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ABSTRACT 

 

Statistical inference from mediation analysis applies to populations, however, 

researchers and clinicians may be interested in making inference to individual clients or 

small, localized groups of people. Person-oriented approaches focus on the differences 

between people, or latent groups of people, to ask how individuals differ across variables, 

and can help researchers avoid ecological fallacies when making inferences about 

individuals. Traditional variable-oriented mediation assumes the population undergoes a 

homogenous reaction to the mediating process. However, mediation is also described as 

an intra-individual process where each person passes from a predictor, through a 

mediator, to an outcome (Collins, Graham, & Flaherty, 1998). Configural frequency 

mediation is a person-oriented analysis of contingency tables that has not been well-

studied or implemented since its introduction in the literature (von Eye, Mair, & Mun, 

2010; von Eye, Mun, & Mair, 2009). The purpose of this study is to describe CFM and 

investigate its statistical properties while comparing it to traditional and casual inference 

mediation methods. The results of this study show that joint significance mediation tests 

results in better Type I error rates but limit the person-oriented interpretations of CFM. 

Although the estimator for logistic regression and causal mediation are different, they 

both perform well in terms of Type I error and power, although the causal estimator had 

higher bias than expected, which is discussed in the limitations section. 
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Introduction 

Statistical mediation is a method useful for discovering the why or how treatment 

variables effect outcomes (MacKinnon, 2008). Statistical inferences from mediation 

analysis apply to populations, however, researchers and clinicians may be interested in 

making inferences to individual clients or small, localized groups of people. Person-

oriented mediation methods can help researchers avoid ecological fallacies when making 

inferences about individuals, however there are few, well-studied methodologies in the 

literature. Configural frequency mediation is a person-oriented analysis of contingency 

tables that has not been well-studied or implemented since its introduction in the 

literature (von Eye et al., 2010; von Eye, Mun, & Mair, 2009). The aim of this study is to 

clarify the guidelines of CFM and investigate the method’s statistical properties, 

comparing CFM to traditional mediation analysis and mediation from the potential 

outcomes framework. 

First, I will introduce two competing research paradigms, which will be referred 

to as variable-oriented and person-oriented approaches. Next, I will give a historical 

overview of the person-oriented approach up to the present day. Limitations of the 

variable-oriented and person-oriented approaches will then be discussed. The next section 

will review mediation, including the case where X, M, and Y are binary, as well as an 

issue with dichotomization of variables. The binary X, M, and Y case is selected because 

it simplifies the application of person-oriented mediation methods. Mediation will also be 

discussed as both a variable-oriented and a person-oriented process. Several variable-

oriented and person-oriented mediation techniques will be presented. Hypotheses 
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contrasting the performance of variable-oriented and person-oriented mediation will be 

proposed, and the simulations conducted to investigate these methods will be described. 

Finally, the results of the simulations will be presented along with a discussion of the 

study, including limitations and future directions. 

Two Approaches to Psychology 

 There has been tension in how the study of human behavior is conceptualized. 

The prominent perspective reflects reductionist science, in which any system can be 

understood by first understanding its constituent parts. This intellectual paradigm has 

provided the framework for centuries of scientific breakthroughs, driving methodological 

and theoretical developments in nearly all scientific disciplines, including psychology. 

For psychologists, reductionism requires conceptualizing and measuring numerous 

constructs that are used to formulate theories and mathematical models of human 

behavior. This approach to psychology, from the perspective that behavior can be broken 

down and understood as the sum of its parts, has been referred to as the variable-oriented 

approach (Bergman, Eklund, & Magnusson, 1991; Block, 1971/2014; Bogat, von Eye, & 

Bergman, 2016; Magnusson & Bergman, 1988). 

However, another approach to psychology accentuates a holistic view of human 

behavior. Within this approach, individuals are understood as complex, dynamic systems 

whose behaviors are the result of the interactions of a myriad of factors, including mental, 

physiological, and situational influences (Magnusson, 1988). Any particular behavior is 

not considered to be the sum of relevant, independent effects, but rather a manifestation 
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of complex interactions that may be particular to an individual, or group of individuals 

with similar patterns of scores on relevant measures (Bergman & Magnusson, 1997). 

An important distinction for this holistic approach is that the similarity of 

individuals in a group is based on patterns of responses, and not on “natural” variable 

groupings such as gender, ethnicity, or treatment condition. An example of this kind of 

patterning is found in the diagnostic categories of the Diagnostic and Statistical Manual 

of Mental Disorders (DSM). Each diagnostic category is characterized by an array of 

symptoms and patients may present these symptoms differentially. Heterogeneity in 

symptom patterns may be a factor in variability of treatment effectiveness (Bogat et al., 

2016).  This approach to psychology, from the perspective that behavior is the result of 

complex biopsychosocial interactions for individuals (Engel, 1977) is known by several 

comparable names, such as person-oriented, person-centered, or interactional approach 

(Bergman & Magnusson, 1997; Block, 1971/2014; von Eye & Bergman, 2003).  

Variable-oriented and person-oriented approaches are distinguished by their 

primary units of analysis, which are the variables themselves in the variable-oriented 

approach, or patterns of variables in the person-oriented approach. Variable-oriented 

theories concentrate on interindividual variation that results from differences in variable 

or construct factors, such as personality traits, IQ, gender, etc. Person-oriented theories, 

on the other hand, focus on intraindividual variation that occurs within individuals across 

the spectrum of measured constructs.  

History of Person-Oriented Methods in Psychology 
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The idea of a person-oriented system of study has been a recurring theme in 

psychology, proposed as an alternative research paradigm at various points in history. 

William Stern’s work in differential psychology is an early influence for modern person-

oriented psychology. His conceptualization of the individual as “unitas multiplex,” or a 

single unit comprised of multiple parts, is a precursor to modern ideas of holistic, 

dynamic complexity in individual development (Bergman & Magnusson, 1997; Stern, 

1923). In the 1930’s, Kurt Lewin described individual behavior as an interaction between 

the person and the immediate environment, using the whole context of the environment 

as a “life space” within which behavior could be analyzed (Lewin, 1935/2013). Lewin’s 

field theory emphasized the person by environment interaction, prevising the modern 

person-oriented focus on the myriad interconnections between biological, psychological, 

and social influences of human behavior. Jack Block, considered by some as the “father 

of the modern person-oriented approach” (Bogat et al., 2016), asserted that lawfulness 

and universality are separate attributes of human behavior, which is reflected in the 

modern principles of person-oriented psychology (Block, 1971/2014). As a prominent 

critic of the five-factor model of personality, Block asserted that because personality 

structures are inherently individualistic, a variable-centered method, such as factor 

analysis, is insufficient to describe personality (Block, 1995). More recently, David 

Magnusson and Lars Bergman have defined the person-oriented approach in terms of a 

“holistic, interactionist view, in which the individual is seen as an organized 

whole…formed by interactions among the elements involved…” (Bergman & 

Magnusson, 1997). Bergman and Magnusson’s definition reflects the influences of early 
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proponents of the person-oriented approach, but also reveals the ambiguity and lack of 

precision that is still inherent in this approach to psychology. For instance, the lack of 

specificity of putative effects makes it difficult to define specific theories, testable 

hypotheses, or to make model comparisons (Bergman & Andersson, 2010; Sterba & 

Bauer, 2010). It could also be argued that a paradigm in which “everything interacts with 

everything” (Magnusson & Törestad, 1993, p. 447) and patterns are “not meaningfully 

reducible to their component parts” (Sterba & Bauer, 2010, p. 240) yields limited 

scientific usefulness. However, as specific methodological shortcomings are identified, 

such as underdeveloped pattern analysis methods, work can be done to refine theories and 

methods that are appropriate for the person-oriented approach (Bogat et al., 2016; Sterba 

& Bauer, 2010). Finally, building on the work of Gustav Lienert, Alexander von Eye has 

proposed Configural Frequency Analysis to methodologically define the person-oriented 

approach (Lienert & Krauth, 1975; von Eye, 2002). This method is discussed in detail 

below. 

 Related to the development of the person-oriented approach is the idiographic 

approach to psychology. The idiographic approach emphasizes the analysis of the 

individual, as compared to analysis of the aggregate, as in nomothetic psychology. 

Proponents of the idiographic approach include David Barlow and Peter Molenaar 

(Barlow & Nock, 2009; Molenaar, 2004). Molenaar points out that violations of 

ergodicity in psychological processes mean that results estimated from aggregated data 

will differ from results estimated within subjects (Molenaar & Campbell, 2009). This 

reduces generalizability from the aggregate to the individual and calls into question 
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psychological theories that are posited in terms of within-subject processes, but are tested 

using between-subject methods. Barlow emphasizes the importance of individual subject 

studies for improving evidence-based therapeutic practices (Barlow, Nock, & Hersen, 

2009). Echoing Gordon Allport’s call to return to the individual (Allport, 1962), Barlow 

et al. (2009) detail experimental strategies designed to maximize the scientific yield from 

single-subject studies. 

While the contrasts between nomothetic and idiographic psychology and between 

variable-oriented and person-oriented approaches are related, the theories and methods of 

each contrasting pair are not necessarily exchangeable. That is to say, although variable-

oriented approaches are related to nomothetic approaches, they are not necessarily 

synonymous. Likewise, person-oriented approaches and idiographic approaches have 

similar concerns about individual change, yet are distinct. Standard, variable-oriented 

methods and nomothetic approaches are easily categorized together because both focus 

on interindividual or between-subject variation; however, the relation between person-

oriented methods and the idiographic approach is not as well defined. Idiographic and 

person-oriented approaches are both concerned with intraindividual, or within-subject, 

variation (Bergman & Magnusson, 1997; Molenaar, 2004), however, idiographic science 

focuses on intensive, single-subject analyses, like time-series or single-case experimental 

designs, to study individual differences and to inform evidence-based therapeutic 

practices (Barlow et al., 2009; Gast, 2010; Molenaar, 2004). In contrast, the person-

oriented approach is more akin to nomothetic science because it is concerned with 

identifying general laws of human behavior (Bergman & El-Khouri, 2003; Bergman & 
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Magnusson, 1997). In this regard, the person-oriented and variable-oriented approaches 

are similar. However, the person-oriented approach assumes that psychological processes 

are fundamentally emergent and self-organizing, similar to biological processes like 

motor coordination (Kelso, 1995; Thelen, 1989). This assumption means that the person-

oriented approach takes into account within-subject variation, acknowledges that there is 

also structure underlying between-subject variation, and expects a small number of stable 

groups of people to emerge from a given sample (Bergman & Magnusson, 1997). 

Current State of Person-Oriented Science  

In recent work, researchers have recognized that the connection between person-

oriented theories and methods is underdeveloped (Sterba & Bauer, 2010). Attempts have 

been made to codify a set of principles that formally define the person-oriented approach 

and guide researchers in the development of complementary methods (Bergman & 

Magnusson, 1997; Bogat, 2009; Sterba & Bauer, 2010; von Eye, 2010; von Eye & 

Bergman, 2003). These principles largely follow the assumptions described by Bergman 

& Magnusson (1997) and are outlined here. 

1. Psychological processes are, at least in part, unique to the individual, and the 

individual’s environment. 

2. These processes are determined by complex interactions. 

3. Despite complexity, the variability of these processes is coherent within the 

individual. Furthermore, there is structure in the ways in which processes 

differ between individuals. This lawfulness is mirrored in the variability 

within the environmental context and between environmental contexts. 
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4. The coherence of the processes occurs through the pattern of interacting 

factors. 

5. The factors themselves have meaning only in relation to all other factors. 

6. Globally, there will be “common” patterns that occur more or less frequently 

than expected. 

7. Aggregation of patterns is justified if dimensional identity (invariance) exists. 

8. Interpretations of processes are particular to the individual and environment. 

Recent empirical studies using person-oriented methods are typically descriptive 

and exploratory. Examples using configural frequency analysis are in Table 1. 

Developments have been made in configural frequency analysis to account for mediation 

processes (von Eye et al., 2010; von Eye, Mun, & Mair, 2009) however, to the best of my 

knowledge, no empirical examples using configural frequency mediation analysis are in 

the literature. 

------------------------------ 

Insert Table 1 about here  

------------------------------ 

Critiques of Variable-Oriented Theory/Methods 

The primary criticism of the traditional, variable-oriented approach is its 

inadequacies in estimating individual level parameters given aggregated data, and in 

drawing inferences from the aggregate to the individual. According to Campbell, this is 

an issue of external validity, specifically, the generalization of results from a sample to an 

individual case (Shadish, Cook, & Campbell, 2002). Instances where aggregated, or 
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group level data, lead to incorrect inferences concerning individual cases is known as an 

ecological fallacy (Robinson, 1950).  This is contrasted with the atomistic or 

individualistic fallacy, which occurs when individual data leads to incorrect inferences 

about the population (Diez Roux, 2002). Distinguishing between within-subject and 

between-subject differences and correctly inferring to individuals and populations is an 

important part of understanding the roles of both variable-oriented and person-oriented 

methods in research.  

An implicit assumption of the variable-oriented approach is that human behavior 

is governed by universal laws that can be discovered and understood by examining the 

component parts of behavior, emotion, and cognition. These “component parts” are the 

variables or constructs that are measured and analyzed in psychological research. If 

human behavior can be described in terms of universals, then drawing conclusions about 

individuals from aggregated data is appropriate and a traditional variable-oriented 

approach would be sufficient on its own. However, the importance of analyzing potential 

interactions and moderators is a recognized aspect of data analysis within the variable-

oriented paradigm. This concession to individual differences suggests that the assumed 

universality of human behavior may be an incomplete view, and that results based only 

on variable-oriented research do not always tell a complete story.  

Critiques of Person-Oriented Theory/Methods 

A principle limitation of the person-oriented approach is a misunderstanding of 

how its theories and methods are distinct from variable oriented theories and methods 

(Bogat et al., 2016). Proponents of the person-oriented approach suggest viewing 
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variables holistically, with individual patterns of variables, rather than the variables 

themselves,  as the focus of analysis (Bogat et al., 2016). However, this perspective often 

relies on descriptive interpretations and post hoc comparisons rather than specific 

hypothesis testing or model comparison (Bergman & Magnusson, 1997; Sterba & Bauer, 

2010). Many person-oriented techniques are not model based, but rather focus on all 

possible data patterns. As a result, hypothesis testing is generally limited to particular 

aspects of the expected data structure (Bergman, Magnusson, & El-Khouri, 2003). Rather 

than appealing to an empirical distinction between the person-oriented and variable-

oriented paradigms, researchers must make potentially untestable, a priori assumptions 

about individual processes in human behavior, the nature of sample heterogeneity, and 

the role of psychological science as a method of understanding that nature (Barlow & 

Nock, 2009; von Eye & Bogat, 2006). 

Statistical Mediation - The Single Mediator Model 

Statistical mediation analysis is a method for determining the causal mechanisms 

between two variables through the effects of a third variable, known as a mediator  

(MacKinnon, 2008). The mediator variable (M) transmits the effect of the independent 

variable (X) to the outcome variable (Y) and thereby accounts for either all or part of the 

effect of X on Y.  For theory development, the implications of a mediational model 

includes two components, action theory and conceptual theory (Chen, 1990). Action 

theory describes the effects of the independent variable on the mediator while conceptual 

theory describes the effects of the mediator on the outcome variable. Statistically, these 

two effects comprise the indirect effect of X on Y. It is also possible that the independent 
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variable has an effect on the outcome variable that is independent of the mediator, which 

is called the direct effect. 

Mediation analysis is based on a series of three linear regression equations 

(MacKinnon, 2008). The total effect of the independent variable on the outcome, which 

implicitly includes the contribution of the mediator, is represented by the c-coefficient in 

Equation 1, where Ŷ is the estimate of the outcome, X is the predictor, i1 is the intercept 

and e1 is the residual. The effect of the independent variable on the mediator, which 

corresponds with action theory, is found in the a-coefficient of Equation 2, where M̂ is 

the estimate of the mediator, X is the predictor, i2 is the intercept and e2 is the residual. 

Finally, the effect of the independent variable on the outcome variable while adjusting for 

the mediator is represented by the c’-coefficient in Equation 3, and the effect of the 

mediator on the outcome, while adjusting for the independent variable, is represented by 

the b-coefficient in Equation 3 where Ŷ is the estimate of the outcome, X is the predictor, 

M is the mediator, i3 is the intercept and e3 is the residual. Tests of mediation are 

conducted using two of the three equations. Equations 2 and 3 are used to test the product 

of coefficients a and b (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). 

Equations 1 and 3 are used to test the indirect effect as the difference of coefficients c and 

c’.    

 1 1
ˆ=Y i cX e+ +   (1) 

 2 2M̂ i aX e= + +   (2) 

 3 3
ˆ 'Y i c X bM e= + + +   (3) 

Single Mediator Model with Binary X, M, and Y 
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 A basic case of mediation occurs when X, M, and Y are all binary variables. The 

binary X, M, and Y case is advantageous for investigating a person-oriented approach 

because there are only eight possible patterns for the three variables. Each pattern 

expresses either a ‘yes’ or ‘no’ value (represented by a 1 or 0, respectively) for each 

variable. For example, X=0, M=0, Y=0 codes the case where X, M, and Y are all ‘no’. 

Likewise, X=0, M=0, Y=1 codes the case where X and M are ‘no’ and Y is ‘yes.’ Table 2 

enumerates the eight possible combinations. 

------------------------------ 

Insert Table 2 about here  

------------------------------ 

Adjusting for Dichotomization of Continuous Variables 

The dichotomization of continuous variables results in the loss of information. 

However, dichotomization also provides a way to explore person-oriented methods in the 

basic case of mediation described above. The variance accounted for when two variables 

are dichotomized is equal to .405 times the variance explained between two continuous 

variables (Cohen, 1983). The general formula for adjusting a correlation for 

dichotomization is shown in Equation 4. The equation for e is a function of h, the height 

of the standard unit normal curve at the point of dichotomization and p, the proportion of 

observations contained within either one of the intervals (Cohen, 1983). 

 
[ (1 )]

h
e

p p
=

−
  (4) 
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In the case of dichotomizing at the mean, e = .798. When both variables in a 

correlation are dichotomized in this way, the correction factor must be applied twice, 

resulting in e = .7982 = .636804, meaning that the observed correlation between the 

dichotomized variables is approximately .637r, where r is the observed correlation 

between the continuous variables. Adjusting for r2 means that .637 will also be squared, 

which is .405, as described above. In the case of simulated data generation, the 

population values of r can be divided by the value of e to correct for correlation 

attenuation. 

Moving from Variable to Person-Oriented Mediation 

 Traditional mediation from a variable-oriented approach assumes a homogeneous 

mediating process within the population. Each person undergoing the mediation process 

will do so at the same rate and to the same degree. The focus of this type of mediation 

analysis is whether there is evidence that X causes M, and M causes Y. Variables are the 

focus of analysis, not individuals. A hypothetical example is an intervention designed to 

alter social norms associated with underage alcohol consumption. In this example, the 

independent variable (X) represents inclusion in either a treatment or control group, the 

mediator (M) is social norms about underage alcohol consumption, and the outcome 

variable (Y) is alcohol consumption. Variable-oriented mediation can answer whether the 

intervention influences social norms, and if social norms affect alcohol consumption. 

Analysis would focus on variables, specifically, variation between X, M and Y. 

 Mediation at the level of the person (or latent groups of people) is an intra-

individual process that can occur differently within individuals (Collins et al., 1998). In 
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terms of the hypothetical alcohol example above, person-oriented mediation assumes that 

individuals react differently to the intervention as well as the social norms that are 

changed by the intervention. It is possible that some people may reduce alcohol 

consumption with norm change and others may increase alcohol consumption in response 

to the same norm change. 

 To move from variable to individual oriented mediation, it is useful to consider 

the eight patterns from Table 2. These patterns can represent eight groups of people who 

respond differentially to the X and M variables. The frequency with which these patterns 

occur, particularly those patterns that are deemed consistent with mediation, is a primary 

consideration in developing person-oriented methods for mediation because it can 

quantify heterogeneity in the mediation process. 

Mediation Techniques 

 Four mediation techniques for the case of binary X, M and Y are described below. 

Logistic regression and causal mediation are both variable-oriented approaches that focus 

on variation at the level of the variable. The stage sequential method and configural 

frequency analysis are person-oriented approach in which mediation is considered an 

individual process and the focus of analysis is on variation among patterns of variables. 

Logistic regression is the conventional method used when Y is binary (MacKinnon, 

2008). Causal estimators are non-parametric, allowing for both linear and non-linear 

estimation of mediation with causal interpretations (Pearl, 2012). The stage sequential 

method identifies patterns of mediation based on probabilities of an individual moving 

through stages of X, M, and Y (Collins et al., 1998). Configural frequency analysis, 
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determines mediation by comparing residuals in a series of log-linear models that 

collectively account for the relationships between X, M, and Y (von Eye et al., 2010).  

Logistic regression. When analyzing data that includes a binary dependent 

variable, it is necessary to think in terms of the probability of an observation in a 

particular category of the dependent variable, rather than taking on a certain value of the 

variable. Modeling data with linear regression requires a transformation of the probability 

into a form suitable for the generalized linear model. This is accomplished by using the 

logit link function. The logit is the natural logarithm of the odds ratio and it is the 

outcome variable in a logistic regression of the form found in Equation 5, where p̂ is the 

observed probability of that the binary dependent variable takes on a value of 1, β0 is the 

regression intercept, and β1 is the regression coefficient relating X to Y. 

