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ABSTRACT 

 

An orthotropic elasto-plastic damage material model (OEPDMM) suitable for impact 

simulations has been developed through a joint research project funded by the Federal 

Aviation Administration (FAA) and the National Aeronautics and Space Administration 

(NASA). Development of the model includes derivation of the theoretical details, 

implementation of the theory into LS-DYNA®, a commercially available nonlinear 

transient dynamic finite element code, as material model MAT 213, and verification and 

validation of the model. The material model is comprised of three major components: 

deformation, damage, and failure. The deformation sub-model is used to capture both linear 

and nonlinear deformations through a classical plasticity formulation. The damage sub-

model is used to account for the reduction of elastic stiffness of the material as the degree 

of plastic strain is increased. Finally, the failure sub-model is used to predict the onset of 

loss of load carrying capacity in the material. OEPDMM is driven completely by tabulated 

experimental data obtained through physically meaningful material characterization tests, 

through high fidelity virtual tests, or both. The tabulated data includes stress-strain curves 

at different temperatures and strain rates to drive the deformation sub-model, damage 

parameter-total strain curves to drive the damage sub-model, and the failure sub-model can 

be driven by the data required for different failure theories implemented in the computer 

code. The work presented herein focuses on the experiments used to obtain the data 

necessary to drive as well as validate the material model, development and implementation 

of the damage model, verification of the deformation and damage models through single 

element (SE) and multi-element (ME) finite element simulations, development and 

implementation of experimental procedure for modeling delamination, and finally 
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validation of the material model through low speed impact simulations and high speed 

impact simulations. 
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1   INTRODUCTION 

Composite materials are increasingly becoming ubiquitous in the design of structural 

systems used in aerospace, automotive, and other industries (Khaled et al. 2019a). These 

structural systems are often subjected to a variety of environmental and loading conditions. 

For some applications, impact events are among the most critical of loading conditions. 

Predicting the behavior of the system requires powerful numerical tools, such as finite 

elements. Under impact loads, composite structures typically experience deformation, 

damage, and failure. All three behavioral components influence the future response of the 

composite. Obtaining high-fidelity experimental data for use in a comprehensive finite 

element model is challenging but necessary to drive increasingly refined models.  

 

In the United States, several governmental agencies (including National Aeronautics and 

Space Administration, NASA and the Federal Aviation Administration, FAA) have 

recognized the importance of building a framework for composites system by forming a 

public–private consortium. A press release (Clark 2015) states that “NASA formed the 

consortium in support of the Advanced Composites Project, which is part of the Advanced 

Air Vehicles Program in the agency’s Aeronautics Research Mission Directorate. The 

project’s goal is to reduce product development and certification timelines by 30 percent 

for composites infused into aeronautics applications.”  A major reason for these challenges 

is the lack of mature material models that should be able to predict, with some degree of 

certainty, the deformation, damage and failure of composite systems (Hoffarth et al. 2017). 

Under a joint effort started by the FAA and then joined by NASA, George Mason 

University, GMU and Livermore Software Technology Corporation, LSTC, a new 
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orthotropic composite material model is being developed, which is driven entirely by 

experimental data and is suitable for impact analysis. The new model offers users more 

flexibility in defining how the material behaves since many of the input parameters are 

given as tabular input. The material model has provisions for representing strain-rate and 

temperature dependent deformation, quasi-static and room temperature (QS-RT) damaged 

behavior, and QS-RT failure. The three sub-models - deformation, damage, and failure, are 

driven completely by unique sets of tabulated experimental data. As such, high fidelity 

experimental data is paramount for properly verifying and validating the material model. 

 

One of the more popular commercial programs for impact modeling is LS-DYNA® (LSTC 

2018a), a nonlinear transient dynamic finite element package. The software package 

supports numerous material models for representing composites. Many of these material 

models require only linear elastic properties to predict deformation since the assumption is 

that the composite would fail in a sudden, brittle manner. Some require plasticity and 

fracture properties, presumably to compute damage-related parameters. Finally, there are 

a number of strength-related material values that are used with built-in failure models and 

element erosion.  

 

In this dissertation, the primary focus is on providing the theoretical and implementation 

details of the deformation and damage sub-models as well as the experimental techniques 

used to obtain data for the two sub-models. The theory and algorithm are implemented in 

LS-DYNA as MAT 213. Finite element verification studies are presented to provide the 

expected behavior of the material. Experimental techniques used for deriving cohesive 
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zone model parameters are presented with the intention of providing additional 

experimental data to enhance the predictive capabilities of OEPDMM. Finally, simulations 

of low/high velocity impact tests are compared with experimental data to highlight the 

efficacy of the proposed approach. 

 

1.1   Deformation Modeling Literature Review 

There has been extensive research dedicated to predicting the manner in which composite 

materials behave. Several approaches have been proposed ranging from mechanistic to 

phenomenological. The mechanistic models typically utilize a micromechanical approach 

(Aboudi et al. 2013; Paley and Aboudi 1992; Sun and Chen 1991; Sun and Vaidya 1996) 

where the investigative focus is understanding how the individual composite constituents 

contribute to the overall response of the composite material. OEPDMM utilizes more of a 

phenomenological approach wherein the behavior of each constituent material is not 

considered, but rather, the homogenized response of the composite is utilized. Both 

approaches have advantages and disadvantages. Mechanistic models may offer a better 

understanding of how the composite behaves at the micro-level but phenomenological 

models are typically more computationally efficient. OEPDMM is being developed with 

the intention of simulating large scale impact and crush events efficiently while providing 

enough freedom in the input to remain physically accurate. 

 

Several methodologies have been proposed for macroscale modeling of composite 

materials. The techniques can usually be separated into two categories: plasticity and 

continuum damage mechanics (CDM). The difference is in the way that nonlinear behavior 
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is handled at the element level within the context of finite element analysis (FEA). 

Plasticity based models attribute all nonlinear behavior to plastic flow of the material. Xie 

and Adams (Xie and Adams 1995) utilize a plasticity-based model to predict the behavior 

of unidirectional composites. Vaziri and co-workers (Vaziri et al. 1991) formulate a 

plasticity-based model for both unidirectional and woven composites. CDM based models 

assume the material behaves in a linear elastic fashion until failure at which time the 

material properties begin to degrade resulting in a softening. The element level softening 

would lead to global nonlinear behavior of the material. However, there are typically no 

provisions that handle permanent deformations that may be induced in the material. Liu 

and Zheng (Liu and Zheng 2008) use a CDM based approach in modeling unidirectional 

composites. There are models that utilize a combination of both plasticity and damage to 

some extent. Oller and co-workers (Oller et al. 1996) propose a model wherein each 

constituent in a composite is treated as developing both plasticity and damage and a mixing 

theory is used to amalgamate the response to produce the overall composite behavior. 

Donadon and co-workers (Donadon et al. 2008) propose a model where the response in the 

normal principal material directions are treated using a CDM approach while the shear 

behavior is treated as developing plasticity before failure and damage after a failure 

criterion has been satisfied. While the models listed have been shown to successfully 

simulate the behavior of a limited number of composite architectures, they currently are 

not available within commercial finite element packages. LS-DYNA offers various 

material models which are used to predict composite behavior. Table 1 presents a summary 

of the major composite material models in LS-DYNA. 
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Table 1. Composite Material Models Available in LS-DYNA 

Material Model Input Required to Drive the Model 

MAT22 (Chang and Chang 

1987a, 1987b) 

Orthotropic elastic material properties  , ,E G , 

tensile, compressive and shear strengths.  

MAT58 Orthotropic elastic planar stress-strain  ,E G  curve 

that can be rate dependent,  , damage, tensile, 

compressive and shear strength values. 

MAT158 Orthotropic elastic material properties  , ,E G , 

tensile, compressive and shear strengths, bulk 

modulus for viscoelastic behavior, shear relaxation 

modulus and shear decay constant, rate dependency. 

MAT161/162 (Yen 2012) Orthotropic elastic material properties  , ,E G , 

tensile, compressive and shear strengths, rate 

dependency. 

MAT219 (Forghani et al. 

2013)  

Orthotropic elastic material properties  , ,E G , 

damage-related strain values.  

MAT261 (Pinho et al. 2006) Orthotropic elastic material properties  , ,E G , 

fracture toughness values, tensile, compressive and 

shear strengths. 

MAT262 (Maimí et al. 2007a, 

2007b) 

Orthotropic elastic material properties  , ,E G , 

fracture toughness values, tensile, compressive and 

shear strengths, plasticity-related data for in-plane 

shear plasticity. 

 

In addition to the material models listed in Table 1, there are other material models, 

available in LS-DYNA, that enhance the modeling capabilities in small ways. MAT23 is 

similar to MAT22 but supports temperature dependency. Similarly, MAT54/55 are 
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enhanced versions of MAT22 with support for damage characterization and several failure 

criteria. MAT59 is similar to MAT22 but defines the failure modes that are a function of 

the element type. While the material models currently available in LS-DYNA each have 

attractive features, they also have deficiencies. Some of the models are limited to damage 

without plasticity being considered.  Those which do include some form of nonlinearity, 

consider it only in the shear behavior. MAT261 allows for in-plane tabulated shear 

behavior to be provided and the data is used in an elasto-plastic formulation. MAT262 

allows for a shear yield stress and tangent modulus to be defined which is used for pre-

failure elasto-plastic analysis. The yield strain and tangent modulus may be defined as a 

function of shear strain rate. Composite materials have been shown to exhibit dependence 

on temperature (Cao et al. 2011; Skourlis and McCullough 1993; Thomason and Yang 

2011) and strain rate (Gilat et al. 2002; Hsiao and Daniel 1998; Jacob et al. 2004; Shokrieh 

and Omidi 2009; Thiruppukuzhi and Sun 1998; Welsh and Harding 1985). Under impact 

events, composites have been shown to exhibit a localized rise in temperature (Johnston et 

al. 2017). The temperature rise leads to thermal softening of the composite. However, none 

of the models support both temperature and strain rate dependence. Many of the models 

utilize point wise input to drive predefined deformation behavior irrespective of the true 

behavior of the particular composite. Additionally, a subset of the models utilizes failure 

criteria that trigger softening and are tied to a particular composite architecture. MAT261 

and MAT262 are applicable only to unidirectional composites, MAT58 is applicable for 

both unidirectional composites and fabrics. MAT161/162 has provisions for both 

unidirectional and woven composites.  
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MAT_213 is being developed as a general orthotropic elasto-plastic damage failure 

material model. No assumptions about material behavior or architecture are made a priori 

as the input to the model is provided in the form of tabulated data. The deformation sub-

model that captures evolution of stress/strain, is governed by a classical plasticity 

formulation with stress-strain curves defined at various strain rate and temperature 

combinations. Both tension and compression stress-strain curves are provided 

independently for each of the orthogonal principal material directions (PMD), herein 

referred to as the 1, 2, and 3-directions respectively; shear stress-tensorial shear strain 

curves are provided for the orthogonal principal material planes (PMP), herein referred to 

as the 1-2, 2-3, and 1-3 planes respectively; and off-axis tension or compression stress-

strain curves defined in the 1-2, 2-3, and 1-3 PMP. Poisson’s ratio in all three PMP as well 

as coefficients used for plastic strain evolution are provided as point wise data. All of the 

required input is obtained directly from physically meaningful, coupon level testing or 

virtual testing. Theoretical details are provided in Chapter 2. 

 

In order to verify and validate the proposed model, high fidelity experimental data must be 

obtained. The T800S/F3900 carbon fiber/epoxy resin unidirectional composite system, 

manufactured by Toray Composite Materials America1 (Toray), was used to illustrate how 

the required input data is obtained for quasi-static, room temperature (QS-RT) behavior. 

This material was selected since FAA had data from previous research (Raju and Acosta 

2010) and it is close to tape used in the design of aircraft fuselage. Toray describes the 

                                                

1 https://www.toraycma.com/ 
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composite as one with an intermediate modulus, high tensile strength fiber, developed as a 

cost-effective alternative to T800H. Obtaining reliable experimental data offers a new set 

of challenges apart from the theoretical derivation. Many of the difficulties in testing 

unidirectional composites (Fig. 1) have been well documented. Performing a simple 

tension test on a unidirectional (UD) composite along the direction of the fibers (1-

direction) is difficult as these composites are very strong and brittle with large stiffness and 

failure stress values (Adams 2013). Applying a proper gripping force to the test specimen 

becomes a challenge. If the gripping force is too high, the specimen may be crushed, and 

damage will be induced in the specimen even before the experiment begins. If the gripping 

force is not high enough, the specimen may slip during the experiment. There are many 

ways of mitigating this issue including proper specimen tabbing using a more compliant 

material (Adams and Adams 2002) or through thickness tapering of the specimen (Adams 

2013) as a means of reducing the required force to induce proper failure in the specimen. 

Similarly, obtaining consistent results from 1-direction compression tests poses challenges 

due to the various modes of failure that the composite may experience (Schultheisz and 

Waas 1996; Waas and Schultheisz 1996). Obtaining experimental data in the through-

thickness direction (3-direction) of the composite is often limited by the available 

composite panels but is extremely important in the context of impact applications. 

Composite laminates are typically thin providing little material for the through-thickness 

tests. Often, transverse isotropy of the composite can be used as the in-plane transverse (2-

direction) and the out of plane transverse (3-direction) properties may be assumed to be 

identical. However, the reality is that experimental results show that the material behavior 

does not satisfy the assumptions of transverse isotropy that is consistent with the actual 
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fiber packing in the lamina (Fig. 2). The process of manufacturing the composite laminate 

leads to inherent weaknesses present at the lamina boundary. The failure may be caused by 

interlaminar delamination in the 3-direction (Kachanov 1977; Luo and Tong 2009; Wilkins 

et al. 1982) while the failure mode in the 2-direction may be caused by a different 

mechanism such as the formation of shear bands in the matrix parallel to the plane of the 

fibers (González and LLorca 2007) or failure of the fiber-matrix interface. The differing 

properties along material directions may influence the results when performing validation 

testing as the effect of the ply boundary properties may or may not be properly captured in 

finite element models. 

 

 

 

Fig. 1. Principal Material Directions 

(PMD) for a Unidirectional Composite 

 
Fig. 2. Principal Material Directions 

Shown in the Optical Microscopy Image 

for the T800S/F3900 Composite (the 

Unidirectional Fibers Are Oriented in the 

1-direction) 

 

The transverse isotropy assumptions are not sufficient to build a proper model and through-

thickness tests must be carried out since they are needed to complete most finite element 

models (Broughton and Sims 1994). Many finite element models for composites are shell 
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element based since the composites are thin and are only subjected to in-plane loads locally.  

However, in impact applications, the composites are typically thicker and in general the 

through-thickness response is important. Little research has been done on developing 

proper methods to obtain through thickness properties of UD composites. Broughton and 

co-workers (Broughton et al. 1990) performed a suite of tests on a variety of composites 

including a UD carbon-fiber reinforced polymer. The test suite included tension, 

compression, and shear tests. Tension and compression tests were performed using a 

variety of block geometries including the DERA waisted specimen (Ferguson et al. 1998) 

and parallel sided block specimens. While the results obtained by the block specimens were 

promising, the advantages provided by waisted specimens are difficult to estimate since 

the specimens are expensive and difficult to machine. If machining is not done properly, 

eccentricities may be induced in the specimen and the results obtained may not be 

indicative of the material properties. Parallel sided block specimens are easier to machine. 

However, difficulties may arise when aligning the specimen in the testing frame. 

Broughton and co-workers (Broughton et al. 1990) also used a variety of test specimens to 

obtain the through thickness shear properties, including the Iosipescu V-notched specimen 

and the double notched shear specimen presented in ASTM D3846 (D20 Committee 

2015a). The double notched shear specimen may lead to unwanted transverse stresses and 

does not always yield a state of pure shear.  

 

The development of test and analysis methods to obtain the in-plane shear properties of 

UD composites has been the subject of an extensive amount of research. Amongst 

competing techniques, the Iosipescu test is the most popular since it has been shown to 
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induce a state of pure shear in the test specimen. Walrath and Adams (Walrath and Adams 

1983) adapted the Iosipescu shear test to measure the in-plane shear properties of UD 

composites. However, the V-notched test specimen is prone to cracks emanating from the 

notch roots as well as specimen sliding, bending, and out of plane twisting. Research has 

been done in an attempt to modify the Iosipescu shear fixture to reduce the effects of the 

unwanted deformations (Hawong et al. 2004; Melin and Neumeister 2006). Research has 

also been done to improve the specimen geometry, specifically the notch geometry 

(Neumeister and Melin 2003). The conclusion is typically that the notch geometry is 

dependent on the degree of the in-plane isotropy of the composite. The Iosipescu shear test 

is also not effective at yielding a shear failure stress, when the stress is computed based on 

the cross-sectional area between the notch tips. Research has been done where the finite 

element method (FEM) and traditional failure theories have been used to perform an 

inverse analysis in order to determine the shear strength of the composite (Odegard and 

Kumosa 2000; Pierron and Vautrin 1998). Typically, the point where the cracks initiate at 

the notch root is used as the failure point in the finite element simulations. Others have 

compared the torsion tube test and Iosipescu shear test (Broughton et al. 1990; Swanson et 

al. 1985) and have shown that the point of failure in the torsion tube test and the point 

where cracks initiate at the notch roots of the Iosipescu shear specimens coincide. There 

are alternate shear test procedures. The two and three rail shear tests (D30 Committee 

2015b) are also used to determine the in-plane shear properties of UD composites. The 

two-rail shear test is similar to the Iosipescu test in that it attempts to induce a state of pure 

shear in a single central region of the specimen through either opposing tensile or 

compressive forces. The major difference is the manner in which the opposing forces are 
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applied. The standard Iosipescu test applies forces directly to the top and bottom edges of 

the specimen whereas the two-rail shear test clamps the face of the specimen using a 

fastening system and the tensile or compressive forces are applied through a shear load 

transfer. There has also been extensive research on the optimal specimen geometry for the 

two-rail shear test (Adams et al. 2003; Hussain and Adams 2004). The three-rail shear test 

loads the specimen through a series of fasteners similar to the two-rail shear test. However, 

the test apparatus induces two zones of pure shear in the specimen. Additionally, there has 

been comparatively less work done on the specimen geometries and a rectangular specimen 

is typically used to conduct the three-rail shear test experiments. 

 

1.2   Damage Modeling Literature Review 

As previously stated, under impact loads, composite structures experience deformation, 

damage, and failure at both the micro and macro scales. All three components influence 

the future response of the composite. Damage typically effects the residual stiffness of the 

composite. Though damage is an important factor when attempting to predict the response 

of composites under impact, there is often a lack of available damage-related experimental 

data for a given composite and analysts rely on empirical damage evolution models to 

predict the response.  

 

Damage in fiber reinforced-polymer matrix composites (FRP) is typically a phenomenon 

observed at the microscale which manifests itself as a degradation of macroscopic 

properties. Typically, damage does not result in a complete loss of load carrying capacity 

in the composite. Rather, it results in a reduction of load-carrying properties as the effective 
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load transfer mechanisms are altered. Damage can be realized in various ways in composite 

materials including fiber fracture, matrix cracking, and fiber-matrix debonding (Ogin et al. 

2016). Damage is often quantified as a reduction of apparent elastic stiffness of the 

material.  

 

This phenomenon is especially important when simulating impact events as parts of the 

structure may undergo loading/reloading and unloading multiple times during the event. 

Extensive research has been performed investigating the effect of impact on the residual 

structure and properties of composite laminates (Choi et al. 1991; Joshi and Sun 1987; 

Masters 1987; Uyaner and Kara 2007; Wu and Springer 1988; Yashiro et al. 2013). After 

being impacted, structural components begin to vibrate. The residual stiffness of the 

material dictates the way stress waves propagate after the structure is impacted. Shim and 

Yang (Shim and Yang 2005) and Kim and co-workers (Kim et al. 1993) have investigated 

the effects of impact damage on the residual properties of the structure, including stiffness 

and strength, and have found that the macroscopic properties degrade more rapidly as 

higher impact energies are imparted on the composite material.  

 

Often, continuum damage models are used in conjunction with failure theories to predict 

the nonlinear response of composite materials. The continuum damage approach is based 

on the work of Kachanov (1958) wherein he considers an undamaged material state which 

carries an “effective stress” and compares this configuration with the damaged material 

state which carries the “true stress”. Anisotropic damage behavior, where different 

components of the compliance/stiffness tensor are degraded by their own independent 
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variables, is typically considered for use in composite models (Maire and Chaboche 1997; 

Matzenmiller et al. 1995). A common feature of these models is that all of the nonlinearity 

is attributed to damage and plasticity is typically ignored. Additionally, nonlinear 

composite models often utilize empirical damage evolution laws to predict how damage 

will grow as a function of a chosen state variable (stress, plastic strain, crack density etc.). 

Currently, many of the composite models available in commercial programs, such as LS-

DYNA, employ this approach including some of the models presented in Table 1. Chang 

and Chang (Chang and Chang 1987a, 1987b) use a model in which both fiber and matrix 

failure criteria are used to reduce elastic properties for nonlinear progressive failure 

modeling. Yen (2012) presents a model wherein a damage surface is generated by utilizing 

different failure modes. The elastic stiffness tensor is degraded based on the damage 

surface which allows for the nonlinear response to be captured. This model also allows for 

prescribed coupling between certain damage parameters. Forghani and co-workers 

(Forghani et al. 2013) define equivalent strains for the initiation of fiber and matrix damage 

modes respectively and compare the values against a damage initiation strain. Damage 

parameters are calculated based on equivalent strain, initiation strain, and saturation strain 

utilizing a predefined damage evolution law. The damage parameters are then used to scale 

down the stress. Maimi and co-workers (Maimí et al. 2007a, 2007b) define four damage 

activation functions, based on separate failure criteria for fiber and matrix mechanisms, 

which define an initial elastic domain. The damage evolution functions are then constrained 

by the Karush-Kuhn-Tucker (KKT) optimality conditions (Karush 1939; Kuhn and Tucker 

1951), similar to a plasticity model.  
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Damage may be characterized through a series of cyclic loading experiments. This is not 

to be mistaken with fatigue, where the specimen is cyclically loaded to a single pre-

specified level of load or deformation and stiffness reduction is caused by a different 

mechanism (Philippidis and Vassilopoulos 2001). The stiffness reduction being measured, 

in this research, is caused by monotonic loading. Extensive research has been done on this 

subject including identifying damage mechanisms, developing experimental techniques, 

and processing the resulting experimental data. Daniel and Lee (Daniel and Lee 1990) 

investigate damage growth in composites under monotonic loading by measuring crack 

density in cross-ply laminates at various applied stress levels. Mirzaali and co-workers 

(Mirzaali et al. 2015) utilize an experimental procedure involving conditioning cycles to 

investigate damage in osteonal bone. Medina and co-workers (Medina et al. 2014) have 

experimentally investigated damage evolution during in-plane shear tests as a function of 

the composite architecture, including unidirectional laminates. The cyclic shear tests 

showed that the shear modulus reduces as much as 50% as plastic strain increases. 

Additionally, the stress-strain curves exhibit large hysteretic loops which are also 

indicative of increasing damage. Walter and co-workers (Walter et al. 2010) performed 

cyclic loading tests of short beams and observed that the loading and unloading cycles had 

minimal effect on the monotonic response of the material implying that the monotonic 

stress-strain curve envelopes the cyclic loading curve. 

 

The framework of OEPDMM considers both stiffness reduction, through the damage sub-

model, and plastic deformation, through the deformation sub-model. Consistent with the 

deformation sub-model, the damage sub-model is driven completely by tabulated 
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experimental data. The damage law allows for both uncoupled and coupled damage 

parameters to be defined. Uncoupled damage signifies that damage is induced in a PMD 

or PMP and the elastic stiffness is reduced in the same PMD or PMP. On the other hand, 

coupled damage indicates that when damage is induced in a PMD or PMP, the elastic 

stiffness is reduced in a different PMD or PMP. This is true for both shear and normal 

loading. The damage parameters are obtained through a series of cyclic loading 

experiments designed to induce damage in a given PMD or PMP and then interrogate the 

effects on the same or different PMD or PMP. Allowing full uncoupled and coupled 

damage yields a general formulation that can be tailored for any composite. The damage 

parameters are denoted as kl

ijd  indicating damage has been induced in direction ij and the 

reduction of stiffness has manifested in direction kl. In addition, the model does not assume 

that the tensile and compressive behaviors are the same and accounts for tension-

compression asymmetry. Since the model is driven by tabulated data in the form of 

damage-total strain curves, arbitrary damage evolution laws are permitted offering more 

flexibility than the previously discussed approaches. 

 

1.3   Failure Modeling Literature Review 

Though the failure sub-model within OEPDMM is not presented in detail within this 

document, for the purpose of completeness, failure modeling is briefly discussed. Often, 

the terms damage and failure are used interchangeably within the context of finite element 

analysis. Within OEPDMM, damage refers to degradation of elastic properties, while 

failure refers to complete loss of load carrying capacity and results in the numerical 

deletion or erosion of an element from the model. Failure of composites has been 
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investigated at both the microscale and the macroscale. At the microscale, the failure of a 

composite structure is attributed to a particular failure mechanism of one of the 

constituents. Jelf and Fleck (Jelf and Fleck 1992) have examined various composite failure 

mechanisms that are prominent in composites. The mechanisms include fiber failure, 

elastic microbuckling, matrix failure, and plastic microbuckling.  Ha and coworkers (Ha et 

al. 2008) have developed a micromechanical failure model which is capable of predicting 

specific failure modes for a variety of composite systems and loading conditions. At the 

macroscale, failure is typically predicted using strain and stress ratios. The Tsai-Wu failure 

criterion (Tsai and Wu 1971) is a quadratic failure criterion which utilizes stress to strength 

ratios with full stress interaction to predict the failure of composites. Recently, there has 

been a concerted effort to identify strengths and weaknesses of various proposed methods 

of predicting failure in polymer matrix composites. The effort is known formally as the 

World-Wide Failure Exercise and has recently completed its third iteration (Hinton et al. 

2004; Hinton and Kaddour 2012; Kaddour et al. 2013). While the exercise has helped refine 

some of the failure models thought to be completely mature, it has also shown that there is 

much to be done in the field of composite failure. 

 

Within OEPDMM, multiple failure theories are currently being implemented including a 

tabulated failure approach wherein a stress based failure surface can be supplied by the 

user (Goldberg et al. 2018). In the tabulated approach, no assumptions are made as to the 

shape of the surface or architecture of the composite. The tabulated input may be derived 

directly from physical experimentation, however, this process may prove to be 

cumbersome. Thus virtual testing can be employed as a means by which the required data 
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is obtained (Harrington et al. 2017). To date, the required physical/virtual testing to 

generate the failure surface has not been performed. The proposed approach is currently in 

its infancy and is a focus of future work (Shyamsunder et al. 2019). 

 

1.4   Cohesive Zone Modeling Literature Review 

While composites are often referred to as materials, they are in fact complex structures. 

Being comprised of individual constituents and interfaces makes prediction of where and 

how failure occurs, a difficult task. Several failure theories which attempt to describe 

possible failure modes in composite laminae have been proposed, a subset of which have 

been outlined in Section 1.3. The researchers often use stress, strain, or energy relations to 

predict how a lamina will fail. Often, these failure models do not account for the laminated 

nature of some composite structures, e.g. unidirectional composites. Reiner and Vaziri 

(2017) provide an overview of popular techniques used in modeling composite behavior 

including damage and failure. They discuss techniques to predict damage initiation and 

evolution at various spatial scales using both continuum and discrete modeling approaches. 

The third worldwide failure exercise (WWFE3) (Kaddour et al. 2013) has recently been 

completed and was focused on predicting and analyzing damage mechanisms, including 

delamination, in composites. Composite materials are most often used as laminates in 

practice to compensate for intrinsic weaknesses in the composite architecture, e.g. large 

degrees of anisotropy present in unidirectional composites. The interface where two 

composite laminae are bonded is inherently weaker than the rest of the composite structure 

making delamination a critical failure mode since the overall load carrying capacity of the 

structure is affected while the laminae may remain fully intact.  
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Delamination damage may develop in composite laminates involved in impact events 

without any external signs being exhibited.  Research conducted by Choi and co-workers 

(Choi et al. 1991) showed that there exists an energy threshold above which damage is 

likely to occur. Their forensic imaging technique indicated that the damage threshold does 

not necessarily coincide with observable exterior damage. Cantwell and Morton (1989) 

performed both low and high velocity impacts on carbon fiber reinforced polymer 

laminates of varying stacking sequences and thicknesses and provided micrographs 

showing significant delamination without complete perforation of the laminate. They also 

showed that the specimens subjected to low velocity impact, and subsequently tested in 

tension, exhibited a strength reduction of up to 30% prior to perforation. Research 

conducted by Finn and co-workers (Finn et al. 1993) showed delamination of various 

composite laminates under relatively low impact energies. Sun and Hallett (2017) 

investigated the delamination of single-ply laminates and blocked-ply laminates subjected 

to low velocity impact. Their results showed delamination developing between all ply 

interfaces at impact energies between 10 J and 16 J. Sun and Hallett (2018) performed 

compression after impact (CAI) experiments on two types of composite laminates and the 

results showed a reduction in strength of up to 70%. In addition to strength reduction under 

static, monotonic loading, Clark (1989) and Jones and co-workers (Jones et al. 1988) also 

showed the strength continues to reduce under fatigue loading. Aircraft structures 

experience a wide variety of fatigue loading conditions throughout their lifetime including 

pressurizing and depressurizing that affect the fuselage, wings, etc. The wide array of 
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experimental results indicate that delamination must be accounted for in predictive models 

of composite structures. 

 

Since delamination is essentially the propagation of a crack through a medium, fracture 

mechanics becomes an attractive approach to describe the phenomena. While the 

assumptions governing linear elastic fracture mechanics (LEFM) (Griffith 1920; Irwin 

1957) are easily violated by many loading conditions and materials, the concept of cohesive 

fracture mechanics, first introduced by Dugdale (1960) and Barenblatt (1962) separately, 

is more easily adapted to delamination since it allows for nonlinear and progressive failure 

of the material. The concepts of cohesive fracture mechanics have been widely used in 

modeling the interfaces present in composite materials within the framework of finite 

element (FE) analysis using cohesive zone models (CZM) (Caner et al. 2011; Chandra 

2002; Šmilauer et al. 2011). CZM allow the analyst to represent the interface as a 

component within the composite laminate. The constitutive relation governing the CZM is 

in the form of a traction-separation law shown in Fig. 3 where max  is the maximum 

allowable traction, 0  is the separation when softening begins, f  is the separation when 

the material ultimately fails, and k is the initial penalty stiffness. 
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Fig. 3. General Traction Separation Law Used in CZM 

 

Extensive research has been performed on devising new cohesive zone laws and as well as 

incorporating CZM in the analysis of composites. One major advantage of utilizing CZM 

to model delamination instead of other techniques like virtual crack closure technique 

(VCCT), is that no initial flaw is required. In other words, no knowledge of where 

delamination is initiated is required a priori (Elices et al. 2002; Krueger et al. 2013). 

