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ABSTRACT

Optimal design theory provides a general framework for the construction of exper-

imental designs for categorical responses. For a binary response, where the possible

result is one of two outcomes, the logistic regression model is widely used to relate a

set of experimental factors with the probability of a positive (or negative) outcome.

This research investigates and proposes alternative designs to alleviate the problem

of separation in small-sample D-optimal designs for the logistic regression model.

Separation causes the non-existence of maximum likelihood parameter estimates and

presents a serious problem for model fitting purposes.

First, it is shown that exact, multi-factor D-optimal designs for the logistic re-

gression model can be susceptible to separation. Several logistic regression models

are specified, and exact D-optimal designs of fixed sizes are constructed for each

model. Sets of simulated response data are generated to estimate the probability of

separation in each design. This study proves through simulation that small-sample

(n ≤ 32) D-optimal designs are prone to separation and that separation risk is depen-

dent on the specified model. Additionally, it is demonstrated that exact designs of

equal size constructed for the same models may have significantly different chances

of encountering separation.

The second portion of this research establishes an effective strategy for augmenta-

tion, where additional design runs are judiciously added to eliminate separation that

has occurred in an initial design. A simulation study is used to demonstrate that aug-

menting runs in regions of maximum prediction variance (MPV), where the predicted

probability of either response category is 50%, most reliably eliminates separation.

However, it is also shown that MPV augmentation tends to yield augmented designs

with lower D-efficiencies.

The final portion of this research proposes a novel compound optimality criterion,
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DMP , that is used to construct locally optimal and robust compromise designs. A

two-phase coordinate exchange algorithm is implemented to construct exact locally

DMP -optimal designs. To address design dependence issues, a maximin strategy is

proposed for designating a robust DMP -optimal design. A case study demonstrates

that the maximin DMP -optimal design maintains comparable D-efficiencies to a corre-

sponding Bayesian D-optimal design while offering significantly improved separation

performance.

ii



For Molly Eryn and Warrant boy

Life is wonderful with you two in it.

iii



ACKNOWLEDGEMENTS

Thank you to Michelle Mancenido, Douglas Montgomery, Adolfo Es-

cobedo, and Rong Pan. This research would not have been possible without you

all and I am tremendously grateful for all of the patience, support, and inputs. To

Michelle (Mickey) especially, thank you for going above and beyond to help me

succeed in this program; I would be hopelessly lost without your assistance.

To my loving parents, Andrew, Wanda, Robin, and Chester, I thank you all for

the money begrudgingly loaned to me as a poor graduate student. I have painstak-

ingly worked out a sensible payment plan, and will fully settle all debts with lots of

hugs and individualized smiley emojis at the end of this paragraph. You truly cannot

put a price on that. , , , ,

I must extend a special expression of gratitude to Junki Yoshida for your gourmet

teriyaki-based sauce; it has served as a delicious marinade for the thousands of chicken

breasts that I grilled and consumed while in this program. For those not in the know,

you may have seen him on KGW, where he performed short cooking segments, often

in the guise of a strange samurai character that one might deem offensive to Asians.

From the bottom of my heart, and I believe I have the requisite ethnic background

to do this (25% Japanese, thanks grandma k.), you are forgiven for your shameless

pandering to a predominantly white audience. Arigatou gozaimasu Mr. Yoshida!

There are so many additional family members, friends, training partners,

and generous chipotle employees that gave me free guacamole that I

should thank, but that would require a lot of extra typing and my fingers hurt. A

heartfelt mahalo nui loa to you all.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Alternative Methods of Modeling Binary Response Data . . . . . . . . . . . 10

2.4 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The Problem of Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 EXPERIMENTAL DESIGNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Optimal Design Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Criteria of Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Parameter-Based Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Prediction-Based Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The General Equivalence Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Optimal Designs for GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Constructing Optimal Designs for GLMs. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Analytical Construction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.2 Exact Design Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 SEPARATION IN D-OPTIMAL DESIGNS FOR THE LOGISTIC RE-

GRESSION MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Separation in Single-Factor D-Optimal Designs . . . . . . . . . . . . . . . . . . . . 43

v



CHAPTER Page

4.3 Simulation Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 NON-SEQUENTIAL AUGMENTATION STRATEGIES TO ADDRESS

SEPARATION IN LOGISTIC REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Augmentation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Simulation Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 D-Efficiency of Augmented Designs . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 ML vs. FL Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 A COMPOUND OPTIMALITY CRITERION FOR SEPARATION RO-

BUSTNESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The DMP -Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Two-Phase Coordinate Exchange Algorithm for Generating DMP -

Optimal Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 Validation of Two-Phase Coordinate Exchange Algorithm . . . 97

6.4 Performance of Locally DMP -Optimal Designs . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Test Case 1: Single-Factor Main Effect Model . . . . . . . . . . . . . . 100

6.4.2 Test Case 2: Two-Factor Main Effects Model . . . . . . . . . . . . . . . 102

6.4.3 Test Case 3: Two-Factor Main Effects w/Interaction Model . 103

6.5 A Methodology for Robust DMP -Optimal Designs . . . . . . . . . . . . . . . . . 105

vi



CHAPTER Page

6.5.1 Generating a Robust DMP -Optimal Design . . . . . . . . . . . . . . . . . 108

6.5.2 Performance of the Robust DMP -Optimal Design . . . . . . . . . . . 110

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 AREAS AND ISSUES FOR FURTHER STUDY . . . . . . . . . . . . . . . . . . . . . . . . 124

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

APPENDIX

A LOCALLY DMP -OPTIMAL DESIGNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1 Test Case 1: Single-Factor Main Effect Model . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Test Case 2: Two-Factor Main Effects Model . . . . . . . . . . . . . . . . . . . . . . 141

A.3 Test Case 3: Two-Factor Main Effects w/Interaction Model . . . . . . . . 142

B TWO-PHASE COORDINATE EXCHANGE ALGORITHM JSL CODE 143

B.1 Single-Factor Main Effect Model Design Code . . . . . . . . . . . . . . . . . . . . . 144

B.2 Two-Factor Main Effects Model Design Code . . . . . . . . . . . . . . . . . . . . . . 149

B.3 Two-Factor Main Effects w/Interaction Model Design Code . . . . . . . . 154

C PARAMETER SETS FOR ROBUST DMP -OPTIMAL DESIGN STUDY 161

C.1 Parameter Set for Robust DMP -Optimal Design Creation . . . . . . . . . . 162

C.2 Parameter Set for Robust DMP -Optimal Design Validation . . . . . . . . . 163

vii



LIST OF TABLES

Table Page

2.1 Response Data with Complete Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Parameter-Based Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Variance-Based Optimality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 ±2σ Limits on Parameter Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 P (Separation) Results by Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Percentage of Overlapped Response Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Model Fit of −ln(P (Separation)) to Augmentation Strategy and De-

sign Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Percentage of Usable ML Estimates Obtained in Simulation . . . . . . . . . . . 79

5.4 Point Estimates for ME Model; β0 = 0, β1 = 2, β2 = 1 . . . . . . . . . . . . . . . . . . . 79

5.5 Augmentation Trials where H0 ∶ β1 = 0 was Rejected (ME Model) . . . . . . 81

6.1 Performance of the DMP -Optimal Designs, Case 1 . . . . . . . . . . . . . . . . . . . . . 101

6.2 Performance of the DMP -Optimal Designs, Case 2 . . . . . . . . . . . . . . . . . . . . . 103

6.3 Performance of the DMP -Optimal Designs, Case 3 . . . . . . . . . . . . . . . . . . . . . 104

viii



LIST OF FIGURES

Figure Page

2.1 E(y) vs. Linear Predictor Value for the Logit, Probit, and Comple-

mentary Log-Log Response Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Separated Response Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Monotone Likelihood with Separated Response Data Example . . . . . . . . . 18

4.1 Surface Plots of the Logistic Regression Models . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Support Points for 2FI Model Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 P (Separation) vs. Distinct Support Points for the 16-Run Designs

from the Quadratic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Support Points of the 8-Run Bayesian D-Optimal Designs . . . . . . . . . . . . . 55

4.5 P (Separation) vs. Run Size by Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Locally D-Optimal Design with Separating Hyperplane . . . . . . . . . . . . . . . . 66

5.2 Contour Plots and MPV-Augmented Runs Overlay by Model . . . . . . . . . . 71

5.3 P (Separation) vs. Augmentation Strategy by Model . . . . . . . . . . . . . . . . . . . 75

5.4 Relative D-Efficiency vs. Augmentation Strategy by Model . . . . . . . . . . . . 76

5.5 Standard Errors of ML/FL Parameter Estimates, Excluding Outliers . . 78

6.1 Support Points of the D-, Ps-, and DPs-Optimal Designs . . . . . . . . . . . . . . 88

6.2 E(y), (E(y)−0.5)2 vs. Linear Predictor Value for the Logistic Regres-

sion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Squared Linear Predictor Value over Two-Factor Design Region . . . . . . . 93

6.4 Validation Test 1 Design Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Validation Test 2 Design Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Validation Test 3 Design Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Case 1 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.5 . . . . . 102

6.8 Case 2 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.3, 0.5 . 104

ix



Figure Page

6.9 Case 3 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.5 . . . . . 105

6.10 DMP -Optimal Design Sensitivity Comparison, λ = 0.5 . . . . . . . . . . . . . . . . . 106

6.11 Robust DMP -Optimal vs. Locally D-Optimal Design Comparison, β =

[−0.083,2.787,1.477] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.12 D-Efficiency over Sampled Parameter Vectors for the Locally DMP -

Optimal Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.13 Support Point Comparison of the Robust Designs . . . . . . . . . . . . . . . . . . . . . 111

6.14 D-Efficiency over the Test Parameter Vectors for the Robust Designs . . 112

6.15 Probability of Separation over the Test Parameter Vectors for the Ro-

bust Designs and Separation Probability Reduction with the DMP -

Optimal Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



Chapter 1

INTRODUCTION

There are many experiments where the outcome, or response, is binary. One ex-

ample is in medical trials, where a patient’s status can be classified as either healthy

(1) or diseased (0) (Bagley et al., 2001). Binary responses are also often captured

in military developmental and operational testing for the acquisition of new systems,

where the outcome of an experiment can be whether a particular threat was defeated

(1) or not (0). In military operational testing, measures of effectiveness are sometimes

worded such that the acceptability of a new weapons system must be evaluated in

terms of a binary response, such as pass or fail (Giadrosich, 1995). Efficient exper-

imental designs for a binary response variable are therefore required across a broad

spectrum of applications.

Optimal design theory provides a general framework for the construction of effi-

cient experiments. It has been extended to include non-numeric response variables

which are not normally distributed, such as the Bernoulli random variables used to

model binary responses. Optimal experimental designs are constructed for an as-

sumed model and statistical optimality criterion. When relating a set of experimen-

tal factors to a binary response, the logistic regression model is widely used. Among

the proposed criteria in the literature, the D-criterion is one of the most popular,

as D-optimal designs generally minimize the variance of the model parameter esti-

mates (Montgomery, 2017). Algorithms and analytical procedures for constructing

D-optimal designs for the logistic regression model, the assumed model form for bi-

nary responses in this research, have been proposed since the seminal work of Box

and Lucas (1959). These procedures are implemented in statistical design packages
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such as JMP RO and have been found to perform better for a binary response than

standard designs for normal-theory responses (Johnson and Montgomery, 2009). Op-

timal design criteria focusing on prediction variance, such as G-optimality, have also

been used in design construction algorithms for the logistic regression model, such as

the gCEA in Saleh and Pan (2016).

Efficient experimentation implies minimizing the number of experimental trials

while ensuring sufficient information for model building or prediction. The paradigm

of selecting minimal run sizes for binary response experiments may result in an esti-

mation problem called separation (Agresti, 2013). Separation is a phenomenon that

causes one or more coefficients of the logistic regression model to be inestimable

through standard methods. Separated response data will produce a monotone likeli-

hood function, which results in the non-existence of a unique maximum for at least

one of the model coefficients (Albert and Anderson, 1984). While it has been recom-

mended to use optimal designs for binary response experiments, the susceptibility of

multi-factor optimal designs to separation has not been investigated.

Although the separation problem has been examined for single-factor D-optimal

designs for the logistic regression model, the applicability of results from these works

are limited. Fornius (2008) investigated several exact, single-factor locally D-optimal

designs for a quadratic logistic regression model and noted that separation frequently

occurs for small designs between 10-20 runs. Rahman (2015) proposed a compound

optimality criterion to balance D-efficiency with a reduced probability of separation

that was implemented for single-factor designs. However, an experimenter utilizing

the D-criterion will likely have several design factors of interest, making studies of

single-factor D-optimal designs less applicable in practice. The gap in this area

justifies additional study of the separation problem for multi-factor D-optimal designs

for the logistic regression model.
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The design methodology explored in this research is non-sequential, where the

entire experiment is planned before conducting any trials. Sequential design, on the

other hand, involves dynamically determining the factor settings of the next experi-

mental trial based on the results of the current trial. A non-sequential design strategy

is regularly adopted in organizations which must adhere to a strict budget and rigid

test plans. For example, in military operational testing, an experiment will typically

not be allowed until the entire execution plan is presented and approved. This makes

the use of a sequential design strategy infeasible (Giadrosich, 1995). Furthermore,

a non-sequential design approach is often preferred in experiments involving animal

subjects, such as the impact of the anticoagulant poison brodifacoum on cockroaches

(Brooke et al., 2013). In these types of studies, it is ideal for the test subjects to

be sourced from the same generation and to have a homogeneous genetic profile. Se-

quential experimentation may not be desirable because the time required to conduct

sequential trials may require different shipments of test subjects that will introduce

undesired variability. Therefore, the separation problem will be approached from a

non-sequential design perspective, where the focus is to create fixed designs that are

robust to separation or to augment additional design runs in fixed blocks to an initial

design that has encountered separation.

The main goal of this research is to provide methodologies for addressing sep-

aration in the design phase of an experiment. One aspect of this goal is to study

how the separation problem manifests in multi-factor D-optimal designs for the lo-

gistic regression model as the design size varies. This will provide experimenters with

sample size guidelines to minimize the risk of separation occurring in an experiment.

The second aspect is to investigate an augmentation strategy, where additional runs

are strategically placed in the design region once the initial design is executed, to

eliminate separation as quickly as possible. The third aspect is to propose a novel
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optimality criterion to generate designs for the logistic regression model that are more

robust to separation.

Chapter 2 focuses on the modeling of binary response data and the problem of

separation. The framework of generalized linear models (GLMs) is covered in Section

2.1, as it is necessary to develop the theoretical basis for the logistic regression model,

covered in Section 2.2. Although other modeling methods for binary response data

are available (Section 2.3), the logistic regression model is used solely in this research,

as it is commonly employed in a variety of studies and has the clearest parameter

interpretation, where the linear predictor can be viewed as a transformed odds ratio.

The parameters of GLMs are estimated using the method of maximum likelihood

(Section 2.4), which fails in the presence of separation (Section 2.5), as one or more

of the parameter estimates will diverge to infinity. A survey of techniques for detecting

separation and obtaining unique parameter estimates for the logistic regression model

in the presence of separation are presented.

Chapter 3 covers optimal design theory and presents a literature survey on de-

velopments in optimal experimental designs for GLMs. Sections 3.1, 3.2, and 3.3

deal with the theoretical foundations of optimal design theory as they were origi-

nally presented by Kiefer (1959) for standard linear models, covering the difference

between exact and continuous designs, alphabetic optimality criteria, and the Gen-

eral Equivalence Theorem (GET) (Kiefer and Wolfowitz, 1960). Section 3.4 covers

the design dependence problem that manifests when constructing optimal designs for

GLMs, where the information matrix, and hence the functionals of the optimality

criteria, are dependent on the unknown model parameters. Several methods, such as

creating locally optimal designs (Chernoff, 1953) and other robust design methods

are reviewed. Techniques for constructing optimal designs for GLMs are covered in

Section 3.5, with a survey of both analytical techniques and recent developments in
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exact design algorithms.

The literature review in Chapters 2 and 3 identifies the following gaps:

1. There are currently no studies that examine the separation problem in exact,

multi-factor optimal designs for the logistic regression model.

2. There has not been a proposed augmentation strategy to break separation in

multi-factor experimental designs.

3. There is no statistical optimality criterion implemented for multi-factor designs

that considers the separation problem.

Chapter 4 focuses on a study of the separation problem in multi-factor D-optimal

designs for the logistic regression model. It explores how the separation problem di-

minishes with increasing design sizes for three logistic regression model forms with

two design factors. The research in Chapter 5 contributes towards the second iden-

tified gap, as several augmentation strategies to break separation are investigated to

determine an efficient methodology for eliminating separation that has occurred in

an initial design. Finally, in Chapter 6, a compound optimality criterion is proposed

to balance D-efficiency with separation robustness.

The major contributions of this research are as follows:

1. An exploration of the separation problem for exact, multi-factor D-optimal

designs for the logistic regression model

2. An efficient strategy for augmenting design runs to eliminate separation in

multi-factor experimental designs

3. A compound optimality criterion, DMP , that can be implemented in a com-

puter exchange algorithm to generate exact, multi-factor designs for the logistic

regression model with reduced separation risk relative to D-optimal designs
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4. A robust design methodology for exact DMP -optimal designs to address the

design dependence problem in GLMs

The first contribution demonstrates that small (n ≤ 32) D-optimal designs are prone

to encountering separation. Approximate sample size guidelines are provided for

mitigating separation in D-optimal designs, which will allow experimenters to select

a design size in accordance with their risk tolerance for encountering separation. The

second contribution proposes a methodology to eliminate the separation problem

as quickly as possible in multi-factor designs, enabling usable parameter estimates

for inferential purposes. The last two contributions offer experimenters alternative

compromise designs with high D-efficiencies and reduced separation risk. This work

will be of significance to those seeking to use a non-sequential optimal design strategy

in an experiment with a binary response variable, as it will provide valuable insight

into mitigating, and if necessary, eliminating through augmentation, the problem of

separation.

As this research serves as a first-look into addressing the separation problem in

multi-factor designs, only two-factor cases are explored. The specified logistic re-

gression models are also restricted to two-factor interaction and quadratic terms.

Additionally, the large parameter standard error criterion recommended by Heinze

and Schemper (2002) is solely used to detect separation, though other methods have

been proposed in the literature. The exploration of the separation problem in small-

sample optimal designs presented in Chapter 4 is restricted to the D-criterion, and

the augmentation strategies proposed in Chapter 5 are based solely on locally and

Bayesian D-optimal initial designs. Finally, in formulating a robust design strategy

for the DMP -criterion, only a maximin approach was explored. Alternative strategies

are left for future research.
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Chapter 2

MODELS

Designing efficient experiments for a binary response involves a less common appli-

cation of experimental design, as the response variable is not normally distributed. For

certain non-normal responses, standard design methods can still be applied through

variance-stabilizing transformations on the response (Montgomery, 2017). However,

fitting an appropriate generalized linear model (GLM) to the response data tends

to produce better results, both in terms of the feasibility of the predicted response

and the width of the confidence intervals about the mean response (Myers et al.,

2012; Lewis et al., 2001). The logistic regression model, a type of GLM, will be the

model form used for design construction methods in this research. The purpose of

this chapter is to review the logistic regression model, along with certain problems

that can occur when using this model in practice. This chapter proceeds as follows.

An overview of GLMs is presented in Section 2.1, and the logistic regression model

is covered in Section 2.2. Alternative methods of modeling binary data are cov-

ered in Section 2.3. Maximum likelihood (ML) estimation is the basis for parameter

estimation in GLMs; it is discussed for the logistic regression model in Section 2.4.

Finally, the problem of separation, which occurs in models with a categorical response

variable, is covered in Section 2.5, along with a literature review surveying proposed

methods of detecting separation and alternative model parameter estimation methods

that are available with separated response data.
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2.1 Generalized Linear Models

GLMs were first proposed by Nelder and Wedderburn (1972) to address the lim-

itations of standard linear regression for normally distributed errors. A standard

linear regression model relating a response variable y to a set of regressor variables,

x, based on n observations has the form shown in Equation 2.1,

y = Xβ + ε (2.1)

where X is a matrix of covariate values, β is a column vector of model parameters,

and ε is a column vector of the error terms associated with each observation. It is

assumed that εi for all i = 1, ..., n are independent and identically distributed (IID)

N(0, σ) random variables (Montgomery et al., 2012). With these assumptions, the

method of ordinary least squares produces ML estimates (Myers and Montgomery,

1997). In cases where these assumptions are not valid, GLMs accommodate a broader

range of response distributions. The structure of a GLM consists of (Myers et al.,

2012):

1. The response distribution: y1, ..., yn are independent response observations with

means µ1, ..., µn, respectively. Each yi has a distribution that is a member of

the exponential family.

2. A linear predictor involving the regressor variables, η = xTβ.

3. A link function, g(⋅), that relates the mean of the response distribution to the

linear predictor, ηi = g(µi), for all i = 1, ..., n. The link function is monotonic,

continuous, and differentiable.

GLMs can be used to model any response variable that is a member of the exponen-

tial family of distributions. The probability density (mass) function of distributions

8



that are members of the exponential family has the general form shown in Equation

2.2,

f(y; θ, φ) = exp{yθ − b(θ)
a(φ)

+ c(y, φ)} (2.2)

where a(⋅), b(⋅), and c(⋅) denote functions specific to the distribution, θ is the location

parameter, and φ is the dispersion parameter (Myers et al., 2012). If the link function

is chosen such that the natural location parameter is equal to the linear predictor,

then g(µi) is referred to as a canonical link function. The use of a canonical link

results in simplified mathematics when deriving ML estimates, which is covered in

Section 2.5.

2.2 The Logistic Regression Model

Logistic regression is an appropriate analysis technique when a response variable,

y, is categorical. See Cramer (2002) for a summary of the origins of the logistic

function and the development of logistic regression in statistics. In this research,

only a binary response variable will be considered, such that y results in only two

dichotomous outcomes that can be coded as 0 or 1. For example, the response variable

in a study of weapon accuracy, where the outcome of each trail is classified as either

hit (1) or miss (0), is binary. The model relates the probability of response y = 1

to k regressor variables, denoted as x ∈ Rp, where p denotes the length of x when

expanded to model form (p ≥ k).

The logistic regression model has the form shown in Equation 2.3.

yi ∼ Bernoulli(E(yi)), for i = 1, ..., n (2.3)

The logistic response function, E(yi), has the form shown in Equation 2.4,

E(yi) = πi = (1 + exp(−xi
Tβ))−1 (2.4)
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where β represents a vector of model parameters. In Equation 2.4, πi can be inter-

preted as P (yi = 1∣xi). The linear predictor of the logistic response function is shown

in Equation 2.5.

ln( πi
1 − πi

) = ηi = xi
Tβ (2.5)

In Equation 2.5, ηi can be interpreted as a transformed (log) odds ratio, since ηi =

ln (P (yi=1∣xi)
P (yi=0∣xi)) (Montgomery et al., 2012).

The logistic regression model is a type of GLM which has the following defining

structure:

1. Response distribution: For binary data, it is in most cases reasonable to assume

that y1, ..., yn are independent Bernoulli random variables with means π1, ..., πn,

respectively. The Bernoulli distribution is a member of the exponential family

(Casella and Berger, 2002).

2. Linear predictor: xTβ is present in the logistic response function.

3. Link function: The logit link g(πi) = ln ( πi
1−πi ) is used to relate the linear predic-

tor to πi. It is the canonical link for the assumed response distribution (Myers

et al., 2012).

Logistic regression is widely used in medical research (Tai and Machin, 2013),

economics, business analytics (Ledolter, 2013) and many other fields. For example,

Bagley et al. (2001) provide a survey of logistic regression methods used in testing

for cancer susceptibility.

2.3 Alternative Methods of Modeling Binary Response Data

The logistic regression model uses the logistic link function, which is the canonical

link for the Bernoulli distribution (see appendix A of Myers and Montgomery (1997)).
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However, the choice of possible link functions extends beyond the canonical link for

each response distribution. There are other link functions that are used to model

binary response data in the framework of GLMs (see Piegorsch (1992)), such as the

probit link, which takes the form shown in Equation 2.6,

g(E(yi)) = Φ−1(E(yi)) (2.6)

where Φ represents the cumulative distribution function of the standard normal dis-

tribution. The complimentary log-log link function is also used, which takes the form

shown in Equation 2.7.

g(E(yi)) = ln(−ln(1 −E(yi))) (2.7)

The link function is a critical component of a GLM, and the choice of a particular

link function is somewhat analogous to the choice of a particular transformation

methodology on the response data. Although the link function is a transformation

on the population mean and not on the response data, the use of an improper link

function can lead to a poor model fit (Myers et al., 2012).

Probit regression is a commonly used alternative to logistic regression. The use of

the probit link function in Equation 2.6 leads to the probit response function shown

in Equation 2.8,

E(yi) = Φ(xiTβ) = ∫
xi
Tβ

−∞

1√
2π

exp(−z2/2) dz (2.8)

which represents the area under the standard normal curve to the left of xiTβ. Gen-

erally, the shape of a fitted probit model will be similar to a logistic regression model

fit from the same data, with differences becoming more pronounced in the extreme

tails (Zelterman, 1999).

Beginning with the work of Bliss (1934), probit regression has been used exten-

sively in medical research and other fields. Fisher (1935a), in an appendix to work
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on fitting a dosage-mortality curve by Bliss (1935), showed how ML estimation can

be used to obtain parameter estimates for the probit model. In choosing between

logistic or probit regression, Berkson (1951) makes the argument that the logistic

model is preferred since the score equations are easier to solve, but this problem has

been mitigated by statistical software that can expediently fit both logistic and probit

models. Chambers and Cox (1967) show that discriminating between a logistic and

probit model is only possible for large sample sizes (n ≥ 1000) and when the majority

of the data lies at the bounds of the independent variable. The bulk of subsequent

literature surveyed recommends that for most applications, the choice of using either

link function comes down to personal preference, as both provide nearly identical

substantive conclusions (see Long (1997), Gill (2000), Hardin and Hilbe (2007)). Re-

search comparing various Bayesian and sample theory model selection criteria via

Monte Carlo methods showed that in the case of balanced data, none of the model

selection criteria could distinguish between the probit and logit regression models

(Chen and Tsurumi, 2010), which illustrates that the logistic and probit models can

be very similar.

The complementary log-log model, though not as commonly utilized as the logistic

or probit regression models, can also be used to model a binary response. The use of

the complementary log-log link function in Equation 2.7 leads to the complementary

log-log response function, shown in Equation 2.9.