 0 1

ˆ
ln( )

ˆ1

p
X e

p
 = + +

−
  (5) 

Mediation analysis with binary X, M and Y variables can be accomplished using a 

system of logistic regression equations corresponding to Equations 1-3 (MacKinnon, 

2008). 

 1 1

ˆ( 1)
ln

ˆ(1 ( 1))

p Y
i cX e

p Y

=
= + +

− =
  (6) 

 2 2

ˆ( 1)
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The coefficients in Equations 6-8 are in the metric of the natural logarithm of the 

odds ratio. To aid researchers in interpretation, these values are converted to odds ratios 

by taking the antilogarithms of the coefficients.  

The mediated effect can be estimated using either the product of coefficients (ab) 

or the difference of coefficients (c-c’) as in the standard single mediator model. However, 

in the case of logistic regression, these estimates are not equivalent (MacKinnon & 

Dwyer, 1993). 

Causal estimators. The effects of the single mediator model can also be 

estimated based on the potential outcomes perspective (Pearl, 2012). In this case, 

frequencies are combined to make proportions that represent the total, direct, and indirect 

effects. Before calculating the total, direct, and indirect effects as summarized by Pearl 

(2012), six intermediate proportions are calculated based on the eight frequencies in 

Table 2. In the following equations, gx,m is expected values of Y given values of X and M, 

hx is the expected value of M given X, and ni is the frequency of observations for each of 

the eight possible combinations of X, M, and Y. Equation 9 represents the expected value 

of Y, given a “no” value on both X and M, or proportion of cases in the control condition 

that do not have the mediator, but do have the outcome (gx,m = g0,0). Similarly, Equation 

10 represents the expected value of Y, given a “no” value on X and a “yes” value on M, 

or the proportion of cases in the control condition that have both the mediator and the 

outcome (g0,1). Equations 11 and 12 mirror Equations 9 and 10 for the treatment group 

(g1, 0 and g1, 1, respectively). Equations 13 and 14 represent the expected value of M in the 
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control and treatment groups, respectively, or the proportion of cases in each condition 

that have the mediator, and any value of Y (h0 and h1).  
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 From these intermediary proportions, the total effect (TE), direct effect (DE) and 

indirect effect (IE) are calculated, as in Equations 15, 16, and 17. 

 1,1 1 1,0 1 0,1 0 0,0 0(1 ) [ (1 )]TE g h g h g h g h= + − − + −   (15) 

 1,0 0,0 0 1,1 0,1 0( )(1 ) ( )DE g g h g g h= − − + −   (16) 

 1 0 0,1 0,0( )( )IE h h g g= − −   (17) 

 These equations and their standard errors can be estimated with several computer 

programs. The PROC CAUSALMED procedure in SAS will be used to estimate these 

direct and indirect effects in this study (SAS Institute Inc., 2017; VanderWeele, 2014).  
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Stage sequential method. Implicit in the definition of statistical mediation is the 

temporal precedence of X to M and of both X and M to Y. In order for there to be a 

causal sequence between the three variables, they must occur in three temporally distinct 

stages. This is a foundational premise of the Stage Sequential Method (Collins et al., 

1998) and is explicit in the defining conditions.  Within this framework, a mediation 

pattern is defined as a case wherein an individual moves from having the mediator (M=1) 

to having the outcome (Y=1). To assess whether mediation has occurred, three conditions 

must be met (Collins et al., 1998): 

1. It is more probable for an individual in the treatment group (X=1) to move 

from not having either the mediator or outcome at stage 1 (M=0, Y=0) to 

having both the mediator and outcome in stages 2-3 (M=1, Y=1). 

2. It is more probable for an individual in the treatment group (X=1) to move 

from not having the mediator at stage 1 (M=0) to having the mediator at stage 

2 (M=1). 

3. It is more probable to move from having the mediator (M=1) to having the 

outcome (Y=1) than it is to move from not having the mediator (M=0) to 

having the outcome (Y=1) in both the treatment and control groups. 

These three conditions are analogous to the effects discussed in the traditional 

single mediator model. The first condition establishes the logical precedence for 

mediation because it is assumed that in a mediation process the independent variable 

affects the mediator, which in turn affects the outcome variable. For this to be the case, it 

is logical to assume that the mediation pattern is more likely to occur in a treatment 
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condition (X=1). The second condition is comparable to the a-coefficent in Equation 2, 

which quantifies the effect of the independent variable on the mediator. The last 

condition is comparable to the b-coefficient in Equation 3, which quantifies the effect of 

the mediator on the outcome variable, controlling for X. 

Collins et al. (1998), presents the following formalization of the three conditions 

of stage sequential mediation, letting X, M, and Y be X=1, M=1, and Y=1, respectively. 

Let X̆, M̆, and Y̆ be X=0, M=0 and Y=0, respectively. Finally, let S1, S2, and S3 stages 1, 

2, and 3, respectively. 

 
2 3 1 1 2 3 1 1

(   | ,  ,  ) (   | ,  ,  )S S S S S S S SP M and Y X M Y P M and Y X M Y   (18) 
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  (20) 

 The stage sequential method defines mediation as a chain reaction where X 

affects M and then M affects Y. This differs from the conventional definition because the 

stage sequential method does not require an overall effect to be present (Collins et al., 

1998). The stage sequential method is conceptually significant to the question of person-

oriented mediation; however, it requires at least three waves of longitudinal data to test 

all three defining conditions. Since this study is not explicitly concerned with 

longitudinal data, and to the best of my knowledge this method has not been used since 

the original publication, the stage sequential method will not be evaluated in this study.   

Configural frequency analysis. When predictors and outcomes are all categorical, as in 

the case of binary X, M and Y, analysis of the resulting contingency table can provide 
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estimates of association between variables. Configural frequency analysis is a method of 

estimating associations between patterns of variables, rather than between the variables 

themselves, distinguishing it as a person-oriented method (Lienert & Krauth, 1975; von 

Eye, 1990). A benefit of configural frequency analysis is that it provides a method of 

hypothesis testing through the comparison of expected and observed cell frequencies. 

Cell frequencies are modeled with log-linear regressions, beginning with the estimation 

of a base model that includes all expected effects. The resulting cell frequencies are then 

compared with the observed data and differences are tested for significance. Cell 

frequencies that are significantly higher than expected are types and those that are 

significantly lower than expected are antitypes (von Eye, 1990). Any resulting types and 

antitypes can then be interpreted in light of substantive context. For example, a study of 

risk and resilience in women experiencing domestic violence found two types and one 

antitype in a contingency table that included a woman’s current symptom status with both 

her symptom status and victim status from the previous year (Von Eye, Mun, & Bogat, 

2009). Symptom status was designated as either having or not having clinical level 

anxiety and/or depression. Victim status was designated as either being or not being a 

victim of domestic violence. The first type was found among women who had previous 

clinical symptoms, current clinical symptoms, and no previous violence. The second type 

included women who had both previous and current clinical symptoms as well as 

previous violence. The antitype included women who had no clinical symptoms at either 

time point, and no violence. An interpretation of the types and antitypes suggest that 

women with previous clinical symptoms of depression and/or anxiety are more likely to 
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have those symptoms a year later, regardless of previous violent experience, while 

women without previous symptoms or violence are less likely to have symptoms a year 

later (Von Eye, Mun, & Bogat, 2009).  

 Conducting mediation analysis within the configural frequency framework 

involves the estimation and comparison of four base models, with each model 

incorporating different aspects of the possible X, M and Y associations. Each test of one 

of the base models with the observed data reveals partial information about the three-

variable system, specifically concerning whether or not certain pathways among the 

variables exist. The results of these four significance tests are then compared to each 

other to provide a view of the complete three-variable system. Formally, configural 

mediation analysis consists of (1) associations between X, M, and Y, which are identified 

through the existence of types and antitypes; (2) rules that identify the existence of 

mediation; and (3) rules that identify whether mediation is partial or complete (von Eye et 

al., 2010; von Eye, Mun, & Mair, 2009).  

 The first base model, shown in Equation 21 accounts for the main effects of X, M, 

and Y. In these equations, o refers to the observed frequency, ô  refers to predicted 

frequency, and λj refers to the relation between variable j and the predicted frequency. 

When observed frequencies significantly deviate from the frequencies expected under 

this model, then there are possible associations between X and M, X and Y, M and Y, or 

among all three. The existence of types or antitypes in this comparison is a logical 

prerequisite for mediation. 

 ˆlog X M Yo    = + + +   (21) 
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Equation 22 illustrates the second base model, which accounts for the main 

effects of X, M, and Y as well as an interaction between X and M. When types or 

antitypes emerge from this model, then there are potential associations between X and Y, 

or M and Y (or both). 

 ˆlog X M Y XMo     = + + + +   (22) 

 The third base model, Equation 23, accounts for the three main effects, and 

interactions between X and M, as well as X and Y. This model implies that significant 

frequency deviations are the result of an association between M and Y. 

 ˆlog X M Y XM XYo      = + + + + +   (23) 

 Finally, the fourth base model, Equation 24, accounts for the three main effects 

and interactions between X and M as well as M and Y. If types and antitypes emerge 

when testing this model, then there is an association between X and Y. 

 ˆlog X M Y XM MYo      = + + + + +   (24) 

According to von Eye et al. (2010)  there is evidence for mediation if types and 

antitypes emerge from the testing of the four base models. To identify whether full or 

partial mediation exists, they suggest three further comparisons. First, comparing the 

results from test two and test three can reveal whether or not a b pathway exists between 

M and Y. Next, the existence of the a path can be determined by comparing test one to all 

of the other three tests. Finally, the effects of the three-way interaction of X, M and Y 

should be considered as an alternative reason for types and antitypes to exist in the tests 

of the base models (von Eye et al., 2010). 

Hypotheses 
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Study 1: It was expected that under variable-oriented data generation, logistic 

regression and the causal mediation model would outperform configural mediation 

analysis in terms of power and Type 1 error rates. It was expected that the causal 

mediation model will outperform logistic regression in terms of parameter bias since it 

accounts for any interaction between X and M. Parameter bias comparisons were not be 

made for configural mediation analysis because this method does not directly estimate 

values a, b, and c’.  

Study 2: It was expected that under person-oriented data generation, configural 

mediation analysis would outperform logistic regression and the causal mediation model 

in both power Type 1 error rates.  It was also expected that the causal mediation model 

will outperform logistic regression in terms of parameter bias.  

Method 

Simulation Description 

The SAS RANNOR function was used to generate continuous variables for X, M, 

and Y from a normal distribution with a mean of zero and variance of one. The current 

computer time was used as the seed. The X variable was randomly generated and then 

dichotomized at zero to create a binary predictor variable. Continuous values for M were 

generated using Equation 2 and the binary value for X. Coefficient values were 

systematically varied and the error term was generated with the RANNOR function . The 

M variable was then dichotomized at zero to create a binary variable. Continuous values 

for Y were generated using Equation 3 and the binary X and continuous M values. 

Coefficient values were systematically varied and the error term generated with the 
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RANNOR function. The Y variable was then dichotomized at zero to create a binary 

variable. Finally, each observation was coded as one of eight categories based on the 

combination of binary X, M, and Y values in Table 2. 

Initial parameter values for a, b, and c’ were chosen to correspond to effect sizes 

of zero, small, medium, and large (Cohen, 1988). Since dichotomization results in a loss 

of information and a reduction in the r2 values between each pair of variables (Cohen, 

1983), the effect sizes were adjusted according to Cohen’s formula as described in 

Equation 4.  The coefficient effect size levels were 0, .35, .96, and 1.46. Samples sizes 

were 300 and 900 observations, which were chosen to facilitate estimation. Mediation 

analysis was conducted with logistic regression, configural frequency mediation, and a 

causal inference model.  For each condition, there will be 1,000 replications.  

A second dataset was generated in the same manner described above, with the 

exception that each condition was made up of three sub-groups of data. One sub-group 

was generated with parameter values of zero for a, b, and c’. The second sub-group was 

generated with parameter values of 1.46, 1.46, and 0, which corresponds to a large 

mediated effect. The third sub-group was generated with parameter values of 0, 0, 1.46, 

which corresponds to a large direct effect, but no mediated effect. The data files for each 

of these sub-groups were combined into a single dataset to create a single simulation 

condition. Sample sizes for the sub-groups were 100, 300, and 900 observations so the 

total sample sizes were 300, 900, and 2700, respectively. 1,000 replications were run for 

each sub-group.  
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To examine whether dichotomization of the raw data biased the results, a third 

dataset was generated from a binomial distribution using the SAS RANBIN function. A 

binary variable X was generated with a mean of .5 and variance .25. The probability for a 

binary variable, M, was defined by Equation 25, where p(M) is the probability of the 

mediator, and the term (i2 + aX) is from Equation 2. The probability for a binary variable, 

Y was defined by Equation 26, where p(Y) is the probability of the outcome, and the term 

(i3 + c’X + bM) is from Equation 3. These probabilities were used to generate binary 

values for M and Y.  
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To create a binomial generated dataset that was similar to the original, 

dichotomized data, the average logistic regression estimates from the original data were 

used as model true values in the binomial generated data. Table 3 shows the true effect 

sizes used to generate the normal data and the corresponding average logistic regression 

effects that were used to generate binomial data. 

------------------------------ 

Insert Table 3 about here  

------------------------------ 

Calculation of Type I Error Rate and Empirical Power 

Type I error is the probability that a significant effect is detected when there is not 

a true effect in the population. Type I error was calculated as the proportion of 
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replications for each condition in which the parameter estimates are found to be 

statistically significant (α = .05) when the true population value is known to be zero. 

Values between .025-.075 are considered acceptable for Type I error (Bradley, 1978).  

Empirical power is the probability that a significant effect is detected when there 

is a true effect in the population.  Power was calculated as the proportion of replications 

for each condition in which the parameter estimates are found to be statistically 

significant (α = .05) when the true population value is known to be nonzero. The 

minimum acceptable rate of detection was .80, commensurate with current discipline 

standards (Cohen, 1988).     

Logistic regression. Equations 7 and 8 were estimated using logistic regression 

and the mediated effect was calculated as the product of the a and b coefficients.  

 The Sobel standard error of the mediated effect was calculated using Equation 29 

and a p-value calculated from the z-score from Equation 30. In these equations, SEab is 

the standard error of the product, ab, a and b are regression coefficients from Equations 7 

and 8, SEa  is the standard error of the a coefficient, SEb is the standard error of the b 

coefficient, and zab  is the z-score for the product, ab.  

 2 2 2 2

b aabSE a SE b SE= +   (29) 

 
ab

ab

ab
z

SE
=   (30) 

The frequency of replications with p-values less than or equal to .05 was 

computed for each condition, which indicates a statistically significant estimate of the 

mediated effect. The number of replications with a significant mediated effect was 
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divided by the number of replications in each parameter combination conditions (1,000). 

For parameter combination conditions with no true mediated effect, this is the Type I 

error rate. For parameter combination conditions with a true mediated effect, this quotient 

is statistical power. 

The conditions in the second study are made up of three subgroups representing 

three subpopulations. One third of each condition consists of simulated cases with no true 

effects. One third consists of cases that are simulated with a large mediated effect. The 

final third of each condition consists of cases with a large direct effect, but no mediated 

effect. Combining the three subgroups together and treating the data as coming from a 

single population means the mediated effect would be the average true mediated effect of 

the three subgroups. Since at least one of the subgroups in each condition has a true 

mediated effect, each condition has a mediated effect, and Type I error is not applicable. 

Therefore, only statistical power is reported for study two.  

The mediated effect was estimated in the same manner as study one. Logistic 

regression was used to estimate Equations 7 and 8 and the product of coefficients a and b 

was computed as the mediated effect. The Sobel standard error was calculated and used 

to compute a z-score and p-value for the mediated effect. The frequency of replications 

with p-values less than or equal to .05 was computed for each condition and then divided 

by the total number of replications in each condition. 

Configural Frequency Mediation. Equations 21 through 24 were estimated 

using log-linear regression as the four base models of configural frequency mediation. 
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For each of the eight cells in each of the four models, a z-score was computed using 

Equation 25.  

 
observed frequency predicted frequency

predicted frequency
z

−
=    (25) 

 

A two-tailed significance test with a Bonferroni adjustment was conducted to test 

for significant differences between the observed and predicted frequencies in each cell. 

Cells with a z-score greater than 2.7344 were coded 1 to distinguish them as types, or 

cells with a greater than expected frequency. Cells with a z-score less than -2.7344 were 

coded -1 to distinguish them as anti-types, or cells with a lower than expected frequency. 

Non-significant cells were coded 0. 

The resulting dataset of types and antitypes were then analyzed using a set of 

decision rules based on the comparisons in von Eye, et al (2010). The exact procedures 

for CFM are unclear, so the most reasonable interpretations of the analysis were defined 

and are presented here.  

Determining if Mediation is Possible  

CFM begins by testing the feasibility of mediation. This is accomplished by 

estimating the main effects log-linear model in Model 1. A chi-square test is conducted to 

determine the goodness of fit of this model. If it fits well, then it is not possible that any 

of the mediation pathways exist, and the mediation analysis stops. If Model 1 does not fit, 

then mediation is a possible explanation and further examination of the data is warranted. 

Misfit in Model 1 does not guarantee that a mediation process is at work in the data, but 
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merely fails to rule mediation out as a possibility. Therefore a series of models are 

estimated and logical comparisons are necessary to determine why the data do not 

conform to a main effects only model. All of the steps described below assume that 

Model 1 does not fit. 

Evidence for the b-Path 

An association between M and Y indicates that the b-path in the single mediator 

model exists. This is a necessary component in assessing statistical mediation and 

represents the conceptual theory, or how a mediator effects an outcome. In CFM, this 

association is inferred by estimating Model 3 and examining any residuals. Since Model 

3 includes both the a-path and the c’- path but excludes the b-path, any residuals in 

Model 3 may be attributed to the existence of the b-path. If there are no residuals in 

Model 3, then there is no evidence that the b-path exists, and mediation is not possible.  

Evidence for the a-Path 

An association between X and M indicates that the a-path of the single mediator 

model exists. This path represents the action theory of mediation, or how a predictor 

effects a mediator. This is a necessary component in assessing mediation. In CFM, this 

association is inferred by comparing the pattern of residuals from Model 1 against the 

patterns of residuals in Models 2 through 4. If Model 1 has residuals, then one possible 

explanation is that the a-path exists. In order to rule out competing possibilities, the 

pattern of residuals in Model 1 is compared to the other models. When considered as a 

set, the other three models account for all other possible effects from the single mediator 

model. Therefore, if the pattern of residuals in Model 1 is different from the patterns in 
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any of the other models, it is inferred that the residuals are a result of the X-M 

association. That is to say, the only difference between Model 1 and the other three 

models is that Model 1 excludes the a-path and the other models include the a-path. 

Evidence for the c-Path 

An association between X and Y indicates that the c-path in the single mediator 

model exists. This association is not necessary for a mediation process to be detected, 

however, it can be used to distinguish between full or partial mediation. In CFM, the 

association between X and Y is inferred by estimating Model 4. Since Model 4 includes 

both the a-path and the b-path, any residuals from this model could be attributable to the 

c-path. In contrast, if there are no residuals from Model 4, it can be concluded that the c-

path does not exist. 

Full Mediation, Partial Mediation, and Direct Effects Models  

According to von Eye et al. (2010), it is also necessary to estimate Model 2 and 

compare the residuals from Model 2 with Model 3. Testing Model 2 provides information 

about whether X and/or M are predictors of Y, but it does not provide specific 

information about those associations. This is because Model 2 includes only the a-path, 

and excludes both the b and c’ paths. Therefore residuals in Model 2 indicate that either 

the b-path, the c’-path or both paths may exist. When Model 2 is considered in 

conjunction with Model 3, then distinctions can be made between full mediation, partial 

mediation, or a direct effects only model.  

Based on these decision rules, the frequency of replications that were determined 

to have either full or partial mediation was calculated and divided by the total number of 
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replications in each condition (1,000). For conditions with no true mediated effect, this is 

the Type I error rate. For conditions with a true mediated effect, this is statistical power. 

In the second study, the existence of a mediated effect was determined in the 

same manner as study one. Four log-linear base models were estimated from the 

frequency of cases that fell into one of eight combinations of binary X, M, and Y. The 

observed frequencies were compared to the predicted frequencies in each cell to 

determine significant differences, which were coded as either types and antitypes. The 

pattern of types and antitypes were then analyzed using a set of decision rules based upon 

the comparisons in von Eye, et al (2010). The frequency of replications that were 

determined to have either full or partial mediation was calculated and divided by the total 

number of replications in each condition.  

Joint Significance Test with CFM.  

The configural frequency mediation approach specified in von Eye, et al (2010) is 

based on the causal steps method (Baron & Kenny, 1986). This method is inferior to the 

joint significance test in regards to Type I error and power (MacKinnon et al, 2002). 

Given the pattern of results using the original CFM decision rules, further analyses were 

conducted to determine the significance of the a and b paths separately, as in a joint 

significance test. The logic of configural frequency mediation was used to determine 

which log-linear base models should be compared to determine the existence of the a and 

b paths.  

