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ABSTRACT

Cancer is a serious health concern. Current treatments are limited due to certain

subpopulations of cancer cells being resistant to chemotherapy and radiation. These

subpopulations have been qualitatively identified but much work remains to quantify

the abnormalities they exhibit such as irregular nuclear shape. This dissertation seeks

to determine physical science methods which can identify and quantify the biological

characteristics of cancer and non-cancer cells. For the first project, the deoxyri-

bonucleic acid (DNA) and chromatin of cancer and non-cancer esophageal cells were

quantified using spectrophotometry and atomic force microscopy. Then the cellular

nucleus shape, chromocenters, nucleoli, and nuclear speckles were characterized using

3-D confocal microscopy. A majority of a cell’s DNA is isolated in the supernatant

fraction during salt fractionation for both cancer and non-cancer. Additionally, the

nuclear size of cancer cells is roughly twice that of non-cancer cells due to the in-

creased ploidy of the cancer cell line (more chromatin) and this chromatin exists in

a less decondensed state than that of the chromatin in non-cancer cells. Then us-

ing combined atomic force microscopy and CLSM, the Young’s modulus of cancer

stem-like cells and non-stem-like cells were characterized for three breast cell lines:

MDA-MB-231, MCF-7, and MCF-10A. It was determined that the MCF-7 is im-

pacted by buffer environment whereas the MDA-MB-231 and the MCF-10A cell lines

are not. MCF-7 cells are stiffer when measured in Phosphate Buffer Solution (PBS)

compared to Hank’s Balanced Salt Solution (HBSS) buffer possibly due to the fact

that HBSS buffer tends to enhance the Warburg effect on cell lines. Additionally,

there is a significant stiffness difference between stem cells and non-stem cells in the

MCF-7 cell line which does not occur in the MDA-MB-231 cell line for the larger tip.

These differences could be attributed to differences in cell phenotype for the cell lines.

MDA-MB-231 cells are mesenchymal so it agrees with the hypothesis that there is no

difference between cancer stem cells (CSCs) and non-CSCs cell stiffness; on the other
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hand the MCF-7 cell line is luminal so the CSCs being more mesenchymal-like would

be softer than the non-CSCs.
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Chapter 1

Introduction

One in every four deaths in the United States is related to cancer [1]. In 2018, it

is estimated that there will be 1,735,350 new cancer cases as well as 609,640 deaths

from cancer [1]. While much has been done to create innovate therapies to target

as well as treat the disease, there is still a lot of information that is unknown about

cancer. Biology has done much to characterize and identify traits of the disease on

a qualitative level, but has not been able to quantify these traits. For example, it is

know that a visually abnormal cellular nucleus is a sign of cancer or an indication

of worsening prognosis [2, 3, 4, 5]; however, not much has been done in the way

of trying to quantify nuclear abnormality. This is where the knowledge gap can be

bridged by using the physical sciences to quantify qualitative biological characteristics.

The goal of this dissertation is to utilize quantitative, physics-based approaches to

understanding the current qualitative characterizations of cancer biology.

Chapter 2 introduces key concepts that are known in regards to cellular biology,

chromatin, DNA and cell markers which serve as a background for certain measure-

ments taken during experimentation and as a motivation for this thesis. Chapter 3

discusses the experimental techniques utilized for this dissertation.

Chapter 4 discusses the quantification of DNA for two esophageal cell lines as
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well as the contents of the S0 (the fraction extracted from the supernatant created

right after the Mnase digestion of the chromatin) after the use of the salt fraction-

ation technique developed by Marilyn Sanders in 1978 failed to account for 30% of

extracted DNA. The goal of this project sought to (1) determine the reason for DNA

unaccounted for in salt fractionation experiments, (2) quantify the relative amount of

DNA in each cell line, and (3) characterize the differences in the nuclei of cancerous

and non-cancerous cell lines.

Chapter 5 seeks to determine if there is a correlation between breast CSCs and

stiffness by combining confocal with AFM to directly correlate CD44/CD24 fluores-

cence levels with stiffness at the single cell level. It is hypothesized that since CSCs

have been shown to correlate with the mesenchymal phenotype and follow some of

the same pathways as the epithelial-to-mesenchymal transition that the CSCs would

be softer than non-CSCs. Additionally, this experiment seeks to determine (1) if

different buffer/environment conditions (PBS vs. HBSS) affect the stiffness of the

different subpopulations (2) if it is possible to distinguish differences between the

cellular cortex and intracellular network of CSCs and non-CSCs and (3) if there is a

difference in the Young’s Modulus of CSC and non-CSC nuclei.
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Chapter 2

Biological Concepts and Cell

Mechanics

2.1 DNA, Chromatin, and Chromatin Organiza-

tion in a Cell

Watson and Crick described the structure of Deoxyribonucleic Acid (DNA) in 1953:

a molecule with complementary base sequences on two strands and a right-handed

double helical nature with adenine (A) complementary to thymine (T) and guanine

(G) complementary to cytosine (C) [6]. DNA contains the hereditary information for

all living organisms. To fit the entire genome into a tiny cell, the DNA is coiled and

compacted around histones which then form nucleosomes and chromatin as shown

in Figure 2.1. In general, the coding regions of the DNA have a G/C rich region

whereas the non-coding regions of DNA sequences are generally more A/T rich [7,

8]. This implies that structurally coding sequences are stiffer whereas non-coding

sequences are more flexible and more prone to strand separation. In contradiction,

eukaryotic chromosome coding sequences have a higher nucleosome occupancy than

non-coding sequences serving as potential topological sinks to signal transcription
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sites for enzymes [9].

Figure 2.1: Chromatin Structure [10]

Chromatin is the substance through which eukaryotic cells package their genetic

information. It is a mix of DNA and structural and regulatory proteins that is

normally found as a 30 nm fiber in eukaryotes. The most basic unit of chromatin is

the nucleosome [11] which consists of 160-200 DNA base pairs wrapped twice around

an octomer of core histones (H2A,H2B,H3,H4) and is sealed with a linker histone (H1

and H5) [12, 13]. A histone is an octomeric protein that is made of eight subunits:

two H2A and H2B dimers and a H3-H4 tetramer [12, 13]. The nucleosome enables

a five to tenfold compaction of the DNA [14]. Core histones are positively charged

proteins with large amounts of lysine and arginine that bind directly to the DNA

fiber through noncovalent forces [15].
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Figure 2.2: Four Models of the Higher Order Structure of Chromatin [15]

The higher order structure of the 30 nm chromatin fiber is controversial. The four

models shown in Figure 2.2 are the most current hypotheses. Current experimental

data suggests that the most likely structure for the chromatin is the solenoid model

(Figure 2.2A) [15].

There are two subcategories of chromatin: euchromatin and heterochromatin. Eu-

chromatin has a more open or accessible structure for transcription with more loosely

connected nucleosomes to the DNA giving it the appearance of a structure resembling

beads on a string. Heterochromatin has a highly condensed structure that is hard

to transcribe [16]. Heterochromatin replicates later in the S phase of the cell cycle

and is found only in eukaryotes unlike euchromatin which is found in both eukaryotes

and prokaryotes [17]. DAPI or a DNA dye stains heterochromatin brightly and can

be used to differentiate between the two types of chromatin. In mammalian cells

heterochromatin is composed of tandem repeats and remains condensed throughout

the cell cycle. Additionally, compact chromatin generally represses DNA interactions

and inhibits the movement of RNA polymerases [15].Constitutive heterochromatin is
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defined by chromatin structures that remain compacted throughout interphase and

is usually associated with C bands on mitotic chromosomes [18]. It is identified

chemically by tri-methylation of H3K9 and monomethylation of H3K27. Facultative

heterochromatin is defined by regions that condense after cell differentiation, hav-

ing certain distinctive chemical features also, in case of, for example, Barr bodies.

Gene expression is affected by location of the gene in relation to heterochromatin,

[18] not surprisingly, given that heterochromatin is more compact than euchromatin.

However, many genes in heterochromatin are actively expressed and many genes in

euchromatin are inactivated [15]. Evidence that heterochromatin really is compacted

(as opposed to just looking that way in stained cells) comes from sedimentation stud-

ies of satellite-containing regions [19]. A more recent genome-wide study in which

open and compact chromatin was separated using sucrose sedimentation [15] shows

that compact chromatin can be found in both heterochromatin and euchromatin re-

gions (as defined by chromatin that hybridizes with labeled DNA taken from the

C and G bands of mitotic chromatin). And while more genes are located in open

chromatin, there is little difference in gene expression between the two fractions. In

light of this, Gilbert et al. [15] suggest that the major role for chromatin compaction

lies in organizing chromatin so as to cluster related genes together. In the absence

of whole genome sequencing studies, the possibility remains that a small fraction of

genes, critical to the phenotype, are affected by chromatin compaction. Electron

microscopy shows that chromatin reconstituted in low salt has an open beads-on-a-

string structure, turning into more condensed 30 nm fibers at higher salt [20]. These

fibers have been observed in chromatin extracted from cells [21] and in reconstituted

chromatin imaged by cryomicroscopy [22], though their existence in-situ is disputed

[23]. A large majority of chromatin extracted from cells exhibits a much more com-

plex structure composed of 60 to 130 nm chromonema fibers [24, 25]. None of these

studies have attempted to sort the chromatin into open and compact fractions prior
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to imaging, so the correlation between these reported structures and the open and

compact fractions revealed by sedimentation is not established [15, 19].

Modifications of chromosomal components have a regulatory function in chromo-

somal segregation, replication, and repair and are correlated with specific histone

modifications [15]. These types of modifications are known as epigenetics since they

are heritable changes in gene expression that are not accompanied by DNA sequence

changes [15]. For example, histone acetylation makes chromatin accessible to DNA

binding proteins by destabilizing the nucleosomes and causes transcribing to proceed

more efficiently [15]. The six hallmarks of cancer described by Hanahan and Weinberg

in 2000 (resisting apoptosis, self-sufficiency in growth signals, insensitivity to anti-

growth signals, invasive metastasis, unlimited cellular proliferation, and sustained

angiogenesis) can be seen on a fundamental level as a deregulation of gene expres-

sion at the transcriptional level [15]. For example, a misuse of histone deacetylase

leads to an uncontrolled proliferation of myelocytes causing acute myloid leukemia in

humans [15]. Additionally, recent genome sequencing studies have uncovered cancer-

associated mutations in genes that encode chromatin regulatory factions and enzymes;

a few of these discoveries are discussed below [15].

Enhancers are non-coding DNA portions that serve an essential role in transcrip-

tional regulation by creating tissue-specific gene expression patterns [15]. The precise

manner in which enhancers act is not fully understood; however, they can act across

long ranges of DNA to activate a specific promoter [15]. These enhancer-promoter

communications involve the formation of chromatin loops mediated by cohesin com-

plexes [15]. Recent genome-wide studies have identified mutations in genes that reg-

ulate enhancer chromatin in cancer which raises the possibility that mutations in

these regions may lead to compromised enhancer-promoter communication allowing

for activation of oncogenic genes [15]. Additionally, studies of chondroblastoma and

giant cell tumors of bone have shown histone H3.3 gene mutations associated with dis-
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tinct disease phenotypes [26]. 95% of chondroblastoma samples anlyzed in the study

had a mutation of the H3.3 gene at Lys36 to methionine (H3.3K36M) in the H3F3B

gene; 92% of giant cell tumors of bone had mutations of H3.3Gly34 to tryptophan

or leucine [26]. Finally, work in follicular lymphoma has identified mutations in the

histone H1 genes [15]. Since histone H1 acts as a linker histone and is responsible for

chromatin compaction, this suggests that mutations in histone H1 may lead to errors

in chromatin compaction and cause transcriptional misregulation.

Given then that open and compact chromatin do not correspond simply to euchro-

matin and heterochromatin, this dissertation seeks to determine if there are distinctive

structural differences between the chromatin of cancer and non-cancer cells and how

epigenetic modifications impact the progression of cancer.

2.2 The Basic Structure of a Mammalian Cell

Figure 2.3: The Structure of a Mammalian Cell [27].
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Figure 2.2 shows the structure of a mammalian cell. The most important feature of

a mammalian cell is the compartmentalization of the organelles which carry out spe-

cialized functions [28]. The largest organelle is the nucleus which is roughly spherical

in shape and stores all of the cells genetic information. Additionally, many nuclei

have a darker staining region called the nucleolus were the synthesis of ribosomal

RNA takes place [28].

The cytoplasm of all eukaryotic cells contains a network of protein fibers that sup-

port the shape of the cell called the cytoskeleton [28]. The cytoskeleton is a dynamic

system that constantly forms and disassembles with individual fibers forming via

polymerization. There are three types of cytoskeletal fibers: actin filaments, micro-

tubules, and intermediate filaments [28]. Actin filaments are about seven nanometers

in diameter and is composed of two protein chains loosely intertwined. Cells regulate

the rate of actin filament formation and these filaments are responsible for cellular

movements such as contraction [28]. Microtubules are hollow tubes about twenty

five nanometers in diameter. They allow for cellular movement and help move ma-

terials within the cell as well [28]. The strongest part of the cytoskeleton are the

intermediate filaments, named because they are 8-10 nanometers in diameter and are

intermediate in size between actin filaments and microtubules. The most common

type of intermediate filaments are vimentin [28].