E(yi) = 1 − exp(− exp(xiTβ)) (2.9)

For the logit and probit link functions, the property g(x) = −g(1 − x) holds, giving

the logistic and probit response functions (E(y) vs. xiTβ) symmetry about the point

xiTβ = 0.5. The complementary log-log response function does not have this sym-

metry. This can be seen in Figure 2.1. In cases where it would be more appropriate
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Figure 2.1: E(y) vs. Linear Predictor Value for the Logit, Probit, and Complemen-

tary Log-Log Response Functions

for the response curve to increase more sharply towards 0 or 1 from xiTβ = 0.5,

the complementary log-log function will provide a better model fit. For recent ap-

plications of complementary log-log regression, see Boyko et al. (2015) and Cooper

et al. (2015). Penman and Johnson (2009) present a simulation study that highlights

some advantages of complementary log-log regression over other binomial regression

methods.

The focus of this research will be on optimal experimental designs for the logis-

tic regression model, as it is widely used and has a more straightforward log-odds

interpretation than the probit and complementary log-log link functions. However,

exploring optimal experimental designs for the probit or complementary log-log mod-

els may be an area for future work.
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2.4 Maximum Likelihood Estimation

ML estimation is a method of estimating the parameters of a statistical model,

denoted as β. Given n observations, the parameter values that maximize the prob-

ability of realizing the observed response values are called the ML estimates of the

model parameters (Casella and Berger, 2002). This is accomplished by first specifying

the joint density function of the observations,

f(y1, ..., yn∣β) =
n

∏
i=1

f(yi∣β) (2.10)

where the equality follows as shown in Equation 2.10 if each trial is IID. Now, the

observed response values y1, ..., yn are considered fixed, and the likelihood function,

L, is equivalent in expression to the joint density function, but is viewed as a function

of the parameters. Therefore, the likelihood function can be expressed as shown in

Equation 2.11,

L(β∣y1, ..., yn) =
n

∏
i=1

f(yi∣β) (2.11)

where the equality again follows with the IID observations assumption. To determine

the ML estimates of the model parameters, denoted as β̂ML, the set of equations

∂L
∂β = 0 is solved, assuming a closed-form solution to L exists (Casella and Berger,

2002). The log-likelihood transformation is often used to make the differentiation

process more straightforward. Since ln(x) is monotonically increasing, solving the

set of equations ∂l
∂β = 0, where l = ln(L), will yield the same ML estimates (Allison,

2008).

When ML estimation is applied to GLMs, the log-likelihood function takes the

form shown in Equation 2.12.

l(β) =
n

∑
i=1

{yiθi − b(θi)
a(φ)

+ c(yi, φ)} (2.12)
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The set of equations ∂l
∂β = 0 are referred to as the score equations and are mostly solved

through iterative methods, as µ is usually nonlinear in β (Myers and Montgomery,

1997). The general form of the derivative of the log-likelihood for a GLM is shown in

Equation 2.13.

∂l

∂β
=

n

∑
i=1

∂l

∂θi

∂θi
∂ηi

∂ηi
∂β

(2.13)

However, when a canonical link function is used, ηi = θi, so the score equations simplify

to the form shown in Equation 2.14,

n

∑
i=1

(yi − µi)xi = 0 (2.14)

assuming a(φ) is constant (φ known). Solving the system of p equations in (2.14) will

yield β̂ML. If the model assumptions are satisfied and the link function is correct, it

can be shown that asymptotically, E(β̂ML) = β (Myers et al., 2012).

The variance of the score equations, typically referred to as the information matrix,

plays a crucial role in optimal design theory, which will be covered in Chapter 3. Let

X ∈ Rn×p denote the model matrix made up of rows x1
T , ...,xnT , y ∈ Rn denote a

column vector of responses, µ ∈ Rn denote a column vector of means, and β̂ denote

estimates of β. The information matrix, denoted as M(β̂), is shown in Equation 2.15

(assuming φ is known).

M(β̂) = Var{XT (y −µ)} = XTVX (2.15)

In Equation 2.15, V ∈ Rn×n is a diagonal weight matrix dependent on µ, which

depends on the response distribution. The asymptotic variance-covariance matrix of

estimators β̂ is the inverse of the information matrix, shown in Equation 2.16 (Myers

et al., 2012).

Var(β̂) = M−1(β̂) = (XTVX)−1
(2.16)

In the context of the logistic regression model, since each yi follows a Bernoulli dis-

tribution, the corresponding probability mass function for each observation is shown
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in Equation 2.17 (Casella and Berger, 2002).

fi(yi) = πyii (1 − πi)1−yi (2.17)

It cannot be assumed that the observations are identically distributed, as each yi may

have a unique πi. However, since the observations are assumed to be independent,

the likelihood function can be formulated as shown in Equation 2.18.

L(β∣y1, ..., yn) =
n

∏
i=1

πyii (1 − πi)1−yi (2.18)

By utilizing the log-likelihood transformation, β̂ML for the logistic regression model

are the solutions to the score equations shown in Equation 2.19 (Allison, 2008).

∂l

∂β
=

n

∑
i=1

xiyi −
n

∑
i=1

xiπi = 0 (2.19)

For most data, no closed form solution to ∂l
∂β = 0 exists. Iteratively reweighed least

squares with the Newton-Raphson algorithm is typically used in practice to find β̂ML.

This method will be covered in detail in Section 2.5. For the logistic regression model,

the diagonal elements of V are shown in Equation 2.20.

vii = πi (1 − πi) =
exp(xiTβ)

(1 + exp(xiTβ))2 , for i = 1, ..., n (2.20)

2.5 The Problem of Separation

Experimental studies with categorical responses often have small samples and

a large number of factors, which can sometimes result in ML estimation failing to

converge to unique parameter estimates. This phenomenon, known as separation,

occurs when a hyperplane passing through the design space can completely or quasi-

completely separate all of the design points with a response value of y = 0 from all of

the design points with a response value of y = 1 (Albert and Anderson, 1984). If there

exists a column vector β such that βTxi > 0 when yi = 1 and βTxi < 0 when yi = 0 for
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all i = 1, ..., n, then complete separation is present. Quasi-complete separation occurs

when there are both y = 0 and y = 1 responses on the separating hyperplane. If

βTxi ≥ 0 when yi = 1 and βTxi < 0 when yi = 0 for all i = 1, . . . , n, then quasi-complete

separation is present. The data set in Table 2.1, when used to fit a logistic regression

model, illustrates a case of complete separation, where x is a single regressor variable.

Table 2.1: Response Data with Complete Separation

x -5 -4 -3 -2 -1 1 2 3 4 5

y 0 0 0 0 0 1 1 1 1 1

For this data set, point x = b along the 1-dimensional x line for any b ∈ (−1,1)

completely or quasi-completely separates the data. This can be seen in Figure 2.2.

For example, y = 1 when x > 0 and y = 0 when x < 0 holds for every observation. When
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Figure 2.2: Separated Response Data Example

complete or quasi-complete separation is present, one or more of the ML estimates of

the logistic regression model do not exist (Albert and Anderson, 1984). To see this,

recall that the model with one regressor variable has the form shown in Equation

2.21.

yi =
1

1 + exp(−β0 − β1xi)
+ εi (2.21)
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The log-likelihood function for the data shown in Table 2.1 is shown in Equation 2.22.

l(β) =
10

∑
i=1

yi (β0 + β1xi) −
10

∑
i=1

ln(1 + exp(β0 + β1xi)) (2.22)

For simplicity, suppose that β̂ML
0 = 0. Then, the log-likelihood function as a function

of β̂1 can be expressed as shown in Equation 2.23.

l(β̂1) = 15β̂1 −
10

∑
i=1

ln(1 + exp(β̂1xi)) (2.23)

Equation 2.23 is monotonically increasing; as β̂1 →∞, l → 0. Consequently, a unique

estimate of β̂ML
1 does not exist, as β̂1 can be made arbitrarily large to force l arbitrarily

close to zero. This is illustrated in Figure 2.3. For experimental designs constructed
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Figure 2.3: Monotone Likelihood with Separated Response Data Example

for a logistic regression model, the presence of separation will make it impossible to

use standard ML estimation techniques to estimate the parameters of the underlying

model. This results in the inability to use the fitted model for inferential purposes.

Significant advances have been made to detect separation and mitigate its effects

in estimation. Santner and Duffy (1986) devised a mixed integer linear program capa-

ble of classifying data as either completely separated, quasi-separated or overlapped
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(no separation present). A widely-used and easy detection approach is to observe

the magnitude of parameter estimates and corresponding standard errors. Large pa-

rameter estimates with enormous standard errors typically indicate that some form

of separation is present (Allison, 2008). Several approaches have been proposed to

alleviate the problem of separation in ML estimation. It is possible to simply delete

the problem variable(s) that are causing the data to be separated from the model.

However, even when it is possible to determine the variable(s) that cause separation,

these variables(s) are highly likely to have the greatest impact on the response. Thus,

deleting these variable(s) will decrease the utility of the model. Another approach

is to use exact methods for logistic regression, where instead of relying on asymp-

totic properties of estimators, tests of significance are based on the exact probability

distribution (for details, see Agresti (2013)). This approach, however, becomes com-

putationally inefficient with larger sample sizes and higher model complexity.

Konis (2007) presents a linear programming approach that can be used to detect

separation. Consider a set of n design points, denoted as xi, i = 1, ..., n. Let E1 denote

the set of indices i such that yi = 0 and E2 denote the set of indices i such that yi = 1.

The distance of design point xi from hyperplane H is given by s̃i = xTi β̃, where β̃ is a

unit vector normal to H. If complete separation is present, there exists a β̃ such that

s̃i > 0 for all i ∈ E2 and s̃i < 0 for all i ∈ E1. In the case of quasi-complete separation,

there exists a β̃ such that s̃i ≥ 0 for all i ∈ E2 and s̃i ≤ 0 for all i ∈ E1, with s̃i = 0 for

at least one value of i ∈ {1, ..., n}. Since the design matrix of a candidate design is

assumed to be of full rank, s̃i ≠ 0 holds for at least one value of i ∈ {1, ..., n}. With this
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notation, finding β̃ can be formulated as the optimization problem shown in (2.24).

max S(β̃) = ∑ni=1 s̃i

subject to s̃i ≥ 0 for i ∈ E2 (2.24)

s̃i ≤ 0 for i ∈ E1

β̃
T
β̃ = 1

If (2.24) is feasible, the optimal separating hyperplane H∗ is defined as the hyperplane

with β̃
∗

given by the optimal solution to (2.24). If (2.24) is infeasible, separation is

not present. In this form, (2.24) is a type of nonlinearly constrained optimization

problem due to the quadratic constraint forcing β̃ to be of unit length (Konis, 2007).

The formulation of (2.24) is similar to the optimal hyperplane algorithm presented

by Cortes and Vapnik (1995), where the authors prove that the determination of an

optimal separating hyperplane is a type of quadratic programming problem. However,

since the length of β̃ is irrelevant in determining the presence of separation, the

quadratic constraint can be removed, which yields the linear program

max eT X̄β

subject to X̄β ≥ 0 (2.25)

β free

where e ∈ Rn denotes a column vector of ones and X̄ = diag(ỹ)X, where ỹ ∈ Rn has

elements ỹi = 1 when yi = 1 and ỹi = −1 when yi = 0 and X denotes the design matrix

of a candidate design (Konis, 2007). If separation is not present, the optimal value of

the objective function in (2.25) is zero. If the optimal value of the objective function

in (2.25) is greater than zero, then there exists β ≠ 0 that is feasible, implying that

separation is present. Many linear programming solvers, such as the MATLAB RO

linprog function, can be used to determine the optimal solution to (2.25).
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Firth’s modified score procedure, which was initially proposed to reduce the bias

of ML estimates in binomial logistic regression (Firth, 1993), has been used to obtain

finite, unique parameter estimates in data where separation is present (Heinze and

Schemper, 2002; Heinze, 2006; Zorn, 2005). For most models and data sets, these is

no closed-form solution to the likelihood score equations, and β̂ML is determined for

a logistic regression model using numerical methods, such as the Netwon-Raphson

algorithm. Let U(β) denote the score equations shown in Equation 2.19, and let

J(β) denotes a square matrix of second derivatives as shown in Equation 2.26.

J(β) = ∂2l

∂β∂βT
= −

n

∑
i=1

xixi
Tπi(1 − πi) (2.26)

The Newton-Raphson algorithm in terms of these expressions is shown in Equation

2.27,

β(s+1) = β(s) − J−1 (β(s))U (β(s)) (2.27)

where s denotes the iteration number (Allison, 2008). A starting set of values, β(0), is

required. The accuracy of β(0) is not of particular importance, as β(0) = 0 will suffice

(Allison, 2008). Iterations will continue until some convergence criterion is satisfied,

where the maximum change in parameter estimates from one iteration to the next is

less than some value. The convergence rate of Newton-Raphson in determining ML

estimates for overlapped data is typically quite rapid; it can be shown that if the

initial parameter estimates are close enough to the true parameter values, then the

convergence rate is quadratic (Kuk and Cheng, 1997). In other words, the convergence

rate is O(s−2), where s denotes the number of iterations. However, when the Newton-

Raphson algorithm is applied to a separated data set, it will not converge; iterations

will continue until the fixed iteration limit is reached. At each iteration, the parameter

estimate(s) for the regressor variable (or combination of variables) causing separation

will continue to increase in magnitude with each iteration, and the associated standard
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errors of these parameter estimates will become very large (Allison, 2008). This is

the reason that enormous parameter standard errors can serve as a reliable criterion

for declaring separation in a data set; very large standard errors indicate the non-

convergence of numerical algorithms, such as Newton-Raphson, caused by the non-

existence of at least one ML parameter estimate with separated response data.

Firth’s modified score equations have the form shown in Equation 2.28,

U(β)′ =
n

∑
i=1

xiyi −
n

∑
i=1

xiπi − [
n

∑
i=1

hixi (
1

2
− πi)] (2.28)

where hi is the ith diagonal element of H = V0.5X (XTVX)−1
XTV0.5. Using the

modified score equations in the implementation of the Newton-Raphson algorithm

guarantees finite parameter estimates for the logistic regression model (Allison, 2008).

Heinze and Schemper (2002) presented two clinical data sets where Firth’s modi-

fied score procedure was used to obtain finite parameter estimates in data sets where

quasi-complete separation was present. Heinze (2006) presents a case study where ML

estimation fails to produce finite estimates in a nearly separated data set. The use

of Firth’s procedure (also referred to as penalized ML estimation) was recommended

over the use of ML and exact logistic regression, as estimation and inference was

also not possible in many cases with exact logistic regression. Bayesian approaches

have also been used as an alternative estimation method in the presence of separation

(Gelman et al., 2008). Abrahantes and Aerts (2012) proposed an approach for clus-

tered or repeated measures data that uses penalized ML in generalized linear mixed

models (GLMM). Lipsitz et al. (2013) presented an extension of penalized likelihood

to obtain estimates for the proportional odds model, which is used to model ordinal

responses.

The estimation procedures just discussed have limitations and criticisms. Rainey

(2016) shows that the penalty term in Firth’s score equations, which is equivalent
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to the Jeffreys prior for the logistic regression model (Jeffreys, 1946), often yields

point estimates that are too small. It has been noted that Firth’s procedure is also

susceptible to producing poor parameter estimates in a separated data set, especially

when the data set is small (n = 10, 20) (Fornius, 2008).

Several authors have explored sequential design strategies to prevent separation

in sensitivity tests, where the goal is to estimate the threshold level of a single design

factor that will generate a success (1) versus a failure (0). Novel three-part testing

strategies are proposed by Neyer (1994) and Wu and Tian (2014), where the second

part of the tests are focused on generating overlapped response data to find unique

ML estimates. However, these strategies are not directly applicable to this work. For

single-factor experiments, detecting overlap is trivial, as it occurs when the minimum

level of an observed success is smaller than the maximum level of an observed failure.

With multiple design factors, determining regions of overlap is not as straightforward.

Additionally, both strategies involve dynamically adjusting the locations of runs as

the experiment progresses, which is not applicable to the study of separation in non-

sequential designs.

Another option to mitigate separation that has not been explored thoroughly is

through the selection of an adequate experimental design. The research presented

in Chapters 4 through 6 will investigate the separation problem, both in the design

phase of an initial experiment and for a follow-on phase to augment an initial design

that encounters separation.
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Chapter 3

EXPERIMENTAL DESIGNS

The field of statistical design of experiments has progressed tremendously since

the pioneering work of Fisher (1935b) in agricultural studies, where the cornerstone

principles of randomization, replication, and blocking were established along with

the use of factorial designs. Optimal design theory, laid out in its modern form

by Kiefer (1959), utilizes a specific statistical criterion for constructing experimental

designs. Optimal experimental design for GLMs is a critical component of the research

presented in Chapters 4 through 6.

The purpose of this chapter is to present an overview of optimal design theory and

to survey developments in optimal experimental designs for GLMs and the logistic

regression model, specifically algorithms for constructing exact experimental designs

under different optimality criteria. The basic notation and concepts of optimal design

theory for standard linear models are covered in Section 3.1, with specific optimality

criteria summarized in Section 3.2. The General Equivalence Theorem, a critical tool

in establishing optimality results for designs, is presented in Section 3.3. Section

3.4 summarizes the modifications of optimal design theory required for applications

to GLMs. The chapter ends with Section 3.5, a literature review of optimal design

construction methods available for GLMs.
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3.1 Optimal Design Theory

Let ξ denote an experimental design, where weight wi specifies the proportion of

experimental runs at support point xi.

ξ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 x2 ... xt

w1 w2 ... wt

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(3.1)

Equation 3.1 represents a design with t support points, where wi > 0 and ∑ti=1wi = 1.

An exact (discrete) design of run size n requires that each wi = ri/n be a ratio of

integers, where ri denotes the number of replicates at xi. As n and ri are integers,

wi will be a ratio of integers. A continuous (approximate) design relaxes the integer

restriction on n and ri (Atkinson and Woods, 2015).

In practice, exact designs are favored because continuous designs often yield non-

integer allocations to support points. However, it is more convenient mathematically

to work with continuous designs, because closed-form, analytical solutions to exact

design problems are often intractable (Berger and Wong, 2009). By relaxing the

integer restrictions in continuous design problems, a design size n does not need to

be specified. The focus of this research is on exact designs, where a sample size n is

specified and heuristic algorithms are used to construct designs in accordance with

the specific optimality criterion being used.

To create an optimal experimental design, one must specify (Atkinson and Woods,

2015):

1. A model of interest. For GLMs, one must also specify a set of parameter values

β, with a prior distribution f(β) if applicable.

2. A design criterion, which will typically be some function of the information

matrix (see Chapter 2).
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3. A design region, denoted as χ, which contains feasible points in Rp.

In optimal design theory, the empirical model must be assumed in the design stage,

which may lead to a poor design if the assumed model is not correct. There has been

research on optimal designs that are robust to a misspecified model (Tommasi, 2012),

but this research assumes the specified model is appropriate. For this research, only

optimal designs for the logistic regression model are examined.

For continuous designs, the general measure of imprecision for design ξ, denoted

as Ψ{M(ξ;β)}, is used to assess a design’s optimality. An optimal design, denoted

as ξ∗, minimizes Ψ{M(ξ)}, where M(ξ) denotes the information matrix of design

ξ (Atkinson and Woods, 2015). The efficiencies of several designs can be compared

by assessing the objective function value for a particular optimality criterion for each

design. If ξ∗ is the optimal design for parameter values β (or prior distribution f(β),

if applicable), another design ξ can be assessed relative to the optimal design by

comparing Ψ{M(ξ)} to Ψ{M(ξ∗)}. When the comparison is made, the objective

function is evaluated for the same β (or f(β), if applicable) (Atkinson and Woods,

2015). The optimal continuous design serves as a useful benchmark when assessing

the relative efficiencies of several exact designs, even when the continuous design does

not have integer allocations for support points.

3.2 Criteria of Optimality

This section will cover several well-known optimality criteria, which can generally

be divided into two categories:

1. Functionals of the eigenvalues of the information matrix

2. Criteria concerning the variance of predictions

The first category of optimality criteria generally serves to minimize the variance of
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the model parameter estimates, which is useful when the goal of the experiment is

model building or variable screening. The second category of optimality criteria is

more appropriate if the experimenter desires to make predictions at any point within

the design space.

3.2.1 Parameter-Based Optimality Criteria

Let λ1, ..., λp denote the eigenvalues of the information matrix of a candidate

design, denoted as M(ξ). In terms of the eigenvalues of M(ξ), the A-, D-, and

E-optimality criteria are shown in Equation 3.2.

A: min
p

∑
i=1

λ−1
i

D: min
p

∏
i=1

λ−1
i (3.2)

E: min {max (λ−1
i )}

A-optimal designs minimize the average variance of the parameter estimates, while D-

optimal designs minimize the generalized variance of the parameter estimates (Atkin-

son et al., 2007). E-optimal designs minimize the maximal variance among all best lin-

ear unbiased estimators of normalized linear contrasts (Filipiak and Różański, 2013).

In other words, E-optimal designs maximize the minimum eigenvalue of M(ξ), which

corresponds to minimizing the maximum variance of the parameter estimates (maxi-

mum eigenvalue of M−1(ξ)).

To illustrate how these criteria work to yield attractive parameter estimates, con-

sider the ellipsoid of concentration on β̂ for design ξ, given in Equation 3.3.

(β − β̂)T M(ξ) (β − β̂) = R2 (3.3)

For a more comprehensive presentation of a concentration ellipsoid, see Nordström

(1991). The confidence region for the parameter estimates takes the general form
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of the concentration ellipsoid. For example, if β̂ ∈ Rp are approximately normally

distributed, then the ellipsoidal confidence region with coverage probability 1 − α is

shown in Equation 3.4,

CI1−α,χ2 = {β ∣ (β − β̂)T M(ξ) (β − β̂) ≤ χ2
p,α} (3.4)

where χ2
p,α is the 100(1−α) percentile of the χ2 distribution with p degrees of freedom

(Fedorov and Leonov, 2013). M must be a positive semi-definite symmetric matrix.

If M−1 exists (∣M∣ ≠ 0), then M is positive definite, and the the size of the ellipsoid

defined in Equation 3.4, centered at β̂, is determined by the asymptotic covariance

matrix, M−1(ξ). The lengths of the semi-axes of the ellipsoid are proportional to
√
λi

−1, where λi
−1 represents the eigenvalues of M−1(ξ) (as M−1(ξ) is also positive

definite, λi
−1 > 0 for all i) (Boyd and Vandenberghe, 2004).

Consider the D-criterion. Recall that the determinant of a square matrix A

is equal to the product of all its eigenvalues, and that if λ is an eigenvalue of A,

then λ−1 will be an eigenvalue of A−1 (Poole, 2014). Therefore, minimizing ∏p
i=1 λ

−1
i

(maximizing ∣M(ξ)∣) generally shrinks the values of each λi
−1 closer to zero, which

minimizes the volume of the ellipsoidal confidence region, as the volume of the ellipsoid

is proportional to ∣M−1(ξ)∣1/2. This implies more precise parameter estimates. The A-

and E-criteria consider other aspects of the joint confidence ellipsoid, but conceptually

these criteria focus on the same goal of shrinking the joint confidence region.

Several useful extensions to D-optimality have been proposed. The DA-criterion

(Sibson, 1972) is used when only s linear combinations of β are of interest, where

s < p. The DS-criterion is appropriate when the interest is estimating a subset s

of the parameters as precisely as possible (Atkinson et al., 2007). Generalized D-

optimality, also called S-optimality by Läuter (1976), is a linear combination of DA

criteria for multiple models. Atkinson and Cox (1974) use the generalized D-criterion
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to simultaneously estimate parameters in several candidate models. A summary of

the functional measures of imprecision for the optimality criteria presented in this

section is shown in Table 3.1, where A is a p × s matrix of rank s and each wi is a

non-negative weight such that ∑hi=1wi = 1.

Criterion Ψ, Functional

A tr{M−1(ξ)}

D log∣M−1(ξ)∣

E min λi(M(ξ)) = λmin

DA log∣ATM−1(ξ)A∣

Generalized D ∑hi=1wilog∣AT
i M−1(ξ)Ai∣

Table 3.1: Parameter-Based Optimality Criteria

The D-criterion is the most widely used of all optimality criteria, as it has attrac-

tive mathematical properties and useful design applications. D-optimal designs for

continuous factors do not depend on the scale of the design variables; linear trans-

formations do not affect the design matrix, which is not always the case for A- and

E-optimal designs (Atkinson et al., 2007). Computationally, exact D-optimal designs

are expedient to construct due to efficient calculation methods for updates to the

inverse of a matrix determinant (Goos, 2012).

3.2.2 Prediction-Based Optimality Criteria

Suppose that the experimenter desires to make response predictions within the

design region. For this application, a criterion focusing on minimizing the variance of

prediction would likely be more useful than any parameter-based optimality criterion.

A G-optimal design minimizes the maximum prediction variance over the design
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region. An I-optimal design (also referred to as Q-, V -, or IV -optimal) minimizes

the average prediction variance over the design region (Goos, 2012). Box and Draper

(1959, 1963) first presented the concept of minimizing integrated prediction variance

over a design region. The functionals of these criteria are shown in Table 3.2, where

χ represents the design region and x denotes a column vector of the design variables

x1, ..., xk expanded to model form.

Criterion Ψ, Functional

G maxx∈χxTM−1(ξ)x

I ∫χ xTM−1(ξ)x

Table 3.2: Variance-Based Optimality Criteria

Implementing expedient exact design algorithms for the G-criterion is much more

computationally expensive than it is for the D-criterion, as a search over χ to identify

the maximum prediction variance is required for each candidate design (Rodŕıguez

et al., 2010). Several approaches, such as simulated annealing (Haines, 1987) and

genetic algorithms (see Hamada et al. (2001), Borkowski (2003), and Heredia-Langner

et al. (2004)) have been used to construct G-efficient designs.

3.3 The General Equivalence Theorem

For continuous designs, the General Equivalence Theorem (GET) provides nec-

essary and sufficient conditions to declare ξ optimal over χ. As originally presented

by Kiefer and Wolfowitz (1960), the GET states that for linear models, assuming

that χ is compact and that Ψ is convex and differentiable, a design that is D-optimal

is also G-optimal. Kiefer and Wolfowitz (1960) prove that maxχd(x; ξ) ≥ p, where

d(x; ξ) = xTM−1(ξ)x is the standardized variance of prediction and p is the number of
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parameters in the linear model. Therefore, a design having a maximum standardized

variance of p is a sufficient condition to declare G-optimality, which implies that the

design is also D-optimal.

