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ABSTRACT

Visual applications – those that use camera frames as part of the application –

provide a rich, context-aware experience. The continued development of mixed and

augmented reality (MR/AR) computing environments furthers the richness of this

experience by providing applications a continuous vision experience, where visual

information continuously provides context for applications and the real world is aug-

mented by the virtual. To understand user privacy concerns in continuous vision

computing environments, this work studies three MR/AR applications (augmented

markers, augmented faces, and text capture) to show that in a modern mobile sys-

tem, the typical user is exposed to potential mass collection of sensitive information,

posing privacy and security deficiencies to be addressed in future systems.

To address such deficiencies, a development framework is proposed that provides

resource isolation between user information contained in camera frames and applica-

tion access to the network. The design is implemented using existing system utilities

as a proof of concept on the Android operating system and demonstrates its viabil-

ity with a modern state-of-the-art augmented reality library and several augmented

reality applications. Evaluation is conducted on the design on a Samsung Galaxy

S8 phone by comparing the applications from the case study with modified versions

which better protect user privacy. Early results show that the new design efficiently

protects users against data collection in MR/AR applications with less than 0.7%

performance overhead.
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Chapter 1

INTRODUCTION

As mobile computing evolves, its applications shift to include a broader and deeper

level of functionality. The growth of visual perception applications on mobile demon-

strates that with such a shift come new application types and new vulnerabilities to

user privacy and security. Visual applications include those that utilize the on-device

camera to enable rich user experiences, such as photography tools, social media shar-

ing applications, and mixed and augmented reality experiences. Meanwhile, visual

applications raise serious security concerns because they often contain private and

sensitive user information that can be utilized maliciously by application developers.

Even though mobile operating systems such as Android are equipped with permission

systems, they still fail to protect user privacy. MR/AR applications are particularly

vulnerable because they have unrestricted continuous access to sensitive visual infor-

mation without transparency as to how it is used Baldassi et al. (2018); Lebeck et al.

(2018); Acquisti et al. (2011).

We conduct a case study around three MR/AR applications running on the AR-

Core framework. The applications are augmented markers, which renders 3D objects

above the markers (as shown in Figure 1.1); augmented faces, which adds effects to

users’ faces; and text capture, which digitalizes text seen through the camera. We

find that in these scenarios private user data are vulnerable to collection by

the application developer. While providing a seemingly benign user experience,

these applications include hidden functionality to send visual information to a local

server when a marker, a face, or text is detected accordingly. The threat model we

address in this work is demonstrated by these applications. We design for cases in
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Network access

Server

Figure 1.1: Camera frames in MR/AR applications often contain sensitive information

(e.g. a credit card) which is vulnerable to collection by the application developer.

which the application developer seeks to obtain sensitive visual information from the

user and collect it off-device. We assume that the operating system is trusted and

the developer does not utilize covert channels of communication.

Privacy concerns on modern computing systems, including inappropriate data col-

lection in MR/AR applications, have been actively discussed in recent years. Related

works address these privacy concerns by taint-tracking and controlling information

flow Krohn et al. (2007); Enck et al. (2010); Fernandes et al. (2016); Efstathopoulos

et al. (2005); Roy et al. (2009) or adding an intermediate layer to preprocess frames

and filter out sensitive visual information Jana et al. (2013); Roesner et al. (2014);

Aditya et al. (2016); Raval et al. (2014). However, they add unnecessary complex-

ity and performance overhead which limits their practicality for real-world MR/AR

applications.
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We propose a development framework that provides resource isolation between

user information contained in camera frames and application access to the network

such that malicious applications developers cannot collect them off-device. Our so-

lution is MR/AR-specific, and addresses problems unique to continuous vision ap-

plications. We aim to raise barriers against visual information collection by guiding

application development and enforcing information flow policies. We assume a trusted

system and leverage the Android permissions system to reduce framework overhead.

Our proposed framework is designed to protect against visual information leaks at

the highest level of granularity with the most visibility – application shared resources.

It is for this reason that protection against covert channel attacks is not incorporated

into our design. We also focus on developer freedom by not locking the developer

into one computer vision framework or library. This is practical for actual MR/AR

applications, which use a variety of computer vision platforms for visual computing,

including in-house variations.

