x 27.18 

±0.23 
51.81 
±0.43 

Chaos 
(small) x 22.27 

±0.45 
39.66 
±0.43 x 40.38 

±0.57 
23.37 
±0.24 

46.94 
±0.53 

Domes 22.26 
±0.47 

29.94 
±0.89 

32.63 
±0.88 

40.13 
±1.50 

42.05 
±1.51 

20.58 
±0.54 

65.54 
±1.53 

Hybrids 
(all) 

18.11 
±0.51 x 38.44 

±0.67 
24.18 
±0.64 x 24.50 

±0.45 
53.76 
±1.21 

Hybrids 
(small) x 25.97 

±0.70 
38.80 
±0.72 x 24.43 

±0.66 
22.97 
±0.45 

50.16 
±1.17 

Pits 29.13 
±0.19 

33.64 
±0.20 

43.28 
±0.29 

57.35 
±0.57 

57.35 
±0.57 

13.20 
±0.15 

69.05 
±0.44 

Spots 25.38 
±0.85 

32.62 
±1.51 

48.49 
±1.80 

44.48 
±1.51 

44.48 
±1.51 

32.29 
±1.14 

58.34 
±2.12 
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Table 5-5: Average nearest neighbor distances between centers of features, 
E15RegMap02. Distances are in km.  
 

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

20.00 
±0.09 x 64.31 

±0.17 
78.85 
±0.26 x 140.75 

±0.65 
414.46 
±1.12 

Chaos 
(small) x 34.75 

±0.68 
59.38 
±0.33 x 55.49 

±0.39 
82.33 
±0.78 

311.14 
±1.77 

Domes 39.05 
±1.18 

81.25 
±2.28 

54.94 
±1.45 

69.53 
±1.64 

69.53 
±1.64 

263.46 
±7.28 

598.51 
±10.52 

Hybrids 
(all) 

30.16 
±1.15 x 56.37 

±1.21 
37.38 
±1.70 x 202.39 

±7.70 
487.93 
±12.06 

Hybrids 
(small) x 44.67 

±2.04 
54.63 
±1.23 x 35.34 

±1.75 
191.15 
±7.84 

470.31 
±12.28 

Pits 12.96 
±0.74 

13.84 
±0.74 

62.42 
±4.49 

59.39 
±2.68 

59.39 
±2.68 

29.92 
±3.23 

251.65 
±9.86 

Spot* 16.54 33.21 92.25 147.62 147.62 114.90 x 

* = only one feature was recorded in this region 
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Table 5-6: Average nearest neighbor distances between edges of feature types, 
E15RegMap02. Distances are in km. 
 

* = only one feature was recorded in this region 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

7.67 
±0.09 x 52.36 

±0.17 
65.64 
±0.26 x 129.50 

±0.65 
402.57 
±1.12 

Chaos 
(small) x 26.93 

±0.65 
52.97 
±0.32 x 48.08 

±0.40 
76.52 
±0.78 

305.25 
±1.77 

Domes 23.88 
±0.94 

74.51 
±2.28 

51.17 
±1.43 

63.76 
±1.63 

63.76 
±1.63 

259.25 
±7.28 

594.20 
±10.51 

Hybrids 
(all) 

18.05 
±0.98 x 50.14 

±1.18 
32.34 
±1.57 x 196.72 

±7.65 
481.75 
±12.02 

Hybrids 
(small) x 37.01 

±2.04 
48.81 
±1.22 x 30.68 

±1.64 
186.01 
±7.82 

464.69 
±12.26 

Pits 7.71 
±0.76 

8.24 
±0.73 

57.32 
±4.49 

55.06 
±2.73 

55.06 
±2.73 

27.29 
±3.08 

248.15 
±9.85 

Spot* 4.26 26.78 87.36 142.61 142.61 111.20 x 
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Table 5-7: Average nearest neighbor distances between centers of features, 
E17RegMap01. Distances are in km.  
 

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

32.35 
±0.19 x 66.81 

±0.28 
74.66 
±0.43 x 128.82 

±0.86 
198.97 
±1.48 

Chaos 
(small) x 39.70 

±0.45 
63.13 
±0.56 x 81.06 

±1.01 
117.61 
±1.65 

307.98 
±2.81 

Domes 38.09 
±0.86 

53.11 
±1.21 

73.75 
±1.46 

75.01 
±2.01 

83.07 
±2.12 

164.17 
±4.99 

300.46 
±5.14 

Hybrids 
(all) 

35.45 
±1.07 x 65.59 

±2.23 
85.90 
±1.90 x 149.80 

±4.92 
247.58 
±6.77 

Hybrids 
(small) x 48.70 

±1.91 
63.85 
±2.36 x 87.58 

±1.88 
145.87 
±5.19 

254.99 
±7.06 

Pits 31.29 
±0.81 

44.50 
±1.54 

48.21 
±1.48 

78.24 
±2.51 

81.97 
±2.82 

61.43 
±2.51 

345.18 
±9.07 

Spot 51.79 
±5.55 

57.73 
±6.39 

104.27 
±18.10 

84.13 
±8.05 

111.16 
±15.80 

175.64 
±34.62 

250.32 
±61.02 
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Table 5-8: Average nearest neighbor distances between edges of feature types, 
E17RegMap01. Distances are in km. 
 

Feature 
Type 

Chaos 
(all) 

Chaos 
(small) Domes Hybrids 

(all) 
Hybrids 
(small) Pits Spots 

Chaos 
(all) 

16.97 
±0.16 x 55.68 

±0.28 
62.34 
±0.43 x 116.73 

±0.85 
310.15 
±1.48 

Chaos 
(small) x 31.27 

±0.45 
56.20 
±0.56 x 72.88 

±1.01 
110.07 
±1.64 

301.48 
±2.80 

Domes 26.00 
±0.80 

46.30 
±1.27 

68.67 
±1.46 

68.28 
±1.99 

71.41 
±2.02 

158.18 
±4.94 

295.78 
±5.14 

Hybrids 
(all) 

23.60 
±1.05 x 59.06 

±2.23 
77.67 
±1.90 x 141.93 

±4.84 
241.27 
±6.75 

Hybrids 
(small) x 41.26 

±1.93 
57.62 
±2.36 x 80.08 

±1.91 
138.56 
±5.13 

249.10 
±7.01 

Pits 19.49 
±0.72 

37.63 
±1.57 

43.24 
±1.44 

72.01 
±2.56 

75.84 
±2.86 

56.03 
±2.50 

340.28 
±9.08 

Spot 43.58 
±5.45 

52.52 
±6.30 

99.43 
±17.43 

76.28 
±8.27 

106.20 
±15.99 

168.53 
±34.64 

245.95 
±61.42 
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Table 5-9: Average nearest neighbor distances between centers of features, 
E17RegMap02. Distances are in km. No features in this region were excluded due to size. 
 

Feature 
Type Chaos Domes Hybrids  Pits Spots 

Chaos  66.55 
±4.87 

96.45 
±4.07 

116.61 
±7.85 

68.17 
±4.06 

341.29 
±16.89 

Domes 129.49 
±3.95 

67.13 
±2.09 

113.76 
±6.93 

72.99 
±4.72 

509.47 
±10.92 

Hybrids  76.73 
±5.30 

47.18 
±5.14 

112.30 
±4.27 

21.88 
±1.57 

459.45 
±24.31 

Pits 85.40 
±0.62 

66.32 
±0.67 

60.96 
±0.59 

23.09 
±0.40 

493.11 
±3.14 

Spot* 11.50 33.28 19.11 37.53 x 

* = only one feature was recorded in this region 
 
 
 
 
 
Table 5-10: Average nearest neighbor distances between edges of feature types, 
E17RegMap01. Distances are in km. 
 

Feature 
Type Chaos Domes Hybrids  Pits Spots 

Chaos  66.55 
±4.87 

96.45 
±4.07 

116.61 
±7.85 

68.17 
±4.06 

341.29 
±16.89 

Domes 129.49 
±3.95 

67.13 
±2.09 

113.76 
±6.93 

72.99 
±4.72 

509.47 
±10.92 

Hybrids  76.73 
±5.30 

47.18 
±5.14 

112.30 
±4.27 

21.88 
±1.57 

459.45 
±24.31 

Pits 85.40 
±0.62 

66.32 
±0.67 

60.96 
±0.59 

23.09 
±0.40 

493.11 
±3.14 

Spot* 11.50 33.28 19.11 37.53 x 

* = only one feature was recorded in this region 
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of how computationally intensive it was, only 100 iterations were run in this simulation. 

The large number of simulated pits yielded consistent results across all 100 runs, so 

increasing the number of iterations would likely not have changed the overall results 

significantly. As the # for this area is the same as it was for the E15RegMap01 

simulations, the $̅& for this area remains at 28.87±0.17 km. The standard error has 

decreased in this instance because of the significant increase in the number of considered 

features. The observed average minimum distance between pits ranged between 57.01 

and 58.13 km, with an average value of 57.50±0.25 km and a corresponding R ratio of 

1.99. This yields a z-score of 169.16 and a p-value of <0.001 in favor of very significant 

dispersion. 

5.4 Discussion 

5.4.1 Implications for the sills model  

The results of this analysis are straightforward, and show that pits are clustered, 

while other microfeature types sometimes are. In simulated populations of pits in the 

E15RegMap01 region, the minimum distances between randomly positioned points are 

significantly farther apart from each other than they are observed to be in real life, 

supporting the conclusion that pits are clustered in space. On a partially-global scale, 

these pits are likely an average of 57.50 km away from the closest pit. The global average 

degree of clustering of pits is difficult to determine more accurately, as pits are difficult 

to find in currently available images; see Chapter 2 and Noviello and Rhoden (2018) for a 

more thorough discussion of this. The random simulations are likely highly inaccurate, as 

the total number of pits was merely estimated from the region with the highest pit 

density, and the area included places on Europa that are already known to be covered 
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with chaotic terrain, where no pits have yet been observed. Still, these simulations 

provide a baseline estimate for the average spacing of pits on Europa in areas that have 

not been closely studied yet. 