The following process was used to conduct a series of significance tests between 

competing log-linear models. The logic of configural frequency mediation implies that 
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significant differences between two models suggests the plausible existence of any 

effects that are in the more complex model but not in the simpler one. The a-path and b-

path were tested separately by computing a chi-square difference test between two 

models in which the path in question was the only specified difference. For each path, 

Type 1 error and power were calculated by dividing the number of significant 

replications by the total number of replications. If the a and b paths were both significant, 

the conclusion was that a mediated effect was present. Type 1 error and power for the 

mediated effect was determined by divided the number of replications with a mediated 

effect by the total number of replications. A full list log-linear models used is in 

Appendix A.  

Causal Inference Mediation 

Causal estimates for both studies were obtained by modeling Equations 1 and 2 in 

PROC CAUSALMED. The true natural indirect effect (TNIE) was used as a comparison 

to the traditional product of coefficients mediated effect. A significance test was 

conducted for the TNIE using Wald confidence intervals. The frequency of replications 

with confidence intervals that did not include zero was calculated. This frequency was 

then divided by the total number of replications (1000). For conditions without a true 

mediated effect, this is the Type I error rate. For conditions with a true mediated effect, 

this is statistical power. 

Accuracy of Point Estimates 

Analysis of logistic regression and causal mediation included calculations of bias. 

An unbiased parameter estimate means that, on average, the estimates will match the true 
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population value (Cohen, Cohen, West, & Aiken, 2003). Therefore, bias was calculated 

as the difference of the average parameter estimates for each of the 1,000 replications and 

the known true population value designated in the simulation. Equation 26 shows this 

calculation, where θ-hat is the parameter estimate and θ is the true value of the parameter. 

Relative bias was calculated by dividing the bias found in Equation 26 by the true value 

of the parameter estimate, as in Equation 27. Standardized bias was calculated as the 

difference between the parameter estimate and the true population value, divided by the 

standard deviation of the parameter estimate, as in Equation 28. 
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Results 

 

Study 1 

Convergence 

The models in study 1 across all methods converged, with a software warning in a 

very small percentage of cases. For logistic regression, 99.9% of the models from 

Equations 1 and 2 converged, while 100.0% of the models from Equations 3 converged. 

Less than 1.0% of the models from both Equations 1 and 2 had possible quasi-complete 

data separation. The four CFM base models and the models used in the joint significance 

tests all had at least 99.9% convergence. In each model, less than 1.0% did not converge 

when the likelihood did not improve after 10 halvings. For causal mediation, both the 

mediator and outcome models had at least 99.9% convergence. Less than 1.0% of the 

models, resulted in warnings for ridging of the Hessian matrix.  

Type I Error 

Logistic regression. Table 2.A shows average Type I error rates for combinations 

of the a and b parameters marginalized over values of c’. The overall Type I error for 

logistic regression was .034 for N = 300 and .039 for N = 900. For both N = 300 and N = 

900, Type I error rates were below .075 in all parameter combinations but fell below .025 

when both a and b were zero. Type I error rates fell below .025 for N=300 when a was 

small, and b was zero. Table 2.B shows Type I error rates for the binomial generated 

data, which show the same pattern of results as data generated from the normal 

distribution, within rounding error. 
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Configural frequency mediation. Table 2.A shows Type I error rates for 

combinations of the a and b parameters. For all parameter conditions and sample sizes, 

Type I error fell outside the nominal range of .025-.075, with some parameter 

combinations being too high and others being too low. The overall Type I error rates for 

configural frequency mediation were high at .283 for N = 300 and .349 for N = 900. 

However, conditions where the b effect was nonzero had considerable influence on the 

error rate. When a was zero and b was medium or large in the small sample, Type I error 

rates were high. In the large sample, Type I error rates were high in all conditions were a 

was zero and b was nonzero. In constrast, when b was zero, Type I error rates were 

below .025 for both N = 300 and N = 900. Table 2.B shows Type I error rates for the 

binomial generated data, which show the same pattern of results as data generated from 

the normal distribution, within rounding error. 

Causal inference mediation. Table 4.A shows Type I error rates for 

combinations of the a and b parameters.  For all conditions across both sample sizes, 

Type I error was below .075. For N = 300, overall Type I error was .015. For N =900, the 

overall Type I error was .030. For N = 300, all but one parameter combination had Type I 

error below .025. Only when a was large and b was zero did the Type I error fall within 

the nominal range. For N = 900, only two parameter combinations were below .025, 

when both paths were zero, and when a was small and b was zero. Table 4.B shows Type 

I error rates for the binomial generated data, which show the same pattern of results as 

data generated from the normal distribution, within rounding error. 
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------------------------------ 

Insert Tables 4.A-4.B about here  

------------------------------ 

Power 

Logistic regression. Table 5.A shows statistical power as the magnitude of 

mediated effect increases. The magnitude of mediated effect is a function of both the a 

and b coefficients. The parameter combinations are listed with the smaller a coefficient 

listed first. As expected, power increased with sample size in each parameter 

combination. For N = 900, power was close to one in all parameter combinations. For N 

= 300, power was below .80 in three parameter combinations that had a small a effect. 

These included two with the smallest mediated effects. In these conditions, power tended 

to increase as the b coefficient increased. When both a and b were small, power was 

only.62. When a was small and b was medium or large, power was .77.  

There was an unexpected pattern in two parameter combination, where the 

smaller effect had greater power. When a was medium and b was small, the product of 

coefficients was 1.51 and power was .93. However, when a was small and b was large, 

the product of coefficients was 1.69, and power was .77. Table 5.B shows power for the 

binomial generated data, which show the same pattern of results as data generated from 

the normal distribution, within rounding error. 

Configural frequency mediation. Table 5.A shows that statistical power 

increased as the mediated effect increased. Power increased with sample size across all 

combinations of a and b. For both N = 300 and N = 900, power was above .80 whenever 
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b was medium or large. However, when the b effect was small, power was very low, 

ranging from .05-.13 for N = 300, and ranging from .58-.64 for N = 900. Given these 

results, it appears the magnitude of the b-path is more important than the a-path for the 

power of CFM to detect mediation. Table 5.B shows power for the binomial generated 

data, which show the same pattern of results as data generated from the normal 

distribution, within rounding error. 

Causal inference mediation. Table 5.A shows that statistical power increased as 

the mediated effect increased. For N = 300, power exceeded .80 in two parameter 

combinations, when a was medium and b was medium (0.842) and when a was medium 

and b was large (0.817). However, power did not increase monotonically as the mediated 

effect increased. Power was .25 when a was small and b was large, even though the 

magnitude of the effect was similar to the conditions when a was medium and b was 

small, which had a power of .71. In addition, the two parameter combinations with the 

largest mediated effect showed a substantial drop in power compared to combinations 

with smaller effects.  For N = 900, power was above .80 at all levels of mediated effect 

and parameter combinations. Table 5.B shows power for the binomial generated data, 

which show the same pattern of results as data generated from the normal distribution, 

within rounding error. 

------------------------------ 

Insert Tables 5.A-5.B about here  

------------------------------ 

Accuracy of Estimates 
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Logistic regression. Bias, relative bias, and standardized bias were calculated 

using the true values and results from the binomial generated data. Logistic regression 

showed minimal bias across all conditions and sample sizes. Bias decreased with sample 

size, but increased as the magnitude of the mediated effect increased. Relative bias did 

not exceed .05 in any condition. For most conditions, standardized bias decreased as 

sample size increased. Standardized bias also increased as the size of the mediated effect 

increased, although this trend was more pronounced for N = 300. Tables 6.A and 6.B 

summarize bias values. 

Causal inference mediation. Bias, relative bias, and standardized bias were 

calculated using the true values and results from the binomial generated data. The true 

values for the TNIE were computed using Equation 29, where i1 is the intercept from 

Equation 1, h is the coefficient for the XM interaction which in this case is zero, x = 0, x* 

= 1, and a and b are the logistic regression coefficients from Equations 2 and 3.  

𝑇𝑁𝐼𝐸 =
(1+𝑒(𝑖1+ax*))(1+𝑒(b+hx+i1+ax))

(1+𝑒(𝑖1+ax))(1+𝑒(b+hx+i1+ax*))
     (29) 

For all conditions in both sample sizes, relative bias exceeded 0.10, suggesting 

that either the estimator in Equation 29 needs improvement, or that clarification is needed 

concerning the estimation procedures that are implemented in PROC CAUSALMED.  

This is evidenced by the role that the c’ coefficient seems to have in the bias values. For 

both N = 300 and N = 900, all three measures of bias increased as the magnitude of c’ 

increased and the values of a and b were held constant, although the c’ coefficient is not 

included in the calculation of the true TNIE values. 
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For N=300 there were eight conditions with unusually high bias and relative bias. 

Three way frequency tables of X, M, and Y suggest that sparse cells led to division by 

very small numbers, which can account for the unusual estimates. This issue was 

resolved when the sample increased to N=900, supporting the conclusion that the 

astronomical bias occurred as a result of data sparsity in some cells. 

------------------------------ 

Insert Tables 6A-6D about here  

------------------------------ 

Joint Significance Tests with Configural Frequency Models 

Configural frequency mediation joint significance tests. Tables 7A and 7B  

compare the Type I error results from three joint significance tests and the original CFM 

analysis. The first joint significance test compared the models in Equations 21 and 22 to 

test the a-path and Equations 22 and 24 to test the b-path. This test included three of the 

base models used in configural frequency analysis.  Overall Type I error for the mediated 

effect was .16 in the smaller sample and .23 in the larger sample. Both values are lower 

than the Type I error from the causal steps version of CFM. In addition, a comparison of 

Type I error rates by parameter combination shows that error rates are higher when the a-

path is non-zero and the b-path is zero.   

Tables 8A and 8B compares the power results from the three joint significance 

tests and the original CFM analysis. In the smaller sample, power was below .80 in three 

parameter combinations, all of which had a small effect for the a-path. Power was 

above .80 for all parameter combinations in the larger sample.  
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 The second joint significance test compared the model in Equations 40 and 41 to 

test the a-path and Equations 42 and 41 to test the b-path. The saturated model in 

Equation 41 was chosen for these comparisons to account for the effects of any higher 

order interactions.  

ˆlog X M Y MY XY XMYo       = + + + + + +              (40) 

ˆlog X M Y XM XY MY XMYo        = + + + + + + +                  (41) 

ˆlog X M Y XM XY XMYo       = + + + + + +                   (42) 

The overall Type I error rate was lower than the causal steps version of CFM, and 

the highest error rates occurred when the a-path was zero and the b-path was nonzero. 

This occurred for both N = 300 and N = 900. Power was generally lower in this test 

compared to the causal steps version of CFM. There were no parameter combinations that 

reached .80 power in the smaller sample. In the larger sample, power was above .80 in 

only three parameter combinations. 

The third joint significance test compared the models in Equations 43 and 44 to 

test the a-path and Equations 42 and 41 again to test the b-path. These comparisons were 

chosen because they were the best performing for each path. Tables 9 – 12 summarize 

results for the separates tests of the a and b paths that make up the joint significance tests 

described above. 

ˆlog X M Y XYo     = + + + +           (43) 

ˆlog X M Y XM XYo      = + + + + +                                (44)  

This combination of models had Type I errors within the nominal range for most 

parameter combination for both N = 300 and N = 900. The exception was when both a 
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and b were zero, which had a Type I error rate of .01 in the small sample and .00 (with 

rounding error) in the large sample. In the smaller sample conditions, power was 

above .80 only when a and b both had at least a medium effect. All parameter 

combinations had power above .80 for N = 900. 

------------------------------ 

Insert Tables 7A-12 about here  

------------------------------ 

Study 2 

Convergence 

The models in study 2 converged adequately, with a software warning in a very 

small percentage of cases. For logistic regression, 99.8% of the models from Equation 3 

converged, while 100.0% of the models from Equations 1 and 2 converged. Less than 

1.0% of the models from Equations 3 had possible quasi-complete data separation. All of 

the models estimated for CFM, the joint significance test, and causal mediation 

converged.  

Power 

Logistic regression. Table 13 shows power results for data that were generated to 

have heterogenous subgroups. As expected, power increased as sample size increased. 

The average mediated effect in each condition may be most similar to conditions where a 

is large and b is small, or when a and b are both medium in the homogeneous conditions. 

For N = 300 and N = 900, power was much lower in the heterogeneous data than 
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comparable conditions in the homogeneous data. However, for N = 2700, power 

reached .99. 

Configural frequency mediation. Table 13 shows power results for data that 

were generated to have heterogenous subgroups. Power increased with sample size, but at 

a much smaller rate compared to logistic regression and causal mediation. For N = 2700, 

power was only .39. Because CFM was developed as a person-oriented method, it was 

expected to be better than traditional methods at detecting subgroups within a dataset. 

This does not appear to be the case. 

Causal inference mediation. Table 13 shows power results for data that were 

generated to have heterogenous subgroups. Causal mediation performed similarly to 

logistic regression, and as expected, power increased as sample size increased. However, 

causal mediation had more power than logistic regression for N = 900. 

Joint Significance Tests with Configural Frequency Models 

Configural frequency mediation joint significance tests. Table 14 compares the 

power results from three joint significance tests and the original CFM analysis. Tables 15 

and 16 summarize results for the separate tests of the a and b paths that make up the joint 

significance tests described above.  

------------------------------ 

Insert Tables 13-16 about here  

------------------------------ 

The types and antitypes from the independence model for the three conditions in 

study 2 are shown in Tables 17-19. When there is evidence for mediation in CFM, these 
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are the subgroups that are used for a person-oriented interpretation of the mediation 

process. In all three conditions, there are types found for the configurations that have the 

same values for X, M, and Y (i.e. 000 or 111), as expected. For N=900 all other 

configurations are antitypes, when N=300, five of the six remaining configurations were 

antitypes, and when N=100, four of the six remaining configurations were antitypes. 

------------------------------ 

Insert Tables 17-19 about here  

------------------------------ 

The joint significance test has been shown to be a better choice that the causal 

steps method, both in the literature and in this study (MacKinnon et al., 2002). However, 

conducting a joint significance test with the CFM models can only answer the question of 

whether mediation is present. The next stage of analysis is to interpret which subgroups 

carry the mediation process. In the original CFM, this is done by looking at the types and 

antitypes from the independence model. Study 2 presented an opportunity to see if these 

interpretations would hold when mediation was determined through a joint significance 

test rather than the CFM decision rules. However, the types and antitypes from the 

independence model were inconclusive. The conditions in study 2 were generated such 

that one third of the sample had a large mediated effect. This resulted in types and 

antitypes for the variable configurations 000 and 111, which is what would be expected. 

However, it was not possible to determine which subgroup the observed frequencies 

came from.  
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The types and antitypes from study 2 were compared with four conditions in 

study 1 with N=900. These four conditions corresponded as closely as possible to the 

effects in the three subgroups and the average effects when the subgroups were combined 

into a single population. The pattern of types and antitypes from study 2 matched the 

pattern of types and antitypes for the study 1 condition that corresponded with the 

subgroup with mediation and the study 1 condition that corresponded to the average 

effects of the subgroup. Therefore, although a joint significance test can improve the 

statistical performance of the CFM models, nothing is gained in person-oriented 

interpretation. 

Summary of Simulation Results 

In both simulations, logistic regression performed as expected. Specifically, Type 

I error rates were below the nominal rate of .075 in all conditions. In addition, power 

increased as both effect size and sample size increased. However, in the smaller sample 

size of study 1, the a-path had a greater influence on power than the b-path, that is, when 

the product of the coefficients was the same, power was higher when the size of a was 

greater than b than when b was greater than a. A similar pattern of results for the a-path 

has been found in previous simulations (Fritz, Taylor, & MacKinnon, 2012). Relative 

bias was below 10% across all conditions and sample sizes.  

Configural frequency analysis did not perform well in either simulation. Overall 

Type I error rates were high, and in a pattern that suggested the b-path had a greater 

influence than the a-path on Type I errors. This pattern was also reflected in power, 

which was lowest when the b-path was small. Joint significance tests were conducted to 

find a method of using configural frequency analysis to investigate mediation that had 
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better statistical properties. Type I error rates were below the nominal .075 level when the 

a-path was tested by comparing Equations 43 and 44, and the b-path was tested by 

comparing Equations 41 and 42.   

 Mediation from the potential outcomes framework uses the true natural indirect 

effect (TNIE) rather than the product of coefficients that is used in traditional regression-

based mediation. In both simulations, causal mediation performed similarly to logistic 

regression in regard to Type I error rates, which were below the nominal .075 level in all 

conditions. In study 1, power increased with sample size, however, in the smaller sample, 

power did not increase monotonically with effect size. Bias for the TNIE was generally 

higher than expected, and cell sparsity led to unusually high values for several conditions 

when N = 300.  

Discussion 

The aim of this project was to investigate a method for mediation from a person-

oriented perspective and compare it to a conventional mediation analysis and a modern 

causal inference approach. Two simulations were conducted, the first assuming a 

homogenous mediated effect in the population, and the second assuming a heterogenous 

mediated effect in the population. Both studies found that configural frequency mediation 

does not perform well in its current form, specifically with high Type I error rates. 

Performance may be improved using joint significance tests, however this strategy limits 

the interpretability of results from a person-oriented perspective.  

Adapting mediation to configural frequency analysis was a step forward in 

finding statistical methods for person-oriented mediation (von Eye et al., 2010; von Eye, 
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Mun, & Mair, 2009). However, implementation of the published method is not 

straightforward, and may be a contributing factor to the lack of substantive examples of 

CFM in the literature. The currently published treatments of CFM provide descriptions of 

the process, which include estimating a series of log-linear models, evaluating the 

existence of mediation through a set of model comparison and decision rules, and 

determining the type of mediation effects that are present in the dataset. What remains 

unclear is the guiding principle that was used to develop the decision rules in the second 

stage of the process. In addition, there is no software in place to automate the decision 

rules.  

Contributions 

One contribution of this project was to provide an interpretation of the decision 

rules that were originally presented for CFM (von Eye et al., 2010). The guiding principle 

of this interpretation was to translate the decision rules into a set of “if, then, else” 

statements that captured the relevant bivariate relations among X, M, and Y that were 

deduced from each model comparison. A second contribution was the translation of 

decision rules into a program that would automate the decision rule process for any data 

set. Both of these contributions were necessary components that had to be developed in 

order to conduct a simulation study to evaluate CFM. A third contribution of this project 

was to contrast the person-oriented approach with variable-oriented approaches, and 

describe person-oriented research as a hybrid of nomothetic and idiographic methods. 

  

Limitations 
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This study represents some beginning steps in understanding CFM, its statistical 

performance and usefulness as a research tool, and its comparability to traditional and 

causal methods. There are several limitations to discuss, including CFM model 

specifications, mixture modeling as an alternative, ambiguity in subgroup identification, 

significance testing in the context of the person-oriented approach, incongruities with 

CFM joint significance testing, and differences between the logistic and causal 

estimators.   

First, the CFM log-linear models used in this study intentionally ignored the role 

of the three-way interaction between X, M, and Y. This choice was made in order to 

conduct a simplified evaluation of CFM within a simulation where the three-way 

interaction was not modeled. However, it should be noted that this interaction could 

possibly be responsible for any types and antitypes that are revealed in the independence 

model.  Inclusion of the three-way interaction in future research would be necessary to 

fully evaluate this method. 

Second, mixture modeling may be a more reasonable alternative for studying 

person-oriented mediation. There is currently little research on using mixture models 

explicitly in a mediation context, however there may be several advantages to preferring 

this framework over CFM for person-oriented mediation. First is that CFM is restricted to 

categorical variables, and the contingency tables can become unwieldy as the number of 

variables and the number of categories increases. In contrast, mixture models can be 

estimated for both discrete and continuous variables. In addition, the depth of 
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methodological research that exists for mixture models makes this method more 

accessible for researchers, both theoretically and in software packages. 

Third, interpreting subgroups from the independence model is ambiguous. The 

first step in a CFM analysis is essentially a “gatekeeper” where the fit of the 

independence model is tested to ascertain the viability of a mediated relation in the data. 

In this step, a well fitting model precludes the possibility of mediation, while model 

misfit suggests that mediation could be one of several possible explanations for the 

misfit. It is only after the independence model is rejected that mediation can be 

ascertained through a series of model comparisons and inferences made about 

mediational process occurring in particular subgroups. There is an unstated assumption 

that if there is evidence for mediation when the data is treated as a single group, then the 

discrepancies between expected and observed cell frequencies in the independence model 

can be interpreted as subgroups for whom the mediation effect exists. However, this 

assumption may not be tenable because mediation is not the only possible way for the 

independence model to not fit the data. Types and antitypes could possibly result from 

any relation between the variables. 

In addition, mediation is not explicitly tested in each subgroup, but rather, CFM 

subgroups are identified in an omnibus manner, showing up as types and antitypes in the 

independence model. It is assumed that each subgroup that has types or antitypes carries 

the mediation process, however, the actual effects of each subgroup are not distinguished. 

To illustrate, consider a population with three subgroups, much like the conditions in 

study 2. If one-third of the population has no effect, this subgroup will contribute 
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observations equally to each of the eight configuration cells (see Table 2). If one-third of 

the population has mediation, this subgroup will contribute more observations to cells 

where the values of X, M, and Y are equal, and fewer observations to the other cells. If 

one-third of the population has a direct effect only, then this subgroup will contribute 

more observations to cells where the values of X and Y are the same, and fewer 

observations to the other cells. When inspecting the types and antitypes from the 

independence model, it is ambiguous how each of the three subgroups are influencing the 

observed cell frequencies. 