The GET has been extended to nonlinear models, where an analogue of D- and

G-optimality equivalence is presented (White, 1973). A more general presentation

of the GET for linear models is given by Kiefer (1974), where the class of functions

Φp(M(ξ)) is introduced, taking the form shown in Equation 3.5,

Φp(M(ξ)) = (v−1tr (M−1(ξ))p)1/p
, 0 < p <∞ (3.5)

where v is the dimension of the information matrix. Φ0, defined as limp↓0 Φp, corre-

sponds toD-optimality, Φ1 corresponds toA-optimality, and Φ∞, defined as limp→∞ Φp,

corresponds to E-optimality. In its general form for continuous designs, the GET es-

tablishes the equivalence of the following conditions on the optimal design, denoted

as ξ∗ (Pukelsheim, 1993; Atkinson et al., 2007).

1. Design ξ∗ minimizes Ψ{M(ξ)}

2. min{φ(x, ξ∗)} ≥ 0, where φ(x, ξ∗) = lim
α→0+

1

α
(Ψ{(1−α)M(ξ∗)+αM(ξ̄)}−Ψ{M(ξ∗)}),

the first derivative of Ψ at ξ∗ in the direction of ξ̄, which places unit mass at

point x

3. φ(x, ξ) achieves its minimum at the points of design ξ∗

Therefore, the GET provides the means of verifying optimality for continuous designs.

At ξ∗, all gradients φ(x, ξ∗) are non-negative. If there exists some direction where

φ(x, ξ) < 0, the current design ξ is not optimal.

In general, the GET does not hold for exact designs (Atkinson et al., 2007). How-

ever, optimal continuous designs are used as baselines to calculate design efficiencies.

Two particularly convenient forms of design efficiency exist for D- and G-optimality.
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Suppose that ξ ∈ χ denotes an arbitrary design, and ξ∗ denotes the optimal continu-

ous design in the same design region χ. The D- and G-efficiencies of ξ are given by

Equations 3.6 and 3.7, respectively,

Deff = ( ∣M(ξ)∣
∣M(ξ∗)∣

)
1
p

(3.6)

Geff = ( p

d̄(ξ)
) (3.7)

where d̄(ξ) = maxx∈χ d(x, ξ) (Atkinson et al., 2007). It should be noted that when

comparing candidate exact designs with the continuous optimal design, caution should

be taken in the interpretation of efficiency metrics. Low efficiencies do not necessarily

indicate that the designs perform poorly with respect to the criterion; rather, it should

be a comparative metric among competing exact designs.

3.4 Optimal Designs for GLMs

Box and Lucas (1959) first addressed the problem of constructing optimal designs

for non-linear models. Since then, optimal designs for GLMs has also received much

attention due to the wide application of GLMs in scientific and engineering experi-

ments. Research on optimal designs for the logistic regression model has been mostly

focused on D-optimality (Khuri et al., 2006).

Optimal designs for standard linear models are only functions of the design points,

as the information matrix (XTX)−1
is solely based on the model matrix X. However,

as implied by Equation 2.15, this is not the case for GLMs, as the weight matrix

V is dependent on the model parameter values. The alphabetic optimality criteria

described in Section 3.2 operate in the same manner for GLMs as for linear models

(typically as functionals of the information matrix), but the information matrix for

GLMs is a function of both the design points and the parameter values. Therefore,

constructing optimal designs for GLMs is encumbered by this dependence on the
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presumably unknown parameters, a problem referred to as design dependence (Khuri

et al., 2006).

For the logistic regression model, the functional forD-optimality is Ψ = log∣M−1(ξ)∣,

with the added complexity that the information matrix is now a function of both the

model matrix X and the weight matrix V. For the functionals of I- and G-optimality,

Myers et al. (1994) present a convenient form for the asymptotic average prediction

variance (APV) of logit π̂i for the single-variable case of the logistic regression model.

The parameterization of the logistic regression model takes the form shown in Equa-

tion 3.8,

logit πi = β1(xi − µ) = zi (3.8)

where µ = −β0/β1 and corresponds to the ED50, which represents the value of xi that

produces πi = 0.5, a 50 percent response rate. For the symmetric design region [−a, a],

the APV of logit π̂i for an m-level design with ni runs at the ith level is given by

Equation3.9,

APV = n

∣M(β̂)∣
[
m

∑
i=1

niπi(1 − πi)zi2 +
a2

3

m

∑
i=1

niπi(1 − πi)] (3.9)

where n = ∑mi=1 ni and M(β̂) represents the information matrix obtained by the fitted

model logit π̂(zi) = β̂0+ β̂1zi. An I-optimal design will minimize APV. Assuming that

the design is symmetric about ED50, the maximum prediction variance (MPV) over

region [a−, a] takes the form shown in Equation 3.10.

MPV = n

∣M(β̂)∣
[
m

∑
i=1

niπi(1 − πi)zi2 + a2
m

∑
i=1

niπi(1 − πi)] (3.10)

A G-optimal design will yield the minimum value of the MPV of logit π̂i over the

region of interest. Myers et al. (1994) observe that the MPV of logit π̂ is at the

boundary of the design region. Consequently, the G-optimal design minimizes the

prediction variance at the boundaries of the region of interest.
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Several methods have been used to handle the design dependence problem in

GLMs. One method of obtaining optimal designs for GLMs is to specify the best

guess for the parameter vector β, which can be derived from historical data, subject

matter experts, or earlier experiments of a similar nature. Design points are then

chosen with the assumed parameter vector. This method, proposed by Chernoff

(1953), yields locally optimal designs, as these designs are optimal for the β that was

specified. While this method makes design construction more analogous to the linear

case, this method may also lead to inefficient designs if the assumed values for β

are far from the ground truth (Chaloner and Larntz, 1989). Abdelbasit and Plackett

(1983) investigated single-factor binary response experiments and demonstrated some

robustness issues that can occur with poor initial guesses for β.

An augmentation strategy, also referred to as a sequential design approach, may be

used, where an initial design is used to obtain estimates of β. Once the estimates are

in place, additional runs are added to the design to maximize the optimality criterion

of choice. Abdelbasit and Plackett (1983) used a two-stage procedure to reduce the

effect of inaccurate initial parameter estimates, with Minkin (1987) expanding on their

work by considering the quality of the estimates derived from the first stage. Some

sequential design methodologies are presented in Ford et al. (1989). The two-stage

approach has been applied to experiments for symmetric binary response models, to

include the logistic and probit models (Sitter and Forbes, 1997).

One may also adopt a Bayesian approach by specifying a prior distribution for β,

denoted as f(β), to model the uncertainty in the parameter values. This prior distri-

bution is then incorporated into the design criterion. For example, Tsutakawa (1980)

uses Bayesian techniques for the design problem of estimating an extreme percentage

point of the logistic distribution. D-optimality for a GLM can be implemented by

selecting design points to maximize the expectation of the logarithm of the determi-
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nant of the information matrix (Johnson and Montgomery, 2009). Mathematically,

this design criterion can be written as shown in Equation 3.11,

Ψ(ξ) = Eβ(log∣M(ξ)∣) = ∫ log∣XTVX∣f(β)dβ (3.11)

and was initially proposed by Chaloner and Larntz (1989) to construct optimal designs

for a single-factor logistic regression model. For a model with p parameters, direct use

of the criterion in Equation 3.11 is computationally prohibitive, as the p-dimensional

integral must be evaluated many times throughout design construction. However,

Gotwalt et al. (2009) devised a numerical integration technique that requires only

O(p2) evaluations for normal prior distributions that makes use of generalized Gauss-

Laguerre quadrature. Parsa Maram and Jafari (2016) created designs for two- and

three-parameter logistic regression models with a random intercept using the criterion

in Equation 3.11. Chaloner and Verdinelli (1995) provide an excellent overview of the

Bayesian approach to experimental design.

Pronzato and Walter (1988) present another method to create robust experimental

designs for nonlinear models through maximin optimization, where the parameters

are assumed to belong to some range of values without any other assumptions about

their distribution. A similar approach has also been used in literature to find an

analytical solution for maximin D-optimal designs for an exponential growth model,

where maximin D-optimal describes a design that maximizes the minimal D-efficiency

among the parameter ranges (Imhof, 2001).

Some authors have explored extensions to the GET for GLMs. Stufken and Yang

(2012) derive an equivalence theorem for Φp-optimality, which can be applied to

establish locally A-, D-, and E-optimal designs for GLMs. Recently, Li and Deng

(2018) established equivalence results for I-optimality for GLMs.
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3.5 Constructing Optimal Designs for GLMs

Once a GLM has been specified, an optimality criterion selected, and some method

of initial parameter specification is in place, an optimal design can be constructed.

However, even for a point estimate of the parameter values, which would lead to a

locally optimal design, optimal design construction is a difficult problem for most

practical applications, as optimal support points and their corresponding weights

must be found. Analytical solutions to the optimization of the objective function

are typically intractable, as the objective function is too complex, often with many

variables (Stufken and Yang, 2012). A survey of the methods of design construction

for GLMs, with a focus on the logistic regression model, will be presented in this

section. Analytical approaches will be covered along with algorithms for exact design

construction.

3.5.1 Analytical Construction Methods

The geometric approach, first proposed by Elfving (1952) for a two-variable lin-

ear model, has been used to study optimal designs for GLMs. This approach works

for GLMs by transforming the weighted design problem in design space χ into an

unweighted linear design problem in the induced design region Z, which depends on

both χ and the parameter vector β. The support points for an optimal design lie

on the “smallest ellipsoid” centered at the origin that contains Z, where the ellipsoid

can be explicitly defined based on the optimality criterion being used (Stufken and

Yang, 2012). With this approach, the dependence of the optimal design on the values

of β is replaced in the transformed problem by a design space that varies with β. If

an optimal design is found for an arbitrary Z, the design problem is implicitly solved

for an arbitrary χ and β. Ford et al. (1992) used the geometric approach to derive
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locally D-optimal designs for several nonlinear models. Dette and Haines (1994) cre-

ated E-optimal local designs for nonlinear models with two parameters. Biedermann

et al. (2006) presented Φp-optimal designs for binary response experiments with two

parameters.

Mathew and Sinha (2001) derived locally D-optimal, and in special cases, locally

A- and E-optimal designs for a single explanatory variable logistic regression model

with two parameters. The authors presented a unified approach for deriving D- and

A-optimal designs for this model. Haines et al. (2007) created 3- and 4-support point

locally D-optimal designs for the logistic regression model with two explanatory vari-

ables and no interaction term. While globalD-optimality was only proven analytically

for a special case of the 3-point design, an analytical proof for D-optimality for the

same 3- and 4-point designs for all negative and zero intercept parameters is provided

in Kabera et al. (2015). Yang et al. (2011) proposed a method for obtaining locally D-

optimal designs for the logistic regression model with any number of design variables

where the linear predictor takes the form η(x) = β0 +∑ki=1 βixi and the design region

χ is unbounded for one variable, so that χ = [−1,1]k−1×R. Locally D-optimal designs

for the two explanatory variable logistic regression model with interaction are derived

through a combination of algebraic and numerical methods by Haines et al. (2018).

Local D-optimality for these designs is declared via numerical methods. A summary

of D-optimal designs for the logistic regression model that encompasses most of the

work covered in this section can be found in Atkinson and Woods (2015).

Yang and Stufken (2009) proposed an alternative strategy for deriving locally

optimal designs for GLMs with two parameters and a single explanatory variable.

For a particular model and design space χ, it may be possible to identify a subclass

of the designs, denoted as Ξ, such that for any design ξ ∉ Ξ, there exists a design ξ̃ ∈ Ξ

such that the information matrix for β under ξ̃ dominates the information matrix
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under ξ in the Loewner ordering; Mξ̃(β) ≥ Mξ(β). This implies that a search for

optimal designs over Ξ will produce the same result as an extensive search over χ. Ξ

is referred to as a complete class, and can be particularly useful if Ξ is considerably

small and robust to values of β. Stufken and Yang (2012) present an extension of

this method for GLMs with multiple covariates.

Although analytical techniques has been used extensively throughout the litera-

ture to study locally optimal designs, optimality results are difficult to generalize to a

broad class of model types, parameter ranges, and optimality criteria. Furthermore,

they seem to be limited to studying designs with a small number of design variables

for rudimentary models, as analytical calculations become intractable for more com-

plicated design problems. From a practical standpoint, focusing on techniques for

producing efficient, but perhaps not provably optimal, designs for a fixed size n that

can accommodate more complicated models and a greater number of design variables

may be more useful to experimenters.

3.5.2 Exact Design Algorithms

Many iterative algorithms used to construct exact designs implement an exchange

scheme. An exchange algorithm was first proposed by Fedorov (1972), and early

work in this area involved point-exchange algorithms. This methodology does not

guarantee optimality, as all possible design points come from a discrete candidate

set, but they may still perform sufficiently well to create efficient designs. The basic

concept of a point-exchange algorithm is as follows: from an initial design with n

runs, all pre-specified points in a candidate set (often some fine grid of points over

the design region) are individually augmented and evaluated, and the point that

yields the maximum improvement with respect to the optimality criterion of choice

is added to the design. The least attractive point in the n + 1 run design is then
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deleted, and exchanges continue until some convergence criteria are satisfied. Mitchell

(1974) presents the DETMAX algorithm, which is a point-exchange algorithm used

to construct D-optimal designs for a standard linear model. Instead of a one-for-one

exchange between design points, DETMAX allows for the replacement of multiple

points at each iteration, which reduces the probability of getting trapped at a local

optima. A generalized form of the DETMAX algorithm for linear models is provided

by Welch (1984), which is used to implement G- and I-optimal designs. There are

also algorithms, such as the k-exchange algorithm (Johnson and Nachtsheim, 1983),

where k points are added and deleted simultaneously. Additional point-exchange

methods are summarized in Atkinson (1988).

A coordinate-exchange algorithm for linear models was first proposed by Meyer

and Nachtsheim (1995), where each coordinate (column) of a design point (row) is ex-

changed or iterated until no meaningful improvements are realized. In addition to the

significant reduction in computing time for large problems, the coordinate-exchange

method does not require the enumeration of candidate sets. Mixed design spaces,

where there are combinations of categorical and numeric factors, are also handled

easily. The coordinate-exchange methodology has been used in a wide application of

design problems, such as generating D-optimal split-plot designs (Jones and Goos,

2007), I-optimal split-plot designs (Jones and Goos, 2012), or designing D- and I-

optimal blocked experiments with prior information on the blocks (Jones and Goos,

2015).

Algorithms for exact optimal designs for the logistic regression model are less

prevalent in the literature, with the majority of work focused on the D-criterion.

Woods et al. (2006) created exact D-optimal designs for a first-order logistic regres-

sion model with four design variables, using the centroid of the parameter ranges for

several uniformly distributed parameter spaces. The authors noted that the locally
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D-optimal designs created using the centroid values are fairly robust across the pa-

rameter spaces when the prior ranges are not too wide. Dror and Steinberg (2006)

used a point-exchange algorithm for the construction of locally D-optimal designs

for a GLM, where a sequential approach can be utilized to limit the candidate set

for multivariate problems, which become prohibitively large as the number of de-

sign variables increase. A clustering methodology is used to create robust designs

for a range of parameter values. Both of these applications illustrate that locally

D-optimal designs for a multivariate logistic regression model can be created quickly

using a point-exchange algorithm with minor modifications to include the weight

matrix. The numerical integration technique presented by Gotwalt et al. (2009) in

Section 3.4 was implemented for the Bayesian criterion in Equation 3.11 by the au-

thors in a coordinate-exchange algorithm to quickly generate 16- and 48-run Bayesian

designs for the same logistic regression model with superior D-efficiencies across the

same parameter ranges examined in Woods et al. (2006).

An exchange algorithm for generating G-optimal designs is proposed by Saleh

and Pan (2016), where a combination of point-exchange and coordinate-exchange

methods, along with a clustering methodology for the candidate design points is used.

The algorithm can be modified to accommodate GLMs for the creation of locally G-

optimal exact designs. The authors also use a methodology that is conceptually

similar to the approach used by Dror and Steinberg (2006) to create robust designs.

Several gaps in the literature are noteworthy in this area. First, exact I-optimal

designs for GLMs have not been well-studied. Li and Deng (2018) established the

GET of I-optimality for GLMs and propose a multiplicative algorithm to construct

continuous I-optimal designs. However, no methodology has been proposed to create

robust exact I-optimal designs for GLMs. Second, the separation problem has not

been examined in multi-factor designs for the logistic regression model. Works such
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as Atkinson and Woods (2015) have mentioned the non-existence of ML estimates

for small designs involving categorical (binary) data, but did not explore how the

problem diminishes with increased sample sizes or manifests with different parameter

values over a range of forms for the linear predictor. There are several works that

have explored the separation problem from a design perspective, but only for single-

factor designs. Fornius (2008) investigated the separation problem in locally D-

optimal designs for a single-factor quadratic logistic regression model, and Rahman

(2015) proposed a compound optimality criterion that balances D-optimality with

a reduced probability of separation. There have been no studies of the separation

problem in multi-factor D-optimal designs, and no studies of the separation problem

in designs using other optimality criteria for the logistic regression model. It has not

been established whether a certain criterion will produce designs that are distinctly

less prone to separation. Additionally, for designs that encounter separation, no

augmentation strategy has been proposed to break separation in multi-factor, non-

sequential designs. The absence of research in these areas justifies exploring different

optimality criteria to see if one yields designs with an appreciable advantage over

the rest in terms of separation. Developing an augmentation strategy focused on

breaking separation as part of a sequential design approach would also be a worthwhile

contribution to the literature.
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Chapter 4

SEPARATION IN D-OPTIMAL DESIGNS FOR THE LOGISTIC REGRESSION

MODEL

4.1 Introduction

The D-criterion is often used in computer-generated experimental designs when

the response of interest is binary, such as when the attribute of interest can be cat-

egorized as pass or fail. The majority of methods in the generation of D-optimal

designs focus on logistic regression as the base model for relating a set of experimen-

tal factors with a binary response. Despite the advances in computational algorithms

for calculating D-optimal designs for the logistic regression model, very few have

acknowledged the problem of separation, a phenomenon where the responses are per-

fectly separable by a hyperplane in the design space. Separation causes one or more

parameters of the logistic regression model to be inestimable via ML estimation. The

objective of the research presented in this chapter is to investigate the tendency of

computer-generated, non-sequential D-optimal designs to yield separation in small-

sample experimental data. Sets of locally D-optimal and Bayesian D-optimal designs

with different run (sample) sizes are generated for three specified logistic regression

models. A Monte Carlo simulation methodology is then used to estimate the prob-

ability of separation for each design. Results of the simulation study confirm that

separation occurs frequently in small-sample data and that separation is more likely

to occur when the model has interaction and quadratic terms. Finally, this research

illustrates that different designs with identical run sizes created from the same model

can have significantly different chances of encountering separation.
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4.2 Separation in Single-Factor D-Optimal Designs

In the literature, only single-factor designs have been studied for the phenomenon

of separation. Fornius (2008) explored the separation properties of several non-

sequential single-factor locally D-optimal designs for the quadratic logistic regression

model, which has the linear predictor form

η(x) = α + β(x − µ)2 (4.1)

Four sets of values for the parameters α, β, and µ were used to generate two D-optimal

designs for each set. The D-optimal designs had either 3 or 4 support points, a term

that is used to designate the unique locations of runs within the design space; all of the

trials in an experiment will be conducted at a support point. The D-optimal designs

were compared to two non-optimal designs with 7 and 8 support points, respectively.

10-, 20-, 50-, and 100-run design sizes are considered for each of the four parameter

sets and design types. For the smaller sample sizes, all possible permutations of

the response vector are considered, while 10000 simulated response sets were used to

estimate the probabilities of separation occurring for the large sample sizes (Fornius,

2008).

There was a significant problem with separation for the 10- and 20-run sizes. Even

for the largest sample size, the D-optimal design for one parameter set still had a

65 percent chance of encountering separation (Fornius, 2008). It was generally noted

that while the D-Optimal designs outperformed the non-optimal designs in terms of

the mean squared errors of the estimators, the 7- and 8-support point designs were

less prone to separation (Fornius, 2008).

Rahman (2015) proposed a compound optimal design criterion in an attempt

to minimize the probability of separation in non-sequential single-factor logistic de-

signs while considering D-efficiency. Probability-optimal (Ps) designs were created
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by allocating design points in a manner that minimized the probability of separation

occurring. Although the Ps designs have a much lower probability of separation than

D-optimal designs of the same size, the Ps designs do not appear to be useful in

practice, as they have poor D-efficiencies and appear to be runs permuted about a

single point of maximum variance, where E(y) = 0.5.

A compound optimality criterion, DPs, was used to balance the D-criterion with

a reduced probability of separation. It is expressed as a ratio of the D-criterion to the

probability of complete separation occurring in the design, weighted by an arbitrary

mixing constant α ∈ (0,1). DPs can be represented mathematically as shown in

Equation 4.2,

DPs =
P (S∣x)1−α

∣XTVX∣α/p
(4.2)

where P (S∣x) is the probability of complete separation with design points x, α ∈ [0,1]

is a blending constant, and p is the number of parameters in the model (Rahman,

2015). DPs will be minimized when the probability of separation is low and the

D-efficiency of the design is high. However, no definitive conclusion was reached as

to the best approach for determining α and generating designs with relatively high

D-efficiencies that have comparatively low chances of separation occurring.

4.3 Simulation Study

Previous studies on the probability of separation in experimental designs for the

logistic regression model have focused solely on single-factor designs. A simulation

study was conducted to explore the probability of separation in multi-factor locally

and Bayesian D-optimal designs for different realizations of the logistic regression

model. In this study, only continuous two-factor designs were considered. Further-

more, all Bayesian designs were constructed with the assumption that the prior in-

formation on the model parameters can be adequately summarized by a normal dis-
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tribution. The linear predictor of the logistic regression model used in this study has

the form shown in Equation 4.3,

η(x) = β0 + β1x1 + β2x2 + β12x1x2 + β11x1
2 + β22x2

2 (4.3)

where x1 and x2 represent settings of the continuous design factors.

Three representative logistic regression models were specified for the simulation

study: 1) a main-effects (ME) model (η(x) = β0+β1x1+β2x2) with a relatively flat re-

sponse surface, 2) a ME and interaction (2FI) model (η(x) = β0+β1x1+β2x2+β12x1x2)

with a steeper surface and mild curvature, and 3) a quadratic model with more com-

plex curvature. The ±2σ limits on all parameter means for each model are shown

in Table 4.1. The midpoints of the ranges shown in Table 4.1 were used as point

estimates for β to create the locally D-optimal designs, while the distributions were

used to create the Bayesian D-optimal designs. The surface plots of the logistic re-

sponse function for each model, generated using the midpoints of the ranges given

in Table 4.1, are shown in Figure 4.1. As exact designs are generated via a heuristic

exchange algorithm, the design algorithm will produce multiple distinct designs that

are declared locally or Bayesian D-optimal for each model. Therefore, to comprehen-

sively examine the probability of separation for exact n-run designs generated from

a particular model, 20 designs of size n were created for each model (ten locally D-

optimal, ten Bayesian D-optimal), with n = 8, 16, 32, and 64 runs. This corresponds

to a total of 80 unique designs for each model. The nonlinear design platform of

JMP Pro 13 RO, which implements the quadrature scheme proposed by Gotwalt et al.

(2009), was used to create all the designs.

A Monte Carlo simulation methodology was adopted to estimate the probability

of separation for each design. For each design, 2500 response sets were simulated,

where the response for each run was randomly sampled from a Bernoulli process with
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Table 4.1: ±2σ Limits on Parameter Means

ME Model 2FI Model Quadratic Model

β0 = 0 −1.5 ≤ β0 ≤ −0.5 1 ≤ β0 ≤ 3

1 ≤ β1 ≤ 3 2 ≤ β1 ≤ 6 1.5 ≤ β1 ≤ 4.5

0.5 ≤ β2 ≤ 1.5 0.5 ≤ β2 ≤ 1.5 −3 ≤ β2 ≤ −1
−3 ≤ β12 ≤ −1 −1.5 ≤ β12 ≤ −0.5

1.5 ≤ β11 ≤ 4.5

−6 ≤ β22 ≤ −2

P (yi = 1∣xi) = E(yi∣xi), where E(yi∣xi) is defined by the logistic response function of

the model being used. All model parameters were assumed to be correctly specified

in design creation throughout the simulation study; the parameter values were equal

to the means of their given prior distributions. For each simulated response set, JMP

Pro 13 RO was used to fit a corresponding logistic regression model, and separation

was declared in the response set if the estimated variance of any parameter estimate

was greater than 5000, which is a relatively conservative suggestion for declaring

separation proposed by Heinze and Schemper (2002). For each design, the proportion

of simulated response sets that were observed is reported as the estimated probability

of separation.

A validation of the simulation methodology was conducted for all designs of size

n = 8. A logistic regression model was fit to each of the 28 = 256 possible response

vectors, y ∈ {0,1}8. For each response vector, separation was declared when any of

the parameter estimates had a variance over 5000. The probability of separation for

the design was then calculated as the summation of the probability of each unique

response vector occurring that yielded separation, shown in Equation 4.4.

P (Separation) =
2n

∑
j=1

(
n

∏
i=1

P (yij)) Ij (4.4)
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Figure 4.1: Surface Plots of the Logistic Regression Models

where

P (yij) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
1+exp(−xTi β)

if yij = 1

1
1+exp(xTi β)

if yij = 0

and

Ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if separation is declared in response set j

0 otherwise

As n increases, this validation methodology quickly becomes impractical, as the num-

ber of possible response vectors is 2n. However, for designs with a small number of
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runs, it is possible to estimate the separation probability of the design in this fashion.