We evaluate the implementation of our proposed framework on a Samsung Galaxy

S8 phone running modified versions of the applications in our case study. By moni-

toring network traffic using the Android Studio profiler and application frame rate,

early results show that our framework effectively prevents malicious network access

with negligible performance overhead (less than 0.7%).

We make the following contributions.

• We identify that MR/AR applications running on top of current mobile oper-

ating systems are vulnerable to data collection by malicious application devel-

opers.

• We introduce a framework to effectively isolate device camera frames from the

network.

3



• We demonstrate that our proposed framework can protect MR/AR application

users against data collection in real-time.

4



Chapter 2

RELATED WORK

Information Flow Control Krohn et al. introduced the Flume system to al-

low safe interaction between conventional and DIFC-aware processes Krohn et al.

(2007). Enck et al. presented TaintDroid to identify and protect data leakage via

untrusted applications Enck et al. (2010). Fernandes et al. introduced FlowFence

to guarantee that sensitive data is only processed within designated functions that

run in FlowFence-provided sandboxes Fernandes et al. (2016). Roy et al. presented

Laminar which implements and further optimizes DIFC for program objects and OS

resources Roy et al. (2009). Efstathopoulos et al. used Asbestos labels to isolate

user data for information flow control Efstathopoulos et al. (2005). However, each of

these generalized approaches trade performance for security which is impractical for

performance-sensitive applications such as those in the MR/AR domain. Our frame-

work utilizes a domain-specific approach that significantly restricts information flow

from the camera to the network but with negligible overhead.

Protection of Visual Data Jana et al. presented the Darkly system which

hides visual information from the developer by using opaque handles to operate on

rather than the actual camera frame Jana et al. (2013). Roesner et al. introduced

a framework that has a granularity to manage objects in the sensing streams Roes-

ner et al. (2014). Lebeck et al. introduced Arya system to secure the rendering of

AR applications Lebeck et al. (2018). Aditya et al. presented the I-Pic platform

for policy-compliant image capture Aditya et al. (2016). Lehman et al. developed

PrivacyManager to help developers control malicious functionalities in AR applica-

tions Lehman and Tan (2017). Raval et al. proposed the MarkIt framework to allow

5



users to specify and enforce fine-grained control over video feeds Raval et al. (2014).

All of these systems require an intermediate layer to process visual information before

the policies are applied, which allows for varying privacy granularity, but at the cost

of complexity and overhead. Designing for a threat model which designates all visual

information as sensitive removes the need for visual processing as part of the policy

enforcement process. Removing the intermediate visual processing layer improves

performance and removes complexity.

Policy Enforcement Jia et al. proposed an approach to enforce information

flow control policies at runtime Jia et al. (2013). Tuncay et al. introduced Cusper

to allow applications to change permissions dynamically Tuncay et al. (2018). Com-

Droid analyzes intent statically Chin et al. (2011). Laminar enforces the security

policies at runtime Roy et al. (2009). Each of these works explore modifications to

policy management, but do not for real-time applications. The design of our proposed

framework focuses on application-level measures to protect visual data, but will re-

quire a static- or dynamic-analysis in order to enforce the design policies at each

stage of the application lifetime. Building upon policy enforcement will ensure that

side-channel information leaks are minimized in addition to explicit information leaks

Our implementation accomplishes information flow control at a rudimentary level

by enforcing a unidirectional data flow via an application-level service and binding

mechanism.
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Chapter 3

BACKGROUND

3.1 A case study

Privacy protection in MR/AR has been actively discussed mainly from five as-

pects, including input protection, data protection, output protection, user interac-

tions protection, and device protection de Guzman et al. (2018). In this section, we

focus on presenting the limitations and problems in current mobile operating systems

for preventing data collection within an MR/AR application – by studying the

most salient vulnerabilities and designing an application which exploits them.

3.1.1 Android Permission System Overview

Each application runs in a sandbox with a unique process identity. The

Android security model attempts to protect user privacy by requesting and granting

permissions at the system level, whether within an application sandbox or between

different sandboxes. Within the sandbox, an application is required to request per-

missions before it can access potentially sensitive information android.permissions

(2019). For instance, an approval request will prompt to the user when the appli-

cation requests access to the camera, the file system, or the network; all sources of

potentially sensitive data. Outside the sandbox, permissions can be customized and

checked if the application needs to interact with other applications. Similarly, no data

access between applications will be granted if the permission request is declined.