Fourth, it is unclear what the role of traditional significance testing is within a 

person-oriented framework. The results of this project show that inflated Type I error 

rates are a major flaw of CFM. However, it could be argued that making inferences from 

the traditional p=.05 significance cutoff is incompatible with the person-oriented 

approach. The reason is that inferences from traditional significance tests are inferences 

about the population given information in the sample. If the researcher is actually 

interested in the truth about an individual, then population statistics are irrelevant. 

However, evaluating Type I error rates is still a useful exercise in the person-oriented 

approach. One assumption of the person-oriented approach is that in a given population, a 

small number of stable subgroups will emerge because psychological processes are 

fundamentally self-organizing (Bergman & Magnusson, 1997; Sterba & Bauer, 2010). 

This means that although the researcher is interested in individual differences, inferences 

about individual effects are made from subgroup data. In this sense, inferences about 

statistical significance relate to subgroups in a population and are still relevant in the 
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person-oriented approach. In idiographic research, where there is only the individual 

participant, Type I errors can also be relevant when the single-n designs have quantitative 

components. An example would be within-subject variation in longitudinal designs, or 

dynamical models of a single time series. In idiographic research, instead of making 

inferences about a population made up of many individuals, the population in question 

would be values of a psychological construct at different points in time for a single 

person. In the context of this study, Type 1 error is relevant because the strategy in CFM 

is to first accumulate evidence for mediation in the whole sample, and then make 

interpretations about subgroups.  

Fifth, the joint significance tests of the CFM models also has a problematic 

feature. The tests for each separate path (the a-path and b-path) are not symmetric in 

regards to the terms that are included in each log-linear model comparison. Remember 

that in CFM, evidence for the existence of a bivariate relation is found by comparing the 

fit of two models, one that contains the interaction between two variables, and one that is 

exactly the same, except that it excludes the interaction. If the model without the 

interaction has types or antitypes, and the model with the interaction does not have the 

types or antitypes (or has a different pattern of types and antitypes) then the bivariate 

relation is said to exist. In the case of the joint significance test, the best performing 

model comparison for the a-path involved the main effects and the XY interaction. In 

contrast, the best performing model comparison for the b-path involved the saturated 

model. It was expected that including the saturated model for both paths would be the 
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most complete and therefore more accurate comparison, however, for the a-path, using 

the saturated model resulted in Type I errors that were too high.    

Finally, a fundamental limitation of this study is the three methods that were 

investigated are very different from each other. For example, CFM does not have 

parameter estimates that are part of the final tests of mediation, while logistic regression 

and causal mediation use different quantities to measure the mediated effect, ab for 

logistic regression and TNIE for causal mediation.  

The product of coefficients and the natural indirect effect are both estimators of 

the effect of X on Y through the mediator, M. The product of coefficients is estimated 

using two simultaneous regression equations that include X, M, and Y. In the traditional 

regression framework, the coefficients reflect differences between the treatment and 

control groups in a randomized experiment. However, since M cannot be randomized, 

causal interpretation of the mediated effect is limited unless further design considerations 

are made (Pirlott & MacKinnon, 2016).  The TNIE differs because it is estimated within 

the potential outcomes framework and represents the indirect effect assuming that all 

participants are placed in the treatment group.  When both the mediator and outcome are 

continuous, and the interaction between XM is zero, then the estimates for the product of 

coefficients and the TNIE will be equivalent (MacKinnon, Valente, & Gonzales, 2018).  

However, this study shows that when the mediator and outcome are both binary, 

the relation between ab and TNIE is not as clear. For example, power for TNIE did not 

increase monotonically with effect size, as it does with the traditional estimator. In 

addition, the true values for TNIE decreased as the true values for ab increased. It is 
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unclear at this time why these patterns occurred, and follow-up studies are needed to 

investigate these relations. 

The results from the causal mediation analysis showed unexpectedly high bias at 

the N=300 sample size. In some of these conditions, this was likely because of very small 

frequencies in some data cells. However, this does not account for the high bias across all 

conditions and sample sizes. There are several possible explanations for these results, 

including an unknown discrepancy between the formulas used within PROC 

CAUSALMED and Equation 29, which was used to calculate true values for TNIE based 

on empirical true values of logistic regression coefficients. In addition, the interaction 

between the exposure and the mediator (XM) is an important aspect of estimating causal 

effects, but was not explicitly included in this project (VanderWeele, 2014). The context 

of this study was a simple, single mediator model that did not include this XM 

interaction. The interaction effect was not modeled in the data simulation, and therefore 

is implicitly zero. The interaction effect was also not modeled in the estimation of the 

causal effects, including the TNIE.  

Future Directions 

To address the limitations in the current study and expand the investigation of 

person-oriented mediation, future simulation research can focus on several things. First, 

mixture model simulations can be conducted to better understand how mediational 

processes may differ across subgroups in a sample. Second, simulations that generate 

data from the potential outcomes framework that include the XM interaction may clarify 

any links between traditional and potential outcome effects. As a first step in evaluating 

and comparing these methods, data was generated according to the traditional single 



53 

 

mediator model with parameters from both the normal distribution and from the binomial 

distribution. Since the traditional model was used for data generation, it is not surprising 

that the mediated effect estimated from logistic regression performed better than the 

TNIE which was estimated from the potential outcomes framework. 

There are currently several variable-oriented methods that can provide 

information at the individual level, including intensive longitudinal models, growth 

mixture models, and latent class anlaysis. Idiographic, single-n designs and qualitative 

analyses could also be added to programs of research that wish to identify heterogenous 

mediation effects at the individual level. A useful addition to the literature would be a 

comprehensive taxonomy that attempts to match data types (e.g. categorical or 

continuous, longitudinal or cross-sectional, group or single-n) with quantitative models 

and qualitative techniques, and the types of research questions that can be asked and 

types of inferences that can be made (e.g. inferences about a population or about 

individuals). A taxonomy of this kind could organize person-oriented mediation into 

more manageable parts.  

Bayesian inference and potential outcomes are two other areas that could be used 

to explore person-oriented mediation effects. One philosophical implication of Bayesian 

inference is that model parameters have estimated distributions, rather than point 

estimates. It is possible that the variance inherent in the posterior distribution of a 

mediated effect could account for heterogenous effects between individuals while still 

incorporating a more global interpretation of the effect using summaries of the posterior 

distribution. Future studies can investigate the performance of Bayesian methods in 
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detecting heterogenous effects as a function of the standard deviation of the posterior 

distribution. 

In the potential outcomes framework, the conditional average treatment effect 

(CATE) describes treatment effects at the subgroup level. Although the individual causal 

effects are impossible to estimate, the CATE can be an approximation of the effects for 

individuals within the group that has been conditioned on. From a person-oriented 

perspective, this would mean conditioning across a collection of relevant, interacting 

covariates. Future studies in this direction would include analyzing the variability in 

CATE mediation estimates to determine the degree to which inferences can be made 

from the CATE to individuals within the group, as well as testing the implications of 

assumptions regarding the equality of error terms across potential outcomes.    

Conclusion 

Detecting heterogenous mediation effects from a person-oriented perspective 

implies a holistic view of all possible influences on any given individual in any given 

situation. From a statistical perspective, this requires the measurement and analysis of 

every interaction among these influences. Configural frequency mediation studied in this 

research is an attempt to detect heterogenous effects among combinations of just three 

discrete variables, a treatment/predictor, a mediator, and an outcome. This study helps 

clarify the process of CFM and provides a program to automate the decisions rules for 

detecting mediation. In addition, it highlights the need for future research to revisit the 

principles used by CFM to detect both mediation effects and subgroups within a 

population.  
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Table 1 
 

Empirical Examples of Configural Frequency Analysis 

Citation Description 
Müller, B., Gäbelein, W. D., & Schulz, H. (2006). A Taxonomic 
Analysis of Sleep Stages. Sleep, 29(7), 967-974. 
 

categorizing patterns of 
physiological variables observed 

during sleep stages 

Tuominen-Soini, H., Salmela-Aro, K., & Niemivirta, M. (2011). 
Stability and Change in achievement goal orientations: A person-
centered approach. Contemporary Educational Psychology, 36(2), 
82-100.  
 

exploring temporal changes in 
group membership in groups 

identified through latent profile 
analysis 

Napolitano, C. M., Bowers, E. P., Gestsdottir, S., Depping, M., von 
Eye, A., Chase, P., & Lerner, J. V. (2011). The role of parenting and 
goal selection in positive youth development: A person-centered 
approach. Journal of Adolescence, 34(6), 1137-1149.  
 

exploring relations among goal 
setting, parenting styles, and 
positive youth development 

Loeffert, S., Ommen, O., Kuch, C., Scheibler, F., Woehrmann, A., 
Baldamus, C., & Pfaff, H. (2010). Configural frequency analysis as a 
method of determining patients' preferred decision-making roles 
in dialysis. BMC medical informatics and decision making, 10:47.  
 

predicting types of patients who 
prefer either active or passive 

participation in dialysis treatment 
decisions 

von Eye, A., Bogat, G. A., & Rhodes, J. E. (2006). Variable-oriented 
and person-oriented perspectives of analysis: The example of 
alcohol consumption in adolescence. Journal of Adolescence, 
29(6), 981-1004.  
 

detecting differences in youth 
resilience to alcohol consumption 

Martinez-Torteya, C., Bogat, G. A., von Eye, A., & Levendosky, A. A. 
(2009). Resilience among children exposed to domestic violence: 
The role of risk and protective factors. Child Development, 80(2), 
562-577.  
 

identifying factors of resilience in 
youth exposed to domestic 

violence 

Stemmler, M., & Lösel, F. (2012). The stability of externalizing 
behavior in boys from preschool age to adolescence: A person-
oriented analysis. Psychological Test and Assessment Modeling, 
54(2), 195-207. 
 

revealing stability in externalizing 
behaviors among young boys 

Gradinger, P., Strohmeier, D., & Spiel, C. (2009). Traditional 
bullying and cyberbullying: Identification of risk groups for 
adjustment problems. Journal of Psychology, 217(4), 205-213.  
 

identifying risks for traditional 
and cyberbullying 

Stemmler, M., & Bäumler, G. (2005). The detection of types among 
decathletes using configural frequency analysis (CFA). Psychology 
Science, 47(3/4), 447-466.  

identifying athletic specializations 
among decathletes 
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Table 2    
    
Patterns of Three Binary Variables 

Pattern X M Y 

N1 0 0 0 
N2 0 0 1 
N3 0 1 0 
N4 0 1 1 
N5 1 0 0 
N6 1 0 1 
N7 1 1 0 
N8 1 1 1 
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Table 3      

Simulation Parameter Values 

 
   N=300 N=900 

Parameter Normal 

Average 
Logistic 
Regression 
Estimatesa 
N=300 

Average 
Logistic 
Regression 
Estimatesa 

N=900 Binomial Binomial 

a      

zero 0.00 0.00 0.00 0.00 0.00 

small 0.35 0.57 0.56 0.57 0.56 

medium 0.96 1.61 1.60 1.61 1.60 

large 1.46 2.60 2.57 2.60 2.57 

b 
 

  
  

zero 0.00 0.00 0.00 0.00 0.00 

small 0.35 0.92 0.91 0.92 0.91 

medium 0.96 2.25 2.22 2.25 2.22 

large 1.46 3.04 3.01 3.04 3.01 

c' 
 

  
  

zero 0.00 0.25 0.24 0.25 0.24 

small 0.35 0.79 0.79 0.79 0.79 

medium 0.96 1.80 1.77 1.80 1.77 

large 1.46 2.75 2.64 2.75 2.64 

Note. Parameters used when generating data from a binomial 
distribution reflect the average empirical effects of the normal data 
obtained by logistic regression. Each binomial entry is collapsed over 
the other two parameters. 

aThese are the average logistic regression estimates for data 
generated from a normal distribution and then dichotomized. 
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Table 6.A     
Study 1 – Logistic Regression Bias of Mediated Effect for N = 300   

â b̂ c' 
True Mediated 

Effect ab 
Bias Relative Bias 

Standardized 
Bias 

0.56 0.88 0.07 0.50 0.01 0.02 0.05 

0.57 0.87 0.62 0.50 0.01 0.02 0.03 

0.57 0.92 1.66 0.53 0.01 0.01 0.02 

0.56 0.93 2.63 0.52 0.02 0.04 0.07 

0.59 2.18 0.15 1.28 -0.01 -0.01 -0.02 

0.57 2.19 0.69 1.24 0.04 0.03 0.07 

0.57 2.26 1.67 1.29 0.00 0.00 -0.01 

0.57 2.28 2.42 1.31 0.00 0.00 -0.01 

0.57 2.94 0.18 1.69 0.05 0.03 0.07 

0.56 2.97 0.72 1.66 0.03 0.02 0.03 

0.57 3.04 1.60 1.75 0.04 0.03 0.06 

0.55 3.10 2.29 1.71 0.07 0.04 0.09 

1.62 0.92 0.22 1.50 0.04 0.03 0.08 

1.61 0.92 0.78 1.49 0.03 0.02 0.06 

1.62 0.94 1.87 1.52 0.02 0.01 0.04 

1.62 0.93 2.90 1.51 0.04 0.03 0.07 

1.60 2.23 0.48 3.57 0.09 0.03 0.11 

1.61 2.25 1.02 3.62 0.11 0.03 0.14 

1.61 2.28 2.01 3.68 0.12 0.03 0.13 

1.60 2.28 2.92 3.66 0.10 0.03 0.12 

1.60 3.02 0.59 4.85 0.13 0.03 0.12 

1.62 3.06 1.06 4.97 0.10 0.02 0.10 

1.61 3.10 2.00 4.97 0.16 0.03 0.15 

1.61 3.09 2.77 4.97 0.19 0.04 0.17 

2.60 0.92 0.40 2.40 0.12 0.05 0.14 

2.61 0.94 0.98 2.45 0.09 0.04 0.10 

2.60 0.95 2.07 2.46 0.07 0.03 0.08 

2.60 0.91 3.26 2.35 0.05 0.02 0.05 

2.59 2.28 0.84 5.93 0.16 0.03 0.12 

2.61 2.28 1.37 5.95 0.07 0.01 0.05 

2.60 2.29 2.48 5.97 0.28 0.05 0.21 

2.61 2.23 3.96 5.82 0.24 0.04 0.18 

2.62 3.10 1.02 8.11 0.35 0.04 0.22 

2.59 3.08 1.51 7.97 0.27 0.03 0.17 

2.61 3.10 2.46 8.09 0.21 0.03 0.13 

2.59 3.08 3.61 7.98 0.24 0.03 0.15 

Note. Data were generated from a binomial distribution; effect sizes for a, b, and c’ are included 
because the general designations of s, m, l do not reflect consistent values across coefficients;  
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Table 6.B     
Study 1 – Causal Mediation Bias of Mediated Effect for N = 300   

a ̂ b ̂ c' True TNIE Bias Relative Bias Standardized Bias 

0.56 0.88 0.07 0.90 -0.77 -0.86 -12.77 

0.57 0.87 0.62 0.90 -0.68 -0.75 -6.69 

0.57 0.92 1.66 0.89 -0.23 -0.26 -1.11 

0.56 0.93 2.63 0.89 1.12 1.25 0.47 

0.59 2.18 0.15 0.81 -0.54 -0.66 -4.54 

0.57 2.19 0.69 0.82 -0.34 -0.42 -1.84 

0.57 2.26 1.67 0.82 0.44 0.54 0.31 

0.57 2.28 2.42 0.81 2.04 2.51 0.97 

0.57 2.94 0.18 0.80 -0.47 -0.58 -3.30 

0.56 2.97 0.72 0.80 -0.26 -0.32 -1.35 

0.57 3.04 1.60 0.80 0.64 0.80 0.49 

0.55 3.10 2.29 0.80 2.02 2.51 0.94 

1.62 0.92 0.22 0.78 -0.42 -0.54 -3.71 

1.61 0.92 0.78 0.78 -0.13 -0.16 -0.89 

1.62 0.94 1.87 0.77 1.24 1.60 1.22 

1.62 0.93 2.90 0.77 11352.62 14662.16 1.45 

1.60 2.23 0.48 0.65 0.26 0.40 0.56 

1.61 2.25 1.02 0.65 0.97 1.50 1.42 

1.61 2.28 2.01 0.65 4.13 6.38 1.89 

1.60 2.28 2.92 0.65 20917.87 32251.63 1.67 

1.60 3.02 0.59 0.62 0.54 0.87 0.95 

1.62 3.06 1.06 0.62 1.34 2.17 1.51 

1.61 3.10 2.00 0.62 4.52 7.27 1.82 

1.61 3.09 2.77 0.62 7282.72 11713.27 1.71 

2.60 0.92 0.40 0.73 -0.18 -0.24 -1.23 

2.61 0.94 0.98 0.73 0.30 0.41 0.60 

2.60 0.95 2.07 0.72 2.58 3.56 1.65 

2.60 0.91 3.26 0.73 141573.11 193295.78 1.35 

2.59 2.28 0.84 0.59 1.13 1.92 1.70 

2.61 2.28 1.37 0.59 2.42 4.13 1.97 

2.60 2.29 2.48 0.59 19445.60 33132.64 1.76 

2.61 2.23 3.96 0.59 1723814.29 2922418.30 0.88 

2.62 3.10 1.02 0.56 1.87 3.34 1.72 

2.59 3.08 1.51 0.56 3.59 6.41 1.82 

2.61 3.10 2.46 0.56 26742.89 47829.19 1.65 

2.59 3.08 3.61 0.56 1132824.34 2021949.84 1.07 
Note. The TNIE was used to calculate bias for causal mediation. This is not the same estimator as the conventional 
product of coefficients reported in the logistic regression tables; data were generated from a binomial distribution; 
effect sizes for a, b, and c’ are included because the general designations of s, m, l do not reflect consistent values 
across coefficients; inflated bias estimates are due to cell sparsity in at least one replication per condition; relative 
bias values with absolute values above .10 are in bold 
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Table 6.C     
Study 1 – Logistic Regression Bias of Mediated Effect for N = 900   

â b̂ c' 
True Mediated 

Effect ab 
Bias Relative Bias 

Standardized 
Bias 

0.56 0.89 0.07 0.50 0.00 0.01 0.02 

0.56 0.89 0.64 0.50 0.00 0.00 0.01 

0.57 0.91 1.65 0.52 0.01 0.01 0.04 

0.56 0.92 2.61 0.52 0.00 0.00 -0.01 

0.56 2.16 0.16 1.21 0.01 0.01 0.04 

0.57 2.16 0.68 1.22 -0.02 -0.01 -0.05 

0.56 2.23 1.64 1.25 0.01 0.01 0.04 

0.56 2.25 2.41 1.25 0.01 0.01 0.03 

0.57 2.92 0.19 1.66 0.03 0.02 0.08 

0.56 2.93 0.70 1.63 0.02 0.01 0.04 

0.57 3.03 1.59 1.72 0.00 0.00 0.00 

0.56 3.06 2.26 1.73 0.01 0.01 0.02 

1.60 0.91 0.22 1.47 0.01 0.01 0.05 

1.60 0.92 0.79 1.47 0.00 0.00 0.01 

1.60 0.92 1.84 1.48 0.02 0.01 0.07 

1.59 0.92 2.85 1.47 0.01 0.01 0.04 

1.60 2.22 0.47 3.55 0.04 0.01 0.10 

1.60 2.23 0.99 3.56 0.01 0.00 0.02 

1.60 2.27 1.97 3.62 0.02 0.01 0.05 

1.60 2.24 2.83 3.60 0.04 0.01 0.08 

1.61 3.00 0.56 4.83 0.00 0.00 0.00 

1.60 3.02 1.08 4.83 0.04 0.01 0.06 

1.60 3.05 1.98 4.90 0.05 0.01 0.08 

1.59 3.06 2.69 4.87 0.03 0.01 0.05 

2.57 0.93 0.39 2.39 0.06 0.02 0.12 

2.57 0.92 0.95 2.38 0.01 0.00 0.01 

2.57 0.92 2.05 2.38 0.03 0.01 0.06 

2.56 0.92 3.11 2.34 0.02 0.01 0.04 

2.57 2.27 0.82 5.82 0.08 0.01 0.12 

2.56 2.27 1.37 5.81 0.02 0.00 0.03 

2.57 2.26 2.37 5.82 0.05 0.01 0.07 

2.57 2.22 3.30 5.71 0.04 0.01 0.05 

2.58 3.06 1.01 7.89 0.12 0.02 0.13 

2.57 3.06 1.51 7.86 0.11 0.01 0.13 

2.57 3.07 2.40 7.87 0.07 0.01 0.09 

2.56 3.02 3.18 7.74 0.10 0.01 0.11 

Note. Data were generated from a binomial distribution; effect sizes for a, b, and c’ are included 
because the general designations of s, m, l do not reflect consistent values across coefficients;  
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Table 6.D     
Study 1 – Causal Mediation Bias of Mediated Effect for N = 900   

a ̂ b ̂ c' True TNIE Bias Relative Bias Standardized Bias 

0.56 0.88 0.07 0.90 -0.77 -0.86 -20.89 

0.57 0.87 0.62 0.90 -0.68 -0.76 -10.24 

0.57 0.92 1.66 0.89 -0.26 -0.29 -1.53 

0.56 0.93 2.63 0.89 0.77 0.86 1.00 

0.59 2.18 0.15 0.82 -0.56 -0.69 -7.52 

0.57 2.19 0.69 0.82 -0.38 -0.46 -3.04 

0.57 2.26 1.67 0.82 0.36 0.44 0.76 

0.57 2.28 2.42 0.82 1.77 2.16 1.83 

0.57 2.94 0.18 0.80 -0.49 -0.61 -5.37 

0.56 2.97 0.72 0.80 -0.30 -0.37 -2.12 

0.57 3.04 1.60 0.80 0.47 0.59 0.93 

0.55 3.10 2.29 0.80 1.69 2.11 1.82 

1.62 0.92 0.22 0.78 -0.42 -0.54 -6.12 

1.61 0.92 0.78 0.78 -0.15 -0.19 -1.32 

1.62 0.94 1.87 0.78 1.08 1.39 2.27 

1.62 0.93 2.90 0.78 4.36 5.60 2.66 

1.60 2.23 0.48 0.65 0.21 0.32 1.05 

1.61 2.25 1.02 0.65 0.82 1.25 2.51 

1.61 2.28 2.01 0.65 3.34 5.13 3.34 

1.60 2.28 2.92 0.65 9.23 14.19 3.05 

1.60 3.02 0.59 0.62 0.46 0.73 1.75 

1.62 3.06 1.06 0.62 1.21 1.93 2.73 

1.61 3.10 2.00 0.62 4.01 6.44 3.26 

1.61 3.09 2.77 0.62 8.80 14.10 3.09 

2.60 0.92 0.40 0.73 -0.18 -0.24 -1.87 

2.61 0.94 0.98 0.73 0.23 0.32 1.08 

2.60 0.95 2.07 0.73 2.26 3.10 3.03 

2.60 0.91 3.26 0.73 7.97 10.89 2.72 

2.59 2.28 0.84 0.59 1.02 1.74 3.03 

2.61 2.28 1.37 0.59 2.22 3.77 3.51 

2.60 2.29 2.48 0.59 7.25 12.29 3.24 

2.61 2.23 3.96 0.59 21.89 37.00 2.44 

2.62 3.10 1.02 0.56 1.63 2.90 3.09 

2.59 3.08 1.51 0.56 3.14 5.60 3.28 

2.61 3.10 2.46 0.56 8.94 15.92 2.99 

2.59 3.08 3.61 0.56 21.51 38.22 2.46 
Note. The TNIE was used to calculate bias for causal mediation. This is not the same estimator as the conventional 
product of coefficients reported in the logistic regression tables; data were generated from a binomial distribution; 
effect sizes for a, b, and c’ are included because the general designations of s, m, l do not reflect consistent values 
across coefficients; relative bias values with absolute values above .10 are in bold 
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Table 7.A     

Study 1 Joint Significance CFM - Type 1 Error for N=300 

  
Standard 

CFM 
Joint Significance Tests 

ab Effect Size 
Combinations 

  

Model 1-2 
and Model 

2-4 

Model 8-Sat. 
and Model 7 -

Sat. 