The results of the simulation study are summarized in Table 4.2. The validation

results are also reported for all designs of size n = 8. By comparing the simulation

results to the validation results, it appears that the simulation methodology produces

reasonable estimates of a design’s probability of separation.
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Table 4.2: P (Separation) Results by Model

ME Model

Local Bayesian

Design Runs Average Std Dev Average Std Dev

8 0.733 0.028 0.643 0.042

8 (val) 0.727 0.027 0.626 0.047

16 0.328 0.019 0.270 0.027

32 0.057 0.005 0.032 0.013

64 0.002 0.001 0.001 0.001

2FI Model

Local Bayesian

Design Runs Average Std Dev Average Std Dev

8 0.993 0.004 0.965 0.014

8 (val) 0.993 0.003 0.961 0.014

16 0.917 0.006 0.814 0.052

32 0.619 0.007 0.468 0.117

64 0.171 0.009 0.067 0.032

Quadratic Model

Local Bayesian

Design Runs Average Std Dev Average Std Dev

8 0.989 0.013 0.980 0.009

8 (val) 0.997 0.005 0.998 0.003

16 0.884 0.124 0.537 0.121

32 0.376 0.182 0.350 0.090

64 0.109 0.098 0.013 0.012
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4.4 Discussion

All three representative logistic regression models examined in this study yield

designs with substantial separation problems when the number of available runs is

small. For 8- and 16-run designs, there were cases for the 2FI and quadratic models

where the nonlinear design algorithm in JMP RO created locally optimal designs that

were guaranteed to either be inestimable (y = 0 or y = 1) or suffer from separation.

A response vector that would allow for valid parameter estimates did not exist in

certain small designs.

For equal design sizes, the designs constructed for the ME model, which has a

comparatively flat response surface, do not have as high a probability of separation

as do the designs constructed for the 2FI and the quadratic models. By the time

the designs for the ME model reached a size of 32 runs, encountering separation is

unlikely, as separated data occurs in only 5.7 percent of the simulated response sets.

However, for designs for the 2FI and the quadratic models, this is not the case. Even

with a design size of 64 runs, separation occurred over 30 percent of the time in one

locally optimal design for the quadratic model.

Furthermore, the results of the simulation study indicate that the Bayesian D-

optimal designs tend to perform better than the locally D-optimal designs in terms

of the probability of separation. For all three models, the average probability of

separation is lower for the Bayesian designs than for the locally optimal designs across

all run sizes examined. Consider two 32-run designs created for the 2FI model:

a locally optimal design with an estimated separation probability of 0.623, and a

Bayesian design with an estimated separation probability of 0.329. The support

points of each design are shown in part (a) of Figure 4.2.

The Bayesian designs have more support points than the locally optimal designs,
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(a) Support Points for a Locally D-Optimal and a Bayesian
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(b) Support Points for a Bayesian D-Optimal Design

with Higher Variance Priors

Figure 4.2: Support Points for 2FI Model Designs

especially as the variances of the parameter prior distributions increase. As seen in

part (a) of Figure 4.2, the locally optimal design has four support points, while the

Bayesian design has nine. As the variance increases, the support points also tend to
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cover a larger area of the design region. Chaloner and Larntz (1989) show that as the

uncertainty in the prior information increases, so do the number of support points in

a design. Suppose that the ±2σ range on the priors for the 2FI model are doubled,

as shown in (4.5).

−2 ≤ β0 ≤ 0

0 ≤ β1 ≤ 8 (4.5)

0 ≤ β2 ≤ 2

−4 ≤ β12 ≤ 0

The support points for a 32-run Bayesian design generated from the higher-variance

prior distributions in (4.5) for the 2FI model are shown in part (b) of Figure 4.2.

The design has eleven support points that cover a larger portion of the design space.

Interestingly, this design has an estimated separation probability of 0.468, which is

higher than the 9-support point Bayesian design generated from the original priors

shown in Table 4.1.

An important observation should be made on the impact of the number of support

points on the probability of separation in a design. Support points are collectively

referred to as near neighbors if they occupy nearly identical spaces in the design

region. In this study, as both design variables have ranges (−1,1), support points

are considered near neighbors if both their x1 and x2 coordinates differ by less than

1 × 10−3. If either coordinate differs by more than 1 × 10−3, they are referred to

as distinct support points. Consider the 64-run designs created for the 2FI model.

The 64-run locally optimal designs have between 4 and 7 total support points, with

separation probabilities ranging from 0.157 to 0.188. The design with the highest

probability of separation in this group has 7 support points. However, each locally
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optimal design in this group has 4 distinct support points, indicating that the number

of distinct support points in a design has a larger effect on the probability of separation

than the total number of support points. After grouping near neighbor support

points, all of the locally optimal designs created for the 2FI model have 4 distinct

support points across all run sizes. This explains the low variance of separation

probabilities for the locally optimal designs from the 2FI model, seen in the standard

deviations reported for these groups in Table 4.2. The 64-run Bayesian designs created

for the 2FI model have between 8 and 10 distinct support points, with separation

probabilities ranging from 0.029 to 0.119, which is lower than the locally optimal

designs. The Bayesian design with the lowest probability of separation in this group

has 10 distinct support points. By comparing the distinct support points of the locally

optimal designs to the Bayesian designs across all three models, it is evident that as

the number of distinct support points increase, the probability of separation tends to

decrease, as the existence of a separating hyperplane becomes less likely with more

distinct support points in the design region. This appears to be the reason that the

Bayesian D-optimal designs are less prone to separation than the locally D-optimal

designs.

As the response surfaces become more complex with the addition of interaction

and quadratic terms, the variance of the estimated probabilities of separation for de-

signs generated from the same model tends to increase. The separation probability

disparity between designs is especially noticeable in the 16- and 32-run Bayesian de-

signs from the 2FI model and all 16- and 32-run designs from the quadratic model, as

seen in the standard deviations reported for these groups in Table 4.2. The large vari-

ances of the probability of separation in these groups cannot be solely attributed to

differences in the number of distinct support points for each design. This can be seen

in Figure 4.3, which shows the probability of separation for each of the 16-run designs
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from the quadratic model grouped by the number of distinct support points. Figure
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Figure 4.3: P (Separation) vs. Distinct Support Points for the 16-Run Designs from

the Quadratic Model

4.3 supports the conjecture that the Bayesian designs are less prone to separation

due to the higher number of distinct support points, as the probability of separation

is generally decreasing as the number of distinct support points increases. However,

there are two 8-support point locally optimal designs with a nearly 20 percent differ-

ence in the estimated probability of separation. Differences in separation probabilities

of this magnitude were observed for the 2FI and quadratic models between designs

with an equal number of runs and distinct support points.

As the models become increasingly complex, the design runs collectively occupy a

larger portion of the design region. This can be observed in Figure 4.4, which shows

the support points for all of the 8-run Bayesian D-optimal designs across all three

models. Figure 4.4 shows that the JMP RO nonlinear design algorithm is always allo-

cating runs to essentially the same four locations for the 8-run designs generated from

the ME model. Since each design is nearly identical in terms of the support points,
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(c) Quadratic Model Designs

Figure 4.4: Support Points of the 8-Run Bayesian D-Optimal Designs

the separation probabilities between designs are very close, as expected. However,

the designs from the 2FI model have a more pronounced difference in the support

point locations between designs. For the quadratic model, Figure 4.4 shows that

the design algorithm is allocating runs to a wide range of support point locations

throughout the design region between different designs, leading to the most disparate

designs observed from the same model, even if the number of distinct support points

are equivalent. This explains why designs with the same number of runs and distinct

support points generated from the same model can still have significantly different
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probabilities of separation.

4.5 Summary

The simulation study shows that separation is a serious problem for both Bayesian

and locally D-optimal two-factor designs when the run size is small. The separa-

tion problem becomes more pronounced as the models acquire active interaction and

quadratic terms. For 8- and 16-run designs, encountering separation in practice would

likely be a common occurrence. The problem of separation is mostly mitigated by the

time the design size reaches 64 runs, although there are still 64-run locally optimal

designs where separation occurred in over 30 percent of the simulated data sets.

Figure 4.5 captures the probability of separation for all of the designs produced

in this study. The Bayesian designs tend to be less prone to separation than locally

optimal designs of identical run size, likely due to the increased number of distinct

support points. The increase in support points is especially noticeable as the models

become more complex and the uncertainty in the prior information increases. How-

ever, as the example of increasing the prior variance in Section 4.4 shows, the spread

of support points throughout more of the design region does not necessarily yield a

design with a lower probability of separation.

The 16- and 32-run Bayesian designs generated from the 2FI model, and both the

locally optimal and Bayesian designs generated from the quadratic model illustrate

that designs generated from the same model can have significantly different proba-

bilities of separation. This is represented in Figure 4.5, where the boxes are quite

elongated for the 2FI and the quadratic models, indicating a high variance in sepa-

ration probabilities between designs of identical run sizes from the same model. In

practice, generating several designs and examining the separation properties would be

advisable, as the user should select the design with the lowest estimated probability
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(b) 2FI Model Designs
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(c) Quadratic Model Designs

Figure 4.5: P (Separation) vs. Run Size by Model
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of separation, assuming similar D-efficiencies between designs.

The simulation study presented in this chapter is a first attempt to quantify the

probability of separation in non-sequential, multi-factor D-optimal designs. Future

research could involve increasing the number of design factors and exploring designs

generated from different prior distributions. However, an efficient design construction

method for non-normal prior distributions has not been established. Future research

could also involve expanding the scope of the logistic regression models that were

used in this study, or designing a study that explores a wider range of prior variances.

There may be model forms that yield designs with more significant separation issues.
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Chapter 5

NON-SEQUENTIAL AUGMENTATION STRATEGIES TO ADDRESS

SEPARATION IN LOGISTIC REGRESSION

Previous research on small sample multi-factor D-optimal designs for the logis-

tic regression model has demonstrated that these designs are prone to encountering

separation, a phenomenon where the responses are completely or quasi-completely

separable by a hyperplane in the design space. Separation causes the non-existence of

maximum likelihood parameter estimates and represents a serious problem for model

fitting purposes. In this chapter, several non-sequential design augmentation strate-

gies, where additional experimental trials are performed following an initial experi-

ment that has encountered separation, are investigated. Small locally and Bayesian

D-optimal initial designs are generated for several representative logistic regression

models, and a Monte Carlo simulation methodology is then used to investigate the

effectiveness of each augmentation strategy in eliminating separation. Results of the

simulation study show that augmenting design runs (trials) in regions of maximum

prediction variance (MPV) is the most effective strategy for eliminating separation.

However, MPV augmentation tends to produce designs with lower D-efficiencies. The

study illustrates that MPV augmentation reliably eliminates separation and can be

used in practice to obtain usable parameter estimates for the logistic regression model.

5.1 Introduction

Experimental designs for categorical responses are often constructed using optimal

design methods for generalized linear models (GLMs), a flexible class of models for

responses belonging to the exponential family of distributions (Myers et al., 2012).
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Examples of responses that can be modeled using GLMs include variables that are

measured in the binary (pass/fail), nominal, and ordinal scales. For exact (discrete)

experimental designs for GLMs (see Atkinson et al. (2007) for the distinction between

exact and continuous optimal designs), the majority of research has focused on devel-

oping efficient exchange algorithms to create designs for various optimality criteria,

such as novel numerical integration techniques to expediently generate Bayesian D-

optimal designs, or modifications to coordinate exchange algorithms to create robust

G-optimal designs (Gotwalt et al., 2009; Saleh and Pan, 2016).

Designs for binary response data, where the outcome of each experimental trial

can be classified as one of two possible outcomes, typically use the logistic regression

model as the base model for relating the response to a set of experimental factors. The

logistic regression model, which belongs to the class of GLMs, has the form shown

in Equation 2.3, where the outcome of n experimental trials (runs) are modeled

as independent Bernoulli random variables. The logistic response function, E(y),

has the form shown in Equation 2.4, where x represents a vector of design variables

expanded to model form and β represents a vector of model coefficients (parameters).

The linear predictor of the logistic response function is shown in Equation 2.5.

Optimal design methods select design points such that a user-specified statistical

criterion is optimized. One of the most widely used is the D-criterion, which aims to

minimize the generalized variance of the parameter estimates, yielding designs tailored

for model-building and screening applications. This is accomplished by constructing

a design that maximizes the determinant of the Fisher information matrix, M. For

GLMs, a D-optimal design satisfies

ξ∗D = argmax
ξ

∣M(ξ)∣ = argmax
ξ

∣XTVX∣, (5.1)

where ξ is the set of all designs in the factorial space, X is the model matrix of a
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candidate design in ξ, and V is a diagonal weight matrix containing the estimated

variance of each observation on the diagonal Myers et al. (2012); Atkinson et al.

(2007). A design given by Equation 5.1 minimizes −log∣M−1∣, thus minimizing the

eigenvalues of the asymptotic covariance matrix of β (Atkinson et al., 2007). In

contrast to methods for constructing optimal designs for linear models with constant

error variance, optimal designs for GLMs are encumbered by their dependence on

unknown model parameters, which is called the design dependence problem (Khuri

et al., 2006). Several methods have been presented to handle design dependence in

GLMs. One method is to specify the best guess for the parameter vector β, which

can be derived from historical data, subject matter experts, or earlier experiments of

a similar nature. Design points are then chosen with the assumed parameter vector.

This method yields locally optimal designs, as these designs are only optimal for a

specific estimate of β (Chernoff, 1953). To circumvent difficulties and issues with

locally optimal designs, robust design approaches, such as Bayesian optimal designs,

have been proposed. Bayesian optimal designs require the specification of a prior

distribution for β, denoted as f(β), to model the uncertainty in the parameter values

and to create designs that are more robust to parameter misspecification (Chaloner

and Larntz, 1989).

Some results in the literature show that the design points of the D-optimal de-

signs for the logistic regression model tend to be located on the boundaries of an

induced subspace within the original design space; that is, depending on the speci-

fied parameters or prior distributions, the D-criterion favors locating design points

on the boundaries of a region where 0.15 ≤ E(y) ≤ 0.85 (Dror and Steinberg, 2005;

Mancenido et al., 2019). In contrast, design points of D-optimal designs for linear

models with constant error variance are generally located on the boundaries of the

original design space (Montgomery, 2017). Despite allocating design points on regions
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where E(y) should yield a sufficient proportion of both outcomes, D-optimal designs

for logistic regression have been shown to be prone to the problem of separation in

small, multi-factor experiments (Park et al., 2019).

Separation is a phenomenon where responses are completely or quasi-completely

separated by a hyperplane in the design space. Formally, if there exists a column

vector α such that αTxi ≥ 0 when yi = 1 and αTxi < 0 when yi = 0 holds for all obser-

vations, then some form of separation is present (Albert and Anderson, 1984). The

presence of separation causes the non-existence of one or more maximum likelihood

(ML) estimates for the parameters of the logistic regression model and presents a se-

rious problem for users seeking to fit a statistical model for effect testing or inference

purposes. From the perspective of analyzing experimental data, Firth likelihood (FL)

estimation (Firth, 1993) was proposed to obtain finite parameter estimates for the

logistic regression model with separated response data (Heinze and Schemper, 2002;

Heinze, 2006). Despite the presence of recommendations for mitigating separation in

the analysis of experimental data, research on addressing the problem of separation

in the design phase of an experiment remains sparse.

The DPs-criterion has been proposed to mitigate separation in the design phase

for single-factor experiments for the logistic regression model (Rahman, 2015). DPs-

optimal designs use a compound design criterion that simultaneously optimizes the

D-criterion and minimizes the probability of separation. These designs are more ro-

bust to separation problems for small run sizes and concurrently, produce minimum-

variance estimates. However, the DPs criterion is computationally expensive to im-

plement for multi-factor experiments because it exhaustively enumerates all possible

outcome combinations in the calculation of the probability of separation.

In this chapter, mitigating separation through a non-sequential augmentation

strategy is explored, where a block of additional runs are added to the initial design to
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break or remove separation. Non-sequential augmentation refers to situations where

the entire initial experiment is planned before conducting any trials, and subsequent

experimental trials (augmentation) are based only on the results of the initial experi-

ment. On the other hand, sequential augmentation involves dynamically determining

the factor settings of the next experimental trial based on the results observed in the

current trial (Blot and Meeter, 1973). A non-sequential design strategy is typically

adopted in cases where budget constraints or limited test execution windows prevent

a sequential approach. For example, in the military acquisition cycle, operational

testing for weapon system procurement is usually performed using a non-sequential

approach to satisfy rigid test plan requirements (Giadrosich, 1995).

Although additional experimental trials are not always feasible in practice due to

budget or time constraints, an augmentation strategy could still be used in settings

where a fixed design size has been initially determined and could provide advantages

over the use of a compound criterion. Suppose an organization has set a budget for

20 experimental runs. Instead of creating a 20-run DPs-optimal design, an initial

experiment for 15 runs can be constructed using the D-criterion. If separation occurs

after executing the 15-run design, the remaining five runs can be augmented so that

there is a high probability of breaking separation; if separation does not occur, the

remaining five runs can be augmented using the D-criterion, which could produce a

design with more precise parameter estimates than the DPs-optimal design. Such

flexibility is not offered by a one-shot experimental design strategy.

This study proposes three strategies for breaking separation in D-optimal designs

for the logistic regression model using a non-sequential augmentation approach. These

strategies are evaluated and compared with respect to two metrics that measure

how well separation is mitigated following augmentation. The three strategies and

performance metrics are discussed in Section 5.2, while the rest of the chapter is
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organized as follows: Section 5.3 discusses the methodology for the Monte Carlo

simulation study and demonstrates the resulting designs after augmentation; Section

5.4 summarizes and compares the performance of the augmented designs based on the

estimated separation probabilities and the ML/FL estimates obtained; lastly, Section

5.5 provides recommendations for mitigating separation and potential directions for

future work. While the methodology in this chapter focuses on the two-factor design

case, results from this work can be extended to cases with more than two factors.

5.2 Augmentation Strategies

Several methodologies have been proposed to efficiently create overlap, a term used

to denote the absence of complete or quasi-separation, in an initial separated data set

(Neyer, 1994; Wu and Tian, 2014). The majority of work on creating overlap utilizes a

sequential approach i.e., the augmented design point is dynamically determined from

the results of the previous trial. For example, a three-phase procedure is presented

in the literature to design optimal sensitivity experiments, where the first phase fo-

cuses on creating overlap by honing in on areas likely to produce mixed responses

(Wu and Tian, 2014). The location of subsequent design points are dependent on the

outcome of the previous trial, indicating a sequential approach. Proposals for sequen-

tial methods in the literature have also been limited to the single-factor case. For

a non-sequential approach in multi-factor experiments, the following augmentation

strategies are proposed:

1. Maximum prediction variance (MPV). Runs are augmented in regions of high

prediction variance where E(yi∣β) ≈ 0.5.

2. Support Point (SP) Replication. Runs are augmented by replicating at the

support points of the initial design. Support points are unique runs or factor
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combinations that may or may not have been replicated in the initial design.

3. Random. Runs are augmented randomly throughout the design region, where

the coordinates (factor levels) of each augmented design point are drawn from

a Uniform distribution across the factor ranges.

The MPV strategy involves placing augmented design points in regions where

E(yi∣β) ≈ 0.5 to maximize the chances of observing mixed responses to create overlap

in the response data. For k total design variables and the estimates of β specified

in design creation, E(y∣β̂) = 0.5 can be expressed as a function that returns the

coordinate of the kth design variable based on the coordinates of the remaining k − 1

design variables. The factor settings of k − 1 variables are randomly drawn from

a Uniform distribution across the factor ranges. In coded units, where xi ∈ [−1,1]

∀i = 1, ..., k, xi = Uniform(−1,1) for i = 1, ..., k − 1. The setting of the kth variable

is determined by the function E(yi∣x1, ..., xk−1, β̂) = 0.5. The constraints −1 ≤ xi ≤ 1

∀i = 1, ..., k are imposed to yield feasible points of MPV within the coded factorial

design region. To avoid quasi-complete separation, at least one coordinate of the k

design variables for each augmented point must be adjusted by a small δ. To illustrate,

consider a two-factor (k = 2) main effects (ME) logistic regression model, with coded

design variables x1, x2 ∈ [−1,1] and parameters β0 = 0, β1 = 2, and β2 = 1. The logistic

response function takes the form

E(y∣β) = (1 + exp(−2x1 − x2))−1. (5.2)

From Equation 5.2, the region where E(y∣β) = 0.5 is a line defined by x2 = −2x1.

An 8-run locally D-optimal design generated using JMP Pro 14.2 RO for this model

consists of two replicates at each of the support points shown in Figure 5.1. Suppose

that after executing the initial design depicted in Figure 5.1, the response data is

65



&K�B/RFDO'2SW���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

;�

����

����

���

���

���

���� ���� ��� ��� ���
;�

���

���

���

���

���

���

���

(>\@

(>\@� ����

Figure 5.1: Locally D-Optimal Design with Separating Hyperplane

completely separated such that yi = 0 is observed for all runs where E(y) < 0.5 and

yi = 1 is observed where E(y) > 0.5. In this case, any number of augmented runs that

lie directly on the line x2 = −2x1 will yield, by definition, quasi-complete separation,

regardless of the response values observed (Albert and Anderson, 1984). Therefore,

at least one coordinate of each augmented point should be adjusted by some δ to

avoid quasi-complete separation.

The proposed MPV method for breaking separation adds J augmented runs to the

k-dimensional factorial coded design region, denoted as χ ∈ [−1,1]k, in the following

manner:

1. Define the set of candidate points, C = {x ∈ χ ∣ E(y∣β̂) = 0.5}. To define

C, estimates for β are required. In practice, two methods are available when

separation is present. C can be defined by the initial estimates used in design

creation, such as point estimates derived from similar experimentation/the best

guesses of subject matter experts, or the means of a distributional prior. FL
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estimation can also be used to obtain β̂. For the simulation study presented in

Section 5.3, the prior means specified in design creation are used to define C.

2. Randomly select an augmented design point xi ∈ C, for i = 1, ..., J , where J is

the number of augmented design points.

3. Make an adjustment to at least one of the k coordinates of each xi by ±δ, where

δ ∼ Uniform(a, b) and a > 0. The value of b is set to ensure that the augmented

points are still in regions of high prediction variance.

4. Ensure that adjusted xi ∈ χ for i = 1, ..., J.

Strategy 2 augments runs at the support points of the initial D-optimal design.

As the D-criterion will tend to locate support points in an induced sub-region of

the design space with moderate response probabilities, it is reasonable to investigate

whether mixed responses will be reliably observed at these support points to create

overlap.

To provide baselines for the performance of MPV augmentation (strategy 1) and

SP replication (strategy 2), the performance of random augmentation – where design

runs are randomly placed throughout the design region (strategy 3) – is also inves-

tigated. The motivation behind this strategy is similar to the aim of space-filling

computer designs, where the objective is to spread design points uniformly through-

out the design region (Pronzato and Müller, 2012). This method is likely to place

points in regions of moderate response probabilities, but may not have good practical

properties, as each augmented run will be located in a unique region of the design

space. Furthermore, the ability of random augmentation to create overlap will likely

be inconsistent, as there is no system for locating the points.

Two performance metrics will be used to evaluate the three strategies: (1) the abil-

ity to reliably create overlapped response data; and (2) the standard error of estimates
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that are obtained through the augmented design. The first metric is straightforward,

as the primary aim of augmentation is to create overlap, which will allow for the use of

ML estimation (Albert and Anderson, 1984). The second metric is a common method

for evaluating the quality of an experimental design (Montgomery, 2017). The mag-

nitude of the maximum ML estimate standard error reported by a statistical analysis

package is also commonly used as a criterion for declaring separation, as enormous

standard errors imply non-existence of finite ML estimates (Heinze and Schemper,

2002).

5.3 Simulation Study

A simulation study was conducted to evaluate the performance of the strategies

outlined in Section 5.2. The simulation study was restricted to two-factor designs,

but the methodology can be easily extended to higher-dimensional design spaces.

Three logistic regression models were used to generate the 8- and 16-run D-optimal

designs used in this study: (1) a ME only model, (2) a ME with an active interaction

term (2FI) model, and (3) a full quadratic model with an active interaction and

second-order terms. It was assumed that the parameter prior distributions are normal;

the ±2σ limits on all parameter means for each model are shown in Table 4.1. Both

locally and Bayesian D-optimal designs were used as the initial designs in this study.

The means of the prior distributions (the midpoints of the ranges shown in Table 4.1)

were used as the point estimates for β to generate the locally D-optimal designs, while

the distributions were used to create the Bayesian D-optimal designs. Additionally,

to define the candidate set for MPV augmentation, values of β̂ were assumed to be

the single-point priors for the local designs and the means of the prior distributions

for the Bayesian optimal designs.

To assess each augmentation strategy across designs generated from all three lo-

68



gistic regression models, 8-run initial designs were constructed (n = 8). For each

model, ten locally D-optimal and ten Bayesian D-optimal designs were created in

JMP Pro 14.2 RO. Due to the information-poor nature of binary response data, mean-

ingful improvements to parameter estimates in small designs are not expected with

a single, additional run. Therefore, runs were augmented to each design in a block

of size J = 8, where each block was constructed using one of the three strategies.

This resource allocation strategy is analogous to starting with a fractional factorial

design and augmenting with a full fold-over for linear models with constant error

variance, where another experiment of equal size is performed to eliminate ambigu-

ity in a design’s alias structure (Montgomery, 2017). The 16-run augmented designs

(eight initial, eight augmented) are also compared to baseline 16-run D-optimal de-

signs. This comparison indicates whether the augmented designs are more robust to

separation than a D-optimal design. Additionally, the ML/FL estimates produced by

the augmented designs are compared to FL estimates that are available in an equal

size D-optimal design with separated response data to determine if an alternative

augmentation strategy to the D-criterion is advisable.

A Monte Carlo simulation methodology was used to estimate the probability that

each strategy will create overlapped response data from an initial 8-run D-optimal

design. For each initial design, 2500 augmentation trials were simulated. Each trial

proceeded as follows:

1. A separated response set for the initial design was simulated using a random

Bernoulli draw with P (yi = 1) = E(yi). A simulated response set was deemed

“separated” if the estimated variance of any ML parameter estimate was greater

than 5000, in accordance with previous methods in the literature (Heinze and

Schemper, 2002). Response sets would be re-drawn until a separated response

set was obtained.
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2. The 8-run block of augmented runs was constructed using one of the augmenta-

tion strategies outlined in Section 5.2. Simulated responses for the augmented

runs were randomly drawn using the same Bernoulli process.

3. From the augmented 16-run design, ML and FL estimates were determined.

Separation was declared in the response data of the augmented design using

the same large parameter estimate variance criterion.

Each of the 2500 augmentation trials for an initial design corresponded to a unique

experimental design. The augmentation trials were performed for all three augmen-

tation strategies outlined in Section 5.2.