Process-level security enforcement has its limitations. As each application

runs as a separate process, all resources within the application are shared and can be

7



accessed as a single shared portion of memory by different parts of the application.

Shared resources enable a simplified development process while maintaining the fun-

damental benefits of the application sandboxing model. Under the current Android

permission system, once the user has granted the access to a permission the applica-

tion has access to all of the capabilities the permission enables, without limitation.

Permission is not requested again through the lifetime of the application install un-

less the user manually revokes it via system settings. For MR/AR applications in

particular, camera data often contains sensitive information such as a person’s face

or objects in surroundings. Exposure to sensitive information increases with use of

the application; thus, an application with continuous access to the camera is poten-

tially subjected to many instances of sensitive information each day. An untrusted

application can with relative ease aggregate the data and secretly send them over

the network for further inference. The current process-level protections on Android

are incapable of protecting the user against this type of data collection, as shown in

Figure 4.1a.

3.1.2 Threats in MR/AR Applications

Our threat demonstration applications use the ARCore framework to present com-

mon vision use cases to the user via augmented markers, augmented faces, and

text capture, given a situation in which camera information is continuously cap-

tured. On each of the three applications, the user is presented with a permission

confirmation for the camera the first time the application is opened. In the aug-

mented scenarios, the application shows the user a 3D object rendered over the real

world. In the text capture application, any text detected in the camera view is dig-

itized for further use. Each of these applications contain application code, however,

that aggregates camera frames that are likely to contain sensitive information. Each
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time a face or marker is detected with the augmented faces and augmented markers

applications, a photo of the face or marker is sent over the network to a private server.

In the text capture application, all captured text is streamed to a private server.

We are able to demonstrate that these applications are vulnerable to context-

sensitive data collection, as shown in Figure 1.1 – where credit card information

is collected in the augmented marker application. We classify any application that

collects camera data as a threat to both user privacy and user security because the

information obtained from the camera is always classified as potentially sensitive. In

modern mobile systems, any collection of camera information – incidental or malicious

– is in the best case a privacy breach and in the worst a security breach. The unre-

stricted access to sensitive information that applications can obtain in this manner is

contrary to the standard mobile computing model designed around the principle of

least privilege android.leastprivilege (2019). In addition, users are not aware of data

transferred between the device and the network. The Android permissions model

currently presents a single permission dialog to the user when camera access is re-

quested. This gives the application access to capture and record camera information

even when the application is in the background. Requesting permission for internet

access is declared in the application manifest file, but is automatically granted to the

user at install time. With these two permissions granted an application is able to

present a perceived experience to the user, perhaps providing them with reason to

accept permission to access the camera, and without user knowledge transfer camera

information over the network.

9



Chapter 4

DESIGN

In this section, we propose an application-level framework that gives the developer

implementation freedom by allowing visual computing to be done in any manner,

while imposing on the developer a development architecture that separates visual

computing from the network. The goal of the framework is to protect users against

malicious collection of sensitive visual data by isolating network access from the rest

of the application and limiting network communication without impeding the real-

time nature of augmented experiences, affecting performance severely, or requiring

significant adjustment from the developer to use.

4.0.1 Overview

Our proposed framework is designed around the principles of resource isolation

and unidirectional data flow, as shown in Figure 4.1b.

First, we separate the part of the application that requires network access from

the rest of the application into its own distinct process. Resource isolation in this

way restricts resource access – particularly that of the camera and the network – and

buffers application network traffic. We then deny network permissions to the main

application process as a check that all network processing is only conducted inside the

network process. Similarly, the network process is denied permission to use the device

camera to decouple network access from camera access. Separation into two processes

is chosen as opposed to other isolation methods because with it we are able to utilize

existing operating system permissions constructs. Implementing custom permissions

enforcement on top of the system would add unnecessary complexity to the design, as

10



Application Process

Augmented Experience

Camera Interface

Application Logic

Shared Resources

Network 
Download/Upload

External Filesystem 
Read/Write

Data Ingestion

Operating System

Display

Camera

Network

Filesystem

(a) In a traditional application, resources are shared within one

application process. The application developer is able to collect

camera frames easily through direct network access.