There are a few of explanations for why pits are observed to cluster. One potential 

reason is that the sills model is correct. This could either imply a large area in the brittle 

ice shell that allows for multiple fractures to propagate to a shallow depth within the ice 

shell, pushing water up from the overpressurized ocean (Manga and Wang, 2007) to a 

point of neutral buoyancy (Schmidt et al., 2011; Michaut and Manga, 2014; Manga and 

Michaut, 2017). If there are liquid water sills underneath pits, it is also possible that the 

water came from increased concentrations of tidal heating within the ice shell (Schmidt et 

al., 2011). Either of these processes could create multiple sills in a relatively small area. 

One other sill-related idea for pit clustering is that each small sill that creates a pit is 

connected to every other small sill in the area by a single larger sill that underlies them 

all, a scenario reminiscent of an upside-down champagne glass pyramid. As the larger, 

deeper sill is filled, the continued increase in pressure causes more water to be pushed 

upwards through additional cracks. The water finds another level of neutral buoyancy and 

forms another sill, which eventually creates the observed pit. If this were true, then the 

wider area surrounding pit clusters should be depressed, though perhaps not as distinctly 

or as severely as the pits themselves are.  

Based on this evidence collected under multiple methodologies, it is fair to say 

that pits are clustered in space on Europa, an observation that has been qualitatively 

described in the past (Culha and Manga, 2016). Thus, the prediction of Manga and 

Michaut (2017) that pits are clustered on Europa has been proven true. Out of the other 
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three major predictions, one is outside the scope of this work, one is not supported by 

observations, and the third could be true. This incongruity does not mean that the model 

is completely wrong, however. Examining the details of the model further, it is possible 

that certain assumptions regarding but not limited to the shape of the liquid water sills, 

the freezing time of the liquid water, and the temperature and corresponding strength of 

the elastic ice layer could all contribute to reasons for why the observed details do not 

match predictions. The predictions themselves may, therefore, be incorrect. A full 

analysis of the sensitivity of these predictions to the inferred parameters is outside the 

scope of this work, but a potential place for future modeling work on the subject. It is 

possible that the model could describe the underlying microfeature formation process 

accurately with a bit of adjustment applied. 

 One outstanding question of microfeature formation is if these features are formed 

through discrete, independent processes or if they morph from one to another form along 

a continuum. If microfeatures are related to each other through a continuous process, then 

logically they should have the same clustering patterns, at least within a region of study. 

Across most of the four RegMaps studied, microchaos and small hybrids tend to reflect 

the same clustering patterns. The only region where this wasn’t true was the 

E17RegMap02 study area, where the microchaos were clustered and the small hybrids 

were not distinctly different from randomly distributed. It could be that the low number 

of features in this area contributed to the difference, and the observed differences are 

because of the uncertainty present when small sample sizes are considered. If so, then this 

uncertainty should be applied to every group where the members were under 30 in 

number, as 30 is a statistical rule of thumb for adequate sample size. 
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 The difference in degrees of clustering is not a sign that the continuum idea is 

invalid. As the liquid water inside of pits freeze and the sill expands, the surface could 

change from depressed to relatively flat, similar to how it looked before deformation. In 

this way pits could be erasing themselves. Pits also represent a different formation path in 

the sills model, and do not necessarily have to turn into domes. They could represent their 

own end state, in which case there is no need to reconcile the differences in the degrees of 

clustering. The presence of more pits in some regions over domes could also signal that 

these regions are comparatively younger than in regions where pits are fewer, as the pits 

have not had time to either erase themselves or change into domes. 

 An interesting note is that the sills model promoted by Manga and Michaut (2017) 

states that while there could be liquid water underneath chaos features, there is a higher 

likelihood of there being liquid water underneath pits at present. This is partially contrary 

to other microfeature formation models that connect liquid water directly to chaos 

features (Collins and Nimmo, 2009; Schmidt et al., 2011); indeed, according to the 

original sills model (Schmidt et al., 2011), there is active chaos formation happening now 

in Thera Macula. The Schmidt et al. (2011) sill formation model does focus on large 

chaos features, and it is not clear if microchaos would form through a similar process 

under their assumptions. The sills models as they are now do not include any elements of 

convection, although there is some evidence to suggest that clustering could be related to 

convection as well (Ruiz and Tejero, 2003). Determining which microfeatures are the 

most likely places to find liquid water is critically important for future exploration 

focused on constraining Europa’s astrobiological potential (Chyba and Phillips, 2007). 

This work can also be applied to understanding Europa’s ocean dynamics (Goodman et 
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al., 2004; Goodman and Lenferink, 2012), as the best clues at present for this are the 

geologic features. 

5.4.2 Implications for Europa exploration with flyby mission data 

The sills model has not been ruled out as possible even under closer inspection of 

the available data. It is important, therefore, to consider its implications for Europa 

exploration. Of course, the Europa Clipper mission will be able to examine 95% of the 

moon at resolutions of 50 m/pix or smaller (Turtle et al., 2016), so it might be trivial to 

find these microfeatures across the surface. The Europa Lander mission (Hand et al., 

2017) is set to launch much later than the Europa Clipper mission, which should allow for 

full image processing and data analysis ahead of the Lander and help to select the 

optimum landing location. Additionally, even if the Lander launches and travels safely to 

Europa, there are many areas it will not be able to land because of the potential for 

radiation damage from Jupiter’s magnetosphere (Hand et al., 2017). It is therefore 

important to look to other potential sources of data on the Europa Clipper mission that 

might identify areas where there is liquid water, or at least interesting geology that could 

inform about subsurface processes. 

One of these alternate sources of data is that of the thermal inertia of Europa. If 

liquid water is present within the ice shell, it could change the thermal inertia of Europa 

in that area relative to areas where no liquid water is present in the shell. Surface 

temperature changes on a diurnal cycle is one way to retrieve the thermal inertia of a 

planetary body. On the Galileo mission, only instrument capable of measuring Europa’s 

surface temperatures was the photopolarimeter-radiometer (PPR; Russell et al., 1992). 

Based on PPR observations that included both day and night temperature measurements 
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that happen to cover the four RegMap areas studied in this report, Rathbun et al. (2010) 

bracketed Europa’s thermal inertia at 4 ∗ 10b to 15 ∗ 10b erg cm-2 s-1/2 K-1, and found a 

consistent drop in estimated thermal inertia along the equator, echoing the results of 

Spencer et al. (1999). One major difference in the results of Rathbun et al. (2010) versus 

those of Spencer et al. (1999) is that, while Spencer et al. (1999) proposed that endogenic 

heating could be responsible for the thermal inertia drop along the equator, Rathbun et al. 

(2010)’s models fit better if only thermal inertia variations are considered. This finding 

was supported by a later study that used data from Earth-based telescope observations of 

Europa and comparisons to models that used bolometric albedos estimated from the 

Voyager missions (Trumbo et al., 2018), though that paper noted thermal anomalies in 

non-equatorial areas. It is possible that there could be more liquid water sills along the 

equator that observably changes the modeled thermal inertia of Europa, perhaps driven 

by an increase in ocean dynamical activity along the equator (Soderlund et al., 2014).  

The E-THEMIS instrument (Christensen et al., 2017; Bayer et al., 2018) is 

included as a payload instrument on the Europa Clipper mission (Pappalardo et al., 2016; 

Pappalardo et al., 2017). It will be an infrared spectrometer instrument specifically 

designed to determine Europa’s surface thermal inertia. E-THEMIS will provide global 

mapping at resolutions of 5-10 km/pix at multiple times of day, and local observations 

down to resolutions of 50 m/pix, similar to the resolutions of EIS (Turtle et al., 2016). As 

the average diameter of microfeatures ranges between 5 and 10 km, even at a distance, E-

THEMIS should be able to detect thermal anomalies at the scale of microfeatures. If this 

is not the case, it should still be able to detect areas of thermal anomalies that could be at 

the scale of microfeature clusters. At large distances from Europa’s surface, E-THEMIS 
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may be able to identify potential anomalies in Europa’s thermal inertia, which could 

signal the presence of liquid water underneath. If these patches are consistent with 

microfeature locations, as determined by the work presented here or on closer inspection 

by the EIS instrument (Turtle et al., 2016), then it could be evidence that liquid water 

within the ice shell is directly affecting the surface above. If there is an absence of these 

thermal anomalies that correlate to any microfeature locations, then it could be surmised 

that the thermal inertia variations are more likely caused by an unconsolidated regolith on 

the surface (Spencer et al., 1999; Rathbun et al., 2010), uncertainties in calculations of 

the bolometric albedo of Europa for thermal modeling work (Rathbun et al., 2010; 

Trumbo et al., 2018), or other physical sources of variation. It could also be strong 

evidence against liquid water in the shell, but only after other sources had been ruled out.  

5.4.3 Implications for Europa surface in situ exploration 

 One of the major objectives of the Europa Lander mission is to “determine the 

proximity to liquid water and recently erupted materials at the Lander’s location” (Hand 

et al., 2017). One named sub-objective specifically states that the Lander should “search 

for any subsurface liquid water within 30 km of the lander, including the ocean” (Hand et 

al., 2017). The 30 km requirement primarily stems from the high estimates for ice shell 

thickness (Pappalardo et al., 1998; Schenk, 2002) from surface to the ocean, as the ocean 

is the likeliest place for there to be large amounts of liquid water. To investigate potential 

locations for liquid water pockets within the ice shell and the distance to the underlying 

ocean, the lander will use passive seismology to detect seismic and acoustic waves as 

they travel through the ice shell. These waves travel spherically outward from their 

source and are affected by the material through which they travel in terms of phase, 
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direction, and speed. Measuring the scattering and refraction of these waves will help to 

identify areas in the ice shell where there are pockets of liquid water, slush, or ice of 

different densities; however, with one seismometer and a detection range of 30 km, it will 

be difficult to determine the subsurface physical properties of an entire ice shell.  

To ensure the success of the mission, the Lander should choose a landing site 

carefully. This landing site should have a high probability of liquid water within 30 km. 