The contour plots, along with 20,000 augmented runs using MPV augmentation

for each model, are shown in Figure 5.2. The gray areas in the augmented run plots

represent the collective plot of 20,000 design points that lie in regions of the design

space where 0.46 < E(y) < 0.54 holds. Separation results for each of the strategies

are illustrated in Figure 5.3. This plot shows the estimated separation probability

of the initial 16-run D-optimal designs and of the 16-run augmented designs. The

separation probabilities were estimated as outlined in Park et al. (2019), where the

reported estimate is the proportion of separated response sets that were observed

out of the 2500 trials. For each simulated response set, overlap was declared if the

maximum standard error of any ML parameter estimate was less than
√

5000 (Heinze

and Schemper, 2002). Table 5.1 shows the percentage of overlapped response data

for the designs constructed using the three augmentation strategies, as well as for the

16-run D-optimal designs.
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(b) ME Model Augmented Runs
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(d) 2FI Model Augmented Runs
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(f) Quadratic Model Augmented Runs

Figure 5.2: Contour Plots and MPV-Augmented Runs Overlay by Model
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Table 5.1: Percentage of Overlapped Response Data

S1: MPV S2: Replicate SPs S3: Random 16R D-Optimal

ME 92.47% 50.90% 89.37% 70.09%

2FI 72.28% 10.59% 61.57% 13.43%

Quadratic 69.38% 10.65% 63.64% 28.95%

5.4 Discussion

Results from the simulation study show that the best strategy for breaking sep-

aration is MPV augmentation. For the three sample logistic regression models, the

augmented designs created using MPV augmentation tend to have lower probabilities

of separation, as shown in Figure 5.3. Statistical significance in the difference between

augmentation strategies was established by fitting the log-transformed separation

probabilities to a two-factor linear model with factors augmentation strategy (cate-

gorical, four levels: 16-run D-optimal, MPV, SP replication, and random) and initial

design type (categorical, two levels: locally D-optimal and Bayesian D-optimal). The

coefficient estimates and confidence intervals are shown in Table 5.2.

In Table 5.2, the 16-run D-optimal design level of the augmentation strategy fac-

tor is used as the base case for the effect-coded indicator variables. The results show

that for all models, MPV augmentation produced designs that are most robust to sep-

aration. As the response variable of the fitted model is a negative log transformation

of the separation probabilities, larger coefficient estimates for the transformed model

indicate lower probabilities of separation for designs produced from the corresponding

augmentation strategy. Table 5.2 also shows that the augmentation strategies pro-

duced lower probabilities of separation with initial Bayesian D-optimal designs. It
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Table 5.2: Model Fit of −ln(P (Separation)) to Augmentation Strategy and Design

Type

ME Model Estimate Std Error p-value Lower 95% Upper 95%

Intercept 1.69292 0.01304 <.0001 1.66694 1.71890

Design Type [Bayesian] 0.01874 0.01304 0.15490 -0.00724 0.04472

Augmentation Strategy [MPV] 0.90533 0.02259 <.0001 0.86033 0.95032

Augmentation Strategy [Replicate SPs] -0.97667 0.02259 <.0001 -1.02167 -0.93168

Augmentation Strategy [Random] 0.54953 0.02259 <.0001 0.50454 0.59453

2FI Model Estimate Std Error p-value Lower 95% Upper 95%

Intercept 0.62881 0.00626 <.0001 0.61635 0.64127

Design Type [Bayesian] 0.08425 0.00626 <.0001 0.07179 0.09671

Augmentation Strategy [MPV] 0.66272 0.01083 <.0001 0.64113 0.68430

Augmentation Strategy [Replicate SPs] -0.51519 0.01083 <.0001 -0.53678 -0.49361

Augmentation Strategy [Random] 0.33438 0.01083 <.0001 0.31280 0.35597

Quadratic Model Estimate Std Error p-value Lower 95% Upper 95%

Intercept 0.67845 0.01946 <.0001 0.63968 0.71723

Design Type [Bayesian] 0.07227 0.01946 0.00040 0.03349 0.11104

Augmentation Strategy [MPV] 0.51036 0.03371 <.0001 0.44321 0.57752

Augmentation Strategy [Replicate SPs] -0.56252 0.03371 <.0001 -0.62968 -0.49537

Augmentation Strategy [Random] 0.34056 0.03371 <.0001 0.27340 0.40771

has been demonstrated that Bayesian D-optimal designs tend to have more support

points than locally optimal designs, and as a result are more robust to separation

(Park et al., 2019). The results show that this initial reduction in separation proba-

bility is propagated across the augmented Bayesian designs.

As the linear predictor of the logistic response function becomes more complex i.e.,

interaction or quadratic effects are added to the model, the initial D-optimal designs

generated from the same model have significantly different separation probabilities, as

observed in previous studies Park et al. (2019). This explains the increased variance

in separation probabilities observed for the augmentation strategies in the quadratic
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model, as the initial designs do not have uniform separation probabilities. Replicating

runs at support points of the initial design is the least effective method for creating

overlap, as designs augmented in this manner encountered separation more frequently

than the 16-run D-optimal designs. Although MPV augmentation appears to be the

best strategy for creating overlap to obtain usable ML estimates, this methodology

comes with several drawbacks that will be discussed in this section.

5.4.1 D-Efficiency of Augmented Designs

MPV augmentation tends to produce designs with relatively low D-efficiencies,

shown in Figure 5.4. The D-efficiency of each design is calculated as shown in Equa-

tion 3.6, where ∣M(ξ∗)∣ is the determinant of the information matrix for a design ξ∗

which achieves the maximum ∣M(ξ)∣ across 16-run designs and p is the number of

model parameters. As a practical interpretation of the D-efficiency metric, suppose

a candidate design has Deff = 0.5. Then, two replicates of the candidate design are

required to produce parameter estimates with standard errors comparable to the D-

optimal design (Atkinson et al., 2007). D-efficiency values close to 1 are desired for

candidate designs, while values close to zero indicate poor performance with respect

to the precision of parameter estimates.

For the quadratic model, the curvature present in the response surface led to initial

D-optimal designs that were noticeably more spread out over the design region, in

comparison to the initial designs for the ME and 2FI models. All twenty initial 8-run

D-optimal designs for the quadratic model had eight unique support points spread

throughout the largest area of the design region, as opposed to four or five support

points observed for the ME and 2FI models. As a result, the initial designs for

the quadratic model had the largest variance in D-criterion values, which led to the

relatively large variance observed in the D-efficiencies across augmented designs for
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the quadratic model. Furthermore, randomly replicating at support points produced

the largest observed variance in D-efficiencies for the quadratic model, as there were

more support points available for replication.

The relatively low D-efficiencies of the MPV augmented designs is reflected in the

standard errors of the ML and FL parameter estimates, shown in Figure 5.5. For

the main effect coefficients (β1 and β2), MPV augmentation consistently produced

estimates with the largest standard errors. The FL estimates shown for the 16-

run D-optimal designs were obtained with separated response data, and as a result

no valid ML estimates are available for these designs. The ML estimates shown in

Figure 5.5 represent the usable ML estimates that were observed in the simulation

study. With separation present in the response data, the ML estimates reported

have large standard errors and are not considered usable estimates. However, even

overlap present in the response data, there are still cases where the standard errors

of the ML parameter estimates are too inflated to be considered usable. Therefore,

the maximum standard errors observed in the FL parameter estimates for each model

were used as the approximate standard error limit to screen out invalid ML estimates.

Table 5.3 shows the percentage of usable ML estimates observed across all replications

from each augmentation strategy for the three logistic regression models. Although

MPV augmentation produced the highest percentage of overlapped response data, the

percentage of usable ML estimates obtained via MPV augmentation is comparable

to random augmentation.

5.4.2 ML vs. FL Estimation

As shown in Figure 5.5, the 16-run D-optimal designs generally produce FL esti-

mates with lower standard errors than FL estimates produced by the augmentation

strategies explored in this study. Additionally, the standard errors of the usable ML
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Figure 5.5: Standard Errors of ML/FL Parameter Estimates, Excluding Outliers

estimates obtained with overlapped response data under any of the augmentation

strategies still tend to be larger than the FL estimates obtained from the 16-run

D-optimal designs for separated response data.

However, the point estimates of the parameters obtained through FL estimation
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Table 5.3: Percentage of Usable ML Estimates Obtained in Simulation

S1: MPV S2: Replicate SPs S3: Random

ME Model 73.42% 48.52% 75.29%

2FI Model 26.15% 10.14% 27.10%

Quadratic Model 18.08% 7.28% 13.57%

tend to underestimate the magnitude of the model effects more severely than ML

estimation. Table 5.4 shows the average FL and ML parameter estimates obtained

with 50,000 augmented designs and simulated response data (20 starting designs, 2500

augmentation trials per design), along with the standard deviations for each estimate.

While the variance of the estimates is higher with ML estimation, the consistent

underestimation of the magnitude of the true model parameters with FL estimation

always produced uninformative Wald confidence intervals in this simulation study.

Table 5.4: Point Estimates for ME Model; β0 = 0, β1 = 2, β2 = 1

FL ML

Mean: β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

16-Run D-optimal -0.00931 1.287853 0.622917

Strategy 1: MPV 0.023969 0.944243 0.437915 -0.00602 2.861616 1.46304

Strategy 2: Replicate SPs 0.009731 1.017239 0.477679 0.008559 1.982252 0.972758

Strategy 3: Random 0.003441 0.959783 0.456886 0.001374 2.777335 1.387015

Std Dev:

16-Run D-optimal 0.295307 0.274647 0.273521

Strategy 1: MPV 0.299646 0.429178 0.322501 0.728604 1.440639 1.194952

Strategy 2: Replicate SPs 0.260802 0.372414 0.279759 0.58463 0.784901 0.638278

Strategy 3: Random 0.272463 0.363308 0.316568 0.820055 1.309719 1.162268

Wald inference is used in logistic regression to perform hypothesis tests on indi-

vidual model parameters. The hypothesis test involves the null and alternative shown
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in Equation 5.3.

H0 ∶ βj = 0, H1 ∶ βj ≠ 0. (5.3)

Wald inference can be used to construct confidence intervals on individual model pa-

rameters; an approximate 100(1−α) percent confidence interval is shown in Equation

5.4,

β̂j − Zα/2SE(β̂j) ≤ βj ≤ β̂j + Zα/2SE(β̂j) (5.4)

where SE(β̂j) represents the standard error of the estimate β̂j, which is given by

the square root of the jth diagonal element of the covariance matrix Var(β̂) = M−1

(Montgomery et al., 2012). Constructing an approximate 100(1 − α) percent confi-

dence interval that contains zero is equivalent to failing to reject the null hypothesis

H0 ∶ βj = 0 at significance level α. Failing to reject H0 implies that there is not

sufficient evidence to conclude that parameter βj is not equal to zero, implying that

factor j is not significantly impacting the response.

Due to the magnitude of the FL point estimates relative to their respective stan-

dard errors, the Wald confidence intervals constructed using the FL estimates/stan-

dard errors at significance level α = 0.1 across all 50,000 augmentation trials of each

augmentation strategy were never able to identify factor 1, the larger main effect

(as β1 > β2 for the ME model), as significant; the confidence intervals for β1 always

contained zero. However, the Wald confidence intervals constructed using ML esti-

mates/standard errors at α = 0.1 led to the correct rejection of H0 ∶ β1 = 0 a small

percentage of the time, summarized in Table 5.5 for the ME model.

Only a trivial percentage of ML Wald confidence intervals correctly identified β1

as non-zero. However, the consistent underestimation of model coefficient magni-

tude using the FL method is noteworthy, as it always produced overly conservative

conclusions with Wald inference.
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Table 5.5: Augmentation Trials where H0 ∶ β1 = 0 was Rejected (ME Model)

S1: MPV S3: Replicate SPs S3: Random

Count 706 242 315

Percentage 1.41% 0.48% 0.63%

5.5 Summary

This study explored three non-sequential augmentation strategies for small-sample,

two-factor D-optimal designs when separation of binary response data prevents es-

timation of maximum likelihood (ML) estimates for the logistic regression model.

The goal of augmenting initial D-optimal designs with an additional block of runs

is to create overlap in the response data to eliminate quasi- or complete separation

and produce usable ML estimates. The non-sequential manner of augmenting runs

to an initial design is similar in spirit to full fold-overs in fractional factorial designs

such that for an initial design of size n, an equal number of runs J is augmented.

A simulation study was designed and executed to evaluate the three augmentation

strategies by augmenting runs of size J = 8 to an initial design of size n = 8; in addi-

tion, D-optimal designs of size n = 16, which reflects a one-shot design strategy with

no augmentation, were also constructed and evaluated.

Among the three proposed strategies, MPV augmentation was found to be the

most effective at creating overlap and encountered the least frequency of separation

for simulated response data. However, MPV augmentation produced designs with

relatively low D-efficiencies; as a result, the ML estimates obtained from the MPV

designs produced the largest standard errors. When using Firth likelihood (FL)

estimation, estimates obtained from the 16-run D-optimal designs with separated
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response data produced the lowest standard errors compared to estimates obtained

using the three augmentation strategies.

For small-sample designs, such as the ones explored in this study, there are higher

chances of encountering separation. Therefore, having overlapped response data to

produce usable ML estimates may be desirable to prevent overly conservative Wald

inference. It was shown in Section 5.4.2 that the magnitudes of the model coefficients

were consistently underestimated with FL estimation, leading to Wald confidence

intervals that always contained zero. Although the proportion of correct Wald in-

ference did not differ significantly between FL and ML estimation in this study, the

difference may be more pronounced for different model forms, prior distributions, or

design sizes. This indicates that pursuing overlapped response data justifies future

research.

The key assumption in the simulation study was that the parameter estimates

specified in design creation matched the true parameter values (β̂initial = β). Response

data was also simulated in accordance with this assumption. However, even with the

input of subject matter experts and previous experimental results, this assumption

will almost certainly not be valid. If the parameter estimates used in the initial design

generation are poor, the model response surface constructed using these values will be

inaccurate, and MPV augmentation may add design runs in regions of low prediction

variance, where the expected value may differ significantly from 0.5. Performing this

simulation study in accordance with this assumption also inflated the D-efficiencies

of the D-optimal designs, as the D-optimal designs were generated using the true

parameter values. Therefore, the assumption impacts the results of the simulation

study in two ways. The effectiveness of MPV augmentation in creating overlap may

not be achievable in practice, as determining accurate parameter estimates before

initial experimentation may not be feasible. Conversely, due to the baseline 16-run D-
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optimal designs being created with the true parameter values, the D-criterion values

of these designs are maximized. Consequently, the difference in D-efficiency between

the MPV augmented designs and the maximum efficiency achievable in practice with

initial parameter uncertainty may not be as pronounced as the efficiency disparity

between the MPV augmented designs and the locally D-optimal designs demonstrated

in this study.

Although the performance of MPV augmentation in creating overlapped response

data has been idealized due to the key assumption, the simulation study does show

that placing augmented runs in regions of high prediction uncertainty is a promis-

ing strategy for creating overlap. The limitation of this augmentation strategy in

practice is being able to reliably determine areas of MPV in the design region after

an initial experiment. Practically, two methods are available for deducing regions

of high prediction uncertainty in an initial experiment that encounters separation if

the parameter estimates used in design creation are not considered reliable. First,

FL estimation provides a means of updating the parameter estimates with separated

response data. However, results of this simulation study indicate that the magnitude

of the parameters is likely to be underestimated using FL methods. Support vec-

tor networks, specifically the optimal hyperplane algorithm described by Cortes and

Vapnik (1995), may be used to both expediently identify separation and define an

optimal region for locating additional design runs that is, if an optimal separating

hyperplane exists in the design region, separation is present and the region spanned

by the hyperplane is prime for MPV augmentation. It has been proven that generat-

ing an optimal separating hyperplane is a quadratic programming problem that can

be solved efficiently (Cortes and Vapnik, 1995). Additionally, the optimal separating

hyperplane represents the region that splits the design points and associated response

data with maximal margin, and augmentation on or near the optimal separating hy-
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perplane may replicate MPV augmentation without the requirement for an accurate

determination of the response surface.

Another direction for future research in this area is the exploration of constrained

MPV augmentation. Constraints can be formulated to restrict the eligible augmenta-

tion region to areas that will yield augmented designs of high D-efficiency. Then, the

areas of MPV within the constrained regions can be excellent candidate locations for

augmentation. Augmented points in these areas will serve to create overlap expedi-

ently while maintaining highD-efficiency, and the trade-off observed in this simulation

study between overlap creation effectiveness and D-efficiency can be mitigated.
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Chapter 6

A COMPOUND OPTIMALITY CRITERION FOR SEPARATION ROBUSTNESS

The DMP -criterion is proposed to generate optimal designs for the logistic regres-

sion model with reduced separation probabilities. This compound criterion has two

components: (1) the D-efficiency of the candidate design, and (2) a penalty term

that captures the average distance of the candidate design’s support points from the

region of maximum prediction variance (MPV). A DMP -optimal design maximizes

the DMP -criterion. The aim is to obtain compromise experimental designs with high

D-efficiencies that are more robust to separation than a D-optimal design of equal

size. The purpose of this chapter is to present the DMP -criterion and demonstrate

examples of its potential use as a means of mitigating separation in the design phase

of a binary response experiment.

6.1 Introduction

The D-criterion is the most widely used of all optimality criteria, as it is com-

putationally efficient when implemented in computer exchange algorithms and tends

to produce exact designs with minimum variance parameter estimates (Goos, 2012;

Montgomery, 2017). A D-optimal design minimizes −log∣M−1∣, thus minimizing the

standard errors of β̂ (Atkinson et al., 2007). However, the simulation study in Chap-

ter 4 indicates that small-sample (n ≤ 32) D-optimal designs for the logistic regression

model are prone to encountering separation.

The simulation study presented in Chapter 5 shows that MPV augmentation most

efficiently eliminates separation that occurs in an initial D-optimal design. Aug-

menting design runs near the MPV region, where E(y∣β) = 0.5, tends to produce
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overlapped response data more reliably then allocating additional runs in accordance

with the D-criterion. However, the MPV augmented designs tend to have much lower

D-efficiencies than D-optimal designs of equal size, indicating that D-optimality and

separation-optimality are opposing objectives. Motivated by these observations, the

DMP -criterion is formulated using a compound optimal design approach to balance

D-optimality with separation robustness.

The term compound criterion denotes an optimality criterion that is formulated

as a weighted average of several design criteria, which may depend on different in-

formation matrices (Müller and Stehĺık, 2010). Suppose two functionals of candidate

design ξ, denoted as Ψ1(ξ) and Ψ2(ξ) exist on the space of information matrices,M.

A compound design optimizes a weighted average functional with the form shown in

Equation 6.1 (Cook and Wong, 1994).

Ψ(ξ) = λΨ1(ξ) + (1 − λ)Ψ2(ξ), 0 ≤ λ ≤ 1 (6.1)

Cook and Wong (1994) prove that this method is equivalent to a constrained optimal

design methodology, where Ψ2 is optimized subject to a constraint on Ψ1, assuming

that both criteria are monotonic functions of design efficiencies relative to multiple

designs on each criterion and that both are defined on a space of information matrices.

The constrained design problem can therefore be formulated as

max Ψ2(M(ξ)) over M(ξ) ∈M+, subject to Ψ1(M(ξ)) ≥ c, (6.2)

where M+ denotes the set of nonsingular information matrices, and c ∈ [−∞,0] de-

notes the log efficiency of design ξ relative to the optimal design ξ∗1 . For GLMs,

McGree et al. (2008) present three possible general forms for compound criteria. For

maximizing a criterion while minimizing a loss function, L, the general form is shown

in Equation 6.3,

Φ(β, ξ) = Ψ(β, ξ)
1 +L(β, ξ)

(6.3)
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as Ψ, L, and consequently Φ are dependent on the model parameters for GLMs.

Compound optimal designs are closely tied to the methodology of formulating a

desirability function (DF) for the simultaneous optimization of several response vari-

ables, originally introduced by Derringer and Suich (1980). This approach allows

variables on different measuring scales to be scaled to values in the range [0,1] for

more balanced weighting in the DF. Meta-models, typically higher order polynomials,

for each response are transformed into a range of values between zero and one, then

combined into a singular objective DF capturing the total desirability of the combined

responses (Dabbas et al., 2003). However, the formulation of the DF assumes that all

responses are equally important. In cases where the DF has a continuous first deriva-

tive, gradient-based optimization methods can be used to find an optimal design.

However, in commonly used additive and multiplicative DF forms, a first derivative

may not exist. Del Castillo et al. (1996) present modified desirability functions such

that non-differentiable points are eliminated and allow the user to assign different

priorities among the responses. Further modifications of this method have been pre-

sented to extend its applicability and reduce the amount of required computations

(Ch’ng et al., 2005).

A compound design criterion, DPs, has been proposed by Rahman (2015) for

single-factor design cases to balance D-efficiency with separation optimality. The

DPs criterion is shown in Equation 4.2. First, locally separation-optimal designs, de-

noted as Ps-optimal, are illustrated for single-factor main effect cases, where the

model linear predictor takes the form η = β0 + β1x. For designs of run size n,

these designs have n support points, equally spaced by a small δ, that are cen-

tered about the point of MPV. For example, for n = 8, the design vector is x =

[−0.003, −0.002, −0.001, 0.000, 0.001, 0.002, 0.003, 0.004]. For this example, β0 = 0,

and the point of MPV is x = 0. With α = 0.5, the average distance of the support
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points of the locally optimal DPs design from the point of MPV (x = 0) is reduced

relative to the locally D-optimal design. The support points of the D-optimal, DPs-

optimal, and Ps optimal designs presented by Rahman (2015) for n = 8 are shown

in Figure 6.1 (note that the design region is not on the coded scale [−1,1]). The

R RO software package optim, which uses simulated annealing in conjunction with a

gradient descent algorithm, was used to generate the DPs-optimal designs (Rahman,

2015). The separation probabilities reported in the D-optimal, Ps-optimal, and DPs-

optimal designs are 0.3279, 0.0625, and 0.0884, respectively. The D-efficiencies of the

the Ps-optimal and DPs-optimal designs relative to the D-optimal design are 0.03%

and 65.24%, respectively.
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Figure 6.1: Support Points of the D-, Ps-, and DPs-Optimal Designs

The design methodology proposed by Rahman (2015) requires an exact calcula-

tion of the probability of separation in a candidate design, which itself requires an

enumeration of all 2n possible response sets for the design and determining the pres-

ence of separation in each set. This is a straightforward procedure in one dimension,

but does not extend well to multi-factor design spaces. Furthermore, the formulation

of the DPs-criterion does not scale well with different forms of the logistic regression

model, as the value of ∣M∣ is maximized directly in the denominator. For different

forms of the logistic regression model, the maximum attainable value of ∣M∣ is differ-

ent. This means that designs with equal functional values for DPs-optimality may
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have significantly varied separation probabilities across different parameter values and

forms of the linear predictor term.

A current search of the literature reveals no existing compound design criterion

to mitigate separation risk for multi-factor optimal designs for the logistic regression

model. Therefore, the objective of this chapter is to propose a design criterion with

a tuning parameter to balance D-efficiency with reduced susceptibility to separation.

The compound DMP -criterion is formulated in Section 6.2. The rest of this chapter is

organized as follows: Section 6.3 presents a two-phase coordinate exchange algorithm

(CEA) that is used to generate exact DMP -optimal designs. In Section 6.4, the per-

formance of the DMP designs with respect to D-efficiency and separation probability

is evaluated in a simulation study; performance across a range of weights for the

D-efficiency component will be examined in several cases with specified model forms.

To address the design dependence problem in GLMs, where the optimal design is de-

pendent on parameter estimates that must be specified in design creation (see Khuri

et al. (2006)), a robust design methodology using a maximin approach is presented for

the DMP -criterion in Section 6.5. Section 6.6 provides recommendations for optimal

weight values and potential directions for future work. While this Chapter focuses

on one- and two-factor design cases, the methodology proposed can be easily scaled

to three or more factors. Additionally, because the optimization proceeds through an

exchange algorithm, we produce exact, as opposed to continuous, designs (see Atkin-

son et al. (2007) for an explanation of the distinction between exact and continuous

designs).
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6.2 The DMP -Criterion

The functional of DMP -optimality for the logistic regression model is

ΨDMP
= λ

⎡⎢⎢⎢⎢⎣
( ∣M(ξ)∣
∣M(ξ∗)∣

)
1
p
⎤⎥⎥⎥⎥⎦
− (1 − λ)

⎡⎢⎢⎢⎢⎣
(∑

n
i=1(xiTβ)2/n

maxχ(xTβ)2
)

1
p
⎤⎥⎥⎥⎥⎦
, (6.4)

where ξ is an n-run candidate design in factorial space χ, ∣M(ξ∗)∣ is the maximum

determinant value of the information matrix attainable across all candidate designs

in χ, p is the number of parameters in the linear predictor of the specified logistic

regression model, maxχ(xTβ)2 denotes the maximum squared value of the linear

predictor across all possible design points in χ, and λ ∈ [0,1] is a blending coefficient.

A DMP -optimal design, denoted as ξ∗DMP
, maximizes Equation 6.4.

ξ∗DMP
= argmax

ξ
{ΨDMP

} (6.5)

The user-defined inputs for this criterion are:

1. n - number of runs (trials) in the experiment

2. β - vector of model coefficients (parameters)

3. λ ∈ [0,1] - blending coefficient that defines the weight of a candidate design’s

D-efficiency relative to the average squared linear predictor magnitude penalty

The DMP -criterion seeks to maximize the D-efficiency of the candidate design (see

Equation 3.6) while penalizing the distance of each support point in the candidate

design from the MPV region. Since E(yi∣β) = 0.5 holds exclusively for points in the

MPV region, this implies that all points in this region have a linear predictor value

of zero.