Operating System

Camera Process Network Process

Augmented Experience

Camera Interface

Application Logic

Receiver

Network 
Download/Upload

External Filesystem 
Read/Write

Data Ingestion

Transmitter

Display

Camera

1 2

3

Network

Filesystem

(b) In our framework, the camera process cannot access the net-

work 1○, the network process cannot access camera frames 2○,

and information flow is unidirectional 3○.

Figure 4.1: Our proposed framework augments traditional visual information protec-

tion by separating the application into a camera process and a network process with

three information flow policies.
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standard process separation fulfills the basic requirements of visual resource isolation.

Second, to guarantee that necessary information flow is still available from the

main application to the network process, we further isolate the network by adding a

unidirectional data flow policy which prevents the application from communicating

sensitive visual information to the network process directly. Isolating computing

resources and enforcing unidirectional data flow preempts a developer’s attempts

to collect visual information by providing significant barriers between the camera

and the network. The main application thus is left without an obvious approach to

transmitting user data over the network.

However, even with unidirectional information flow enabled, there are some lim-

itations in strict resource isolation. For example, user-triggered upstream network

access is not covered by this work except in the case of system notifications discussed

in section 5.0.1. We did not explore deeply the potential for adding visual elements

that trigger network events, such as an augmented reality download button. Further-

more, our design does not protect users in multi-user experiences, which also require

upstream network access. In these cases we make the assumption that the developer

may use the traditional application architecture, provided that the user is notified

of the potential threat this poses to their security and privacy. We hope further re-

search in the field delves deeper into providing meaningful solutions in these cases in

addition to those covered by our work

4.0.2 Resource Isolation

Moving network access into a separate process from camera access provides an

added layer of protection for sensitive information in AR and MR apps. We call

these two processes the camera process and the network process. The camera

process manages the main AR/MR experience, and is denied permission to access the

12



network. It captures camera frames, operates on them, and renders the experience

to the user. The camera process also manages the user interface and input of the

application. Network communication is accomplished via the network process and

information is then transmitted to the camera process. Information transferred may

be a downloaded user profile or new 3D models for example. The external filesystem is

also a vulnerability because the camera process can write sensitive information to the

filesystem and the network process can read from it; we mitigate this by restricting

external filesystem access to only the network process.

Isolating network access from visual computation prevents the developer from

sending a camera frame (or data extracted from it) that is available in memory

explicitly to an external server. Separation of resources introduces the need for inter-

process communication (IPC), which can be computationally expensive, but we found

that a typical AR/MR application requires minimal communication in this manner

in order to remain performant and maintain a real-time vision-based experience. Our

framework is designed under the assumptions that network access is infrequent and

that while a mixed-reality experience is being shown to the user, network access is

not tightly coupled to rendering time. However, with isolation in place the camera

process is still able to transmit visual information via various IPC methods to the

network process. Our framework uses a unidirectional data flow policy to manage

unrestricted IPC access.

4.0.3 Unidirectional Data Flow

Our framework enforces a unidirectional flow of data from the network process to

the camera process. A unidirectional data flow policy of this type gives the sending

process – the network process – freedom to communicate arbitrarily large data to

the receiving process – the camera process – while trusting the operating system to

13



handle the potential for backchannel leaks.

Our framework accomplishes this via platform-supported inter-process communi-

cation. Because the system is a trusted part of the threat model, any backchannel

communication such as acknowledge signals coming from the receiver are considered

contained and therefore benign. With unidirectional data flow in place, the cam-

era process is forbidden from uploading to the network and the network process is

forbidden from obtaining sensitive visual information.

However, a unidirectional approach has limitations when applied to MR/AR. More

specifically, enforcing unidirectional data flow from the network may limit applications

that require visual computation offloading or bidirectional network access. Compu-

tation offloading is used in order to preserve battery life and compartmentalize an

application’s components, both of which are concerns in MR/AR applications, but

offloading visual computation introduces a flow of data that breaks framework poli-

cies. In addition, multi-user augmented reality experiences are growing in popularity

but require bidirectional network access. Our work does not account for the cases in

which the app requires bidirectional access to the network and instead leaves them

for future work.