If the sills model holds up to further scrutiny, then pits could be a likely place to study 

liquid water. Even landing near a different type of microfeature could still yield results 

that point to the presence of a since frozen sill, but pits and liquid water would fulfill the 

main Lander mission objective to find subsurface liquid water at present (Hand et al., 

2017). This liquid water is likely to be fairly close to the surface as well; Manga and 

Michaut (2017) predict a relationship of 6 ≈ 2.4F between the radius of a feature and the 

depth of its corresponding sill (Figure 1-6). To determine the presence of liquid water 

within the ice shell versus below the ice shell, the Lander should prioritize landing within 

30 km of a pit. 

 To determine the probability of the Lander landing within 30 km of a pit, at least 

within the confines of the RegMaps studied here, arrays whose centers were 30 km apart 

were constructed in ArcGIS using the fishnet tool (Figures 5-1 to 5-4). Table 5-11 shows 

the probability of a random point contained within the RegMap falling within a certain 

radial distance from the nearest pit. These percentages are cumulative; each line contains 

the points counted in the rows above it, aside from the last row, which notes the 

percentage of points that are greater than 100 km from the nearest points. Of course,  
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Figure 5-1: E15RegMap01 map with fishnet grid overlain. The points are 
30 km apart and represent any potential landing sites for a Europa lander 
mission. The black dots extend beyond the RegMap perimeter, the white 
dots are those that lie entirely inside the RegMap. 
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Figure 5-2: E15RegMap02 map with fishnet grid overlain. The points are 
30 km apart and represent any potential landing sites for a Europa lander 
mission. The black dots extend beyond the RegMap perimeter, the white 
dots are those that lie entirely inside the RegMap. 
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Figure 5-3A: E17RegMap01 map with fishnet grid overlain. The points 
are 30 km apart and represent any potential landing sites for a Europa 
lander mission. The black dots extend beyond the RegMap perimeter, the 
white dots are those that lie entirely inside the RegMap. 
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Figure 5-3B: E17RegMap01 map with fishnet grid overlain. The points 
are 30 km apart and represent any potential landing sites for a Europa 
lander mission. The black dots extend beyond the RegMap perimeter, the 
white dots are those that lie entirely inside the RegMap. 
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Figure 5-4A: E17RegMap02 map with fishnet grid overlain. The points 
are 30 km apart and represent any potential landing sites for a Europa 
lander mission. The black dots extend beyond the RegMap perimeter, the 
white dots are those that lie entirely inside the RegMap. 
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Figure 5-4B: E17RegMap02 map with fishnet grid overlain. The points 
are 30 km apart and represent any potential landing sites for a Europa 
lander mission. The black dots extend beyond the RegMap perimeter, the 
white dots are those that lie entirely inside the RegMap. 
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Table 5-11: Pit distance probabilities from points in the fishnet array. The points 
represent a potential landing site for the Europa Lander mission. Only points that fell 
within the RegMap (the white dots in the fishnet array) are considered in these 
calculations. 
 

Distance E15RegMap01 E15RegMap02 E17RegMap01 E17RegMap02 

≤ 10 km 15.33 0.73 1.00 4.79 

≤ 20 km 33.17 2.06 4.87 13.26 

≤ 30 km 50.50 3.67 8.74 23.39 

≤ 40 km 63.57 5.87 13.32 30.20 

≤ 50 km 73.12 8.08 17.48 38.49 

≤ 60 km 83.67 10.72 22.49 45.12 

≤ 70 km 89.70 13.66 26.93 49.91 

≤ 80 km 94.22 16.59 31.23 54.88 

≤ 90 km 96.98 18.80 35.10 59.48 

≤ 100 km 97.74 22.32 39.11 61.88 

> 100 km 2.26 77.68 60.89 38.12 
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these percentages vary because the number of pits vary across the four RegMaps, so the 

chance of a point falling within 30 km of a pit varies from 3.67% to 50.5%. Granted, 

these percentages would likely be higher if all microfeatures were considered and not 

simply pits, but this shows that the Lander mission requires an appropriate targeted 

landing spot to ensure mission success.  

Assuming once more that the sills model is correct, then it is possible to model the 

subsurface structure assuming the relationship between a feature’s radius and the 

proposed depth of its sill. Doing so provides seismology models data that are used to 

create synthetic seismographs and train the seismology instrument on the Europa Lander 

to analyze real signals in the future. This modeling work is outside the scope of this 

project, but it is still helpful to visualize what the subsurface of Europa might look like. 

Figure 5-5 shows the area covered by the Galileo image 1865r (E15RegMap01), and 

Figure 5-6 shows its potential subsurface structure. This region was selected because of 

the high density and variety of microfeatures. Note that the majority of features are 

related to sills less than 2.5 km in depth from the surface of Europa, and that the larger 

features correspond to deeper sills. While this image extrapolates much about Europa’s 

subsurface and represents the sills as spheres rather than ellipses, it serves as a first 

glimpse of what could be underneath Europa’s icy exterior. 

5.5 Conclusions 

This project sought to determine which features, if any, are associated with liquid 

water at or near Europa’s surface by examining the prediction made by Manga and 

Michaut (2017) that pits are clustered in space. All microfeature types in four RegMaps 

(E15RegMap01, E15RegMap02, E17RegMap01, and E17RegMap02) were analyzed  
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Figure 5-5: The study area of Galileo image 1865r (turquoise outline), at 
the southernmost extent of  E15RegMap01. This area was selected for 
further study because of the abundance of verified microfeatures and 
because all microfeature types are represented.  
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Figure 5-6: The potential subsurface structure underneath the study area of 
Galileo image 1865r. The colors represent to the microfeature types; the red 
dots represent sills that correspond to pits directly above them. Note that the 
majority of these sills are projected to be under 2 km from the surface of 
Europa’s ice shell. 
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using the nearest neighbor to detect the degrees of clustering among these features. While 

in general all microfeature types were reported as clustered, pits were the only ones that 

were clustered in all four RegMaps studied. The average minimum distances between pits 

to other pits were consistently lower than the average minimum distances between pits to 

any other feature type. Finally, Monte Carlo analyses were run to simulate other 

populations with the same number of pit density. These runs consistently had average 

minimum distances that were significantly larger than the observed distances. This is all 

evidence that shows that pits are indeed clustered in space over the areas where they were 

mapped on Europa’s surface. 

This information was then used to explore the implications of the sills model on 

future exploration of Europa. One piece of data that could be used to further test the 

potential relationship between pits and liquid water is Galileo’s PPR measurements, 

which are fine enough to detect thermal anomalies that may be correlated with 

microfeature clusters. Future missions to Europa will be able to test this idea further with 

more sensitive measurements of thermal inertia, superior thermal models informed by 

better parameter estimates of bolometric albedo, and a relative abundance of imaging 

data across a majority of Europa’s surface. This work is also relevant to future surface 

exploration of Europa’s ice shell, as the presence of liquid water in the ice shell should be 

visible in seismology experiments conducted by a potential Lander mission. It also 

provides the first view of Europa’s potential subsurface informed by observations and 

makes testable predictions for future missions. 
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CHAPTER 6 

CONCLUSION 

6.1 Background Summary 

Europa is a planetary body that commands attention. The Galileo mission 

provided enough data to hint at an ocean world with curious dynamics, unique geology, 

and the potential for habitability, but difficulties with the spacecraft itself prevented 

complete data return (Alexander et al., 2009). Even with these constraints, the Galileo 

dataset remains the best one collected of Europa to date, and with it planetary scientists 

have investigated a myriad of questions regarding the formation and evolution of many 

outer solar system satellites.  

One of the key attributes that makes Europa unusual is the presence of a global 

liquid water ocean underneath a thin layer of ice (Khurana et al., 1998; Kivelson et al., 

1999; Kivelson et al., 2000). This liquid water ocean could be a place where 

extraterrestrial life is viable (Chyba and Phillips, 2007; NRC, 2011). Europa’s geology is 

a direct connection to the subsurface activity of Europa that could provide more evidence 

for or against the hypothesis that Europa is a habitable world, as the surface geology will 

change based on the dynamics that drive their formation and even tectonism (Kattenhorn 

and Prockter, 2014). This work focused on the small-scale geologic features on Europa’s 

surface to investigate claims related to Europa’s heat and material transport dynamics 

and, by extension, its potential for habitability. 

Europa’s icy chaos has been tied to heat and surface modification since the 

Voyager mission era. As adding heat to solid ice causes melting, icy chaos could be a 

place to directly measure Europa’s habitability or search for evidence of biosignatures. 
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Chaos’ association with salts suggests they may also be connected to material transport 

from the salty ocean to the surface. Understanding how chaos forms would answer 

important questions regarding Europa’s dynamics and significantly lower the uncertainty 

surrounding other aspects of the moon, including its potential for habitability. At present 

there is currently no single model that fully explains all instances of icy chaos (Collins 

and Nimmo, 2009). At small sizes (under 100 km2 in area), these microchaos features 

occur alongside several other types of endogenic surface features that are roughly the 

same sizes. These microfeatures include uplifts and domes, pits, spots (areas of 

consistently low albedo but no obvious topography), and hybrid features, which have 

morphological aspects of both chaos and domes. Formation models of these 

microfeatures often link them together because of their comparable sizes and generally 

close proximity to one another, and also invoke material transport and potential liquid 

water deposits in Europa’s ice shell (Collins and Nimmo, 2009; Schmidt et al., 2011; 

Manga and Michaut, 2017). 

Microfeatures are clearly visible in the areas of Europa’s surface that are covered 

by Galileo images on the order of ~230 m/pixel; these areas are called the regional 

mosaics, or RegMaps. Unfortunately, these images only cover about 10% of Europa’s 

surface (Doggett et al., 2009), but low-resolution images cover almost all of Europa. It 

could be possible to find microfeatures in these low-resolution images to some level of 

confidence. Finding microfeatures outside of RegMaps would provide new observational 

constraints for microfeature formation models, as certain patterns of microfeature 

distribution across Europa’s surface could be indicative of a particular formation process. 
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For example, if microfeatures formation is dominated by diapirism, there should be more 

microfeatures in areas with more proposed diapiric activity (Collins and Nimmo, 2009). 