 Model 9-3 
and Model 7-

Sat. 

Overall Type 1 
Error 

0.28 0.16 0.18 0.05 

a = 0, b = 0 0.00 0.01 0.01 0.01 

a = 0, b = s 0.02 0.04 0.16 0.05 

a = 0, b = m 0.96 0.05 0.43 0.05 

a = 0, b = l 1.00 0.06 0.48 0.06 

a = s, b = 0 0.00 0.10 0.04 0.04 

a = m, b = 0 0.00 0.39 0.06 0.06 

a = l, b = 0 0.00 0.50 0.05 0.05 

Note. The first column of each sample size reports the values from standard CFM 
as in Table 1.A; data were generated from a normal distribution and then 
dichotomized at zero; s = small effect, m = medium effect, l = large effect; values 
for the effect sizes were .35, .96, and 1.46 prior to dichotomizing; values 
above .075 are in bold; values below .025 are in bold and italics;  
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Table 7.B     

Study 1 Joint Significance CFM - Type 1 Error for N=900 

  
Standard 

CFM 
Joint Significance Tests 

ab Effect Size 
Combinations 

  

Model 1-2 
and Model 

2-4 

Model 8-Sat. 
and Model 7 -

Sat. 

 Model 9-3 
and Model 7-

Sat. 

Overall Type 1 
Error 

0.35 
0.23 

0.25 0.05 

a = 0, b = 0 0.00 0.00 0.01 0.00 

a = 0, b = s 0.44 0.05 0.34 0.05 

a = 0, b = m 1.00 0.05 0.61 0.05 

a = 0, b = l 1.00 0.05 0.62 0.05 

a = s, b = 0 0.00 0.25 0.04 0.05 

a = m, b = 0 0.00 0.58 0.05 0.05 

a = l, b = 0 0.00 0.64 0.06 0.06 

Note. The first column of each sample size reports the values from standard CFM 
as in Table 1.A; data were generated from a normal distribution and then 
dichotomized at zero; s = small effect, m = medium effect, l = large effect; values 
for the effect sizes were .35, .96, and 1.46 prior to dichotomizing; values 
above .075 are in bold; values below .025 are in bold and italics;  
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Table 8.A     

Study 1 Joint Significance CFM – Power for N=300 

  
Standard 

CFM 
Joint Significance Tests 

ab Effect Size 
Combinations 

  

Model 1-2 
and Model 

2-4 

Model 8-Sat. 
and Model 7 -

Sat. 

 Model 9-3 
and Model 7-

Sat. 

a = s, b = s 0.05 0.65 0.28 0.59 

a = s, b = m 0.98 0.69 0.33 0.69 

a = m, b = s 0.13 0.99 0.69 0.77 

a = s, b = l 1.00 0.67 0.30 0.67 

a = l, b = s 0.13 1.00 0.54 0.56 

a = m, b = m 0.98 1.00 0.61 1.00 

a = m, b = l 1.00 1.00 0.48 1.00 

a = l, b = m 0.96 1.00 0.73 0.94 

a = l, b = l 1.00 1.00 0.63 0.98 

Note. The first column of each sample size reports the values from standard CFM 
as in Table 2.A; data were generated from a normal distribution and then 
dichotomized at zero; s = small effect, m = medium effect, l = large effect; values 
for the effect sizes were .35, .96, and 1.46 prior to dichotomizing; values 
below .80 are in bold  

 

  



73 

 

Table 8.B     

Study 1 Joint Significance CFM – Power for N=900 

  
Standard 

CFM 
Joint Significance Tests 

ab Effect Size 
Combinations 

  

Model 1-2 
and Model 

2-4 

Model 8-Sat. 
and Model 7 -

Sat. 

 Model 9-3 
and Model 7-

Sat. 

a = s, b = s 0.58 0.98 0.55 0.98 

a = s, b = m 1.00 0.99 0.52 0.99 

a = m, b = s 0.64 1.00 0.97 0.98 

a = s, b = l 1.00 0.99 0.58 0.99 

a = l, b = s 0.54 1.00 0.90 0.90 

a = m, b = m 1.00 1.00 0.76 1.00 

a = m, b = l 1.00 1.00 0.60 1.00 

a = l, b = m 1.00 1.00 0.93 1.00 

a = l, b = l 1.00 1.00 0.79 1.00 

Note. The first column of each sample size reports the values from standard CFM 
as in Table 2.A; data were generated from a normal distribution and then 
dichotomized at zero; s = small effect, m = medium effect, l = large effect; values 
for the effect sizes were .35, .96, and 1.46 prior to dichotomizing; values 
below .80 are in bold  
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Table 13    

Study 2 - Power   

Condition Logistic Regression 
Configural Frequency 

Mediation 
Causal Mediation 

N=300 0.06 0.00a 0.00 

N=900 0.45 0.03 0.61 

N=2700 0.99 0.39 0.98 

Note. Data were generated from a normal distribution and then dichotomized at zero; each 

condition was comprised of three sub-groups of equal size; avalue was .004 rounded to third 

decimal 
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Table 14 

Study 2 -  Joint Significance CFM - Power 

  Standard CFM Joint Significance  Tests 

Condition 
  

Model 1-2 and 
Model 2-4 

Model 8-Sat. and 
Model 7-Sat. 

Model 9-3 and 
Model 7-Sat. 

n=100 0.26 0.20 0.03 0.11 

n=300 0.33 0.68 0.25 0.60 

n=900 0.33 1.00 0.75 1.00 
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Table 15 

Study 2 – Joint Signficance CFM - Power for a-path 

  Joint Signficance Tests 

Condition Model 1-2 Model 8-Sat. Model 9-3 Model 6-5 

n=100 0.31 0.15 0.31 0.15 

n=300 0.70 0.32 0.70 0.33 

n=900 1.00 0.75 1.00 0.76 
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Table 16 

Study 2 – Joint Significance CFM - Power for b-path 

  Joint Signficance Tests 

Condition Model 2-4 Model 7-Sat. 

n=100 0.57 0.41 

n=300 0.96 0.86 

n=900 1.00 1.00 
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Table 17  
    

Study 2 - Types and Antitypes for Base Model N=100 
 

Configuration 

XMY 

Mean 

Observed 

Frequency 

Mean 

Predicted 

Frequency 

Base Model Percentage 

000 15.12 7.91 Type 41.80 

001 9.97 13.63 Antitype 0.07 

010 9.88 10.40   
011 15.04 18.06 Antitype 0.03 

100 5.65 7.82 Antitype 0.07 

101 12.27 13.64   
110 5.83 10.34 Antitype 0.87 

111 26.25 18.19 Type 11.17 
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Table 18  
    

Study 2 - Types and Antitypes for Base Model N=300 
 

Configuration 

XMY 

Mean 

Observed 

Frequency 

Mean 

Predicted 

Frequency 

Base Model Percentage 

000 45.24 23.64 Type 97.67 

001 29.93 40.93 Antitype 4.73 

010 29.94 31.32   
011 45.15 54.38 Antitype 0.70 

100 17.01 23.47 Antitype 1.47 

101 36.64 40.80 Antitype 0.03 

110 17.39 31.16 Antitype 34.00 

111 78.69 54.32 Type 81.30 

   



84 

 

Table 19 
    

Study 2 - Types and Antitypes for Base Model N=900 
 

Configuration 

XMY 

Mean 

Observed 

Frequency 

Mean 

Predicted 

Frequency 

Base Model Percentage 

000 135.88 70.52 Type 100.00 

001 89.39 122.65 Antitype 65.70 

010 89.55 93.84 Antitype 0.03 

011 135.55 163.36 Antitype 17.80 

100 50.64 70.31 Antitype 29.23 

101 110.03 122.47 Antitype 0.57 

110 52.23 93.63 Antitype 99.47 

111 236.73 163.22 Type 100.00 
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APPENDIX A 

SIMULATION FLOWCHART 
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1. Generate data for 
all conditions

2. Save each 
condition as a 

separate dataset

3. Call in a dataset
4. Estimate 
parameters

5. Save parameter 
estimates

6. Repeat 4-5 for 
desired number of 

replications

7. Repeat 3-6 for all 
datasets

8. Combine 
parameter 

estimates from each 
condition

9. Summarize 
results

10. Repeat 3-9 for 
each method
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APPENDIX B 

SAS DATA GENERATION MACRO 
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%MACRO SIMULATE(NSIM,NOBS,BMX,BYX,BYM,FILE,COND,TYPE,ERROR); 

 

DATA SUMMARY; SET _NULL_; 

 %DO I=1 %TO &NSIM; 

   DATA SIM; 

   DO n=1 TO &NOBS; 

   XC=(&error)*RANNOR(0); 

   IF XC>0 then X=1; 

   IF XC<=0 then X=0; 

   M=&BMX*X+(&error)*RANNOR(0); 

   MeanM=&bmx*x; 

   if M>0 then MC=1; 

   if M<=0 then MC=0; 

   Y=&BYX*X+&BYM*M+(&error)*RANNOR(0); 

   MeanY=(&byx*x+&bym*m); 

   if Y>0 then YC=1; 

   if Y<=0 then YC=0; 

   all3=X*100+MC*10+YC; 

   X2=X*X; 

   Prod=&BMX*&BYM; 

   Cond=&COND; 

   rep=&I; 

   check=1; 

   OUTPUT; 

  END; 

  RUN;  

 

/*Appending replications to a single dataset per condition*/ 

DATA New; SET Sim; 

DATA Summary; SET Summary New; 

%END; 

 

/*Saving summary dataset as a new dataset in the Simdata library*/ 

data Simdata.&file; SET Summary; 

; 

RUN; 

%MEND; 
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APPENDIX C 

SAS BINOMIAL DATA GENERATION  MACRO 
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%MACRO SIMULATE(NSIM,NOBS,MEANim,MEANiy,MEANA,MEANB,MEANCP,FILE,COND); 

 

DATA SUMMARY;  

totaln=&NSIM*&NOBS; 

        do n=1 to totaln; 

     x=ranbin(0,1,.5); 

    pm=1/(1+exp(-(&MEANim+&MEANA*x))); 

    m=ranbin(0,1,pm);  

          py=1/(1+exp(-(&MEANiy+&MEANCP*x+&MEANB*m))); 

     y=ranbin(0,1,py); 

           Cond=&COND; 

/*   rep=&nobs;*/ 

   file="&file"; 

   all3=X*100+M*10+Y; 

   check=1; 

           output; 

        end; 

        run; 

 

 

data data.&file; SET Summary; 

; 

RUN; 

 

Proc datasets LIB=work KILL NOLIST; run; quit; 

%MEND simulate; 

run; 
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APPENDIX D 

SAS LOGISTIC REGRESSION ANALYSIS MACRO 
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%MACRO ANALYZE1 (BMX,BYX,BYM,FILE,COND); 

 

DATA SUMMARY2; SET _NULL_; 

 

*Logistic regression model YC=X* 

*Estimating and saving coefficients and standard errors*; 

proc logistic data = Simdata.&FILE descending outest= FILE covout 

noprint; 

 BY rep; 

 model yc = x /clparm = both clodds=both; 

DATA B; SET FILE; 

 IF _TYPE_='PARMS'; C=X; LogL1C=_LNLIKE_;  

 cond = &cond; 

 StatusM1 = _STATUS_; 

 KEEP cond rep C LogL1C StatusM1; 

DATA C; SET FILE; 

 IF _NAME_='X'; SEC=SQRT(X); 

 cond = &cond; 

 KEEP cond rep SEC;  

DATA MODEL1; MERGE B C; 

RUN; 

 

*Logistic Regression: Model YC=X MC* 

*Estimating and saving coefficients and standard errors*; 

proc logistic data = Simdata.&FILE descending outest= FILE covout 

noprint; 

 BY rep; 

 model yc = x mc /clparm=both clodds = both covb; 

DATA B; SET FILE; 

 IF _TYPE_='PARMS'; Cprm=X; B=MC; LogL2BCprm=_LNLIKE_; 

 cond = &cond; 

 StatusM2 = _STATUS_; 

 KEEP cond rep Cprm B LogL2BCprm StatusM2; 

DATA C; SET FILE; 

 IF _NAME_='X'; SECprm=SQRT(X);   

 cond = &cond; 

 KEEP cond rep SECprm; 

DATA D; SET FILE; 

 IF _NAME_='MC'; SEB=SQRT(MC); 

 cond = &cond; 

 KEEP cond rep SEB; 

DATA MODEL2; MERGE B C D; 

RUN; 

 

*Logistic Regression: Model MC=X * 

*Estimating and saving coefficients and standard errors*; 

proc logistic data = Simdata.&FILE descending outest=FILE covout 

noprint; 

 BY rep; 

 model mc = x /clparm=both clodds = both covb; 

DATA B; SET FILE; 

 IF _TYPE_='PARMS'; A=X; LogL3A=_LNLIKE_; 

 cond = &cond; 

 StatusM3 = _STATUS_; 
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 KEEP cond rep A LogL3A StatusM3; 

DATA C; SET FILE; 

 IF _NAME_='X'; SEA=SQRT(X); 

 cond = &cond; 

 KEEP cond rep SEA; 

DATA MODEL3; MERGE B C; 

RUN; 

 

*Combinging models into single dataset; 

DATA LogRegModels; MERGE MODEL1 MODEL2 MODEL3; 

 

*Computing product of coefficients and true standard error of mediated 

effect, 

saving true values of path coefficients and product of coefficients; 

DATA LogRegMedEff; SET LogRegModels; 

 merge = 1; 

 ProdMedEff = A*B; 

 SobelAB = SQRT(A*A*SEB*SEB+B*B*SEA*SEA); 

 ZSobel=ProdMedEff/SobelAB; 

 PSobel=1-PROBNORM(ZSobel); 

 BMX = &BMX; 

 BYM = &BYM; 

 BYX = &BYX; 

 Prod=&BMX*&BYM; 

RUN;  

 

*Appending replications to a single dataset per condition*; 

DATA Summary2; Set Summary2 LogRegMedEff; 

DATA Dataout.LogRout&file; SET Summary2; 

 

*Calculating and saving standard deviations of estimates across 

replications; 

proc means data = LogRegMedEff noprint; 

 var rep C LogL1C cond SEC Cprm B LogL2BCprm SECprm SEB A LogL3A 

SEA ProdMedEff SobelAB BMX BYM BYX;  

 output out=lrmeans 

 mean = rep C LogL1C cond SEC Cprm B LogL2BCprm SECprm SEB A 

LogL3A SEA ProdMedEff SobelAB BMX BYM BYX 

 STD =  stdrep stdC stdLogL1C stdcond stdSEC stdCprm stdB 

stdLogL2BCprm stdSECprm stdSEB stdA stdLogL3A stdSEA stdProdMedEff 

stdSobelAB stdBMX stdBYM stdBYX; 

RUN; 

 

DATA lrmeans2; set lrmeans; 

 merge = 1; 

 keep merge cond stdC stdSEC stdCprm stdB stdSECprm stdSEB stdA 

stdSEA stdProdMedEff; 

run; 

 

*Calculating bias, relative bias, and standardized bias; 

DATA Logresults; merge LogRegMedEff lrmeans2; by merge; 

 BiasCp = Cprm-BYX; 

 RBCp = BiasCp/BYX; 

 StBCp = BiasCp/stdCprm; 
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 BiasB = B-BYM; 

 RBB = BiasB/BYM; 

 StBB = BiasB/stdB; 

 BiasA = A-BMX; 

 RBA = BiasA/BMX; 

 StBA = BiasA/stdA; 

RUN; 

 

*Saving results; 

data Dataout.LogResultsout&file; SET Logresults; 

; 

run; 

%MEND; 
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APPENDIX E 

SAS CFM ANALYSIS MACRO 
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*Setting up dataset for frequencies; 

data combbb; input all3 COUNT; 

cards; 

0  0 

1 0 

10 0 

11 0 

100 0 

101 0 

110 0 

111 0 

; 

run; 

 

data MIDS;  

input mergeid; 

cards; 

1 

2 

3 

4 

5 

6 

7 

8 

; 

run; 

 

 

%MACRO ANALYZE3 (NSIM, FILE, COND); 

 

DATA SUMMARY4; SET _NULL_; 

DATA output1a; SET _NULL_; 

*Calculating frequencies; 

proc freq data=Simdata.&FILE noprint; 

 BY rep; 

 tables  all3/out=outputg; 

run; 

 

%DO I=1 %TO &NSIM; 

 DATA interim; SET outputg; 

 IF rep = &I; 

 ; 

 RUN; 

proc sort data=interim; by all3; run; 

data outputh; merge combbb interim; by all3; run; 

 

*Appending replications to a single dataset; 

Data output1a; Set output1a outputh;run; 

%END; 

 

data output1; set output1a; 

n=_n_; 

if rep ='.' and all3=0 then do; 
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  n=n+1; 

  end; 

  set output1a(keep=rep) point=n; 

if rep ='.' and all3 >0 then do; 

  n=n-1; 

        end; 

  set output1a(keep=rep) point=n;  

 run; 

 

%DO I=1 %TO &NSIM; 

 DATA Rep; SET output1; 

  IF rep = &I; 

 ; 

 RUN; 

 

data n1; set Rep;  if all3=0; 

 If all3=0 then n1=COUNT; keep n1; 

data n2; set Rep; if all3=1; 

 If all3=1 then n2=COUNT; keep n2; 

data n3; set Rep; if all3=10; 

 If all3=10 then n3=COUNT; keep n3; 

data n4; set Rep;  if all3=11; 

 If all3=11 then n4=COUNT; keep n4; 

data n5; set Rep;  if all3=100; 

 If all3=100 then n5=COUNT; keep n5; 

data n6; set Rep;  if all3=101; 

 If all3=101 then n6=COUNT; keep n6; 

data n7; set Rep; if all3=110; 

 If all3=110 then n7=COUNT;  keep n7; 

data n8; set Rep; n8=0; if all3=111; 

 If all3=111 then n8=COUNT;  keep n8; 

data freqs; merge n1 n2 n3 n4 n5 n6 n7 n8; 

 

proc transpose data=freqs out=newfreq; var n1 n2 n3 n4 n5 n6 n7 n8; 

RUN; 