However, the locations where delamination may potentially occur, must be modeled using 

cohesive zone elements (CZE). Borg and co-workers (Borg et al. 2004) devised a 

delamination model for shell elements that utilizes a penalty contact formulation for tying 

shells together and a cohesive zone model which accounts for degradation of adhesive 

forces. The degradation model utilizes both force and energy measures. Camanho and co-

workers (Camanho et al. 2003) developed a decohesion element enhancing the modeling 

of mixed mode delamination where a quadratic traction interaction law is used to predict 
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when softening of the interface would start under mixed mode fracture conditions. 

Elmarakbi and co-workers (Elmarakbi et al. 2009) devised an adaptive CZM scheme in 

which a bilinear traction separation law was utilized that changes depending on the state of 

the deformed cohesive zone element (CZE). The adaptive nature resulted in a more stable 

response and avoided the elastic snapback phenomenon often encountered in simulations 

using CZM. While a bilinear traction-separation law is often used to describe the cohesive 

zone behavior because of its simplicity, trilinear laws are also employed because these laws 

can better capture the effects of fiber bridging that show an increase in critical energy 

release rate as the crack propagates (Heidari-Rarani et al. 2013; Li et al. 2005). One 

shortcoming of many of the traction-separation laws is that they use a pre-determined shape 

of the constitutive behavior despite how the material may actually behave (Li et al. 2005; 

Tsouvalis and Anyfantis 2011). 

 

Under impact events, delamination rarely falls into a pure fracture mode (i.e. Mode I or 

Mode II). Rather, the delamination is likely caused by some combination of the two 

(Benzeggagh and Kenane 1996). The mixed mode interaction theories are driven by a set 

of Mode I and Mode II CZM parameters. The double cantilever beam (DCB) test has been 

employed by many researchers to characterize Mode I behavior (Gillespie Jr. et al. 1986a; 

Johnson and Mangalgiri 1987; Martin and Murri 1988; Prel et al. 1989; Wilkins 1981) 

while the end notched flexure (ENF) test has been used to characterize Mode II behavior 

(Gillespie Jr. et al. 1986b; Martin and Murri 1988; Prel et al. 1989; Russell and Street 

1985). Obtaining parameters to drive CZM can be achieved through experimental 

techniques, numerical calibration, or a combination of both. While the Mode I and Mode 
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II critical energy release rates ( CG ) can typically be computed directly from the 

experimental results of the DCB and  ENF tests using elastic beam theory (Hashemi et al. 

1990), the remaining parameters shown in Fig. 3 are more difficult to obtain analytically 

and are typically determined by calibration of FE models with experimental data. Some 

researchers have streamlined the process of obtaining CZM parameters either through 

novel analytical techniques (Arrese et al. 2017), through design of experiments and 

optimization methods (Lee et al. 2010), or through inverse solution techniques (Ortega et 

al. 2016). However, numerical calibration of the CZM model may lead to a non-unique set 

of parameters that may need to be retuned depending on the loading conditions the 

composite is subjected to. While researchers have used experimental data to completely 

derive the Traction Separation Law (TSL) for a given composite system or interface (Fuchs 

and Major 2011; van der Vossen and Makeev 2018; Zhu et al. 2009), the developed 

relationship is used in verification rather than validation simulations.  

 

1.5   Dissertation Objectives 

OEPDMM is currently being developed as a generalized orthotropic composite tabulated 

plasticity damage material model. The genesis of OEPDMM comes from a need for a 

robust model that can be used for simulating a wide array of loading conditions common 

in aerospace structures, such as impact and crush. OEPDMM offers flexibility to the 

analyst as all of the required input is provided in the form of tabulated data. This input data 

can be generated via laboratory experiments or via virtual testing (Harrington et al. 2017). 

OEPDMM is also versatile since it allows for the analyst to include many effects which 

drive composite behavior in the simulation, e.g. plasticity, damage, failure, tension-
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compression asymmetry, strain rate dependent deformation, and temperature dependent 

deformation. This dissertation focuses on the continuing development of MAT 213. The 

primary objectives are presented below. 

1. Use on the T800S/F3900 unidirectional carbon fiber/epoxy resin composite system 

to illustrate OEPDMM features. The detailed study includes characterizing the 

material under quasi-static and room temperature conditions to obtain the necessary 

data required to drive the deformation, damage and failure sub-models. Monotonic 

tension, compression, and shear tests are performed to obtain the required data for 

the deformation and failure models while cyclic loading tests are performed 

illustrating how both uncoupled and coupled damage parameters are obtained for 

the semi-coupled damage model.  

2. Provide the techniques used to extract the input from the experimental data 

necessary to run the material model. 

3. Provide theoretical and implementation details for the orthotropic, semi-coupled 

damage model and illustrate how the damage model is incorporated into MAT 213. 

4. Experimentally characterize the fracture behavior of the T800/F3900 composite 

and utilize cohesive zone modeling in conjunction with MAT 213 to enhance the 

predictive capabilities of the material model. 

5. Perform verification testing with real experimental data to verify the accuracy of 

the implemented material model. 

6. Perform validation testing in the form of plate low and high-velocity impact 

analysis to highlight the predictive capabilities of the developed approach. 
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2   DEFORMATION SUB-MODEL 

Within OEPDMM, the deformation sub-model handles the evolution of stresses and strains 

in both the elastic and inelastic regimes. The material behavior is captured through a 

classical plasticity formulation with non-associative flow which utilizes fully tabulated 

stress-strain data in the principal material directions (PMD) and principal material planes 

(PMP) of the material to drive hardening behavior. This section provides theoretical details 

of the deformation sub-model, the experimental techniques used to derive the required 

input, and the results of a case study using the T800S/F3900 carbon fiber/epoxy resin 

unidirectional composite system manufactured by Toray. 

  

2.1   Theoretical Details 

In OEPDMM, stresses are assumed to be driven completely by elastic strains. The basic 

constitutive relationship can be written in rate form by linearly decomposing the total strain 

rate into elastic and plastic components as follows 

 

    : :e  t p
σ C ε C ε ε   2.1 

 

where σ is the Cauchy stress rate tensor, t
ε is the total strain rate tensor, p

ε is the plastic 

strain rate tensor, e
ε is the elastic strain rate tensor, and C is the orthotropic elastic stiffness 

tensor shown below in Voigt notation. 
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where the subscripts 1-2-3 refer to the orthogonal PMD of the orthotropic material and the 

superscripts T/C indicate tension and compression respectively. Depending on the sign of 

the stress at the current instance of time during the simulation, the appropriate Young’s 

modulus from the tabulated input curves are chosen for use in the analysis.  The quadratic 

yield function takes a form similar to the Tsai-Wu failure criteria (Tsai and Wu 1971) and 

governs anisotropic yield stress evolution in the composite. 
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where the value of a is taken as -1 such that a negative value of ( )f σ  indicates an elastic 

state and a positive value indicates a plastic state. The yield function includes linear terms 

corresponding to the PMD resulting in the ability to distinguish between a tensile and 

compressive state of loading. The yield function coefficients corresponding to stresses 

solely in the PMD or PMP, iiF  and 
iF , are a function of the yield stresses, the stress 

required to initiate plastic flow in the material at a given time instance, and are thus treated 

as variable due to hardening that may occur.  
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where the superscripts T and C refer to tension and compression respectively allowing 

OEPDMM to handle asymmetric yield surface evolution (e.g. different behavior in tension 

and compression). The form of each of the coefficients is a result of assuming a state of 

uniaxial stress in a given PMD or PMP and solving for the unique set of values which 

satisfy the yield function. The full derivation can be found in Tsai and Wu’s original paper 

(Tsai and Wu 1971). The ability to distinguish between tension and compression in the 

PMD is a desirable characteristic not found in other theories of plastic flow in anisotropic 

materials such as criterion proposed by Hill (1948) and later modified by Azzi and Tsai 

(1965). The interaction terms, ijF , shown in Eq. 2.3, are derived from experimental data 
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wherein a multiaxial state of stress is induced in the material. While this process typically 

involves biaxial tension or compression tests, a similar effect can be achieved by 

performing uniaxial tension or compression experiments where the loading axis makes a 

non-zero angle with a given PMD, referred to as off-axis tension/compression tests. The 

following procedure shows how the values of ijF  are determined from off-axis tests. Fig. 

4 shows a specimen where the PMD, shown in the 1-2 plane as an example, are rotated at 

an arbitrary angle from the longitudinal axis. A stress induced along the X-axis is denoted 

as 
x .  

 

 
Fig. 4. Off-axis Tension/Compression Specimen in the 1-2 Plane 

 

Assuming only tensile 
x  is induced in the material, the components of stress in the 

respective PMD can be obtained through a stress transformation 
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The yield function can be rewritten in terms of the transformed stresses as 
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By assuming a state under which the material has yielded, the interaction term, 12F , can 

be solved for as  
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For example, by assuming a compressive state of stress, the linear terms are affected, and 

the resulting expression takes the following form: 
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A similar procedure can be followed to determine 13F  and 23F  respectively. Since the 

values of the interaction terms depend on the other coefficients, iiF  and 
iF , they too are 

treated as variables. While the values of ijF  may be determined directly from experimental 

data, the values must also ensure convexity of the yield function. Tsai and Wu (1971) 
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proposed constraints on the values of the yield function coefficients, ensuring convexity 

and uniqueness of  f σ  , which take the following form 

 

 
2 0ii jj ijF F F    2.9 

 

where repeating indices do not imply a summation. Eq. 2.9 also implies  

 

 0iiF    2.10 

 

By rearranging Eq. 2.9, the values of ijF  are restricted to 

 

 1ij ii jjF F F where       2.11 

 

Within the context of OEPDMM, if the experimental data, Eq. 2.7 and Eq. 2.8, do not 

satisfy the constraints set forth in Eq. 2.9, a convex correction is performed based on Eq. 

2.11 to ensure numerical stability. In the current implementation, 1
2

    in Eq. 2.11.  

 

Often, the yield function,  f σ ,  is used not only to handle hardening of the material, but 

also the evolution of plastic strains. The plastic strain increment is typically assumed to be 

proportional to the stress gradient of the yield function for a given state of stress. The 
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resulting expression is known as an associated flow rule (Bland 1957; Drucker 1956; 

Ilyushin 1961; Prager 1947) and takes the following form 

 

 p f
d d





ε

σ
  2.12 

 

where d  is the scalar plastic multiplier increment and 
f

σ
 is the stress gradient of the 

yield function, a rank two tensor. Using an associated flow rule is not always desirable 

since the resulting equations may not be representative of the true behavior of the material 

(Hoffarth et al. 2017; Lubarda et al. 1996). Composites may exhibit varying degrees of 

plastic anisotropy, and more control over the plastic strain evolution is required, which may 

not be offered by the yield function. In such a case, a separate plastic potential function is 

introduced to separately handle the evolution of plastic strains. Eq. 2.13 shows a general 

quadratic function used as the plastic potential function in OEPDMM. 
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The non-associated flow rule used in OEPDMM is then written as 

 

 p h
d d
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σ
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where 
h

σ
 is the stress gradient of the plastic potential function, a rank two tensor. The 

values of ijH , herein referred to as the flow rule coefficients, in Eq. 2.13 must also conform 

to similar constraints governing the yield function coefficients. In order to ensure h is a 

convex function, necessary to ensure a unique solution to the problem, Eq. 2.13 must have 

a positive semi-definite Hessian matrix. This condition leads to the following set of 

constraints imposed on the elements of the coefficient matrix: 

 

 

2 0

0

ii jj ij

ii

H H H

H

 


  2.15 

 

where repeating indices do not imply a summation. The yield function coefficients and the 

flow rule coefficients are derived from experimental data independently. Additionally, 

whereas the yield function coefficients evolve during loading, the flow rule coefficients are 

assumed to remain constant.  

 

The evolution of the yield stresses in the yield function, Eq. 2.4, is governed by tabulated 

input provided in the form of stress-total strain curves in the PMD and PMP. Specifically, 

tension and compression curves in the 1, 2, and 3 directions respectively; shear curves in 

the 1-2, 2-3, and 1-3 planes respectively; and off-axis tension or compression curves in the 

1-2, 2-3, and 1-3 planes respectively. These curves can be supplied to MAT 213 at various 

total strain rates and temperatures. The curves are utilized in lieu of a predefined hardening 

law employed by other constitutive models to control yield surface evolution. Each of the 
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stress-total strain curves is internally converted to stress-effective plastic strain. This 

conversion offers a convenient means of tracking the individual yield stresses through a 

global scalar parameter. The conversion is done by utilizing the principle of equivalent 

plastic work (Berg 1972), shown below. 

 

 p p p

ij ij e edW d d       2.16 

 

The principle of equivalent plastic essentially states that there exists an equivalent scalar 

effective stress, 
e ,  and scalar effective plastic strain increment, p

ed , whose product is 

always equivalent to the scalar plastic work increment, pdW , which is the result of fully 

contracting the stress tensor, σ , with the incremental plastic strain tensor, pdε .  Using the 

flow rule, Eq. 2.14, the plastic work increment can be written as 
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By utilizing the expanded form of the plastic potential function, Eq. 2.13, Eq. 2.17 can be 

reduced to 

 

 p p

ij ijdW d hd      2.18 

 

By assuming that the value of the plastic potential function, h, is the effective stress, the 

value of the incremental plastic multiplier, d , must then be equivalent to the effective 

plastic strain increment, p

ed . The value of d  can then be written as follows 

 

 

p
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    2.19 

 

In the case of monotonic loading, Eq. 2.19 is integrable and results in 
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Eq. 2.20 serves as the basis for converting input stress-total strain curves to stress-effective 

plastic strain which provide a convenient means of tracking the yield surface growth in all 

PMD based on a single global scalar value,  . An example of how the 1-direction stress-

total strain input curve is converted into stress-effective plastic strain is shown in Eq. 2.21

. 
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Eq. 2.21 assumes the input stress-total strain curve in the 1-direction is the result of a 

uniaxial stress induced in the 1-direction, thereby reducing the effective stress, h, to include 

only terms related to uniaxial 1-direction stresses. The value of   is the independent 

internal state variable which is solved for during plasticity calculations at a given 

integration point during a simulation. The Karush-Kuhn-Tucker complementarity 

conditions are enforced during loading/unloading events to ensure the yield surface does 

not shrink. 

 

 0, 0f f       2.22 

 

The plastic multiplier increment is found by enforcing the consistency condition 

 

 0f    2.23 

 

which ensures the state of stress remains on the yield surface during plastic flow, 0  . 

By enforcing the consistency condition, the solution for the plastic multiplier increment is 

solved as 

 



36 

 

 

0

:

:

:

t

t

f f
f

f h f d
f

d

f

f h f d

d

 






 
  
 

   
   
   




  


  

σ q
σ q

q
C ε

σ σ q

C ε
σ

q
C

σ σ q

  2.24 

 

where q  is the vector of the twelve yield stress values at the current instance of time. The 

plastic multiplier increment is solved for using a secant iteration root finding algorithm in 

conjunction with the radial return method (Simo and Taylor 1986). The increment is used 

to sequentially update the value of   which is used to compute the updated yield function 

coefficients, i.e.  ijF   and  iF  . Full implementation details are provided in an earlier 

work (Hoffarth et al. 2016). Fig. 5 illustrates the internal conversion of the input stress-

total strain curves into stress-effective plastic strain curves for a PMD exhibiting plastic 

behavior. 

 

 
Fig. 5. Illustration of the Conversion of Tabulated Input Curves from Stress-Total Strain 

to Stress-Effective Plastic Strain 
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Prior to a non-zero value of   being computed, the material is assumed to behave linear 

elastically.  

 

The constant flow rule coefficients are computed from the same set of input stress-total 

strain curves and are meant to be a measure of the plastic anisotropy in the material. Being 

constant, the values of the coefficients are independent of the temperature and strain rate 

during the simulation. This implies the plastic flow relationship between each of the PMD 

remains constant. Using the non-associated flow rule, Eq. 2.14, the plastic strain rate 

components are written as 
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It is now convenient to introduce the plastic Poisson’s ratio, 
p

ij , which provides a 

numerical means of relating the plastic strain evolution between two PMD. However, this 

value is not necessarily a material constant. The plastic Poisson’s ratio is defined as 
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where repeating indices do not imply a summation. The values of 
p

xy  may be determined 

experimentally from uniaxial tension or compression tests in a given plane. For example, 

using the 1-2 plane as an example and referencing Fig. 4, a uniaxial stress applied along 

the X-axis, at an arbitrary angle   from the PMD, induces stresses in the PMD given by 

Eq. 2.5  The plastic strain components in the 1-2 plane are then obtained by substituting 

Eq. 2.5 into Eq. 2.25 resulting in 
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The plastic strains along the X and Y axes can then be obtained by transforming the plastic 

strains in Eq. 2.27 into the global coordinate system as 
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Substituting Eq. 2.28 into Eq. 2.26 yields the expanded expression for plastic Poisson’s 

ratio as 
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  2.29 

 

By assuming    , since the 1-direction is oriented along the global X-axis, the value of 

12

p  can be determined. Similarly, by assuming    , since the 2-direction is oriented 

along the global X-axis, the value of 21

p  can be determined. Using the same approach in 

the other two PMP, 2-3 and 1-3, the six plastic Poisson’s ratios can be related to a subset 

of the flow rule coefficients as 
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  2.30 
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An example of how the values are computed is shown later in Section 2.3.2. The system of 

equations given by Eq. 2.30 is rank deficient and cannot uniquely be solved with the plastic 

Poisson’s ratios alone. However, if one of the flow rule coefficient values is known, the 

remainder can be solved for using Eq. 2.30. At least one of the unknown flow rule 

coefficient values in Eq. 2.30 can be solved for by obtaining the effective stress-effective 

plastic strain curve which governs the material. The effective stress-effective plastic strain 

curve can be thought of as a property of the composite architecture and layup. The curve 

governs the plastic behavior of the composite and its invariance can be related back to the 

postulate of equivalence of plastic work. As previously discussed, the effective stress, 

under an arbitrary state of stress, is assumed to be equivalent to the value of the plastic 

potential function given by Eq. 2.13 while the effective plastic strain is equivalent to the 

plastic multiplier given by Eq. 2.20. For any composite architecture, the curves can be 

obtained by first making assumptions based on the observed physical behavior of the 

material system. For example, unidirectional composites often exhibit linear elastic 

behavior along the material direction aligned with the fibers. Thus, with reference to Fig. 

1, the plastic strain rate in the 1-direction is taken as zero. 

 

  11 11 11 12 22 13 33 0p d
d H H H

h


         2.31 

 

For Eq. 2.31 to hold true for an arbitrary state of stress, all three coefficients appearing in 

the equation must be zero, i.e. 
11 12 13 0H H H   . The plastic potential function,  Eq. 2.13

, reduces to 
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 2 2 2 2 2 2

22 22 33 33 23 22 33 44 12 55 23 66 132h H H H H H H              2.32 

 

Note that symmetry of the Cauchy stress tensor has been enforced by appropriately 

combining the shear terms. At the lamina level, unidirectional composites exhibit an 

isotropic structure in the 2-3 plane as shown in Fig. 2. Eq. 2.32 can then be further reduced 

to 

 

    2 2 2 2 2 2

22 22 33 23 22 33 44 12 13 55 232h H H H H              2.33 

 

Under a state of plane stress in the 1-2 plane, i.e. 
33 23 13 0     , Eq. 2.33 reduces to 

 

 2 2 2

22 22 44 12h H H     2.34 

 

Under an arbitrary off-axis loading condition (Fig. 4), using Eq. 2.5, Eq. 2.34 is given as 

 

      2 2 4 2 2 2

22 44sin sin cosx xh H H        2.35 

 

The plastic potential function is then given by 

 

  xh g    2.36 
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where 

        
1

4 2 2 2
22 44sin sin cosg H H         2.37 

 

Substituting Eq. 2.36 into Eq. 2.28, the effective plastic strain increment under off-axis 

loading in the 1-2 plane for a unidirectional composite can be written as 

 

 
 

p

xxd
d

g





   2.38 

 

At this point, the value of 
22H  is set to 1 without loss of generality in the derivation (Sun 

and Chen 1989). This can be done since the plastic anisotropy is still accounted for through 

relationship between the remaining flow rule coefficients with 
22H . Eq. 2.37 can be 

rewritten as 

 

        
1

4 2 2 2
44sin sin cosg H         2.39 

 

The remaining unknown coefficient, 
44H , is then obtained through off-axis testing in the 

1-2 plane. Since the effective stress-effective plastic strain curve is considered a constant 

for the composite, with the appropriate value of 
44H , the curve should be independent of 

the off-axis loading angle,  . Recognizing that when    , Eq. 2.39 becomes 

independent of  , the master effective stress-effective plastic strain curve is equivalent to 
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the stress-plastic strain curve resulting from a 2-direction uniaxial tension or compression 

test. In addition to being mathematically convenient, this result is physically meaningful 

since the majority of the nonlinear material behavior in unidirectional composites can be 

attributed directly to the polymeric matrix. The 2-direction response is dominated by the 

properties of the matrix. Off-axis experiments at various loadings angles in the 1-2 can then 

be performed, and the curves then can be converted into effective stress-effective plastic 

strain curves using Eq. 2.36-2.39 with various values of 
44H . The value of 

44H  which 

causes all off-axis effective stress-effective plastic strain curves to collapse onto the master 

curve, is then the optimal value. Eq. 2.33 shows that 
23H  and 

55H  remain unknown. 

However, knowing the value of 
22H  and the value of 23

p  or 32

p , which are computed 

directly from experiments, the value of 
23H  can be computed directly from the 

relationships presented in Eq. 2.30 as 

 

 23 23 22 32 33 32 22

p p pH H H H          2.40 

 

The second form of Eq. 2.40 comes from the previous assumption that 
22H  and 

33H  are 

equivalent. Finally, 
55H  can be determined from off-axis tension or compression testing 

in the 2-3 plane. The same procedure used to find the optimal value of 
44H  can be used to 

find 
55H  using the 2-direction tension or compression uniaxial stress-plastic strain curve 

as the master curve. 
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In the case of a plain weave composite, the same assumptions used for the unidirectional 

composite may not hold true for a general case. Assuming the warp and fill yarns used on 

the composite are the same, the plastic potential function, Eq.  2.13, can be written as 

follows 
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  2.41 

 

Eq. 2.41 assumes the 1-2 plane to exhibit transverse isotropy, similar to the 2-3 plane in 

the unidirectional case. Eq. 2.41 implies that linear elasticity is not assumed in the warp 

and fill directions. Experimental data shows that slight nonlinearity is observed under 

tension and compression loading (Karayaka and Kurath 1994; Lomov et al. 2009; Ogihara 

and Reifsnider 2002). Considering a state of plane stress in the 1-2 plane, Eq. 2.41 reduces 

to 

 

  2 2 2 2

11 11 22 12 11 22 44 122h H H H          2.42 

 

Under an arbitrary off-axis state of stress, substituting Eq. 2.5 into Eq. 2.42 yields the 

following 

 

           2 2 4 4 2 2

11 12 44cos sin 2 sin cosxh H H H        
 

  2.43 
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The plastic potential function is then given by 

 

  xh r    2.44 

    

where  

 

             
1

4 4 2 2 2
11 12 44cos sin 2 sin cosr H H H        

 
  2.45 

 

Substituting Eq. 2.45 into Eq. 2.28, the effective plastic strain increment under off-axis 

loading in the 1-2 plane for a woven composite can be written as 
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The value of 
11H  can be set to 1 without loss of generality in the derivation. A similar 

assumption has been shown to be valid for woven composites by Ogihara and Reifsnider 

(2002). Eq. 2.45 is then reduced to 

 

             
1

4 4 2 2 2
12 44cos sin 2 sin cosr H H        

 
  2.47 
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At this point, the value of 
12H  is computed using Eq. 2.30 using the known value of 12

p  or 

21

p  as 

 

 12 11 12 11 21

p pH H H       2.48 

 

where 21

p can be used since 
11 22H H . The unknown value of 

44H  can be obtained using 

the results of off-axis testing at various angles from the PMD, in the same fashion that is 

described for unidirectional composites. Referencing Eq. 2.41, the values of 
33H , 

23H , and 

55H  remain unknown. However, Eq. 2.30 can be used to compute the following values 
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  2.49 

 

The forms of 
23H  and 

33H  provided by Eq. 2.49 are the result of assuming the 1-direction 

and 2-direction behave the same followed by rearranging the values shown in Eq. 2.30. 

The final unknown, 
55H , can finally be obtained from off-axis tension or compression 

testing in the 2-3 plane. The same procedure used to find the optimal value of 
44H  can be 

used to find 
55H  using the 1-direction or 2-direction tension or compression uniaxial stress-

plastic strain curve as the master curve. 
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The techniques provided in this section for computing the flow rule coefficients represents 

a subset of the possible scenarios. Appropriate assumptions must be made and validated by 

experimental data to obtain a set of coefficients consistent with the observed behavior. An 

experimental case study using the T800S/F3900 carbon fiber/epoxy resin unidirectional 

composite is presented in the next section with the goal of illustrating how all of the data 

required to drive the deformation sub-model is obtained including a proposed generalized 

method for computing the flow rule coefficients. 

 

2.2   Experimental Methods 

The experimental data needed to drive the model in its simplest form is enumerated in   
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Table 2 where the subscripts 1, 2, 3 refer to the principal material directions (PMD), 

superscripts T, C, and p denote tension, compression, and plastic respectively, and subscript 

y denotes yielding. 
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Table 2. Required Tests and Resulting Input for OEPDMM 

Test Description Resulting Input for OEPDMM 

1-direction Tension 
11 11vsT T  ,  11

T

y
 ,  11

T

y
 ,  12 13,  ,  

12 13
,p p   

2-direction Tension 
22 22vsT T  ,  22

T

y
 ,  22

T

y
 ,  23 21,  ,  

23 21
,p p   

3-direction Tension 
33 33vsT T  ,  33

T

y
 ,  33

T

y
 ,  32 31,  ,  

32 31
,p p   

1-direction Compression 
11 11vsC C  ,  11

C

y
 ,  11

C

y
 ,  12 13,  ,  

12 13
,p p   

2-direction Compression 
22 22vsC C  ,  22

C

y
 ,  22

C

y
 ,  23 21,  ,  

23 21
,p p   

3-direction Compression 
33 33vsC C  ,  33

C

y
 ,  33

C

y
 ,  32 31,  ,  

32 31
,p p   

1-2 Plane Shear 
12 12vs  ,  12 y

 ,  12 y
  

2-3 Plane Shear 
23 23vs  ,  23 y

 ,  23 y
  

1-3 Plane Shear 
13 13vs  ,  13 y

 ,  13 y
  

1-2 Plane 45° Off-axis 

tension/compression  

1 2 1 2

45 45vs  
,  1 2

45 y
  ,  1 2

45 y
   

2-3 Plane 45° Off-axis 

tension/compression  

2 3 2 3

45 45vs  
,  2 3

45 y
  ,  2 3

45 y
   

1-3 Plane 45° Off-axis 

tension/compression  

1 3 1 3

45 45vs  
,  1 3

45 y
  ,  1 3

45 y
   

 

In this section, the experimental methods to obtain the twelve stress-strain curves are 

discussed, and include specimen preparation, test fixtures, experimental procedures, and 

data processing. 
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Test coupons were cut from three types of panels manufactured by Toray details of which 

are listed in  

 

Table 3. The panels were inspected prior to being used for creating test coupons for 

manufacturing defects using pulse echo ultrasonic scans at 5 MHz and data was collected 

at increments of 1 mm in each direction. The scan results showed no significant indication 

of flaws or damage. 

 

Table 3. Panels Used for Tests 

Panel Type Nominal Dimensions (length x 

width) 

Nominal Thickness, mm 

(in) (# of plies) 

PT1 304.8 mm x 609.6 mm (12” x 24”) 3.1 (0.122) (16) 

PT2 304.8 mm x 304.8 mm (12” x 12”) 4.7 (0.185) (24) 

PT3 304.8 mm x 304.8 mm (12” x 12”) 18.4 (0.724) (96) 

 

All test coupons were cut from the raw panels using a water jet. Investigative cuts were 

performed with each of the panel types, presented in  

 

Table 3, to ensure minimal damage from the cutting process. The final water jet 

specifications, used to manufacture the test specimens, are shown in   
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Table 4.  
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Table 4. Water Jet Specifications 

Parameter PT1 PT2 PT3 

Abrasive Size, grit 80 (US Std) 80 (US Std) 80 (US Std) 

Nozzle Diameter, in (mm) 0.03 (0.762) 0.03 (0.762) 0.03 (0.762) 

Nominal Minimum Nozzle Pressure, psi 

(MPa) 
200 200 200 

Nominal Maximum Nozzle Pressure, 

psi (MPa) 
310 310 310 

Nominal Cut Speed, in/min (mm/min) 73 (1854) 51 (1295) 12 (305) 

 

Test specimens showed no significant damage, i.e. delamination or cracking, from water 

jetting aside from minor fraying of the carbon fibers where they terminate at the edge of 

the coupon. After cutting the samples out of the composite panel, a grinding wheel was 

used to polish the edges to reduce the surface roughness of the specimen. Optical 

microscopy was used to ensure the grinding process did not damage the specimens. Optical 

micrographs of one of the test coupons under various magnifications are shown in Fig. 6. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Optical Micrographs of Finished Edges (after Grinding) (a) 200x, (b) 400x, (c) 

500x, (d) 1000x 

 

Each of the panel types shown in Table 3 was used to generate test coupons for different 

tests. The 16-ply panel (PT1) is used for 1 and 2-direction tension and compression tests, 

and the 1-2 plane off-axis tension tests; the 24-ply panel (PT2) is used for 1-2 plane shear 

tests; the 96-ply panel (PT3) is used for 3-direction tension and compression tests, the 1-3 

plane and 2-3 plane shear tests, and the 1-3 plane and 2-3 plane off-axis compression tests. 

In addition to the mechanical testing, specific gravity tests were performed using all three 

panel types. 
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When required, G10 fiberglass tabs2 are used with the sample. The fiberglass tabs act as 

compliant surfaces that prevent specimens from crushing when placed in the hydraulic 

grips. They also act as stiffening elements when conducting shear tests. The tabs are 

bonded to the specified specimen surfaces using 3M DP460 Scotch Weld toughened two-

part epoxy3. All specimens are prepared in the same manner unless otherwise noted. The 

following list outlines the steps taken to fully prepare the specimens for testing. 