This work sought to: 1) quantitatively describe the different microfeature groups 

that differentiate between them; 2) test the limits of mapping microfeatures in low-

resolution images, both in terms of missed features and classification accuracy; 3) 

develop a method to quantitatively sort between microfeature groups that can be used to 

sort features mapped in both RegMap and low-resolution images; and 4) examine the 

spatial relationships between and among microfeature groups. These answers help 

constrain the presence of liquid water in the ice shell and to better understand heat and 

material transport from the ocean to the surface on Europa. Knowing that information 

will refine microfeature formation models and better the assessment of Europa’s potential 

for habitability. This work also makes predictions for the NASA Europa Clipper mission 

(Pappalardo et al., 2016; Pappalardo et al., 2017), the ESA JUICE mission (ESA, 2005), 

and the potential NASA Europa Lander mission (Hand et al., 2017).  

6.2 Results Summary: Implications for Microfeature Formation Models 

 To quantitatively describe Europa’s microfeatures, first the microfeatures needed 

to be mapped and analyzed. A total of 691 classified microfeatures were identified across 

four of Europa’s RegMaps, which in total cover 6.43% of Europa’s total surface area. 

Initially one dataset was collected which was then validated against three other published 

manuscripts (Greenberg et al., 2003; Culha and Manga, 2016; Singer et al., in review) to 

create a complete dataset with robust classifications. Overall, the most numerous feature 

type was microchaos (239), almost equaled in number by pits (217), followed by domes 

(116), hybrids (90), and spots (29). The region with the highest number of microfeatures 
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was E15RegMap01. Chaos and hybrid features are 50% larger on average than the other 

microfeatures, and also have lower average normalized reflectance values. Chaos and 

hybrid features are also significantly more irregularly shaped. Finally, there are two 

distinct types of hybrid features, one more chaos-like (Type I) and the other more dome-

like (Type II). The Type II hybrids outnumber the Type I hybrids roughly 3:1. Pits and 

domes are similar in size, aspect ratio, and normalized reflectance, and the only major 

difference between them is the topography. Spots are not only the darkest and smallest of 

the features, but the least common as well. In terms of locations, microfeatures are more 

numerous in the northern hemisphere when considering latitudinal variation, and more 

numerous in the trailing hemisphere when considering longitudinal variation.  

These findings are most consistent with the liquid water sills model and the 

cryovolcanism model of microfeature formation, though there is also the question of 

whether different microfeatures are the result of different variations of the same process 

or if these microfeatures are different stages along a continuum. Pappalardo et al. (1998) 

first suggested that the different microfeatures are genetically related, and that domes and 

chaos were especially indicative of a warm-ice diapir within a convecting ice shell 

between 3 and 10 km thick. Based on the current modeling results, the small sizes and 

prevalence of pits and domes are inconsistent with the diapir formation model. However, 

because chaos features and hybrids are typically larger than other microfeature types, 

diapirism cannot be ruled out as a formation mechanism for chaos. Cryovolcanism 

models (Quick and Marsh 2016; Quick et al., 2017) are able to recover the topographic 

signatures of domes and can explain the presence of salts and lower normalized 

reflectance within chaos and Type I hybrid features. These models fail to fully explain all 
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microfeatures, though the current model’s predictions match well with observations. 

Finally, the sills model (Schmidt et al., 2011; Manga and Michaut, 2017) invokes the 

presence of a liquid water sill, in which the depth of the sill relative to the surface and the 

strength of the ice layer containing the sill control the microfeature formed. This model 

also details how microfeatures can change morphology over time. It successfully 

predicted that chaos would be larger than other microfeature types, but inaccurately 

predicted that domes will be more numerous and larger than pits. Other predictions were 

evaluated in other chapters. 

Even with the microfeatures in the RegMaps confidently mapped, it was not 

enough information to narrow down the potential formation models. More data were 

required, which meant mapping was expanded to include low-resolution (> 1 km/pixel) 

images. To investigate the different sources of error and the corresponding error rates, an 

independent dataset was created of the E15RegMap01 region mapping features in four 

low-resolution images; this dataset was then compared to the RegMap dataset. A total of 

214 features were mapped in these LowRes images, and 186 of them were below the 

microfeature size cut-off of 100 km2 in area. A total of 193 microfeatures that were 

mapped in the RegMap dataset were missed in the LowRes dataset. The majority of the 

mapped microfeatures were classified as either chaos or spots because of the prominence 

of these features relative to the background terrain. Partially for this reason, chaos, spots, 

and hybrids that were mapped in the RegMap dataset were also mapped in the LowRes 

dataset at high percentages (77.9%, 65.7%, and 73.9%, respectively). Only 5% of pits and 

24.2% of domes were recovered in the LowRes dataset. Moreover, chaos features were 

accurately called chaos 59.5% of the time, while the other feature types had relatively 



  219 

low accuracy percentages. This shows that chaos is relatively easy to both find and 

identify even in low-resolution images. However, there is a 25% chance that features 

mapped in low-resolution images are false positive phantom features; that is, they are 

features mapped in low-resolution images that have no corresponding morphology in the 

RegMaps. “Spots” mapped in low-resolution images were most likely to be phantom 

features.  

This work quantified error estimates and identified sources of error for maps that 

include microfeatures outside of RegMap areas (Leonard et al., 2018). It revealed that 

almost no pits or domes are mapped in low-resolution images, and that even when they 

are mapped, they are almost never classified accurately. On the other hand, chaos, 

hybrids, and spots are mapped and accurately classified at high rates. This suggests that 

as many as a third of chaos, hybrids, and spots are left unmapped in low-resolution 

images while almost all domes and pits are left unmapped. It also found that so long as 

features have apparent albedos that are distinct from that of the background terrain, 

features as small as 2.5 km in diameter can be mapped. Finally, phantom features are 

mapped as much as 25% of the time, and often turn out to be dark areas along ridges, but 

can also be areas that are not associated with a microfeature in the RegMap images. 

Creating a quantified framework for classifying these microfeatures could result 

in a higher accuracy across all feature types. Using a hierarchical classification analysis 

called a discriminant function analysis (DFA), the microfeatures were evaluated for their 

statistically significant quantitative differences and how well those differences separated 

the microfeature groups. The variables that were included in the analysis were size (area, 

perimeter, diameter), normalized reflectance (mean, median, standard deviation, and 
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range), and shape (three ratios, aspect ratios, and irregularity). In general, the quantitative 

classification was able to sort between the feature types with an accuracy that was above 

and beyond what could be expected from random chance. The classification was easily 

able to sort between chaos/spots/hybrids and pits/domes, but had difficulty sorting within 

those groups. To the computer, pits and domes are almost identical, echoing the results of 

the RegMap mapping study. 

The LowRes dataset was then added into the analysis as unsorted data points so 

the classification from the quantified approach could be compared to the actual 

classification from the RegMaps. The computer was comparable to the human mapper at 

classifying features mapped in the low-resolution images, but accurately classified pits 

and domes significantly more often than the human did. When the LowRes microfeatures 

were sorted into either chaos/spots/hybrids or domes/pits, 76 out of 111 of them were 

accurately attributed to their correct supergroup, 62 out of 86 (72.1%) classified into the 

chaos/spots/hybrids supergroup and 14 out of 25 (56.0%) classified into the pits/domes 

group. This work could form the basis for future, more advanced applications for 

quantitative classification, including but not limited to logistic regression and machine 

learning to classify obscured features on the surfaces of planetary bodies.  More 

immediately, however, this work can be used to improve the accuracy of the 

classification of features mapped in low-resolution images when expanding mapping to 

new areas.  

 Finally, one of the predictions of the sills model (Schmidt et al., 2011; Manga and 

Michaut, 2017), that pits are clustered in space, was evaluated in more detail. This model 

is particularly compelling as it implies the presence of liquid water currently underneath 
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pits. If this is true, then pits should be considered an important target for future 

astrobiological studies. To test for clustering within these feature groups, multiple nearest 

neighbor clustering analysis tests were run on every microfeature type to study the degree 

of clustering across Europa’s RegMaps. The average minimum distances for each feature 

type to every other feature type were also calculated. Finally, multiple Monte Carlo 

simulations were run to create additional datasets for comparison to the observed 

distribution of microfeatures. While other microfeature types vary between clustered and 

randomly distributed in their regions, pits are consistently clustered across all four 

RegMaps studied. Additionally, the average minimum distances between pits to other pits 

were consistently lower than the average minimum distances between pits to any other 

feature type. The Monte Carlo simulations also showed that the observed average 

minimum distances were significantly smaller than the expected distances in simulations 

that approximated the size of a RegMap and the entire global area between 60ºS and 

60ºN latitude. All this evidence points to the conclusion that pits are clustered in space on 

Europa.  

 This information was then used to explore the implications of the sills model on 

future exploration of Europa. Examining the thermal measurements taken by Galileo 

could identify clusters of pits even in areas outside of the RegMaps, another idea that 

could be tested with the E-THEMIS instrument on the Europa Clipper mission. Assuming 

once more that the sills model is correct, then it is possible to model the subsurface 

structure assuming the relationship between a feature’s radius and the proposed depth of 

its sill. A lander mission should be able to determine the presence of liquid water in the 

sill from seismology measurements, assuming that there is liquid water present at all. The 
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probability that the lander will be within 30 km of a pit ranges from 3.67–50.5%, 

depending on which RegMap the lander is assigned to land in. It also provides the first 

view of Europa’s potential subsurface informed by observations and makes testable 

predictions for future missions. 

6.3 Predictions for Future Exploration of Europa 

 Looking ahead to future missions that will study Europa’s geology and subsurface 

structure with the knowledge acquired from this work, here are some predictions 

regarding Europa and its underlying processes: 

1. Spots do not exist. Spots are defined as small, flat areas with no obvious interior 

disruption and exceptionally low normalized reflectance values relative to other 

microfeature types, including chaos and hybrids. The RegMap dataset shows that 

there are no spots above 35 km2 in area, and that there is a significant drop in the 

overall number of chaos features below 25 km2. Additionally, spots and chaos are 

easily confused for each other in low-resolution images, and the quantitative 

classification analysis showed low specificity when sorting between chaos and 

spots, partially because of the larger number of chaos features included, but also 

because these two microfeature types are morphologically similar. In fact, the 

biggest difference between chaos and spots is that chaos is typically larger. Chaos 

and spots are uncommon in images with resolutions under 100 m/pixel (Zamora et 

al., 2019), though the completeness of the microfeature dataset at small sizes is 

uncertain. Knowing how similar these features are and the apparent size trade-off 

between the two microfeature types, it is likely that spots do not exist as a 

separate feature type. It is likely that spots are actually small chaos features whose 
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rough interiors are not resolvable even in the RegMap images. Further analysis 

searching for chaos and spots in high-resolution images can test the veracity of 

this prediction, though this approach is hindered by the small amount of surface 

area they cover. If these images prove insufficient to answer this question, it will 

be up to Europa Clipper’s Europa Imaging System instrument (EIS; Turtle et al., 

2016) to provide the necessary instruments.  