 

data new; set newfreq; 

 x=0; m=0; y=0; 

 if _n_=2 then y=1; 

 if _n_=3 then m=1; 

 if _n_=4 then m=1; if _n_=4 then y=1; 

 if _n_=5 then x=1;  

 if _n_=6 then x=1; if _n_=6 then y=1; 

 if _n_=7 then x=1; if _n_=7 then m=1; 

 if _n_=8 then x=1; if _n_=8 then m=1; if _n_=8 then y=1; 

 freq=col1; 

 keep x m y freq; 

run; 

 

*CFA Base Model 1 First Order CFA Main Effects of XMY 

Estimating and saving frequencies; 

ods results off; 

ods listing close; 

ods html close; 
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ods output PredictedFreqs=outputm1 anova=outputm1a 

convergencestatus=cs1 Estimates=outputm1e; 

proc catmod data=new; 

 weight freq;   

 model X*M*y=_response_ /  pred=freq zero=samp ML; 

    loglin X M Y; 

    title2 'MODEL 1: Main Effects only'; 

quit; 

ods output close; 

ods listing; 

ods html; 

run; 

 

*Adding convergence status to predicted frequencies; 

data outputm1; merge outputm1 cs1; run;  

 

*Testing frequencies for types and antitypes; 

data typeres1; set outputm1  

 (rename=(obsstderr=obsse_1 predfunction=predfreq_1 

predstderr=predse_1 residual=residual_1 reason=reason_1 

status=status_1)); 

 pearson_z1=(obsfunction-predfreq_1)/sqrt(predfreq_1); 

 neyman_1=(obsfunction-predfreq_1)/sqrt(obsfunction); 

 if pearson_z1 > 2.7344 then types_1 = 1;  

 if pearson_z1 < -2.7344 then types_1 = -1;  

 if pearson_z1 >= -2.7344 & pearson_z1 <= 2.7344 then types_1 = 0; 

run; 

 

*CFA Base Model 2 Main Effects and XM Interaction 

Estimating and saving frequencies; 

ods listing close; 

ods html close; 

ods output PredictedFreqs=outputm2 anova=outputm2a 

convergencestatus=cs2 Estimates=outputm2e; 

proc catmod data=new; 

 weight freq; 

 model X*M*y=_response_ /  pred=freq zero=samp ML; 

    loglin X M Y x*M; 

    title2 'MODEL 2: XM Interaction and Main Effects'; 

quit; 

ods output close; 

ods listing; 

ods html; 

run; 

 

*Adding convergence status to predicted frequencies; 

data outputm2; merge outputm2 cs2; run;  

 

*Testing frequencies for types and antitypes; 

data typeres2; set outputm2 

 (rename=(obsstderr=obsse_2 predfunction=predfreq_2 

predstderr=predse_2 residual=residual_2 reason=reason_2 

status=status_2)); 

 pearson_z2=(obsfunction- predfreq_2)/sqrt(predfreq_2); 
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 neyman_2=(obsfunction- predfreq_2)/sqrt(obsfunction); 

 if pearson_z2 > 2.7344 then types_2 = 1;  

 if pearson_z2 < -2.7344 then types_2 = -1;  

 if pearson_z2 >= -2.7344 & pearson_z2 <= 2.7344 then types_2 = 0; 

run; 

 

*CFA Base Model 3 Main Effects and XM XY Interactions 

Estimating and saving frequencies; 

ods listing close; 

ods html close; 

ods output PredictedFreqs=outputm3 anova=outputm3a 

convergencestatus=cs3 Estimates=outputm3e; 

proc catmod data=new; 

  weight freq; 

 model X*M*y=_response_ / pred=freq zero=samp ML; 

    loglin X M Y x*M x*y; 

    title2 'MODEL 3: XM XY Interactions and Main Effects'; 

quit;  

ods output close; 

ods listing; 

ods html; 

run; 

 

*Adding convergence status to predicted frequencies; 

data outputm3; merge outputm3 cs3; run;  

 

*Testing frequencies for types and antitypes; 

data typeres3; set outputm3 

 (rename=(obsstderr=obsse_3 predfunction=predfreq_3 

predstderr=predse_3 residual=residual_3 reason=reason_3 

status=status_3)); 

 pearson_z3=(obsfunction- predfreq_3)/sqrt(predfreq_3); 

 neyman_3=(obsfunction- predfreq_3)/sqrt(obsfunction); 

 if pearson_z3 > 2.7344 then types_3 = 1;  

 if pearson_z3 < -2.7344 then types_3 = -1;  

 if pearson_z3 >= -2.7344 & pearson_z3 <= 2.7344 then types_3 = 0; 

run; 

 

 

*CFA Base Model 4 Main Effects and XM MY Interactions 

Estimating and saving frequencies; 

ods listing close; 

ods html close; 

ods output PredictedFreqs=outputm4 anova=outputm4a 

convergencestatus=cs4 Estimates=outputm4e; 

proc catmod data=new  ;   

  weight freq; 

 model X*M*y=_response_ / pred=freq zero=samp ML; 

    loglin X M Y x*M m*y;  

    title2 'MODEL 4: XM MY Interactions and Main Effects'; 

quit; 

ods output close; 

ods listing; 

ods html; 
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run; 

 

*Adding convergence status to predicted frequencies; 

data outputm4; merge outputm4 cs4; run;  

 

*Testing frequencies for types and antitypes; 

data typeres4; set outputm4 

 (rename=(obsstderr=obsse_4 predfunction=predfreq_4 

predstderr=predse_4 residual=residual_4 reason=reason_4 

status=status_4)); 

 pearson_z4=(obsfunction- predfreq_4)/sqrt(predfreq_4); 

 neyman_4=(obsfunction- predfreq_4)/sqrt(obsfunction); 

 if pearson_z4 > 2.7344 then types_4 = 1;  

 if pearson_z4 < -2.7344 then types_4 = -1;  

 if pearson_z4 >= -2.7344 & pearson_z4 <= 2.7344 then types_4 = 0; 

run; 

 

*Second Order CFA Main Effects and XM MY XY Interactions 

Estimating and saving frequencies; 

ods listing close; 

ods html close; 

ods output PredictedFreqs=outputm5 anova=outputm5a 

convergencestatus=cs5 Estimates=outputm5e; 

proc catmod data=new; 

 weight freq; 

  model X*M*y=_response_ /  pred=freq zero=samp ML; 

    loglin X|M|Y @2; 

    title2 'Second Order CFA Main and all 2-way effects'; 

quit; 

ods output close; 

ods listing; 

ods html; 

run; 

 

*Adding convergence status to predicted frequencies; 

data outputm5; merge outputm5 cs5; run;  

 

*Testing frequencies for types and antitypes; 

data typeres5; set outputm5 

 (rename=(obsstderr=obsse_5 predfunction=predfreq_5 

predstderr=predse_5 residual=residual_5 reason=reason_5 

status=status_5)); 

 pearson_z5=(obsfunction-predfreq_5)/sqrt(predfreq_5); 

 neyman_5=(obsfunction-predfreq_5)/sqrt(obsfunction); 

 if pearson_z5 > 2.7344 then types_5 = 1;  

 if pearson_z5 < -2.7344 then types_5 = -1;  

 if pearson_z5 >= -2.7344 & pearson_z5 <= 2.7344 then types_5 = 0; 

run; 

 

*Sorting and merging model results into a single file; 

proc sort data=typeres1; by functionnum; run; 

proc sort data=typeres2; by functionnum; run; 

proc sort data=typeres3; by functionnum; run; 

proc sort data=typeres4; by functionnum; run; 
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proc sort data=typeres5; by functionnum; run; 

 

data allmodels; 

 merge typeres1 typeres2 typeres3 typeres4 typeres5; 

 by functionnum; 

 drop model sample control; 

run; 

quit; 

 

proc sort data=outputm1a; by source; run; 

proc sort data=outputm2a; by source; run; 

proc sort data=outputm3a; by source; run; 

proc sort data=outputm4a; by source; run; 

proc sort data=outputm5a; by source; run; 

data like1; set outputm1a (obs=1); run; 

data like2; set outputm2a (obs=1); run; 

data like3; set outputm3a (obs=1); run; 

data like4; set outputm4a (obs=1); run; 

data like5; set outputm5a (obs=1); run; 

 

data b; set allmodels; 

 keep obsfunction; 

run; 

data b1; Merge MIDS b; 

run; 

 

data c; set like1; 

 rename df=df1; 

 rename chisq=chisq1; 

 rename probchisq=probchisq1; 

 drop model dfkey control; 

 output; output; output; output; output; output; output; output; 

run;  

 

data d; set like2; 

 rename df=df2; 

 rename chisq=chisq2; 

 rename probchisq=probchisq2; 

 drop model dfkey control; 

 output; output; output; output; output; output; output; output; 

run;  

 

data e; set like3; 

 rename df=df3; 

 rename chisq=chisq3; 

 rename probchisq=probchisq3; 

 drop model dfkey control; 

 output; output; output; output; output; output; output; output; 

run;  

 

data f; set like4; 

 rename df=df4; 

 rename chisq=chisq4; 

 rename probchisq=probchisq4; 
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 drop model dfkey control; 

 output; output; output; output; output; output; output; output; 

run; 

 

data g; set like5; 

 rename df=df5; 

 rename chisq=chisq5; 

 rename probchisq=probchisq5; 

 drop model dfkey control; 

 output; output; output; output; output; output; output; output; 

run; 

 

data c1; Merge MIDS c; 

run; 

data d1; Merge MIDS d; 

run; 

data e1; Merge MIDS e; 

run; 

data f1; Merge MIDS f; 

run; 

data g1; Merge MIDS g; 

run; 

 

data allchisq; 

 merge b1 c1 d1 e1 f1 g1; 

 by mergeid; 

 drop Source; 

run; 

 

data allmodmerg; Merge MIDS allmodels; 

run; 

 

proc sort data=outputm1e; by parameter; run; 

proc sort data=outputm2e; by parameter; run; 

proc sort data=outputm3e; by parameter; run; 

proc sort data=outputm4e; by parameter; run; 

proc sort data=outputm5e; by parameter; run; 

 

/*model 1 estimates*/ 

data m1estrow1; set outputm1e; 

if Parameter = "x" THEN DO; xest_m1=estimate; xse_m1=stderr; 

xchisq_m1=chisq; xpval_m1=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m1estrow2; set outputm1e; 

if Parameter = "m" THEN DO; mest_m1=estimate; mse_m1=stderr; 

mchisq_m1=chisq; mpval_m1=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 
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data m1estrow3; set outputm1e; 

if Parameter = "y" THEN DO; yest_m1=estimate; yse_m1=stderr; 

ychisq_m1=chisq; ypval_m1=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m1est; merge m1estrow1 m1estrow2 m1estrow3; run; 

 

/*model 2 estimates*/ 

data m2estrow1; set outputm2e; 

if Parameter = "x" THEN DO; xest_m2=estimate; xse_m2=stderr; 

xchisq_m2=chisq; xpval_m2=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m2estrow2; set outputm2e; 

if Parameter = "m" THEN DO; mest_m2=estimate; mse_m2=stderr; 

mchisq_m2=chisq; mpval_m2=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m2estrow3; set outputm2e; 

if Parameter = "y" THEN DO; yest_m2=estimate; yse_m2=stderr; 

ychisq_m2=chisq; ypval_m2=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m2est; merge m2estrow1 m2estrow2 m2estrow3; run; 

 

/*model 3 estimates*/ 

data m3estrow1; set outputm3e; 

if Parameter = "x" THEN DO; xest_m3=estimate; xse_m3=stderr; 

xchisq_m3=chisq; xpval_m3=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m3estrow2; set outputm3e; 

if Parameter = "m" THEN DO; mest_m3=estimate; mse_m3=stderr; 

mchisq_m3=chisq; mpval_m3=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 
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data m3estrow3; set outputm3e; 

if Parameter = "y" THEN DO; yest_m3=estimate; yse_m3=stderr; 

ychisq_m3=chisq; ypval_m3=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m3est; merge m3estrow1 m3estrow2 m3estrow3; run; 

 

/*model 4 estimates*/ 

data m4estrow1; set outputm4e; 

if Parameter = "x" THEN DO; xest_m4=estimate; xse_m4=stderr; 

xchisq_m4=chisq; xpval_m4=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m4estrow2; set outputm4e; 

if Parameter = "m" THEN DO; mest_m4=estimate; mse_m4=stderr; 

mchisq_m4=chisq; mpval_m4=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m4estrow3; set outputm4e; 

if Parameter = "y" THEN DO; yest_m4=estimate; yse_m4=stderr; 

ychisq_m4=chisq; ypval_m4=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m4est; merge m4estrow1 m4estrow2 m4estrow3; run; 

 

/*model 5 estimates*/ 

data m5estrow1; set outputm5e; 

if Parameter = "x" THEN DO; xest_m5=estimate; xse_m5=stderr; 

xchisq_m5=chisq; xpval_m5=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m5estrow2; set outputm5e; 

if Parameter = "m" THEN DO; mest_m5=estimate; mse_m5=stderr; 

mchisq_m5=chisq; mpval_m5=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 
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data m5estrow3; set outputm5e; 

if Parameter = "y" THEN DO; yest_m5=estimate; yse_m5=stderr; 

ychisq_m5=chisq; ypval_m5=probchisq; end;  

else do; delete; end; 

cond=&cond; 

drop model parameter classvalue estimate note stderr chisq probchisq; 

run; 

 

data m5est; merge m5estrow1 m5estrow2 m5estrow3; run; 

 

data allest; merge m1est m2est m3est m4est m5est; run; 

 

data newallmod; 

 merge allmodmerg allchisq; 

 by mergeid; 

 rep = &I; 

run; 

 

*Arranging data into single row per replication; 

data namrow1; set newallmod; if mergeid=1; 

 x_n1 = x; m_n1 = m; y_n1 = y; FunctionNum_n1 = FunctionNum; 

ObsFunction_n1 = ObsFunction; obsse_m1_n1 = obsse_1; predfreq_m1_n1 = 

predfreq_1; predse_m1_n1 = predse_1; residual_m1_n1 = residual_1; 

pearson_zm1_n1 = pearson_z1; neyman_m1_n1 = neyman_1; types_m1_n1 = 

types_1; obsse_m2_n1 = obsse_2; predfreq_m2_n1 = predfreq_2; 

predse_m2_n1 = predse_2; residual_m2_n1 = residual_2; pearson_zm2_n1 = 

pearson_z2; neyman_m2_n1 = neyman_2; types_m2_n1 = types_2; obsse_m3_n1 

= obsse_3; predfreq_m3_n1 = predfreq_3; predse_m3_n1 = predse_3; 

residual_m3_n1 = residual_3; pearson_zm3_n1 = pearson_z3; neyman_m3_n1 

= neyman_3; types_m3_n1 = types_3; obsse_m4_n1 = obsse_4; 

predfreq_m4_n1 = predfreq_4; predse_m4_n1 = predse_4; residual_m4_n1 = 

residual_4; pearson_zm4_n1 = pearson_z4; neyman_m4_n1 = neyman_4; 

types_m4_n1 = types_4; obsse_m5_n1 = obsse_5; predfreq_m5_n1 = 

predfreq_5; predse_m5_n1 = predse_5; residual_m5_n1 = residual_5; 

pearson_zm5_n1 = pearson_z5; neyman_m5_n1 = neyman_5; types_m5_n1 = 

types_5; df_m1_n1 = df1; chisq_m1_n1 = chisq1; p_m1_n1 = probchisq1; 

df_m2_n1 = df2; chisq_m2_n1 = chisq2; p_m2_n1 = probchisq2; df_m3_n1 = 

df3; chisq_m3_n1 = chisq3; p_m3_n1 = probchisq3; df_m4_n1 = df4; 

chisq_m4_n1 = chisq4; p_m4_n1 = probchisq4; df_m5_n1 = df5; chisq_m5_n1 

= chisq5; p_m5_n1 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 pearson_z1 neyman_1 

types_1 

 obsse_2 predfreq_2 predse_2 residual_2 pearson_z2 neyman_2 

types_2 

 obsse_3 predfreq_3 predse_3 residual_3 pearson_z3 neyman_3 

types_3 

 obsse_4 predfreq_4 predse_4 residual_4 pearson_z4 neyman_4 

types_4 

 obsse_5 predfreq_5 predse_5 residual_5 pearson_z5 neyman_5 

types_5 
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 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n1  obsse_m3_n1  obsse_m4_n1  obsse_m5_n1;   

 

data namrow2; set newallmod; if mergeid=2; 

 x_n2 = x; m_n2 = m; y_n2 = y; FunctionNum_n2 = FunctionNum; 

ObsFunction_n2 = ObsFunction; obsse_m1_n2 = obsse_1; predfreq_m1_n2 = 

predfreq_1; predse_m1_n2 = predse_1; residual_m1_n2 = residual_1; 

pearson_zm1_n2 = pearson_z1; neyman_m1_n2 = neyman_1; types_m1_n2 = 

types_1; obsse_m2_n2 = obsse_2; predfreq_m2_n2 = predfreq_2; 

predse_m2_n2 = predse_2; residual_m2_n2 = residual_2; pearson_zm2_n2 = 

pearson_z2; neyman_m2_n2 = neyman_2; types_m2_n2 = types_2; obsse_m3_n2 

= obsse_3; predfreq_m3_n2 = predfreq_3; predse_m3_n2 = predse_3; 

residual_m3_n2 = residual_3; pearson_zm3_n2 = pearson_z3; neyman_m3_n2 

= neyman_3; types_m3_n2 = types_3; obsse_m4_n2 = obsse_4; 

predfreq_m4_n2 = predfreq_4; predse_m4_n2 = predse_4; residual_m4_n2 = 

residual_4; pearson_zm4_n2 = pearson_z4; neyman_m4_n2 = neyman_4; 

types_m4_n2 = types_4; obsse_m5_n2 = obsse_5; predfreq_m5_n2 = 

predfreq_5; predse_m5_n2 = predse_5; residual_m5_n2 = residual_5; 

pearson_zm5_n2 = pearson_z5; neyman_m5_n2 = neyman_5; types_m5_n2 = 

types_5; df_m1_n2 = df1; chisq_m1_n2 = chisq1; p_m1_n2 = probchisq1; 

df_m2_n2 = df2; chisq_m2_n2 = chisq2; p_m2_n2 = probchisq2; df_m3_n2 = 

df3; chisq_m3_n2 = chisq3; p_m3_n2 = probchisq3; df_m4_n2 = df4; 

chisq_m4_n2 = chisq4; p_m4_n2 = probchisq4; df_m5_n2 = df5; chisq_m5_n2 

= chisq5; p_m5_n2 = probchisq5;                                                           

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n2 obsse_m3_n2 obsse_m4_n2 obsse_m5_n2  

 df_m1_n2 chisq_m1_n2 p_m1_n2 df_m2_n2 chisq_m2_n2 p_m2_n2 

df_m3_n2  

 chisq_m3_n2 p_m3_n2 df_m4_n2 chisq_m4_n2 p_m4_n2 df_m5_n2 

chisq_m5_n2 p_m5_n2;    

 

data namrow3; set newallmod; if mergeid=3; 

 x_n3 = x; m_n3 = m; y_n3 = y; FunctionNum_n3 = FunctionNum; 

ObsFunction_n3 = ObsFunction; obsse_m1_n3 = obsse_1; predfreq_m1_n3 = 

predfreq_1; predse_m1_n3 = predse_1; residual_m1_n3 = residual_1; 

pearson_zm1_n3 = pearson_z1; neyman_m1_n3 = neyman_1; types_m1_n3 = 

types_1; obsse_m2_n3 = obsse_2; predfreq_m2_n3 = predfreq_2; 

predse_m2_n3 = predse_2; residual_m2_n3 = residual_2; pearson_zm2_n3 = 

pearson_z2; neyman_m2_n3 = neyman_2; types_m2_n3 = types_2; obsse_m3_n3 

= obsse_3; predfreq_m3_n3 = predfreq_3; predse_m3_n3 = predse_3; 
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residual_m3_n3 = residual_3; pearson_zm3_n3 = pearson_z3; neyman_m3_n3 

= neyman_3; types_m3_n3 = types_3; obsse_m4_n3 = obsse_4; 

predfreq_m4_n3 = predfreq_4; predse_m4_n3 = predse_4; residual_m4_n3 = 

residual_4; pearson_zm4_n3 = pearson_z4; neyman_m4_n3 = neyman_4; 

types_m4_n3 = types_4; obsse_m5_n3 = obsse_5; predfreq_m5_n3 = 

predfreq_5; predse_m5_n3 = predse_5; residual_m5_n3 = residual_5; 

pearson_zm5_n3 = pearson_z5; neyman_m5_n3 = neyman_5; types_m5_n3 = 

types_5; df_m1_n3 = df1; chisq_m1_n3 = chisq1; p_m1_n3 = probchisq1; 

df_m2_n3 = df2; chisq_m2_n3 = chisq2; p_m2_n3 = probchisq2; df_m3_n3 = 

df3; chisq_m3_n3 = chisq3; p_m3_n3 = probchisq3; df_m4_n3 = df4; 

chisq_m4_n3 = chisq4; p_m4_n3 = probchisq4; df_m5_n3 = df5; chisq_m5_n3 

= chisq5; p_m5_n3 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n3 obsse_m3_n3 obsse_m4_n3 obsse_m5_n3   

 df_m1_n3 chisq_m1_n3 p_m1_n3 df_m2_n3 chisq_m2_n3 p_m2_n3 

df_m3_n3  

 chisq_m3_n3 p_m3_n3 df_m4_n3 chisq_m4_n3 p_m4_n3 df_m5_n3 

chisq_m5_n3 p_m5_n3;  