 

1. The regions on a typical specimen where fiberglass tabs are bonded and the surfaces 

of the fiberglass tabs being bonded to the specimen, are lightly sanded using 120 

grit sandpaper. Sanding the surfaces helps develop a complete bond between the 

specimen and the tabs. 

2. The surfaces that were sanded are then cleaned using cotton swabs soaked with 

isopropyl alcohol. The surfaces are allowed to air dry until there is no visible 

moisture on the bonding surfaces. 

3. The 3M epoxy is mixed in accordance to the manufacturer’s recommendation. A 

thin layer of the mixed epoxy is applied to the prepared surface of the tabs using a 

wooden applicator.  

4. The tabs are then placed on the specimen and positioned until the surfaces of the 

specimen and the tabs are in complete contact and aligned properly in the desired 

region.  

                                                

2 G10, FR4 Laminate Sheets 36"x 48", Epoxyglas™; NEMA Grade FR4, Mil-I-24768/27, 

http://www.acculam.com/ 
3 http://multimedia.3m.com/mws/media/66122O/3mtm-scotch-weld-tm-epoxy-adhesive-dp460-ns-and-off-

white.pdf 
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5. The specimens are allowed to cure at room temperature and atmospheric pressure 

for 48 hours as recommended by the manufacturer. 

 

After the epoxy has finished curing, the specimen is then prepared to be used with digital 

image correlation (DIC) (Sutton et al. 2009). DIC is a non-contact optical technique which 

is used to compute full displacement fields on an object’s surface. The DIC technique 

compares pixel subsets, an n n  array of pixels where n is the subset size, from an image 

of the deformed surface with the most similar pixel subset from an image of a reference 

surface. This is done by comparing grayscale values of individual pixels and solving a 

correlation function which determines the best match between the reference subset and the 

deformed subset. This procedure is done for all subsets in a given analysis region. For each 

pair of reference and deformed subsets, the location of the center of the subsets is compared 

and yields a displacement field. From the displacement field, the components of various 

strain tensors can be computed. Fig. 7 shows the correlation process schematically. 
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Fig. 7. Schematic Representation of DIC Principle (Correlated Solutions, Inc. 2009) 

 

The black and white pattern shown in Fig. 7 provides contrast to the software so the pixel 

subsets can be defined uniquely. The pattern, referred to as the speckle pattern, can be 

provided either by the natural pigmentation of the specimen surface or through additional 

preparation of the surface. In this research work, contrast is provided by first spray painting 

the specimen surface with non-reflective white paint. After the white paint has dried 

completely, non-reflective black paint is used to apply speckles to the surface. Correlated 

Solutions has created a document outlining proper speckling protocol and the effects which 

improper speckling has on the solution (Correlated Solutions, Inc. 2018). Correlated 

Solutions provides two forms of DIC analysis software. The first is Vic-2D which performs 

two-dimensional (planar) analysis of the specimen surface and requires a single camera to 

capture images during the deformation process. The second is Vic-3D which performs 

three-dimensional analysis of the specimen surface and requires two cameras to generate 
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simultaneous images during the deformation process. The three-dimensional analysis 

provides out-of-plane displacements. However, it cannot provide out-of-plane strains. The 

additional out-of-plane information is useful in detecting and helping eliminate specimen 

and test frame misalignment during the experimental procedure. It also provides additional 

information for FE model validation. Three dimensional DIC analysis using Vic-3D v7 

(Vic-3D 2016) was performed for all tests presented unless otherwise stated. Unless 

otherwise noted, all images during the experiments were captured using two Point Grey 

Grasshopper 3 cameras (FLIR Integrated Imaging Solutions, Inc. 2019). LED lamps are 

used to properly illuminate the specimen during the experimental procedure. The cameras 

and lights are fixed to the same rigid frame. The frame is leveled using a bubble level to 

ensure the cameras are properly oriented. In some instances, a Vision Research Phantom 

v7.34 high speed camera, recording at 5000 fps, is utilized to capture the failure event. 

Though the high speed camera is not used for DIC analysis in this instance, the images can 

provide a deeper insight into the failure mechanics of the material. Fig. 8 shows the optical 

equipment used for capturing the images. 

 

                                                

4 http://www.adept.net.au/cameras/visionresearch/pdf/PhantomV73.pdf 
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Fig. 8. Equipment Used to Capture Images During Experimental Procedures Showing 

Two DIC Cameras, One High Speed Camera, and Two LED Lamps 

 

The two cameras used for capturing images must be calibrated such that the internal 

parameters are synchronized and the relative position of the cameras is provided. This is 

done by capturing a series of images of a calibration target with both cameras 

simultaneously. Fig. 9 shows an example of a glass calibration target. 

 

 
(a) 

 
(b) 

Fig. 9. Calibration Target with 4 mm Dot Spacing (a) Front of Target and (b) Back of 

Target 
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The required synchronization information is gathered by capturing images of the 

calibration target at multiple orientations. All images, calibration and experimental, are 

captured using Vic-Snap 8 (Vic-Snap 2016).  

 

All experimental procedures are performed using an MTS 810 hydraulic universal testing 

frame (Fig. 10a). Flat tension specimens are held in the frame with MTS 647.10A hydraulic 

grips (Fig. 10b). The hydraulic grips are aligned by clamping a rigid, flat steel plate and 

allowing the heads to freely rotate into position. After aligning the hydraulic grips, the 

specimen is placed into the test frame. For tension and compression tests, verticality of the 

specimen is ensured by using a laser alignment system (Fig. 10c). The specimen is gripped 

up to the end of the fiberglass tabs. Shear specimens are mounted in the test frame using 

an Iosipescu shear test fixture as shown in Fig. 10d. Compression cubes are bonded to 

custom fixtures (Fig. 10e), machined out of A2 tool steel, using Loctite liquid super glue. 

Alignment of the specimen is ensured using 0.2” deep square notches machined into the 

center of the fixtures as shown in Fig. 10f. Flat (in-plane) compression specimens were 

tested using a Wyoming Test Fixtures5 combined loading compression fixture (CLC) as 

shown in Fig. 10g and Fig. 10h. The CLC fixture transfers load into the compression 

specimens through both shear load transfer and end load transfer thereby reducing the need 

for excessive clamping forces. 

 

                                                

5 https://www.wyomingtestfixtures.com/ 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

Fig. 10. Experimental Equipment (a) Test Frame, (b) Hydraulic Grips, (c) Specimen 

Alignment, (d) Iosipescu Shear Test Fixture, (e) Compression Cube Fixture, (f) Custom 

Fixture for Compression Tests, (g) CLC Compression Fixture (Top), and (h) CLC Fixture 

Front Showing C2 Specimen 

 

Force data is gathered using an MTS 661.21A-03 load cell. All experiments are conducted 

under open loop displacement controlled conditions. The displacement rate refers to the 

stroke of the test frame actuator and is set using the MTS system controller. The 

displacement rates were chosen such that the resulting axial strain rate induced in the 

specimen was at a low quasi-static rate, approximately 10-4/s. 

 

Both the data from the load cell and the images during the experiment are initially 

processed separately and ultimately combined to generate the stress-strain response. The 

images captured during the experiment are processed for the purpose of obtaining a full 

strain field using Vic-3D v7. The Lagrangian strain tensor was used to perform the analysis. 



62 

 

As mentioned previously, Vic-3D v7 offers various options for computing finite strains on 

the specimen’s surface. However, the strains observed during the experiments were small 

and the choice of finite strain tensor did not alter the results. For the initial processing, the 

entire speckled region of the specimen is analyzed. After the analysis is complete, several 

tools may be utilized to interrogate the response of a subset of the analyzed surface. For 

example, data from a single point may be obtained, the average data from within an area 

may be obtained, or virtual extensometers may be defined which yield the traditional 

engineering strain. The choice of the analysis tool depends on the observed response of the 

specimen. For all tension tests, in-plane compression tests, and all shear tests, the average 

area technique was used. The chosen area was assumed to be representative of the true 

response of the specimen under the prescribed loading. The area was chosen to be 

sufficiently away from the edges of the specimen such that the effects of strain 

concentrations caused by gripping and free edge effects did not influence the response. 

When analyzing all through thickness compression tests, the average area method provided 

inconsistent results. The manner in which the specimens were glued to the compression 

platens, Fig. 10f, likely over restricted the movement of the top and bottom surfaces. This 

caused the specimens to exhibit barreling, where much of the deformation takes place only 

in the center of the specimen while the top and bottom boundaries remain undeformed. 

With the short specimens, this leads to small zone where the strains are concentrated. To 

overcome this issue, virtual extensometers were placed along the length and width of the 

specimen with the average responses being used to compute the longitudinal and transverse 

strain. Sample images for the different strain reporting techniques are shown in Fig. 11. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 11. Typical strain fields (a) In-Plane Tension Specimens (b) Shear Specimens (c) 

Through-Thickness Compression Specimens (d) In-Plane Compression Specimens 

 

All strain measurements presented in this document are obtained from DIC using these 

techniques. Force data is obtained as a function of time from the load cell and is used to 

estimate the stress in the specimen which is computed using the average initial cross 
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sectional area of the specimen. For tension and compression specimens, the cross section 

perpendicular to the direction of loading is used to calculate the cross sectional area. The 

average normal stress is calculated as 

  

 
0

F

A
    2.50 

  

where F is the normal force reported by the load cell at a given instance of time and A0 is 

the initial cross sectional area. For shear specimens, the surface between the notches, 

through the thickness of the specimen, is used to calculate the cross-sectional area. The 

average shear stress is calculated as 

 

 
0

V

A
    2.51 

 

where V is the force reported by the load cell at the current time-step and A0 is the initial 

cross sectional area. The strain reported from Vic 3D v7 in the region of interest is used in 

conjunction with the calculated stress to generate a stress-strain curve for any given 

specimen. After obtaining reliable and consistent data from a minimum of three replicates 

of each experiment, the results were used to generate the input data for the constitutive 

model (  
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Table 2). The (deterministic) constitutive model requires only one representative stress-

strain curve for each of the experiments. This curve is referred to as the model curve. Each 

model curve is generated by carrying out a least-squares fit at each experimental strain 

value to obtain the model stress value, i.e. using the average stress value from all replicates 

for a given strain value, the model stress value is computed. The model curve ends at the 

average strain at failure from all replicates. Fig. 12 shows the resulting stress-strain curves 

using the described procedure for the 1-direction tension test. 

 

 
Fig. 12. Illustration of Stress-Strain Curve Averaging Technique 
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In addition to the model curve used as input for MAT 213, several parameters are 

obtained from the stress strain curves of each individual specimen for the purpose of 

determining how consistent the data is.  

Table 5 describes each parameter and how they are obtained from the available data. 

 

Table 5. Descriptions of the Nomenclature Used for Stress-Strain Curve Characteristics 

Parameter Definition Method 

Loading rate Constant rate at which the 

actuator on the test frame is 

displaced.  

Chosen by the experimenter as 

a fixed parameter at the 

beginning of the procedure. The 

rate is prescribed as a 

displacement over a certain 

period of time. 

Strain rate The rate at which strain is 

induced in the specimen during a 

given experiment.  

The strain measure of interest is 

plotted as a function of time 

and the average strain rate 

during the experiment is 

obtained by performing a linear 

regression. The slope of the 

resulting best fit line is taken as 

the average strain rate. 

Modulus The slope of the initial linear 

region of the true stress-strain 

curve. 

The analyst determines the 

region which is most linear in 

the initial portion of the curve 

and performs a linear regression 

on the data. The slope of the 

resulting best fit line is taken as 

the modulus. 

Poisson’s ratio The negative ratio of transverse 

strain to longitudinal strain. 

Both elastic and plastic 

Poisson’s ratios may be 
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obtained by plotting transverse 

strain as a function of normal 

strain. The elastic and plastic 

components of both the 

transverse and longitudinal 

strain are computed using the 

method described in a later 

section. A linear regression is 

performed on the elastic and 

plastic components, yielding 

the respective Poisson’s ratio 

values. 

Peak stress Maximum stress achieved during 

a given experiment. 

Selected from stress data 

obtained through scaling the 

force data reported by the load 

cell. 

Ultimate strain Strain measured at peak stress. Selected as the largest strain 

when the specimen exhibits 

brittle failure with no post-peak 

strength. 

Failure strain Strain measured when the 

specimen fails. 

Selected as the strain when 

there is a large drop in stress 

and the specimen no longer 

loads back up to that peak stress 

point. Typically this is when the 

test is terminated and used 

when specimen does not exhibit 

brittle failure. 

Transverse strain Strain induced in the specimen 

perpendicular to the direction of 

Obtained through DIC 

measurements. 
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loading in tension and 

compression tests. In shear tests 

it is defined as strain induced in 

specimen parallel to the 

movement of the actuator. 

Longitudinal 

strain 

Strain induced in the specimen 

parallel to the direction of 

loading in tension and 

compression tests. In shear tests 

it is defined as strain induced in 

specimen perpendicular to the 

movement of the actuator. 

Obtained through DIC 

measurements. 

Shear strain Tensorial shear strain induced in 

the principal plane being 

observed. 

Obtained through DIC 

measurements. 

 

The specimen geometries used were guided by the respective ASTM standard unless 

otherwise necessary.  

 

1-direction Tension Test: During preliminary 1-direction tension testing, inducing failure 

in the specimen and obtaining consistent results proved to be challenging. Since a large 

tensile force is needed to induce failure, applying the proper gripping pressure so as to 

prevent slippage and not induce unwanted damage in the specimen was difficult. Finally, 

through trial-and-error, a modified form of the ASTM D3039/D3039M-17 (D30 

Committee 2017a) specimen geometry (Fig. 13) was found that yielded consistent results. 

The shaded regions indicate the area where G10 fiberglass tabs were used. 
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(a) 

 
(b) 

Fig. 13. Nominal 1-direction Tension Specimen Dimensions and Layout (a) Plan View 

and (b) Elevation View (All Dimensions in mm) 

 

Note that Fig. 13b shows a (thickness) tapered gage section. Adams (Adams 2013) 

proposed using a tapered section though an actual experiment was never conducted with 

such a section. The specimens were machined using a CNC milling machine to grind away 

approximately one-quarter of the specimen thickness from each side. After grinding down 

one side of the specimen, a special fixture was created to match the contour of the specimen 

taper and was used to support the specimen as the other side was ground. The new specimen 

geometry test specimens consistently failed in the gage section using a gripping pressure 

that did not damage the specimen. 

 

2-direction Tension Test: Two specimen geometries were used in the investigative studies. 

The first was the standard specimen geometry (Fig. 14a) recommended by ASTM 
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D3039/D3039M-17 (D30 Committee 2017a). The second uses a dog bone geometry (Fig. 

14b). The straight sided specimens failed near the gripping region. Thus, the dog-bone 

geometry was used in an effort to mitigate the influence of stress concentrations that are 

induced in the specimen near the gripping region. The shaded regions indicate the area 

where G10 fiberglass tabs were used. 

 

 
(a) 

 
(b) 

Fig. 14. Nominal 2-direction Tension Specimen Dimensions and Layout (a) Standard 

Specimen and (b) Dog Bone Specimen (All Dimensions in mm) 

 

3-direction Tension Test: As with other through-thickness tests, this experiment is 

challenging since the available specimen length is very limited – in this instance, the 

maximum length was 18.3 mm (96 plies). A specimen geometry (Fig. 15) was created so 

that either the 1-3 or the 2-3 plane could be used for gathering strain data. Experiments 

using both specimen orientations were performed to see if any differences in the strain data 

could be discerned.  
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(a) 

 
(b) 

Fig. 15. Nominal 3-direction Tension Specimen Dimensions and Layout (a) 1-3 Plane 

Speckled and (b) 2-3 Plane Speckled (All Dimensions in mm) 

 

The specimens had a nominal thickness of 1.5 mm (i.e. in the 2-direction of the specimen 

shown in Fig. 15a and in the 1-direction of the specimen shown in Fig. 15b). To ensure that 

the test coupon could be properly inserted into the hydraulic grips, a special sandwich 

specimen gripping assembly was constructed. The gripping assembly, comprised of G10 

fiberglass, was used to transfer the load from the hydraulic grips into the specimen. The 

schematic of the gripping system is shown in Fig. 16.  
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(a) 

 
(b) 

 
(c) 

Fig. 16. Fiberglass Tab Layup Geometry (a) Outer Layers (b) Center Layer (c) Overall 

Layup (Dimensions in mm) 

 

The fiberglass tabs were bonded together using Loctite liquid super glue6. Both ends of the 

specimen were bonded to the inside of the pocket formed by the fiberglass tabs, Fig. 16c, 

using 3M DP460 two-part toughened epoxy. The entire surface of the specimen that was 

inside the tabs was coated with the epoxy to ensure maximum load transfer capacity. 

 

In-Plane Compression Test: Two in-plane compression experiments were performed. Both 

the 1-direction and 2-direction compression tests utilized flat specimens with geometries 

that are recommended by ASTM D3410/D3410M-16 (D30 Committee 2016), shown in 

Fig. 17. 

 

                                                

6 http://www.loctiteproducts.com/p/4/2/sg_bottle/overview/Loctite-Super-Glue-Longneck-Bottle.htm 
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(a) 

 
(b) 

Fig. 17. Nominal Specimen Dimensions and Layout (a) 1-direction Compression 

Specimen and (b) 2-direction Compression Specimen (All Dimensions in mm) 

 

The CLC fixture (Fig. 10g and Fig. 10h) was used in testing both specimens. A gage section 

of 12.7 mm (0.5 in) was used. A torque of 1700 N-mm (15 in-lb) was applied to each of 

the eight bolts in the CLC fixture. The torque was applied in multiple stages to each bolt, 

ensuring even gripping of the specimen.  

 

Through-thickness Compression Test: Three through-thickness compression experiments 

were performed. The first is the 3-direction compression test using a parallel sided cube 

geometry (Fig. 18a,b). Similar to the 3-direction tension test, both the 1-3 and 2-3 planes 

were used for gathering strain data in separate experiments to determine if there was any 

discernable pattern in the deformation-related responses on the two surfaces. Additionally, 

1

2

1

2
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1-3 plane and 2-3 plane 45° off-axis compression tests were performed. The off-axis 

specimens were also parallel sided cubes with the thickness of the available composite 

panel dictating the dimensions (Fig. 18c,d). Currently, the underlying theory in the 

constitutive model uses either off-axis compression or off-axis tension data. Compression 

tests were chosen because of ease of testing, specimen preparation, and specimen 

machining.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 18. Nominal Specimen Dimensions and Layout (a) 3- Direction Compression with 1-

3 Plane Speckled and (b) 3-direction Compression with 2-3 Plane Speckled (c) 1-3 Plane 

45° Off-axis Compression and (d) 2-3 Plane 45° Off-axis Compression (All Dimensions 

in mm) 

 

The compression tests were performed using custom made A2 tool steel platens (Fig. 10e 

and Fig. 10f). The platens have square notches etched out of the face to ensure that the 

specimen is properly aligned within the test frame. The straight-sided specimens do not 

have the same level of sensitivity to eccentric loading as the waisted specimens and proper 

45°
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alignment ensured that the stress state was nearly uniaxial and uniform as discerned from 

the digital images. 

 

In-plane Shear Test: The Iosipescu shear test setup was used to perform the 1-2 plane shear 

experiments. During investigative testing, the specimen and tab geometry used to conduct 

the experiments were taken from ASTM D5379/D5379M-12 (D30 Committee 2012), as 

shown in Fig. 19. The specimens had a nominal thickness of 4.7 mm. The shaded regions 

indicate the area where G10 fiberglass tabs were used. 

 

 
Fig. 19. ASTM D5379 Recommended Iosipescu Shear Specimen Nominal Dimensions 

and Layout (All Dimensions in mm) 

 

As the test progressed, analysis of the test results showed that the specimen is not in a state 

of pure shear and the load-carrying capacity of the specimen does not diminish to zero. 

Rather, the specimen continues to excessively deform and the gage section twists to a point 

where the fibers bridging the cracks are effectively put into a state of tension. Finally, the 

2

1
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bottom right corner of the specimen rests on the fixture and the specimen can no longer 

deform. Since the objective is to obtain the complete stress-strain curve, the specimen 

geometry was modified. A deeper notch was used to reduce the cross-sectional area of the 

gage section and hence require a smaller force to induce failure. Since a deeper notch also 

causes a reduction in the structural stiffness of the specimen leaving it more susceptible to 

excess bending, the tabs were moved closer to each other to stiffen the gage section. The 

modified specimen is shown in Fig. 20. The shaded regions indicate the area where G10 

fiberglass tabs were used. 

 

 
Fig. 20. Modified Iosipescu Shear Specimen Nominal Dimensions and Layout (All 

Dimensions in mm) 

 

The modified specimen geometry allowed for much higher shear stress and strain values 

to be obtained. 

 

1

2
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Through-thickness Shear Test: Two through-thickness shear experiments were performed. 

Both 1-3 plane and 2-3 plane shear tests were performed with geometries that are 

recommended by ASTM D5379/D5379M-12 (D30 Committee 2012), and are shown in 

Fig. 21. The shaded regions indicate the area where G10 fiberglass tabs were used. 

 

 
(a) 

 
(b) 

Fig. 21. Nominal Specimen Dimensions and Layout (a) 2-3 Plane Shear Specimen and 

(b) 1-3 Plane Shear Specimen (All Dimensions in mm) 
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The specimens had a nominal thickness of 0.122 in (3.1 mm). The height of the specimens 

(in the 3-direction) were limited by the thickness of the available composite panel. As such, 

the geometries deviate from the recommendations made by ASTM D5379. 

 

In-plane Off-axis Tension Test: Four in-plane off-axis tension tests were performed. The 

results of the tests performed with a fiber angle (θ) of 45° to the loading axis is used directly 

as input while the remaining test results (fiber angles of 10°, 15°, and 30°) aid in computing 

the flow rule coefficients. The specimens were machined with dimensions commensurate 

with the recommendations provided by ASTM D3039/D3039M-17 (D30 Committee 

2017a). Fig. 22 provides schematics of the specimens, where the shaded regions indicate 

the area where G10 fiberglass tabs were used. 

 

 
Fig. 22. Nominal Specimen Dimensions 1-2 Plane Off-axis Tension Tests (All 

Dimensions in mm) 

 

In addition to the specimen geometry shown in Fig. 22, the 45° tests were performed with 

an alternative specimen geometry, shown in Fig. 23. The purpose was to determine if the 

length of the gage section had an influence on the observed response. 

 

θ
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Fig. 23. Nominal Specimen Dimensions of Alternative 1-2 Plane Off-axis 45° Tension 

Test (All Dimensions in mm) 

 

All specimens had a nominal thickness of 0.122 in (3.1 mm).  

 

2.3   Experimental Results 

This section presents the results of the twelve tests shown in   

45 
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Table 2. The resulting stress-total strain curves are shown as well as various point 

properties of the material.  

 

2.3.1   Principal Material Directions Tension Tests 

The stress-strain curves from the PMD tension tests are shown in Fig. 24 and the results 

are summarized in Table 6. Note the enormous differences in the stiffness and the strengths 

that is typical of most unidirectional composites when comparing the fiber-direction (1-

direction) to the transverse and through-thickness directions. 
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(b) 

 
(c) 

Fig. 24. Tension Stress-Strain Curves (a) 1-direction, (b) 2-direction, and (c) 3-direction 
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Table 6. Summary of Results for the PMD Tension Tests (Average Values [Coefficient of 

Variation, %]) 

 1-direction 2-Direction 3-Direction 

Youngs’s Modulus, 

GPa 

 psi 

161.7 

23 457 871 [1.6%]  

7.4 

1 066 413 [1.3%] 

6.7 

966 505 [4.5%] 

Poisson’s Ratio  ν12: 0.317 [1.6%] ν21: 0.017 [9.0%] 

ν31: 0.027 [1.9%] 

ν32: 0.439 [0.0%] 

Failure/Ultimate Strain 0.01560 [2.3%] 0.00622 [4.6%] 0.00421 [8.5%] 

Peak Stress, MPa 

psi 

2519.0 

365 372 [2.0%] 

44.8 

6 502 [2.6%] 

27.4 

3 977 [9.0%] 

 

Fig. 25 shows the tested specimens after failure is induced in the test specimen. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 25. Typical Specimen after Testing (a) 1-direction Tension (b) 2-direction Tension 

Using ASTM Standard Specimen (c) 2-direction Tension Using Modified Dog Bone 

Specimen (d) 3-direction Tension 

 

All three of the PMD’s exhibit mostly linear elastic behavior in tension. The 2-direction 

exhibits a slight nonlinearity near the point of failure. While the failure in all three 

directions was brittle, the failure mode in each of the PMD’s was different.  

 

In the 1-direction, two clear failure modes were observed as shown in Fig. 25a. The first 

was a failure of the matrix, parallel to the fibers. The second was a tensile failure of the 

fibers which appear to have initiated where the tapered section of the specimen starts. The 

fiber failure was likely due to a large strain concentration which was present due to the 

geometry of the specimen. The average cross-sectional area of the gage section was used 

to compute the stress value. Additionally, as shown in Fig. 24a, the 1-direction tension 

curves exhibited a slight stiffening behavior as the experiment progressed. The stiffening 

is most likely due to the straightening of the fibers, thus increasing the apparent stiffness 

of the composite. The average slope of the curves throughout the entire experiment was 

used to obtain an average modulus value.  

 



85 

 

Fig. 25b and Fig. 25c show the typical failure of a standard specimen and a dog bone 

specimen respectively in the 2-direction tests. Both specimen geometries exhibited inter-

fiber failure. The dog bone shaped coupons consistently failed in the gage section of the 

specimen. Interestingly, though the failure locations were typically different when 

comparing the standard geometry and the dog bone geometry, the stress-strain curves of 

the respective specimen geometries were similar. 

 

The failure of the 3-direction specimens was consistently interlaminar. This behavior was 

likely due to the ply boundary effect that is caused by the manufacturing process of 

laminated composites. The model curve was generated using specimens which had the 1-

3 and 2-3 planes speckled for image analysis respectively (Fig. 15). The 3-direction tension 

and 2-direction tension tests show similar results as expected due to the relative transverse 

isotropy of the composite. However, the 3-direction curves exhibited a slightly lower 

modulus, a lower ultimate strain, and a lower ultimate stress as compared to the 2-direction 

curves. This behavior can be attributed to the effect of the ply boundaries on the 3-direction 

results. The difference in the 3-direction and 2-direction at the mesoscale can be clearly 

discerned from the micrograph of the T800S/F3900 composite system shown in Fig. 2. The 

different thickness and irregular ply boundaries can be readily identified and strictly 

speaking, transverse isotropy assumptions are not valid at this scale. 

 

2.3.2   Principal Material Directions Compression Tests 

The stress-strain curves from the PMD compression tests are shown in Fig. 26 and the 

results are summarized in   
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Table 7. 
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(c) 

Fig. 26. Compression Stress-Strain Curves (a) 1-direction, (b) 2-direction, and (c) 3-

direction 
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Table 7. Summary of Results for the Compression Tests (Average Values [Coefficient of 

Variation, %]) 

 1-direction 2-Direction 3-Direction 

Youngs’s Modulus, 

GPa  

psi 

129.4 

18 775 652 [5.8%]  

7.7 

1 119 123 [3.2%] 

7.2 

1 038 690 [10.6%] 

Poisson’s Ratio   12 : 0.342 [8.4%] 21 : 0.021 [6.0%] 

31 : 0.032 [17.1%] 

32 : 0.676 [4.9%] 

32

p : 0.776 [0.9%] 

Failure/Ultimate Strain 0.00629 [9.9%] 0.04127 [2.7%] 0.02856 [10.9%] 

Peak Stress, MPa 

 psi 

727.5 

105 513 [9.7%] 

175.9 

25 513 [2.5%] 

170.9 

24 784 [7.9%] 

 

Fig. 27 shows the in-plane compression specimens after testing. 
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(a) 

 
(b) 

 
(c) 

Fig. 27. Typical Specimen after Testing (a) 1-direction Compression, (b) 2-direction 

Compression In-plane View, and (c) 2-direction Compression Side View 

 

A clear asymmetry in the tension and compression response of the T800/F3900 composite 

was observed. While the tension behavior was mostly linear, the material exhibited 

nonlinear behavior in compression – both the 2-direction and 3-direction specimens also 

failed at higher stresses and strains, while the 1-direction failed at a lower stress and strain. 

Though the overall behavior of the PMD’s was comparatively different in tension and 

compression, the behavior in the initial regimes were nearly identical.  

 

The 1-direction compression curves exhibited contrasting behavior compared to the 1-

direction tension tests in that the stress-strain curve shown in Fig. 26a shows softening 

behavior with increasing stress/strain value. The failure of the 1-direction compression 

specimens was different from the tension specimens. The tension specimens exhibited 
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matrix failure, parallel to the fibers. However, as shown in Fig. 27a, the compression 

specimens failed across the fibers. The nonlinearity in the compression response is likely 

caused by microbuckling and fiber-kinking as the experiment progressed. The 2-direction 

compression specimens exhibit considerable nonlinear behavior. The nonlinearity can be 

attributed to the plastic behavior of the polymeric matrix. The failure observed was 

consistent with the 3-direction failure in the 2-3 plane. Cracks formed between and parallel 

to the plane of the fibers. A typical failed specimen is shown in Fig. 27b and Fig. 27c. 

 

All of the through-thickness compression tests experienced brittle failure. The 3-direction 

compression specimens exhibited inter-fiber failure in the 2-3 plane which is typical of 

unidirectional composites under compression in the 2-3 plane. This failure is due to matrix 

cracking that requires less energy than fiber breakage. The cracks that are initiated in the 

specimen will propagate through the matrix more easily than cutting across the fibers. The 

off-axis compression specimens exhibited interlaminar failure. Typical failed specimens 

are shown in Fig. 28. 
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(a) 

 

  

(b) 

Fig. 28. Typical Failure of (a) 3-direction Compression with 1-3 Plane Speckled and (b) 

3-direction Compression with 2-3 Plane Speckled (from Left to Right: Speckled (Front) 

Face of the Specimen, Left Face of the Specimen, Right Face of the Specimen) 

 

Each of the through-thickness compression specimens formed large cracks on the speckled 

surface, except for 3-direction compression with the 1-3 plane speckled. The 3-direction 

specimens exhibited similar nonlinearity to the 2-direction experiments and the 

nonlinearity can be attributed to the plastic behavior of the matrix. Similar to the tension 

behavior, the 3-direction and 2-direction compression behavior is similar but not identical 

because of the ply boundary effects. 