2. Features are forming along a continuum. Instead of these microfeatures 

forming as the end result of variations of the same process, it is more likely that 

these features are evolving and morphing into each other as part of a continuous 

process. The most compelling evidence for this is the presence of the hybrid 

features. They come in two types, one that is more chaos-like and the other that is 

more dome-like, and could be evidence of a transition from domes to chaos or 

vice versa. Moreover, the quantifiable similarities that hybrids have between 

chaos and domes is visible even in statistical classification tests. These 

microfeatures generally have the same clustering patterns as well; if a feature 

changed from one feature type to another, so long as all features in the vicinity 

changed at the same rate, then the clustering patterns of the original feature type 

should be preserved in the new type. The way that a future flyby mission could 

test this is to simply re-image the surface and count the number of hybrid features 

that now exist in the current RegMap boundaries. If the ratio between the two 

types of hybrids has changed significantly or if there are different features in 

place of where hybrids used to be, then it is evidence that the features are 

evolving into each other and the direction of that evolution. This finding would 
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support the sills model over the other microfeature formation models, and would 

therefore heavily imply that there is liquid water underneath pits and some chaos 

features. To test this prediction further, images taken of the same place on Europa 

at two significantly different times (e.g., years apart) could be studied for 

noticeable differences that would suggest a change in the surface. Such an 

approach has been applied to identify new craters on Earth’s moon using data 

from the Lunar Reconnaissance Orbiter Camera (LROC) over the course of a 

decade (Speyerer et al., 2016). 

3. There are upwards of 8,000 pits, 8,000 microchaos features, 2500 domes, and 

2700 hybrid features within 60ºS and 60ºN latitude globally on Europa. These 

are estimates taken from the microfeature density values in E15RegMap01 scaled 

linearly up to the total area of this region on Europa. These are rough estimates, as 

many areas in between these lines of latitude are presumed to be covered with 

large chaotic areas where microfeatures probably will not be found. The 

geographical limits of these chaotic regions, however, is not well known because 

of the lack of RegMap-comparable images in these areas. It is possible these areas 

of large chaos are overestimated. In addition, even if microfeatures are sought in 

these low-resolution images that span these previously unstudied regions, it is 

very likely that pits and domes will not be mapped at all. It will therefore be up to 

the EIS to return images ≤ 50 m/pix in resolution over 95% of Europa’s surface. 

These images will likely be taken during low-altitude flybys that will happen later 

in the mission. To study this prediction earlier in the mission, chaos and hybrid 

features can be mapped in low-resolution images and classified either by human 
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eye or with a quantitative sorting test (either discriminant function analysis or a 

more advanced test such as logistic regression). This can constrain areas where 

microfeatures might be. As these microfeatures tend to cluster with each other in 

general, these areas found in low-resolution could be highlighted as areas for 

further study during low-altitude flybys or potentially even surface exploration 

with the Europa Lander mission (Hand et al., 2017). 

4. Pit clusters will be correlated with thermal inertia hot spots. If the sills model 

is true, then pits will have liquid water in relative shallow (≤ 2 km) pockets within 

Europa’s ice shell. The thermal signature of liquid water in the ice shell should be 

visible in the surface temperatures and the thermal inertia measurements even at 

large distances from Europa. Measurements at this scale may be too coarse to 

resolve the signatures of individual pits, but if microfeatures are clustered across 

Europa, then they should have a large collective heat signature detectable even 

from large distances. These thermal signatures will be taken with the E-THEMIS 

instrument. Locating these hot spots and then examining that surface area closer 

with the EIS instruments will verify this prediction. Additionally, the REASON 

radar sensing instrument will be able to detect the presence of liquid water in 

these hot spot regions; as radar waves cannot travel through liquid, these areas 

should be straightforward to detect. If these radar-lacking areas also correlated 

with the thermal inertia hot spots, then even before EIS images the area, it is 

strong evidence of liquid water within the ice shell. EIS can confirm whether or 

not these signatures are due to a locally thin ice shell (which could be an alternate 

explanation for these potential observations) or if they are truly due to sills 
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forming microfeatures. Some of these areas could be found with thermal data 

from Galileo, though the Europa Clipper will give better data due to better 

constraints on bolometric albedo that is necessary to accurately predict thermal 

inertia measurements on Europa. 

6.4 Final Thoughts 

 Despite their small size, microfeatures on Europa are a large part of the story of 

Europa’s evolution, geologic processes, and ice shell dynamics. At the moment they are 

some of the best clues available to study the subsurface activity and Europa’s ocean, but 

many models have previously excluded them. They vary in morphologies and distribution 

and clustering, but they are likely related to each other in a fundamental way, and should 

be included as equally valuable pieces of Europa’s story alongside large chaos, ridges, 

and cycloids. This work sought to understand them better and connect it back to the 

bigger picture questions regarding Europa: How do Europa’s geologic microfeatures 

form? Are they related to each other in any way, and if so, how? Is their formation related 

at all to the subsurface ocean? And what do they say about Europa’s potential for 

habitability? Europa is known to be a dynamic world. If it is habitable, how can we 

confirm it? What should we as scientists and explorers look for, and where? 

 It is impossible to know what Galileo the scientist would think of these 

discoveries. It is equally impossible to know exactly what future exploration of Europa 

will uncover, though some predictions have been made here. This research is the 

foundation for future study of Europa’s microfeatures, but it builds on the work of many 

other scientists and observers who have come before, stretching back to 1610. It is with 

great pride and hope that this work is submitted for academic consumption. Now is the 
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time to turn towards the future and seek discoveries with carefully trained but open 

minds, just as Galileo himself did on a cold January night long ago. 
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The contents of Chapter 2 have been previously published in a manuscript to the 

journal Icarus, vol. 329, pages 101–123 under the title of: “Mapping Europa’s 

microfeatures in regional mosaics: new constraints on formation models.” The 

permissions of all coauthors—Z. A. Torrano, K. N. Singer, and A. R. Rhoden—are 

included in this Appendix. All coauthors have given their consent for that work to be 

repurposed here. The additional information about the custom MATLAB codes was not 

included in the published material and is only reported here (Appendix D).  

The contents of other chapters have been given in abstracts but have not formally 

been published in any scientific journal. Content from Chapters 3 and 4 will be published 

in either one or two upcoming manuscript(s) about the limits of mapping microfeatures in 

low-resolution images and further results of the DFA tests. This publication will be 

supplemented by the results of mapping another area (E17RegMap01) in low-resolution 

images to provide contrast for the E15RegMap01 area. 

Noviello, J. L., Rhoden, A. R. (in preparation; to be submitted fall 2019). Mapping 
microfeatures in low-resolution Galileo images. Likely submission to Icarus. 

 
Noviello, J. L., Rhoden, A. R. (in preparation; to be submitted fall/winter 2019). 

Quantitative classification of microfeatures on Europa: Expanding geomorphic 
mapping to low-resolution images. Likely submission to Icarus or EPSL. 

 

Finally, the contents of Chapter 5 will be submitted as a separate manuscript. This work 

will be supplemented by additional Monte Carlo analyses that will examine all 

microfeatures, as well as identify the probability of finding the degree of clustering 

within an area equal to the size of the E15RegMap01 area. Finally, this model will 

include modifications to the Manga and Michaut (2017) model to fit the updated 



  242 

observations, especially those regarding the quantitative clustering measurements of all 

microfeatures.  

This manuscript should include new numerical simulations that should further 

constrain the timeline of microfeature formation. Additionally, this would could expand 

on the idea that multiple microfeatures combine with each other on the surface to form 

larger chaos features by modeling and studying the combination of sills in the subsurface 

or by determining how closely sills can be spaced. Finally, it is important to determine 

the smallest sized microfeature that the sills model could produce, which leads to 

assumptions regarding the strength of different layers within the ice shell (i.e., whether or 

not a brittle upper layer could form and retain a sill).  

Noviello, J. L., Rhoden, A. R., Manga, M., Michaut, C. (in preparation; to be 
submitted spring 2020). The spatial distribution of microfeatures on Europa: 
Implications for subsurface structure. Likely submission to J. Geophys. Res.  
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APPENDIX B 

COMPLETE DETAILS OF IMAGES USED FOR REGMAP MAPPING 
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Appendix Table B-1: E15RegMap01 images used for mapping 
 

Image ID Incidence 
Angle 

Emission 
Angle 

Phase 
Angle 

Pixel 
Resolution 

Center 
Longitude 
(360 W) 

1800r 80.77 27.42 62.79 231.58 229.16 
1814r 80.77 27.42 62.79 231.58 228.01 
1827r 80.00 32.49 62.91 231.69 226.62 
1840r 79.63 38.82 63.04 232.12 225.86 
1852r 79.87 46.48 63.17 232.97 224.88 
1865r 81.15 55.96 63.29 234.39 222.08 
1879r 74.47 24.29 63.10 228.46 220.47 
1901r 74.47 24.29 63.10 228.46 218.62 
1914 73.81 30.30 63.22 228.64 216.69 

 
Appendix Table B-2: E15RegMap02 images used for mapping 
 

Image ID Incidence 
Angle 

Emission 
Angle 

Phase 
Angle 

Pixel 
Resolution 

Center 
Longitude 
(360 W) 