 

data namrow4; set newallmod; if mergeid=4; 

 x_n4 = x; m_n4 = m; y_n4 = y; FunctionNum_n4 = FunctionNum; 

ObsFunction_n4 = ObsFunction; obsse_m1_n4 = obsse_1; predfreq_m1_n4 = 

predfreq_1; predse_m1_n4 = predse_1; residual_m1_n4 = residual_1; 

pearson_zm1_n4 = pearson_z1; neyman_m1_n4 = neyman_1; types_m1_n4 = 

types_1; obsse_m2_n4 = obsse_2; predfreq_m2_n4 = predfreq_2; 

predse_m2_n4 = predse_2; residual_m2_n4 = residual_2; pearson_zm2_n4 = 

pearson_z2; neyman_m2_n4 = neyman_2; types_m2_n4 = types_2; obsse_m3_n4 

= obsse_3; predfreq_m3_n4 = predfreq_3; predse_m3_n4 = predse_3; 

residual_m3_n4 = residual_3; pearson_zm3_n4 = pearson_z3; neyman_m3_n4 

= neyman_3; types_m3_n4 = types_3; obsse_m4_n4 = obsse_4; 

predfreq_m4_n4 = predfreq_4; predse_m4_n4 = predse_4; residual_m4_n4 = 

residual_4; pearson_zm4_n4 = pearson_z4; neyman_m4_n4 = neyman_4; 

types_m4_n4 = types_4; obsse_m5_n4 = obsse_5; predfreq_m5_n4 = 

predfreq_5; predse_m5_n4 = predse_5; residual_m5_n4 = residual_5; 

pearson_zm5_n4 = pearson_z5; neyman_m5_n4 = neyman_5; types_m5_n4 = 

types_5; df_m1_n4 = df1; chisq_m1_n4 = chisq1; p_m1_n4 = probchisq1; 

df_m2_n4 = df2; chisq_m2_n4 = chisq2; p_m2_n4 = probchisq2; df_m3_n4 = 

df3; chisq_m3_n4 = chisq3; p_m3_n4 = probchisq3; df_m4_n4 = df4; 

chisq_m4_n4 = chisq4; p_m4_n4 = probchisq4; df_m5_n4 = df5; chisq_m5_n4 

= chisq5; p_m5_n4 = probchisq5; 

 cond = &cond; 
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 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n4 obsse_m3_n4 obsse_m4_n4 obsse_m5_n4   

 df_m1_n4 chisq_m1_n4 p_m1_n4 df_m2_n4 chisq_m2_n4 p_m2_n4 

df_m3_n4  

 chisq_m3_n4 p_m3_n4 df_m4_n4 chisq_m4_n4 p_m4_n4 df_m5_n4 

chisq_m5_n4 p_m5_n4; 

 

data namrow5; set newallmod; if mergeid=5; 

 x_n5 = x; m_n5 = m; y_n5 = y; FunctionNum_n5 = FunctionNum; 

ObsFunction_n5 = ObsFunction; obsse_m1_n5 = obsse_1; predfreq_m1_n5 = 

predfreq_1; predse_m1_n5 = predse_1; residual_m1_n5 = residual_1; 

pearson_zm1_n5 = pearson_z1; neyman_m1_n5 = neyman_1; types_m1_n5 = 

types_1; obsse_m2_n5 = obsse_2; predfreq_m2_n5 = predfreq_2; 

predse_m2_n5 = predse_2; residual_m2_n5 = residual_2; pearson_zm2_n5 = 

pearson_z2; neyman_m2_n5 = neyman_2; types_m2_n5 = types_2; obsse_m3_n5 

= obsse_3; predfreq_m3_n5 = predfreq_3; predse_m3_n5 = predse_3; 

residual_m3_n5 = residual_3; pearson_zm3_n5 = pearson_z3; neyman_m3_n5 

= neyman_3; types_m3_n5 = types_3; obsse_m4_n5 = obsse_4; 

predfreq_m4_n5 = predfreq_4; predse_m4_n5 = predse_4; residual_m4_n5 = 

residual_4; pearson_zm4_n5 = pearson_z4; neyman_m4_n5 = neyman_4; 

types_m4_n5 = types_4; obsse_m5_n5 = obsse_5; predfreq_m5_n5 = 

predfreq_5; predse_m5_n5 = predse_5; residual_m5_n5 = residual_5; 

pearson_zm5_n5 = pearson_z5; neyman_m5_n5 = neyman_5; types_m5_n5 = 

types_5; df_m1_n5 = df1; chisq_m1_n5 = chisq1; p_m1_n5 = probchisq1; 

df_m2_n5 = df2; chisq_m2_n5 = chisq2; p_m2_n5 = probchisq2; df_m3_n5 = 

df3; chisq_m3_n5 = chisq3; p_m3_n5 = probchisq3; df_m4_n5 = df4; 

chisq_m4_n5 = chisq4; p_m4_n5 = probchisq4; df_m5_n5 = df5; chisq_m5_n5 

= chisq5; p_m5_n5 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 
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 obsse_m2_n5 obsse_m3_n5 obsse_m4_n5 obsse_m5_n5   

 df_m1_n5 chisq_m1_n5 p_m1_n5 df_m2_n5 chisq_m2_n5 p_m2_n5 

df_m3_n5  

 chisq_m3_n5 p_m3_n5 df_m4_n5 chisq_m4_n5 p_m4_n5 df_m5_n5 

chisq_m5_n5 p_m5_n5; 

 

data namrow6; set newallmod; if mergeid=6; 

 x_n6 = x; m_n6 = m; y_n6 = y; FunctionNum_n6 = FunctionNum; 

ObsFunction_n6 = ObsFunction; obsse_m1_n6 = obsse_1; predfreq_m1_n6 = 

predfreq_1; predse_m1_n6 = predse_1; residual_m1_n6 = residual_1; 

pearson_zm1_n6 = pearson_z1; neyman_m1_n6 = neyman_1; types_m1_n6 = 

types_1; obsse_m2_n6 = obsse_2; predfreq_m2_n6 = predfreq_2; 

predse_m2_n6 = predse_2; residual_m2_n6 = residual_2; pearson_zm2_n6 = 

pearson_z2; neyman_m2_n6 = neyman_2; types_m2_n6 = types_2; obsse_m3_n6 

= obsse_3; predfreq_m3_n6 = predfreq_3; predse_m3_n6 = predse_3; 

residual_m3_n6 = residual_3; pearson_zm3_n6 = pearson_z3; neyman_m3_n6 

= neyman_3; types_m3_n6 = types_3; obsse_m4_n6 = obsse_4; 

predfreq_m4_n6 = predfreq_4; predse_m4_n6 = predse_4; residual_m4_n6 = 

residual_4; pearson_zm4_n6 = pearson_z4; neyman_m4_n6 = neyman_4; 

types_m4_n6 = types_4; obsse_m5_n6 = obsse_5; predfreq_m5_n6 = 

predfreq_5; predse_m5_n6 = predse_5; residual_m5_n6 = residual_5; 

pearson_zm5_n6 = pearson_z5; neyman_m5_n6 = neyman_5; types_m5_n6 = 

types_5; df_m1_n6 = df1; chisq_m1_n6 = chisq1; p_m1_n6 = probchisq1; 

df_m2_n6 = df2; chisq_m2_n6 = chisq2; p_m2_n6 = probchisq2; df_m3_n6 = 

df3; chisq_m3_n6 = chisq3; p_m3_n6 = probchisq3; df_m4_n6 = df4; 

chisq_m4_n6 = chisq4; p_m4_n6 = probchisq4; df_m5_n6 = df5; chisq_m5_n6 

= chisq5; p_m5_n6 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n6 obsse_m3_n6 obsse_m4_n6 obsse_m5_n6      

 df_m1_n6 chisq_m1_n6 p_m1_n6 df_m2_n6 chisq_m2_n6 p_m2_n6 

df_m3_n6  

 chisq_m3_n6 p_m3_n6 df_m4_n6 chisq_m4_n6 p_m4_n6 df_m5_n6 

chisq_m5_n6 p_m5_n6; 

 

 

data namrow7; set newallmod; if mergeid=7; 

 x_n7 = x; m_n7 = m; y_n7 = y; FunctionNum_n7 = FunctionNum; 

ObsFunction_n7 = ObsFunction; obsse_m1_n7 = obsse_1; predfreq_m1_n7 = 

predfreq_1; predse_m1_n7 = predse_1; residual_m1_n7 = residual_1; 

pearson_zm1_n7 = pearson_z1; neyman_m1_n7 = neyman_1; types_m1_n7 = 

types_1; obsse_m2_n7 = obsse_2; predfreq_m2_n7 = predfreq_2; 
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predse_m2_n7 = predse_2; residual_m2_n7 = residual_2; pearson_zm2_n7 = 

pearson_z2; neyman_m2_n7 = neyman_2; types_m2_n7 = types_2; obsse_m3_n7 

= obsse_3; predfreq_m3_n7 = predfreq_3; predse_m3_n7 = predse_3; 

residual_m3_n7 = residual_3; pearson_zm3_n7 = pearson_z3; neyman_m3_n7 

= neyman_3; types_m3_n7 = types_3; obsse_m4_n7 = obsse_4; 

predfreq_m4_n7 = predfreq_4; predse_m4_n7 = predse_4; residual_m4_n7 = 

residual_4; pearson_zm4_n7 = pearson_z4; neyman_m4_n7 = neyman_4; 

types_m4_n7 = types_4; obsse_m5_n7 = obsse_5; predfreq_m5_n7 = 

predfreq_5; predse_m5_n7 = predse_5; residual_m5_n7 = residual_5; 

pearson_zm5_n7 = pearson_z5; neyman_m5_n7 = neyman_5; types_m5_n7 = 

types_5; df_m1_n7 = df1; chisq_m1_n7 = chisq1; p_m1_n7 = probchisq1; 

df_m2_n7 = df2; chisq_m2_n7 = chisq2; p_m2_n7 = probchisq2; df_m3_n7 = 

df3; chisq_m3_n7 = chisq3; p_m3_n7 = probchisq3; df_m4_n7 = df4; 

chisq_m4_n7 = chisq4; p_m4_n7 = probchisq4; df_m5_n7 = df5; chisq_m5_n7 

= chisq5; p_m5_n7 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n7 obsse_m3_n7 obsse_m4_n7 obsse_m5_n7  

 df_m1_n7 chisq_m1_n7 p_m1_n7 df_m2_n7 chisq_m2_n7 p_m2_n7 

df_m3_n7  

 chisq_m3_n7 p_m3_n7 df_m4_n7 chisq_m4_n7 p_m4_n7 df_m5_n7 

chisq_m5_n7 p_m5_n7;  

 

data namrow8; set newallmod; if mergeid=8; 

 x_n8 = x; m_n8 = m; y_n8 = y; FunctionNum_n8 = FunctionNum; 

ObsFunction_n8 = ObsFunction; obsse_m1_n8 = obsse_1; predfreq_m1_n8 = 

predfreq_1; predse_m1_n8 = predse_1; residual_m1_n8 = residual_1; 

pearson_zm1_n8 = pearson_z1; neyman_m1_n8 = neyman_1; types_m1_n8 = 

types_1; obsse_m2_n8 = obsse_2; predfreq_m2_n8 = predfreq_2; 

predse_m2_n8 = predse_2; residual_m2_n8 = residual_2; pearson_zm2_n8 = 

pearson_z2; neyman_m2_n8 = neyman_2; types_m2_n8 = types_2; obsse_m3_n8 

= obsse_3; predfreq_m3_n8 = predfreq_3; predse_m3_n8 = predse_3; 

residual_m3_n8 = residual_3; pearson_zm3_n8 = pearson_z3; neyman_m3_n8 

= neyman_3; types_m3_n8 = types_3; obsse_m4_n8 = obsse_4; 

predfreq_m4_n8 = predfreq_4; predse_m4_n8 = predse_4; residual_m4_n8 = 

residual_4; pearson_zm4_n8 = pearson_z4; neyman_m4_n8 = neyman_4; 

types_m4_n8 = types_4; obsse_m5_n8 = obsse_5; predfreq_m5_n8 = 

predfreq_5; predse_m5_n8 = predse_5; residual_m5_n8 = residual_5; 

pearson_zm5_n8 = pearson_z5; neyman_m5_n8 = neyman_5; types_m5_n8 = 

types_5; df_m1_n8 = df1; chisq_m1_n8 = chisq1; p_m1_n8 = probchisq1; 

df_m2_n8 = df2; chisq_m2_n8 = chisq2; p_m2_n8 = probchisq2; df_m3_n8 = 

df3; chisq_m3_n8 = chisq3; p_m3_n8 = probchisq3; df_m4_n8 = df4; 
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chisq_m4_n8 = chisq4; p_m4_n8 = probchisq4; df_m5_n8 = df5; chisq_m5_n8 

= chisq5; p_m5_n8 = probchisq5; 

 cond = &cond; 

 drop mergeid x m y FunctionNum ObsFunction  

 obsse_1 predfreq_1 predse_1 residual_1 reason_1 status_1 

pearson_z1 neyman_1 types_1 

 obsse_2 predfreq_2 predse_2 residual_2 reason_2 status_2 

pearson_z2 neyman_2 types_2 

 obsse_3 predfreq_3 predse_3 residual_3 reason_3 status_3 

pearson_z3 neyman_3 types_3 

 obsse_4 predfreq_4 predse_4 residual_4 reason_4 status_4 

pearson_z4 neyman_4 types_4 

 obsse_5 predfreq_5 predse_5 residual_5 reason_5 status_5 

pearson_z5 neyman_5 types_5 

 df1 chisq1 probchisq1 df2 chisq2 probchisq2 df3 chisq3 probchisq3 

df4 chisq4 probchisq4 df5 chisq5 probchisq5 

 obsse_m2_n8 obsse_m3_n8 obsse_m4_n8 obsse_m5_n8   

 df_m1_n8 chisq_m1_n8 p_m1_n8 df_m2_n8 chisq_m2_n8 p_m2_n8 

df_m3_n8  

 chisq_m3_n8 p_m3_n8 df_m4_n8 chisq_m4_n8 p_m4_n8 df_m5_n8 

chisq_m5_n8 p_m5_n8;  

 

data NewAllMod2; merge namrow1 namrow2 namrow3 namrow4 namrow5 namrow6 

namrow7 namrow8 allest; run; 

run; 

 

*Appending replications to a single dataset per condition*; 

Data Summary4; Set Summary4 NewAllMod2; 

%END; 

 

*Saving results; 

data Dataout.Cfigout&file; SET Summary4; 

; 

RUN; 

%MEND; 
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APPENDIX F 

SAS CFM DECISION RULES 
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*Comparing types and antitypes to determine whether X, M, and Y 

relationships exist 

and whether model is independent, direct effects only, full mediation, 

or partial mediation; 

 

DATA Types;  

 FORMAT cond newrep; 

 SET data.allcmas2; 

 Keep cond newrep types_m1_n1 types_m1_n2 types_m1_n3 types_m1_n4 

types_m1_n5 types_m1_n6 types_m1_n7 types_m1_n8 types_m2_n1 types_m2_n2 

types_m2_n3 types_m2_n4 types_m2_n5 types_m2_n6 types_m2_n7 types_m2_n8 

types_m3_n1 types_m3_n2 types_m3_n3 types_m3_n4 types_m3_n5 types_m3_n6 

types_m3_n7 types_m3_n8 types_m4_n1 types_m4_n2 types_m4_n3 types_m4_n4 

types_m4_n5 types_m4_n6 types_m4_n7 types_m4_n8 types_m5_n1 types_m5_n2 

types_m5_n3 types_m5_n4 types_m5_n5 types_m5_n6 types_m5_n7 

types_m5_n8; 

run; 

 

 

DATA step1; SET Types; 

 IF types_m1_n1 = 0 AND types_m1_n2 = 0 AND types_m1_n3 = 0 AND 

types_m1_n4 = 0 AND types_m1_n5 = 0 AND types_m1_n6 = 0 AND types_m1_n7 

= 0 AND types_m1_n8 = 0  

 THEN M1TAs = 0; ELSE M1TAs = 1; 

 IF M1TAs = 0 

 THEN DO; XYrelated = 0; MYrelated = 0; XMrelated = 0; end; 

Run; 

 

DATA step2; SET step1;  

 IF types_m2_n1 = 0 AND types_m2_n2 = 0 AND types_m2_n3 = 0 AND 

types_m2_n4 = 0 AND types_m2_n5 = 0 AND types_m2_n6 = 0 AND types_m2_n7 

= 0 AND types_m2_n8 = 0  

 THEN M2TAs = 0; ELSE M2TAs = 1; 

 IF M1TAs = 1 and M2TAs = 0 

 THEN DO XYrelated = 0; MYrelated = 0; end; 

Run; 

 

DATA step3; SET step2;  

 IF types_m3_n1 = 0 AND types_m3_n2 = 0 AND types_m3_n3 = 0 AND 

types_m3_n4 = 0 AND types_m3_n5 = 0 AND types_m3_n6 = 0 AND types_m3_n7 

= 0 AND types_m3_n8 = 0 

 THEN M3TAs = 0; ELSE M3TAs = 1; 

 IF M1TAs = 1 and M3TAs = 1 

 THEN DO MYrelated = 1; end; 

Run; 

 

DATA step4; SET step3; 

 IF types_m4_n1 = 0 AND types_m4_n2 = 0 AND types_m4_n3 = 0 AND 

types_m4_n4 = 0 AND types_m4_n5 = 0 AND types_m4_n6 = 0 AND types_m4_n7 

= 0 AND types_m4_n8 = 0 

 THEN M4TAs = 0; ELSE M4TAs = 1; 

 IF M1TAs = 1 and M4TAs = 1 

 THEN XYrelated = 1; 

Run; 
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DATA step5; SET step4;  

 IF M1TAs = 1 and M2TAs = 1 and M3TAs = 1 

 THEN Comp1 = 1; ELSE Comp1 = 0; 

 IF M1TAs = 1 and M2TAs = 1 and M3TAs = 0 

 THEN CompY = 1; ELSE CompY = 0; 

Run; 

 

DATA step6; SET step5;  

 IF Comp1 = 1 and types_m2_n1 = types_m3_n1 AND types_m2_n2 = 

types_m3_n2 AND types_m2_n3 = types_m3_n3 AND types_m2_n4 = types_m3_n4 

AND types_m2_n5 = types_m3_n5 AND types_m2_n6 = types_m3_n6 AND 

types_m2_n7 = types_m3_n7 AND types_m2_n8 = types_m3_n8 

 THEN do;  XYrelated = 0; end;  

 IF Comp1 = 1 and types_m2_n1 ^= types_m3_n1 OR types_m2_n2 ^= 

types_m3_n2 OR types_m2_n3 ^= types_m3_n3 OR types_m2_n4 ^= types_m3_n4 

OR types_m2_n5 ^= types_m3_n5 OR types_m2_n6 ^= types_m3_n6 OR 

types_m2_n7 ^= types_m3_n7 OR types_m2_n8 ^= types_m3_n8 

 THEN do;  XYrelated = 1; end; 

 IF CompY = 1 

 THEN DO XYrelated = 1; MYrelated = 0;end; 

 run; 

 

  

 

DATA step7; SET step6;  

 IF M1TAs = 1 AND types_m1_n1 ^= types_m2_n1 or types_m1_n1 ^= 

types_m3_n1 or types_m1_n1 ^= types_m4_n1  

or types_m1_n2 ^= types_m2_n2 or types_m1_n2 ^= types_m3_n2 or 

types_m1_n2 ^= types_m4_n2  

or types_m1_n3 ^= types_m2_n3 or types_m1_n3 ^= types_m3_n3 or 

types_m1_n3 ^= types_m4_n3  

or types_m1_n4 ^= types_m2_n4 or types_m1_n4 ^= types_m3_n4 or 

types_m1_n4 ^= types_m4_n4 

or types_m1_n5 ^= types_m2_n5 or types_m1_n5 ^= types_m3_n5 or 

types_m1_n5 ^= types_m4_n5  

or types_m1_n6 ^= types_m2_n6 or types_m1_n6 ^= types_m3_n6 or 

types_m1_n6 ^= types_m4_n6  

or types_m1_n7 ^= types_m2_n7 or types_m1_n7 ^= types_m3_n7 or 

types_m1_n7 ^= types_m4_n7  

or types_m1_n8 ^= types_m2_n8 or types_m1_n8 ^= types_m3_n8 or 

types_m1_n8 ^= types_m4_n8 

 THEN XMrelated = 1;  

 

Run; 

 

DATA step8; SET step7; 

 IF M1TAs = 1 AND types_m1_n1 = types_m2_n1 = types_m3_n1 = 

types_m4_n1  

and types_m1_n2 = types_m2_n2 = types_m3_n2 = types_m4_n2  

and types_m1_n3 = types_m2_n3 = types_m3_n3 = types_m4_n3  

and types_m1_n4 = types_m2_n4 = types_m3_n4 = types_m4_n4 

and types_m1_n5 = types_m2_n5 = types_m3_n5 = types_m4_n5  

and types_m1_n6 = types_m2_n6 = types_m3_n6 = types_m4_n6  
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and types_m1_n7 = types_m2_n7 = types_m3_n7 = types_m4_n7  

and types_m1_n8 = types_m2_n8 = types_m3_n8 = types_m4_n8 

 THEN Tway = 1; ELSE Tway = 0; 