 

The value of the plastic Poisson’s ratio in the 3-2 plane, 32

p  in   

1

3

2

3
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Table 7, is computed for each replicate of the 3-direction compression test and averaged. 

An example of how the value is obtained is shown below for one of the replicates. Fig. 29 

shows the specimen used for the computations. 

 

 

3-direction is referred to as longitudinal 

while 2-direction is referred to as 

transverse. 

Fig. 29. Specimen Type Used to Compute 32

p  

1. From longitudinal stress-total strain curve, determine the yield strain as the location 

on the curve where the behavior is no longer linear (Fig. 30). 

 

33

33

DIC analysis surface
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Fig. 30. Yield Strain Value for Single Replicate of 3-direction Compression Test 

2. All longitudinal and transverse strains which occur prior to the longitudinal yield 

strain are assumed to be completely elastic. The “elastic” Poisson’s ratio is 

computed by first plotting the negative of the transverse strain and the longitudinal 

strain then performing a linear regression (Fig. 31).  
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Fig. 31. Example of Linear Regression Performed to Compute 

32   

 

The value of 
32  is the slope of the regression line through the data. 
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3. The longitudinal and transverse plastic strains are computed for all values of 

longitudinal stress, after the longitudinal yield strain, using the following equations 

which assume a linear decomposition of the total strain into additive elastic and 

plastic components. 
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 33
22 22 22 22 32

33

p t e t

E


          2.54 

 

4. Similar to the elastic Poisson’s ratio, the plastic Poisson’s ratio is computed by first 

plotting the negative of the transverse plastic strain and the longitudinal plastic 

strain (Fig. 32) 

 

 
Fig. 32. Example of Linear Regression Performed to Compute 32

p  

  

The slope of the linear regression line through the data is taken as the value of    

32

p . Note that the slope of the data in Fig. 32 is not constant. However, the 

assumption  in the current implementation is that the flow rule coefficients 

remain constant which is why a linear regression is performed. 
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2.3.3   Principal Material Plane Shear Test Results 

The (model) stress-strain curves from the principal plane shear tests are shown in Fig. 33 

and the results are summarized in Table 8. The 1-2 plane results were obtained from the 

modified Iosipescu specimen geometry (Fig. 20) whereas the 1-3 and 2-3 plane results were 

obtained using the ASTM recommended geometry (Fig. 21). 
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(b) 

 
(c) 

Fig. 33. Shear Stress-Strain Curves (a) 1-2 Plane, (b) 2-3 Plane, and (c) 1-3 Plane 
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Table 8. Summary of Results for the Shear Tests (Average Values [Coefficient of 

Variation, %]) 

 1-2 Plane 2-3 Plane 1-3 Plane 

Shear Modulus, GPa 

psi 

4.0 

579 489 [7.0%] 

2.3 

335 594 [3.3%] 

2.4 

347 738 [2.2%] 

Failure/Ultimate Strain 

(tensorial) 0.13400 [3.3%] 0.00428 [1.7%]  0.07040 [9.3%] 

Peak Stress, MPa 

psi 

128.7 

18 670 [1.0%] 

19.4 

2 816 [3.5%] 

85.6 

12 419 [4.4%] 

 

The 2-3 plane shear specimens failed in a similar manner to the compression tests in the 

same plane, parallel to and between the fiber planes. A typical failed 2-3 plane specimen 

is shown in Fig. 34. 

 

 
Fig. 34. Typical Failure Pattern of 2-3 Plane Shear Specimen 

 

The failure pattern exhibited by the standard 1-2 plane and 1-3 plane specimens was 

consistent with the results reported in previous research (Broughton et al. 1990; Odegard 

and Kumosa 2000; Swanson et al. 1985). There were matrix cracks in the gage section, 
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between the notches, with two major cracks that emanate from the roots of the notches. A 

typical failed specimen is shown in Fig. 35. 

 

 
Fig. 35. Typical Failure Pattern of ASTM D5379 Recommended In-plane Shear 

Specimen 

 

The cracks emanating from the notch roots, shown in Fig. 35, are caused by excessive 

transverse strains.  The failure is not a true shear failure but rather it is failure caused by 

exceeding the tensile strength of the composite in the 2-direction. The formation of the 

cracks also coincides with the onset of nonlinearity in the stress-strain curve. After the 

cracks form at the notch roots, the gage section of the specimen remains in a state of pure 

shear for a short period, however, the specimen began to experience large deformations, 

excessively rotating the principal material axes, leading to a multiaxial loading state. For 

the specimen to be in a state of pure shear, the transverse and longitudinal components of 

strain would both have to be negligible. A comparison of the different strain components, 

obtained through DIC measurements, is shown in Fig. 36. 

  

Gage section

Notch root compression

Notch root tension



101 

 

 
Fig. 36. Comparison of Strain Components for Typical 1-2 Plane Shear Test Using 

ASTM Recommended Geometry 

 

Fig. 36 shows that the shear strain in the gage section of the specimen still dominates the 

state. However, near the notch tips, outside of the gage section, the transverse strains 

become large and will influence the apparent response of the specimen.  

 

The stress-strain curve for the same specimen used for the strain comparison is shown in 

Fig. 37. 
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Fig. 37. Typical Stress-strain Curve for 1-2 Plane Shear Test Using ASTM 

Recommended Geometry 

 

The failure pattern of the modified specimen was similar to that of the standard specimen. 

A typical failed specimen using the modified geometry is shown in Fig. 38. 
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Fig. 38. Typical Failure Pattern of the Modified 1-2 Plane Shear Test Iosipescu Specimen 

 

The modified specimens exhibited nonlinear stress-strain behavior similar to the standard 

specimen. The onset of nonlinearity still coincided with the formation of the crack at the 

notch roots and the initial failure was still influenced by the transverse strain component. 

However, the modified specimens were consistently able to reach average shear stress and 

strain values larger than those of the standard specimens. The elastic behavior of both type 

of specimens was similar. A comparison of the stress-strain curves for both the ASTM 

recommended specimens and the modified specimens is shown in Fig. 39.  
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Fig. 39. Comparison of Stress-Strain Response of ASTM Recommended 1-2 Plane Shear 

Specimens and Modified 1-2 Plane Shear Specimens  

 

In addition to the 1-2 shear test (S12), the 2-1 shear tests (S21) were also performed. The 

2-1 shear test rotates the axes of the Iosipescu specimen by 90°. The ASTM D5379,  Fig. 

19, recommended specimen geometry was used to conduct these experiments. The 

problems inherent with the 1-2 shear specimens are not present when performing the 2-1 

shear tests since the failure takes place much earlier in the test. Typically, the failure is well 

defined between the notches, parallel to the plane of the fibers, in the matrix. A typical 

failed specimen is shown in Fig. 40. 
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Fig. 40. Typical Failure Pattern of the 2-1 Plane Shear Specimen 

 

 
Fig. 41. Comparison of 1-2 and 2-1 Shear Tests 

 

Fig. 41 shows that the initial behavior of the S12 experiments is similar to the S21 

experiments, meaning 
12G  and 
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with the manner in which the cracks form at the notch roots of the S12 experiments. The 

strain values at which the failure of the S21 specimens take place and the formation of the 

crack at notch roots in the S12 experiments are coincident. Though the overall behavior of 

the S12 and S21 specimens is different, a typical orthotropic material model is not designed 

to handle the differences. However, the S21 results provide insight into the shear strength 

of the composite. The 1-3 plane shear results show a high amount of nonlinearity similar 

to the 1-2 plane shear tests. As with the 2-direction and 3-direction tension/compression 

comparison, the 1-3 plane shear exhibits a lower modulus and lower ultimate stress and 

strain values even when compared to the ASTM recommended 1-2 plane shear geometry. 

3-1 shear tests were not performed as the available panel was not thick enough to machine 

proper specimens.  

 

2.3.4   45° Off-Axis Test Results 

The model stress-strain curves from the 45° off-axis tests are shown in Fig. 42 and the 

results are summarized in Table 9. 
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(c) 

Fig. 42. 45° Off-axis Stress-Strain Curves (a) 1-2 Plane Tension, (b) 2-3 Plane 

Compression, and (c) 1-3 Plane Compression 

 

Table 9. Summary of Results for the 45° Off-Axis Tests (Average Values [Coefficient of 

Variation, %]) 

 1-2 Plane 

(Tension) 

2-3 Plane 

(Compression) 

1-3 Plane 

(Compression) 

Modulus, GPa 

psi 

10.4 

1 515 042 [3.2%] 

6.5 

947 991 [10.4%] 

8.5 

1 237 767 [12.1%] 

Failure/Ultimate 

Strain  0.00724 [9.8%] 0.05661 [3.0%] 0.09120 [4.3%] 

Peak Stress, MPa 

psi 

62.4 

9 054 [4.8%] 

157.4 

22 829 [4.9%] 

198.4 

28 775 [2.4%] 
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It should be noted that the 1-2 plane 45° off-axis tension test has contributions from the 1-

2 plane shear, 1-direction tension, and 2-direction tension responses. The 2-3 and 1-3 plane 

45° off-axis compression test also have contributions from their respective material axes. 

The failure of the specimens was also due to the combined loading state as none of the 

components of strain were negligible. Typical failed specimens are shown in Fig. 43. 

 

 
(a) 

 

 

 

(b) 

 

 

 

(c) 

Fig. 43. Typical Failure of the (a) 1-2 Plane 45° Off-axis Tension Specimen (b) 2-3 Plane 

45° Off-axis Compression Specimen (c) 1-3 Plane 45° Off-axis Compression Specimen 

 

None of the off-axis tests resulted in failure along the loading direction. Rather each of the 

respective tests exhibited failure in the weakest direction being loaded. In the case of the 
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1-2 plane 45° off-axis tension test, the failure was consistently interfiber within the plane 

(Fig. 43a). For both the 2-3 and 1-3 plane 45° off-axis compression tests, the failure was 

consistently interlaminar (Fig. 43b,c). 

 

2.3.5   Additional 1-2 Plane Off-Axis Tension Tests 

The model curves of the additional off-axis tension tests are presented in Fig. 44. Table 10 

provides a summary of the test results. 

 

 
Fig. 44. 1-2 Plane 10°, 15°, and 30° Off-axis Tension Stress-Strain Curves 
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Table 10. Summary of Results for the Additional 1-2 Plane Off-Axis Tension Tests 

(Average Values [Coefficient of Variation, %]) 

 10° Tension 15° Tension 30° Tension 

Modulus, GPa 

psi 

80.4 

11 422 075 [1.79%] 

47.1 

6 959 172 [2.63%] 

19.6 

2 831 961 [3.55%] 

Failure/Ultimate 

Strain  0.00668 [1.85%] 0.00779 [3.41%] 0.00983 [4.16%] 

Peak Stress, MPa 

psi 

370.8 

53 495 [0.75%] 

230.6 

33 626 [0.25%] 

120.5 

17 471 [5.45%] 

 

Similarly to the other off-axis tests (Fig. 43), the additional 1-2 plane off-axis tension tests 

failed along constituent boundaries. All three tests exhibited interfiber failure within the 

plane. Fig. 45 shows the typical failure modes of each specimen. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 45. Typical Failure of the 1-2 Plane Off-axis Tension Specimens (a) 10°, (b) 15°, and 

(c) 30° 
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2.3.6   Additional Observations 

The experimental results show that many of the traditional (simplifying) assumptions made 

about UD composite behavior are not always satisfied, e.g. transverse isotropy and 

symmetric behavior of the material in tension and compression. A comparison of the 2-

direction and 3-direction behavior in tension, compression and shear is shown in Fig. 46. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 46. Comparison of the Behavior of the 2-direction and 3-direction (a) Tension 

Behavior, (b) Compression Behavior, and (c) Shear Behavior 

 

The 3-direction consistently exhibited lower ultimate strain values as well as lower 

stiffness than the 2-direction. The discrepancies in the 2-direction and 3-direction results 

can be explained by both the boundary between the plies and the extra epoxy resin shown 
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in Fig. 2. When looking at the laminate level, the extra resin and ply boundaries in the 3-

direction yield more compliant behavior and the ply boundaries also reduce the apparent 

strength of the composite in the 3-direction. When looking at the lamina level, the 2-

direction and 3-direction are visually identical. Typically, transverse isotropy assumptions 

are used because the weaknesses caused by the lamination process are ignored. However, 

this may not always be the proper way to handle the through-thickness properties in the 

context of finite element models. Determining whether or not to use through-thickness 

properties, determined from experiments, depends on how the model is built. For instance, 

if fewer elements are used to model the 3-direction than there are plies in the laminate, and 

no cohesive zone elements or tiebreak nodes are used to model the interlaminar interface 

behavior, then through-thickness properties may be required for accurate results. However, 

if cohesive zone elements or tiebreak nodes are used to model the ply boundaries, inclusion 

of through-thickness properties in the model may be overly conservative since the response 

of laminate testing in the 3-direction inherently includes the effects of the lamina 

boundaries and 2-direction would be preferable. The 1-2 plane off-axis tension and the 1-

3 plane off-axis compression cannot be properly compared because the loading direction 

for the tests were different and there was clear asymmetric behavior between tension and 

compression. The asymmetric behavior is seen in the plastic behavior of the material. 

Typically, when the material was loaded in compression, the plasticity of the matrix 

dominated the overall composite behavior. The failure mechanisms in tension and 

compression are different for each respective material direction meaning a different 

combined state of stress and strain are required to induce failure. The tension/compression 

asymmetry exhibited by the data is handled by MAT 213 as both curves for each respective 



114 

 

PMD is required as input. However, the plastic potential function used in the flow rule 

implemented in MAT 213 is quadratic and inherently cannot differentiate between tensile 

and compressive stresses. The inability to differentiate between tension and compression 

in the plastic potential function becomes problematic when only either tension or 

compression in a given PMD exhibits significant nonlinearity, as the evolution of the yield 

surface is directly dependent on the flow rule. A comparison of the tension and 

compression behavior, for each principal material direction, is presented in Fig. 47. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 47. Comparison of Tension and Compression Behavior (a) 1-direction, (b) 2-

direction, and (c) 3-direction 
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2.3.7   Specific Gravity Testing 

The mass density of the material is found in accordance with ASTM D792-13 (D20 

Committee 2013a). First, the mass of the specimens in air is found using a scale. Second, 

a beaker is filled with water and the specimens are immersed in the liquid using a wire to 

suspend the specimen in the liquid and to prevent the specimen from contacting the beaker. 

The apparent mass of the specimen and the submerged portion of the wire in water are 

recorded. Third, the wire is submerged up to the same point as in the second step and its 

apparent mass in water is recorded. Using all three measurements, the specific gravity of 

the material is determined using Eq. 2.55. The samples used in the experiment were taken 

from the edge of the panels. The process was calibrated and verified by first using 

aluminum. The specific gravity obtained using aluminum is 2.61, which is within the 

reported range.  

 

 g

a
S

a w b


 
  2.55 

 

where Sg is the specific gravity, a is the apparent mass of specimen in air, b is the apparent 

mass of completely immersed specimen and partially immersed wire in liquid, and w is the 

apparent mass of partially immersed wire in liquid. Mass measurements are made using an 

AWS AL201S Analytical Balance7 which has a resolution of 0.1 mg. The stand and beaker 

shown in Fig. 48 are part of a specific gravity kit obtained from Mineralab8. 

                                                

7 http://www.awscales.com/analytical-balances/166-al-201s-analytical-balance 
8 http://www.mineralab.com/SGK-B/ 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

Fig. 48. Specific Gravity Test Showing (a) Overall Test Setup, (b) Specimen and Wire 

Submerged in Water, and (c) Wire Submerged in Water 

 

The results of the tests using multiple samples from the three different panel types (16-ply, 

24-ply, and 96-ply) are reported in Table 11. In Table 11, ‘CV’ refers to the coefficient of 

variation. 
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Table 11. Specific Gravity Test Results 

Sample 
Mass: Specimen 

in Air (g) 

Mass: Wire + 

Specimen 

Submerged (g) 

Mass: Wire 

Submerged (g) 

Specific 

Gravity 

16-

Ply_1 

1.3496 0.8113 0.3258 

1.5615 

1.3502 0.8115 0.3273 

1.3498 0.8110 0.3245 

Average: 1.3499 Average: 0.8113 Average: 0.3259 

Std Dev: 0.00031 Std Dev: 0.00025 Std Dev: 0.00140 

CV (%): 0.023 CV (%): 0.031 CV (%): 0.430 

16-

Ply_2 

0.6993 0.5786 0.3258 

1.5661 

0.6990 0.5773 0.3246 

0.6996 0.5784 0.3256 

Average: 0.6993 Average: 0.5781 Average: 0.3253 

Std Dev: 0.00030 Std Dev: 0.00070 Std Dev: 0.00064 

CV (%): 0.043 CV (%): 0.121 CV (%): 0.198 

16-

Ply_3 

0.6867 0.5690 0.3257 

1.5514 

0.6865 0.5707 0.3266 

0.6854 0.5685 0.3242 

Average: 0.6862 Average: 0.5694 Average: 0.3255 

Std Dev: 0.00070 Std Dev: 0.00115 Std Dev: 0.00121 

CV (%): 0.102 CV (%): 0.203 CV (%): 0.372 

24-

Ply_1 

0.5534 0.5783 0.3845 

1.5513 

0.5548 0.5845 0.3841 

0.5536 0.5804 0.384 

Average: 0.5539 Average: 0.5811 Average: 0.3842 

Std Dev: 0.00076 Std Dev: 0.00315 Std Dev: 0.00026 

CV (%): 0.137 CV (%): 0.543 CV (%): 0.069 

24-

Ply_2 

0.567 0.5864 0.3846 

1.5488 

0.5684 0.5839 0.3841 

0.5678 0.5851 0.3832 

Average: 0.5677 Average: 0.5851 Average: 0.3840 

Std Dev: 0.00070 Std Dev: 0.00125 Std Dev: 0.00071 

CV (%): 0.124 CV (%): 0.214 CV (%): 0.185 

96-

Ply_1 

11.4349 5.1205 1.0709 

1.5514 

11.4348 5.1365 1.0614 

11.4355 5.1405 1.0722 

Average: 11.4351 Average: 5.1325 Average: 1.0682 

Std Dev: 0.00038 Std Dev: 0.01058 Std Dev: 0.00590 

CV (%): 0.003 CV (%): 0.206 CV (%): 0.552 
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96-

Ply_2 

11.3898 5.1416 1.0659 

1.5559 

11.3892 5.1441 1.0671 

11.3902 5.1221 1.0673 

Average: 11.3897 Average: 5.1359 Average: 1.0668 

Std Dev: 0.00050 Std Dev: 0.01205 Std Dev: 0.00076 

CV (%): 0.004 CV (%): 0.235 CV (%): 0.071 

 

The results in Table 11 are compiled in Table 12 with the average value in Table 12 being 

used as input to the material model. 

 

Table 12. Specific Gravity Summary and Statistics 

Sample Specific Gravity 

16-Ply_1 1.5615 

16-Ply_2 1.5661 

16-Ply_3 1.5514 

24-Ply_1 1.5513 

24-Ply_2 1.5488 

96-Ply_1 1.5514 

96-Ply_2 1.5559 

Average 1.5552 

Standard Deviation 0.0059 

Coefficient of Variation (%) 0.38 

 

2.3.8   Computation of Flow Rule Coefficients 

As discussed in Section 2.1, when relating flow rule coefficients to the plastic Poisson’s 

ratios (Eq. 2.30), the resulting system of equations is rank deficient. To overcome this 

problem, typically, one of the coefficients is set to a value of one, typically one of the 

values corresponding to the response in PMD (i.e. 
11H , 

22H , or 
33H ). For unidirectional 

composites, the value of 
22H  is often assumed as one (see Section 2.1). This leads to the 

2-direction tension or compression stress-plastic strain response being the representative 
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effective stress-effective plastic strain response of the material. However, the choice of the 

master curve may not be obvious for some composite materials. This section provides 

details of how the coefficient values can be determined without first assuming a value of 

one of the coefficients. The reasoning used to reduce the plastic potential function (Eq. 

2.13) for a unidirectional composite are provided by Eq. 2.31 through Eq. 2.33. The 

T800S/F3900 composite exhibited behavior which is consistent with the aforementioned 

assumptions (i.e. linear elastic in the fiber direction, isotropy in the 2-3 plane) thus the 

reduced form of the plastic potential function is written as 

 

    2 2 2 2 2 2

22 22 33 23 22 33 44 12 13 55 232h H H H H              2.56 

 

Under plane stress in the 1-2 plane, the plastic potential function is further reduced to 

 

 2 2 2

22 22 44 12h H H     2.57 

 

Under arbitrary loading in the 1-2 plane (Fig. 4 and Eq. 2.5), the plastic potential function 

(effective stress) is written as follows 

 

  xh g    2.58 

 

The plastic multiplier increment (Eq. 2.19, effective plastic strain increment) is given by 
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 

p

xxd
d

g





   2.59 

 

where the value of  g   is dependent on the flow rule coefficient values and the rotation 

of the PMD with respect to the loading axis 

 

        
1

4 2 2 2
22 44sin sin cosg H H         2.60 

 

The plastic strain in the loading direction is computed as 

 

 p t xx
xx xx

xxE


     2.61 

 

The results of tension or compression tests in the 1-2 plane can be used to determine the 

values of 
22H  and 

44H . In this alternate procedure, the results of θ = 10°, 15°, 30°, 45°, 

and 90° tension tests are utilized. These curves are referred to as fitting curves. The average 

stress-total strain response from each of the curves is compiled in Fig. 49. 
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Fig. 49. Compilation of 1-2 Plane Tension Stress-total Strain Curves at Off-axis Angles 

of θ = 10°, 15°, 30°, 45°, and 90° 

 

The first step in deriving the values of 
22H  and 

44H , is converting each of the fitting curves 

from stress-total strain into stress-plastic strain using Eq. 2.61. The resulting curves are 

shown in Fig. 50. 
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Fig. 50. 1-2 Plane Tension Stress-plastic Strain Curves at Off-axis Angles of θ = 10°, 15°, 

30°, 45°, and 90° 

 

With the assumption that the effective stress (h)-effective plastic strain (λ) curve is 

analogous to a composite property, the optimal values of 
22H  and 

44H  will result in the 

fitting curves collapsing onto a single unique curve in the effective stress-effective plastic 

strain space. Since there are currently only two degrees of freedom in the equation, 
22H  

and 
44H , an optimization technique can be used to find the optimal values with the only 

constraint being 0iiH   (Eq.  2.15). Using the current combination of 
22H  and 

44H , each 

of the fitting curves is converted into h-λ space using Eq. 2.58 and Eq. 2.59 respectively. 

From the resulting fitting curves, the average response is computed, ℎ̅-λ, for the current 
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values of 
22H  and 

44H . At each value of effective plastic strain, j , the average effective 

stress, 
jh , is computed as 

 

  
1

1 N

j i j

i

h h
N




    2.62 

 

where N is the number of fitting curves. To determine how far away the current 

combination of 
22H  and 

44H  are from optimal, the normalized root mean square error 

(NRMSE) is computed between the fitting curves and the average response as 

 

 

   
2

1 1

max min

1 M N

i j j

j i

h h
N

NRMSE
h h

 
 

 
 





  2.63 

 

where M is the number of points along the curves where the computation is performed. The 

range of effective stress in the average curve is used as the normalizing parameter to 

provide a consistent frame of reference since the magnitude of the effective stress varies 

greatly depending on the values of 
22H  and 

44H . The combination of 
22H  and 

44H  which 

minimizes the NRMSE is considered the optimal solution. Fig. 51 shows a comparison of 

the fitting curves in h-λ space for a non-optimal combination and an optimal combination. 
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(a) 

 
(b) 

Fig. 51. Fitting Curves in h-λ Space (a) Non-optimal 
22 2H  , 44 12H   and (b) Optimal 

22 4.97H  , 44 9.44H   

 

The optimal combination of 
22H  and 

44H  in Fig. 51b may not be unique since the NRMSE 

function is not convex. Fig. 52 shows the NRMSE surface as a function of 
22H  and 

44H  

with the computed optimal value denoted by a red circle. 

 

 
(a)  

(b) 

Fig. 52. NRMSE Surface (a) Three-dimensional View and (b) Plan-view 
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The dark blue region in Fig. 52 is a valley where the values of NRMSE are approximately 

equal to the value reported in Fig. 51. In fact, all combinations of 
22H  and 

44H  within this 

region have a nearly constant ratio illustrated by the linear relationship in Fig. 53. 

 

 
Fig. 53. Linear Relationship Between 

22H  and 
44H  in Minimum NRMSE Region 

 

The relationship between 
22H  and 

44H  is approximately 44

22

1.90
H

H
 . This result is 

consistent with the assumption that other researchers have made by taking 
22 1H  , 

effectively making the 2-direction tension or compression stress-plastic strain curve the 

master h-λ curve of the material indicating the proposed methodology offers a fairly 
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generalized method of initially computing a subset of the unknown flow rule coefficients. 

After computing 
22H  and 

44H , 
23H  is computed using Eq. 2.30. 

 

 23 23 22 32 33 32 22

p p pH H H H          2.64 

 

The value of 32

p , computed from 3-direction compression tests, is given in   
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Table 7 as 0.776  . The remaining unknown from Eq. 2.56 is 
55H  which can be computed 

using the same optimization procedure outlined in this section using the 2-direction tension 

curve as the master curve and the result from the 2-3 plane 45° off-axis compression test 

(Fig. 42b) as the fitting curve. The value of  g  , given by Eq. 2.60, changes to 

 

             
1

4 4 2 2 2
22 23 55cos sin 2 cos sing H H H        

 
  2.65 

 

The optimal flow rule coefficient values are presented in   
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Table 13. 
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Table 13. Optimal Flow Rule Coefficient Values for the T800S/F3900 Composite 

Coefficient Optimal Value 

11H  0.00 

22H  1.00 

33H  1.00 

44H  1.90 

55H  0.82 

66H  1.90 

12H  0.00 

23H  -0.776 

13H  0.00 

 

The flow rule coefficients shown in   
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Table 13 are used in all finite element simulations presented in this dissertation. 

 

The methodology discussed can be used to solve for the flow rule coefficients of any 

composite architecture. The only assumption made was related to the observed linear 

elastic behavior of the material in the 1-direction, 11 12 13 0H H H   . This assumption 

was necessary to preserve the physical admissibility of the resulting coefficients. For other 

composite architectures, there may be more degrees of freedom during the optimization, 

however, the process remains identical. Additionally, the choice of utilizing in-plane off-

axis tension curves for the initial fitting process is for convenience only. Strictly speaking, 

the 2-3 plane 45° off-axis compression data could have been used alongside the in-plane 

curves during the optimization process to solve for 55H  instead of in a serialized fashion. 

The proposed technique shows promise but may need to be refined further to streamline 

the process of deriving the flow rule coefficients. 

3   DAMAGE SUB-MODEL 

 Within OEPDMM, the damage sub-model handles the degradation of elastic stiffness prior 

to the onset of failure. The behavior is captured through the introduction of a stress space 

titled the effective stress space. This stress space estimates the stress that would be carried 

by the material had it not been subjected to damage and is not to be confused with the 

effective stress, h, introduced in the previous chapter. The behavior is captured through a 

set of uncoupled and coupled damage experiments accounting for damage from all possible 

sources of loading.  In this chapter the theoretical and implementation details of the damage 

sub-model, the experimental techniques used to derive the required input, and the results 
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of a case study using the T800S/F3900 carbon fiber/epoxy resin unidirectional composite 

system manufactured by Toray are presented. 

 

3.1   Theoretical Details 

In continuum damage mechanics (CDM) formulations utilized to model damage growth in 

materials such as concrete, isotropic damage formulations are often used (Kurumatani et 

al. 2016; Lemaitre 1985). Isotropic formulations attribute damage growth (elastic stiffness 

reduction) in a material to a single internal damage parameter, d. The general form of the 

constitutive relationship is written as 

 

    1 : 0 1t pd d    σ C ε ε   3.1 

 

Eq. 3.1 shows that all components in the stiffness tensor, C, are reduced by the same 

amount. These types of formulations have been shown to overestimate the growth of 

damage in fiber reinforced composites leading to a conservative prediction of the load 

carrying capacity of the material. Anisotropic damage growth models have been proposed 

to better represent the growth of damage in composites. Matzenmiller, Lubliner, and Taylor 

(1995) proposed a widely used model (MLT model) wherein anisotropic damage is 

utilized, e.g. LS-DYNA’s MAT162 uses a form of the MLT model in its CDM 

methodology (Yen 2012). The proposed form of the compliance tensor for a plane stress 

case is shown below 
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 
 
 
 

  

H ω   3.2 

 

where the variables ij  represent independent damage variables. The subscripts T and C 

indicate tension and compression respectively. The choice of whether a tension or 

compression damage variable is used in the computations depends on the sign of stress 

during the analysis. The MLT model offers attractive features such as handling damage 

growth due to tension and compression separately and reducing elastic stiffness 

components individually. One main disadvantage is that the growth of ij  depends only 

on ij . For example, stresses induced in the 2-direction will not influence the growth of 

11 . This type of damage is referred to as uncoupled damage. The MLT model does allow 

for a quasi-coupling effect as the values of 
22  and 

12  increase proportionally to each 

other since these are both considered as representing matrix damage modes. However, this 

formulation is still restrictive as explained next. 

 

A damage sub-model is necessary since the nonlinear behavior exhibited by fiber 

reinforced composite materials is likely due to a combination of both plastic flow, handled 

by the deformation sub-model, and microscopic damage, reflected in varying unloading 

moduli. The damage sub-model of OEPDMM utilizes experimentally derived damage 
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parameter-total strain curves to dictate the manner in which damage grows in the material. 

The underlying idea is to be consistent with the deformation sub-model and no assumptions 

are made regarding the architecture or behavior of the material. The damage model is based 

on the effective stress concept proposed by Kachanov (1958). The effective stress is related 

to the true stress through a fourth order damage tensor, M.  

 

 : effσ M σ   3.3 

 

where σ  is the Cauchy stress in the true space and eff
σ  represents stresses in the effective 

stress space. The true stress space refers to the stress that would be measured directly from 

an experiment whereas the effective stress space is in reference to the equivalent 

undamaged material. In general M is full tensor, shown in Voigt notation below. 