E(yi∣β) = (1 + exp(−xi
Tβ))−1 = 0.5 ⇐⇒ xi

Tβ = 0 (6.6)

Therefore, the term ∑ni=1 (xiTβ)2/n in Equation 6.4 is the average squared value of the

linear predictor for all design points in candidate design ξ. The squared value is used
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because the magnitude of the linear predictor determines the difference in expected

value of a design point from 0.5. A more direct measure of the average linear predictor

magnitude is ∑ni=1 ∣xiTβ∣/n. However, the average squared term is used in Equation

6.4 instead of the average absolute value term to prevent non-differentiable points in

the functional for DMP -optimality. A higher value of ∑ni=1 (xiTβ)2/n indicates that

the support points of the candidate design have an average expected value closer to

zero or one, implying that they are farther from the MPV region. The relationship

between the value of the linear predictor at point xi, E(yi∣xi), and (E(yi∣xi) − 0.5)2

is shown in Figure 6.2.
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Figure 6.2: E(y), (E(y)−0.5)2 vs. Linear Predictor Value for the Logistic Regression

Model

The DMP -criterion is formulated as shown in Equation 6.4 such that the measure

of D-optimality and the linear predictor penalty are normalized, an idea that has been

adopted from the DF approach to experimental design. The DMP -criterion has the

general form shown in Equation 6.1 for a compound criterion; the form for minimizing
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a loss function shown in Equation 6.3 is not used. The proposed formulation allows the

user to scale the criterion in accordance with separation risk tolerance. For example,

in an experimental situation where follow-on experimentation is feasible, the user may

wish to place more weight on the D-efficiency component to maximize the precision

of the parameter estimates. However, if the user is operating under tight time or

resource constraints where additional experimentation is impossible, more weight can

be placed on the linear predictor penalty to reduce the risk of encountering separation.

This flexibility would not be available if the criterion was formulated as shown in

Equation 6.3.

The first term in Equation 6.4, [( ∣M(ξ)∣∣M(ξ∗)∣)
1
p ], is the D-efficiency of candidate de-

sign ξ relative to the D-optimal design for parameter vector β, denoted as ξ∗. As

a D-optimal design maximizes ∣M(ξ)∣, the D-efficiency measure will have a range of

[0,1]. The second term in Equation 6.4, [(∑
n
i=1(xiTβ)2/n

maxχ(xTβ)2 )
1
p ] is the normalized squared

linear predictor penalty term adjusted for the number of parameters in the linear

predictor. As maxχ(xTβ)2 is the maximum squared value of the linear predictor over

χ, the squared linear predictor penalty term will also have a range of [0,1]. The sec-

ond term is taken to the (1/p)th power to adjust it relative to the dimensions of the

specified logistic regression model in a manner similar to the D-efficiency measure.

As additional model terms are added, the maximum magnitude of the linear predictor

over χ tends to increase. An example is shown in Figure 6.3, where an active interac-

tion term is added to a two-factor main effects model. The maximum squared value

of the linear predictor for the main effects model is 9, while the maximum squared

value of the linear predictor for the two-factor interaction (2FI) model is 25. The

(1/p)th power adjustment therefore allows for more consistent λ recommendations

across models of different size.

A limitation of the DMP -criterion is that it requires two values, ∣M(ξ∗)∣ and
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Figure 6.3: Squared Linear Predictor Value over Two-Factor Design Region
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maxχ(xTβ)2, to normalize its components. An empirical estimate for ∣M(ξ∗)∣ can be

expediently determined through the generation of an exact locally D-optimal design

for β̂, which can be done efficiently for GLMs (Dror and Steinberg, 2006). The value

of ∣M(ξ)∣ for the exact D-optimal design can then serve as an approximation for

∣M(ξ∗)∣ to implement DMP -optimality. The exact D-optimal design may not be opti-

mal over all candidate designs of size n in χ, as these designs are typically generated

via heuristic exchange algorithms. However, the normalization of both components

of the DMP -criterion does not need to be exact for the optimality function to produce

effective compromise designs when implemented in an exchange algorithm; the nor-

malization is in place to provide more consistent trade-offs between D-efficiency and

separation probability across different forms of the logistic regression model. With

the normalization in place, the impact of λ will be more consistent across different

model forms and parameter values.

A theoretical bound on ∣M(ξ)∣ can be obtained using Hadamard’s Inequality. For

a symmetric p×p matrix H, Hadamard’s Inequality states that the determinant of H

must be less than or equal to the product of its diagonal elements (Różański et al.,

2017).

det(H) ≤
p

∏
i=1

hii (6.7)

The information matrix for an n-run experimental design using a logistic regression

base model with p parameters is M = XTVX, where the maximum diagonal element

of V ∈ Rn×n is max{Var(yi)} = max{πi(1−πi)} = 0.25. As model matrix X ∈ [−1,1]n×p,

the maximum diagonal element of M ∈ Rp×p is 0.25n. Applying this to Equation 6.7

gives the information matrix determinant bound shown in Equation 6.8.

det(M) ≤
p

∏
i=1

mii ≤ (0.25n)p (6.8)

However, the theoretical bound for ∣M(ξ)∣ in Equation 6.8 is not tight, and imple-

94



menting the DMP -criterion in Equation 6.4 using this bound does not provide a useful

D-efficiency measure, as ∣M(ξ∗)∣ does not achieve a value close to this theoretical

bound.

Additionally, for practical design applications that utilize the logistic regression

model, determining an analytical solution for maxχ(xTβ)2 will be mathematically

tractable. For example, for a model with only main effect terms in the linear predictor,

maxχ(xTβ)2 is determined by evaluating the linear predictor at the 2k extreme points

of the design region χ, where k is the number of design factors.

6.3 Two-Phase Coordinate Exchange Algorithm for Generating DMP -Optimal

Designs

A two-phase CEA with a final one-pass point exchange is implemented to create

exact DMP -optimal designs for the logistic regression model. In Phase I, a locally

D-optimal design for the specified parameter vector β is generated to determine an

empirical estimate for ∣M(ξ∗)∣, which is used to assess the D-efficiency of candidate

designs in Phase II. In Phase II, the user-defined weight λ is incorporated to create

a DMP -optimal design. As recommended by Meyer and Nachtsheim (1995), 1000

random starting designs are used in each phase.

As observed by Gotwalt et al. (2009), coordinate exchange often leads to designs

that consist of several distinct clusters of points. To collapse the clusters into repli-

cates, at the end of each phase, one iteration of a point (row) exchange is performed

on the final design matrix given by the two-phase CEA, where the candidate set con-

sists of the rows of the final design matrix. As a result, the efficiency of the design

is marginally increased and the number of levels of the continuous factors that must

be tested are reduced, which will facilitate easier experimentation in practice. The

pseudo-code for the two-phase CEA is shown in Algorithm 1. The two-phase CEA
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was implemented using JMP Scripting Language (JSL) in JMP Pro 14.2 RO; the JSL

code for the two-phase CEA is available in Appendix B.

Algorithm 1 Two-Phase DMP -optimal CEA

1: procedure 2Pcea(β, λ, n, f , iter, gap)
2: ΨbestD =M1 ≪ 0 ▷ Phase I
3: for k = 1,2, ...,iter do
4: Generate random ξk ∈ [−1,1]n×f
5: Expand ξk to Xk

6: converge =M2 ≫ 0
7: while converge > gap do
8: Xstartk = Xk

9: for row i = 1,2, ..., n do
10: for column j = 2, ..., f + 1 do
11: optimize xkij - adjust by ±δ until ∆ΨD < gap

12: converge = ΨD(Xk) −ΨD(Xstartk)
13: if ΨD(Xk) > ΨbestD then
14: XbestD = Xk

15: ΨbestD = ΨD(XbestD)
16: CD = XbestD

17: for row i = 1,2, ..., n do
18: Exchange row x[i]bestD with best row in CD

▷ Establish ΨDMP
based on Phase I results, ∣M(ξ∗)∣ = ΨbestD, find maximum

magnitude value of linear predictor over χ (Equation 6.4)

19: Ψbest =M1 ≪ 0 ▷ Phase II
20: for k = 1,2, ...,iter do
21: Generate random ξk ∈ [−1,1]n×f
22: Expand ξk to Xk

23: converge =M2 ≫ 0
24: while converge > gap do
25: Xstartk = Xk

26: for row i = 1,2, ..., n do
27: for column j = 2, ..., f + 1 do
28: optimize xkij - adjust by ±δ until ∆ΨDMP

< gap

29: converge = ΨDMP
(Xk) −ΨDMP

(Xstartk)
30: if ΨDMP

(Xk) > Ψbest then
31: Xbest = ξk
32: Ψbest = ΨDMP

(Xbest)
33: C = Xbest

34: for row i = 1,2, ..., n do
35: Exchange row x[i]best with best row in C

36: return Xbest
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6.3.1 Validation of Two-Phase Coordinate Exchange Algorithm

To validate the performance of the two-phase CEA, it was configured to generate

locally D-optimal designs (λ = 1, ∣M(ξ∗)∣ = 1). Three tests were performed to compare

the resulting designs from the two-phase CEA to the nonlinear design platform in JMP

Pro 14.2 RO configured to generate locally optimal designs (abscissas radii set to zero,

see Gotwalt et al. (2009) for the numerical integration method implemented in JMP

Pro 14.2 RO). For all tests, the parameter values were selected such that the coded

design region χ ∈ [−1,1]k includes areas of extreme response probability. As noted

by Dror and Steinberg (2005), locally D-optimal designs for the logistic regression

model will contain interior support points when the design region includes expected

response values outside of the approximate range 0.15 ≤ E(y) ≤ 0.85. Therefore, these

validation test models will force the design algorithms to find support points that are

not located at the extreme points of χ.

Validation Test 1: Single-Factor Main Effect Model

For this validation test, a single-factor main effect model with β0 = 0 and β1 = 5

was used. A design size of n = 8 was examined. Both algorithms generated a design

with all runs allocated evenly between two support points. The designs generated by

the two-phase CEA and JMP Pro 14.2 RO are shown in Figure 6.4. The designs are

practically identical. The D-efficiency of the two-phase CEA design relative to the

JMP 14.2 Pro RO design is 99.9995%.

Validation Test 2: Two-Factor Main Effects Model

For this validation test, a two-factor main effects model with β0 = 0, β1 = 3, and β2 = 1

was used. A design size of n = 16 was examined. Both algorithms generated a design
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Figure 6.4: Validation Test 1 Design Comparison

with four support points. The designs generated by the two-phase CEA and JMP

Pro 14.2 RO are shown in Figure 6.5. The designs are very similar. The D-efficiency of

the two-phase CEA design relative to the JMP 14.2 Pro RO design is 99.7836%.
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Figure 6.5: Validation Test 2 Design Comparison

Validation Test 3: Two-Factor Main Effects w/Interaction Model

For this validation test, a two-factor main effects with interaction (2FI) model with

β0 = 1, β1 = 3, β2 = 1, and β12 = −1.5 was used. A design size of n = 16 was examined.

Both algorithms generated a design with four support points. The designs generated

by the two-phase CEA and JMP Pro 14.2 RO are shown in Figure 6.5. The designs are
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practically identical. The D-efficiency of the two-phase CEA design relative to the

JMP 14.2 Pro RO design is 100.0589%.
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Figure 6.6: Validation Test 3 Design Comparison

6.4 Performance of Locally DMP -Optimal Designs

Three test cases were performed to examine locally DMP -optimal designs for dif-

ferent values of λ across various forms of the logistic regression model. The first

case is a single-factor main effects model with n = 6, the second case is a two-factor

main effects model with n = 10, and the third case is a two-factor main effects and

interaction model with n = 16. As in Section 6.3.1, all test cases were chosen such

that the design region contains areas of extreme response probability to force in-

terior design points for a locally D-optimal design. The λ values examined are

λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. For each value of λ, a

locally DMP -optimal design of size n was created using the two-phase CEA.

Two performance metrics are used to evaluate each design: (1) D-efficiency and

(2) the probability of separation. The D-efficiency of each design is calculated using
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Equation 3.6, with the D-optimal design obtained in Phase I of the two-phase CEA

used to determine ∣M(ξ∗)∣. For the first two test cases, the probability of separation

for each design is calculated by enumerating all 2n possible response vectors since the

design sizes are small. Separation is declared in a response vector if the maximum

parameter estimate variance is greater than 5000 (Heinze and Schemper, 2002). The

total probability of separation is then calculated as shown in Equation 4.4. For the

third case, the simulation methodology used in Section 4.3 is used to estimate the

probability of separation for each design, where the response at each design point is

simulated using a random Bernoulli draw with P (yi = 1) = E(yi∣β). For each design,

2500 response sets are simulated, and separation is declared in a response set if the

maximum parameter estimate variance is greater than 5000 (Heinze and Schemper,

2002). The estimated probability of separation for each design is the proportion of

separated response sets that are observed in the simulation. All of the DMP -optimal

designs described in this section are available in Appendix A.

6.4.1 Test Case 1: Single-Factor Main Effect Model

For this test case, a single-factor main effect model with β0 = 0 and β1 = 3 was

used. A design size of n = 6 was examined. Since the intercept parameter β0 = 0,

the MPV point is x = 0. The performance of the designs are shown in Table 6.1.

The probability of separation results also include the cases where the designs are

inestimable (y = 0 or y = 1 for multi-support point designs).

At λ = 0.5, the resulting DMP -optimal design has a D-efficiency of 93.68%, while

the probability of separation is reduced by 0.21563. This illustrates that the DMP -

criterion can yield designs with high D-efficiencies that have a substantially reduced

risk of encountering separation. A plot of the D-optimal and DMP -optimal design

with λ = 0.5 is shown in Figure 6.7. The DMP -optimal design has three support
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Table 6.1: Performance of the DMP -Optimal Designs, Case 1

Weight (λ) P(Separation) D-Efficiency

1.0 0.81065 100.00000%

0.9 0.79793 99.90679%

0.8 0.78306 99.54033%

0.7 0.76217 98.72806%

0.6 0.63295 96.99870%

0.5 0.59502 93.67517%

0.4 0.53922 86.42150%

0.3 0.45033 67.73828%

0.2 1.00000 1.82676%

0.1 1.00000 0.36970%

0.0 1.00000 0.00000%

points, while the D-optimal design has two. As observed in the simulation study

conducted in Chapter 4, designs with more support points tend to be more robust to

separation. As λ initially decreases, a marginal reduction of separation probability

occurs in the DMP -optimal designs while very high D-efficiency values are maintained.

For λ = 1, 0.9, 0.8, and 0.7, two support points are observed, but the support points

are drawn more closely to x = 0. As λ decreases further, an additional support

point is observed in an area where the linear predictor value is closer to zero. As λ

decreases to values below 0.3, all runs of the resulting designs are clustered closely

around x = 0, until λ = 0 yields a DMP -optimal design with a single support point at

approximately x = 0. This occurs due to the one-pass point exchange that happens

at the end of the two-phase CEA. As λ approaches zero and more weight is placed on

the linear predictor penalty term, the design is converging to x = 0, the point of MPV.

Therefore, the design run with a linear predictor value closest to zero in the Phase II
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design matrix after the coordinate exchange becomes the only support point in the

design following the point exchange, as this minimizes the linear predictor magnitude

penalty term. The DMP -optimal design for λ = 0 is a single-support point design,

and as a result, the two-parameter logistic regression model of Case 1 is inestimable.'HVLJQ�&RPSDULVRQ�3ORW���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

���� ���� ���� ��� ��� ��� ���
;

���

���

���

���

���

���

���

(�\�

'B03�RSWLPDO�����
'�RSWLPDO
039

Figure 6.7: Case 1 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.5

6.4.2 Test Case 2: Two-Factor Main Effects Model

For this test case, a two-factor main effect model with β0 = 0, β1 = 2, and β2 = 1

was used. A design size of n = 10 was examined. For this model, the MPV region

is defined by the line x2 = −2x1. The performance of the designs are shown in Table

6.2. The probability of separation results also include the cases where the designs are

inestimable (y = 0 or y = 1 for multi-support point designs).

At λ = 0.5, the DMP -optimal design has a D-efficiency of 93.60%, while the prob-

ability of separation is reduced by 0.25283. This design has the best balance between

D-efficiency and separation robustness of all λ values that were examined. The DMP -

optimal design with the lowest probability of separation observed occurs at λ = 0.2,

but the D-efficiency of this design is poor. The D-optimal design has four support

points, the DMP -optimal design at λ = 0.5 has five, and the DMP -optimal design at

λ = 0.3 has seven. A plot of these three designs and the MPV region is shown in Fig-

ure 6.8. As observed in case 1, as λ initially decreases from the D-optimal case, the
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Table 6.2: Performance of the DMP -Optimal Designs, Case 2

Weight (λ) P(Separation) D-Efficiency

1.0 0.63140 100.00000%

0.9 0.56588 99.28688%

0.8 0.57686 99.52373%

0.7 0.56134 99.20411%

0.6 0.40146 97.52968%

0.5 0.37857 93.60136%

0.4 0.37745 83.67235%

0.3 0.20645 68.06108%

0.2 1.00000 7.33787%

0.1 1.00000 0.62749%

0.0 1.00000 0.00000%

four support points of the DMP -optimal design are drawn more closely to the MPV

region. At λ = 0.6, the number of support points increases from four to five. As the

linear predictor penalty term becomes more significant, the amount of support points

tends to increase, as new points are observed closer to the MPV region. However,

as λ decreases below 0.3, the support points of the designs are reduced and located

very close to the MPV region. At λ = 0, the DMP -optimal design collapses to a single

support point that lies almost directly on the MPV region.

6.4.3 Test Case 3: Two-Factor Main Effects w/Interaction Model

For this test case, a 2FI model with β0 = −1, β1 = 4, β2 = 1, and β12 = −2 was used.

A design size of n = 16 was examined. For this model, the MPV region is defined by

the function x2 = (1 − 4x1)/(1 − 2x1). The performance of the designs are shown in

Table 6.3. As observed in the previous test cases, at λ = 0.5, there is a significant
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Figure 6.8: Case 2 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.3, 0.5

decrease in the probability of separation in the DMP -optimal design while a very high

D-efficiency is maintained.

Table 6.3: Performance of the DMP -Optimal Designs, Case 3

Weight (λ) P(Separation) D-Efficiency

1.0 0.91320 100.00000%

0.9 0.91680 99.97560%

0.8 0.88320 99.89897%

0.7 0.85160 99.39274%

0.6 0.80760 98.23344%

0.5 0.62520 98.34285%

0.4 0.83080 95.72332%

0.3 0.77360 90.18384%

0.2 0.86000 84.15593%

0.1 1.00000 34.01239%

0.0 1.00000 0.00000%
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For this model, the locally D-optimal design has four support points. At λ = 0.6

and 0.5, the DMP -optimal design has six support points. A plot of the D-optimal

design, the DMP -optimal design at λ = 0.5, and the MPV region is shown in Figure

6.9. However, at λ = 0.4, four support points that lie closer to the MPV region

relative to the locally D-optimal design are observed, which explains the increase in

the probability of separation relative to the λ = 0.5 design. Similar to the first two test

cases, as λ decreases below 0.3, the support points of the designs become clustered

near the MPV region. At λ = 0, the DMP -optimal design collapses to a single support

point that lies almost directly on the MPV region.
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Figure 6.9: Case 3 Design Comparison; D-Optimal vs. DMP -Optimal, λ = 0.5

6.5 A Methodology for Robust DMP -Optimal Designs

The DMP -criterion requires estimates for β to determine both the relative D-

efficiency of the candidate design and the squared linear predictor penalty term. The

problem of design dependence (Khuri et al., 2006) that is typical for GLMs is exacer-

bated in implementing DMP -optimality, as initial parameter inputs are required for
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both components of the criterion. Consider the following example, where a two-factor

main effects logistic regression model with β = [−0.06,2.64,1.18] is used. Suppose

that the experimenter’s initial parameter estimates are β̂ = [−0.71,4.08,0.56]; the

experimenter overestimates the impact of Factor 1 and underestimates the impact of

Factor 2 on the response. For a design size of n = 10 and with λ = 0.5, the locally

DMP -optimal design for β̂ has a 48% DMP -efficiency relative to the optimal design for

the true parameter values, where DMP -efficiency is calculated as shown in Equation

6.9.

DMPeff
= ΨDMP

(ξ,β)
ΨDMP

(ξ∗,β)
(6.9)

The support points of both designs are shown in Figure 6.10. Consequently, robust

approaches for constructing DMP -optimal designs must be explored, as the criterion

is sensitive to the initial parameter inputs.
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Figure 6.10: DMP -Optimal Design Sensitivity Comparison, λ = 0.5

Several robust design methods for GLMs have been proposed in the literature.

The standardized maximin method (Chipman and Welch, 1996) involves specifying
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a collection B of plausible parameter values, B = {β1, ...,βJ}. For each βj, a locally

optimal design, ξj is determined. The relative efficiency of ξj is calculated over B

for designs j = 1, ..., J , and the design that maximizes the minimum efficiency is

designated as the robust design. Another method involves clustering the support

points of a set of locally optimal designs across different plausible parameter values

(Dror and Steinberg, 2006). In both of these methods, sets of locally optimal designs

are generated to determine the robust design. Bayesian methods, where a prior

distribution f(β) is specified, have also been used to construct robust designs for

GLMs. However, to facilitate expedient construction of exact robust designs via

an exchange algorithm, certain assumptions on f(β) must be made. For example,

to construct Bayesian D-optimal designs for GLMs, Gotwalt et al. (2009) utilize a

numerical integration approximation method to expediently evaluate the Bayesian D-

optimality functional, shown in Equation 3.11. Direct use of the Bayesian optimality

function in an exchange algorithm is computationally expensive and typically not

practical for many design applications.

For this study, the maximin method is adopted for DMP -optimality. The max-

imin method presents the most straightforward application of the two-phase CEA,

as the current functional for DMP -optimality (Equation 6.4) is formulated for point

estimates of β, yielding locally optimal designs. Additionally, the maximin approach

only requires that plausible parameter ranges be specified; a prior distribution for

each parameter is not required. From a practical perspective, especially when work-

ing with subject matter experts that are not well-versed in statistics and experimental

design, determining parameter ranges is preferred over specifying prior distributions.

The robust design for maximin DMP -optimality for a fixed λ maximizes

min{ ΨDMP
(ξ,β)

ΨDMP
(ξ[β],β)

∣β ∈ B} , (6.10)
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where ξ[β] is the locally DMP -optimal design for a fixed β and B is the space of all

plausible β values.

6.5.1 Generating a Robust DMP -Optimal Design

To illustrate an example of determining a robust DMP -optimal design via the

maximin method, a two-factor main effects logistic regression model and a design

size of n = 10 is used. For this example, λ is fixed at 0.5, as this value of λ was

observed to yield locally optimal designs with high D-efficiencies and substantially

reduced separation probabilities in the test cases performed in Section 6.4. Although

this example involves arbitrarily specified run size, model form, and a fixed λ, this

methodology can be extended to any n-run experiment using any form of the logistic

regression model and any fixed value of λ ∈ [0,1]. Suppose that the plausible ranges

for each parameter are as shown in (6.11).

−1 ≤ β0 ≤ 1

1 ≤ β1 ≤ 5 (6.11)

0.5 ≤ β2 ≤ 1.5

These parameters are the coefficients in the linear predictor for the intercept, Fac-

tor 1, and Factor 2, respectively. To determine the maximin DMP -optimal design,

100 parameter vectors are randomly sampled from continuous uniform distributions

over the specified ranges for each parameter in (6.11); B = {β1, ...,β100}. A locally

DMP -optimal design is generated for each βj ∈ B using the two-phase CEA, and

the relative DMP -efficiency of each design is calculated over B as shown in Equation

6.9. The locally optimal design with the highest worst-case relative DMP -efficiency is

designated as the robust design. The randomly sampled parameter vectors used for

design generation are available in Appendix C.1.
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The locally DMP -optimal design constructed with β = [−0.083,2.787,1.477] was

designated as the robust design for this example, as it had a worst-case DMP -efficiency

of 0.15382, which was the maximum worst-case value observed for all 100 designs over

B. The support points of the robust design and a locally D-optimal design for these

parameters are shown in Figure 6.11. Relative to the D-optimal design, the robust

design has a D-efficiency of 97.47%.
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Figure 6.11: Robust DMP -Optimal vs. Locally D-Optimal Design Comparison,

β = [−0.083,2.787,1.477]

In comparison to the other locally DMP -optimal designs, the robust design per-

forms well in terms of D-efficiency over B, where the D-efficiencies are calculated

relative to 100 locally D-optimal designs constructed for each βj ∈ B. The mean, me-

dian, and standard deviation of the D-efficiencies of the robust design are 83.317%,

84.893%, and 9.470%, respectively. For the remaining 99 DMP -optimal designs, the

mean, median, and standard deviation are 73.569%, 76.575%, and 18.029%, respec-

tively. Comparative box plots of the D-efficiencies for the robust design and the

remaining DMP -optimal designs are shown in Figure 6.12.

109



'03�'HVLJQV�'�(IILFLHQFLHV���*UDSK�%XLOGHU 3DJH���RI��

*UDSK�%XLOGHU

'
�H
IIL
FL
HQ

F\

����

����

����

����

����

����

����

����

����

����

����

'HVLJQ�7\SH
'B03�RSWLPDO
5REXVW

Figure 6.12: D-Efficiency over Sampled Parameter Vectors for the Locally DMP -

Optimal Designs

6.5.2 Performance of the Robust DMP -Optimal Design

The performance of the robust DMP -optimal design was evaluated against an

equally sized (n = 10) Bayesian D-optimal design generated using the nonlinear design

platform of JMP Pro 14.2 RO. The prior parameter distributions of the Bayesian D-

optimal design have the ranges shown in (6.11). The support points of both designs

are shown in Figure 6.13. To evaluate both designs, an additional 100 parameter

vectors are randomly sampled from the same continuous uniform distributions over

the ranges shown in (6.11); Btest = {β1, ...,β100}. The D-efficiency of both designs is

evaluated for each βj ∈ Btest relative to a locally D-optimal design generated for βj.

The probability of separation for both designs is also determined for each βj ∈ Btest.

For every parameter vector, each design’s probability of separation is calculated by

enumerating all 1024 possible response vectors, y ∈ {0,1}10. Separation is declared in
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a response vector if the maximum parameter estimate variance is greater than 5000

(Heinze and Schemper, 2002). The total probability of separation is then calculated

as shown in Equation 4.4, where the probability of realizing each response vector is

determined using βj. The parameter vectors used in the performance evaluations are

available in Appendix C.2.
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Figure 6.13: Support Point Comparison of the Robust Designs

In terms of D-efficiency over Btest, the robust DMP -optimal design fares well

in comparison to the Bayesian D-optimal design. As expected, the performance of

the Bayesian D-optimal design is better, but only marginally. The mean, median,

and standard deviation of the D-efficiencies of the robust DMP -optimal design are

83.141%, 84.093%, and 8.614%, respectively. For the Bayesian D-optimal design,

the mean, median, and standard deviation are 84.334%, 85.644%, and 7.425%, re-

spectively. The worst-case D-efficiency observed for the DMP -optimal and Bayesian

D-optimal design is 62.086% and 67.458%, respectively. Box plots comparing the

robust designs are shown in Figure 6.14.
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Figure 6.14: D-Efficiency over the Test Parameter Vectors for the Robust Designs

For the reduction in D-efficiency, the robust DMP -optimal design offers a substan-

tial reduction in the probability of separation over the Bayesian D-optimal design.