4.0.4 Policy Enforcement

In order for our framework to function, three core policies are introduced. Each

policy must be enforced on top of the camera process and the network process, as

shown in Figure 4.1b.

First, the camera process must not have access to make network calls. We apply

the existing operating system permissions model to handle this policy by granting the

camera permission to and revoking the network permission from the camera process,

relying on the operating system to conduct permission enforcement. In order to meet

14



framework requirements, the developer must separate code to be run in the main

(camera) process from code to be run in the network process.

Second, the network process must not have access to the camera frame or anything

inferred from it. The same principles apply here as with the camera process. We

grant the network permission and revoke the camera permission and let the operating

system handle enforcement.

Third, the flow of information between the two processes must only be from net-

work to camera and never the other way. It is for this purpose that we use a platform-

enforced method of inter-process communication. The trusted operating system acts

as a mediator between the two processes and backchannel communication is limited

by system constraints. We prevent the similar types of communication in the op-

posite direction by hiding the network process transmitter from the camera process,

isolating the network process from bound execution, and predefining the transaction

API between processes. The camera process is installed without the metadata re-

quired to identify the network process. Therefore, the network process is effectively

hidden from being accessed externally. We remove the availability of service binding

from the network process so that other processes are not able to trigger it. We also

define a simple transaction API between services to enforce these requirements for

the application developer.
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Chapter 5

IMPLEMENTATION

In this section, we present the initial implementation of our proposed framework

on the Android operating system as an application library written in Java and Kotlin.

The library contains two modules, Receiver for the camera process and Transmitter

for the network process. The receiver module contains the permission definition

specific to the camera process, a data-receiver registration API, and a predefined

inter-process capable service to handle incoming messages. The transmitter mod-

ule includes the permission definition specific to the network process, a data-sending

API, and a package-local foreground service to send messages in the background.

We also propose initial plans to implement framework policy enforcement on future

handheld and head-mounted mobile devices. Our implementation augments the An-

droid security model by leveraging existing application-level constructs to provide the

protections discussed while maintaining developer flexibility and application perfor-

mance.

5.0.1 Resource Isolation

Resource isolation on a mobile Android device requires unique permissions for the

camera process and the network process. Android permissions are assigned according

to the application package, so in our implementation the two application processes

are separated into two corresponding application packages. The framework’s viability

is entirely dependent on developer adoption of the framework. Our approach makes

the assumption that developer adoption is enforced, whether at development-time,

compile-time, install time, or during application store review.
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We create two individual application modules in the same Android Studio project,

and designate one as the network package. Each of the library modules are associated

with the corresponding application package module.

The Receiver library module is compiled with the camera package, which con-

tains the main application code, including the software camera pipeline, and the AR

experience. The main application initializes the Receiver object via a single line of

code:

val receiver = Receiver(applicationContext)

An object representing the framework interface is instantiated with the current appli-

cation context, associating it with the running application package. The application

then registers a receiver with the desired string identifier and the data to be sent as

a byte array:

receiver.registerReceiver(("msg_identifier", bytes) -> {

// Load data into destination

})

The Transmitter module is compiled with the network package, which is limited

to developer-defined network code. Network application code is required to initialize

the Transmitter object in a similar manner to that of the receiver:

val transmitter = Transmitter(applicationContext)

The Transmitter ”send” method is then called with a string identifier and a byte

array containing the data when the network application needs to send data to the

camera application:

transmitter.send("msg_identifier", bytes)

17



Android application permissions are typically defined by the developer in the

AndroidManifest.xml application metadata file. We use this method in our imple-

mentation, including a manifest with each framework library module that is merged

with the application manifest. Each library module conducts runtime permissions

queries via the system PackageManager before conducting IPC, blocking the devel-

oper from breaking framework permission requirements via runtime permission re-

quests or compile-time permission additions. If a permission query detects a policy

breach, a PermissionConfigurationException is thrown by the framework and the IPC

is cancelled. A more robust solution is discussed in the future work section.

The addition of user-triggered network events is accomplished via system notifi-

cations. When the network package is installed, the application may present a set

of notifications that broadcast local messages to perform various network actions.