2.3 Definition and Characteristics of Stem Cells

A stem cell is defined as a cell that is able to produce progeny that are able to

differentiate into multiple types of specialized cells (heart cell, lung cell, etc) as well

as the ability to self-renew in the undifferentiated state [29]. Initially, every human

begins as a single egg fertilized by a sperm. As the single cell divides to form a

multicellular organism, it is stem cells that are created and begin to form the heart,
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lungs, and other organs of the organism. However, at some point during the creation

of the organism, the majority of the cells lose their ability differentiate into other types

of cells and thus, cease to be stem cells [29]. However, the ones that do retain their

stem cell capabilities have a very important role in the adult organism: to repair and

create additional cells for damaged tissues in the body [29]. In an adult organism, the

role of the stem cell is to create progeny identical to the parent cell (self-renewal), to

create progeny that are differentiated into a particular tissue lineage, and to regulate

the acts of self-renewal and differentiation (homeostasis) [29]. It is also important to

note that stem cells in different areas of the body regenerate at different rates. Stem

cells in the bone marrow regenerate at rapid rates whereas stem cells in the colon

regenerate more slowly [29]. Also stem cells in areas of the brain are only activated

if tissue damage occurs [29].

2.4 Cancer Stem Cells

Building upon this then, characteristics of cancer stem cells include the ability to self

renew and differentiate, the ability to persist in the body for long periods of time, and

the ability to produce heterogeneous progeny [30]. The CSC concept treats tumor

cells as a diverse population where only certain cells (the CSC cells) have the ability

to proliferate extensively and potentially form new tumors. In contrast, the older

tumor model assumed that every cell was equally harmful and equipped with the

ability to proliferate and create new tumors (Figure 2.4) [30].
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Figure 2.4: (A) An older tumor model which assumed that every cell was equally

harmful and equipped with the ability to proliferate and create new tumors (B) The

CSC theory treats tumor cells as a diverse population where only certain cells (the

CSC cells) have the ability to proliferate extensively and potentially form new tumors

[30].

If this were the case, then during treatment it would be expected that the tumor

cells would begin to die off and the tumor would lose its ability to generate new cells

causing the tumor to degenerate [30]. However, in many clinical cases, the tumor

does not degenerate. It responds to treatment and then grows back. According to

CSC theory this is because the treatment was successful at killing the majority of

the tumor cells which are non-CSCs. However the CSCs are left untouched causing

the tumor to first shrink in diameter as the non-CSCs are killed, but to grow back

larger as the progeny of the CSCs continue to proliferate [30]. It has been shown that

some tumor cells are resistant to radiation and chemotherapy [31, 32, 33, 34, 35, 36].

Current CSC concepts hypothesize that genetic diversity, epigenetics, and the tumor

microenvironment all contribute to tumor cell heterogeneity and patient prognosis

[37]. Additionally, CSC phenotypes based on cell markers are not exclusively positive

or negative; they exist as a continuum of the particular cell marker. The goal of
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the first half of this work is to characterize CSC populations using cancer cell lines

as an acceptable model of study and to test if there is a correlation between breast

CSCs and stiffness by (1) determining what percentage of the total population of

cells do cancer stem-like cells make up in 3 different breast cell lines (MDA-MB-231,

MCF-7, and MCF-10A) and (2) combining confocal microscopy with AFM to directly

correlate CD44/CD24 fluorescence levels with stiffness at the single cell level. CSCs

have been shown to correlate with the mesenchymal phenotype and follow some of

the same pathways as the epithelial-to-mesenchymal transition. Since mesenchymal

cells are softer than other cell types, it is hypothesized that the CSCs would be softer

than the non-CSCs.

2.5 CSC identification and Breast Cancer

CSC identification began with leukemia stem cells [38]. Since then a number of ex-

perimental methods have been developed to identify CSCs in various cancer cell types

such as clonogenic assays in semi-solid media, sphere-forming assays under floating

cell culture conditions and with specific growth factors, and assays to investigate the

differentiation potency of cells isolated from various differentiated cells. Additionally,

cell surface markers detected by fluorescence-activated cell sorting (FACS) has been

used to isolate possible CSCs.

It is hypothesized that breast CSCs originate from mammary multipotent stem

cells due to genetic defects caused by damaging agents such as radiation that alter

pathways governing self-renewal and differentiation [39]. A second theory suggests

that breast CSCs develop from epithelial-mesenchymal transition (EMT) where cells

that have undergone EMT can transform and behave similarly to normal and neoplas-

tic stem cells. It has been determined that breast cancer cells possess a subpopulation

of cells that are CD44+/CD24- and have been identified as CSCs [39, 40, 41]. These
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cells have a higher probability for tumor regeneration in vivo and have been connected

to poor patient prognosis [42]. Additionally, they are capable of self-renewal and dif-

ferentiation and display increased resistance to radiation and chemotherapy. Breast

CSCs are more invasive in vitro [42]. CD44+/CD24- cells possess a basal-like phe-

notype [43]. However, other publications state that it is CD44-/CD24+ rather than

CD44+/CD24- that contributes to poor patient prognosis and one study in particular

has connected CD24+ to invasive breast cancer [44]. High CD44+/CD24- expression

represents a more basal/mesenchymal cell phenotype while CD44-/CD24+ expression

represents a more luminal/epithelial cell phenotype [45].

2.6 Role of CD44 and CD24 in the Cell

Cell adhesion molecules are a family of proteins, in particular cell surface glycopro-

teins, which possess a large extracellular domain, a membrane spanning region, and

an intracellular, cytoplasmic functional domain. These proteins are called adhesion

molecules because they bond very strongly to specific ligands; however, the interac-

tion is more advanced that just cell attachment and involves sensing the extracellular

environment and passing that information along to nearby cells. These proteins are

involved in cell-cell and cell-matrix interactions, cell migration, differentiation, cell

signaling and gene transcription [46].

CD44 glycoproteins are members of the hyaluronate receptor family of cell adhe-

sion molecules and are defined by their function rather than their structure. CD44

binds to ligands on the extracellular matrix (ECM). The most common isoform of

CD44 has 363 amino acids and a molecular mass of 37kDa [46]. The main ligand of

CD44 is hyaluronic acid. CD44’s primary function is to maintain the 3D tissue/organ

structure. Proliferating epithelia and cells in repair upregulate CD44 and hyaluronic

acid [46].
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Additionally, CD44 also plays a role in inflammation. CD44 has been shown to

interact with another part of the ECM: osteopontin. It is hypothesized that the se-

cretion of osteopontin and CD44 expression could cause migration and metastasis

of tumor cells to specific sites. CD44 also interacts with HER2 cell surface protein,

which when overexpressed in tumor cells is linked with poor prognosis for breast and

ovarian cancer [46]. It has been shown that CD44 expression and CD44-mediated cell

adhesion to hyaluronic acid were significantly reduced when a cell line was transfected

with adenovirus 5E1A gene, which represses the synthesis of HER2 [47]. Tumor cell

lines with higher CD44 concentrations have been shown to form more aggressive tu-

mors in animal experiments [48, 49]. Altering the expression of CD44 in a tissue is

likely to disrupt the normal epithelial-mesenchymal interactions and cause structural

and functional disorganization which is a hallmark of cancer [46]. CD44 function in

metastasis was first explored by Gunthert et.al. by transfecting plasmids expressing

either the CD44s or CD44v isoform into non-metastatic rat pancreatic carcinoma

cells. It was discovered that the CD44s had no effect on the tumor whereas the

CD44v isoform promoted metastasis [46]. Later other groups demonstrated a corre-

lation between CD44 expression and metastatic capability in human melanoma and

lymphoma cell lines [46]; however in these studies it was the CD44s isoform that was

associated with metastatic capability instead of the CD44v isoform suggesting that

the isoform that is advantageous for tumor cell metastasis could be tissue/cell line

specific. Since then, CD44 has been used as a diagnostic/prognostic marker in human

tissue samples [46].

CD24 is a glycoprotein first identified in mice in 1978. Since CD24 has highly vari-

able glycosylation, several ligands of CD24 have been determined but ligand speci-

ficity seems to be dependent on cellular context. It has a molecular weight ranging

from 25 to 75 kDa whereas in normal epithelial cells, CD24 weighs 35-45 kDa [50].

CD24 is expressed in many different cell types including cancer cells and tends to

14



be expressed at higher levels in progenitor cells, metabolically active cells and ter-

minally differentiated cells. CD24 function is not well understood; however, many

immunological functions have been discovered when one studies the literature [51].

CD24 is overexpressed in many types of tumor tissues including breast cancer [51].

Additionally, human cancer stem cells seem to have a decreased expression of CD24

compared to their offspring [51]. CD24 has become an important marker for cancer

diagnosis/prognosis. In breast cancer, CD24 expression is significantly higher in inva-

sive carcinoma than in precancerous lesions [51]. CD24 cell surface and cytoplasmic

expression have been correlated to poor prognosis, histology grades, tumor sizes, and

lymph node positivity [51]. In experiments, small-interfering RNA silencing of tumor

cell CD24 expression directly effected tumor cell proliferation and survival in tissue

culture [51]. Additionally, a lack of CD24 is associated with invasiveness, metastasis,

and cancer cell stemness [50]. Thus, there exists some contradiction in the literature

over what exactly CD24 is associated with.

CD44 has been positively associated with stem cell-like characteristics whereas

CD24 has been identified to relate to differential epithelial features [52].

2.7 Cell Mechanics

2.7.1 AFM and Stiffness of Cells

Lekka et.al [53] were the first to determine that there was a significant stiffness dif-

ference between tumor and benign cells using an AFM and human bladder cells. The

tumor cells were significantly softer than benign cells with a stiffness of 0.56±0.09

kPa compared to 2.10±0.79 kPa. Li et. al [54], and Nikkhah [55] have shown that

the same applies to breast cancer cells. Since then, it has also been determined that

mesenchymal cell lines are considerably softer than other types of cell lines (basal,

luminal, etc).
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At the cellular level, tumor formation and progression is characterized by struc-

tural changes in the extracellular matrix (ECM) which can cause different mechanical

responses [56, 57]. According to Plodinic et. al. [58], human breast biopsies display

distinct stiffness profiles. Normal and benign tissues have a uniform stiffness profile

with a single distinct peak whereas malignant tissue has a broad distribution due to

tissue heterogeneity.

Figure 2.5: Stiffness Distribution of Breast Cancer Cells from Normal Tissue to In-

vasive Cancerous Tissue [58].

Additionally, migration and metastasis were correlated to low stiffness. Other

studies in mice have shown that breast tumors are more stiff than the surrounding

tissue [56]. However, single/cultured cancer cells are softer than healthy cells. The

increase in elasticity and deformability is caused by alteratons in the ECM that have

been linked to malignancy [58] [59].
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2.7.2 Cell Mechanics in Breast Cancer

Human epithelial mammary cells can produce breast cancer stem cells (BCSCs) by

epithelial to mesenchymal transition (EMT) induced by the RAS-MAPK pathway

activation [60]. The transition to mesenchymal phenotype is detrimental because

it allows cells to break free from the primary tumor site and metastasize at other

distant locations. As the EMT is occuring, BCSCs will express the CD44+/CD24-

cell surface marker phenotype [60].

Several pathways are implicated in the induction of EMT including: Wnt, TNF-

∝/NF-κB, Notch, Transforming growth factor-β(TGF-β), and Receptor Tyrosine ki-

nase (RTK). CSCs take over these pathways for the goal of tumor formation. Below

is a summary of how the deregulation of these pathways leads to EMT in cancer:

• Wnt signaling pathway: In breast cancer cells, Wnt signaling induces the ex-

pression of intracellular protein Axin 2 to stabilize the Snail, inducing EMT.

• TNF-∝/NF-κB:TNF-∝ activates NF-κB which induces the transcription of fac-

tors associated with EMT such as Snail, Slug, Twist, ZEB1, and ZEB2.

• Notch: The Notch pathway balances cell proliferation,differentiation, and apop-

tosis in normal cells. Notch signaling can be increased by TGF-β.

In summary, since CSCs can be produced by EMT and the mesenchymal pheno-

type is typically associated with a softer cell, this study wishes to determine if CSCs

are softer than non-CSCs and could possibly correlate to a mesenchymal phenotype.

2.8 Cell Nuclei Properties

The cellular nucleus was first discovered in the 17th century by Antonie van Leeuwen-

hoek in salmon blood cells [61]. It is a highly compartmentalized organelle containing
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chromatin, nucleoli, and smaller structures such as Cajal bodies and nuclear speckles

[62]. Today, it is known that the nucleus is the site of the storage and organization of

genetic material for the cell, DNA synthesis, DNA transcription, and RNA process-

ing [62].Cancer biology has typically focused on the identification of oncogenes and

tumor-suppressor genes. However, it has become apparent that in addition to these

genetic factors, the biochemical factors and the microenvironment of the cell must be

considered as well as the deformation of a large and stiff nucleus can be an obstacle

during the passage through the dense interstitial space and narrow capillaries since it

is the largest (occupying the largest fraction of cellular volume) and stiffest organelle

in the cell [62]. Currently the most common and reliable diagnosis of cancer in tissue

biopsies by pathologists relies on the presence of morphological changes in the nuclear

structure of the cell (increased size, irregular shape, and nuclear organization) [63].