4252r 21.76 81.75 232.23 232.30 77.40 
4265r 28.22 75.09 233.49 233.58 84.41 
4278r 26.16 81.60 233.79 233.87 77.88 
4300r 32.07 74.87 235.09 235.19 85.38 
4313r 31.74 81.57 235.59 235.69 78.68 
4326r 37.10 74.72 236.93 237.06 86.17 
4339r 38.31 81.45 237.68 237.80 79.03 
4352r 43.34 74.58 239.09 239.26 87.69 
4365r/4366r 
* 45.30 82.46 240.00 240.17 78.52 
4378r 49.90 75.48 241.45 241.69 88.88 
4401r 100.24 54.69 82.36 243.31 80.45 
4413r 100.68 59.65 75.16 245.20 93.46 
4426r 100.16 67.05 82.32 248.90 82.27 
4439r 101.22 50.21 68.70 243.96 97.64 

 
Appendix Table B-3: E17RegMap01 images used for mapping 
 

Image ID Incidence 
Angle 

Emission 
Angle 

Phase 
Angle 

Pixel 
Resolution 

Center 
Longitude 
(360 W) 

4152r/4153r* 81.27 28.67 71.31 227.98 228.12 
4165r/4166r* 81.28 22.37 71.23 226.75 227.81 
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4178r/4179r* 74.78 20.72 71.67 226.07 221.31 
4200r/4201r* 75.35 14.20 71.56 225.06 222.15 
4213r/4214* 75.49 8.54 71.51 224.25 222.03 
4226r/4227r* 76.39 5.09 71.41 223.63 222.31 
4253r/4254r* 76.41 7.16 71.38 222.65 221.58 
4265r/4266r* 75.83 12.02 71.41 222.36 220.43 
4278r/4279r* 74.85 17.69 71.50 222.23 218.26 
4300r/4301r* 74.50 23.95 71.55 222.32 216.47 
4313r/4314r* 74.23 31.07 71.63 222.62 213.92 
4326r/4327r* 75.07 38.34 71.64 223.22 212.49 
4340r 75.97 46.68 71.68 224.16 210.37 
4500r& 77.91 25.78 100.15 202.63 222.21 
4552r 80.73 17.37 70.63 212.45 227.47 
4565r 81.17 13.24 70.54 211.66 227.68 
4578r 81.51 11.23 70.48 211.05 227.65 
4600r 81.37 11.60 70.47 210.56 227.03 
4613r 81.00 14.34 70.49 210.21 226.01 
4626r 80.40 18.66 70.55 210.01 224.73 
4639r 79.82 23.77 70.61 209.99 223.20 
4652r 79.09 29.64 70.71 210.17 221.08 
4665r 80.16 36.44 70.67 210.61 220.65 

 & = taken on E19 orbit of the Galileo mission 
 
Appendix Table B-4: E17RegMap02 images used for mapping 
 

Image ID Incidence 
Angle 

Emission 
Angle 

Phase 
Angle 

Pixel 
Resolution 

Center 
Longitude 
(360 W) 

6752r 83.22 12.27 91.81 217.87 72.92 
6778r 83.25 17.44 91.85 219.23 73.99 
6800r 77.32 26.79 92.28 220.66 82.38 
6813r 83.29 23.54 91.88 220.81 74.50 
6826r/6827r* 77.24 33.11 92.32 222.50 84.05 
6839r 83.29 30.32 91.92 222.63 75.51 
6852r/6853r* 77.16 40.28 92.35 224.65 86.20 
6865r 83.24 37.77 91.95 224.74 76.79 
6878r/6879r* 76.95 48.79 92.39 227.24 90.46 
6900r/1901r* 83.18 46.34 91.99 227.27 79.24 
6913r/6914r* 76.67 59.42 92.42 230.55 97.61 
7052r 83.01 56.85 92.20 235.09 85.00 

* = these images were mosaicked together to create a complete image of the area 
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APPENDIX C 

DETAILS REGARDING PHOTOMETRIC CORRECTIONS IN ISIS3 
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The two-term Henyey-Greenstein (2T-HG) photometric function was applied to each 

image, defined by the following function:  

d(<) =
(1 + e)
2

1 − f"

(1 + 2f cos < + f")
g
"
+
(1 − e)
2

1 − f"

(1 − 2f cos < + f")
g
"
 

In this equation, α represents the phase angle of an image, b is the approximate widths of 

the two independent scattering lobes, and f is the partition coefficient. The values for the 

parameters named here are c = 0.113 for the leading hemisphere, c = 0.391 for the trailing 

hemisphere, b = -0.429 for the leading hemisphere, and b = -0.443 for the trailing 

hemisphere (Domingue et al., 1990). The differences between the parameters for the 

leading and trailing hemispheres are due to the increased amount of ionic bombardment 

present on the trailing hemisphere. Multiple studies (Hartman and Domingue, 1997; 

Shepard and Helfenstein, 2007) show that there is no improvement in the model fit 

between the 2T-HG function over the three-term Henyey-Greenstein (3T-HG) function 

when phase angles are <130°; hence, we opted for the simpler 2T-HG equation. 
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APPENDIX D 

CUSTOM MATLAB CODES FOR IMAGE CORRECTION 

  



  253 

These MATLAB codes were custom written to remove the linear shadow gradient 

present in the Galileo RegMap images. There are three codes that are run sequentially to 

remove the linear gradient. An example of a before and after image is shown in Figure D-

1. Figures D-2 and D-3 shows that after the image is broken into eight or more strips, 

there is no improvement in the linear model that describes the shadow gradient; for this 

reason, 10 was determined as the appropriate number of strips to split the images into 

while correcting them with these codes. 

All these codes do is remove the linear trend in the data (Appendix Figure D-4) 

while maintaining the residuals (Appendix Figure D-5), where the variations in 

normalized reflectances lie. The codes are provided after the images. A user guide for 

these codes is available upon request.  

First, the code breaks the image down into strips according to an equal number of 

pixels. Next, the mean and standard deviation of the digital numbers (DNs) of each strip 

were calculated and plotted against the strip’s center longitude. A simple linear model 

with a slope and y-intercept was created of the DNs vs. longitude. The difference 

between the model predicted maximum DN and the actual mean DN of that strip is the 

residual, h (Figure D-5). This value of h was applied to every DN in the strip to correct 

the values to maintain the variations in DNs across strips while correcting them to 

fluctuate around the same value and brighten the entire image to a uniform value 

(Appendix Figure D-5). The strips were then put back into a single image which could 

then be projected using the ISIS3 commands.  
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Appendix Figure D-1: Before and after MatLab code correction. A) 
Uncorrected Galileo image 1865r. B) MatLab corrected Galileo 
image 1865r. 
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Appendix Figure D-2: The change in mean DN values of image strips vs. 
longitude in Galileo image 1865r under varying strip numbers. At small 
numbers of strips, the calculated linear slope is more variable, but stabilizes 
after 8 strips.  
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Appendix Figure D-3: The value of the calculated linear slope as a 
function of number of image strips. Note that after eight strips, the value of 
the slope plateaus and the value of the slope does not significantly change. 
Hence, any value of strip numbers above eight is appropriate for use. 
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Appendix Figure D-4: Graphical representation of the MatLab code’s 
function. The model (red line) is fit to the data (black line), and then the 
maximum DN value of the brightest strip (blue line) is used to correct the 
other strips according to a calculated h value (green). This preserves the 
variation between the strip DNs but brightens the image to a uniform value 
for easy comparison between features in different locations in the image. 
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Appendix Figure D-5: The preservation of variation after MatLab 
correction for Galileo image 1865r. The blue line represents the maximum 
value as predicted by the model (red line) seen in Figure D-4; note that the 
data varies above and below the line, but the horizontality of the blue line 
shows that the linear gradient has been removed. 



  259 

StripTest.m 
 
%I_start=imread('1865r.png'); %import the test image; this is if .png 
files are used (turns out, unlikely) 
  
%This part sets up the binary file for analysis 
row=800;  col=800; 
fid=fopen('1865r_calIF.raw','r'); 
img=fread(fid, [col row],'uint16=>uint16');  
I_start=img'; 
%fclose('1865r.raw'); 
imshow(I_start); 
  
%I=imrotate(I_start,180);%rotates image to how it appears in Europa 
basemap 
%(only used for E15RegMap01 images, as E15RegMap02 doesn't need it) 
%I=I_start; %only for images that need not be rotated to align in 
Europa 
%basemap.  
%Assumption is that darker strips will be on the left side of the 
image. 
imshow(I) 
title('Galileo image 1865r') 
xlabel('Longitude') 
ylabel('Latitude') 
  
%Divide the image into strips 
[r,c,p]= size(I);%r-rows,c-columns,p-planes 
%I(I==0) = NaN; Might as well NaN everything before the strips are made 
  
% 1865r_mean=zeros(size(I)); %make an array to put the elements that 
aren't equal to zero 
%  
% for element in I 
%     if element~=0; 
%          
  
figure(); 
%suptitle('Galileo 1865r in Strips') 
% suplabel('Latitidue','y') 
% suplabel('Longitude') 
A=I(:,1:c/10,1); 
subplot(1,10,1); 
%subplot(1,2,1); 
% n = sum(x~=0); This was the internet fix, but it only returned the 
% columns without 0s, which is not what I wanted. I am disappointed. 
Will 
% seek additional advice from people who know better. 
% n(n==0) = NaN; 
% q = sum(x) ./ n; 
imshow(A); 
mean1865r_A=mean(A(:)); 
std1865r_A=std2(A(:)); 
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B=I(:,c/10+1:c/10+80,1); 
subplot(1,10,2); 
%subplot(1,2,1); 
imshow(B); 
mean1865r_B=mean(B(:)); 
std1865r_B=std2(B(:)); 
  
C=I(:,c/10+81:c/10+160,1); 
subplot(1,10,3); 
%subplot(1,2,1); 
imshow(C); 
mean1865r_C=mean(C(:)); 
std1865r_C=std2(C(:)); 
  
D=I(:,c/10+161:c/10+240,1); 
subplot(1,10,4); 
%subplot(1,2,1); 
imshow(D); 
mean1865r_D=mean(D(:)); 
std1865r_D=std2(D(:)); 
  
E=I(:,c/10+241:c/10+320,1); 
subplot(1,10,5); 
%subplot(1,2,1); 
imshow(E); 
mean1865r_E=mean(E(:)); 
std1865r_E=std2(E(:)); 
  