 

DATA step9; SET step8; 

 IF M1TAs = 0 THEN Independent = 1; ELSE Independent = 0; 

 IF M1TAs = 1 AND Tway = 0 and XMrelated = 1 and MYrelated = 1 and 

XYrelated = 0 

 THEN Fullmed = 1; ELSE Fullmed = 0; 

 IF M1TAs = 1 AND Tway = 0 and XMrelated = 1 and MYrelated = 1 and 

XYrelated = 1 

 THEN Partmed = 1; ELSE Partmed = 0; 

 IF M1TAs = 1 AND Tway = 0 and XMrelated = 1 and MYrelated = 0 and 

XYrelated = 1 

 THEN Direct = 1; ELSE Direct = 0; 

Run; 

 

DATA data.Allstepss2; SET step9;  

 Keep Cond newrep Independent XMrelated XYrelated MYrelated 

FullMed Direct PartMed; 

Run; 
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APPENDIX G 

SAS CAUSAL MEDIATION MACRO 
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%MACRO ANALYZE2 (BMX,BYX,BYM,FILE,COND); 

 

DATA SUMMARY3; SET _NULL_; 

 

*Estimating and saving estimates, standard errors, and significance 

tests; 

ods results = OFF; 

ods listing close; 

ods html close; 

ods output EffectDecomp=outputD MediatorEstimates=outputM 

OutcomeEstimates=outputO; 

PROC CAUSALMED DATA=Simdata.&File pALL; 

 BY rep; 

 CLASS YC X MC/DESCENDING; 

 MODEL YC = X MC; 

 MEDIATOR MC = X; 

quit; 

ods output close; 

ods listing; 

ods html; 

run; 

 

*Arranging outputs into single row by replication; 

DATA drow1; SET outputD; 

 IF Decomp="NDE+NIE" and Effect="Natural Direct" THEN DO; 

NDEEst=Estimate; NDEStdErr=StdErr; NDELWCL=LowerWaldCL; 

NDEUPCL=UpperWaldCL; NDEZ=Z; NDEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow2; SET outputD; 

 IF Decomp="NDE+NIE" and Effect="Natural Indirect" THEN DO; 

NIEEst=Estimate; NIEStdErr=StdErr; NIELWCL=LowerWaldCL; 

NIEUPCL=UpperWaldCL; NIEZ=Z; NIEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow3; SET outputD; 

 IF Decomp="CDE+PE" and Effect="Controlled Direct" THEN DO; 

CDEEst=Estimate; CDEStdErr=StdErr; CDELWCL=LowerWaldCL; 

CDEUPCL=UpperWaldCL; CDEZ=Z; CDEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow4; SET outputD; 
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 IF Decomp="CDE+PE" and Effect="Portion Eliminated" THEN DO; 

PEEst=Estimate; PEStdErr=StdErr; PELWCL=LowerWaldCL; 

PEUPCL=UpperWaldCL; PEZ=Z; PEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow5; SET outputD; 

 IF Decomp="TDE+PIE" and Effect="Total Direct" THEN DO; 

TDEEst=Estimate; TDEStdErr=StdErr; TDELWCL=LowerWaldCL; 

TDEUPCL=UpperWaldCL; TDEZ=Z; TDEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow6; SET outputD; 

 IF Decomp="TDE+PIE" and Effect="Pure Indirect" THEN DO; 

PIEEst=Estimate; PIEStdErr=StdErr; PIELWCL=LowerWaldCL; 

PIEUPCL=UpperWaldCL; PIEZ=Z; PIEProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow7; SET outputD; 

 IF Decomp="NDE+PIE+IMD" and Effect="Mediated Interaction" THEN 

DO; MedxEst=Estimate; MedxStdErr=StdErr; MedxLWCL=LowerWaldCL; 

MedxUPCL=UpperWaldCL; MedxZ=Z; MedxProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow8; SET outputD; 

 IF Decomp="CDE+PIE+PAI" and Effect="Portion Due to Interaction" 

THEN DO; PAIEst=Estimate; PAIStdErr=StdErr; PAILWCL=LowerWaldCL; 

PAIUPCL=UpperWaldCL; PAIZ=Z; PAIProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow9; SET outputD; 

 IF Decomp="Four-Way" and Effect="Reference Interaction" THEN DO; 

RefxEst=Estimate; RefxStdErr=StdErr; RefxLWCL=LowerWaldCL; 

RefxUPCL=UpperWaldCL; RefxZ=Z; RefxProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 
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 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA drow10; SET outputD; 

 IF Decomp="Total" and Effect="Excess Relative Risk" THEN DO; 

ERREst=Estimate; ERRStdErr=StdErr; ERRLWCL=LowerWaldCL; 

ERRUPCL=UpperWaldCL; ERRZ=Z; ERRProbZ=ProbZ; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 DROP Decomp Effect Estimate StdErr LowerWaldCL UpperWaldCL Z 

ProbZ; 

RUN; 

 

DATA alld; merge drow1 drow2 drow3 drow4 drow5 drow6 drow7 drow8 drow9 

drow10; 

run; 

 

DATA mrow1; SET outputM; 

 IF Parameter="Intercept" THEN DO; MIntEst=Estimate; 

MIntStdErr=StdErr; MIntLWCL=LowerWaldCL; MIntUPCL=UpperWaldCL; 

MIntChiSq=ChiSq; MIntProbChSq=ProbChiSq; 

 END; 

 ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA mrow2; SET outputM; 

 IF Level1 = "0" THEN DO; MX0Est=Estimate; MX0StdErr=StdErr; 

MX0LWCL=LowerWaldCL; MX0UPCL=UpperWaldCL; MX0ChiSq=ChiSq; 

MX0ProbChSq=ProbChiSq; 

 END; 

 ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA mrow3; SET outputM; 

 IF Level1 = "1" THEN DO; MX1Est=Estimate; MX1StdErr=StdErr; 

MX1LWCL=LowerWaldCL; MX1UPCL=UpperWaldCL; MX1ChiSq=ChiSq; 

MX1ProbChSq=ProbChiSq; 

 END; 

 ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA allm; merge mrow1 mrow2 mrow3; 

run; 
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DATA orow1; SET outputo; 

 IF Parameter="Intercept" THEN DO; OIntEst=Estimate; 

OIntStdErr=StdErr; OIntLWCL=LowerWaldCL; OIntUPCL=UpperWaldCL; 

OIntChiSq=ChiSq; OIntProbChSq=ProbChiSq; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA orow2; SET outputo; 

 IF Parameter = "X" and Level1 = "0" THEN DO; OX0Est=Estimate; 

OX0StdErr=StdErr; OX0LWCL=LowerWaldCL; OX0UPCL=UpperWaldCL; 

OX0ChiSq=ChiSq; OX0ProbChSq=ProbChiSq; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA orow3; SET outputo; 

 IF Parameter = "X" and Level1 = "1" THEN DO; OX1Est=Estimate; 

OX1StdErr=StdErr; OX1LWCL=LowerWaldCL; OX1UPCL=UpperWaldCL; 

OX1ChiSq=ChiSq; OX1ProbChSq=ProbChiSq; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA orow4; SET outputo; 

 IF Parameter = "MC" and Level1 = "0" THEN DO; OMC0Est=Estimate; 

OMC0StdErr=StdErr; OMC0LWCL=LowerWaldCL; OMC0UPCL=UpperWaldCL; 

OMC0ChiSq=ChiSq; OMC0ProbChSq=ProbChiSq; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA orow5; SET outputo; 

 IF Parameter = "MC" and Level1 = "1" THEN DO; OMC1Est=Estimate; 

OMC1StdErr=StdErr; OMC1LWCL=LowerWaldCL; OMC1UPCL=UpperWaldCL; 

OMC1ChiSq=ChiSq; OMC1ProbChSq=ProbChiSq; 

 END; ELSE DO; DELETE; END; 

 cond = &cond; 

 Drop Parameter Level1 Estimate StdErr LowerWaldCL UpperWaldCL 

ChiSq ProbChiSq; 

RUN; 

 

DATA allo; MERGE orow1 orow2 orow3 orow4 orow5; 

RUN; 
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DATA CMOutput; MERGE allm alld allo; 

RUN; 

 

*Saving true values of a, b, and cprime to output; 

DATA CausMedOutput; SET CMOutput; 

merge=1; 

BMX = &BMX; 

BYM = &BYM; 

BYX = &BYX; 

Prod=&BMX*&BYM; 

run; 

 

*Appending replications to a single dataset per condition*; 

DATA Summary3; SET Summary3 CausMedOutput; 

data dataout.cmo&file; SET Summary3; 

 

*Calculating and saving standard deviations of estimates across 

replications; 

proc means data = CausMedOutput noprint; 

 var rep cond merge MIntEst MIntStdErr MIntLWCL MIntUPCL MIntChiSq 

MIntProbChSq 

 MX0Est MX0StdErr MX0LWCL MX0UPCL MX0ChiSq MX0ProbChSq 

 MX1Est MX1StdErr MX1LWCL MX1UPCL MX1ChiSq MX1ProbChSq 

 NDEEst NDEStdErr NDELWCL NDEUPCL NDEZ NDEProbZ 

 NIEEst NIEStdErr NIELWCL NIEUPCL NIEZ NIEProbZ 

 CDEEst CDEStdErr CDELWCL CDEUPCL CDEZ CDEProbZ 

 PEEst PEStdErr PELWCL PEUPCL PEZ PEProbZ 

 TDEEst TDEStdErr TDELWCL TDEUPCL TDEZ TDEProbZ 

 PIEEst PIEStdErr PIELWCL PIEUPCL PIEZ PIEProbZ 

 MedxEst MedxStdErr MedxLWCL MedxUPCL MedxZ MedxProbZ 

 PAIEst PAIStdErr PAILWCL PAIUPCL PAIZ PAIProbZ 

 RefxEst RefxStdErr RefxLWCL RefxUPCL RefxZ RefxProbZ 

 ERREst ERRStdErr ERRLWCL ERRUPCL ERRZ ERRProbZ 

 OIntEst OIntStdErr OIntLWCL OIntUPCL OIntChiSq OIntProbChSq 

 OX0Est OX0StdErr OX0LWCL OX0UPCL OX0ChiSq OX0ProbChSq 

 OX1Est OX1StdErr OX1LWCL OX1UPCL OX1ChiSq OX1ProbChSq 

 OMC0Est OMC0StdErr OMC0LWCL OMC0UPCL OMC0ChiSq OMC0ProbChSq 

 OMC1Est OMC1StdErr OMC1LWCL OMC1UPCL OMC1ChiSq OMC1ProbChSq;  

 output out=causmeans 

 mean = rep cond MIntEst MIntStdErr MIntLWCL MIntUPCL MIntChiSq 

MIntProbChSq 

 MX0Est MX0StdErr MX0LWCL MX0UPCL MX0ChiSq MX0ProbChSq 

 MX1Est MX1StdErr MX1LWCL MX1UPCL MX1ChiSq MX1ProbChSq 

 NDEEst NDEStdErr NDELWCL NDEUPCL NDEZ NDEProbZ 

 NIEEst NIEStdErr NIELWCL NIEUPCL NIEZ NIEProbZ 

 CDEEst CDEStdErr CDELWCL CDEUPCL CDEZ CDEProbZ 

 PEEst PEStdErr PELWCL PEUPCL PEZ PEProbZ 

 TDEEst TDEStdErr TDELWCL TDEUPCL TDEZ TDEProbZ 

 PIEEst PIEStdErr PIELWCL PIEUPCL PIEZ PIEProbZ 

 MedxEst MedxStdErr MedxLWCL MedxUPCL MedxZ MedxProbZ 

 PAIEst PAIStdErr PAILWCL PAIUPCL PAIZ PAIProbZ 

 RefxEst RefxStdErr RefxLWCL RefxUPCL RefxZ RefxProbZ 

 ERREst ERRStdErr ERRLWCL ERRUPCL ERRZ ERRProbZ 

 OIntEst OIntStdErr OIntLWCL OIntUPCL OIntChiSq OIntProbChSq 
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 OX0Est OX0StdErr OX0LWCL OX0UPCL OX0ChiSq OX0ProbChSq 

 OX1Est OX1StdErr OX1LWCL OX1UPCL OX1ChiSq OX1ProbChSq 

 OMC0Est OMC0StdErr OMC0LWCL OMC0UPCL OMC0ChiSq OMC0ProbChSq 

 OMC1Est OMC1StdErr OMC1LWCL OMC1UPCL OMC1ChiSq OMC1ProbChSq 

 STD =  stdrep stdcond stdMIntEst stdMIntStdErr stdMIntLWCL 

stdMIntUPCL stdMIntChiSq stdMIntProbChSq 

 stdMX0Est stdMX0StdErr stdMX0LWCL stdMX0UPCL stdMX0ChiSq 

stdMX0ProbChSq 

 stdMX1Est stdMX1StdErr stdMX1LWCL stdMX1UPCL stdMX1ChiSq 

stdMX1ProbChSq 

 stdNDEEst stdNDEStdErr stdNDELWCL stdNDEUPCL stdNDEZ stdNDEProbZ 

 stdNIEEst stdNIEStdErr stdNIELWCL stdNIEUPCL stdNIEZ stdNIEProbZ 

 stdCDEEst stdCDEStdErr stdCDELWCL stdCDEUPCL stdCDEZ stdCDEProbZ 

 stdPEEst stdPEStdErr stdPELWCL stdPEUPCL stdPEZ stdPEProbZ 

 stdTDEEst stdTDEStdErr stdTDELWCL stdTDEUPCL stdTDEZ stdTDEProbZ 

 stdPIEEst stdPIEStdErr stdPIELWCL stdPIEUPCL stdPIEZ stdPIEProbZ 

 stdMedxEst stdMedxStdErr stdMedxLWCL stdMedxUPCL stdMedxZ 

stdMedxProbZ 

 stdPAIEst stdPAIStdErr stdPAILWCL stdPAIUPCL stdPAIZ stdPAIProbZ 

 stdRefxEst stdRefxStdErr stdRefxLWCL stdRefxUPCL stdRefxZ 

stdRefxProbZ 

 stdERREst stdERRStdErr stdERRLWCL stdERRUPCL stdERRZ stdERRProbZ 

 stdOIntEst stdOIntStdErr stdOIntLWCL stdOIntUPCL stdOIntChiSq 

stdOIntProbChSq 

 stdOX0Est stdOX0StdErr stdOX0LWCL stdOX0UPCL stdOX0ChiSq 

stdOX0ProbChSq 

 stdOX1Est stdOX1StdErr stdOX1LWCL stdOX1UPCL stdOX1ChiSq 

stdOX1ProbChSq 

 stdOMC0Est stdOMC0StdErr stdOMC0LWCL stdOMC0UPCL stdOMC0ChiSq 

stdOMC0ProbChSq 

 stdOMC1Est stdOMC1StdErr stdOMC1LWCL stdOMC1UPCL stdOMC1ChiSq 

stdOMC1ProbChSq; 

run; 

 

DATA causmeans2; set causmeans; 

 merge = 1; 

 keep merge stdMIntEst stdMIntStdErr stdMIntLWCL stdMIntUPCL 

stdMIntChiSq stdMIntProbChSq 

 stdMX0Est stdMX0StdErr stdMX0LWCL stdMX0UPCL stdMX0ChiSq 

stdMX0ProbChSq 

 stdMX1Est stdMX1StdErr stdMX1LWCL stdMX1UPCL stdMX1ChiSq 

stdMX1ProbChSq 

 stdNDEEst stdNDEStdErr stdNDELWCL stdNDEUPCL stdNDEZ stdNDEProbZ 

 stdNIEEst stdNIEStdErr stdNIELWCL stdNIEUPCL stdNIEZ stdNIEProbZ 

 stdCDEEst stdCDEStdErr stdCDELWCL stdCDEUPCL stdCDEZ stdCDEProbZ 

 stdPEEst stdPEStdErr stdPELWCL stdPEUPCL stdPEZ stdPEProbZ 

 stdTDEEst stdTDEStdErr stdTDELWCL stdTDEUPCL stdTDEZ stdTDEProbZ 

 stdPIEEst stdPIEStdErr stdPIELWCL stdPIEUPCL stdPIEZ stdPIEProbZ 

 stdMedxEst stdMedxStdErr stdMedxLWCL stdMedxUPCL stdMedxZ 

stdMedxProbZ 

 stdPAIEst stdPAIStdErr stdPAILWCL stdPAIUPCL stdPAIZ stdPAIProbZ 

 stdRefxEst stdRefxStdErr stdRefxLWCL stdRefxUPCL stdRefxZ 

stdRefxProbZ 

 stdERREst stdERRStdErr stdERRLWCL stdERRUPCL stdERRZ stdERRProbZ 



123 

 

 stdOIntEst stdOIntStdErr stdOIntLWCL stdOIntUPCL stdOIntChiSq 

stdOIntProbChSq 

 stdOX0Est stdOX0StdErr stdOX0LWCL stdOX0UPCL stdOX0ChiSq 

stdOX0ProbChSq 

 stdOX1Est stdOX1StdErr stdOX1LWCL stdOX1UPCL stdOX1ChiSq 

stdOX1ProbChSq 

 stdOMC0Est stdOMC0StdErr stdOMC0LWCL stdOMC0UPCL stdOMC0ChiSq 

stdOMC0ProbChSq 

 stdOMC1Est stdOMC1StdErr stdOMC1LWCL stdOMC1UPCL stdOMC1ChiSq 

stdOMC1ProbChSq merge; 

run; 

 

*Calculating bias, relative bias, and standardized bias; 

DATA Causresults; MERGE CausMedOutput causmeans2; by merge; 

 BiasCDE = CDEEst-BYX; 

 RBCDE = BiasCDE/BYX; 

 StBCDE = BiasCDE/stdCDEEst; 

 BiasPIE = PIEEst-Prod; 

 RBPIE = BiasPIE/Prod; 

 StBPIE = BiasPIE/stdPIEEst; 

run; 

 

*Saving results; 

data Dataout.CRO&File; SET Causresults;  

; 

RUN; 

%MEND; 
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APPENDIX H 

DOCUMENT NOTATION 

  



125 

 

X  Independent variable, observed 

M  Mediating variable, observed 

M̂  Estimated score on mediating variable 

Y  Dependent variable, observed 

Ŷ  Estimated score on dependent variable 

a  Relation between independent and mediating variable 

b Relation between mediating variable and dependent variable while 

controlling for independent variable 

c  Relation between independent variable and dependent variable 

c’ Relation between independent variable and dependent variable while 

controlling for mediating variable 

ab  Product of coefficient mediated effect 

c-c’  Difference of coefficients mediated effect 

ik  Intercept for model k 

ek  Residual for model k 

N1-N8  Designations for the eight possible combinations for binary X, M, and Y 

n1-n8 Frequency of observations for the eight possible combinations for binary 

X, M, and Y 

e Correlation correction factor for dichotomization 

h  Height of the standard unit normal curve at point of dichotomization 

p  Proportion of observations 

r  Correlation coefficient 

r2  Squared multiple correlation 

p̂  Observed probability of “success” on a binary dependent variable 

β0  Intercept in logistic regression model 

β1  Regression coefficient in logistic regression model 

gx,m  Expected value of dependent variable given values of X and M 

hx  Expected value of mediating variable given values of X 
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TE  Total Effect 

DE  Direct Effect 

IE  Indirect Effect 

CDE  Controlled Direct Effect 

PIE  Pure Indirect Effect 

PDE  Pure Direct Effect 

TIE  True Indirect Effect 

TNIE  True Natural Indirect Effect 

X̆  In the stage sequential method, X=0 

MSi  In the stage sequential method, M=1 at stage i 

M̆Si  In the stage sequential method, M=0 at stage i 

YSi  In the stage sequential method, Y=1 at stage i 

Y̆Si  In the stage sequential method, Y=0 at stage i 

ô  Expected cell frequency 

λ  Intercept for log-linear model 

λj  Relation of variable j on expected cell frequency in log-linear model 

λjk Relation of the interaction of variables j and k on expected cell frequency 

in log-linear model 

ϴ-hat  Parameter estimate   

ϴ  True population parameter value 

SDϴ-hat  Standard deviation of parameter estimate 

α  alpha, significance criterion 

SEab  Standard error of ab 

SEa  Standard error of a 

SEb  Standard error of b 

zab  z-score for ab 

h  coefficient for XM interaction 
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APPENDIX I 

LOG-LINEAR MODELS USED FOR CFM AND JOINT SIGNIFICANCE TESTS 
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Model 1 - ˆlog X M Yo    = + + +    

Model 2 - ˆlog X M Y XMo     = + + + +   

Model 3 - ˆlog X M Y XM XYo      = + + + + +    

Model 4 - ˆlog X M Y XM MYo      = + + + + +    

Model 5 - ˆlog X M Y XY XM MYo       = + + + + + +    

Model 6 - ˆlog X M Y XY MYo      = + + + + +      

Model 7 - ˆlog X M Y XM XY XMYo       = + + + + + +   

Model 8 - ˆlog X M Y MY XY XMYo       = + + + + + +  

Model 9 - ˆlog X M Y XYo     = + + + +   

Saturated Model - ˆlog X M Y XM XY MY XMYo        = + + + + + + +  