However, it is not well understood how these morphological changes correlate with

functional changes in the nucleus.

Several studies have now reported altered nuclear envelope composition in var-

ious cancers [64, 65]. The structure and composition of the nucleus are important

for cellular mechanics and function; these factors determine nuclear deformability

and fragility as well as mechanotrasduction signaling [66]. A potential mechanism by

which changes in the nucleus can contribute to cancer progression is that softer nuclei

can facilitate cancer cell invasion thorugh the dense intersitial space where cells have

to pass through regions smaller than the nuclear diameter [62]. Additionally, nuclear

actin has been implicated in functions related to tumorigenesis such as DNA orga-

nization, orientation during replication, and RNA synthesis [62]. Experiments have

revealed that the cellular nucleus exhibits elastic (nuclear lamina) and viscoelastic

(nuclear interior) behavior and is roughly 2-10 times stiffer than the surrounding cy-

toplasm [62] and Young’s modulus measurements range from 0.1 to 10 kPa based

on experimental technique and conditions. The mechanical deformability of the nu-
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cleus is mainly governed by the nuclear lamina and the nuclear interior according to

micropipette aspiration experiments and computer modeling and varies according to

mechanical load, cell type, and chromatin configuration [62]. The main contributors

to nuclear stiffness are lamins A and C; loss of these lamins results in softer, de-

formable nuclei whereas increasing lamin A expression creates stiffer, less deformable

nuclei [62].Additionally, chromatin can contribute to nuclear stiffness. Chromatin

decondensation of embryonic stem cells causes softening of the nucleus [62]. The cell

nucleus of human embryonic stem cells also changes during cell differentiation become

6 times stiffer and less fluid at the end of differentiation [62].

In conclusion, since lamin expression and chromatin organization have been shown

to determine nuclear deformability, these changes could possibly alter nuclear rigid-

ity. This lowered rigidity could help metastatic cancer cells migrate through tissues.

Additionally, changes in chromatin organization could alter gene expression or DNA

stability within the cancerous cell. Finally, it has been shown that lamin A expression

influnces mesenchymal stem cell lineage differentiation [67] and that less metastatic

cells have stiffer nuclei [68]. Thus, it is hypothesized in this dissertation that the CSC

nuclei will be softer than their non-CSC nuclei counterparts.
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Chapter 3

Experimental Techniques

3.1 AFM

3.1.1 History and Applications

The scanning tunneling microscope (STM), the precursor to the AFM, was invented

by Gerd Binnig and Heinrich Rohrer in the early 1980s earning them the 1986 Nobel

Prize for Physics [69]. The invention of the atomic force microscope and the first

experimental implementation occurred in 1986 by Binning, Quate, and Gerber [69].

The AFM is one of the first instruments capable of imagining, measuring and ma-

nipulating matter at the nanoscale level. In cellular biology, AFM can be used to

attempt to distinguish cancer cells and normal cells based on the mechanical proper-

ties of cells, and to evaluate interactions between a specific cell and its neighboring

cells in a culture system. In this dissertation, the Asylum MFP-3D and the Agi-

lent 5500 were used for the vast majority of the measurements so the description of

AFM theory will be based towards those instruments. This chapter will provide rel-

evant background information on collection and analyzing raw AFM data to extract

quantitative mechanical properties.
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3.1.2 Instrumentation and Calibration

Figure 3.1: (A) A schematic of AFM instrumentation showing the photodiode and

laser used to detect deflection signals and a cantilever with a tip/probe which moves

in the z direction. (B) The magnitude of the deflection (d) and the magnitude of the

indentation(δ) [70].

Figure 3.1 shows a basic schematic of AFM instrumentation. The indentation depth,

δ, is given by:

δ = z − d (3.1)

where z is the relative distance of the cantilever base reported by the piezoelectric

and d represents the cantilever deflection distance obtained from the inverse optical

lever sensitivity, SOL, and the change in voltage reported by the photodiode, ∆V, as

shown in 3.2.

d = SOL∆V (3.2)

Then the force, F, experienced by the cantilever can be expressed as:

F = kd (3.3)

where k is the spring constant of the cantilever.
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Figure 3.2: AFM Indentation and Retraction Curve [70]

Figure 3.2 shows an example of a force curve produced during measurement

with AFM. The cantilever is lowered to the sample using piezoelectronics in the AFM

head. For the Asylum-MFP-3D, there is a capacitive sensor inside the AFM head

that reports the z-position of the cantilever. When the tip comes into contact with

the sample, the cantilever bends, resulting in a deflection signal that will increase

as the laser position on the photodiode is changed. When the tip comes off of the

sample, the deflection signal will return back to the original baseline level unless there

is adhesion between the tip and the sample. In an ideal elastic sample, the extension

and retraction curves should perfectly overlay.

The AFM collects raw data as a voltage from the photodiode which must be

translated into a usable quantity such as force. In order to collect accurate force data

from the AFM, the cantilever spring constant, k, should be as accurate as possible and

the OLS must be properly calibrated to reflect the actual deflection of the cantilever.

The simplest method for OLS calibration is to probe a rigid surface such as glass

to determine a z-piezo versus photodiode voltage curve. Then assuming, δz=δd,
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the inverse OLS can be calculated as the cantilever bending distance divided by the

photodiode voltage. This process is dependent on the laser intensity and cantilever

position so it must be recalculated each time the laser moves or the media in which

the cantilever rests changes (measuring from air to liquid).

The most popular method for calibrating the spring constant is the thermal tuning

method [71]. The cantilever is assumed to be a 1-D simple harmonic oscillator under

weak thermal fluctuations. Then based on the equipartition theorem, the vibrational

energy of each degree of freedom is given by:

1

2
kBT =

1

2
k < q2 > (3.4)

where kB is the Boltzmann constant, T is the temperature, k is the cantilever

spring constant, and q is the oscillator displacement [71]. The mean square oscillator

displacement,< q2 >, is determined by performing a frequency sweep and calculating

the integral of the power spectrum of the first vibrational mode in the frequency

domain [71]. Then the cantilever displacement can be related to the voltage from the

photodiode by:

< q2 >=< V 2 > S2
OLκ

2 (3.5)

where SOL is the inverse OLS and κ is the kappa factor which compensates for

dynamic oscillations and the positioning of the laser on the cantilever. The power

spectrum is fit to a Lorentzian:

P (f) = B +
A1f 1

(f 2 − f 2
1 )2 + (ff1

Q1
)2

(3.6)

to compute B, the background amplitude, the first mode amplitude peak A1

(units:voltage), the resonance frequency, f1, and the quality factor, Q1, giving an

area of [72]:
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< V 2 >=
∫ ∞
0

P (f)df =
πA1f1Q1

2
(3.7)

Thus the final form of the spring constant derived from the thermal noise method

is:

k =
2kBT

πA1f1Q1S2
OLκ

2
(3.8)

3.1.3 Analysis of Force-Indentation Data

There are several models that can be used to determine the Young’s modulus from

AFM force curves; however, the Hertz-Sneddon model is the model most widely used

[73]. This model assumes that the sample is homogenous, isotropic, and infinitely

thick [74].

The contact point can be visually determined as shown in Appendix B. Then the

Young’s Modulus (E) can be determined by:

F (δ) =
E

(1− v2)
λ(δ) (3.9)

where F is the force, δ is the indentation depth, and λ is a function that models the

shape of the indenter with the units of distance squared. R is the tip radius for which

R >> δ. For parabolic (Hertz model) and conical (Sneddon model) indenters, λ is a

power law function with base δ and exponents of 3
2

and 2 [75]. The tip shapes utilized

in the experiments for this dissertation are parabolic(Hertz model), spherocone, and

conical(Sneddon model) so the function used to determine the Young’s modulus (E)

of each tip shape is given below [76, 77]:

FHertz =
4

3

E

(1− v2)
√
Rδ3 (3.10)
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FSneddon =
2δ2

πcotθ

E

(1− v2)
(3.11)

In the spherical region [78]:

FSpherocone(a ≤ bSC) =
E

1− v2
[
1

2
(a2 +R2)ln(

R + a

R− a
)− aR] (3.12)

And in the conical region [78]:

FSpherocone(a > bSC) = E
1−v2 [a2 cot θ cos−1( b

a
) + b cot θ

√
a2 − b2 − aR

+
√

(R2 − b2)(a2 − b2) + a2ln( R+a√
R2−b2+

√
a2−b2 )− R2

2
ln(

a2R2−(b2−
√

(R2−b2)(a2−b2))2

b2(R+a2)
)]

(3.13)

For the above equations, a is the contact radius (such that 0≤r≤1) and b = Rcos θ

where b is the transition point between the cone and sphere.

3.1.4 AFM Applications in Cell Mechanics

Cell mechanics can provide information on the physiological or pathological state of

a cell during differentiation, aging, and the onset of disease. The extracellular matrix

(ECM) is the region where different types of cells are embedded in complex organisms.

The ECM is composed of water, proteins, and polysaccharides and has a unique

composition, topography, and mechanics during tissue development [79]. It regulates

the physiological activities of the cell and helps the cell withstand stress [80, 81]. Cells

can sense the mechanical properties of the ECM and translate these mechanical signals

into signals that regulate gene and protein expression in cells affecting adhesion,

migration, proliferation, and differentiation of cells [81, 82]. On the other hand, the

ECM stiffness can guide stem cell differentiation [83]. For example, ECM with a

Young’s modulus of the brain (0.1-1 kPa) can guide a stem cell to differentiate into

a neuron [84]. Cellular mechanics can be quantified by many different methods such
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as microfluidics [85], optical tweezers [86] and AFM [73]; however, AFM is the most

popular method [87, 88] because it has nanometer resolution, can work on suspended

and adherent cells, and can work in liquid conditions [87, 88].

In nanomechanics, AFM has been used to monitor cellular processes such as mi-

gration and division [89], cytoskeletal reorganization [90] and exocytosis [91]. For

cancer in particular, changes and alterations of cell properties can identify patholog-

ical states like cell deformability, cell adhesion, and cell mechanics [92, 93, 94, 95].

In 1999, Lekka et. al. [53], pioneered AFM use in cancer by showing that cell me-

chanics can be a key factor in cancer diagnosis due to the identification of specific

mechanical phenotypes. They determined that normal bladder cells were one order

of magnitude stiffer than cancerous bladder cells. Later many other groups studied

cancer and non-cancer cells in various tissue types and determined that in general

cancer cells are softer than normal cells [96] due to changes in cytoskeleton struc-

ture [96]. Additionally, malignant cells are more deformable and 33% less adhesive

than normal cells [96]. Li et. al. [54] measured the Young’s Modulus of the benign

human breast cell line, MCF-10A, and the malignant breast cell line, MCF-7, and

correlate the cell mechanics with the cell cytoskeleton. AFM imaging combined with

actin-stained fluorescence showed that there were more actin filaments in MCF-10A

than MCF-7 [54]. Additionally, the MCF-10A actin filaments had a more organized

network structure whereas the MCF-7 possessed disorganized actin filament structure

[54]. Surrounding environmental conditions can also affect cell mechanics; Nikkhah

et. al. determined that the Young’s modulus of normal and cancer cells decreased up

to 18% when growth serum was reduced from 10% to 5%.
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3.2 Fluorescence and Confocal Microscopy

3.2.1 Fluorescence

The process of fluorescence involves the absorption of a photon by a fluorophore and

the emission of this light at another wavelength [97]. Some energy is lost in this

process so the emitted photon has less energy than the absorbed photon [97]. Light

with a short wavelength (toward the blue) has higher energy than light with a long

wavelength (toward the red) [97]. Therefore, light emitted from a fluorophore usually

has a longer wavelength than that of the absorbed (excitation) light. This change

is called the Stokes shift [97]. Large Stokes shifts are generally desirable because

the emitted light from the fluorescent tag can be filtered out more easily from the

excitation light [97]. The goal of fluorescent microscopy then is to separate the emitted

light from the excited light [97].

3.2.2 Confocal Microscopy

The principle of confocal imaging was patented in 1957 by Marvin Minsky and aimed

to overcome some of the limitations of traditional wide-field fluorescence microscopes

[98]. In a wide-field fluorescence microscope, the entire specimen is flooded evenly in

light from a light source. All parts of the specimen in the optical path are excited at

the same time and the resulting fluorescence is detected by a camera including a large

unfocused background part. In contrast, a confocal microscope uses point illumination

and a pinhole in an optically conjugate plane in front of the detector to eliminate out-

of-focus signal. As only light produced by fluorescence very close to the focal plane

can be detected, the image’s optical resolution, particularly in the sample depth

direction, is much better than that of wide-field microscopes. However, as much of

the light from sample fluorescence is blocked at the pinhole, this increased resolution

is at the cost of decreased signal intensity so long exposures are often required.
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To offset this drop in signal after the pinhole, the light intensity is detected by a

sensitive detector, usually a photomultiplier tube (PMT) or avalanche photodiode,

transforming the light signal into an electrical one that is recorded by a computer

[99]. Since only one point in the sample is illuminated at a time, 2D or 3D imaging

requires scanning over a square pattern of parallel scanning lines in the specimen.