F=I(:,c/10+321:c/10+400,1); 
subplot(1,10,6); 
%subplot(1,2,1); 
imshow(F); 
mean1865r_F=mean(F(:)); 
std1865r_F=std2(F(:)); 
  
G=I(:,c/10+401:c/10+480,1); 
subplot(1,10,7); 
%subplot(1,2,1); 
imshow(G); 
mean1865r_G=mean(G(:)); 
std1865r_G=std2(G(:)); 
  
H=I(:,c/10+481:c/10+560,1); 
subplot(1,10,8); 
%subplot(1,2,1); 
imshow(H); 
mean1865r_H=mean(H(:)); 
std1865r_H=std2(H(:)); 
  
J=I(:,c/10+561:c/10+640,1); 
subplot(1,10,9); 
%subplot(1,2,1); 
imshow(J); 
mean1865r_J=mean(J(:)); 
std1865r_J=std2(J(:)); 
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K=I(:,c/10+641:c/10+720,1); 
subplot(1,10,10); 
%subplot(1,2,1); 
imshow(K); 
mean1865r_K=mean(K(:)); 
std1865r_K=std2(K(:)); 
  
%COLORBAR TIME 
  
%Divide the image into strips 
[r,c,p]= size(I);%r-rows,c-columns,p-planes, don't always need this 
  
figure(); 
subplot(1,10,1); 
imagesc(A,[min(round(mean1865r_A - std1865r_A)), max(round(mean1865r_A 
+ std1865r_A))]); colorbar 
  
subplot(1,10,2); 
imagesc(B,[min(round(mean1865r_B - std1865r_B)), max(round(mean1865r_B 
+ std1865r_B))]); colorbar 
  
subplot(1,10,3); 
imagesc(C,[min(round(mean1865r_C - std1865r_C)), max(round(mean1865r_C 
+ std1865r_C))]); colorbar 
  
subplot(1,10,4); 
imagesc(D,[min(round(mean1865r_D - std1865r_D)), max(round(mean1865r_D 
+ std1865r_D))]); colorbar 
  
subplot(1,10,5); 
imagesc(E,[min(round(mean1865r_E - std1865r_E)), max(round(mean1865r_E 
+ std1865r_E))]); colorbar 
  
subplot(1,10,6); 
imagesc(F,[min(round(mean1865r_F - std1865r_F)), max(round(mean1865r_F 
+ std1865r_F))]); colorbar 
  
subplot(1,10,7); 
imagesc(G,[min(round(mean1865r_G - std1865r_G)), max(round(mean1865r_G 
+ std1865r_G))]); colorbar 
  
subplot(1,10,8); 
imagesc(H,[min(round(mean1865r_H - std1865r_H)), max(round(mean1865r_H 
+ std1865r_H))]); colorbar 
  
subplot(1,10,9); 
imagesc(J,[min(round(mean1865r_J - std1865r_J)), max(round(mean1865r_J 
+ std1865r_J))]); colorbar 
  
subplot(1,10,10); 
imagesc(K,[min(round(mean1865r_K - std1865r_K)), max(round(mean1865r_K 
+ std1865r_K))]); colorbar 
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%close all 
 
Variable.m 
 
%Script to take the means and standard deviations out of the workspace 
and 
%into a usuable format for the normalized reflectance graph 
%The longitude must be manually entered by the user in column 1 
  
Image1865r=zeros(10,4); 
  
%Longitude must be answered manually. Best to save this information in 
an Excel 
%document so it can be entered in again easily. 
  
%put all the means into a column 
Image1865r(1,2)=mean1865r_A; 
Image1865r(2,2)=mean1865r_B; 
Image1865r(3,2)=mean1865r_C; 
Image1865r(4,2)=mean1865r_D; 
Image1865r(5,2)=mean1865r_E; 
Image1865r(6,2)=mean1865r_F; 
Image1865r(7,2)=mean1865r_G; 
Image1865r(8,2)=mean1865r_H; 
Image1865r(9,2)=mean1865r_J; 
Image1865r(10,2)=mean1865r_K; 
  
%put all the standard deviations into a column 
Image1865r(1,3)=std1865r_A; 
Image1865r(2,3)=std1865r_B; 
Image1865r(3,3)=std1865r_C; 
Image1865r(4,3)=std1865r_D; 
Image1865r(5,3)=std1865r_E; 
Image1865r(6,3)=std1865r_F; 
Image1865r(7,3)=std1865r_G; 
Image1865r(8,3)=std1865r_H; 
Image1865r(9,3)=std1865r_J; 
Image1865r(10,3)=std1865r_K; 
  
%calculate the error 
error=Image1865r(:,3)./(800*40)^(1/2); 
Image1865r(:,4)=error; 
 
 
Plotting.m 
 
%Will linearly correct the Galileo images, assuming brightness going 
from left 
%to right within the image. 
  
%Plotting the norm refl. data vs. longitude 
imshow(I) 
title('Galileo image 1865r') 
xlabel('Longitude') 
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ylabel('Latitude') 
  
longitude=Image1865r(:,1); 
norm_refl=Image1865r(:,2); 
std_dev=Image1865r(:,3); 
error=Image1865r(:,4); 
  
figure() 
%plot(flip(longitude),norm_refl) 
plot(longitude,norm_refl,'k') 
title('Mean DN of Strips vs. Longitude'); 
set(gca,'Xdir','reverse') 
xlabel('Longitude (degrees)'); 
ylabel('Mean DN of Strip'); 
saveas(gcf,'ImageData1865.png') 
x=Image1865r(:,1); 
y=Image1865r(:,2); 
%b1=x\y; %Just to get the simple slope, not best practice 
%The \ operator performs a least-squares regression. 
%calculate y intercept by padding x with a column of 1s and using the 
LSR operator 
X = [ones(length(x),1) x]; 
b = X\y; 
  
model=X*b; 
y_int=b(1); 
m=b(2); 
%plot(longitude,model,'r-') 
  
%calculate R^2 yourself 
Rsq = 1 - sum((y - model).^2)/sum((y - mean(y)).^2); 
  
% 95% confidence interval  
figure() 
errorbar(longitude,norm_refl,2.*error,'k') 
title('Mean DN of Strips vs. Longitude, 1865r'); 
set(gca,'Xdir','reverse') 
xlabel('Longitude (degrees)'); 
ylabel('Mean DN of Strip'); 
%scatter(x,y); 
hold on 
plot(longitude,model,'r-') 
legend('data','model','Location','best'); 
saveas(gcf,'ImageDataModel1865.png') 
  
%text(141,160,'model = -11.653*x + 1727.2') 
%text(141,155,'R^2 =') 
  
%Time to normalize the images 
Image1865r(:,5)=zeros; %create a new column in the image variable for 
predicted values 
Image1865r(:,5)=y_int+(x.*m); 
%create a new column for the residuals 
Image1865r(:,6)=zeros; 
Image1865r(:,6)=Image1865r(:,5)-Image1865r(:,2); %anomalies 
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%Figure out what the max is and then add the differences into a new 
column 
Image1865r(:,7)=zeros; 
%max model value 
max_value=Image1865r(10,1)*m+y_int; 
%calculate the model's residual from the max 
Image1865r(:,7)=max_value-Image1865r(:,5); 
%Show the max vs. the model vs. the data 
figure() 
errorbar(x,y,2.*error,'k') 
set(gca,'Xdir','reverse') 
title('Mean DN of Strips vs. Longitude with Model, 1865r'); 
xlabel('Longitude (degrees)'); 
ylabel('Mean DN of Strip'); 
hold on 
plot(x,model,'r-') 
%make a column to call x1, for the reference line 
Image1865r(:,8)=ones; 
x1=Image1865r(:,8); 
max_line=Image1865r(:,8).*max_value; 
plot(x,max_line,'b') 
legend('Data','Model','Max Value','Location','best'); 
saveas(gcf,'ImageDataModelFit1865.png') 
  
%apply the image corrections to the strip matrices 
CorA=A+Image1865r(1,7); 
CorB=B+Image1865r(2,7); 
CorC=C+Image1865r(3,7); 
CorD=D+Image1865r(4,7); 
CorE=E+Image1865r(5,7); 
CorF=F+Image1865r(6,7); 
CorG=G+Image1865r(7,7); 
CorH=H+Image1865r(8,7); 
CorJ=J+Image1865r(9,7); 
CorK=K+Image1865r(10,7); 
  
%now the MosaicM script is used to put the strips back together into a 
%single image of size(800,800,1). 
Corrected = uint16(zeros(size(I))); 
Corrected(:,1:80,1)=CorA; 
Corrected(:,81:160,1)=CorB; 
Corrected(:,161:240,1)=CorC; 
Corrected(:,241:320,1)=CorD; 
Corrected(:,321:400,1)=CorE; 
Corrected(:,401:480,1)=CorF; 
Corrected(:,481:560,1)=CorG; 
Corrected(:,561:640,1)=CorH; 
Corrected(:,641:720,1)=CorJ; 
Corrected(:,721:800,1)=CorK; 
  
Corrected_1865r16=Corrected(:,:,1); 
  
% %Ensure the anomalies are preserved by one last graph 
 %only corrections 
Image1865r(:,9)=zeros; 
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Image1865r(:,10)=zeros; 
%means 
Image1865r(1,9)=mean(CorA(:)); 
Image1865r(2,9)=mean(CorB(:)); 
Image1865r(3,9)=mean(CorC(:)); 
Image1865r(4,9)=mean(CorD(:)); 
Image1865r(5,9)=mean(CorE(:)); 
Image1865r(6,9)=mean(CorF(:)); 
Image1865r(7,9)=mean(CorG(:)); 
Image1865r(8,9)=mean(CorH(:)); 
Image1865r(9,9)=mean(CorJ(:)); 
Image1865r(10,9)=mean(CorK(:)); 
  