Over Btest, the mean, median, and standard deviation of the probabilities of separa-

tion for the Bayesian D-optimal design are 0.684, 0.685, and 0.140, respectively. For

the robust DMP -optimal design, the mean, median, and standard deviation are 0.452,

0.402, and 0.189, respectively. The worst-case probability of separation observed for

the Bayesian D-optimal and DMP -optimal design is 0.908 and 0.831, respectively. For

all 100 parameter vectors in Btest, the robust DMP -optimal design outperformed the

Bayesian D-optimal design in terms of separation probability. The mean, median,

and standard deviation of the probability of separation reduction in the robust DMP -

optimal design is 0.232, 0.239, and 0.103, respectively. In other words, over Btest, the

robust DMP -optimal design offers an average reduction in separation probability of

23.160% relative to the Bayesian D-optimal design. The Bayesian D-optimal design

has five support points, while the robust DMP -optimal design has seven. Therefore, a
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reduction in separation probability is expected for the DMP -optimal design based on

the relationship between number of support points and separation probability that

was observed in the Chapter 4 simulation study. The separation data for both designs

and the separation probability reduction is shown in Figure 6.15. The robust design

study demonstrates that the robust DMP -optimal design offers a substantial reduc-

tion in separation risk with a slight decrease in D-efficiency performance relative to

a Bayesian D-optimal design of equal size generated with the same logistic regression

model and prior parameter distributions.
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Figure 6.15: Probability of Separation over the Test Parameter Vectors for the Robust

Designs and Separation Probability Reduction with the DMP -Optimal Design

6.6 Summary

The simulation study in Chapter 4 demonstrated that small-sample D-optimal

designs for several forms of the logistic regression model are prone to encounter-

ing separation. The design augmentation simulation study presented in Chaper 5
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showed that placing additional runs in regions of MPV efficiently eliminates sepa-

ration in an initial design. However, the MPV-augmented designs have relatively

low D-efficiencies. Based on these observations, a compound criterion, DMP , is pro-

posed to balance D-efficiency with separation robustness, as a separation-optimal

design consisting of support points solely located about the MPV region will have

very poor D-efficiency. The DMP -criterion has two components: D-efficiency and a

normalized squared linear predictor penalty term. A candidate design point x will

have E(y∣x,β) = 0.5 if and only if xTβ = 0. Therefore, the average squared linear

predictor value of a design of size n, given by ∑ni=1(xiTβ)2/n, provides a measure

of the design’s average distance of the support points from the separation-optimal

(MPV) region. To put this penalty term on the same scale as the D-efficiency mea-

sure, the maximum squared linear predictor value over the entire design region is

used to normalize the average squared linear predictor value. Furthermore, to adjust

for model size, the normalized squared linear predictor value is raised to the (1/p)th

power, similar to how the ratio of D-criterion values used to calculate D-efficiency

is adjusted. A user-defined weight value, λ ∈ [0,1], is used to adjust for separation

risk tolerance. At λ = 1, the DMP -criterion is equivalent to the standard D-criterion

for GLMs. At λ = 0, the DMP -criterion will force all design points into the MPV

region. This chapter demonstrates that the DMP -criterion can be incorporated in

an exchange algorithm to create exact compromise optimal designs for the logistic

regression model that have high D-efficiencies and a substantially reduced risk of

encountering separation relative to a D-optimal design of equal run size.

A two-phase CEA is presented to implement DMP -optimality in exact designs.

Several logistic regression models and fixed design sizes are used to demonstrate that

for λ ∈ [0.4,0.6], the locally DMP -optimal designs have relatively high D-efficiencies

while offering substantial reductions in separation probability over a locally D-optimal
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design of equal size. It is observed that the locally DMP -optimal designs tend to have

more support points that the locally D-optimal designs, a characteristic that was

observed to reduce a design’s probability of separation in Chapter 4. To address the

design dependence issue inherent in GLMs, a maximin approach is used to obtain a

robust DMP -optimal design that retains competitive D-efficiencies across a range of

potential parameter values while offering a significant reduction in separation proba-

bility over a candidate Bayesian D-optimal design generated with the same parameter

ranges (prior distributions).

In practice, exact DMP -optimal designs can be expediently constructed for use in

experimental situations where a binary response is of interest. If no additional ex-

perimentation will be permitted, the DMP -optimal designs may provide an attractive

alternative to standard D-optimal designs for the logistic regression model, as very

high D-efficiencies can be maintained while reducing the risk of encountering sepa-

ration. To address uncertainty in the initial parameter specifications, the maximin

methodology is a practical way to generate a robust DMP -optimal design over a range

of potential parameter values.
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Chapter 7

CONCLUSION

This research addressed the topic of separation, an estimation problem that can

occur in experimental designs where the logistic regression model is used to relate

a set of experimental factors with a binary response. In the presence of separated

response data, maximum likelihood estimation will not provide finite estimates for

the parameters of the logistic regression model. A survey of the current literature

reveals that while there has been substantial research on usable estimation methods

under separated data, there has not been significant work dedicated to addressing

separation in the design phase of an experiment, or a detailed exploration of the

separation problem in multi-factor experimental designs. In addition, there are no

recommendations for alleviating the risk of separation in an initial design or follow-up

phases of an experiment.

In Chapter 4, the susceptibility of two-factor locally and Bayesian D-optimal de-

signs to separation is explored. Three forms of the logistic regression model are used

as the base models to generate locally and Bayesian D-optimal designs of four dis-

tinct design sizes (n = 8,16,32, and 64). A Monte Carlo simulation methodology

was used to generate large sets of response data for each design. The criterion for

determining the presence of separation follows the recommendation by Heinze and

Schemper (2002), where the non-convergence of the Newton-Raphson algorithm in

solving the score equations of the likelihood function is detected by the large mag-

nitude (≥
√

5000) of the maximum standard error of the parameter estimates. The

proportion of separated response sets serves as the estimated probability of separa-

tion for each design. Based on this methodology, it was discovered that small-sample
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(n ≤ 32) D-optimal designs are subject to encountering separation. Additionally, it

was determined that the probability of separation is higher for constructed designs for

logistic models with active interaction and quadratic terms, possibly due to the curva-

ture of the response surface over the design region. In other words, the interaction and

full quadratic models had induced regions of moderate probabilities (0.15 ≤ π ≤ 0.85)

with nonlinear boundaries. As observed by Dror and Steinberg (2005), the support

points of a locally D-optimal design tend to lie on the boundaries of the moderate

response probability region, and the resulting support point patterns of the designs

from the models with higher-order terms tended to be more susceptible to separation.

It was also observed that the Bayesian D-optimal designs tended to be less prone to

separation than the locally D-optimal designs, as the Bayesian designs tend to have

more support points than their locally optimal counterparts, making the existence of

a separating hyperplane in the design region less likely. Most notably, it was found

that for the logistic models with active interaction and quadratic terms, designs of

equal size that are generated from the same model can have significantly different

separation probabilities. As the model response surface becomes more complex, de-

signs from the same model are noticeably more disparate, as the support points of

the designs collectively occupy a larger region of the design space.

The results of the D-optimal design separation study have some practical implica-

tions for experimenters in practice. First, the robust (Bayesian) designs are preferable

in most design applications. In addition to accounting for the uncertainty inherent in

the initial parameter specification required for design creation in GLMs, the increase

in design support points is a desirable property for reducing the probability of sepa-

ration. This may present an inconvenience while executing an experiment, as more

distinct factor combinations will have to be planned, randomized in the run order,

and executed. However, in situations where this can be accommodated, it is advisable

117



to do so for the reduction in separation risk. Secondly, when planning an optimal

experimental design that utilizes a logistic regression model, it will be prudent to

generate a candidate set of exact D-optimal designs. These designs are expedient to

construct for GLMs (assuming the prior information can be adequately summarized

by certain distributions), and the simulation methodology used in Chapter 4 can be

used to estimate the probability of separation in each design. Assuming that each

design has comparable D-efficiencies, the design with minimal separation risk should

be selected as the final design.

To break separation in small-sample D-optimal designs, Chapter 5 investigates

strategies for augmenting an initial design with additional runs. Two practical strate-

gies were proposed: (1) locating augmented runs in regions of maximum prediction

variance (MPV), and (2) replicating runs at the support points of the initialD-optimal

design. The first strategy entails augmenting runs in regions where the predicted

probability of either category of the response is 0.5. The second strategy randomly

locates augmented runs at the support points of the initial design. These strategies

were evaluated on the separation probability and the D-efficiency of the augmented

design. To serve as a baseline for these two strategies, random augmentation was

also performed, where the coordinates of each augmented design point are randomly

sampled from a continuous uniform distribution over the factor range. An initial

design size of n = 8 was examined, and design runs were augmented according to each

strategy in blocks of size n = 8. A Monte Carlo simulation was also used to gener-

ate response data. The same base logistic regression models used in Chapter 4 were

adopted for this study. For each initial design, response data was randomly sampled

from a Bernoulli process until a separated response set was found. Then, a large

number of augmentation trials were performed, where a block constructed based on

each strategy was added to the initial design. Response data for the augmented runs
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was also simulated from the same Bernoulli process. The proportion of augmentation

trials that resulted in a separated response set served as the estimated probability of

separation reported for each initial augmented design. Additionally, the D-efficiency

of each augmented design was calculated relative to a 16-run locally D-optimal design

generated for the parameter vectors of each logistic regression model.

The results of this study show that compared to initial support point replica-

tion and random augmentation, MPV augmentation most reliably eliminates sepa-

ration that is encountered in an initial design. The blocks constructed with runs

located in the MPV region of the design space produced the lowest proportion of sep-

arated response data. However, the MPV augmented designs tended to have lower

D-efficiencies relative to the other two strategies. Initial support point replication

produced designs with high D-efficiencies, but did not offer significant advantages

in terms of reducing separation risk relative to the other two strategies. The pa-

rameter standard errors produced with Firth likelihood (Firth, 1993) estimation in

a separated D-optimal design had lower standard errors than the maximum likeli-

hood estimates produced through an MPV augmented design with overlapped (non-

separated) response data, implying that the precision of the estimates available with

an MPV-augmented design, even with overlapped data, will be low.

MPV augmentation has practical limitations. It is reliant on the initial parameter

specification that is used in design creation. It is therefore not robust to parame-

ter uncertainty. The simulation study conducted in Chapter 5 represents an ideal

scenario, where it is assumed that the initial parameter estimates used in design cre-

ation match the true parameter values. Although this is not likely in practice, it

does show that conceptually, locating runs in the MPV region of a design space pro-

duces designs that are much less likely to encounter separation than an equally-sized

D-optimal design.
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The trade-off between D-efficiency and separation robustness is notable; placing

design runs in the MPV region provides a reduced risk of encountering separation at

the expense of D-efficiency. Based on this observation, a compound design criterion

for constructing compromise designs was presented in Chapter 6. The compound

DMP statistical criterion has two normalized components: (1) D-efficiency and (2) a

penalty term driven by the average distance of the candidate design’s support points

from the MPV region. The D-efficiency of the candidate design is calculated relative

to a locally D-optimal design for the specified parameters, and the average distance

penalty term is captured though the average squared linear predictor value of the

design runs, as a linear predictor value of zero holds if and only if the design point is

located in the MPV region. To normalize the average squared linear predictor value,

it is divided by the maximum squared linear predictor value over the design region,

which ensures that the normalized value is in the range [0,1]. A user-defined weight,

λ ∈ [0,1], is used to define the D-efficiency vs. separation risk trade-off. As the weight

value initially decreases, the separation robustness of the candidate design increases

relative to a locally D-optimal design of equal size from the same logistic model.

Exact DMP -optimal designs are generated via a two-phase coordinate exchange

algorithm (CEA). In the first phase, a locally D-optimal design for the specified

model parameters is generated. In the second phase, a locally DMP -optimal design is

generated, where the D-criterion value of the Phase I design is used to calculate the D-

efficiency of the candidate designs. The two-phase CEA was validated by configuring

it to generate locally D-optimal designs and comparing the results to the designs

generated by the nonlinear design platform in JMP Pro 14.2 RO. For several model

forms and fixed run sizes, it was demonstrated that the two-phase CEA produced

locally D-optimal designs that were practically identical to the designs produced by

the nonlinear design platform. To assess the performance of locally DMP -optimal
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designs, several test cases are used to demonstrate that for weight values between 0.4

and 0.6, the locally DMP -optimal designs have D-efficiencies over 90% while reducing

the probability of separation by 20-30% in comparison to the locallyD-optimal design.

An ideal weight value is likely model-dependent, and determining an optimal weight

value to generate locally DMP -optimal designs is left for future work. Maximin DMP -

optimal designs were also proposed to address the design dependence problem in

GLMs. A set of parameter vectors are randomly sampled from a continuous uniform

distribution over plausible parameter ranges, and a locally DMP -optimal design with

fixed weight is generated for each parameter vector. TheDMP -optimal design with the

highest worst-case DMP -efficiency, calculated relative to all of the other parameter

vectors in the set, is designated as the robust design. A case study shows that

the robust DMP -optimal design retains reasonable D-efficiencies over all parameter

vectors in the set, and has a substantially reduced probability of separation relative

to a corresponding Bayesian D-optimal design.

In summary, the contributions of this research are as follows:

1. An exploration of the separation problem for exact, multi-factor D-optimal

designs for the logistic regression model, where a simulation methodology is used

to show that small-sample (n ≤ 32) D-optimal designs are prone to separation

2. An efficient strategy for augmenting design runs to eliminate separation in

multi-factor experimental designs, where a simulation study demonstrates that

MPV augmentation most reliably eliminates separation in an initial D-optimal

design

3. A compound optimality criterion, DMP , that is implemented in a novel two-

phase CEA to generate exact, multi-factor locally DMP -optimal designs for the

logistic regression model with reduced separation risk relative to D-optimal
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designs

4. A robust design methodology to declare minimax DMP -optimal designs to ad-

dress the design dependence problem in GLMs

The proposed methodologies used in this research present limitations that should

be addressed in future work. The separation simulation study in Chapter 4 was

restricted to D-optimal designs. Therefore, the augmentation strategies presented in

Chapter 5 are limited to initial D-optimal designs. In the test cases for the locally

DMP -optimal designs presented in Chapter 6, a comprehensive study of the impact

of the user-defined weight value was not accomplished. Therefore, the weight values

that were recommended and used in the case study are limited. For the test cases

that were presented, a weight value of 0.5 produced DMP -optimal designs with the

best balance between D-efficiency and separation robustness, but it is not clear if this

weight value recommendation will extend well to higher-order models or additional

design factors. The DMP -criterion formulation is easily extended to more than two

design factors, and the two-phase CEA can be easily configured to accommodate more

than two design factors. It is hypothesized that the DMP -criterion will work well for

more than two design factors, assuming the model orders are restricted to active two-

factor interactions and quadratic terms. How well it will perform for more complex

model forms is left for future research. However, a full quadratic model is adequate as

an approximating polynomial function in most response surface design applications,

so the current model order scope for the DMP -criterion is not overly prohibitive.

All of the logistic regression models used in this study were restricted to two design

factors, and it is not currently clear how separation risk for D-optimal designs and

the augmentation strategy results will extend to additional design factors. Finally,

the large parameter standard error criterion recommended by Heinze and Schemper
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(2002) was used to declare separation in all of the simulation studies presented in this

research. Alternative methods of detecting separation are currently available in the

literature and should be explored in future work.

Binary responses are frequently encountered across a broad spectrum of research

applications, such as biomedical development, econometrics, survey data, and military

developmental and operational testing for the acquisition of new systems. Experimen-

tation is a key component of many of these studies, and this research will be directly

applicable in costly experimental work where a dichotomous non-numerical outcome

is of interest. D-optimal designs are frequently used in practice, as they are expedi-

ent to construct and tend to produce precise parameter estimates. The simulation

methodology used in Chapter 4 can be adopted to assess the risk of encountering

separation in a small-sample D-optimal design. A candidate set of D-optimal designs

can be considered, where the design with the lowest estimated separation probability

can be used. Additionally, a DMP -optimal design may be an attractive alternative

to a standard D-optimal design if it is known that additional experimentation is in-

feasible. Several promising directions for this research will be proposed as areas for

future study in the next chapter.
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Chapter 8

AREAS AND ISSUES FOR FURTHER STUDY

Several methods for addressing the problem of separation in the design phase of

an experiment were presented in this research. However, these proposed method-

ologies present limitations that warrant further research. In addition, from a design

perspective, very little has been done on the problem of separation. In this chapter,

some areas for future research are discussed.

There has been recent development in construction methods for G- and I-optimal

designs for GLMs. Saleh and Pan (2016) propose a clustering approach to generating

robust G-optimal designs, and Li and Deng (2018) propose a multiplicative algo-

rithm to construct continuous I-optimal designs. Both of these optimality criteria

are focused on minimizing the variance of prediction over a design region. G-optimal

designs minimize the maximum prediction variance over a design region, while I-

optimal designs minimize the average prediction variance over a design region (Goos,

2012). In applications where the experimenter desires to make response predictions,

these designs will be more useful than the D-optimality criterion. A potential direc-

tion for future research is to investigate whether exact G- or I-optimal designs for

the logistic regression model offer any advantage over D-optimal designs in terms of

separation risk. A simulation study using the methodology presented in Chapter 4

can be repeated for a candidate set of exact G- or I-optimal designs of fixed sizes to

assess the separation probabilities of these designs. If it is found that an alternative

criterion offers a clear advantage, it may be advisable to use these designs in future

applications where experimental resources are heavily constrained.

The E-criterion should also be investigated as a viable solution to mitigating
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separation risk. As discussed in Section 3.2.1, an E-optimal design minimizes the

maximum variance of the parameter estimates of all n-run designs over a candidate

design space. For nonlinear statistical models, research on E-optimal designs is sparse

in the literature. However, for linear statistical models, it has been observed that the

number of support points for continuous E-optimal designs can be large relative to

D-optimal designs. For example, for second-order response surface models over design

space [−1,1]k, Dette and Grigoriev (2014) prove that the number of support points

of an E-optimal design is given by

N(r1, r2, r3) =
3

∑
i=1

(k
ri
)2k−ri , (8.1)

where r1, r2, and r3 are integers such that 0 ≤ r1 ≤ r2 ≤ r3 ≤ k. The authors note that

the number of support points of E-optimal designs for second-order linear models

is unusually large, and techniques are proposed to search for viable designs with a

minimal number of support points. However, the simulation study in Chapter 4

illustrated that exact D-optimal designs with a larger number of support points tend

to be less prone to separation. The large number of support points of E-optimal

designs may therefore be an attractive property from the perspective of minimizing

separation probability. The construction of continuous E-optimal designs becomes

complicated if the multiplicity of the minimum eigenvalue of the optimal information

matrix is larger than one, which is the case for second-order linear models (Dette and

Grigoriev, 2014). Construction of exact E-optimal designs for the logistic regression

model can be implemented via a coordinate-exchange algorithm, and investigating

these designs as a potential solution to the separation problem observed in small-

sample D-optimal designs is left for future work.

In terms of an augmentation strategy for follow-on experimentation, maximum

prediction variance (MPV) augmentation as it is presented in Chapter 5 has limited
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practical value because of the initial parameter specification required to accurately

determine the MPV region. A study of the robustness of MPV augmentation to

parameter value uncertainty is recommended, as it is currently not an attractive

methodology if the experimentation involves a process or system that is not well

understood, which may result in increased uncertainty in the parameter values. For

two-factor design spaces involving the logistic regression models that were specified

in this study, MPV augmentation only slightly outperformed random augmentation

in eliminating separation. Determining how MPV augmentation fares relative to

random augmentation in additional dimensions is left to future work. The necessity of

augmentation should also be further examined to determine if eliminating separation

is a worthwhile pursuit, as Firth likelihood estimation (Firth, 1993) for the logistic

regression model has been shown to produce usable parameter estimates in a separated

response set.

A more comprehensive study of the weight (λ) values used in the DMP -criterion

is recommended, as determining an optimal weight value across varying design sizes

and forms of the logistic regression model has not been explored. For the weight

values that were examined in the locally optimal test cases presented in Chapter 6,

it was observed that DMP -optimal designs generated at λ = 0.5 had the best balance

between D-efficiency and reduction in separation probability. Optimizing this weight

value in a variety of design applications is recommended and left for future work.

Methods to modify the DMP -criterion formulation in the presence of parameter

uncertainty should be explored. In its current formulation, discussed in Chapter

6, the linear predictor penalty term is entirely dependent on the initial parameter

specification. As a result, the DMP -criterion is extremely sensitive to parameter

misspecification. An on-going work by the author is to modify the DMP -criterion to

make it a more practical alternative to the standard D-criterion. Bayesian methods
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may potentially be used to adjust the DMP -criterion to incorporate prior parameter

distributions. Modifying the criterion to produce Bayesian DMP -optimal designs is

left for future work. Another interesting extension to this work is to investigate

augmentation strategies for DMP -optimal designs in the case that these designs still

encounter separation. In addition to adopting the strategies that were proposed in

Chapter 5 for DMP designs, another potential augmentation strategy is to find new

design points using the DMP -criterion with an adjusted weight value. Establishing an

optimal augmentation strategy for DMP -optimal designs is also left for future work.

A challenging but practical extension to this research is to generalize the separa-

tion problem and the implementation of DMP -optimality to nominal response vari-

ables with g possible outcomes (groups), where g > 2. The general case for separation

is presented by Albert and Anderson (1984). Suppose that H denotes the response

variable which takes values that can be coded as arbitrary integers 1, ..., g. The condi-

tional probabilities of group membership have the extended logistic form (Anderson,

1972):

P (H = s∣x) = exp(βTs x) ⋅ P (H = g∣x) for s = 1, ..., g − 1

P (H = g∣x) = {1 +∑g−1
s=1 exp(βTs x)}−1, (8.2)

where βTs = [βs0, ..., βsp], for s = 1, ..., g−1 and βTg = 0. In a logistic classification model,

design point x is classified as belonging to group s if and only if (βs −βt)Tx ≥ 0 for

all t = 1, ..., g except t = s. The model parameter vector is therefore βT = [βT1 , ...,β
T
g ].

If a vector β exists among n multinomial sample points such that for all i ∈ Ej and

for j, t = 1, ..., g (j ≠ t),

(βj −βt)Txi ≥ 0, (8.3)

then some form of separation is present (Albert and Anderson, 1984; Konis, 2007).

Therefore, to implement DMP -optimality for a nominal response variable with g > 2
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possible outcomes, the linear predictor penalty term in Equation 6.4 must be modified

to include g−1 penalty terms with respect to β1, ...,βg−1. The generalized formulation

of DMP -optimal designs for a multinomial response variable is left for future work.

A critical component of this research has been detecting the presence of separation.

The large parameter standard error criterion recommended by Heinze and Schemper

(2002) has been used throughout this research for several reasons. First, this method

is readily available in any statistical software package that implements logistic regres-

sion, even if there is not a built-in check for separation. Second, it is expedient, and an

efficient method of detecting separation was required for all of the simulated response

data that was generated for each design used in the simulation studies presented

in Chapters 4 and 5. However, alternative methods for detecting separation have

been proposed in the literature. For example, Konis (2007) proposes an algorithm

for detecting separation that is based on a linear programming approach, which was

discussed in Section 2.5. A valuable extension of this research would be to implement

different methods of separation detection in obtaining the results presented in Chap-

ters 4 through 6. The main challenge in these alternative approaches will be matching

the efficiency of the large parameter standard error criterion, as this criterion only

requires fitting a logistic regression model to the experimental data. For example, for

the linear programming approach presented by Konis (2007) to roughly match the

amount of time required to fit a logistic regression model using iteratively reweighted

least squares, the linear program in (2.25) must be converted into a reduced linear

program, and the feasibility of the dual linear program to (2.25) is assessed to declare

separation in the response data. Furthermore, issues such as degeneracy and cycling,

along with numerical difficulties in certain case-specific transformations of the original

linear program formulation in (2.25) must be addressed (Konis, 2007).

The research presented in this dissertation serves as a first-look at addressing the
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separation problem in the design phase of exact, multi-factor designs. As a result, all

of the designs and strategies that were examined are restricted to two-factor design

spaces. A practical addition to this work is to extend all results to higher-order logistic

regression models with more than two factors. In many experimental situations, there

will be more than two factors of interest, and it would be prudent to determine how

these results extend to more than two dimensions.
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A.1 Test Case 1: Single-Factor Main Effect Model

Parameters: β0 = 0, β1 = 3; Design Size: n = 6
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A.2 Test Case 2: Two-Factor Main Effects Model

Parameters: β0 = 0, β1 = 2, β2 = 1; Design Size: n = 10
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A.3 Test Case 3: Two-Factor Main Effects w/Interaction Model

Parameters: β0 = −1, β1 = 4, β2 = 1, β12 = −2; Design Size: n = 16
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APPENDIX B

TWO-PHASE COORDINATE EXCHANGE ALGORITHM JSL CODE
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Only the second phase of the CEA that generates the locally DMP -optimal designs
will be shown for each test case. A locally D-optimal design can be generated by
setting ‘lambda’ = 1 and ‘scale’ = 1.