The beam is scanned across the sample in the horizontal plane and the scan speed

can be varied. Slower scans provide a better signal-to-noise ratio, resulting in better

contrast and higher resolution. The achievable thickness of the focal plane is defined

mostly by the wavelength of the used light divided by the numerical aperture of the

objective lens squared, but also by the optical properties of the specimen. Since

optical sectioning is possible with confocal microscopes, these types of microscopes

particularly good at 3D imaging and surface profiling for thicker samples (≥50 µm)

samples since the out-of focus blur from each image section is removed allowing for

the visualization and measuring of interesting sample features [100]. Successive slices

make up a ’z-stack’ which can either be processed by certain software to create a

3D image, or it is merged into a 2D stack [101]. Confocal microscopy provides the

capacity for direct, noninvasive, serial optical sectioning of intact, living specimens

with a minimum of sample preparation as well as a marginal improvement in lateral

resolution [99]. There are 4 modes of confocal imaging [100] but since the CLSM was

used for this dissertation, its technique, strengths, and weaknesses will be discussed

here.
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Figure 3.3: The Optical Principle of a CLSM [100]

Light from a laser beam is focused down to a small spot in the specimen, causing

fluorescence in the entire cone of illumination (Figure 3.3). Lasers are required

because they produce an intense beam that can be readily focused down to a tiny

spot that is required for the CLSM. Fluorescence emission from the in-focus plane is

imaged through a pinhole onto a detector, which measures the fluorescence intensity

for this one spot and correlates to 1 pixel of the image. Fluorescence from out-of-focus

planes is blocked by the pinhole. The focused spot is scanned back and forth across

the specimen to generate an image pixel by pixel. To form a 3D data set (z stack),

the focus can then be changed and another image generated at the new focal depth.

Then successive images are collected at various focus depths to generate a 3D image

stack [100].

The fluorescence from the sample is collected by the objective lens and focused

through a confocal pinhole, onto a PMT. The PMT has a light-sensitive photocathode

that converts photons of light that hit the detector into photoelectrons that are then

amplified by a series of diodes. The analog PMT signal is then digitized to a gray level

(usually 12 bit, so a value between 0 and 4095) and stored by a computer along with

the precise x, y location of the focal point. PMTs are not very sensitive; they only
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have a quantum efficiency (QE) of 20% but they are very good amplifiers because

each photon signal that is detected is amplified thousands of times [100]. Slower scan

speeds will result in better signal to noise ratio because each pixel intensity will be

integrated longer which increases signal and reduces noise; however, photobleaching

of the fluorophore will also increase. In the CLSM, the pinhole size can be adjusted

to match the resolution of the objective lens and the color of light. In addition, the

pinhole can be made larger to image light-sensitive specimens such as living cells,

or the pinhole can be closed down to a smaller size for bright, stable samples when

maximal resolution and 3D-sectioning ability are required. For multicolor imaging,

the CLSM can also have 23 detectors collecting different colors sequentially [100].

The main weaknesses of the CLSM are speed and sensitivity. For live-cell imaging,

the CLSM causes a lot of phototoxicity because it relies on a highly temporally and

spatially localized laser spot; these effects can be minimized by using lower laser

powers, higher scan speeds, and line averaging [100].

3.3 Salt Fractionation

The concept of salt fractionation, or salting out, is a process where the solubility

of a nonelectrolyte substance in water decreases with increasing salt concentration

[102]. The exact mechanism of salt fractionation is still debated [103]. A very simple

model states that salt fractionation is caused by dissolved anions of high charge

density releasing the sample through a combination of electronic repulsion [104]and

enhancement of the hydrophobic effect [105]. In pure water, the hydrophobic effect

causes the solute to aggregate and minimize the entropic penalty associated with

the highly-ordered structure at the solute-water interface [106]. In the presence of

additional salt, the surface contacts are more ordered and have an even larger entropic

penalty creating a state that is unfavorable energetically and thus causes the solute
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to leave the aqueous phase [107]. Sanders [108] described a method to quantitatively

recover chromatin from cells using a salt extraction method. Washing of MNase-

treated nuclei with increasing salt concentrations isolates chromatin fractions with

different genome-wide profiles: a low-salt fraction of highly accessible chromatin, a

high salt fraction containing the majority of the chromatin, and an insoluble fraction

of chromatin derived from transcribed regions of the genome. This technique will

be utilized for experiments in Chapter 4 to isolate and quantify the DNA of two

esophageal cell lines.

3.4 Spectrophotometry

To identify the quantity of DNA in each salt fraction, a spectrophotometer was used.

A spectrophotometer is a device that measures absorbed light intensity as a function

of wavelength. The first spectrophotometer was created by Arnold O. Beckman in

1940 [109]. A spectrophotometer contains five basic components: a light source, a

monochromator, a sample holder, a detector, and an interpreter [110].

Figure 3.4: Essential Parts of a Spectrophotometer [111]

To make a measurement, a light source with a known intensity(Io) is passed

through a cuvette containing the sample. The light intensity (I ) is measured af-

ter passing though the sample and using Beer-Lambert’s law, A=log I
Io

=εlc, the ab-

sorbance (A) of the sample can be determined where ε is the extinction coefficient

of the sample in M−1cm−1, l is the path length of the cuvette in centimeters and c

is the concentration of the sample in M. The are two classes of spectrophotometers:
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single beam and double beam. A double beam spectrophotometer compares the light

intensity between two separate light paths (the reference path and the test sample

path) whereas a single beam spectrophotometer compares the light intensity of the

sample before and after a test sample is inserted. Double beam spectrophotometers

are considered to provide a more stable light intensity reading and therefore a more

accurate absorbance reading [112]. In this dissertation, the Cary 300 UV-Vis, a dou-

ble beam spectrophotometer, was used for the vast majority of the measurements

so the description of spectrophotometry will be based towards this instrument. Ad-

ditionally, for this dissertation, a quartz cuvette was used with a path length of 1

cm.

To determine the absorbance of a DNA sample, the absorbance of the sample is

measured at 260 nm since this is where DNA maximally absorbs light. Once the

absorbance of the sample has been determined, the DNA quantity of the sample can

be determined by the following formula: DNA yield (g) = A260× dilution factor ×

50 µg/ml × total sample volume (ml) where the 50 µg/ml represents the standard

extinction coefficient of double stranded DNA when the Beer-Lambert law is solved

for a cuvette path length of 1 cm where ε=0.020 (µg/ml) cm−1 and A=1 [113].

Despite purification techniques, it is common for nucleic acid samples to be con-

taminated with other organic compounds or proteins. Thus, the second benefit of

using a spectrophotometer for sample analysis and quantification is that the purity of

the sample can be determined using the A260/A280 ratio of the sample since proteins

(particularly aromatic amino acids) absorb at 280 nm [114]. The ratio of pure DNA

is considered to be 1.8 and the ratio of pure RNA is considered to be 2.0 [114]. It

takes a relatively large amount of protein contamination to affect the A260/A280 ratio

in a nucleic acid solution due to the much higher mass attenuation coefficient nucleic

acids have at 260 nm and 280 nm, compared to that of proteins. Because of this,

protein contributes little error to DNA quantity estimation on a spectrophotometer
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[114]. In this dissertation, the A260/A280 ratios were determined to assess the purity

of the DNA sample.
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Chapter 4

An Analysis and DNA

Quantification of the Supernatant

Fraction Previously Discarded in

Salt Fractionation Studies

This chapter details experiments to identify the reason for DNA unaccounted for in

salt fractionation experiments, the process used to quantify the total DNA in two cell

lines (CP-D and EPC2), and the subsequent analysis of the nuclei of cancer and non-

cancer cells. The CP-D cell line is a hypotetraploid, cancerous, human esophageal cell

line with high grade dysplasia and exhibits a large nucleus to cytoplasm ratio. EPC2

is a normal human esophageal cell line. [115]. 3-D fluorescent imaging was performed

by Nethmi Ariyasinghe and Bo Faust and analyzed by Nethmi Ariyasinghe. Cell cul-

ture was performed by Nethmi Ariyasinghe and Bryant L. Doss, also acknowledging

support from Nikita Satapathy. The DNA quantification experiments were conducted

by Nethmi Ariyasinghe. The protocol for extracting the cellular chromatin was de-

veloped by Steve Henikoff and modified by Subahadip Senapathy [116, 117]. The
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protocol for salt fractionation was previously discussed in Chapter 2 of this thesis.

Gel electrophoresis experiments were performed by Nethmi Ariyasinghe and Bren-

don Sullivan. Chromatin imaging using AFM and analysis was performed by Nethmi

Ariyasinghe. DNA and RNA sequence analysis was performed by JongOne Im.

4.1 Introduction

In 1978, Marilyn Sanders devised a method to extract the chromatin from rat liver nu-

clei and described three types of nucleosome packing interactions based on increasing

NaCl concentration [108], a technique later described as salt fractionation. In sum-

mary, salt fractionation is a process where increasing salt concentrations are added to

a sample of chromatin extracted from nuclei to release nucleosomes from the sample.

She used a diphenylamine procedure [118] to measure the DNA quantity present in

each fraction of increasing salt concentration (0.2M, 0.3M, 0.4M and 0.6M NaCl) as

well as a fraction without any added salt, the S0 fraction. The diphenylamine proce-

dure used to measure the DNA quantity is a technique where DNA is heated to 100◦C

for a few minutes with acetic acid, sulfuric acid, and diphenylamine first described by

Dische [119] and modified by Burton. Burton [118] additionally suggested mixing the

samples with perchloric acid as well. Protein contamination would result in turbidity

and report higher concentrations of DNA [120]. The underlying principle for the basis

of estimating DNA using diphenylamine is that the reaction of diphenylamine with

deoxyribose sugar produces a blue-colored compound. When DNA is boiled under ex-

tremely acidic conditions it causes depurination of the DNA followed by dehydration

of deoxyribose sugar into a highly reactive ω-hydroxylevulinylaldehyde which reacts

with diphenylamine to produce a blue-colored complex that absorbs at 595 nm. In

her publication, Sanders claims that no DNA is released in the S0 fraction, 20% (of

the total DNA) is released at 0.2M, 60% at 0.3M, and 100% at 0.4M. However, it
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has been stated in previous publications that quantifying DNA concentrations with

diphenylamine is unreliable for small amounts of DNA due to the large amount of

color produced by the diphenylamine blank [120]. Additionally there can be non-

specific color from the sulfuric acid interacting with other biological material [120].

Due to Sander’s claim that there was no DNA in the supernatant (S0) fraction, several

subsequent publications that have studied DNA and chromatin have also not looked

at this fraction.

It was determined that the salt fractionation technique created by Marilyn Sanders

in 1978 left about 30% of the total DNA quantity unaccounted for in epigentic exper-

iments conducted to determine how chromatin structure is different in cancer nuclei

compared to non-cancer nuclei. The goal of this project then sought to (1) determine

the reason for DNA unaccounted for in salt fractionation experiments, (2) quantify

the relative amount of DNA in each cell line using spectrophotometry, and (3) charac-

terize the differences in the nuclei of cancerous and non-cancerous cell lines in regards

to nuclear size and shape, chromocenters, nucleoli size and quantity, and nuclear

speckle volume.

4.2 Materials and Methods

4.2.1 Cell Culture

The esophageal cell lines EPC2 and CP-D were cultured in Keratinocyte-SFM (Life

Technologies) media with the provided supplements [121]. The cancerous colon cell

line RKO was cultured in EMEM with 10% FBS [121]. All growth media also con-

tained 1x penicillin-streptomycin [121].
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4.2.2 3-D Fluorescence Imaging

3-D fluorescence imaging with EDTA was performed in HBSS with 5mM EDTA,

25 mM HEPES, no CaCl2 and no MgCl2 on two cell lines (CP-D and EPC-2 as

esophageal cancer and normal esophageal cells) both with and without TS-A (1µM,

24 hr); nuclei were stained with DAPI dye. Cells were incubated immediately before

measuring at a concentration of 200 nM in measuring buffer for 20 minutes and then

washed thoroughly with the measuring buffer. 3-D confocal imaging was performed

on fixed cells at room temperature using the Leica SP8.