 

11 11 12 13 14 15 16 11

22 21 22 23 24 25 26 22

33 31 32 33 34 35 36 33

12 41 42 43 44 45 46 12

23 51 52 53 54 55 56 23

13 61 62 63 64 65 66 13

eff

eff

eff

eff

eff

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

 

 

 

 

 

 

   
   
   
   

   
   
   
    

    
eff

 
 
 
 
 
 
 
 
 
 

  3.4 

 

where the stress subscripts refer to the PMDs. The full damage tensor in Eq. 3.4 poses a 

problem since a multiaxial stress state in the effective space may be predicted by a uniaxial 

stress state in the true space, which is non-physical. Therefore, a semi-coupled directionally 

dependent tensor is used in the current implementation as 
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12 44 12
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13 66 13

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

eff

eff

eff

eff

eff

eff

M

M

M

M

M

M

 

 

 

 

 

 

    
    
    
    

     
    
    
             

  3.5 

 

The semi-coupled nature of M stems from each of the diagonal elements being a function 

of all effective stresses induced in the material, e.g.  11 22 33 12 23 13, , , , ,kk kk kk kk kk kk

kk kkM M d d d d d d  

where the repeating index does not imply a summation and the damage parameters are 

defined as kl

ijd  indicating damage has been induced in direction ij and the reduction of 

stiffness has manifested in direction kl. For full generalization, both normal and shear 

damage are attributed to all normal and shear terms. The contribution of damage terms to 

the overall stiffness reduction is handled through a path independent multiplicative series 

derived through a superposition principle. For example, consider a volume of undamaged 

material (State 0, Fig. 54a) being loaded first in the 2-direction with all other stress 

components being zero. The damage, in the form of cracks and voids, induced in the 2-

direction caused by a stress applied in the 2-direction is labeled 22

22d  (State 1, Fig. 54b). The 

new apparent 2-direction elastic stiffness of the material is given by 

 

  1 22 0

22 22 221E d E    3.6 
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where 0

22E  is the elastic stiffness of the undamaged material and 1

22E  is the apparent elastic 

stiffness after loading to State 1 has ceased.  From State 1, the material is unloaded to a 

stress-free state, State 2 (Fig. 54c). Under the hypothesis that damage is an irreversible 

thermodynamic process (Lemaître and Desmorat 2005), the damage induced by loading 

from State 0 to State 1 remains present in the material. The apparent elastic stiffness in the 

2-direction at the end of State 2 is given by 

 

  2 1 22 0

22 22 22 221E E d E     3.7 

 

From State 2, a uniaxial stress in the 3-direction is now applied, State 3 (Fig. 54d). The 

damage induced by loading in the 3-direction is assumed to result in further reduction of 

the apparent 2-direction elastic stiffness. This damage is labeled, 22

33d , a coupled damage 

parameter. The apparent elastic stiffness in the 2-direction at the end of State 3 is given by 

       3 22 2 22 1 22 22 0

22 33 22 33 22 33 22 221 1 1 1E d E d E d d E         3.8 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Fig. 54. Assumed Damage Process (a) Undamaged Material (State 0), (b) Damaged 

Caused by 2-direction Stress (State 1), (c) Stress Free Material after Sustaining Damage 

(State 2), and (d) Additional Damage Caused by 3-direction Loading (State 3) 

 

The same assumptions are used to obtain the contribution of all possible stresses on all 

apparent elastic stiffness values in the PMD and PMP. Additionally, no assumption is made 

regarding the symmetry of the material, meaning damage induced due to compression or 

tension loading in a given PMD are treated independently. The sign of the effective stress 

is the metric used to differentiate between tension and compression regimes. Eq. 3.5 is 

expanded and shown by Eq. 3.9. 
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  3.9 

 

Eq. 3.9 shows 81 possible independent parameters used to describe the damaged state of 

the material. There are three additional parameters corresponding to uncoupled off-axis 

tests, 45

45

12

12d 


, 45

45

23

23d 


, and 45

45

13

13d 


, that are used to ensure convexity of the yield surface, for a 

total of 84 possible parameters. While the number of damage parameters appears to be 

large, it is unlikely that more than a handful of these parameters are significant for a given 

composite.  
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In the original formulation of the sub-model, the damage parameters were defined with 

respect to the effective plastic strain,  , i.e.  kl

ijd  . This is the strategy typically used 

when modeling isotropic materials as there is usually only a single damage parameter and 

the hardening behavior of the material is typically isotropic. The value of the effective 

plastic strain is a single scalar variable at a given integration point in the finite element 

model, meaning all of the damage parameters would grow irrespective of the PMD or PMP 

components contributing to the effective plastic strain. This leads to a conservative estimate 

of the damage induced in the model under the given loading conditions. In the next 

iteration, herein referred to as the strain-based implementation, the directional plastic 

strains were used as the internal state variable for tracking damage growth, i.e.  kl p

ij ijd   

(Hoffarth 2016; Khaled et al. 2019b). While this provided a better physical representation 

of how the damage grows in the composite, the formulation lead to conservative results 

once again. The problem stems from the plastic strain interaction allowed by the plastic 

potential function, Eq. 2.13, through the ijH  values. In this case, stress-free plastic strains 

may excite damage parameters erroneously. Measuring the contribution of a directional 

plastic strain component to damage becomes difficult to perform experimentally. This is 

discussed in the experimental methods and results section of this chapter.  

In the current implementation, herein referred to as the stress-based implementation, the 

effective stress is used as the internal state variable for tracking growth of the damage 

parameters, i.e.  kl eff

ij ijd  . This strategy more easily suppresses stress-free strains from 

exciting damage parameters and still allows for anisotropic growth of damage. However, 
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one of the shortcomings is that under a state of constant stress with increasing plastic strain, 

damage will not increase, and all nonlinearity will be handled by the deformation sub-

model. In the next section, implementation details are provided, including preprocessing 

of the experimental data and incorporation of damage into the plasticity algorithm. 

 

3.2   Implementation Details 

The implementation of the damage sub-model is separated into two parts: pre-processing, 

how input data is converted into a suitable form for the material model, and interaction 

with the deformation sub-model, how the concept of effective stress is used in the plasticity 

algorithm. The first assumption made in deriving the damage is that of strain equivalence 

(Lemaitre and Chaboche 1978). The hypothesis states that the strain behavior of the 

damaged material is represented by the constitutive relationship of the undamaged material 

where the stress is replaced by the effective stress. The effective stress rate can then be 

written as 

 

  :eff p σ C ε ε   3.10 

 

This assumption allows for all plasticity computations to be performed in the effective 

stress space, essentially decoupling the deformation and damage sub-models. The 

conversion of the input stress-total strain curves, described in Section 2.1, is affected as the 

curves are now converted and stored as effective stress-effective plastic strain, i.e. eff

ij 

. An outline of the conversion of the stress-total strain curves to effective stress-effective 



140 

 

plastic strain curves is as follows. First, input curves are converted from stress-total strain 

to effective stress-total strain to effective stress-plastic strain to effective stress-effective 

plastic strain, shown schematically as 

 

        t eff t eff p eff

ij ij ij ij ij ij ij                3.11 

 

In this step,    t eff t

ij ij ij ij      , the input damage parameter-total strain curves are 

used.  

 

  
 
 1

t

ij ijeff t

ij ij ij t

ij ijd

 
 





  3.12 

 

Eq. 3.12 shows that only uncoupled damage terms are used in the conversion. This is done 

since during the monotonic test, it is assumed that only uncoupled damage has manifested 

itself in the true stress-total strain response. This is consistent with the underlying reason 

for utilizing the effective stress as the independent internal state variable for damage 

growth. Second, using the assumption of strain equivalence, the plastic strains can then be 

computed as 

 

  
 
  

 
1

t eff t

ij ij ij ijp t t t

ij ij ij ijij t
ijij ij ij

Ed E

   
   


   


  3.13 
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where ijE  is the Young’s modulus in direction ij. In the case of shear curves, ijE  is replaced 

with 2 ijG  since the input is assumed to be in terms of tensorial shear strain. Third, using 

the plastic work equivalence assumption, discussed in Section 2.1, the effective plastic 

strain is computed as 

 

 
 

eff P

ij ij

eff

ij

d

h

 



    3.14 

 

where the value of the plastic potential function in Eq. 3.14 is a function of the effective 

stresses. The resulting eff

ij   curves are used to track the evolution of flow stresses 

during the simulation. At this point, all uncoupled and coupled damage parameter-total 

strain curves are replaced with damage parameter-effective stress curves, i.e. 

   ij t ij eff

kl kl kl kld d  . Fig. 55 shows the pre-processed results from transforming the user 

data from the total stress-total strain curve to effective stress-effective plastic strain for two 

cases - with and without damage. 
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Fig. 55. Example Effective Stress-effective Plastic Strain Curves Constructed Using the 

Same Total Stress-strain Data and Subsequently Used to Track Yield Stress During 

Simulation for Two Different Cases – One Involving Deformation Only and the Other 

Involving Deformation and Damage 

 

Fig. 55 shows that, since damage has been assumed to account for a portion of nonlinearity, 

the degree of plasticity in the given direction has decreased, as evidenced by the lower 

ultimate value of effective plastic strain. The verification tests presented in a later section 

show that this does not influence the nonlinear response of the material under monotonic 

loading and that the strain equivalence hypothesis is satisfied. 
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The damage model is seamlessly incorporated into the incremental plasticity algorithm. 

All plasticity computations are performed in the effective stress space since the unknown 

variable being solved for is the effective plastic strain,  , and, through the assumption of 

strain equivalence, is the same in the true stress space and effective stress space. Denoting 

subscripts t as the previous instance of time and t+1 as the current instance of time (for the 

unknown in the computations), the incremental algorithm is as follows.  

 

1. The effective stress from the end of the previous time step, 
eff

tσ , is obtained from history 

and is used to compute the trial stress for the current time step. 

 

  1 1:
trial

eff eff total

t t t t   σ σ C ε   3.15 

 

The undamaged stiffness tensor, C , is used as it is consistent with the effective stress. 

All subsequent plasticity computations are performed using the effective trial stress. 

The yield function (Eq. 2.3) as well as the equation for the plastic multiplier increment 

(Eq. 2.24) are computed in terms of the effective stress. Additionally, the yield function 

coefficients, iiF  and 
iF  (Eq. 2.4), are computed using the yield stress curves which 

were converted using the damage parameters, Fig. 55. The radial return algorithm used 

to solve the nonlinear system of equations for 
1t   can be found in an earlier work 

(Hoffarth et al. 2016). 
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2. After converging to a value of the plastic multiplier increment, 
1t  , the final stress 

state is computed using the flow rule, Eq. 2.14, and by using a linear decomposition of 

the total strain into elastic and plastic components. 

 

  
 

1 1 1

1

:
trial

eff eff

t t t trial
eff

t

g
  




 


σ σ C

σ
  3.16 

 

The value of 1

eff

tσ is stored in history to be used at the beginning of the next time step 

in computing the elastic trial stress. 

 

3. All damage parameters shown in Eq. 3.9 are then obtained for both 
eff

tσ and 1

eff

tσ . For 

each independent damage term, the larger of the two values is chosen to preserve the 

irreversibility condition. 

 

         
1 1

max ,ij ij eff ij eff

kl kl kl kl klt t t
d d d 

 
   3.17 

 

4. Finally, the stresses are converted from the effective stress space into the true stress 

space and passed back to LS-DYNA using the updated damage tensor. 

 

   1 11

ij eff

t kl tt
d 

σ M σ   3.18 
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The next section provides the methodology for deriving the damage parameters introduced 

in this section. The process and results of a case study using the T800S/F3900 composite 

are illustrated and presented. 

 

3.3   Experimental Methods 

The input data required to drive the damage model is in the form of damage parameter-

total strain curves. The data is used to describe the damage that the specimen incurs under 

monotonic loading. However, the data is obtained from a series of cyclic loading curves. 

The assumption is that no additional damage is induced in the specimen during the elastic 

unloading/reloading cycles. The experimental methods are presented for obtaining both 

uncoupled and coupled damage parameters. 

 

DIC was used to obtain strain field data during the experiments. The damage parameters 

are obtained through a series of cyclic loading procedures. In general, the procedures 

involve loading a given specimen in a certain direction into the nonlinear regime, the onset 

of which is determined from monotonic testing conducted earlier. After loading the 

specimen into the nonlinear regime (i.e. initial state to point 1 in Fig. 56a and Fig. 56b), it 

is unloaded to a stress-free state (i.e. point 1 to point 2 in Fig. 56a and Fig. 56b), and 

subsequently loaded elastically in the direction of interest. During the elastic loading cycle, 

three additional conditioning cycles are performed, for example, from point 2 to point 1a 

in Fig. 56a and Fig. 56c. The conditioning cycles yield multiple measurements of the elastic 

stiffness at the same level of damage and thus allow for discerning between reduction in 
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stiffness and experimental error. Fig. 56 shows how the uncoupled and coupled 

experimental procedures work.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 56. Illustration of Experimental Procedure for (a) Uncoupled Damage Tests and (b), 

(c) Coupled Damage Tests 
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In this study, three cycles were performed on each specimen since three data points is the 

minimum required to discern any nonlinear behavior. However, any number of cycles 

could potentially be performed, and the number could be determined by observations made 

during investigative testing or by visual observations of crack growth during monotonic 

testing. As shown in Fig. 56(a-b), the final point of unload was chosen to be two standard 

deviations below the failure strain in the given direction. This was done to ensure that there 

was not a complete loss of load carrying capacity in the specimen before the desired 

number of cycles was performed, thereby accounting for potential specimen differences 

and experimental errors. The failure strain was obtained from monotonic testing to failure 

in the direction of interest. Additionally, Fig. 56 shows that the maximum stress point for 

the conditioning cycles, denoted 1a, 3a, etc. in Fig. 56, was approximately 80% of the stress 

induced when unloading was initiated. This was done to ensure no additional damage was 

accidently induced during the conditioning.  

 

Prior to performing the cyclic procedure, the specimen is loaded elastically in the direction 

of interest to obtain the initial undamaged modulus. After performing the cyclic loading 

experiments, the damaged modulus must be computed corresponding to the value of strain 

at each point of unload, e.g. points 1 and 3 in Fig. 56a and Fig. 56b. The modulus can be 

computed using a variety of methods, two of which were used in the current research. The 

first is to perform a linear regression on the loading or unloading path during the 

interrogation cycles, illustrated by the dashed lines in Fig. 57b. The slope of the regression 

model is taken as the modulus and the values for all load and unload conditioning cycles, 

at the current value of strain, are averaged. The average slope is taken as the modulus 
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corresponding to the current level of damage. The second technique is used when the 

hysteresis loops become large and the load/unload path is highly nonlinear making it 

difficult to choose the region to perform the linear regression. In this case, an average slope 

is used which corresponds to the line between the point where unloading is initiated and 

the point corresponding to the stress-free state. An alternative method may be used to 

characterize damage for specimens exhibiting large hysteretic loops which involves 

computing the energy dissipated during loading/unloading which is a function of the size 

of the hysteretic loops. However, since the dissipated energy is likely due to both crack 

formation and heat dissipation caused by plastic flow, decoupling the two responses is 

necessary. This procedure would require characterizing the thermal properties of the 

composite which is part of the planned future work. Fig. 57 and Fig. 58 illustrate how both 

the methods are used. 
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(a) 

 
(b) 

Fig. 57. General Procedure Used to Determine Reduced Modulus with Mostly Linear 

Load/Unload Behavior (a) Full Experimental Curve and (b) One Cycle Isolated 
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Fig. 58. General Procedure Used to Determine Reduced Modulus with Large Hysteretic 

Loops 

 

The hysteretic behavior shown in Fig. 58 is not captured in the constitutive model as only 

linear elastic unloading behavior is considered. The damage parameters can now be 

computed as 
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where  t

id   is the damage parameter corresponding to the total strain at unload point i, 

 t

iE  is the elastic stiffness corresponding to unload point i, and  0

tE   is the elastic 

stiffness corresponding to the undamaged specimen. After computing the damage 

parameter corresponding to all unload points, a damage-total strain curve is generated. The 

damage values begin at the initial plastic strain value corresponding to the direction in 

which damage is induced and ends at the final strain value of the corresponding monotonic 

curve of the direction in which damage is induced. Data can be extrapolated to the initial 

plastic strain value and final strain value using curve fitting techniques.  

 

3.4   Experimental Results 

While there are 84 possible damage parameters, obtaining all of them is unnecessary (and 

would most likely be impractical) for most composites. The damage-related experiments 

in the current study focus on characterizing the in-plane damage behavior of the T800-

F3900 carbon fiber/epoxy resin unidirectional composite. The subset of parameters was 

chosen based on observations made during testing of the composite for the deformation 

sub-model. Only those in-plane directions or planes which exhibited significant 

nonlinearity were deemed to contribute significantly to the damaged state of the composite. 

Table 14 summarizes the damage parameters that have been obtained experimentally. In 

Table 14, the term interrogate means to perform cyclic loading in the elastic regime so as 

to measure the elastic stiffness at the current strain value in the loading direction, i.e. the 

direction in which damage is being induced. 
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Table 14. Damage Parameters Characterized in This Study for the T800S/F3900 

Composite 

Test name and parameter Description 

Uncoupled 2-direction compression  22

22
C

C
d   Load specimen in 2-direction 

in compression, then 

interrogate specimen in 

elastic regime in 2-direction 

in compression 

Uncoupled 1-2 plane shear  12

12d   Load specimen in 1-2 plane 

in shear, then interrogate 

specimen in elastic regime in 

1-2 plane in shear 

Coupled 2-direction compression 2-direction tension 

 22

22
T

C
d   

Load specimen in 2-direction 

in compression, then 

interrogate specimen in 

elastic regime in 2-direction 

in tension 

Coupled 2-direction compression 1-2 plane shear 

 12

22C
d  

Load specimen in 2-direction 

in compression, then 

interrogate specimen in 

elastic regime in 1-2 plane in 

shear 

 

3.4.1   Uncoupled 2-direction Compression Test 

The uncoupled 2-direction compression test is used to quantify the reduction in the 2-

direction compression elastic stiffness as a result of damage induced by loading in the 2-

direction in compression  22

22
C

C
d . This test was performed because, when performing QS-
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RT monotonic tests, the 2-direction compression stress-strain curve exhibited significant 

nonlinearity. It was concluded that the response was dominated by the plastic response of 

the matrix, cracking of the matrix, and interfacial debonding between the fiber and matrix, 

thus indicating that a portion of the inelastic response was due to damage. The specimen 

used to perform this test is shown in Fig. 17b. 

 

Three representative stress-strain curves are shown in Fig. 59. Additionally, the model 

curve from the monotonic loading QS-RT experiments is also shown. The cyclic QS-RT 

curves are mostly enveloped by the monotonic QS-RT curves and the failure points are 

within the statistical distribution observed in the monotonic tests (Fig. 26b). From the 

cyclic loading tests (Fig. 59), the damage-total strain curves are generated (Fig. 60). 
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Fig. 59. Representative Stress-strain Curves for Uncoupled 2-direction Compression 

Tests 
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Fig. 60. Damage Parameter  22

22
c

c
d -Total Strain  22  Curves for Uncoupled 2-direction 

Compression Tests 

 

Note that the damage parameter has a value of zero where the onset of nonlinearity is 

deemed to begin and ends at the failure strain corresponding to the QS-RT model curve 

shown in Fig. 59. The model curve in Fig. 60 was generated by performing linear 

regressions on each individual replicate, extrapolating the data to the start and end points, 

and finally using an unweighted point-by-point average to generate the model data. Since 

the damage does not show an asymptotic behavior (Replicates 1-3 in Fig. 60), the damage 

was assumed to keep increasing after the final experimental damage data point since it is 

likely that cracks and other forms of damage in the material will continue growing until 

complete failure. Fig. 61 shows a typical specimen after testing. 
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(a) 

 
(b) 

Fig. 61. Uncoupled 2-direction Compression Specimen after Testing (a) Plan-view and 

(b) Side-view 

 

Though testing the specimens to failure is not required, it was done with the uncoupled 2-

direction compression to determine if the additional cyclic loading would have an impact 

on the failure when compared to the monotonically loaded specimens. Fig. 59 and Fig. 61 

show that the failure stress/strain and the failure mode are generally unaffected by cyclic 

loading.  

 

3.4.2   Uncoupled 1-2 Plane Shear Damage Test 

The uncoupled 1-2 plane shear test is used to quantify the reduction in the 1-2 plane shear 

elastic stiffness as a result of damage induced by loading the 1-2 plane in shear  12

12d . This 

test was performed because, when performing QS-RT monotonic tests, the 1-2 plane shear 

stress-strain curve exhibited significant nonlinearity. The response was caused by plastic 

deformation of the matrix and intralaminar delamination, thus indicating that a portion of 

the inelastic response was due to damage. The specimen used to perform this test is shown 

in Fig. 20. 
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Four representative stress-strain curves are shown in Fig. 62. Additionally, the model curve 

from the monotonic loading QS-RT experiments is also shown. Fig. 63 shows the resulting 

damage parameter  12

12d -total strain  12 curve. 

 

 
Fig. 62. Representative Stress-Strain Curves for Uncoupled 1-2 Plane Shear Tests 
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(a) 

 
(b) 

Fig. 63. Damage Parameter-Total Strain Curves for Uncoupled 1-2 Plane Shear Tests (a) 

Raw Data and (b) Processed Data With Model Curve 
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Fig. 63 shows that there is significant damage induced in the material at relatively low 

strains and the damage parameter asymptotically approaches the final value. This is 

supported by the observations made during the monotonic loading experiments where the 

size and number of cracks after a certain level of strain, plateaued as well as large cracks 

forming at the root of the notch, consistent with observations made in other research 

(Odegard and Kumosa 2000; Pierron and Vautrin 1998). The cracks present in the material 

influence the load transfer mechanisms of the structure and manifest themselves as a large 

reduction in the apparent elastic stiffness. None of the specimens from other damage tests 

show macro cracks prior to failure and hence show significantly lower values of damage 

than the uncoupled 1-2 plane shear tests. Fig. 64 shows a typical specimen after testing. 

 

 
Fig. 64. Uncoupled 1-2 Plane Shear Specimen after Testing 
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The shear specimens were not taken to a point where there was a complete loss of load 

carrying capacity as (i) it was not necessary for the purpose of this research since 

extrapolation techniques are used to obtain damage parameters for all values of strain, and 

(ii) the issues with inducing shear failure in a unidirectional composite have been well 

documented by various other researchers (Odegard and Kumosa 2000; Pierron and Vautrin 

1998). 

 

3.4.3   Coupled 2-direction Compression 2-direction Tension Damage Test 

The coupled 2-direction compression 2-direction tension test is used to quantify the 

reduction in the 2-direction tension elastic stiffness as a result of damage induced by 

loading the 2-direction in compression  22

22
T

C
d . This test was performed because, when 

performing QS-RT monotonic tests, the 2-direction compression stress-strain curve 

exhibited significant nonlinearity, partially due to damage as previously mentioned. The 

damage present in material should hypothetically have an effect on the elastic stiffness in 

multiple coordinate directions as the load transfer mechanisms are altered due to loss of 

connectivity in the material’s microstructure. The specimen used for this experiment is the 

same as the one shown in Fig. 17b. Fig. 65 shows all cycles, both the compression and 

tension loading phases, performed on a single specimen. 
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(a) 

 
(b) 

Fig. 65. Representative Stress-strain Curves for a Single Replicate of the Coupled 2-

direction Compression 2-direction Tension Test (a) Compression Cycles and (b) Tension 

Cycles 
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Fig. 66 shows the resulting damage parameter  22

22
T

C
d -total strain  22 curves for the three 

replicates. 

 

 
Fig. 66. Damage Parameter-Total Strain Curves for Coupled 2-direction Compression 2-

direction Tension Tests 
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compression is often ignored in other damage models but is captured in the proposed 

damage formulation within OEPDMM. 

 

3.4.4   Coupled 2-direction Compression 1-2 Plane Shear Damage Test 

The coupled 2-direction compression 2-1 plane shear test quantifies the reduction in the 2-

1 plane shear elastic stiffness as a result of damage induced by loading the 2-direction in 

compression  12

22C
d . This test was performed because, when performing QS-RT monotonic 

tests, the 2-direction compression stress-strain curve exhibited significant nonlinearity, 

partially due to damage, as previously mentioned. A schematic of the specimen used for 

this experiment is shown in Fig. 67. 

 

 
Fig. 67. Specimen Geometry Used for Coupled 2-direction Compression 2-1 Plane Shear 

Tests (Dimensions in mm) 

 

The specimen uses the standard Iosipescu shear test geometry and leads to a non-constant 

gage section. This causes only a small region between the notches to be in a state of uniform 

compression. The measured stiffness comes from the 2-1 shear test (Fig. 67) rather than 
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the 1-2 shear test (Fig. 19) since the compression loading is in the 2-direction. The results 

of the QS-RT experiments show that while the overall though the stress-strain curve is 

different between the two experiments, the initial elastic regimes are essentially the same 

(Fig. 41). Hence the assumption is that the damage induced in the specimen will have the 

same effect when loading the material using either orientation. The tested specimen is 

shown in Fig. 68. The observed failure pattern is similar to that observed in the 2-direction 

compression tests using straight sided test coupons (Fig. 27b). 

 

 
(a) 

  
(b) 

Fig. 68. Coupled 2-direction Compression 2-1 Plane Shear Investigative Specimen after 

Testing (a) Plan View and (b) Top Edge View 

 

Fig. 69 shows all cycles (both the compression and shear loading phases), performed on a 

single specimen. 
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(a) 

 
(b) 

Fig. 69. Representative Stress-strain Curves for a Single Replicate of the Coupled 2-

direction Compression 2-1 Plane Shear Test (a) Compression Cycles and (b) Shear 

Cycles 
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Compression cycles shown in Fig. 69a were performed using a modified CLC fixture (Fig. 

10g,h) to allow for the smaller specimen size. The shear cycles were performed with a 

standard Iosipescu shear test fixture (Fig. 10d). Fig. 70 shows the resulting damage 

parameter  12

22C
d -total strain  22

C curves for three replicates. 

 

 

 
Fig. 70. Damage Parameter-Total Strain Curves for Coupled 2-direction Compression 2-1 

Plane Shear Test 
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and is likely due to dispersion in the results caused by experimental variabilities. The 

procedure used to obtain these parameters called for moving the specimen between two 

separate test fixtures. This was probably a large contributor to the experimental error and 

variation in the results. Additionally, the specimen used for this experiment, Fig. 68, is 

likely not conducive to a proper compression test. A significant amount of specimen 

misalignment was observed after compression loading which is likely another contributor 

to the erroneous damage parameter values. The testing method is being investigated to 

better understand the damage modes and obtain reproducible and reliable data. 

 

Finally, it should be noted that due to experimental limitations (brought about by required 

specimen geometries and available composite panel thicknesses), damage experiments 

could not be conducted to find the through-thickness damage curves. As shown in the 

validation simulations, their effects may be gaged by numerical experimentation. 

 

3.5   Numerical Verification 

Prior to using the implemented theory in impact test simulations, single element (SE) 

verification tests are used to ensure that the damage model is implemented correctly in the 

computer program and yield acceptable results. The simulations include both monotonic 

and cyclic loading. The former tests are used to illustrate that, even with the inclusion of 

damage, the nonlinear response remains unaffected. The latter tests illustrate that during 

unloading the stiffness reduction takes place according to the input curves. Examples of 

both an uncoupled and a coupled simulation are presented for the monotonic and cyclic 
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loading test cases. Fig. 71 shows a schematic of the unit volume cube finite element model 

used for both verification tests. 

 

 
(a) 

 
(b) 

Fig. 71. SE Verification Test Finite Element Model Schematic with Boundary Conditions 

(a) Displacement-controlled Simulations and (b) Load-controlled Simulations (Arrows 

Which Have Been Crossed Out Represent Restrained Degrees of Freedom) 

 

All simulations were successfully run using LS-DYNA solid element formulations 1 

(reduced integration) and 2 (full integration). However, only the reduced integration 

simulations results are presented. Unless otherwise stated, the stress-based damage 

formulation is used. 

 

3.5.1   Uncoupled 2-direction Compression Damage Test 

The uncoupled 2-direction compression verification simulation uses the damage data 

presented in Fig. 60 (i.e. only using 22
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C
d ). The simulations were performed under 

displacement control. The results of the verification tests for both the monotonic and cyclic 

loading cases as well as with deformation and damage (labeled Def+Dam) and without 

damage (labeled Def) included in the input are shown in Fig. 72. 
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(a) 

 
(b) 

Fig. 72. Uncoupled Damage SE Verification Test Results (a) Monotonic Loading and (b) 

Cyclic Loading 
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Fig. 72a shows that the effects of the uncoupled damage do not manifest under monotonic 

loading. This is the expected result since plasticity computations are performed in the 

effective stress space and the uncoupled damage parameter has been used to modify the 2-

direction compression input stress-total strain curve, illustrated by Fig. 55. However, the 

role of the damage model is clear when performing loading and unloading cycles, shown 

in Fig. 72b. The cyclic loading curve, with the uncoupled 2-direction compression damage 

parameter included in the model, exhibits a more compliant elastic unloading path which 

is consistent with the input damage parameter-total strain curve. Additionally, Fig. 72b 

shows that the cyclic loading curves are enveloped by the corresponding input 2-direction 

compression stress-strain curve that is consistent with the theory as well as the 

experimental results presented in the previous section. 

 

3.5.2   Coupled 2-direction Compression 2-direction Tension 

The coupled 2-direction compression 2-direction tension verification test uses the damage 

data presented in Fig. 66 (i.e. only using 22

22
T

C
d ). The simulations were performed under load 

control in order to avoid accidently entering the plastic regime when the stress reversal 

occurs. Damage is induced by loading the model in compression and interrogating the 

elastic tension regime. The unload path in the compression regime (i.e. negative stress) 

follows the undamaged modulus while the elastic regime in the tension regime (i.e. positive 

stress) follows the damaged modulus. The results of the SE verification test for both the 

monotonic and cyclic loading cases as well as with deformation and damage and without 

damage included in the input are shown in Fig. 73. 
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(a) 

 
(b) 

Fig. 73. Coupled Damage SE Verification Test Results (a) Full Stress-Strain Response 

with Dashed Lines Around Close-up Regime and (b) Close-up Tension Regime 
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Fig. 73 shows a clear reduction in the elastic tension stiffness as the plastic strain in 

compression increases. The difference in the elastic stiffness is small but consistent with 

the input data shown in Fig. 66. A second verification test was performed under 

displacement control to illustrate how coupled damage affects the yield surface. While the 

compression yield stress remains unchanged between the two simulations, the tension yield 

stress is expected to show softening when the coupled damage term is included. Fig. 74 

shows the results of the verification tests with Fig. 75 showing a close-up of the tension 

regime. 

 

 
Fig. 74. Stress-Strain Responses of the Simulations. Loading Goes in the Following 

Order 1 → 2 → 3 → 4 → 5 
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Fig. 75. Close-up of tension regime of the full stress-strain curve shown in Fig. 74 
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monotonic loading experiment, only uncoupled damage is being induced in the specimen. 