B.1 Single-Factor Main Effect Model Design Code

/****************************/
//INITIALIZE//
/****************************/

Names Default to Here( 1 );
Clear Log();
clear symbols();

/****************************/
//FUNCTIONS//
/****************************/
//Function to calculate optimality criterion value
//X is model matrix, lambda is weight of D-criterion; range [0,1]
//det_scale is max value of |X‘VX| from D-opt design
//max_val is maximum value of LP^2
criterion_val = Function( {X, lambda, det_scale, max_val},

{default local},

n = nrows(X);
b0 = 0; //intercept
b1 = 3; //X coefficient
coeffs = (b0 || b1)‘;
p = nrows(coeffs);

LP = J(n,1,0); //vector to store linear predictor values
LP_sq = J(n,1,0); //vector to store LP^2
ExpY = J(n,1,0); //vector to store E(y) values
WeightY = J(n,1,0); //vector to store Var(y) values

for(j = 1, j <= n, j++,
LP[j] = X[j,0]*coeffs;
LP_sq[j] = (LP[j])^2;
ExpY[j] = 1/(1+exp(-(LP[j])));
WeightY[j] = ExpY[j]*(1-ExpY[j]);
);

V = diag(WeightY);
M = X‘*V*X;

Z1 = (det(M)/det_scale)^(1/p);
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Z2 = (sum(LP_sq)/(n*max_val))^(1/p);
Z = (lambda)*(Z1)-(1-lambda)*Z2;

Return(Z);
);

/****************************/
//MAIN //
/****************************/

/****************************/
//Inputs//
/****************************/
iter = 1000; //number of random starting designs
f = 1; //number of factors
lambda = 0.5; //weight of D-criterion; range [0,1]
scale = 0.200473977115786; //|X‘VX| from D-opt; n=6, b0=0, b1=3
delta = 0.005; //step size of coordinate exchange
gap = 0.001; //size of criterion convergence
n = 6; //number of runs

Z_best = -1000; //initialize criterion value

/****************************/
//Determine Max LP Value//
/****************************/

b0 = 0; //intercept
b1 = 3; //X coefficient
coeffs = (b0 || b1)‘;

//max value of LP must occur at extreme points of x (-1 OR 1)
val1 = abs([1 1]*coeffs);
val2 = abs([1 -1]*coeffs);
max_lp = (max(val1,val2))^2;

/****************************/
//Generate Random Initial Design//
/****************************/
for(k = 1, k <=iter, k++,

D = J(n,f,random uniform(-1,1));
X = J(n,1,1) || D; //creates model matrix for main effect

/****************************/
//Coordinate Exchange//
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/****************************/
delta = delta + random uniform(0,.001); //random step adjustment

X_cand1 = X;
X_cand2 = X;

//’convergence’ will capture when the design is not increasing meaningfully
convergence = 1000; //initially set at high value

while(convergence >= gap,
X_current = X;

//optimize coordinate j
for(j = 1, j <=n, j++,
//find direction of improvement, make initial replacement
store_vals = J(2,1,0);

store_vals[1,1] = X[j,2] - delta;
store_vals[2,1] = X[j,2] + delta;

X_cand1[j,2] = store_vals[1,1];
X_cand2[j,2] = store_vals[2,1];

flag = 0;

if(criterion_val(X_cand2, lambda, scale, max_lp) >= criterion_val(X_cand1,
lambda, scale, max_lp),

//replaces best coordinate into X
X[j,2] = X_cand2[j,2];
flag = 1,
X[j,2] = X_cand1[j,2];

);

//update candidate matrices
X_cand1[j,2] = X[j,2];
X_cand2[j,2] = X[j,2];

improve = 1000;

if(flag == 1,

while(improve > 0,
Z_initial = criterion_val(X, lambda, scale, max_lp);
X[j,2] = X[j,2] + delta;
//feasibility check
if(X[j,2] > 1,
X[j,2] = 1;

146



flag = 2;
improve = -1,
improve = criterion_val(X, lambda, scale, max_lp)-Z_initial;
);

),

while(improve > 0,
Z_initial = criterion_val(X, lambda, scale, max_lp);

X[j,2] = X[j,2] - delta;

//feasibility check
if(X[j,2] < -1,
X[j,2] = -1;
flag = 2;
improve = -1,
improve = criterion_val(X, lambda, scale, max_lp)-Z_initial;
);

);

//set value to actual optimal coordinate
if(flag == 1,
X[j,2] = X[j,2] - delta,
flag == 0,
X[j,2] = X[j,2] + delta;
);

);

X_cand1 = X;
X_cand2 = X;

);

convergence = criterion_val(X, lambda, scale, max_lp)-criterion_val(
X_current, lambda, scale, max_lp);

);

Z_current = criterion_val(X, lambda, scale, max_lp);

if(Z_current > Z_best,
X_best = X;
Z_best = Z_current
);

);
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/****************************/
//PART 3: K-Pass Point Exchange//
/****************************/

//define candidate set
C = X_best;
X_PEA = X_best;

store_vals = J(1,n,0);

//set number of PEA cycles w/value of K
K = 1;

//K-Pass Point Exchange
for(l = 1, l<=K, l++,

for(j = 1, j <=n, j++,

//optimize row (point) j
for(i=1, i <= n, i++,
X_PEA[j,0] = C[i,0];
store_vals[i] = criterion_val(X_PEA, lambda, scale, max_lp);
);

X_best[j,0] = C[Loc Max(store_vals),0];
X_PEA[j,0] = X_best[j,0];

);
);

/****************************/
//OUTPUT//
/****************************/
as table(X_best);
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B.2 Two-Factor Main Effects Model Design Code

/****************************/
//INITIALIZE//
/****************************/

Names Default to Here( 1 );
Clear Log();
clear symbols();

/****************************/
//FUNCTIONS//
/****************************/
//Function to calculate optimality criterion value
//X is model matrix, lambda is weight of D-criterion; range [0,1]
//det_scale is max value of |X‘VX| from D-opt design
//max_val is maximum value of LP^2
criterion_val = Function( {X, lambda, det_scale, max_val},

{default local},

n = nrows(X);

b0 = 0; //intercept
b1 = 2; //X1 coefficient
b2 = 1; //X2 coefficient
coeffs = (b0 || b1 || b2)‘;
p = nrows(coeffs);

LP = J(n,1,0); //vector to store linear predictor values
LP_sq = J(n,1,0); //vector to store LP^2
ExpY = J(n,1,0); //vector to store E(y) values
WeightY = J(n,1,0); //vector to store Var(y) values

for(j = 1, j <= n, j++,
LP[j] = X[j,0]*coeffs;
LP_sq[j] = (LP[j])^2;
ExpY[j] = 1/(1+exp(-(LP[j])));
WeightY[j] = ExpY[j]*(1-ExpY[j]);
);

V = diag(WeightY);
M = X‘*V*X;

Z1 = (det(M)/det_scale)^(1/p);
Z2 = (sum(LP_sq)/(n*max_val))^(1/p);
Z = (lambda)*(Z1)-(1-lambda)*Z2;

Return(Z);
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);

/****************************/
//MAIN //
/****************************/

/****************************/
//Inputs//
/****************************/
iter = 1000; //number of random starting designs
f = 2; //number of factors in experiment
lambda = 0.5; //weight of D-criterion; range [0,1]
//scale = 1;
scale = 1.95682571192056; //|X‘VX| from D-opt; n=10, b0=0, b1=2,

b2=1
delta = 0.005; //step size of coordinate exchange
gap = 0.001; //size of criterion convergence
n = 10; //number of runs

Z_best = -1000; //initialize criterion value

/****************************/
//Determine Max LP Value//
/****************************/

b0 = 0; //intercept
b1 = 2; //X1 coefficient
b2 = 1; //X2 coefficient
coeffs = (b0 || b1 || b2)‘;

//max value of LP must occur at extreme points of region
val1 = abs([1 1 1]*coeffs);
val2 = abs([1 -1 -1]*coeffs);
val3 = abs([1 -1 1]*coeffs);
val4 = abs([1 1 -1]*coeffs);
max_lp = (max(val1,val2,val3,val4))^2;

/****************************/
//Generate Random Initial Design//
/****************************/
for(k = 1, k <=iter, k++,

D = J(n,f,random uniform(-1,1));
X = J(n,1,1) || D; //creates model

matrix for main effects

/****************************/
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//Coordinate Exchange//
/****************************/
delta = delta + random uniform(0,.001); //random step adjustment

X_cand1 = X;
X_cand2 = X;

//’convergence’ will capture when the design is not increasing meaningfully
convergence = 1000; //initially set at high value

while(convergence >= gap,
X_current = X;

//point (row) j
for(j = 1, j <= n, j++,

//optimize point j, coordinate i
for(i = 1, i <= f, i++,

//find direction of improvement, make initial replacement
store_vals = J(2,1,0);

store_vals[1,1] = X[j,i+1] - delta;
store_vals[2,1] = X[j,i+1] + delta;

X_cand1[j,i+1] = store_vals[1,1];
X_cand2[j,i+1] = store_vals[2,1];

flag = 0;

if(criterion_val(X_cand2, lambda, scale, max_lp) >= criterion_val(X_cand1,
lambda, scale, max_lp),

//replaces best coordinate into X
X[j,i+1] = X_cand2[j,i+1];
flag = 1,
X[j,i+1] = X_cand1[j,i+1];

);

//update candidate matrices
X_cand1[j,i+1] = X[j,i+1];
X_cand2[j,i+1] = X[j,i+1];

improve = 1000;

if(flag == 1,

while(improve > 0,
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Z_initial = criterion_val(X, lambda, scale, max_lp);

X[j,i+1] = X[j,i+1] + delta;

//stop check for feasibility
if(X[j,i+1] > 1,
//when point becomes infeasible, exit while loop
X[j,i+1] = 1;
flag = 2;
improve = -1,
improve = criterion_val(X, lambda, scale, max_lp)-Z_initial;
);

),

while(improve > 0,
Z_initial = criterion_val(X, lambda, scale, max_lp);

X[j,i+1] = X[j,i+1] - delta;

//stop check for feasibility
if(X[j,i+1] < -1,
//when point becomes infeasible, exit while loop
X[j,i+1] = -1;
flag = 2;
improve = -1;
improve = criterion_val(X, lambda, scale, max_lp)-Z_initial;
);

);

//set value to actual optimal coordinate
if(flag == 1,
X[j,i+1] = X[j,i+1] - delta,
flag == 0,
X[j,i+1] = X[j,i+1] + delta;
);

);

X_cand1[j,i+1] = X[j,i+1];
X_cand2[j,i+1] = X[j,i+1];

)

);
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convergence = criterion_val(X, lambda, scale, max_lp)-criterion_val(
X_current, lambda, scale, max_lp);

);

Z_current = criterion_val(X, lambda, scale, max_lp);

if(Z_current > Z_best,
X_best = X;
Z_best = Z_current
);

);

/****************************/
//PART 3: K-Pass Point Exchange//
/****************************/

//define candidate set
C = X_best;
X_PEA = X_best;

store_vals = J(1,n,0);

//set number of PE cycles w/value of K
K = 1;

//K-Pass Point Exchange
for(l = 1, l<=K, l++,

for(j = 1, j <=n, j++,

//optimize row (point) j
for(i=1, i <= n, i++,
X_PEA[j,0] = C[i,0];
store_vals[i] = criterion_val(X_PEA, lambda, scale, max_lp);
);

X_best[j,0] = C[Loc Max(store_vals),0];
X_PEA[j,0] = X_best[j,0];

);
);

/****************************/
//OUTPUT//
/****************************/
as table(X_best);
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B.3 Two-Factor Main Effects w/Interaction Model Design Code

/****************************/
//INITIALIZE//
/****************************/

Names Default to Here( 1 );
Clear Log();
clear symbols();

/****************************/
//FUNCTIONS//
/****************************/
//Function to calculate optimality criterion value
//X is model matrix, lambda is weight of D-criterion; range [0,1]
//det_scale is max value of |X‘VX| from D-opt design
//max_val is maximum value of LP^2
criterion_val = Function( {X, lambda, det_scale, max_val},

{default local},

n = nrows(X);

b0 = -1; //intercept
b1 = 4; //X1 coefficient
b2 = 1; //X2 coefficient
b12 = -2; //Interaction Coefficient
coeffs = (b0 || b1 || b2 || b12)‘;

p = nrows(coeffs);

LP = J(n,1,0); //vector to store linear predictor
values

LP_sq = J(n,1,0); //vector to store LP^2
ExpY = J(n,1,0); //vector to store E(y) values
WeightY = J(n,1,0); //vector to store Var(y) values

for(j = 1, j <= n, j++,
LP[j] = X[j,0]*coeffs;
LP_sq[j] = (LP[j])^2;
ExpY[j] = 1/(1+exp(-(LP[j])));
WeightY[j] = ExpY[j]*(1-ExpY[j]);
);

V = diag(WeightY);
M = X‘*V*X;
Z1 = (det(M)/det_scale)^(1/p);

Z2 = (sum(LP_sq)/(n*max_val))^(1/p);
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Z = (lambda)*(Z1)-(1-lambda)*Z2;

Return(Z);
);

//Function that expands design matrix to model matrix for 2FI model
ME2FI = function({X},

{default local},

D = J(nrow(X), 1, 1) || X;
p = ncol(D);
for(j=3, j<=p, j++,
for(i=2, i<j, i++,
D = D || E Mult(D[0,j],D[0,i]);
);
);
D;
);

/****************************/
//MAIN //
/****************************/

/****************************/
//Inputs//
/****************************/
iter = 1000; //number of random starting designs
f = 2; //number of factors in experiment
lambda = 0.5; //weight of D-criterion; range [0,1]
scale = 1.1431769504143; //|X‘VX| from D-opt; n=16, b0=-1, b1=4,

b2=1, b12=-2
delta = 0.005; //step size of coordinate exchange
gap = 0.001; //size of criterion convergence
n = 16; //number of runs

Z_best = -1000; //initialize criterion value

b0 = -1; //intercept
b1 = 4; //X1 coefficient
b2 = 1; //X2 coefficient
b12 = -2; //Interaction Coefficient
coeffs = (b0 || b1 || b2 || b12)‘;

/****************************/
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//Determine Max LP Value//
/****************************/
res=0.01;

xv_coord = Index(-1,1,res);

//since dimensions of X1_coord/X2_coord will be equal
q = Ncol(xv_coord);

//’X_coord’ will store all of the design points to be evaluated for LP
value

X_coord = [];
X_store = J(q,2,0);

//create table of all design points
for(i =1, i <= q, i++,
for(j = 1, j <= q, j++,
X_store[j,1]=xv_coord[i];
X_store[j,2]=xv_coord[j];
);
X_coord = VConcat(X_coord,X_store);
);

X_coord = ME2FI(X_coord);

derp = Nrows(X_coord);
LP_vals = J(derp,1,0);

for(j = 1, j <= derp, j++,
LP_vals[j] = abs(X_coord[j,0]*coeffs);
);

//lp_max holds maximum value of squared linear predictor across 2D grid
lp_max = (Max(LP_vals))^2;

/****************************/
//Generate Random Initial Design//
/****************************/
for(k = 1, k <=iter, k++,

D = J(n,f,random uniform(-1,1));
X = ME2FI(D); //creates

model matrix for 2FI

/****************************/
//Coordinate Exchange//
/****************************/
delta = delta + random uniform(0,.001); //random step adjustment
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X_cand1 = X;
X_cand2 = X;

//’convergence’ will capture when the design is not increasing meaningfully
convergence = 1000; //initially set at high value

while(convergence >= gap,
X_current = X;

//point (row) j
for(j = 1, j <= n, j++,

//optimize point j, coordinate i
for(i = 1, i <= f, i++,

//find direction of improvement, make initial replacement
store_vals = J(2,1,0);

store_vals[1,1] = X[j,i+1] - delta;
store_vals[2,1] = X[j,i+1] + delta;

X_cand1[j,i+1] = store_vals[1,1];
X_cand2[j,i+1] = store_vals[2,1];

//update interaction term of candidate matrices
X_cand1[j,4] = X_cand1[j,2]*X_cand1[j,3];
X_cand2[j,4] = X_cand2[j,2]*X_cand2[j,3];

flag = 0;

if(criterion_val(X_cand2, lambda, scale, lp_max) >= criterion_val(X_cand1,
lambda, scale, lp_max),

//replaces best coordinate into X
X[j,i+1] = X_cand2[j,i+1];
flag = 1,
X[j,i+1] = X_cand1[j,i+1];

);

//update model matrix
X[j,4] = X[j,2]*X[j,3];

//update candidate matrices
X_cand1[j,i+1] = X[j,i+1];
X_cand2[j,i+1] = X[j,i+1];

//update interaction term of candidate matrices
X_cand1[j,4] = X_cand1[j,2]*X_cand1[j,3];
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X_cand2[j,4] = X_cand2[j,2]*X_cand2[j,3];

improve = 1000;

if(flag == 1,

while(improve > 0,

Z_initial = criterion_val(X, lambda, scale, lp_max);

X[j,i+1] = X[j,i+1] + delta;

//update interaction coordinate
X[j,4] = X[j,2]*X[j,3];

//stop check for feasibility
if(X[j,i+1] > 1,
X[j,i+1] = 1;
flag = 2;
//update interaction coordinate
X[j,4] = X[j,2]*X[j,3];
improve = -1,
improve = criterion_val(X, lambda, scale, lp_max)-Z_initial;
);

),

while(improve > 0,
Z_initial = criterion_val(X, lambda, scale, lp_max);

X[j,i+1] = X[j,i+1] - delta;

//update interaction coordinate
X[j,4] = X[j,2]*X[j,3];

//stop check for feasibility
if(X[j,i+1] < -1,
X[j,i+1] = -1;
flag = 2;
//update interaction coordinate
X[j,4] = X[j,2]*X[j,3];
improve = -1;
improve = criterion_val(X, lambda, scale, lp_max)-Z_initial;
);

);

//set value to actual optimal coordinate
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if(flag == 1,
X[j,i+1] = X[j,i+1] - delta,
flag == 0,
X[j,i+1] = X[j,i+1] + delta;
); //end IF

//update interaction coordinate
X[j,4] = X[j,2]*X[j,3];

);

//update candidate matrices
X_cand1[j,i+1] = X[j,i+1];
X_cand2[j,i+1] = X[j,i+1];

//update interaction term of candidate matrices
X_cand1[j,4] = X_cand1[j,2]*X_cand1[j,3];
X_cand2[j,4] = X_cand2[j,2]*X_cand2[j,3];

)

);

convergence = criterion_val(X, lambda, scale, lp_max)-criterion_val(
X_current, lambda, scale, lp_max);

);

Z_current = criterion_val(X, lambda, scale, lp_max);

if(Z_current > Z_best,
X_best = X;
Z_best = Z_current
);

);

/****************************/
//PART 3: K-Pass Point Exchange//
/****************************/

//define candidate set
C = X_best;
X_PEA = X_best;

store_vals = J(1,n,0);

//set number of PE cycles w/value of K
K = 1;
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//K-Pass Point Exchange
for(l = 1, l<=K, l++,

for(j = 1, j <=n, j++,

//optimize row (point) j
for(i=1, i <= n, i++,
X_PEA[j,0] = C[i,0];
store_vals[i] = criterion_val(X_PEA, lambda, scale, lp_max);
);

X_best[j,0] = C[Loc Max(store_vals),0];
X_PEA[j,0] = X_best[j,0];

);
);

/****************************/
//OUTPUT//
/****************************/
as table(X_best);
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APPENDIX C

PARAMETER SETS FOR ROBUST DMP -OPTIMAL DESIGN STUDY
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C.1 Parameter Set for Robust DMP -Optimal Design Creation

β0 β1 β2 β0 β1 β2

0.235196 1.693886 1.084647 -0.44658 2.508028 0.706472
-0.4623 4.06073 1.017948 0.158406 3.902771 1.12015

-0.02395 4.892003 0.925021 0.826384 1.074975 0.580963
-0.71118 4.08233 0.556959 -0.94841 2.183921 1.300262
-0.63581 3.028928 1.140743 0.481252 1.898971 0.762102
0.195566 3.936117 1.257606 -0.30024 3.680996 0.576312
0.387921 4.97872 0.581342 -0.3372 1.018231 1.041765
-0.08288 2.786654 1.476906 -0.38912 4.126964 0.995587
0.699839 4.071851 0.939447 0.218024 3.117467 0.981682
-0.59562 1.648262 0.803959 0.289734 3.470721 0.953932
-0.11212 1.139722 0.883137 -0.70358 1.337518 0.500717
0.122523 4.728434 1.148501 0.925787 1.505506 0.943916
-0.33961 2.835342 0.833925 -0.0392 2.768391 1.490868
0.342105 2.528545 1.09869 -0.32307 4.181134 1.036226
0.498599 2.947217 1.265499 0.994863 1.575146 1.267535
0.421867 1.403616 0.622969 0.374306 3.925389 1.297518

-0.594 1.221567 1.062844 -0.8912 4.899966 0.953054
0.441108 3.055367 0.933921 0.698959 4.276264 0.593014
-0.20243 2.515835 1.403703 -0.12682 1.477163 0.559923
-0.70161 4.075445 1.267963 0.27128 1.234769 1.006315
-0.05694 2.641285 1.176301 -0.6612 4.125268 1.289849
0.688885 4.791929 0.549649 -0.69749 1.304829 0.887217
0.733205 4.158606 1.15926 -0.56547 4.658243 0.500277
-0.40437 1.15729 0.770525 0.465919 3.055999 1.295497
-0.59888 1.463734 0.883695 0.748599 2.55358 1.119004
0.772791 2.987201 1.40341 -0.8657 2.411086 1.011033
-0.02309 4.19163 0.7772 0.075563 3.185345 1.153544
0.184725 3.216093 1.230974 -0.94136 3.41653 1.113456
0.569842 1.536249 1.227263 0.059192 3.347826 0.834326
0.121757 1.053523 0.919024 0.317646 4.028766 0.733572
0.820055 1.566322 0.667019 0.27632 4.74453 0.600618
0.255708 2.921891 1.327281 -0.96402 1.901129 1.096714
0.285016 1.931018 1.303792 0.467476 4.841881 1.13905
-0.07877 1.736063 0.722935 -0.24871 4.851488 0.547996
0.835797 2.886225 0.662579 -0.48562 3.172545 0.593358

-0.6063 4.315353 0.931696 -0.41748 2.542791 1.373256
0.333882 2.638313 0.676555 -0.16789 2.916134 0.533272
-0.45054 1.55051 1.125007 0.377746 4.123676 0.912339
0.516828 3.757842 0.545553 0.354387 2.933581 0.904225
-0.15387 1.50927 1.280957 -0.81118 4.398756 1.19495
-0.57573 3.613577 0.837015 -0.80703 3.060506 1.215416
-0.38296 3.718639 0.764607 -0.68454 3.649981 1.203261
-0.52163 1.224079 1.030352 -0.43679 2.545266 1.07792
-0.86972 1.283832 0.798645 0.466768 2.592676 0.869787
-0.15065 2.262993 1.394277 0.073502 3.06434 1.27639
-0.5899 2.400975 1.152342 -0.74944 2.361922 0.876601

0.210721 2.312119 1.48715 -0.10373 3.20206 0.624355
-0.60933 3.311225 1.019628 -0.03695 2.112405 1.438344
-0.19374 2.925776 0.792661 0.826021 1.234711 0.995127
0.968026 1.711963 0.640488 0.684562 4.590801 1.288071
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C.2 Parameter Set for Robust DMP -Optimal Design Validation

β0 β1 β2 β0 β1 β2

0.162702 2.090028 0.814753 -0.46793 1.32297 1.096285
-0.76853 1.42351 1.449295 -0.23683 3.23565 1.30904
-0.45007 2.65309 0.547824 0.888944 1.307361 0.635252
0.958598 4.83382 1.464128 0.990651 4.656952 0.698461
0.610299 2.806468 1.405171 0.003209 2.240131 1.098781
0.015202 1.012337 0.957329 -0.4836 4.661544 1.298019
0.086492 4.543316 1.234511 0.817524 3.960314 0.824019
-0.23439 3.149925 1.450221 0.171624 4.99165 1.059096
-0.49976 3.799447 0.733425 0.932376 4.520087 1.238303
0.653043 3.7868 1.477642 0.669595 3.116454 0.796588
-0.15981 4.372185 1.492175 0.528075 4.017128 0.504927
0.514292 1.949356 1.119064 -0.38338 2.316363 0.750547
-0.02472 3.086975 0.877001 0.049618 2.49217 0.754143
-0.54155 4.669534 1.264742 -0.828 2.285089 0.970846
-0.69285 4.412615 1.387295 -0.00732 1.425584 0.841478
0.030813 2.117408 0.602761 0.732699 3.662541 0.867673
-0.59242 3.116412 0.950754 -0.08308 2.309687 0.595519
0.956099 2.533086 0.904305 -0.7395 3.337113 1.026998
-0.66716 1.669347 0.742461 0.084322 4.976284 0.559199
-0.14884 4.165445 0.539217 0.222802 2.352039 0.899927
-0.23049 1.927926 0.691681 0.350755 2.474787 1.159493
-0.13029 3.364065 0.831386 0.883378 1.256573 0.820379
-0.67691 1.913647 0.814841 0.827299 1.549434 1.190276
0.206803 3.938584 0.755941 0.391284 1.098513 0.551707
-0.18491 4.672441 0.844198 0.785435 2.183432 0.515926
-0.40227 2.303303 0.919475 0.032149 2.958915 1.144441
-0.06897 1.74316 0.942075 -0.26556 2.419449 1.250504
0.632274 4.58242 0.504412 0.249405 1.48252 0.810619
-0.58465 4.362132 0.849091 0.980058 1.72058 1.018685
-0.08433 4.921329 0.814473 -0.5698 3.622793 1.285999
0.085286 4.201745 0.993986 -0.83171 4.780982 1.487591
0.237145 4.664184 0.584948 0.801983 1.731309 1.078621
-0.11639 3.747349 0.579318 0.45769 3.4403 0.955467
-0.41699 4.757876 1.061617 0.896015 2.153468 1.023364
0.586799 1.937004 0.941381 -0.80327 1.174035 0.50997
0.346118 4.313012 0.636216 0.353801 4.984764 1.495879
-0.59294 3.530721 0.631435 0.819505 1.944454 0.595217
0.507564 2.272885 0.526722 0.737154 4.971926 1.188977
0.870561 2.154253 0.585291 -0.54252 3.764857 0.956185
0.10331 2.608515 0.754494 0.375539 1.826951 0.592741

-0.59137 1.187741 1.331684 0.92779 3.387664 1.434579
-0.6084 4.895589 1.056452 -0.55727 2.76129 1.099103
-0.5883 2.705976 0.683913 0.262717 1.45207 1.188725

0.931768 1.24873 1.077674 0.602306 2.423348 0.529544
-0.88782 3.24976 0.550679 -0.90423 2.592895 1.234608
0.197403 4.883651 1.178857 0.310501 4.673452 1.439146
-0.59885 2.953627 1.225704 0.63666 2.325501 0.69007
0.893192 2.883675 1.058728 0.091324 2.886465 0.67179
0.633682 4.335655 1.417743 -0.86441 3.154462 0.534525
-0.18215 2.89868 0.556881 0.179199 1.194065 1.12394
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