4.2.3 Chromatin Extraction, Salt Fractionation, and DNA

Extraction

A cancerous (CPD) and non-cancerous (EPC2) esophageal cell line were cultured

in 2-D monolayers. Cells were harvested and washed with 1xPBS at 1000 RPM

for 5 minutes at 4◦C followed by a wash with 1XPBS containing 0.1% tween-20, a

detergent that helps disrupt the cellular membrane. Next cells were lysed with mild

NP-40 detergent (which can break the cytoplasmic membrane but not the nuclear

membrane) in 0.5mM PMSF to release nuclei. PMSF blocks serine proteases such as

trypsin and chymotrypsin. After mixing the cells gently, they were set on ice for 2

minutes and then spun down at 4◦C at 1000 RPM for 10 minutes. The supernatant

was discarded and the pellet was washed with 5 ml of TM2 buffer with 0.5 PMSF

and centrifuged again at 4◦C at 1000 RPM for 10 minutes. Then the pellet was

suspended in 1 ml of 0.1 TE with 0.5 mM PMSF and incubated at 37◦C for 5 minutes.

Washed nuclei are subjected to an MNase digestion to fractionate the chromatin as

seen in Figure 4.1. Successive incubation with buffers containing increasing salt

concentrations differentially solubilized the chromatin (salt fractionation). RNase

and proteinase are used to separate the RNA and protein in the chromatin structure
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from DNA. Then a phenol chloroform and ethyl ether extraction are used to isolate

and purify the DNA.

Figure 4.1: Extraction of Chromatin Using Salt Fractionation

4.2.4 Spectrophotometry

A Cary 300 UV-Vis (Simple Reads) was used to quantify the amount of DNA in

the supernatant fraction, low, high, and insoluble salt buffers for each cell line. The

purity of the DNA was verified using the A260/A280 ratio of the sample. The quantity

of DNA in each sample was calculated using the A260 value.

4.2.5 AFM Imaging of Chromatin

All chromatin samples were cross-linked with 0.5% gluteraldehyde for 15 minutes

and then diluted in 0.1 TE buffer before imaging. Samples were placed on APTES-

modified mica. After 5 minutes, the mica surface was washed with water and dried

using nitrogen gas before imaging. AFM topographic images were taken in tapping

mode using an Agilent 5500 AFM instrument. The cantilever used for topographic

imaging had a length of 225 µm, width 32 µm, and a thickness of 2.5 µm and a reso-

nant frequency between 50-70 kHz (typically 65 kHz)(AppNano SPM Probe: FORT

model). Images were taken with a 4-6% drive. Images were processed using Gwyd-

dion software. First each image was leveled using a three point level. Then the rows

of each image were aligned using a 2 degree polynomial and horizontal scarring was

corrected.
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4.2.6 Data Analysis

3-D confocal data was analyzed using NucleusJ in ImageJ [122]. All images were

converted to 8-bit and individual cells were isolated in the stack making sure that the

first and last slide of each stack was blank. The contrast of each stack was enhanced,

background noise was removed, and the entire stack was smoothed before running

the Nuclear Segmentation and Analysis portion of the program. For chromocenter

analysis, images were further filtered by applying a Gaussian Blur filter where σ=1.

For nuclear speckle characterization, each slice in the stack was analyzed to determine

the total volume of the dark regions. Then the nucleoli volume was subtracted from

the total volume of the dark regions resulting in only the volume of the speckle regions.

4.3 Results and Discussion

In 1978, Marilyn Sanders created the salt fractionation technique to isolate the chro-

matin of rat liver nuclei and gain insight into the nucleosome packing interactions of

the extracted chromatin. In her study, she claims that there is no release of DNA

before the adding of NaCl (the S0 fraction). Her technique has been subsequently

used in a number of studies to gain insight into the chromatin of various species [117].

However, none of these studies have ever isolated and studied the S0 fraction presum-

ably assuming that it contained no DNA as Sanders stated in her publication. We

began our study in a similar fashion using salt fractionation to isolate the chromatin

of a cancerous and non-cancerous cell line and study the differences between the two

cell lines to gain more information into the differences of cancer and non-cancer on a

genotypic level. Additionally, as Sanders did, we varied the Mnase digestion time to

determine if it would have any effect on how much DNA was extracted from each frac-

tion. As seen in Figure 4.2, there is no effect of Mnase digestion time on the low salt

and high salt samples verifying the results of Sanders in 1978; approximately equal
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amounts of chromatin are extracted at the different Mnase digestion times demon-

strating that the crosslinks that prevent chromatin from exiting the nuclear pore are

electrostatic in nature [108]. However, what we surprisingly discovered is that the

fraction of the total DNA that ends up in the low and high salt fractions for both

cancer and non-cancer cell lines is relatively the same (roughly making up 40-70% of

the total DNA) meaning that at least 30% of the total DNA is unaccounted for in

these fractions.

Figure 4.2: Total DNA fraction as a function of Mnase digestion time for two

esophageal cell lines: CP-D (cancerous) and EPC2 (non-cancerous).

Thus the goal of this work was to identify the reason for DNA unaccounted for in

salt fractionation experiments as well as to characterize this DNA.

In addition to the two low salt and high salt fractions previously collected, a
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supernatant fraction was also collected before the addition of any salt to the sample

in 0.1 TE buffer (the S0 from the Sanders study) as well as an insoluble fraction

collected after the high salt fraction characterized by an even higher concentration

of salt (TE buffer with EDTA). We used gel electrophoresis to test these samples to

determine if the supernatant fraction and the insoluble fraction contain any DNA

(see Appendix).

Then based on the ploidy of each individual cell line (CP-D: hypotetraploid(<4n)

[115], RKO: tetraploid(4n), and EPC2: diploid(2n) [115]), the amount of DNA per

cell was calculated as follows for each cell line:

• tetraploid: 3.2x109 basepairs x 4 x 650 Da/basepair x 1.66x10−12 pg/Da x

1x10−6 µg/pg = 1.30x10−5 µg/cell

• diploid: 3.2x109 basepairs x 2 x 650 Da/basepair x 1.66x10−12 pg/Da x 1x10−6

µg/pg = 6.91x10−6 µg/cell

The CP-D cell line was treated as tetraploid to simplify calculations when deter-

mining the amount of DNA per cell.

It was determined that the automated cell counter was unable to detect the small

RKO cells accurately for a perfect count (Figure 4.3); therefore, all cells were counted

manually to ensure a more accurate cell count.

41



Figure 4.3: Image of the automated cell counter results for RKO cells. Live cells are

shown in blue, dead cells are shown in red and black cells were excluded from the

count. Additionally, cells not focused on the viewing plane were not included in the

automated count.

Table 4.1: The total amount of DNA obtained from each salt fraction shown for every

CP-D and EPC2 trial performed along with the expected quantity of DNA expected

based on the total number of cells. RKO results can be found in the appendix.

As shown in Table 4.1, for each trial conducted, the quantity of DNA for each
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fraction was determined and compared to the expected quantity of DNA based on

the total number of cells manually counted for each trial. On average (percent dis-

crepancy), about 36% of the total DNA sample is lost due to purification methods.

Additional results for the DNA quantification for the RKO cell line can be found in

the appendix.

Finally, a more complete picture of the DNA quantity found in each fraction

emerged as shown in Figure 4.4. A large portion of the genome is not isolated in

either the low or high salt fraction but exists in the supernatant fraction making up

around 30-40% of the total DNA; this result is further verified by DNA sequencing

of the genome Figure 4.4b. Additionally, the CP-D line shows a wider variation of

DNA distributions in each fraction when compared to the EPC2 cell line.

(a)

(b)

Figure 4.4: (a) Total DNA fraction as a function of salt fractionation. (b) DNA

sequencing results for the CP-D and EPC2 cell line at 4 min and 16 mins.

After identifying the reason for DNA unaccounted for in salt fractionation ex-

periments and quantifying the amount of DNA for each cell line, further work was

done to characterize the supernatant fractions and compare them with previous work

done by Subhadip Senapathy. AFM images of the chromatin from the supernatant

fraction at the 2, 4, 8, and 16 minute Mnase digestion time were taken for the EPC2
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and CP-D cell lines (Figure 4.5 and Figure 4.6).

(a) (b)

(c) (d)

Figure 4.5: AFM Images of EPC2 supernatant fractions at different Mnase digest

times: (a) 2 min, (b) 4 min, (c) 8 min, and (d) 16 min.
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(a) (b)

(c) (d)

Figure 4.6: AFM Images of CP-D Supernatant fractions at different Mnase digest

times: (a) 2 min, (b) 4 min, (c) 8 min, and (d) 16 min.

These figures show that for the EPC2 cell line, at 2 mins, the chromatin is digested

into single nucleosomes that seem to form arrays. At 4 mins, 8 min and 16 min, the

chromatin exists as individual nucleosomes. For the CP-D cell line, at 2 mins, the

chromatin is digested into single nucleosomes. At 4 mins, 8 min and 16 min, the

chromatin exists as a combination of single nucleosomes and nucleosome clumps.
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(a) (b)

Figure 4.7: The nucleosome height distributions of the chromatin from AFM images

of the supernatant fraction for (a) EPC2 (b) CP-D

As seen in Figure 4.7, the majority of the chromatin exists as single nucleosomes

for both the EPC and the CP-D cell lines. However, there is a larger distribution of

nucleosome heights in the CP-D suggesting that this cell line contains more undigested

chromatin than the EPC2.

Next, work was undertaken to identify and quantify the differences in the nuclei

of a cancerous (CP-D) and non-cancerous (EPC2) cell line. Images of nuclei stained

with DAPI were taken using 3D confocal imaging and quantified using NucleusJ in

ImageJ [122].
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(a)

(b)

Figure 4.8: (a) Nuclear characteristics quantified for both the CP-D and EPC2 cell

lines using 3D confocal imaging. (b) The mean volume and spread of the nuclear

volume distribution for CP-D with and without TS-A as well as EPC2 with and

without TS-A.

Several nuclear characteristics were quantified for both the CP-D and EPC2 cell

lines using 3-D confocal imaging as shown in Figure 4.8. The most notable differ-

ences between the two cell lines can be found between the volume and surface area

of the cells. The mean volume and spread of the nuclear volume distribution for

CP-D with and without TS-A as well as EPC2 with and without TS-A in shown in

Figure 4.8. All data is normally distributed and an ANOVA test determined that

there is a significant difference between the 4 populations (p=9.32x10−21). Further

47



Mann-Whitney testing has determined there is no statistically significant difference

between the CP-D and CP-D with TS-A (p=0.4068). However there is a statistically

significant difference between the EPC2 and EPC2 with TS-A (p=0.0024), between

the CP-D and EPC2 (p=1.9834x10−11), and between the CP-D with TS-A and the

EPC2 with TS-A (p=4.9258x10−9). TS-A is a histone deacetylase inhibitor and al-

ters gene expression/epigenetic activity and has been shown to reduce the stiffness

of the nucleus by decondensing the chromatin structure and making it more homo-

geneous. More condensed chromatin is associate with cancerous cells. This result

tells us that TS-A is not effective in decondensing the chromatin in the CP-D cell

line. The nuclear volume determined in this dissertation differs significantly from the

results found by Nandakumar et al. [123], who state that the nuclear volume for

EPC2 is 163±51 µm3 and 432±188 µm3 for CP-D. However, their study could have

been compromised by the use of hematoxylin to stain the cells, as hematoxylin stains

all nucleic acid whereas DAPI more selectively stains DNA. Additionally, the cells in

the Nandakumar study were grown in a gel and imaged via 3-D tomography resulting

in differences between our 2-D adhered cells and the 3-D cells in the Nandakumar

study.

Table 4.2: Chromocenter characteristics quantified for both the CP-D and EPC2 cell

lines using 3D confocal imaging.

Additionally, as shown in Table 4.2 several chromocenter characteristics were also
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quantified for both the CP-D and EPC2 cell lines using 3D confocal imaging. The

most notable differences can be found between the total volume of the chromocenters

per nucleus of the cells. Although intensity cannot be quantified, this result points

to the idea that the CP-D chromatin is more heterogeneous in its distribution when

compared to the EPC2 chromatin.

Finally, the number of nucleoli, the nucleoli volume, and the nuclear speckle vol-

ume were analyzed as shown in Figure 4.9 and Table 4.3.

(a) (b)

(c) (d)

Figure 4.9: The number of nucleoli per cell in the EPC2 (a) and CP-D cell line (b).

The volume distribution of the nucleoli was also quantified for both the EPC2 (c)

and CP-D cell lines (d).
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Table 4.3: The nucleoli volume for each cell line as well as the nuclear speckle volume

compared to the total volume of the cell nucleus.

The average number of nucleoli per cell was greater for the CP-D cell line (1.5±1.2)

compared to the average number of nucleoli in the EPC2 cell line (0.7±0.7). While the

CP-D nucleoli are larger than the EPC2 nucleoli, the nucleoli of both cell lines take

up roughly the same volume percentage inside the nucleus. Almost all cancer types

display large and/or increased number of nucleoli in the literature and can be used

as a parameter for worsening prognosis [2, 3, 4, 5] so the CP-D result presented here

is in good agreement with existing publications. The speckled regions of the nucleus

represent the regions of large RNA concentration/mRNA production [124]. CP-D

nuclear speckles occupy twice as much volume of the cell nucleus when compared to

EPC2 nuclear speckles. This is an interesting result because it demonstrates that the

mRNA production seems to be upregulated in cancer cells.