Thus, the 2-direction tension yield surfaces for the deformation only simulation and the 

deformation and coupled damage simulation are effectively the same. However, during the 

when the stress is converted from effective stress space to true stress space at the end of 

0

5

10

15

20

25

30

35

40

45

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

-0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0.000

St
re

ss
 (

M
P

a)

St
re

ss
 (

p
si

)

Strain (in/in, mm/mm)

2-direction Compression 2-direction Tension Cyclic Test

Def

Def+Dam

3

4

5



174 

 

the plasticity algorithm, the coupled damage parameter is used resulting in a reduction of 

the observed yield stress. Finally, during the unloading from point 4 to 5 in Fig. 75, the 

paths converge to the same strain value indicating that the strain equivalence assumption 

holds true. 

 

3.5.3   Comparison of Stress-Based Implementation with Strain-Based Implementation 

As mentioned in the introductory portion of this chapter, damage implementation, in the 

course of the research work has gone through multiple evolutions. The motivating factor 

is the desire to appropriately capture the damage evolution within the material without 

being over-conservative. During verification testing of the implementation using 

directional plastic strain  p

ij  as the tracking variable, the results when coupled damage 

parameters were included were conservative. Fig. 76 shows a test case wherein the effect 

of including  22

33 33
C

T T

td   on a monotonic 2-direction compression curve is illustrated using 

the directional plastic strain implementation. The SE finite element model used for the 

investigative simulation is shown in Fig. 71a. 
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Fig. 76. Effect of Coupled Damage Parameters on Monotonic Loading Using Strain-

based Damage Implementation 
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loading. The same simulation is performed using the implementation wherein directional 

effective stress  eff

ij  is the tracking variable and the results are presented in Fig. 77. 

 

 
Fig. 77. Effect of Coupled Damage Parameters on Monotonic Loading Stress-based 

Damage Implementation 
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4   COHESIVE ZONE MODELING 

 

Within OEPDMM, there are currently no provisions for handling interlaminar failure. This 

is by design since the OEPDMM is a material model for composite lamina and not for the 

interlaminar zone in a composite laminate. However, using MAT 213 in conjunction with 

cohesive zone modeling (CZM) helps in building the representative finite element models. 

The additional modeling comes in the form of using connective elements, called cohesive 

zone elements (CZE), between composite parts within the finite element model. The CZE 

essentially act as nonlinear springs. The properties of the CZE are in the form of traction 

separation laws (TSL) which describe the tractions that develop as a function of 

deformation in the element. Separate TSL are defined for both Mode I and Mode II fracture 

behavior with an analytical interaction law describing the mixed behavior. This section 

provides experimental details, including methodologies and results, used in deriving 

arbitrarily shaped TSL, using the T800S/F3900 carbon fiber/epoxy resin unidirectional 

composite system. Additionally, verification tests are performed showing how the derived 

TSL perform in a finite element environment. 

 

4.1   Experimental Methods 

Both Mode I (normal separation) and Mode II (axial shear) fracture behavior can be 

captured using cohesive zone models. The required fracture properties can be determined 

from the double cantilever beam (DCB) and end-notched flexure (ENF) tests since they 

have been shown to induce pure Mode I and Mode II states respectively (Gillespie Jr. et al. 

1986b) and the data can be used to generate the two distinct traction-separation laws (TSL). 
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In the current work, the DCB and ENF experiments were performed in accordance with 

ASTM standards (D30 Committee 2013b, 2014), respectively. The test coupons were made 

from composite panels comprised of 24 unidirectional plies of the same fiber orientation. 

A Teflon film was inserted at the midplane of the panels during the curing process to 

generate an initial crack in the system. Fig. 78 shows one of the composite panels after the 

specimens were machined from it. 

 

 

Fig. 78. T800/F3900 Composite Panel Used to Generate Test Coupons (Hatched Area 

Shows Where the Teflon Film Was Placed) 

 

The experiments were performed under quasi-static displacement-controlled conditions. 

The test frame stroke rates were set to approximately 1.2 mm/min (0.05 in/min) and 0.6 

mm/min (0.025 in/min) in the DCB and ENF experiments, respectively. The force values 

were recorded during the experiments using the test frame load cell. Two-dimensional 
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digital image correlation (DIC) was used to monitor full displacement fields of the 

specimens, including the region near the crack tip.  

 

One camera was used to monitor the displacements in the locale of the crack tip and another 

monitored the entire specimen during the experiment to ensure that the experiment was 

being conducted correctly. Optical techniques, such as DIC, have been used by other 

researchers in monitoring crack behavior to characterize the fracture process, including 

TSL (Blaysat et al. 2015; Fernandes and Campilho 2017; Reiner et al. 2017; Shen and 

Paulino 2011; Yoneyama et al. 2006). Force data recorded from the load cell in conjunction 

with the displacement data recorded from DIC comprise the entirety of the data needed to 

generate the TSL.  

 

In accordance with the relevant ASTM standards, a pre-cracking procedure was performed 

for both the DCB and ENF specimens. Pre-cracking is necessary since, during the 

manufacturing process, a resin rich zone develops near the edge of the Teflon insert which 

may lead to erroneous results. The DCB specimen was pre-cracked by loading the 

specimen in Mode I until the crack tip propagated approximately 5 mm (0.2 in). Similarly, 

the ENF specimens were loaded in Mode II until the crack tip propagated approximately 5 

mm (0.2 in). Additionally, a compliance calibration, the details of which are presented 

later, was performed on the ENF specimens in accordance with ASTM D7905/D7905M–

14 (D30 Committee 2014). This was done to determine the compliance of the specimen as 

a function of the initial crack length. This procedure was performed on both non-pre-
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cracked and pre-cracked ENF specimens. Fig. 79 shows schematics of the DCB and ENF 

experiments. 

 

 

 
(a) 
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(b) 

Fig. 79. Schematics of the (a) DCB and (b) ENF Experiments 

 

Fig. 79a shows piano hinges that were used to induce Mode I loading in the DCB 

experiments and Fig. 79b shows a standard three-point bend fixture used to induce Mode 

II loading in the ENF experiments. The stainless-steel piano hinges were bonded to the 

composite test coupons using 3M-DP420 two-part toughened epoxy. Each surface was 

roughened with sand paper and cleaned with isopropyl alcohol to ensure a proper bond. In 

the DCB experiment, the crack length is defined as the perpendicular distance from where 

the load is being applied to the crack tip, while in the ENF experiment, the crack length is 

defined as the distance from the support to the crack tip, labeled as a0 in Fig. 79b. In both 

the DCB and ENF experiments, the crack lengths were taken as recommended by the 

respective ASTM standards. During the compliance calibration for the ENF specimens, the 

free span of the specimen, Ls, was held constant. The effect of different crack lengths on 

the elastic compliance was measured by sliding the specimen along the supports rather than 

changing the position of the supporting fixture, i.e. the span was held constant to examine 

the change in compliance as a function of only the crack length. Since the distance from 

the edge of the specimen to the crack tip was different in the non-pre-cracked and pre-



182 

 

cracked tests, the spans used in the two experiments were different. The location of the 

crack tips in the pre-cracked specimens were visually determined from DIC analysis. 

 

4.2   Experimental Results 

The results and data reduction techniques of both the DCB and ENF experiments are 

discussed in this section. 

 

4.2.1   Double Cantilever Beam Tests 

Table 15 shows the average dimensions of the pre-cracked DCB specimens (or, replicates). 

Note that b is the width of the specimen. 

 

Table 15. Dimensions of Pre-cracked DCB Replicates 

Replicate a0 (mm, in) h (mm, in) b (mm, in) L (mm, in) 

1 72.6, 2.86 2.39, 0.094 25.7, 1.01 126.7, 4.99 

2 67.1, 2.64 2.39, 0.094 25.4, 1.00 127.0, 5.00 

3 73.7, 2.90 2.36, 0.093 25.4, 1.00 126.7, 4.99 

 

Fig. 80 shows the load-displacement results, measured at the load line (location where the 

load is applied), for three replicates of the pre-cracked DCB tests. 
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Fig. 80. Load-Displacement Curves from Three Replicates of the Pre-cracked DCB 

Experiment 

 

DIC was used to compute the normal crack tip opening displacement. Fig. 81 shows the 

points above and below the crack tip used in computing the separation of the crack tip. The 

total separation is taken as the difference in the vertical displacement between two point-

pairs at the same location along the length of the specimen, and multiple point pairs were 

used along the specimen length to track the opening as the crack propagated through the 

specimen. The additional point pairs were used as an aid in determining when the crack tip 

had reached that location by comparing the crack tip opening displacement (CTOD) at the 

points along the length with the CTOD of the initial crack at initiation of crack propagation. 
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Fiber-bridging can be observed in Fig. 81. As shown later, this manifests as an apparent 

toughening of the material as the crack length increases.  

 

 
Fig. 81. Analysis Points Used for DIC Analysis of Crack Tip Separation in DCB Test 

 

The Mode I energy release rate, IG , can be computed using various methods. Based on the 

results of the testing required for the deformation sub-model, the composite exhibited linear 

elastic behavior when loading the material in tension through the thickness up until the 

peak load, and hence the material was assumed to conform to LEFM assumptions (Fig. 

24c). Other authors (Andrews and Massabò 2007; Högberg et al. 2007; Rajan et al. 2018; 

Thouless 2018) have derived expressions for the J integral (Rice 1968) around the crack 

tip during a DCB experiment and used the results as the energy release rate when 

attempting to account for various aspects of the experiments (i.e. crack tip rotations, shear 

deformation, small scale yielding) that the ASTM standard does not include in subsequent 

analyses. The standard compliance method was used to compute the energy release rate as 
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where  C a  is the compliance of the specimen at a crack length a . The compliance 

method was compared with the method proposed by Högberg and co-workers (Högberg et 

al. 2007) and Thouless (2018), respectively, and the three methods showed little difference 

in the resulting energy values. Since no unloading cycles were performed, the compliance 

was taken as the ratio of displacement to load for a given time instance. An exponential 

function of the form shown in Eq. 4.2 was used to fit the experimental data to generate 

 C a  as 

 

   2 4

1 3

r a r a
C a re r e    4.2 

 

This method partially accounts for the rotation of the crack tip. Fig. 82 shows the plots of 

compliance against crack length along with the associated least squares regression 

equation. 
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Fig. 82. Compliance vs Crack Length for Three Replicates of the DCB Experiment. 

Equations Shown Derived from Regression Analysis Using USCS Units 

 

Using Eq. 4.1 along with the equations shown in Fig. 82 and the normal crack tip 

separation, n  obtained from DIC at the initial crack tip location, the nG   plots were 

generated as shown in Fig. 83. 
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Fig. 83. nG   Plots for Three Replicates of the DCB Experiment 

 

The nG   plots end when initiation of crack propagation takes place, determined to be 

when the softening in Fig. 80 begins. When making assumptions of linear elasticity under 

monotonic loading, the J integral is equivalent to the energy release rate, and can be written 

in terms of the work done by the tractions at the crack tip as 

 

  
0

I IJ G d



       4.3 

 

Differentiating Eq. 4.3 with respect to the crack tip separation,  , gives rise to  
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  
J

 






  4.4 

 

Using the surface tractions estimated from Eq. 4.4 and the data shown in Fig. 83, the TSL 

curves were generated as shown in Fig. 84. As stated earlier, the term model curve is used 

to denote the curve used in the subsequent (deterministic) finite element simulations and is 

computed as the average response from the three replicates. 

 

 
Fig. 84. Experimentally Obtained TSL from Three Replicates of the DCB Experiment 

 

It should be noted that both the DIC and load data were smoothened using the robust locally 

estimated scatterplot smoothing (rloess) algorithm available in MATLAB (MATLAB and 
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of the curves shown in Fig. 83 was sensitive to the amount of noise in the experimental 

data. 

 

4.2.2   End Notched Flexure Test 

The process used to generate the TSL for the Mode II behavior was similar to that used for 

Mode I. Table 16 shows the specimen dimensions for multiple replicates of the pre-cracked 

ENF test. 

 

Table 16. Dimensions of Pre-cracked ENF Replicates 

Replicate a0 (mm, in) h (mm, in) b (mm, in) Ls (mm, in) 

1 30.0, 1.18 2.39, 0.094 25.7, 1.01 100.1, 3.94 

2 30.0, 1.18 2.39, 0.094 25.7, 1.01 100.1, 3.94 

3 30.0, 1.18 2.36, 0.093 25.7, 1.01 100.1, 3.94 

 

All replicates had the same initial crack length of 30 mm (1.18 in). The analysis shown in 

subsequent sections utilizes this initial crack length as per the ASTM recommendation. 

Fig. 85 shows the load-displacement results of the pre-cracked ENF tests at the load line. 
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Fig. 85. Load Displacement Curves from Three Replicates of the Pre-cracked ENF 

Experiment 

 

As with DCB experiments, DIC was used to compute the shear crack tip displacement 

throughout the experiment. Fig. 86 shows the points above and below the original crack tip 

used in computing the shear displacement of the crack tip. The total separation is taken as 

the difference in the horizontal displacement between the two points since the rotations 

computed by DIC were small, i.e. tan  . The crack tip location in the pre-cracked 

experiment was determined from the compliance calibration performed on the non-pre-

cracked specimens. The compliance calibration yielded a relationship between compliance 

and crack length for the given span. Upon unloading during the initial pre-cracking, the 

compliance was measured, and the relationship was used to determine where the initial 
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crack tip was located for the pre-cracked procedure. Fig. 86 shows one of the specimens 

near the end of the experiment.  

 

 
Fig. 86. The Two Analysis Points Used for DIC Analysis of Crack Tip Separation in ENF 

Test 

 

The J-integral was computed using the closed form solution proposed by Leffler and co-

workers (Leffler et al. 2007) as 

 

 
2 2

2 3

9 3

16 8

t
II

PP a
J

Eb h bh


    4.5 

 

where E is the Young’s modulus of the material along the axis of bending and t  is the 

shear displacement at the crack tip. The J-integral expression shown in Eq. 4.5 was used 

to compute the crack driving force instead of the traditional compliance calibration method 

since during shear experiments in the 1-3 plane, nonlinear behavior was observed implying 

that the assumptions used in LEFM would likely not be applicable (Fig. 33c). The solution 

proposed by Leffler and co-workers is intended for adhesive joints with isotropic 

adherends. The values obtained from Eq. 4.5 were compared with the standard compliance 
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method recommended by the ASTM (D30 Committee 2014) and with a solution proposed 

by Zhao and co-workers (Zhao et al. 2016) specifically for composites. The energies 

predicted by Eq. 4.5 were higher than those predicted by the ASTM by approximately 20%. 

However, the results were consistent with the solution proposed by Zhao and co-workers. 

The J-integral was used along with the shear displacement measurements, at the initial 

crack tip location, from the DIC analysis to generate the Mode II TSL using Eq. 4.3 and 

Eq. 4.4. The plots of tJ   are shown in Fig. 87. 

 

 
Fig. 87. tJ   Plots for Three Replicates of the ENF Experiment 
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Rather, the point where the load suddenly drops was taken instead and the maximum value 

of JII in Fig. 88 corresponds to that point. The point where the load suddenly drops is 

approximately where the J-integral reaches its peak value and then plateaus indicating that 

the tractions have become zero. Eq. 4.4 was used with the data in Fig. 87 to estimate the 

tractions at the crack tip providing the TSL data (Fig. 88). 

 

 
Fig. 88. Experimentally Obtained TSL from Three Replicates of the ENF Experiment 
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behavior may be attributed to a few sources with the most predominant factor being the 

inadequate spatial resolution in the DIC analysis. Each pixel represented approximately 

2.54x10-4 mm (10-3 in) which may not have provided enough fidelity in the data to track 

the crack. The large (initial) slope may also be attributed to the effect of friction between 

the crack surfaces (Carlsson et al. 1986). The portion of the curves in Fig. 87 exhibiting 

extremely large slopes was ignored. A straight line was connected from the origin to the 

point in the TSL curves where the data began to appear to be reliable. 

 

While the proposed approach of experimentally deriving the traction-separation shows 

promise, the proposed approach can be improved. Mixed-mode bending tests will yield 

parameters for the mixed mode fracture law yielding enhanced capabilities for modeling 

delamination. Using DIC to measure displacement and strain in the vicinity of 

discontinuities is a huge challenge. While there have been a few methods proposed to 

overcome the issue (Poissant and Barthelat 2010), the techniques haven't been thoroughly 

validated in the literature nor are they widely available in commercial software packages. 

Refining the techniques used in making measurements near discontinuities in a material 

will hopefully lead to higher fidelity data coming from tests like the DCB or ENF. 

 

4.3   Numerical Verification 

Both DCB and ENF models of the same dimensions as the experiments were built and 

analyzed using LS-DYNA to verify that the proposed TSL are appropriate. First, a 

convergence analysis and boundary condition study were performed to find the appropriate 

finite element (FE) model with a view to balancing compute time and accuracy. Three 
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element sizes were compared in both the DCB and ENF simulations: 2.54, 1.27, and 0.635 

mm (0.1, 0.05, 0.025 in). The three DCB models had 1000 solid and 230 CZ elements, 

8000 solid and 920 CZ elements, and 64000 solid and 3680 CZ elements, respectively. 

Similarly, the three ENF models had 1300 solid and 330 CZ elements, 10400 solid and 

1320 CZ elements, and 83200 solid and 5280 CZ elements, respectively. The elements 

representing the composite material had an aspect ratio of unity while the cohesive zone 

elements had a thickness of approximately 2.54x10-4 mm (10-5 in). These element sizes 

were chosen since they are similar to the element sizes used in the impact validation 

simulation presented in Chapter 5 of this dissertation. The composite parts were modeled 

using LS-DYNA’s MAT 213 with material properties presented in Chapter 2. A single 

layer of cohesive zone elements was used at the mid-plane of the model which spanned 

from the initial crack tip to the edge of the composite specimen. LS-DYNA’s MAT 186 

(LSTC 2017b) was used to model the cohesive zone elements using the TSL model curves 

shown in Fig. 84 and Fig. 88. MAT 186 allows for arbitrarily shaped normalized TSLs to 

be input and accounts for mixed-mode delamination using the Benzeggagh-Kenane law 

with mixed mode fracture law exponent set equal to 1.0 (Benzeggagh and Kenane 1996). 

Damping was utilized through the *DAMPING_GLOBAL keyword in LS-DYNA with 

valdmp, the system damping constant used as a multiplier on the force vector due to system 

damping, set equal to 638.5 (LSTC 2017a). The chosen value of valdmp is equivalent to 

twice the fundamental frequency of the structure which was obtained by performing a 

modal analysis in LS-DYNA on the final, converged FE models respectively. Both the 

DCB and ENF simulations used the same valdmp value. In all verification and validation 

simulations, the global energies – total energy ratio, sliding energy ratio, kinetic energy 
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ratio, internal energy ratio and damping energy ratio, were checked to ensure that the 

models were behaving properly (Deivanayagam et al. 2014). In the verification tests, the 

kinetic, damping, and sliding energies were significantly lower than the internal energy 

meaning the quasi-static behavior was being captured properly. 

 

4.3.1   Double Cantilever Beam Test 

In the DCB experiment, the FE model used 8-node fully integrated hexahedral solid 

elements where the initial direction of the fibers in all the elements was oriented in the 

global x-direction. An initial crack length of approximately 71.1 mm (2.8 in) was used 

since that was the average initial crack length of the pre-cracked DCB specimens in the 

experiments (Table 15). Additionally, the stainless-steel tabs were modeled using standard 

steel elastic material properties. Fig. 89 shows the finite element model with boundary 

conditions. 

 

 
Fig. 89. FE Model of the DCB Specimen Showing Nodes on Steel Piano Hinges Where 

Displacement Is Prescribed in the Y-direction, Nodes on the Back Face Where All 

Translational Degrees of Freedom Are Restrained, and Highlighted Initial Location of 

Cohesive Zone Elements Across Entire Width of Specimen 
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Fig. 90 shows the results of the simulations compared with the experimental data. 

 

 
Fig. 90. DCB Simulation Results 

 

The reaction load shown for the simulation was taken as the sum of the nodal reaction 

forces through the width of the top arm of the model (Fig. 89). Fig. 90 shows that the 

element size had a minor effect on the peak load predicted by the simulation. The 

differences between the FE simulation and experimental results can possibly be explained 

as follows. The peak load is under predicted by approximately 5%-10% across all three 

simulations. During a sensitivity analysis, the peak load was dictated by the peak traction 

and the critical energy release rate value used in the simulation. Fig. 84 shows a peak 

traction of approximately 17.2 MPa (2500 psi). Since the traction is computed directly from 

the data shown in Fig. 83, the method used in computing the energy release rate, the crack 
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tip separation, or a combination of both may have contributed to the difference. The source 

of error in the crack tip separation computations may be caused by various sources. First, 

the spatial resolution in the DIC analysis may not have been good enough causing improper 

computations of the displacement fields. Second, it has been shown experimentally and 

predicted by simulation that the crack front in a DCB specimen is not straight through the 

width where delamination begins (Jiang et al. 2014). Since the pre-cracking procedure 

propagates the initially straight manufactured crack by a small increment, the crack front 

is likely no longer straight and choosing where to measure the crack tip separation becomes 

difficult as the results are sensitive to even a small change (±0.012 in, ±0.5 mm) in the 

sampling location. Fig. 91 shows the delamination front over time predicted by the FE 

simulation suggesting that delamination does not take place evenly across the width, i.e. 

the pre-cracked DCB specimen’s initial state was probably not modeled correctly. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 91. Delamination Front Predicted by the Two Finer FE Models of DCB Experiment 

(a) t=0.0s, (b) t=0.055s (Onset of Delamination), (c) t=0.07s, and (d) t=0.15s 

(Termination of Simulation) 

 

More advanced techniques, such as x-ray tomography, may need to be used to determine 

where the crack tip is located since visual observation through DIC leads to a high amount 

of subjectivity which may cause errors to propagate through the entire analysis. 

 

In addition to the peak load being under predicted, post peak slope of the simulation also 

under predicts the experimental results. This was likely caused by fiber bridging (Fig. 81) 

causing an apparent increase in the critical energy release rate as the crack front propagated 

through the specimen. The cohesive zone modeling approach is the ideal way to handle 

such toughening behavior given that it is intended for nonlinear fracture processes. As 

previously mentioned, other researchers have employed techniques to overcome 

toughening behavior exhibited by fiber reinforced composites (Heidari-Rarani et al. 2013; 
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Li et al. 2005). However, the methodologies proposed by those researchers have 

deficiencies such as relying on numerical calibration or relying on superposition of 

assumed responses to account for the contribution of the composite constituents to the 

overall response. Part of the difficulty in deriving the traction-separation law, solely from 

experimental data, is in measuring the size fracture process zone using DIC since the 

technique assumes the material is a continuum and discontinuities may lead to erroneous 

strain measurements. The extent to which the bridging fibers away from the crack tip 

contribute to the apparent material toughness is a part of future work and should aid in 

refining the proposed technique. Using Eq. 4.1 and the compliance equations shown in Fig. 

82, crack growth resistance curves (R-curves) were generated for each of the three 

replicates showing a rising trend (Fig. 92). 

 

 
Fig. 92. R-curves for Three Replicates of the DCB Experiment Showing Rising Trend 
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The increase in crack growth resistance was not captured in the finite element simulation 

as all the cohesive zone elements along the length of the specimen were modeled using the 

same TSL shown in Fig. 84 thus underestimating the overall load carrying capacity of the 

specimen. 

 

4.3.2   End-Notched Flexure Test 

In the ENF experiment, the FE model used 8-node fully integrated hexahedral solid 

elements were used to model the composite parts where the initial direction of the fibers in 

all elements were oriented parallel to the free span of composite specimen. An initial crack 

length of approximately 30 mm (1.18 in) was used since that was the estimated initial crack 

length of the all pre-cracked ENF specimens in the experiments (Table 16). Fig. 93 shows 

the finite element model with support and loading fixtures that were modeled as rigid 

bodies with standard elastic properties of steel.  

 

 
Fig. 93. FE Model of the ENF Specimen Including Support and Loading Fixtures and 

Highlighted Location of Cohesive Zone Elements 

 

The two supporting fixtures were completely fixed from translation while the loading 

cylinder was fixed completely except a prescribed displacement rate in the vertical 
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direction. The *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE definition was 

used to handle contact between the composite specimen and the support/loading 

components. A static and dynamic coefficient of friction of 0.1 was used between the 

composite and steel components (Naik et al. 2009). Fig. 94 shows the results of the 

simulations compared with the experimental data and shows the FE simulations under 

predict the average peak load observed in the experiments by approximately 2%-5%. Fig. 

94 shows that the element size had a minor effect on the peak load predicted by the 

simulations. The general shape of the load-displacement curve is predicted well by the 

simulations including the nonlinear region after the peak load. 

 

 
Fig. 94. ENF Simulation Results Using Experimentally Obtained TSL 

 

0 0.5 1 1.5 2 2.5 3 3.5

0

500

1000

1500

2000

0

50

100

150

200

250

300

350

400

450

500

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Load Line Displacement (mm)

R
ea

ct
io

n
 L

o
ad

 (
N

)

R
ea

ct
io

n
 L

o
ad

 (
lb

)

Load Line Displacement (in)

Experimental Replicates

El Size=2.54 mm

El Size=1.27 mm

El Size=0.635 mm



203 

 

It should be noted that typically, calibration the TSL would be performed to achieve a better 

match in the verification simulations and subsequently use the resulting values in the 

validation simulation. However, one of the goals of this research is to determine whether 

the original, experimental TSL can be used confidently in validation testing. Because of 

this, the unaltered model curve from Fig. 84 and Fig. 88 are used in impact validation 

simulations presented in the next chapter.  
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5   OEPDMM VALIDATION STUDY 

 

Several impact validation simulations were performed with various combinations of the 

data derived in Chapters 2, 3, and 4. The first objective is to provide a study showing how 

the various input parameters in OEPDMM influence the simulation results. Several 

combinations of deformation, damage, and cohesive zone input were used and compared. 

The second objective is to highlight the efficacy of the developed tabulated plasticity-

damage approach. The simulation results are compared with experimental data provided 

by NASA Glenn Research Center (NASA-GRC). Several comparison metrics were utilized 

including nodal displacements, principal strains, and delamination patterns to compare the 

finite element simulation results with experimentally obtained results. Both quantitative 

and qualitative comparisons are made. 

 

5.1   Experimental Methods 

Dynamic impact tests were performed at NASA-GRC (Pereira 2017) in accordance with 

ASTM D8101/D8101M-17 (D30 Committee 2017b). An aluminum (AL 2024) projectile 

(Fig. 97d) with a mass of 50 g was used to strike a T800S/F3900 composite plate at 

different velocities. The composite plates (305 x 305 x 3.1 mm) had a total of 16 

unidirectional plies. The projectile was fired using a single stage gas gun. A total of 14 

impact tests were conducted with the projectile velocity varying between 119 ft/s (36.27 

m/s) and 530 ft/s (161.54 m/s) corresponding to impact energies of 24.25 lb-ft (32.88 J) 

and 481.16 lb-ft (652.37 J) respectively. One of the tests, identified as LVG 1064 (236 ft/s, 
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71.93 m/s), was selected to validate the deformation and damage sub-models as well as the 

cohesive zone model. Fig. 95 shows the LVG 1064 panel after the experiment. 

 

 
Fig. 95. LVG 1064 Impact Panel after Testing 

 

After testing, the LVG 1064 panel exhibited minor surface damage while containing the 

projectile. Ultrasound C-scan imaging of the panel (Fig. 96) showed localized damage near 

the point of impact indicating possible delamination. These characteristics make the test an 

ideal candidate to exercise the deformation and damage sub-models in MAT 213 as well 

as the cohesive zone model without utilizing a composite failure model. The lower velocity 

experiments showed little to no damage in the C-scan image meaning during the 

simulation, the damage sub-model likely would not have been exercised. The higher 

velocity experiments showed major failure or complete perforation of the panel meaning a 

failure model introducing element erosion would likely be necessary to accurately simulate 

the event. LVG 1064 provided a proper middle ground. 
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Fig. 96. Ultrasound C-scan Image of LVG 1064 after Testing. 

 

The ultrasound C-scan technique provides a superimposed image of where delamination 

or damage has occurred through the thickness of the panel. However, the technique does 

not provide insight into where delamination has occurred or the extent of delamination 

between specific ply boundaries. More invasive techniques are likely required to obtain 

that information. Fig. 97 shows images of the experimental test setup. 

 

Delamination
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(a) 

 
(b) 

Gas gun assembly

Test chamber

Gas gun barrel

Panel clamping fixture

Light source Light source

High-speed camera 
viewports

High-speed camera 
viewports
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(c) 

 
(d) 

Fig. 97. Experimental Test Setup Used for Dynamic Impact Tests (a) Gas Gun Assembly 

and Test Chamber, (b) Internal View of Test Chamber, (c) Panel in Clamping Fixture, 

and (d) Hollow AL 2024 Projectile with Radiused Front Face 

 

Full details of the test setup are provided by Melis and co-workers (Melis et al. 2018). DIC 

was used to generate full displacement fields during the impact event on both the front side 

(impact side) and back side (opposite to impact side) of the composite panel. DIC images 

of the front of the panel were captured using two Photron SA1.19 cameras capturing images 

at 40,000 fps. DIC images of the back of the panel were captured using two Photron SA-

Z10 cameras capturing images at 80,000 fps.  Fig. 97b shows viewports in the test chamber 

for the high-speed cameras while Fig. 97c shows the typical speckle pattern present on both 

sides of the panel. 

 

                                                

9 https://photron.com/fastcam-sa1-1/ 
10 https://photron.com/fastcam-sa-z/ 
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5.2   Finite Element Modeling 

A convergence analysis and boundary condition study were performed to find the optimal 

finite element mesh (balancing accuracy and computational cost) to carry out the 

simulations. Fig. 98 shows a schematic representation of one quarter of the FE model of 

the composite panel with the modeling details. 