%std deviations (for completeness) 
Image1865r(1,10)=std2(CorA(:)); 
Image1865r(2,10)=std2(CorB(:)); 
Image1865r(3,10)=std2(CorC(:)); 
Image1865r(4,10)=std2(CorD(:)); 
Image1865r(5,10)=std2(CorE(:)); 
Image1865r(6,10)=std2(CorF(:)); 
Image1865r(7,10)=std2(CorG(:)); 
Image1865r(8,10)=std2(CorH(:)); 
Image1865r(9,10)=std2(CorJ(:)); 
Image1865r(10,10)=std2(CorK(:)); 
  
figure() 
corr_c=Image1865r(:,9); 
errorbar(x,corr_c,2.*error,'k-') 
set(gca,'Xdir','reverse') 
title('Mean DN of Corrected Strips vs. Longitude, 1865r'); 
xlabel('Longitude (degrees)'); 
ylabel('Mean DN of Strip'); 
hold on 
%plot(x,corr_ac,'r-') 
%make a column to call x1, for the reference line 
plot(x,max_line,'b') 
legend('Data with Correction','Max Value','Location','best'); 
saveas(gcf,'ImageSquiggle1865.png') 
  
% %If you need it, make another variable so you can do imrotate(x,180) 
figure() 
imshow(Corrected_1865r16) %change file name here, but that's all. 
Assuming you do each image individually. 
title('Corrected Galileo image 1865r') 
xlabel('Longitude') 
ylabel('Latitude') 
saveas(gcf,'CorrectedImage1865.png') 
  
%Rotate array to get it back to "raw" appearance and save matrix as 
image 
I_fin=imrotate(Corrected_1865r16,180); 
fid=fopen('1865r_corr.raw','w+'); 
cnt=fwrite(fid,I_fin','uint16'); 
  
fclose(fid); 
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%close all 
  
reg1=fitlm(longitude,norm_refl); 
save('Galileo1865r_test.mat') 
%clear all 
 
 
 
 
  



  267 

APPENDIX E 

TABULAR RESULTS OF ALL DFA TESTS FOR ALL REGMAPS 
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APPENDIX F 

PYTHON CODE USED FOR MONTE CARLO CLUSTERING ANALYSES 
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EuropaPits_montecarlo_allofEuropa.py 
 
import csv 

import math 

import numpy as np 

import random 

# import statistics 

# import scipy.stats as st 

 

# ******************************************************************* 

# * Function to compute distance between two lat/lon points on Europa 

# ******************************************************************* 

def separation( lon1, lat1, lon2, lat2 ): 

    radius = 1561       # Europa mean radius in km 

    lon1 = float(lon1) 

    lat1 = float(lat1) 

    lon2 = float(lon2) 

    lat2 = float(lat2) 

     

    diflat = math.radians(lat2-lat1) 

    diflon = math.radians(lon2-lon1) 

     

    a = math.sin(diflat/2) * math.sin(diflat/2) + \ 

        math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * \ 

        math.sin(diflon/2) * math.sin(diflon/2) 

    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) 

    d = radius * c 

    return d 

 

# ******************************************************************* 

# * Function to compute the locations of random pits and bin them 

# ******************************************************************* 

 

def sim_pits(log_bins): 

    random_pits = []     # [ longitude, latitude ] 

    pit_pairs = []   # [ pit1, lon1, lat1, pit2, lon2, lat2, separation ] 

 

    # randomized pit locations 

    num_pits = 7950 

    minlon = 0.0 

    maxlon = 360.0 

    minlat = -60.0 

    maxlat = 60.0 

 

    for x in range(0, num_pits): 
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        randlon = random.uniform(minlon, maxlon) 

        randlat = random.uniform(minlat, maxlat) 

        row = [randlon, randlat] 

        random_pits.append(row) 

   

    num_rows = len(random_pits) 

 

    binnable_sep = [] 

    return_vals = [] # mean, stdev    

    # create pit pairs and separations         

    for x in range (0, num_rows-1): 

        shortest = 100000.0; 

        for y in range (x+1, num_rows): 

            n1 = x+1 

            lon1 = random_pits[x][0] 

            lat1 = random_pits[x][1] 

            n2 = y+1 

            lon2 = random_pits[y][0] 

            lat2 = random_pits[y][1] 

            sep = separation(lon1, lat1, lon2, lat2) 

            # sep = int(sep) 

            if sep < shortest: 

                shortest = sep 

        binnable_sep.append(shortest) 

    # bin 

#    binned = np.histogram(binnable_sep, bins=log_bins) 

#    print ("Separations=",binnable_sep) 

    sep_mean = np.mean(binnable_sep) 

    sep_stdev = np.std(binnable_sep) 

    sep_min = np.min(binnable_sep) 

    sep_max = np.max(binnable_sep) 

    return_vals.append(sep_mean) 

    return_vals.append(sep_stdev) 

    return_vals.append(sep_min) 

    return_vals.append(sep_max) 

#    print ("Mean=",sep_mean) 

    return return_vals 

 

# *************************** MAIN ************************************* 

 

out2 = open('Europapits_montecarlo_global.csv', 'w') 

csvwriter = csv.writer(out2, delimiter=',') 

 

# Create the bins 

bins = np.logspace(0.0, 1.3, num=11) 



  279 

csvwriter.writerow(["Run","Mean nearest neighbor distance", "StDev", "Min","Max"]) 

 

# Execute the simulation runs 

number_runs = 100   # 1000 

sim_runs = [] 

for i in range(0, number_runs): 

    run_results = sim_pits(bins) 

    sim_runs.append(run_results) 

    csvwriter.writerow([i+1,run_results[0], run_results[1], run_results[2], run_results[3]]) 
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EuropaPits_MonteCarlo_E15RM01.py 

 

import csv 

import math 

import numpy as np 

import random 

# import statistics 

# import scipy.stats as st 

 

# ******************************************************************* 

# * Function to compute distance between two lat/lon points on Europa 

# ******************************************************************* 

def separation( lon1, lat1, lon2, lat2 ): 

    radius = 1561       # Europa mean radius in km 

    lon1 = float(lon1) 

    lat1 = float(lat1) 

    lon2 = float(lon2) 

    lat2 = float(lat2) 

     

    diflat = math.radians(lat2-lat1) 

    diflon = math.radians(lon2-lon1) 

     

    a = math.sin(diflat/2) * math.sin(diflat/2) + \ 

        math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * \ 

        math.sin(diflon/2) * math.sin(diflon/2) 

    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) 

    d = radius * c 

    return d 

 

# ******************************************************************* 

# * Function to compute the locations of 119 random pits and bin them 

# ******************************************************************* 

 

def sim_pits(log_bins): 

    random_pits = []     # [ longitude, latitude ] 

    pit_pairs = []   # [ pit1, lon1, lat1, pit2, lon2, lat2, separation ] 

 

    # randomized pit locations 

    num_pits = 119 

    minlon = 127.0 

    maxlon = 142.0 

    minlat = 18.0 

    maxlat = 60.0 

 

    for x in range(0, num_pits): 
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        randlon = random.uniform(minlon, maxlon) 

        randlat = random.uniform(minlat, maxlat) 

        row = [randlon, randlat] 

        random_pits.append(row) 

   

    num_rows = len(random_pits) 

 

    binnable_sep = [] 

    return_vals = [] # mean, stdev    

    # create pit pairs and separations         

    for x in range (0, num_rows-1): 

        shortest = 100000.0; 

        for y in range (x+1, num_rows): 

            n1 = x+1 

            lon1 = random_pits[x][0] 

            lat1 = random_pits[x][1] 

            n2 = y+1 

            lon2 = random_pits[y][0] 

            lat2 = random_pits[y][1] 

            sep = separation(lon1, lat1, lon2, lat2) 

            # sep = int(sep) 

            if sep < shortest: 

                shortest = sep 

        binnable_sep.append(shortest) 

    # bin 

#    binned = np.histogram(binnable_sep, bins=log_bins) 

#    print ("Separations=",binnable_sep) 

    sep_mean = np.mean(binnable_sep) 

    sep_stdev = np.std(binnable_sep) 

    sep_min = np.min(binnable_sep) 

    sep_max = np.max(binnable_sep) 

    return_vals.append(sep_mean) 

    return_vals.append(sep_stdev) 

    return_vals.append(sep_min) 

    return_vals.append(sep_max) 

#    print ("Mean=",sep_mean) 

    return return_vals 

 

# *************************** MAIN ************************************* 

 

out2 = open('Europapits_montecarlo_E15RM01.csv', 'w') 

csvwriter = csv.writer(out2, delimiter=',') 

 

# Create the bins 

bins = np.logspace(0.0, 1.3, num=11) 
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csvwriter.writerow(["Run","Mean nearest neighbor distance", "StDev", "Min","Max"]) 

 

# Execute the simulation runs 

number_runs = 1000   # 1000 

sim_runs = [] 

for i in range(0, number_runs): 

    run_results = sim_pits(bins) 

    sim_runs.append(run_results) 

    csvwriter.writerow([i+1,run_results[0], run_results[1], run_results[2], run_results[3]]) 
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COPYRIGHT CONSIDERATIONS 
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All images used in this dissertation that were not created by the author are in the 

public domain (e.g., those available through the NASA Planetary Data System repository, 

published in an official NASA report, or used under the NASA Media Usage Guidelines). 

A list of these figures with their permissions are included below.  

 

Figure 1-1  

Descrption: The first spacecraft image of Europa taken by the Pioneer 10 mission 

Date: December 1973 

Source: NASA 

Copyright: Public domain, commons license 

 

Figure 1-3  

Descrption: Conamara Chaos as imaged by the Galileo mission 

Date: February 1997 

Source: NASA/JPL/University of Arizona 

Copyright: Public domain 

 

Figure 1-4  

Descrption: Cross section of Europa’s theorized ice shell, ocean, and ocean floor 

Date: February 2017 

Source: NASA report on the potential Europa Lander mission Pre-phase A report (Hand 

et al., 2017) 

Author: Kevin P. Hand, JPL/NASA 
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Copyright: Public domain 

 

Figure 1-5  

Descrption: Thera Macula chaos on Europa 

Date: November 16, 2011 

Source: Paul Schenk/NASA 

Copyright: Public domain 

 

Figure 1-7  

Description: Proposed instruments of the NASA Europa Clipper Flagship mission 

Date: February 21, 2018 

Source: NASA 

Copyright: Public domain 

 

 

 