Conclusion and Future Work

We were able to detect the location of the missing DNA fraction which was previously

undetected by Marilyn Sanders and quantify the amount of DNA in 2 different cell

lines. Roughly 30-40 % of the total DNA in each cell line is released from the nucleus

in the supernatant fraction and this is where most of the differences between each cell

line’s chromatin can be observed. CP-D shows a wider variation of DNA quantity in
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each fraction when compared to EPC2. Both cell lines display differences in nuclear

volume and surface area as well as the number and volume of chromocenters found

in each cell. The CP-D cell line has a nuclear volume that is almost twice the size

of the EPC2 which is in line with the fact that the CP-D contains about two times

the chromatin found in the EPC2 as the EPC2 is a normal diploid line whereas the

CP-D is a tetraploid line. Additionally, it seems the CP-D has more heterogenity in

its chromatin distribution since the volume of the chromocenters is larger than that of

the EPC2. The average number of nucleoli per cell was greater for the CP-D cell line

(1.5±1.2) compared to the average number of nucleoli in the EPC2 cell line (0.7±0.7).

While the CP-D nucleoli are larger than the EPC2 nucleoli, the nucleoli of both cell

lines take up roughly the same volume percentage inside the nucleus. Almost all

cancer types display large and/or increased number of nucleoli in the literature so the

CP-D result presented here is in good agreement with existing publications. CP-D

nuclear speckles occupy twice as much volume of the cell nucleus when compared to

EPC2 nuclear speckles. This is an interesting result because it demonstrates that the

mRNA production seems to be upregulated in cancer cells. Finally, the majority of

the chromatin images taken with AFM show single nucleosomes. However, a portion

of AFM images of the supernatant fractions of EPC2 reveal ring-like nucleosome

structures and individual nucleosomes in the EPC2. At 4 mins, 8 min and 16 min,

the chromatin exists as a combination of rings of nucleosomes ranging from 0.43-0.83

um in diameter depending on the Mnase digestion time and individual nucleosomes

(details shown in Figure 4.10). For the CP-D cell line, at 2 mins, the chromatin is

digested into single nucleosomes. At 4 mins, 8 min and 16 min, the chromatin exists

as a combination of single nucleosomes and nucleosome clumps. No ring structures

are observed in the CP-D chromatin.
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: The mean diameter of the ring structures found in the EPC2 cell line at

various Mnase digestion times.

As seen in Figure 4.10, The 8 min EPC2 fraction had a mean diameter size

(0.831±0.255 µm) that was almost double that of the 4 min (0.438±0.306 µm) and

16 min fractions (0.550±0.065 µm). Additionally, the number of ring structures seems

to decrease as Mnase digestion time gets longer, demonstrating that the Mnase slowly

over time is able to digest these ring structures into single nucleosomes. It is believed

that the bright circles in each ring are the protein cohesin. In the future, the mean

nucleosome number (ring diameter) will be compared to DNA sequencing data to see

if the two correlate in some manner. Additionally, more work will be done to identify

the protein components of the ring structures.
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Chapter 5

Quantifying the Stiffness Variation

in Cancer Stem Cells and

Non-Cancer Stem Cells Using

AFM

This chapter details experiments that seek to determine if there is a correlation be-

tween breast CSCs and stiffness by combining confocal microscopy with AFM to

directly correlate CD44/CD24 fluorescence levels with stiffness at the single cell level.

It is hypothesized that since CSCs have been shown to correlate with the mesenchymal

phenotype and follow some of the same pathways as the epithelial-to-mesenchymal

transition that the CSCs would be softer than non-CSCs. Additionally, this ex-

periment seeks to determine (1) if different buffer/environment conditions (PBS vs.

HBSS) affect the stiffness of the different subpopulations (2) if it is possible to distin-

guish differences between the cellular cortex and intracellular network of CSCs and

non-CSCs and (3) if there is a difference in the Young’s Modulus of CSC and non-CSC

nuclei. All experiments in this chapter were conducted by Nethmi Ariyasinghe.
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5.1 Introduction

A recent concept that characterizes cancer cells is the cancer stem cell (CSC) concept.

Al-Hajj et. al. discovered that only a minority of breast cancer cells have the ability

to create new metastasis and isolated this sub-population of tumor-initiating cells

based on cell surface markers [39]. These tumor-initiating cells (now called “cancer

stem cells” in the field) possessed the CD44+/CD24- cell surface marker phenotype

[39]. Cancer stem cells derive their name from the fact that, like traditional stem

cells in the body, they possess the ability to self-renew and differentiate, the ability

to persist in the body for long periods of time, and the ability to produce hetero-

geneous progeny [30]. The CSC concept treats tumor cells as a diverse population

where only certain cells (the CSC cells) have the ability to proliferate extensively

and potentially form new tumors [30]. In addition, the CD44+/CD24- phenotype is

clinically associated with a poor prognosis for breast cancer patients making it even

more necessary to determine what role CSC phenotypes play in cell mechanics [125].

It has been reported that changes in the cell stiffness (Young’s Modulus) can affect

the manner in which cells spread [126, 127]. In addition, it has been shown that the

cell stiffness of metastatic cancer cells is softer than that of benign cells [59, 58, 121].

Furthermore, it has been shown that the stiffness of mature cells and stem cells differ

[128]. Based on this information, we hypothesized that there should be a difference in

the cell stiffness of stem-like cancer cells when compared to nonstem-like cancer cells.

This chapter describes experiments designed to test if there is a correlation between

breast CSCs and stiffness by (1) determining what percentage of the total population

of cells are cancer stem-like cells in 3 different breast cancer cell lines (MDA-MB-231

(metastatic), MCF-7 (luminal), and MCF-10A (normal)) and (2) combining confo-

cal with AFM to directly correlate CD44/CD24 levels with stiffness at the single

cell level. CSCs have been shown to correlate with the mesenchymal phenotype

and follow some of the same pathways as the epithelial-to-mesenchymal transition
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[129, 130, 131, 60]. We would assume that since mesenchymal cells are softer than

other cell types [132, 133, 134, 54], that the CSCs would be softer than the non-CSCs.

Additionally, this experiment seeks to determine (1) if different buffer/environment

conditions (PBS vs. HBSS) affect the stiffness of the different subpopulations of

these cells since it has already been hypothesized that different buffer/environment

conditions affect the percentage of each subpopulation of cells [135] (2) if there is

a difference in the stiffness of stem-like cells when probed with a large/dull tip and

a sharp tip (sharper tips allow deeper probing into the sample and provide a more

localized analysis of the sample whereas larger tips aim to provide more of an average

stiffness across the cell) and (3) if there is a difference in the Young’s Modulus of the

stem-like cell nuclei when compared to the non-stem-like cell nuclei.

5.2 Materials and Methods

5.2.1 AFM Experiments

5.2.2 Cell Culture

MDA-MB-231 cells were cultured in growth media prepared by creating a solution of

1x Dubecco’s Modified Eagle Medium (DMEM) (Gibco # 11965092) with 10% fetal

bovine serum (ATCC) by volume. MCF-10A cells were cultured in growth media pre-

pared by mixing 500 ml of DMEM/F12 (Invitrogen #11330032) with 25 ml of horse

serum (Invitrogen #16050122), 100ul of epidermal growth factor (EGF,100ug/ml

stock solution, Gibco #PHG0311), 250ul of hydrocortisone (1mg/ml stock solution,

Sigma #H0888), 50 µl of cholera toxin (1 mg/ml stock solution, Sigma #C8052),

500 µl of bovine insulin (10 mg/ml stock solution, Sigma #I1882), and 5 ml of peni-

cillin/streptomycin (Invitrogen #15070063). MCF-7 cells were cultured in growth

media prepared by mixing 56 ml of fetal bovine serum with 0.6 ml of bovine insulin
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(10mg/ml stock solution) and 500 ml of Eagle’s Minimum Essential Medium (EMEM)

(ATCC). All growth media solutions were filtered before being stored at −20◦C for

future use.

5.2.3 Sample Preparation

To create samples, cells were grown from ATCC cell lines in flasks with growth media

for 3-4 days until cells reached 70% confluence (incubator conditions: 37◦C and 5%

CO2). After reaching 70% confluence, 7.5 ml of 1x Dulbecco’s Phosphate Buffer

Saline (DPBS) (Gibco #14190144) were added to the culture flask to rinse the cells.

Then 2 ml of Cellstripper (Corning #25056CI) were added, and cells were placed

into the incubator for 10 minutes. Afterwards, 3 ml of growth media were mixed with

the cell stripper/cell mixture in the flask, and the entire solution was transferred

to a test tube and centrifuged at 900 RPM for 5 minutes at 25◦C to separate the

cell pellet from the supernatant. The supernatant was removed, and the cells were

resuspended in 5 ml of growth media. Sample dishes were created by combining 1

ml of resuspended cells with 1 ml of growth media in a glass bottom 50 mm petri

dish (World Precision Instruments). Samples were incubated at 37◦C and 5% CO2

for 24-48 hours before being analyzed. Initially, the remaining growth media in the

petri dish was removed. Then 3 ml of blocking buffer (1% Bovine Serum Albumen

(BSA) in phosphate buffered saline (PBS)) was added to the dish and incubated at

37◦C for 30 minutes to minimize non-specific adsorption of the antibodies. In the

meantime, CD44 (BD Pharmingen #560977) and CD24 (BD Pharmingen #561644)

antibody solutions were diluted in blocking buffer (10µl antibody to 1 ml blocking

buffer). Afterwards, the blocking buffer was removed from the petri dish, and 2 ml

of each of the diluted antibody solutions were added. Samples were then incubated

for one hour at 37◦C. Finally, samples were washed three times in 1x PBS with each

wash lasting for 5 minutes.
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5.2.4 Fluorescence-Activated-Cell-Sorting

Fluorescence-activated-cell-sorting (FACS) (BD FACSAria IIu Cell Sorter) was used

to sort MDA-MB-231 cells into stem-like and non-stem-like populations. The sorted

cells were then plated for about 10 hours and analyzed for differences in cell stiffness

between the two populations using AFM.

5.2.5 Confocal Microscopy

Measurements were conducted using a MicroTime 200 (PicoQuant, Germany) con-

focal laser scanning fluorescence microscope where scans were preformed in the XY

direction to create an image 256x256 pixels wide. Scans were bidirectional with an

acceleration of 20%, and with 10 learning loops. For the duration of the scan, the

intensity of each laser was held at 3.45-3.6 a.u. Initially, with the shutters closed, a

cell was found using the eyepiece of the microscope and brought into focus. Then the

shutter was opened to allow the blue laser (470 nm) to pass and the intensity of the

laser was adjusted to 3.53 a.u. The image was scanned. Next the blue laser shutter

was turned off and the red laser (640 nm) shutter was switched on to allow the red

laser to pass and the intensity of the laser was adjusted to 3.53 a.u. The image was

scanned and saved. This method allowed each cell to be imaged using both lasers so

that the CD44 signal and the CD24 signal could be processed separately so that if the

fluorescence signal overlapped channels it would not affect the measurements. Then

the next cell was located in the eyepiece and the process was repeated. However,

this time the images were taken with the lasers in reverse order (the red laser image

first and then the blue laser image) to prevent photobleaching bias. This process was

repeated in an alternating manner. Samples were only analyzed up to four hours

after the last PBS wash to avoid imaging dead cells which usually detached them-

selves from the glass surface of the petri dish. Also, if the viewing field permitted,

multiple cells that were growing nearby were imaged together to collect more data.
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However, cells that were overlapping one another were not used in the analysis to

ensure that the intensity signal being analyzed was actually from the single cell and

not incorporating intensity from overlapping cells.

5.2.6 Combined AFM Indentation and CLSM on Cells

Atomic force microscopy (AFM) was combined with confocal microscopy to determine

the stiffness (Young’s Modulus) of the stem-like cells (CD44+/CD24-) and non-stem-

like cells (CD44+/CD24+, CD44-/CD24+,CD44-/CD24-) to assess if there was a dif-

ference between the two subpopulations in three breast cancer/non-cancer cell lines:

MDA-MB-231 (highly metastatic cancer),MCF-7 (cancer), and MCF-10A (normal)

in both HBSS and PBS. Additionally, a sharp tip and a mesoscopic tip were used

to determine if there were differences between the two subpopulations in two cancer

cell lines: MDA-MB-231 and MCF-7. The AFM and confocal fluorescence measure-

ments were performed on a combined system consisting of an MFP-3D-BIO (Asylum

Research) AFM and a Picoquant Microtime 200 confocal laser scanning microscope

[136, 137, 138]. LRCH-750 (Team Nanotec) silicon AFM probes (mesoscopic tip),

with half-angle 19◦ determined from electron microscopy and radius as specified by

the manufacturer, were used (apex radius: 780 nm; tip height: 15µm). The set point

used for measurements was 0.25 V. All AFM data was collected in contact imaging

mode. The spring constant of the tip was determined using the thermal energy dis-

sipation method [71, 139]; values ranged from (90-177 pN/nm). Measurements were

conducted using SymPhoTime 5.13 at room temperature. Scans were preformed in

the XY direction to create an image 256x256 pixels wide. The image was scanned

and, afterwards, a 4x4 force map of the cell was performed and saved. Then the next

cell was located in the eyepiece and the process was repeated. However, this time the

images were taken with the lasers in reverse order (the red laser image first and then

the blue laser image) to prevent photobleaching bias. Samples were only analyzed
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up to four hours after the last PBS or HBSS wash to avoid imaging dead cells which

usually detached themselves from the glass surface of the petri dish. Since each force

map produced sixteen curves with sixteen Young’s moduli, the Young’s moduli were

averaged to determine the average Young’s modulus per cell. In addition, the contact

point for each force curve was selected manually as shown in Figure B.1 (Appendix

B) since there is no perfect algorithm for determining the contact point automatically.