 

 

Zone A: Length of 3”, 49 elements 

along length, in-plane aspect ratio 

approximately 1.03:1, max in-plane 

element length of 0.063” 

 

Zone B: Length of 2”, 25 elements 

along length, in-plane aspect ratio 

approximately 1.09:1, max in-plane 

element length of 0.08” 

 

Zone C: Length of 1”, 10 elements 

along length, in-plane aspect ratio 

approximately 1.12:1, max in-plane 

element length of 0.11” 

 

D = 5.5” (Distance from center of 

plate to center of bolt hole regions) 

 

Ø1 = 0.378” (Bolt hole region 

diameter) 

 

RA = 10” 

RB = 5” 

RC = 6” 

 

Fig. 98. Impact Panel FE Model Characteristic Dimensions 

 

Fig. 98 shows that only the region of the panel contained within the clamping fixture was 

modeled for the simulations. The regions outside of the fixture were assumed to have 
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negligible effect on the response of the system. Each ply in the layup was modeled using 

one element through the thickness (thickness of 0.0075”). Fig. 99a shows the nodes which 

were fixed from in-plane translation (restraint imposed by the bolts) while Fig. 99b shows 

nodes which were fixed from out-of-plane translations (restraints imposed by the clamping 

fixture). These restraints were obtained from a study performed to observe how sensitive 

the finite element model response is to changes in the boundary conditions under low and 

high velocity impact conditions. In Fig. 99, the 0° plies (Fig. 100) are initially oriented 

along the global x-axis.  

 

 
(a) 

 
(b) 

Fig. 99. FE Model Used for Composite Plate Showing (a) Nodes Assigned Bolted 

Boundary Conditions and (b) Nodes Assigned Clamped Boundary Conditions 

 

The *CONTACT_ERODING_ SURFACE_TO_SURFACE contact definition in LS-

DYNA (LSTC 2017a) was used to handle contact between the aluminum impactor and 

composite panel while the *CONTACT_ERODING_SINGLE_ SURFACE contact 

definition was used to handle contact between the individual plies of the composite panel. 

Impactor Impactor
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The eroding contact definitions ensure the contact remains active when new free surfaces 

are created after the cohesive zone elements are eroded at failure. Fig. 100 shows a cross-

section schematic of the FE model including the location of the CZE layers. 

 

 
Fig. 100. Cross-section of FE Model of Composite Panel 

 

LS-DYNA’s MAT 24 (LSTC 2017b), a piecewise linear plasticity model with strain rate 

effects, was used to model the aluminum impactor. The strain-rate dependent information 

was taken from publicly available data (Nicholas 1980). Fig. 101 shows the FE model of 

the aluminum whose dimensions can be found in ASTM D8101/D8101M-17 (D30 

Committee 2017b). Table 17 provides a summary of the FE model. 

 

0°
90°

+45°
-45°

CZE
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(a) 

 
(b) 

Fig. 101. FE Model of Aluminum Projectile Used in Impact Simulations (a) Isometric 

View and (b) Cross-section 

 

Table 17. Full FE Model Characteristics 

Component Total 

Number of 

Elements 

Total 

Number of 

Layers 

Element Type (LS-DYNA 

Element Formulation) 

Composite parts 390 000 16 Hexahedral solid (integration 

scheme varies) 

Aluminum 

impactor 

17 000 15 Hexahedral solid (elform=1) 

Cohesive zone 

elements 

350 000 - Non-zero thickness 

hexahedral element 

(elform=19) 
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5.3   Comparison Between OEPDMM Predictions and Experimental Results 

A variety of runs were performed with different combinations of input parameters to gain 

insight into the sensitivity of the material model to the data. The runs include parametric 

studies using different combinations of deformation and damage related input, a parametric 

study illustrating how the element formulation used affects the predicted response, and 

finally a comparison of the strain-based and stress-based damage implementations. 

 

5.3.1   Deformation and Damage Sub-Model Study 

Several runs were performed to exercise the deformation and damage sub-models using 

different combinations of material data input. The quasi-static/room temperature data 

presented in Chapter 2 was used to drive the deformation sub-model. The damage 

parameter model curves presented in Chapter 3 were used as input to the damage sub-

model.   



214 

 

Table 18 summarizes the five runs that were performed, each using a distinct combination 

of input parameters. 
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Table 18. Model Characteristics of the FE Simulations 

Material 

Model ID 

Model Characteristics Included Damage 

Parameters 

FOMND Fully orthotropic model with no 

damage parameters 

None 

FOMID Fully orthotropic model with in-plane 

damage parameters only 

22

22
C

C
d , 12

12d , and 22

22
T

C
d  

TIMND Transversely isotropic model with no 

damage parameters 

None 

TIMID Transversely isotropic model with in-

plane damage parameters only 

22

22
C

C
d , 12

12d , and 22

22
T

C
d  

TIMIOD Transversely isotropic with in-plane 

and out-of-plane damage parameters 

22

22
C

C
d , 12

12d , 22

22
T

C
d , 33

33
C

C
d , 13

13d , 

and 33

33
T

C
d  

 

Nominally, one would expect the unidirectional composite to be transversely isotropic. 

However, micrograph images along with experimental data show that this is likely not the 

case for this particular composite at the laminate level.  “Fully orthotropic” (  
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Table 18) indicates the input used for the model was taken directly from the results of the 

corresponding experiments. “Transversely isotropic” indicates that all 3-direction 

parameters were set to the 2-direction counterparts. Damage related data have been 

experimentally obtained for a subset of the in-plane damage parameters: 22

22
C

C
d , 

12

12d , 22

22
T

C
d , 

and 12

22C
d . A model including in-plane damage only would use these parameters. Using the 

transverse isotropy assumption, 33

33
C

C
d , 

13

13d , 33

33
T

C
d , and 

13

33C
d  are also included in the 

simulation by setting them equal to their in-plane counterparts and a model including out-

of-plane damage would use these parameters. The transversely isotropic simulations were 

run both with and without out-of-plane damage to determine which parameters had the 

most significant effect on the response. 

 

LS-DYNA’s MAT 186 (LSTC 2017b) was used for the cohesive zone elements with the 

model curves in Fig. 84 and Fig. 88 as input. The size of the cohesive zone elements, near 

the point of impact, used in the validation simulation is approximately 1.5 mm (0.06 in) 

and is within the range of the element sizes used in the DCB and ENF simulations studies. 

The unaltered model curves from Fig. 84 and Fig. 88 were used as input to MAT 186. The 

Benzeggagh-Kenane mixed mode law (Benzeggagh and Kenane 1996) was used with the 

mixed-mode exponent (XMU) set to 1.0 in the simulation, corresponding to a linear 

relationship between mixed mode fracture toughness and the mode-mixity. 
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The first metric used for comparison is the out-of-plane displacement of the backside of 

the panel. Fig. 102 shows the out-of-plane displacement field captured from the experiment 

and the simulations at the instance of time when the peak displacement occurs.  
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(a) 

 
(b) 

 
(c)  

Fig. 102. Out-of-Plane Displacement Contour (a) Experiment, (b) TIMID Simulation, and 

(c) TIMIOD Simulation (t=4.75(10)-4) 

 

Qualitatively, the contours produced by the simulation are consistent with the experiment. 

Fig. 103 provides a quantitative comparison of the out-of-plane displacement of the center 

point of the panel in both the experiment and the simulations.  
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Fig. 103. Out-of-Plane Displacement Time History Comparison of the Center of the 

Composite Plate 

 

The experimental data shown is choppy because the small surface cracks at the impact 

location caused DIC data to be lost. The simulations were all terminated before the 

composite panel stopped oscillating since most of the damage observed in the experiment 

happened near the time of impact. Models utilizing only in-plane damage parameters show 

little to no change when compared with deformation only runs. Inclusion of the 3-direction 

damage parameters has the largest effect on the response of the system as is evidenced by 

the difference in the response between TIMID and TIMIOD. TIMIOD yields a higher 

estimate of the peak displacement than TIMND. This is expected as the stiffness of the 

material has been reduced. Additionally, the out-of-plane displacement graphs of the 
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transverse isotropy models which include damage (TIMID, TIMIOD), match the 

experimental data better than the deformation only models. Both the impacted panel and 

the simulation showed permanent deformations that were too small to compare against 

each other. 

 

The next metric used for comparison is the maximum principal strain of the backside of 

the panel. Fig. 104 shows the maximum principal strain field from the experiment and the 

simulations at the instance of time just before the peak value occurs. 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 104. Maximum Principal Strain Contour (a) Experiment, (b) TIMID Simulation, and 

(c) TIMIOD Simulation (t=1.04(10)-4 s) 

 

The maximum principal strain contour produced by the simulations compare favorably 

with the experimental results. Fig. 105 provides a quantitative comparison of the maximum 

principal strain of a point to the right of center in both the experiment and the simulations 

respectively. 

 

 



221 

 

 
Fig. 105. Maximum Principal Strain Comparison Time History Comparison to the Right 

of Center of the Composite Plate 

 

Fig. 105 shows that all of the models consistently overestimate the experimental response 

with the fully orthotropic models providing the closest match. The comparison of the 

principal strain at a single point may be misleading since it provides only a local 

comparison of the plate response and is subject to numerical error as strain is the gradient 

of displacement and any noise in the displacement will propagate during strain 

computations. The final metric used for comparison is the delamination and damage 

observed in the panel. Fig. 106 provides a comparison of the damage exhibited in the 

experiment, obtained through ultrasonic scan of the panel after the test, and the interlaminar 

delamination predicted by the finite element model. 
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(a) 

 
(b) 

 
(c) 

Fig. 106. Delamination Plot Comparison (a) Scanned Image from Ultrasound C-scan of 

the Tested Panel, (b) Simulation, and (c) TIMIOD Simulation 

 

The dark region in the center of Fig. 106b and Fig. 106c correspond to failed cohesive zone 

elements - LS-Prepost (LSTC 2018b) was used with a transparency of 90% to show 

delamination through the thickness of the model. The location and overall shape and size 

of the experimental and simulation results are quite similar. Since the scanned image does 

not indicate between which layers delamination has occurred, the simulation results were 

processed to answer that question. Fig. 107 shows the failed cohesive zone elements 

between each ply starting from the side of the panel opposite the impact (Ply 16-15 

boundary). The images show that visually observable delamination has occurred in 10 ply 

boundaries (15-14, 13-12, 12-11, 11-10, 10-9, 8-7, 7-6, 5-4, 4-3, 3-2).  
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Fig. 107. Cohesive Zone Element Failure Between Adjacent Plies in the FE Model 

(TIMIOD Simulation) 

 

Though failure of the cohesive zone was captured in the simulation, the surface cracks 

observed in the experiment were not captured by the finite element model since no 

failure/erosion criteria were used for the composite parts. However, Fig. 108 shows a 

comparison of the surface cracks from the experimental panel with the contour plots of two 

dominant damage parameters,  12

12d  and   33

33
C

C
d  at the instance of time when the size of 

the damage zone has stabilized. Amongst the damage parameters included in the 

simulations (  
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Table 18), the dominant damage parameters are defined as those whose final values are the 

largest when compared to their peak damage values from the experiments.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 108. Dominant Damage Parameter Observed in (a) TIMID Simulation  12

12d   and (b) 

TIMIOD Simulation  33

33
T

C
d  . 

 

Each of the impact simulations presented thus far have been performed using solid 

elements with a reduced integration scheme to represent the composite parts. However, 

reduced integration elements are prone to hourglassing, spurious energy modes that may 
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lead to erroneous results. Fig. 109 shows a comparison of the global hourglass energy 

compared with the global internal energy computed during the TIMID simulation. 

 

 
Fig. 109. Comparison of Global Energies for TIMID Simulation Using Reduced 

Integration Scheme 

 

Fig. 109 shows that a significant portion of the total energy in the simulation is attributed 

to hourglassing. A study was performed using the TIMID simulation to gauge the effect of 

element formulation on the simulation response.   
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Table 19 outlines the solid element formulations used in the additional simulations. 
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Table 19. LS-DYNA Element Formulations Used in Impact Simulations 

LS-DYNA Element Formulation  Element Formulation Characteristics (LSTC 

2017a) 

elform 1 Constant stress solid element. 

elform 2 Fully integrated selective reduced (S/R) 

integration solid element 

elform -1 Fully integrated S/R solid intended for elements 

with poor aspect ratio, efficient formulation 

elform -2 Fully integrated S/R solid intended for elements 

with poor aspect ratio, accurate formulation 

 

Fig. 110 shows a comparison of the out-of-plane displacement history from simulations 

using the different element formulations.  
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Fig. 110. Comparison of Predicted Out-of-plane Displacement Using Different Solid 

Element Formulations for Composite Parts 

 

Fig. 110 shows that there are minor differences in the predicted response with element 

formulation 2 yielding the best match with the positive and negative peaks. However, while 

there is little difference in the displacement response, the predicted delamination was 

drastically different when comparing the different formulations. Fig. 111 shows the 

delamination predicted by the respective models. 
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(a) 

  
(b) 

  
(c) 

  

(d) 

Fig. 111. Predicted Delamination Using Different Element Formulations Showing Total 

Delamination Predicted and Cross Section of Delaminated Area (a) Elform=1, (b) 

Elform=2, (c) Elform=-1, and (d) Elform=-2 
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Comments and Observations: Across all simulations, the predicted out-of-plane 

displacement compared well with the experimental data both qualitatively and 

quantitatively. While there are probably numerous reasons that may be used to explain the 

difference, the boundary conditions at the edge of the panel likely have the most impactful 

role. In the simulation, only the circular portion of the plate within the fixed region is 

modeled with the assumption that any stress waves imparted on the panel and fixture would 

be confined to that region. However, the bolt holes and clamping fixture likely do not 

completely restrain the plate. Similarly, a comparison of the principal strains shows the 

experimental and simulation values to be close both qualitatively and quantitatively. 

However, a similar difference in the phase is observed as the characteristic points in the 

plots all occur earlier in the simulation than in the experiment with the trend being mostly 

similar. To obtain a more accurate assessment of the roles played by the bolts, bolt pre-

tensioning and the support fixture, would involve a very detailed study that currently is 

outside the scope the research work. Additionally, these simulations showed large strain 

rates in the elements near the impact region ( 3(10 / )O s ). However, no rate dependent data 

was used in the simulations. The T800S/F3900 composite has been shown to exhibit rate 

dependent behavior in both the uniaxial behavior (Deshpande 2018; Yang 2016) as well as 

the fracture behavior (Nandakumar 2010). Including rate effects in both the composite 

properties as well as the cohesive zone element properties is likely necessary for correctly 

representing the behavior of the material. The experimentally derived TSL used in the 

validation simulations proved to be able to accurately represent the delamination behavior 

observed in the experiment. However, while the TSL derived fully from experimental data 

was shown to be valid for the small range of element sizes used in the verification and 
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validation simulations, the results may change when using element sizes outside of this 

range. Techniques to perform mesh size regularization, making the response independent 

of cohesive zone element length, would help move the standard procedure away from 

numerical calibration of TSL to deriving them experimentally using some of the proposed 

methodology. Additionally, there was a clear dependence of the predicted delamination on 

the solid element formulation used in the simulations. While each of the element 

formulations predict similar size and location of delaminated area, which compares well 

with the UT scan of the experimental panel, Fig. 106, Fig. 111 shows that the distribution 

and total amount of delamination predicted by the models varies. Comparison of the layer-

by-layer delamination from the experiment and simulation would be useful to further 

validate the TSL used in the simulation. However, that information is not currently 

available and hence the comparison cannot be made. The delamination predicted in the 

simulation was caused by mixed mode fracture events. The Benzeggagh-Kenane mixed-

mode fracture law exponent needs to be properly determined through mixed mode bending 

experiments in order to accurately represent the traction-separation behavior. 

 

5.3.2   Comparison of Strain-Based and Stress-Based Damage Formulations 

Each of the impact simulations presented thus far have used the strain-based damage 

implementation. A comparison using the strain based   kl p

ij ijd   and stress based 

  kl eff

ij ijd   damage formulations presented in Chapter 3, was performed to illustrate how 

the choice of the internal state variable influences the response. The simulations included 

the following damage parameters: 22

22
C

C
d , 12

12d , 22

22
T

C
d , 12

22C
d , 33

33
C

C
d , 13

13d , 33

33
T

C
d , and  13

33C
d . The 

choice of damage parameters was made purely to illustrate the differences between the two 
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implementations. The parameters may not be physically appropriate for the given problem. 

Fig. 112 shows a comparison of the out-of-plane displacement predicted at the center of 

the panel for the two formulations. 

 

 
Fig. 112. Comparison of TIMIOD Simulation Using Strain-based and Stress-based 

Damage Formulation 

 

Consistent with the simulations presented in Chapter 3 (Fig. 76), when coupled damage is 

included in the simulations, the strain-based formulation results in a more conservative 

estimate of the response of the system than the stress-based formulation. One of the 

concerns in using a stress-based damage formulation was due to the possibility of spurious 

stress oscillations that are often experienced in dynamic explicit finite element simulations 

due to numerical error. The development of spurious stresses may lead to damage 
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parameters being erroneously excited which in turn may cause element instabilities. 

However, during this simulation, no element instabilities were detected, and the simulation 

ran to completion without premature error termination. More rigorous testing of the 

proposed approach is necessary to ensure spurious stress oscillations do not adversely 

affect the solution and also the implementation is robust enough to handle a variety of load 

conditions. 
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6   CONCLUSIONS 

 

Composite materials are becoming increasingly popular in the design of structural 

components with applications ranging from aerospace and automotive to civil and 

biomedical. With the increased ubiquity, the need for powerful, predictive numerical tools 

is necessary to accurately model the manner in which the structures deform, sustain 

damage, and ultimately fail. The behavior of composite materials has been shown to be 

dependent on strain rate and temperature. The nonlinear behavior has also been shown to 

have contributions from both plastic flow of the material as well as damage. In the past, 

proposed models have often ignored some of these contributing factors. Additionally, the 

previously proposed models have been developed for specific architectures, assuming the 

behavior of the composite material. As new composite architectures are being developed, 

these models may not be suitable for the required analyses. A new orthotropic elasto-plastic 

damage material model (OEPDMM) relying completely on tabulated experimental data 

has been developed and implemented as MAT 213 in LS-DYNA. The model utilizes a 

generalized approach wherein no assumption regarding the material behavior is made and 

tabulated data is used to drive the plasticity deformation sub-model, in the form of stress-

strain curves at different rates and temperatures; the semi-coupled damage sub-model, in 

the form damage parameter-total strain curves; and the failure sub-model, in the form of a 

tabulated failure surface. MAT 213 has been developed with the intent of simulating impact 

and crush events, two critical loading conditions for aerospace structures, in order to 

shorten design time and move away from a high number of large scale physical 

experiments necessary for aircraft certification.  
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In this dissertation, the theoretical details governing the deformation sub-model have been 

provided. The hardening of the composite material is based on a form of the Tsai-Wu 

failure criteria with non-associative plastic flow utilizing a general quadratic plastic 

potential function. Driving the deformation model requires high fidelity experimental data 

to accurately assess the efficacy of the developed approach. The T800S/F3900 carbon 

fiber/epoxy resin unidirectional composite system was used to illustrate how the data 

required to drive the deformation sub-model is obtained under quasi-static and room 

temperature conditions. Twelve stress-strain curves in the respective principal material 

directions (PMD) and principal material planes were obtained, namely 1-direction, 2-

direction, and 3-direction tension and compression tests, 1-2 plane, 2-3 plane, and 1-3 plane 

shear and off-axis tension/compression tests. The steps used in post processing the data 

and deriving the input parameters were provided.  

 

The theoretical and implementation details of the damage sub-model were also provided. 

The formulation of the damage sub-model allows for the effects of damage coupling 

between all shear and normal components. The effective stress concept and the assumption 

of strain equivalence were used, which allowed for the damage and plasticity computations 

to be decoupled. The implemented model utilizes the directional effective stress as the 

internal state variable used to evolve damage. Through numerical simulations, it was 

shown that using the directional effective stress as opposed to the directional plastic strain 

or effective plastic strain resulted in a more accurate representation of the material 

behavior. The T800S/F3900 composite was again used to illustrate the experimental 

methods that may be used to gather the data required to drive the damage sub-model. The 
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data was derived from cyclic loading tests which provide the reduction in apparent elastic 

as a function of the total strain at unloading. Procedures for obtaining both uncoupled and 

coupled damage parameters were presented.  

 

Since composites are typically used as stacked laminates to overcome intrinsic weaknesses 

in the material, accurately modeling the interfaces is important. This is often done by 

representing the interface as a separate entity through cohesive zone modeling. Typically, 

the traction-separation laws (TSL) used in driving cohesive zone models (CZM), are 

obtained through an iterative trial and error process by altering input in the simulation and 

attempting to match experimental results. However, this may lead to a non-unique 

combination of parameters that would have to be changed under new loading conditions. 

To enhance the predictive capabilities of MAT 213, test procedures were presented for 

deriving arbitrarily shaped TSL necessary for CZM. Both Mode I and Mode II relationships 

were derived for the T800S/F3900 composite from the double cantilever beam (DCB) and 

end-notched flexure tests respectively. The resulting TSL were used in verification 

simulations and accurately reproduced the experimental results. The TSL were also 

successfully utilized in the impact validation. 

 

The high velocity impact validation simulation was used to highlight the efficacy of the 

proposed material model. The MAT 213 predictions compared well with the experimental 

results across all validation metrics: displacements fields, max principal strain fields, and 

delamination/damage. Numerous parametric studies were presenting illustrating the 

sensitivity of the predicted response to several material model and FE model parameters.  
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Table 20 outlines the current state of MAT 213 with respect to features that are desirable 

within a predictive material model as well as planned features part of the future work. 

 

Table 20. Current and Future Features in MAT 213 

Desirable Feature MAT 213 

Input parameters based on physically 

meaningful experimental data. 

All sub-models within MAT 213 

(deformation, damage, and failure) are 

driven completely by coupon level 

uniaxial testing in the various composite 

PMDs. Each of the sub-models account 

for asymmetric tension/compression 

behavior observed in composite materials. 

Effects of strain rate need to be accounted 

for in a flexible, unified manner accounting 

for anisotropy of rate effects. 

MAT 213 account for rate dependency by 

allowing stress-strain curves to be input as 

a function of various strain rates. A 

viscoelastic formulation is currently being 

developed to more appropriately account 

for the physical behavior of composites 

subjected to high strain-rates. 

Effects of temperature need to be 

accounted for in a flexible, unified 

manner. 

MAT 213 account for temperature 

dependency by allowing stress-strain 

curves to be input as a function of various 

temperatures. The temperature dependent 

formulation is currently being improved 

by accounting for the conversion of 

plastic work to heat (adiabatic heating 

conditions) common in impact and crush 

events. 
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Damage related capabilities. MAT 213 includes a fully generalized 

effective stress-based semi-coupled 

damage model driven by experimental 

data. 

Failure related capabilities. The failure models being incorporated 

into MAT 213 include established 

analytical models, both strain and stress 

based, as well as the capability for the 

user to supply a general tabulated failure 

surface. A subset of the failure models 

include mesh regularization methods to 

adjust for localization effects during 

simulations. 

Explicit modeling of interlaminar 

delamination via tiebreak contact and 

cohesive zone elements. 

While MAT 213 does not have inbuilt 

provisions to handle interlaminar 

behavior, it has been shown that cohesive 

zone models work well in conjunction 

with MAT 213 to accurately predict 

composite behavior. 

Capable of being used with several finite 

element formulations (thin shell, thick 

shell, solid). 

All simulations shown in this dissertation 

were successfully performed using several 

solid element formulations available in 

LS-DYNA. Support for thin and thick 

shells is under development. 

Computational efficiency. A major focus of the future work is to 

identify the bottlenecks in the current 

numerical algorithm and improve the 

implementation to increase the 

computational speed.  
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While the developed approach shows promise, more work may be required to refine the 

experimental and data processing techniques outlined in this dissertation. The techniques 

were successful for the unidirectional composite presented but additional considerations 

may be necessary if a different material architecture is to be modeled. Additionally, further 

validation of the material model is necessary to ensure the accuracy of the developed 

approach. The impact test simulated compared favorably with the experiment, however, 

higher velocity impacts and energy absorbing crush tests will need to be simulated to 

investigate the behavior of the model under various loading conditions. These additional 

validation tests likely require the use strain rate and temperature dependent data as well as 

failure related data which were absent from the simulations presented in this research. In 

addition to the future work outlined in Table 20, the theoretical basis of the model may 

need to be altered based on the observations made from the experiments to better represent 

the material behavior. These steps will aid in maturing the developed model into a 

predictive tool.  



240 

 

REFERENCES 

Aboudi, J., Arnold, S. M., and Bednarcyk, B. A. (2013). Micromechanics of Composite 

Materials. Elsevier, Waltham, MA. 

 

Adams, D. F. (2013). “Thickness-tapered unidirectional composite specimens.” 

Composites World. 

 

Adams, D., Moriarty, J., Gellegos, A., and Adams, D. F. (2003). Development of the V-

notched rail shear test for composite laminates. FAA Technical Report, Office of 

Aviation Research, Washington D.C. 

 

Adams, D. O., and Adams, D. F. (2002). Tabbing guide for composite specimens. FAA 

Technical Report, Office of Aviation Research, Washington D.C. 

 

Andrews, M. G., and Massabò, R. (2007). “The effects of shear and near tip deformations 

on energy release rate and mode mixity of edge-cracked orthotropic layers.” 

Engineering Fracture Mechanics, 74(17), 2700–2720. 

 

Arrese, A., Boyano, A., De Gracia, J., and Mujika, F. (2017). “A novel procedure to 

determine the cohesive law in DCB tests.” Composites Science and Technology, 

152, 76–84. 

 

Azzi, V., and Tsai, S. (1965). “Anisotropic strength of composites.” Experimental 

Mechanics, 5(9), 283–288. 

 

Barenblatt, G. (1962). “The mathematical theory of equilibrium cracks in brittle fracture.” 

Advances in Applied Mechanics, 7, 55–129. 

 

Benzeggagh, M. L., and Kenane, M. (1996). “Measurement of mixed-mode delamination 

fracture toughness of unidirectional glass/epoxy composites with mixed-mode 

bending apparatus.” Composites Science and Technology, 56(4), 439–449. 

 

Berg, C. (1972). “A note on the construction of the equivalent plastic strain increment.” 

Journal of Reasearch of the National Bureau of Standards-C. Engineering and 

Instrumentation, 76C(1–2), 53–54. 



241 

 

Bland, D. (1957). “The associated flow rule of plasticity.” Journal of the Mechanics and 

Physics of Solids, 6, 71–78. 

 

Blaysat, B., Hoefnagels, J. P. M., Lubineau, G., Alfano, M., and Geers, M. G. D. (2015). 

“Interface debonding characterization by image correlation integrated with Double 

Cantilever Beam kinematics.” International Journal of Solids and Structures, 55, 

79–91. 

 

Borg, R., Nilsson, L., and Simonsson, K. (2004). “Simulating DCB, ENF and MMB 

experiments using shell elements and a cohesive zone model.” Composites Science 

and Technology, 64(2), 269–278. 

 

Broughton, W. R., Kumosa, M., and Hull, D. (1990). “Analysis of the Iosipescu shear test 

as applied to unidirectional carbon-fibre reinforced composites.” Composites 

Science and Technology, 38(4), 299–325. 

 

Broughton, W., and Sims, G. (1994). An overview of through-thickness test methods for 

polymer matrix composites. National Laboratory, UK. 

 

Camanho, P. P., Davila, C. G., and de Moura, M. F. (2003). “Numerical Simulation of 

Mixed-Mode Progressive Delamination in Composite Materials.” Journal of 

Composite Materials, 37(16), 1415–1438. 

 

Caner, F. C., Bažant, Z. P., Hoover, C. G., Waas, A. M., and Shahwan, K. W. (2011). 

“Microplane Model for Fracturing Damage of Triaxially Braided Fiber-Polymer 

Composites.” Journal of Engineering Materials and Technology, 133(2), 021024-

1-021024–12. 

 

Cantwell, W., and Morton, J. (1989). “Comparison of the low and high velocity mpact 

response of CFRP.” Composites, 20(6), 545551. 

 

Cao, S., Wang, X., and Wu, Z. (2011). “Evaluation and prediction of temperature-

dependent tensile strength of unidirectional carbon fiber-reinforced polymer 

composites.” Journal of Reinforced Plastics and Composites, 30(9), 799–807. 

 



242 

 

Carlsson, L. A., Gillespie, J. W., and Pipes, R. (1986). “On the Analysis and Design of the 

End Notched Flexure (ENF) Specimen for Mode II Testing.” Journal of Composite 

Materials, 20, 594–604. 

 

Chandra, N. (2002). “Evaluation of interfacial fracture toughness using cohesive zone 

model.” Composites Part A: Applied Science and Manufacturing, 33(10), 1433–

1447. 

 

Chang, F.-K., and Chang, K.-Y. (1987a). “Post-Failure Analysis of Bolted Composite 

Joints in Tension or Shear-Out Mode Failure.” Journal of Composite Materials, 21, 

809–833. 

 

Chang, F.-K., and Chang, K.-Y. (1987b). “A Progressive Damage Model for Laminated 

Composites Containing Stress Concentrations.” Journal of Composite Materials, 

21, 834–855. 

 

Choi, H. Y., Downs, R. J., and Chang, F.-K. (1991). “A New Approach toward 

Understanding Damage Mechanisms and Mechanics of Laminated Composites 

Due to Low-Velocity Impact: Part I—Experiments.” Journal of Composite 

Materials, 25(8), 992–1011. 

 

Clark, B. (2015). “NASA Creates Partnership to Advance Composite Materials for Aircraft 

of the Future.” National Institute of Aerospace Press Releases, Hampton, VA. 

 

Clark, G. (1989). “Modelling of impact damage in composite laminates.” Composites, 

20(3), 209–214. 

 

Correlated Solutions, Inc. (2009). “Digital Image Correlation: Overview of Principles and 

Software.” University of South Carolina Columbia, South Carolina. 

 

Correlated Solutions, Inc. (2018). Speckle Pattern Fundamentals. Application Note. 

 

D20 Committee. (2015a). ASTM D3846-08: Test Method for In-Plane Shear Strength of 

Reinforced Plastics. ASTM International. 

 



243 

 

D20 Committee. (2013a). ASTM D792-13: Test Methods for Density and Specific Gravity 

(Relative Density) of Plastics by Displacement. ASTM International. 

 

D30 Committee. (2015b). ASTM D4255/D4255M-15a: Test Method for In-Plane Shear 

Properties of Polymer Matrix Composite Materials by the Rail Shear Method. 

ASTM International. 

 

D30 Committee. (2017a). ASTM D3039/D3039M-17: Test Method for Tensile Properties 

of Polymer Matrix Composite Materials. ASTM International. 

 

D30 Committee. (2013b). ASTM D5528-13: Test Method for Mode I Interlaminar Fracture 

Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. 

ASTM International. 

 

D30 Committee. (2017b). ASTM D8101/D8101M-17: Standard Test Method for 

Measuring the Penetration Resistance of Composite Materials to Impact by a Blunt 

Projectile. ASTM International. 

 

D30 Committee. (2012). ASTM D5379/D5379M-12: Test Method for Shear Properties of 

Composite Materials by the V-Notched Beam Method. ASTM International. 

 

D30 Committee. (2014). ASTM D7905/7905M-14: Test Method for Determination of the 

Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced 

Polymer Matrix Composites. ASTM International. 

 

D30 Committee. (2016). ASTM D3410/D3410M-16: Test Method for Compressive 

Properties of Polymer Matrix Composite Materials with Unsupported Gage 

Section by Shear Loading. ASTM International. 

 

Daniel, I., and Lee, J.-W. (1990). “Damage Development in Composite Laminates Under 

Monotonic Loading.” Journal of Composites Technology and Research, 12(2), 98–

102. 

 

Deivanayagam, A., Vaidya, A., and Rajan, S. D. (2014). “Enhancements to Modeling Dry 

Fabrics for Impact Analysis.” Journal of Aerospace Engineering, 27(3), 484–490. 



244 

 

Deshpande, Y. (2018). “Quasi-static and dynamic mechanical response of T800/F3900 

composite in tension and shear.” Master’s, Ohio State University, Columbus, OH. 

 

Donadon, M. V., Iannucci, L., Falzon, B. G., Hodgkinson, J. M., and de Almeida, S. F. M. 

(2008). “A progressive failure model for composite laminates subjected to low 

velocity impact damage.” Computers & Structures, 86(11–12), 1232–1252. 

 

Drucker, D. (1956). “On uniquness in the theory of plasticity.” Quarterly of Applied 

Mathematics, 14(1), 35–42. 

 

Dugdale, D. S. (1960). “Yielding of steel sheets containing slits.” Journal of the Mechanics 

and Physics of Solids, 8(2), 100–104. 

 

Elices, M., Guinea, G. V., Gómez, J., and Planas, J. (2002). “The cohesive zone model: 

advantages, limitations and challenges.” Engineering Fracture Mechanics, 69(2), 

137–163. 

 

Elmarakbi, A. M., Hu, N., and Fukunaga, H. (2009). “Finite element simulation of 

delamination growth in composite materials using LS-DYNA.” Composites 

Science and Technology, 69(14), 2383–2391. 

 

Ferguson, R. F., Hinton, M. J., and Hiley, M. J. (1998). “Determining the through-thickness 

properties of FRP materials.” Composites Science and Technology, 58(9), 1411–

1420. 

 

Fernandes, R. L., and Campilho, R. D. S. G. (2017). “Testing different cohesive law shapes 

to predict damage growth in bonded joints loaded in pure tension.” The Journal of 

Adhesion, 93(1–2), 57–76. 

 

Finn, S. R., He, Y.-F., and Springer, G. S. (1993). “Delaminations in composite plates 

under transverse impact loads — Experimental results.” Composite Structures, 

23(3), 191–204. 

 

FLIR Integrated Imaging Solutions, Inc. (2019). “Grasshopper3 5.0 MP Mono USB3 

Vision (Sony ICX625).” 



245 

 

Forghani, A., Zobeiry, N., Poursartip, A., and Vaziri, R. (2013). “A structural modelling 

framework for prediction of damage development and failure of composite 

laminates.” Journal of Composite Materials, 47(20–21), 2553–2573. 

 

Fuchs, P. F., and Major, Z. (2011). “Experimental Determination of Cohesive Zone Models 

for Epoxy Composites.” Experimental Mechanics, 51(5), 779–786. 

 

Gilat, A., Goldberg, R. K., and Roberts, G. D. (2002). “Experimental study of strain-rate-

dependent behavior of carbon/epoxy composite.” Composites Science and 

Technology, 62(10–11), 1469–1476. 

 

Gillespie Jr., J. W., Carlsson, L. A., and Pipes, R. B. (1986b). “Finite Element Analysis of 

the End Notched Flexure Specimen for Measuring Mode II Fracture Toughness.” 

Composites Science and Technology, 27, 177–197. 

 

Gillespie Jr., J. W., Carlsson, L. A., Pipes, R. B., Rothschilds, R., Trethewey, B., and 

Smiley, A. (1986a). Delamination growth in composite materials. NASA Langley 

Research Center, Hampton, VA, 210. 

 

Goldberg, R. K., Carney, K. S., DuBois, P., Hoffarth, C., Khaled, B., Shyamsunder, L., 

Rajan, S. D., and Blankenhorn, G. (2018). “Implementation of a tabulated failure 

model into a generalized composite material model.” Journal of Composite 

Materials, 52(25), 3445–3460. 

 

González, C., and LLorca, J. (2007). “Mechanical behavior of unidirectional fiber-

reinforced polymers under transverse compression: Microscopic mechanisms and 

modeling.” Composites Science and Technology, 67(13), 2795–2806. 

 

Griffith, A. (1920). “The phenomena of rupture and flow in solids.” Philosohpical 

Transactions of the Royal Society of London, 221, 163–198. 

 

Ha, S. K., Jin, K. K., and Huang, Y. (2008). “Micro-Mechanics of Failure (MMF) for 

Continuous Fiber Reinforced Composites.” Journal of Composite Materials, 

42(18), 1873–1895. 

 



246 

 

Harrington, J., Hoffarth, C., Rajan, S. D., Goldberg, R. K., Carney, K. S., DuBois, P., and 

Blankenhorn, G. (2017). “Using Virtual Tests to Complete the Description of a 

Three-Dimensional Orthotropic Material.” Journal of Aerospace Engineering, 

30(5), 04017025-1-04017025–14. 

 

Hashemi, S., Kinloch, A. J., and Williams, J. G. (1990). “The Analysis of Interlaminar 

Fracture in Uniaxial Fibre-Polymer Composites.” Proceedings of the Royal Society 

A: Mathematical, Physical and Engineering Sciences, 427(1872), 173–199. 

 

Hawong, J.-S., Shin, D.-C., and Baek, U.-C. (2004). “Validation of pure shear test device 

using finite element method and experimental methods.” Engineering Fracture 

Mechanics, 71(2), 233–243. 

 

Heidari-Rarani, M., Shokrieh, M. M., and Camanho, P. P. (2013). “Finite element 

modeling of mode I delamination growth in laminated DCB specimens with R-

curve effects.” Composites Part B: Engineering, 45(1), 897–903. 

 

Hill, R. (1948). “A theory of the yielding and plastic flow of anisotropic metals.” 

Proceedings of the Royal Society of London. Series A. Mathematical and Physical 

Sciences, 193, 281–297. 

 

Hinton, M. J., Kaddour, A., and Soden, P. (2004). Failure criteria in fibre reinforced 

polymer composites: the world-wide failure exercise. Elsevier, The Boulevard, 

Langford Lane Kidlington, Oxford OX5 1GB UK. 

 

Hinton, M., and Kaddour, A. (2012). “The background to the Second World-Wide Failure 

Exercise.” Journal of Composite Materials, 46(19–20), 2283–2294. 

 

Hoffarth, C. (2016). “A Generalized Orthotropic Elasto-Plastic Material Model for Impact 

Analysis.” PHD Dissertation, Arizona State University, Tempe, AZ. 

 

Hoffarth, C., Khaled, B., Shyamsunder, L., Rajan, S., Goldberg, R., Carney, K., DuBois, 

P., and Blankenhorn, G. (2017). “Verification and Validation of a Three-

Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional 

Composite.” Fibers, 5(1), 12. 

 



247 

 

Hoffarth, C., Rajan, S. D., Goldberg, R. K., Revilock, D., Carney, K. S., DuBois, P., and 

Blankenhorn, G. (2016). “Implementation and validation of a three-dimensional 

plasticity-based deformation model for orthotropic composites.” Composites Part 

A: Applied Science and Manufacturing, 91, 336–350. 

 

Högberg, J. L., Sørensen, B. F., and Stigh, U. (2007). “Constitutive behaviour of mixed 

mode loaded adhesive layer.” International Journal of Solids and Structures, 

44(25–26), 8335–8354. 

 

Hsiao, H. M., and Daniel, I. M. (1998). “Strain rate behavior of composite materials.” 

Composites Part B: Engineering, 29(5), 521–533. 

 

Hussain, A. K., and Adams, D. F. (2004). “Analytical evaluation of the two-rail shear test 

method for composite materials.” Composites Science and Technology, 64(2), 221–

238. 

 

Ilyushin, A. (1961). “On the postulate of plasticity.” Prikl. Mat. Mekh, 25, 503–507. 

 

Irwin, G. (1957). “Analysis of stresses and strains near the end of a crack traversing a 

plante.” Journal of Applied Mechanics, 24, 361–364. 

 

Jacob, G. C., Starbuck, J. M., Fellers, J. F., Simunovic, S., and Boeman, R. G. (2004). 

“Strain rate effects on the mechanical properties of polymer composite materials.” 

Journal of Applied Polymer Science, 94(1), 296–301. 

 

Jelf, P. M., and Fleck, N. A. (1992). “Compression Failure Mechanisms in Unidirectional 

Composites.” Journal of Composite Materials, 26(18), 2706–2726. 

 

Jiang, Z., Wan, S., Zhong, Z., Li, M., and Shen, K. (2014). “Determination of mode-I 

fracture toughness and non-uniformity for GFRP double cantilever beam 

specimens with an adhesive layer.” Engineering Fracture Mechanics, 128, 139–

156. 

 

Johnson, W., and Mangalgiri, P. (1987). “Investigation of Fiber Bridging in Double 

Cantilever Beam Specimens.” Journal of Composites Technology and Research, 

9(1), 10–13. 



248 

 

Johnston, J. P., Pereira, J. M., Ruggeri, C. R., and Roberts, G. D. (2017). “High Speed 

Thermal Imaging on Ballistic Impact of Triaxially Braided Composites.” 32nd 

Annual Technical Conference of the American Society for Composites, Purdue 

University; West Lafayette, IN, 1–14. 

 

Jones, R., Paul, J., and Tay, T. E. (1988). “Assessment of the Effect of Impact Damage in 

Composites: Some Problems and Answers.” Composite Structures, 10, 51–73. 

 

Joshi, S. P., and Sun, C. T. (1987). “Impact-Induced Fracture in a Quasi-Isotropic 

Laminate.” Journal of Composites Technology & Research, 9(2), 40–46. 

 

Kachanov, L. (1958). “Time of the Rupture Process under Creep Conditions.” Izvestia 

Akademi Nauk SSSR, Old. Tekhn. Nauk, 8, 26–31. 

 

Kachanov, L. (1977). “Separation failure of composite materials.” Mechanics of Composite 

Materials, 12(5), 812–815. 

 

Kaddour, A., Hinton, M., Smith, P., and Li, S. (2013). “The background to the third world-

wide failure exercise.” Journal of Composite Materials, 47(20–21), 2417–2426. 

 

Karayaka, M., and Kurath, P. (1994). “Deformation and Failure Behavior of Woven 

Composite Laminates.” Journal of Engineering Materials and Technology, 116(2), 

222–232. 

 

Karush, W. (1939). “Minima of Functions of Several Variables with Inequalities as Side 

Constraints.” M.Sc Dissertation, Dept. of Mathematics, University of Chicago, 

Chicago, IL. 

 

Khaled, B. M., Shyamsunder, L., Holt, N., Hoover, C. G., Rajan, S. D., and Blankenhorn, 

G. (2019a). “Enhancing the predictive capabilities of a composite plasticity model 

using cohesive zone modeling.” Composites Part A: Applied Science and 

Manufacturing, 121, 1–17. 

 

 



249 

 

Khaled, B., Shyamsunder, L., Hoffarth, C., Rajan, S. D., Goldberg, R. K., Carney, K. S., 

DuBois, P., and Blankenhorn, G. (2019b). “Damage characterization of composites 

to support an orthotropic plasticity material model.” Journal of Composite 

Materials, 53(7), 941–967. 

 

Kim, J.-K., MacKay, D. B., and Mai, Y.-W. (1993). “Drop-weight impact damage 

tolerance of CFRP with rubber-modified epoxy matrix.” Composites, 24(6), 485–

494. 

 

Krueger, R., Shivakumar, K. N., and Raju, I. S. (2013). “Fracture Mechanics Analyses for 

Interface Crack Problems - A Review.” 54th AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, American Institute of 

Aeronautics and Astronautics, Boston, Massachusetts. 

 

Kuhn, H., and Tucker, A. (1951). “Nonlinear Programming.” Proceedings of 2nd Berkeley 

Symposium, University of California Press, Berkeley, CA, 481–492. 

 

Kurumatani, M., Terada, K., Kato, J., Kyoya, T., and Kashiyama, K. (2016). “An isotropic 

damage model based on fracture mechanics for concrete.” Engineering Fracture 

Mechanics, 155, 49–66. 

 

Lee, M. J., Cho, T. M., Kim, W. S., Lee, B. C., and Lee, J. J. (2010). “Determination of 

cohesive parameters for a mixed-mode cohesive zone model.” International 

Journal of Adhesion and Adhesives, 30(5), 322–328. 

 

Leffler, K., Alfredsson, K. S., and Stigh, U. (2007). “Shear behaviour of adhesive layers.” 

International Journal of Solids and Structures, 44, 530–545. 

 

Lemaitre, J. (1985). “A Continuous Damage Mechanics Model for Ductile Fracture.” 

Journal of Engineering Materials and Technology, 107, 83–89. 

 

Lemaitre, J., and Chaboche, J. L. (1978). “Aspects phenomelogiques de la rupture par 

endommagement.” Journal de Mecanique Appliquee, 2(3). 

 

Lemaître, J., and Desmorat, R. (2005). Engineering damage mechanics: ductile, creep, 

fatigue and brittle failures. Springer, Berlin ; New York. 



250 

 

Li, S., Thouless, M. D., Waas, A. M., Schroeder, J. A., and Zavattieri, P. D. (2005). “Use 

of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded 

polymer-matrix composite.” Composites Science and Technology, 65(2), 281–293. 

 

Liu, P. F., and Zheng, J. Y. (2008). “Progressive failure analysis of carbon fiber/epoxy 

composite laminates using continuum damage mechanics.” Materials Science and 

Engineering: A, 485(1–2), 711–717. 

 

Lomov, S. V., Bogdanovich, A. E., Ivanov, D. S., Mungalov, D., Karahan, M., and 

Verpoest, I. (2009). “A comparative study of tensile properties of non-crimp 3D 

orthogonal weave and multi-layer plain weave E-glass composites. Part 1: 

Materials, methods and principal results.” Composites Part A: Applied Science and 

Manufacturing, 40(8), 1134–1143. 

 

LSTC. (2018a). LS-DYNA. Livermore Software Technology Corporation, Livermore, CA. 

 

LSTC. (2017b). “LS-DYNA Keyword User’s Manual, Volume II: Material Models, LS-

DYNA R10.0.” 

 

LSTC. (2017a). “LS-DYNA Keyword User’s Manual, Volume I: Keywords, LS-DYNA 

R10.0.” 

 

LSTC. (2018b). LS-PrePost. Livermore Softwrae Technology Corporation, Livermore, 

CA. 

 

Lubarda, V., Mastilovic, S., and Knap, J. (1996). “Some comments on plasticity postulates 

and non-associative flow rules.” International Journal of Mechanical Sciences, 

38(3), 247–258. 

 

Luo, Q., and Tong, L. (2009). “Energy release rates for interlaminar delamination in 

laminates considering transverse shear effects.” Composite Structures, 89(2), 235–

244. 

 

Maimí, P., Camanho, P. P., Mayugo, J. A., and Dávila, C. G. (2007a). “A continuum 

damage model for composite laminates: Part I – Constitutive model.” Mechanics 

of Materials, 39(10), 897–908. 



251 

 

Maimí, P., Camanho, P. P., Mayugo, J. A., and Dávila, C. G. (2007b). “A continuum 

damage model for composite laminates: Part II – Computational implementation 

and validation.” Mechanics of Materials, 39(10), 909–919. 

 

Maire, J. F., and Chaboche, J. L. (1997). “A new formulation of continuum damage 

mechanics (CDM) for composite materials.” Aerospace Science and Technology, 

1(4), 247–257. 

 

Martin, R. H., and Murri, G. B. (1988). Characterization of Mode I and Mode II 

delamination growth and thresholds in graphite/peek composites. NASA Langley 

Research Center, Hampton, VA, 52. 

 

Masters, J. (1987). “Characterization of Impact Damage Development in Graphite/Epoxy 

Laminates.” Fractography of Modern Engineering Materials: Composites and 

Metals, J. Masters and J. Au, eds., ASTM International, 100 Barr Harbor Drive, PO 

Box C700, West Conshohocken, PA 19428-2959, 238-238–21. 

 

MATLAB and Statistics Toolbox. (2018). The MathWorks, Inc., Natick, MA. 

 

Matzenmiller, A., Lubliner, J., and Taylor, R. L. (1995). “A constitutive model for 

anisotropic damage in fiber-composites.” Mechanics of Materials, 20(2), 125–152. 

 

Medina, C., Canales, C., Arango, C., and Flores, P. (2014). “The influence of carbon fabric 

weave on the in-plane shear mechanical performance of epoxy fiber-reinforced 

laminates.” Journal of Composite Materials, 48(23), 2871–2878. 

 

Melin, L. N., and Neumeister, J. M. (2006). “Measuring constitutive shear behavior of 

orthotropic composites and evaluation of the modified Iosipescu test.” Composite 

Structures, 76(1–2), 106–115. 

 

Melis, M., Pereira, M., Goldberg, R. K., and Rassaian, M. (2018). “Dynamic Impact 

Testing and Model Development in Support of NASA’s Advanced Composites 

Program.” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and 

Materials Conference, American Institute of Aeronautics and Astronautics, 

Kissimmee, Florida. 



252 

 

Mirzaali, M. J., Buerki, A., Schwiedrzik, J., Zysset, P. K., and Wolfram, U. (2015). 

“Continuum damage interactions between tension and compression in osteonal 

bone.” Journal of the Mechanical Behavior of Biomedical Materials, 49, 355–369. 

 

Naik, D., Sankaran, S., Mobasher, B., Rajan, S. D., and Pereira, J. M. (2009). 

“Development of reliable modeling methodologies for fan blade out containment 

analysis – Part I: Experimental studies.” International Journal of Impact 

Engineering, 36, 1–11. 

 

Nandakumar, P. N. (2010). “Rate sensitivity of the interlaminar fracture toughness of 

laminated composites.” Master’s, Wichita State University, Wichita, KS. 

 

Neumeister, J. M., and Melin, L. N. (2003). “A modified Iosipescu shear test for 

anisotropic composite panels.” San Diego, CA. 

 

Nicholas, T. (1980). Dynamic Tensile Testing of Structural Materials Using a Split 

Hopkinson Bar Apparatus. Air Force Wright Aeronautical Laboratories: Materials 

Laboratory, Wright-Patterson Air Force Base, OH. 

 

Odegard, G., and Kumosa, M. (2000). “Determination of shear strength of unidirectional 

composite materials with the Iosipescu and 10 degree off-axis shear tests.” 

Composites Science and Technology, 27. 

 

Ogihara, S., and Reifsnider, K. L. (2002). “Characterization of Nonlinear Behavior in 

Woven Composite Laminates.” Applied Composite Materials, 9, 249–263. 

 

Ogin, S. L., Brøndsted, P., and Zangenberg, J. (2016). “Composite materials.” Modeling 

Damage, Fatigue and Failure of Composite Materials, Elsevier, 3–23. 

 

Oller, S., Oñate, E., Miquel, J., and Botello, S. (1996). “A plastic damage constitutive 

model for composite materials.” International Journal of Solids and Structures, 

33(17), 2501–2518. 

 

Ortega, A., Maimí, P., González, E. V., and Trias, D. (2016). “Characterization of the 

translaminar fracture Cohesive Law.” Composites Part A: Applied Science and 

Manufacturing, 91, 501–509. 



253 

 

Paley, M., and Aboudi, J. (1992). “Micromechanical analysis of composites by the 

generalized cells model.” Mechanics of Materials, 14(2), 127–139. 

 

Pereira, J. M. (2017). “Dynamic Impact Tests in Support of NASA Advcanced Composites 

Project.” 

 

Philippidis, T. P., and Vassilopoulos, A. P. (2001). “Stiffness Reduction of Composite 

Laminates under Combined Cyclic Stresses.” Advanced Composites Letters, 10(3), 

113–124. 

 

Pierron, F., and Vautrin, A. (1998). “Measurement of the in-plane shear strengths of 

unidirectional composites with the Iosipescu test.” Composites Science and 

Technology, 57(12), 1653–1660. 

 

Pinho, S. T., Iannucci, L., and Robinson, P. (2006). “Physically based failure models and 

criteria for laminated fibre-reinforced composites with emphasis on fibre kinking. 

Part II: FE implementation.” Composites Part A: Applied Science and 

Manufacturing, 37(5), 766–777. 

 

Poissant, J., and Barthelat, F. (2010). “A Novel ‘Subset Splitting’ Procedure for Digital 

Image Correlation on Discontinuous Displacement Fields.” Experimental 

Mechanics, 50, 353–364. 

 

Prager, W. (1947). “An introduction to the mathermatical theory of plasticity.” Journal of 

Applied Physics, 18, 375–383. 

 

Prel, Y., Davies, P., Benzeggagh, M., and de Charentenay, F. (1989). “Mode I and Mode 

II Delamination of Thermosetting and Thermoplastic Composites.” Composite 

Materials: Fatigue and Fracture, Second Volume, P. Lagace, ed., ASTM 

International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 

19428-2959, 251–269. 

 

Rajan, S., Sutton, M. A., Fuerte, R., and Kidane, A. (2018). “Traction-separation 

relationship for polymer-modified bitumen under Mode I loading: Double 

cantilever beam experiment with stereo digital image correlation.” Engineering 

Fracture Mechanics, 187, 404–421. 



254 

 

Raju, K., and Acosta, J. (2010). Crashworthiness of composite fuselage structures-material 

dynamic properties, Phase I. FAA Technical Report, National Institute for Aviation 

Research, Wichita State University, Wichita, KS, 303. 

 

Reiner, J., Torres, J. P., and Veidt, M. (2017). “A novel Top Surface Analysis method for 

Mode I interface characterisation using Digital Image Correlation.” Engineering 

Fracture Mechanics, 173, 107–117. 

 

Rice, J. (1968). “A path independent integral and the approximate analysis of strain 

concentration by notches and cracks.” Journal of Applied Mechanics, 35, 379–386. 

 

Russell, A., and Street, K. (1985). “Moisture and Temperature Effects on the Mixed-Mode 

Delamination Fracture of Unidirectional Graphite/Epoxy.” Delamination and 

Debonding of Materials, W. Johnson, ed., ASTM International, 100 Barr Harbor 

Drive, PO Box C700, West Conshohocken, PA 19428-2959, 349–370. 

 

Schultheisz, C. R., and Waas, A. M. (1996). “Compressive failure of composites, part I: 

Testing and micromechanical theories.” Progress in Aerospace Sciences, 32(1), 1–

42. 

 

Shen, B., and Paulino, G. H. (2011). “Direct Extraction of Cohesive Fracture Properties 

from Digital Image Correlation: A Hybrid Inverse Technique.” Experimental 

Mechanics, 51, 143–163. 

 

Shim, V. P. W., and Yang, L. M. (2005). “Characterization of the residual mechanical 

properties of woven fabric reinforced composites after low-velocity impact.” 

International Journal of Mechanical Sciences, 47(4–5), 647–665. 

 

Shokrieh, M. M., and Omidi, M. J. (2009). “Tension behavior of unidirectional glass/epoxy 

composites under different strain rates.” Composite Structures, 88(4), 595–601. 

 

Shyamsunder, L., Khaled, B. M., Rajan, S. D., Goldberg, R. K., Carney, K. S., DuBois, P., 

and Blankenhorn, G. (2019). “Implementing deformation, damage and failure in an 

orthotropic plastic material model.” Journal of Composite Materials, Submitted, 

awaiting decision. 



255 

 

Simo, J., and Taylor, R. (1986). “A return mapping algorithm for plane stress 

elastoplasticity.” International Journal of Numerical Methods in Engineering, 22, 

649–670. 

 

Skourlis, T. P., and McCullough, R. L. (1993). “The effect of temperature on the behavior 

of the interphase in polymeric composites.” Composites Science and Technology, 

49(4), 363–368. 

 

Šmilauer, V., Hoover, C. G., Bažant, Z. P., Caner, F. C., Waas, A. M., and Shahwan, K. 

W. (2011). “Multiscale simulation of fracture of braided composites via repetitive 

unit cells.” Engineering Fracture Mechanics, 78(6), 901–918. 

 

Sun, C. T., and Chen, J. L. (1989). “A Simple Flow Rule for Characterizing Nonlinear 

Behavior of Fiber Composites.” Journal of Composite Materials, 23(10), 1009–

1020. 

 

Sun, C. T., and Chen, J. L. (1991). “A micromechanical model for plastic behavior of 

fibrous composites.” Composites Science and Technology, 40(2), 115–129. 

 

Sun, C. T., and Vaidya, R. S. (1996). “Prediction of composite properties from a 

representative volume element.” Composites Science and Technology, 56(2), 171–

179. 

 

Sun, X. C., and Hallett, S. R. (2017). “Barely visible impact damage in scaled composite 

laminates: Experiments and numerical simulations.” International Journal of 

Impact Engineering, 109, 178–195. 

 

Sun, X. C., and Hallett, S. R. (2018). “Failure mechanisms and damage evolution of 

laminated composites under compression after impact (CAI): Experimental and 

numerical study.” Composites Part A: Applied Science and Manufacturing, 104, 

41–59. 

 

Sutton, M., Orteu, J.-J., and Schreier, H. W. (2009). Image Correlation for Shape, Motion 

and Deformation Measurements. Basic Concepts, Theory and Applications. 

Springer US. 



256 

 

Swanson, S., Messick, M., and Toombes, G. (1985). “Comparison of torsion tube and 

Iosipescu in-plane shear test results for a carbon fibre-reinforced epoxy composite.” 

Composites, 16(3), 220–224. 

 

Thiruppukuzhi, S. V., and Sun, C. T. (1998). “Testing and modeling high strain rate 

behavior of polymeric composites.” Composites Part B: Engineering, 29(5), 535–

546. 

 

Thomason, J. L., and Yang, L. (2011). “Temperature dependence of the interfacial shear 

strength in glass–fibre polypropylene composites.” Composites Science and 

Technology, 71(13), 1600–1605. 

 

Thouless, M. D. (2018). “Shear forces, root rotations, phase angles and delamination of 

layered materials.” Engineering Fracture Mechanics, 191, 153–167. 

 

Tsai, S. W., and Wu, E. M. (1971). “A General Theory of Strength for Anisotropic 

Materials.” Journal of Composite Materials, 5, 58–80. 

 

Tsouvalis, N. G., and Anyfantis, K. N. (2011). “Determination of the fracture process zone 

under Mode I fracture in glass fiber composites.” Journal of Composite Materials, 

46(1), 27–41. 

 

Uyaner, M., and Kara, M. (2007). “Dynamic Response of Laminated Composites 

Subjected to Low-velocity Impact.” Journal of Composite Materials, 41(24), 2877–

2896. 

 

Vaziri, R., Olson, M., and Anderson, D. (1991). “A Plasticity-Based Consitutitve Model 

for Fibre-Reinforced Composite Laminates.” Journal of Composite Materials, 25, 

512–535. 

 

Vic-3D. (2016). en, Correlated Solutions, Inc. 

 

Vic-Snap. (2016). Correlated Solutions, Inc. 

 



257 

 

van der Vossen, B. C. W., and Makeev, A. (2018). “Characterization of Cohesive Zone 

Laws Using Digital Image Correlation.” Seattle, WA, 15. 

 

Waas, A. M., and Schultheisz, C. R. (1996). “Compressive failure of composites, part II: 

Experimental studies.” Progress in Aerospace Sciences, 32(1), 43–78. 

 

Walrath, D., and Adams, D. (1983). “The Iosipescu shear test as applied to composite 

materials.” Experimental Mechanics, 23, 105–110. 

 

Walter, T. R., Subhash, G., Sankar, B. V., and Yen, C. F. (2010). “Monotonic and cyclic 

short beam shear response of 3D woven composites.” Composites Science and 

Technology, 70(15), 2190–2197. 

 

Welsh, L. M., and Harding, J. (1985). “Effect of strain rate on the tensile failure of woven 

reinforced polyester resin composites.” Le Journal de Physique Colloques, 46(C5), 

C5-405-C5-414. 

 

Wilkins, D., Eisenmann, J., Camin, R., Margolis, W., and Benson, R. (1982). 

“Characterizing Delamination Growth in Graphite-Epoxy.” Damage in Composite 

Materials: Basic Mechanisms, Accumulation, Tolerance, and Characterization, K. 

Reifsnider, ed., ASTM International, 100 Barr Harbor Drive, PO Box C700, West 

Conshohocken, PA 19428-2959, 168-168–16. 

 

Wilkins, D. J. (1981). A comparison of the delamination and environmental resistance of 

a graphite-epoxy and a graphite-bismaleimide. Naval Air Systems Command 

Technical Report, Naval Air Systems Command, Washington D.C., 221. 

 

Wu, H.-Y. T., and Springer, G. S. (1988). “Measurements of Matrix Cracking and 

Delamination Caused by Impact on Composite Plates.” Journal of Composite 

Materials, 22, 518–532. 

 

Xie, M., and Adams, D. (1995). “A plasticity model for unidirectional composite materials 

and its applications in modeling composites testing.” Composites Science and 

Technology, 54, 11–21. 

 



258 

 

Yang, P. (2016). “Experimental techniques and mechanical behavior of T800/F3900 at 

various strain rates.” Master’s, Ohio State University, Columbus, OH. 

 

Yashiro, S., Ogi, K., Nakamura, T., and Yoshimura, A. (2013). “Characterization of high-

velocity impact damage in CFRP laminates: Part I – Experiment.” Composites Part 

A: Applied Science and Manufacturing, 48, 93–100. 

 

Yen, C.-F. (2012). “A ballistic material model for continuous-fiber reinforced composites.” 

International Journal of Impact Engineering, 46, 11–22. 

 

Yoneyama, S., Morimoto, Y., and Takashi, M. (2006). “Automatic Evaluation of Mixed-

mode Stress Intensity Factors Utilizing Digital Image Correlation.” Strain, 42, 21–

29. 

 

Zhao, Y., Seah, L. K., and Chai, G. B. (2016). “Measurement of interlaminar fracture 

properties of composites using the J-integral method.” Journal of Reinforced 

Plastics and Composites, 35(14), 1143–1154. 

 

Zhu, Y., Liechti, K. M., and Ravi-Chandar, K. (2009). “Direct extraction of rate-dependent 

traction–separation laws for polyurea/steel interfaces.” International Journal of 

Solids and Structures, 46(1), 31–51. 

   