5.2.7 Combined AFM Indentation and CLSM on Cell Nuclei

Atomic force microscopy (AFM) was combined with confocal microscopy to determine

the stiffness (Young’s Modulus) of the nuclei of stem-like cells (CD44+/CD24-) and

non-stem-like cells (CD44+/CD24+, CD44-/CD24+,CD44-/CD24-) to assess if there

was a difference between the two subpopulations in the breast cancer cell line MDA-

MB-231 (highly metastatic cancer) at room temperature. CLSM was performed as

mentioned in the previous section. Samples were only analyzed up to four hours

after the last PBS or HBSS wash to avoid imaging dead cells which usually detached

themselves from the glass surface of the petri dish. Samples were indented once with

a force of 30nN using a SHOCON tip. The contact point for each force curve was

selected manually as shown in Figure B.1 (Appendix B).

5.2.8 Image Processing and Analysis

To determine the particular phenotype of the cell in each image, cells were individually

“cut” from the larger image and the cell region’s intensity data was extracted and

analyzed via MatLab (see Appendix B). The intensity of each cell was normalized to

the perimeter of the cell as described in Appendix B to create a list of intensities.

Then a statistical analysis was conducted on the list to determine the mean and

standard deviation of the counts for the unstained cells. Any stained cell with a

mean intensity three standard deviations above this was considered “positive” and
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values below this threshold were considered to be “negative”. This was to ensure

that only the cells with the highest expression of each cell marker (either CD44 or

CD24) were being assigned a positive value for that marker. In this manner, every

cell analyzed was assigned to one of four categories: CD44+/CD24+, CD44+/CD24-,

CD44-/CD24+, and CD44-/CD24- (Figure 5.3).

5.3 Results and Discussion

Fluorescence-activated cell sorting (FACS) is a standard technique used to sort sub-

populations of cells based on the presence or absence of certain physical characteris-

tics. We sought to utilize this technique to separate the stem-like and non-stem-like

cell subpopulations for the breast cancer cell lines studied. Cells were sorted with

FACS and then plated and analyzed 10 hours afterward (to give the cells enough time

to adhere to the surface of the petri dish) using AFM to characterize the cell stiffness

(Young’s Modulus) of the subpopulations. However, we determined that there was no

statistically significant difference between the cancer stem cell (CSC) and non-cancer

stem cell populations (Figure 5.1). Measurements from 41 non-stem-like cells were

compared to measurements of 50 stem-like (CD44+/CD24-) cells. The CSC pheono-

type cells which are CD44+/CD24- have the same stiffness (mean stiffness: 0.50 ±

0.38 kPa) as their non-stem cell counterparts (mean stiffness: 0.51± 0.38 kPa) when

taking the standard deviation into account.
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Figure 5.1: Stiffness of MDA-MB-231 Cell Subpopulations After FACS Sorting and

Plating On Petri Dish.

CSC populations are commonly assessed with FACS; however, cell stiffness is

altered by FACS either due to stress or due to waiting too long after plating cells

(which may cause differentiation). Since the data shows that there was no statistically

significant difference between stiffness for the CSC and non-CSC populations, it was

determined that using FACS to sort CSCs and then measure their stiffness may not

be the solution to eliminate other artifacts from affecting the cellular mechanics of

our samples. We then grew the cells in a petri dish and fluorescently labeled the

cells there so as not to disturb their growth. The stiffness of the non-stem-like and

stem-like cells was determined using AFM and compared to the stiffness of the non-

stem-like and stem-like cells sorted via FACS. These results are shown in Figure
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5.2.

(a) (b)

Figure 5.2: (a) MDA-MB-231 stem-like cells were compared without FACS sorting

(n=43) (mean stiffness:1.08 ± 0.71 kPa) and with FACS sorting (n=50) (mean stiff-

ness: 0.50 ± 0.38 kPa). (b) MDA-MB-231 nonstem-like cells were compared without

FACS sorting (n=26) (mean stiffness: 1.38± 0.71 kPa) and with FACS sorting (n=41)

(mean stiffness: 0.51 ± 0.38 kPa).

For both stem-like and non-stem-like cells a Mann-Whitney test determined that

there was a statistically significant difference between the FACS and non-FACS cell

population (stem-like: p=1.7400x10−5; non-stem-like: p=2.7454x10−7). Thus, we

decided to proceed with staining the cells while they were adhered to the surface of

the petri dish instead of in solution as is required for FACS.

5.3.1 Characterization of Breast CSC Populations

Since all population characterization in the literature at this point had only been

performed using FACS, we sought to determine the subpopulations of the stem-like

and non-stem-like cells using confocal imaging as described in the Materials and

Methods section for three breast cell lines: MDA-MB-231, MCF-7 and MCF-10A.

The results of this population characterization is shown in Figure 5.3 and Table
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5.1. Samples were imaged in PBS buffer solution for up to 4 hours after antibody

staining. All “positive” samples are three standard deviations above the mean for

unstained; all others were labeled “negative” samples.

Figure 5.3: Log-Log Plots of CD44 and CD24 showing the subpopulations breakdown

of each cell line: A) MDA-MB-231 B) MCF-7 C) MCF-10A in PBS buffer. Quadrant

1 shows all the CD44+/CD24- cells, Quadrant 2 is CD44+/CD24+, Quadrant 3 shows

all the CD44-/CD24+, and Quadrant 4 is all the CD44-/CD24-.
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Table 5.1: Subpopulations of cancer stem cells (CSCs) for MDA-MB-231 (n=51),

MCF-7 (n=75), and MCF-10A (n=50) breast cancer cell lines determined using con-

focal microscopy (A) Subpopulations of both markers (B) Subpopulations of indi-

vidual markers

In agreement with the literature, the MDA-MB-231 cell line has a majority of

stem-like cells (87%) [140]. Unlike the majority of the literature, the MCF-7 cell line

contains between 12-23% stem-like cells instead of ≥80% stem-like cells [135, 141].

However, this result is more similar to Tanaka et. al [142], who found 35% of MCF-7

cells were stem-like. Similarly, the MCF-10A cell line contains 92% stem-like cells

whereas the literature reports only around 20% stem-like cells [135]. Differences

between the results determined here and other publications indicate that different

cell growth conditions might contribute to the differences in cell subpopulations as

suggested by Sheridan et. al [135].
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5.3.2 CSC Populations and Stiffnesses for Multiple Cell Lines

Characterized By Multiple Tip Shapes and By Multi-

ple Buffers

After identifying the individual subpopulations within each cell line, we then pro-

ceeded to determine the stiffness of the stem-like and non-stem-like populations within

each of the three cell lines. These results are shown in Figure 5.4. As described

earlier, it was difficult to find CSCs for the MCF-10A cell line in HBSS as this is a

non-tumorogenic cell line. Mann-Whitney testing was used to determine statistical

significance of differences between populations. Average stiffness for each cell was

compiled by taking a 4x4 force map using a maximum force of 1 nN.

(a) (b)

(c)

Figure 5.4: Boxplots showing the Young’s Modulus of (a) MDA-MB-231 (b) MCF-7

and (c) MCF-10A cell subpopulations in HBSS.

As shown in Figure 5.4a, there is no significant stiffness difference between the
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cancer stem cell (CSC) pheonotype cells (CD44+/CD24-) (mean stiffness of 1.94 ±

1.36 kPa) and the non-stem cell counterparts (mean stiffness of 1.65 ± 0.89 kPa)

for the MDA-MB-231 cell line. Similarly, measurements from 7 stem-like cells (mean

stiffness of 0.74 ± 0.27 kPa) showed no significant stiffness difference when compared

to measurements from 28 non-stem-like cells (mean stiffness of 0.74 ± 0.27 kPa)

for the MCF-7 cell line (Figure 5.4b). The same conclusion was true for cancer

stem cell (CSC) pheonotype cells (mean stiffness of 2.38 ± 1.56 kPa) and the non-

stem cell counterparts (mean stiffness of 1.95 ± 1.39 kPa) in the MCF-10A cell line

(Figure 5.4c). However, there is a statistically significant difference between the

three stem-like populations as determined by an ANOVA test (p=0.04992715). There

is also a statistically significant difference between the three non-stem-like populations

(p=0.01888). The MCF-10A stem-like cells and non-stem-like cells are stiffer than

either the MDA-MB-231 or the MCF-7 which is in agreement with literature that

states that normal cells are stiffer than cancerous cells. However, it is interesting

to note that the MCF-7 are softer than the MDA-MB-231 cells which are a more

malignant, mesenchymal cell line; this result could stem from the issue that only a

small population of MCF-7 stem-like cells (n=7) and a small population of MDA-

MB-231 non-stem-like cells (n=9) were able to be measured.

Next we compared the effect of two different buffer solutions (PBS and HBSS)

and their impact on the stiffness of the stem-like cell populations. HBSS as a buffer

induces cell starvation which promotes the enhancement of the Warburg effect and

helps cells remain cancerous [143, 144, 145, 146]. Thus, we would expect the HBSS

cells to be softer than the PBS cells.
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(a) (b)

(c)

Figure 5.5: Stiffness of (a) MDA-MB-231 (b) MCF-7 and (c) MCF-10A stem-like

cell subpopulations in PBS buffer and HBSS buffer.

As seen in Figure 5.5a, MCF-10A stiffness measurements from 35 cells in PBS

(1.70 ± 0.97 kPa) were compared to measurements of 5 cells in HBSS (2.38 ± 1.56

kPa). A Mann-Whitney test has determined that there is no significant difference

between the two populations (p=0.3263). Similarly, MCF-7 stiffness measurements

from 4 cells in PBS (1.66 ± 0.26 kPa) were compared to measurements of 7 cells

in HBSS (0.74 ± 0.27 kPa) (Figure 5.5b). A Mann-Whitney test has determined

that there is a significant difference between the two populations (p=0.0061). Finally,
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MDA-MB-231 stiffness measurements from 39 cells in PBS (1.64 ± 1.18 kPa) were

compared to measurements of 29 cells in HBSS (1.94 ± 1.36 kPa) (Figure 5.5c). A

Mann-Whitney test has determined that there is not a significant difference between

the two populations (p=0.1887).

It is interesting to see that HBSS buffer has no statistically significant stiffness

effect on MCF-10A stem-like cells. We would hypothesize that since this is a normal

breast cell line, the HBSS would induce the Warburg effect on the stem-like cells

making them more cancerous and therefore, softer than their PBS counterparts. This

hypothesis may indeed still be true for a larger sample size; however, it is difficult to

find stem-like cells in the MCF-10A population as it is a normal breast cell line and

is not expected to contain stem-like cells.

Next we took the two cancer cell lines and compared the stiffness of stem-like and

non-stem-like cells using a larger tip size to determine if there were any differences

between the subpopulations of cells that could be probed on an intracellular level

instead of the cortical level as was done with the sharp tip. Cells were measured for

4 hours after staining with CD44 and CD24 antibody. All cells were indented to a

depth of 1.5µm.
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(a) (b)

Figure 5.6: Large tip indentation results. (a) Young’s modulus of MDA-MB-231 cell

subpopulations. Measurements from 26 non-stem-like cells (mean Young’s modulus:

1.38 ± 0.71 kPa) were compared to measurements of 37 stem-like cells (mean Young’s

modulus:1.08 ± 0.71 kPa). (b) Young’s modulus of MCF-7 cell subpopulations.

Measurements from 43 non-stem-like cells (mean Young’s modulus: 1.07± 0.66 kPa)

were compared to measurements of 13 stem-like (CD44+/CD24-) cells (mean Young’s

modulus: 0.39±0.27 kPa).

The results of the large tip indentation analysis in Figure 5.6 show that there is no

statistically significant difference as determined by a Mann-Whitney test (p=0.08852)

between the two populations for the MDA-MB-231 cell line. However, a Mann-

Whitney test has determined that there is a statistically significant difference between

the two populations for the MCF-7 (p=3.8856x10−5). These results are in accordance

with our hypothesis that there would be no difference within the subpopulations of

the MDA-MB-231 cell line as all the cells are mesenchymal and therefore are very

malignant and cancerous. However, since the MCF-7 is a luminal cell line we would

expect that the stem-like subpopulation would be softer than the non-stem-like cells

since the stem-like population is observed to behave more like a mesenchymal cell

line.
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Next we compared the stiffness values between the large and the sharp tip for

stem-like and non-stem-like populations for the MDA-MB-231 and the MCF-7 cell

lines (Figure 5.7) to determine if any information could be gained from the cellular

cortex and the intracellular network.

(a) (b)

(c) (d)

Figure 5.7: (a) Young’s modulus of MDA-MB-231 stem-like cell subpopulations when

analyzed with a larger tip (n=43) and a sharp tip (n=29). (b) Young’s modulus

of MDA-MB-231 non-stem-like cell subpopulations when analyzed with a larger tip

(n=26) and a sharp tip (n=9). (c) Young’s modulus of MCF-7 stem-like cell subpop-

ulations when analyzed with a larger tip (n=13) and a sharp tip (n=8). (d) Young’s

modulus of MCF-7 non-stem-like cell subpopulations when analyzed with a larger tip

(n=43)and a sharp tip (n=30).
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Young’s modulus of MDA-MB-231 stem-like cell subpopulations were analyzed

with a larger tip (n=43) and a sharp tip (n=29) (Figure 5.7a). Mann-Whitney

testing was used to determine whether or not there was a statistically significant

difference between all populations. The cells probed with a large tip show a reduced

stiffness (mean Young’s modulus: 1.08 ± 0.71 kPa) than the cells probed with a

sharp tip (1.94 ± 1.36 kPa). However, the Young’s modulus of MDA-MB-231 non-

stem-like cell subpopulations when analyzed with a larger tip (n=26) (mean stiffness:

1.38 ± 0.71 kPa) and a sharp tip (n=9) (mean stiffness: 1.65 ± 0.89 kPa) show no

significant stiffness difference between the two populations (Figure 5.7b). Similarly,

the Young’s modulus of MCF-7 stem-like cell subpopulations when analyzed with a

larger tip (n=13) and a sharp tip (n=8) (Figure 5.7c) show that the cells probed

with a large tip are less stiff (mean Young’s modulus: 0.39± 0.71 kPa) than the

cells probed with a sharp tip (mean Young’s modulus: 0.79 ± 0.29 kPa) whereas the

stiffness of MCF-7 non-stem-like cell subpopulations when analyzed with a larger tip

(n=43) (mean stiffness: 1.07± 0.5 kPa) and a sharp tip (n=30) (mean stiffness:1.12 ±

1.08 kPa) showed no statistically significant difference between the two populations

(Figure 5.7d). Large tip probes can give us information about the intracellular

network whereas the sharp tip can give us information about the cellular cortex.

Based on this, it appears that there are differences between the cellular cortex and

the intracellular network of the stem-like subpopulations whereas differences between

these two areas of the cells either are not significant enough to be determined for the

non-stem-like populations or these differences do not exist.

5.3.3 Cancer Stem Cell Nuclei

Finally, a super sharp silicon tip (radius of curvature=6 nm, pyramidal; k=0.3N/m)

was used to probe stiffness differences between stem-like and non-stem-like nuclei of

MDA-MB-231 cells (Figure 5.8).
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Figure 5.8: Apparent Young’s Modulus of MDA-MB-231 nuclei for cell subpopula-

tions. Measurements from 18 non-stem-like cells were compared to measurements of

42 stem-like (CD44+/CD24-) cells.

Each cell nuclei was indented only once with a force of 30 nN and analyzed from

a depth of 0.25-2.5 µm. The cancer stem cell (CSC) phenotype nuclei are more stiff

(mean Young’s Modulus: 1.45± 1.20 kPa) than their non-stem-like nuclei counter-

parts (mean Young’s Modulus: 0.76 ± 0.46 kPa). A Mann-Whitney test has deter-

mined that there is a statistically significant difference between the two populations

(p=0.0288).
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5.4 Conclusion

5.4.1 Cancer Stem Cell Population Characterization via Con-

focal

The MDA-MB-231 cell line possesses the most CSCs in its population (87%) compared

to the MCF-10A cell line, which possesses no CSCs in its population, and the MCF-

7 cell line, which possesses 12% CSCs. The subpopulation results obtained from

confocal microscopy agree well with Sheridan et. al.’s results for the MDA-MB-231

cells [135]. However, the results for the CD24 marker for both Sheridan et. al. and

the confocal imaging both sharply disagree with the findings from Lu et.al. [135, 141].

The MCF-10A results are quite a bit different from Sheridan et.al.; however, this can

be attributed to the difference in cell growth conditions which Sheridan et. al. believe

to play a large role in determining the phenotype of MCF-10A cells [135]. The MCF-7

results also differ from the populations found in the literature for yet undetermined

reasons [135, 141, 147, 148, 149, 150, 151, 142]. The differences between groups could

be due to the smaller sampling size of the confocal microscopy technique compared to

the other groups’ FACS (fluorescence-activated cell sorting) sample size or the growth

conditions of the cells when cultured. One hypothesis would be that growth conditions

deeply impact the generation of cancer stem cell phenotypes since all four groups use

different cell culture growth conditions. The impact of cell growth conditions on

subpopulations of CSCs would be interesting to study in a future work as this has

been alluded to in the literature but never properly studied [135].

5.4.2 Buffer Impact on Stiffness and CSC Subpopulation

There seem to be no statistically significant differences in the stiffness when com-

paring between the stem-like and nonstem-like populations of each cell line in HBSS

(Figure 5.4) when using the sharp tip. However, there is a statistically significant
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difference when the stem-like populations between the 3 cell lines are compared in

HBSS (Figure 5.4). A statistically significant difference existed for the nonstem-like

populations between the 3 cell lines in HBSS (Figure 5.4) as well. Additionally,

there is a statistically significant difference between stem-like cells grown in PBS

buffer versus HBSS buffer for the MCF-7 cell line proving that the buffer environ-

ment does in fact affect the stiffness of cell subpopulations for some cell lines (Figure

5.5). The MCF-7 is impacted by buffer environment whereas the MDA-MB-231 and

the MCF-10A cell lines are not. MCF-7 cells are stiffer when measured in PBS buffer

compared to HBSS buffer (Figure 5.5).

5.4.3 Impact of Tip Size on Stiffness and CSC Subpopulation

There is a significant stiffness difference between stem cells and non-stem cells in the

MCF-7 cell line which does not occur in the MDA-MB-231 cell line for the larger tip

(Figure 5.6). These differences could be attributed to differences in cell phenotype

for the cell lines. MDA-MB-231 cells are mesenchymal so it agrees with our hypothesis

that there is no difference between CSCs and non-CSCs cell stiffness; on the other

hand the MCF-7 cell line is luminal so the CSCs being more mesenchymal-like would

be softer than the non-CSCs. Additionally, there is a significant stiffness difference

between stem cells probed with the large tip when compared to the stem cells probed

with the sharp tip for both the MDA-MB-231 cell line and the MCF-7 cell line. The

same is not true for the non-stem-like cells for both cell lines (Figure 5.7). This

could signify that there are differences between the cell body and cell cortex for the

stem-like cells for both cell lines but not for the non-stem-like cells for both cell lines

since the sharper tip is more sensitive to the cell cortex whereas the large tip is more

sensitive to the cell body [152].
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5.4.4 Nuclei Stiffness Between CSCs and Non-CSCs

There is a statistically significant difference between the nuclei of stem-like and non-

stem-like MDA cells as hypothesized. Since more metastatic cancer cell lines have

softer nuclei [68, 153], we anticipated that the nuclei of the stem-like cells would be

softer than their non-stem-like counterparts. However, the results show the opposite.

Softer nuclei have been shown to have decreased chromatin condensation and low

lamin A/C levels [153] so it is possible that our results demonstrate that the non-

stem-like cells have a decreased chromatin condensation and low lamin A/C levels.
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Chapter 6

Conclusion and Future Work

This dissertation has presented novel physical science-based methods to quantify qual-

itative characteristics of biological organisms. Chapter 4 introduced a method to

quantify DNA in several cancer/non-cancer cell lines as well as methods to quan-

tify nuclear size, chromocenters, nucleoli size and quantity per cell as well as nuclear

speckle regions of the cellular nucleus between cancer and non-cancer cells. Chapter 5

detailed methods and applications of combined atomic force microscopy and CLSM to

determine the Young’s Modulus between stem-like and non-stem-like cells in cancer

and non-cancer breast cell lines.

While methods discussed here are in relation to cancer, the quantitative method-

ology can be applied to many different types of cells and tissues to study the effects of

disease and pathogens. Chapter 4 presents methods to quantify DNA extracted from

cells as well as quantitative methods to study nuclear size, chromatin distribution,

nucleoli size and nuclear speckle distribution in mammalian cells. Finally the novel

discovery of ring structures in the EPC2 normal esophageal cell line compared to the

CP-D cancerous esophageal cell line leaves the possibility open for future studies to

determine the size of these structures and whether they are held together by cohesin

and/or condensin.
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Chapter 5 presents new methods to study cell phenotype and how it alters cell

mechanics. It was determined that the MCF-7 stem-like cells are impacted by buffer

environment whereas the MDA-MB-231 and the MCF-10A cell lines are not. MCF-7

cells are stiffer when measured in PBS buffer compared to HBSS buffer due to the

Warberg effect. Additionally, there is a significant stiffness difference between stem

cells and non-stem cells in the MCF-7 cell line which does not occur in the MDA-MB-

231 cell line for the larger tip. These differences could be attributed to differences

in cell phenotype for the cell lines. MDA-MB-231 cells are mesenchymal so it agrees

with our hypothesis that there is no difference between CSCs and non-CSCs cell

stiffness; on the other hand the MCF-7 cell line is luminal so the CSCs being more

mesenchymal-like would be softer than the non-CSCs. Finally, there is a statistically

significant difference between the nuclei of stem-like and non-stem-like MDA cells as

hypothesized. Since more metastatic cancer cell lines have softer nuclei [68, 153],

it was anticipated that the nuclei of the stem-like cells would be softer than their

non-stem-like counterparts. However, the results show the opposite to be true and

raise the possibility for further investigation. Softer nuclei have been shown to have

decreased chromatin condensation and low lamin A/C levels [153] so it is possible that

the results presented here demonstrate that the non-stem-like cells have a decreased

chromatin condensation and low lamin A/C levels.

Lord Kelvin is attributed to have said: “When you can measure what you are

speaking about, and express it in numbers, you know something about it.” Biological

organisms, due to their complexity and heterogeneity, have typically been charac-

terized only qualitatively due to the lack of techniques to quantify what has been

qualitatively observed. In this dissertation, qualitative biology has been quantita-

tively analyzed in the hopes of gaining further insight into the mechanics of cancer

biology.
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Appendix A

RKO DNA QUANTIFICATION

RESULTS

DNA gel electrophoresis was done in 0.8% agarose gel after isolating the DNA from

chromatin using a phenol chloroform and ethyl ether extraction. DNA was loaded in

the gel after being mixed with a 6X DNA loading dye and run for 2 hours at 60 V

using 1X TAE as the running buffer.
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Figure A.1: Gel electrophoresis results for DNA extracted from the RKO cell line.

The gel on the left shows the DNA contained in the low salt and high salt fractions at

2, 4, 8, and 16 minutes. The asterisk represents a DNA ladder used as a control. The

gel on the right shows the DNA contained in the supernatant and insoluble fractions

at 2, 4, 8 and 16 minutes.

Clearly, the gels in Figure A.1 show that there is indeed DNA found in the

supernatant fraction as well as the insoluble fraction at each digestion time proving

that Sanders could have potentially discarded a portion of her DNA unintentionally.

The figure below shows the total amount of DNA quantified for the RKO cell line.
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Table A.1: The total amount of DNA obtained from each salt fraction shown here

along with the theoretical quantity of DNA expected based on the total number of

cells for the RKO cell line.
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Appendix B

CONTACT POINT SELECTION

Figure B.1: An example of a force curve taken with the AFM. The black line repre-

sents the hypothetical location of a hand-selected contact point.
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Appendix C

IMAGE PROCESSING AND

ANALYSIS

To cut a cell from the larger image, the image was opened in SymPhoTime 5.13 and

the “select free ROI” tool was selected. Then the mouse was used to trace around

the cell and the cell’s intensity data was saved (Figure C.1).
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Figure C.1: Steps taken to cut cell intensity data from the larger image and import

into analysis software. These images show a cell stained for CD44.

At times (most notably with the CD24 signal), it was hard to view the entire cell

in the image (see Figure C.2).

To ensure that the same cell had the same area being cut, an overhead film was

placed over the brighter cell image and the outline of the cell was traced using a

Sharpie. Then the film was placed over the dimmer cell image and the “select free

ROI” tool in SymPhoTime was used to cut out the exact same cell area as the brighter

image by tracing over the Sharpie outline.

Once all the cells were cut, the intensity data was imported to MatLab. There

the intensity of each cell was normalized to the perimeter of the cell (normalized

perimeter value= total intensity of the cell/total perimeter of the cell) and the results

were saved. Thresholds for whether a cell was positive or negative for a particular

stem cell marker needed to be determined. Therefore unstained sample dishes were
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Figure C.2: Weak CD24 signal makes it hard to distinguish the entire cell area

imaged and cells with +3 standard deviations from the unstained mean were treated

as positive and all other cells were treated as negative for a particular antibody.
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