Since the synchronicity of network traffic may not always be defined at install-time,

asynchronously-triggered network events introduce a wider set of application support,

such as that of the face overlay 3D model transfer in the augmented faces applica-

tion with framework integration. In this way, the network package is able to remain

isolated from the camera package and offer asynchronous support.

5.0.2 Unidirectional Data Flow

Our proposed framework uses a bound service to achieve policy-defined unidirec-

tional data flow. The Android Binder framework, an IPC mechanism at the system

level, supports inter-process message passing and remote procedure calls. We define a

service ReceiverService in the Receiver module that exposes an API to allow remote

processes to pass data into it. ReceiverService is then able to transfer that information

to the Receiver object and then back to the application’s registered receivers.

We also define TransmitterService, a service used to initiate network-to-camera
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transactions in the background. The network application binds locally to Trans-

mitterService via the Transmitter object and initiates a transaction. The transaction

process is managed by the framework and the developer is not required to understand

the implementation details to utilize the framework API.

5.0.3 Policy Enforcement

Our proposed framework requires that the network be isolated from the main

application, the camera be isolated from the network application, and that informa-

tion flow be unidirectional from the network application to the camera application.

Our implementation explores how policy enforcement might be carried out at the

application-level. System-level integration is discussed further in the future work

section. The combination of resource isolation via separate application packages and

unidirectional data flow via bound services in our initial implementation demonstrates

that with minor adjustments to application development users may be protected from

collection of visual data.

The main application is restricted from network access, and the network applica-

tion is restricted from the camera. An application developed under our framework

policies that attempts to bypass permissions restrictions will not be able to transact

data from the network application to the main application. In addition, the cam-

era application will not be able to bind to the TransmitterService, because it is not

externally available.

Information flow is controlled from network to camera, and backchannel leaks are

minimized. The network application can bind to the camera application to initiate a

transaction, and the trusted operating system manages backchannel signals coming

from the camera application.

True policy enforcement will require further system integration. With the frame-
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work in place, the developer is still free to use alternative methods of inter-process

communication. Local sockets, custom bound services, and broadcast receivers re-

main available to the developer to leak visual information to the network package.

Because these are system-level constructs, our implementation treats them as trusted.

However, in an operating system with our proposed framework enforcement built in,

the network process would be better protected from external access.
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Chapter 6

EVALUATION

We evaluate our proposed framework on a Samsung Galaxy S8 phone running An-

droid 8.0.0. We run the same augmented reality applications as we discussed in the

case study §3.1, including an augmented markers application, an augmented faces

application, and a text capture application. These applications have been demon-

strated to be vulnerable against malicious data collection. The demo applications

are implemented using the ARCore platform, but our framework is designed with

flexibility in mind, and can be used with other native MR/AR platform tools.

We measure network traffic to demonstrate isolation efficiency and frame rate to

show the potential overhead of the framework. Network traffic is measured according

to the Android Studio profiler. The Android Studio profiler provides a plot of network

traffic over time for the selected package and illustrates outgoing and incoming data.

Frame rate is measured according to the frame delta reported by ARCore’s

Scene.OnUpdateListener callback. ARCore provides a simple API for receiving

frame time deltas for each frame rendered that were used during each capture session.

Our analysis requests a frame delta for each frame at a microsecond granularity and

writes it to an internal cache file. The final frame-rate is averaged across more than

1000 samples. In an attempt to prevent overhead from frame measurement itself,

we write only the requested frame time delta to the file, and then perform analysis

off-device and after the capture session.

6.0.1 Early results

Our evaluation of the three applications reveals the following observations.
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(a) The marker detection threat demonstration application generates consistent network

traffic.

(b) The same application generates zero network traffic, confined by our proposed frame-

work.

Figure 6.1: When compared to traditional applications, applications with our frame-

work integrated effectively prevent malicious network access, i.e. no frame is collected.

Our framework effectively prevents malicious data collection, as shown

in Figure 6.1. Network usage is tracked over an application session three minutes long

via the Android Studio profiler. A traditional application is able to regularly transmit

data, in this case at an average of 1 kilobyte per second, as shown in Figure 6.1a.

When our implementation is integrated, however, application network usage remains

at zero for the entire usage period of the application, as shown in Figure 6.1b.

Our framework does not incur noticeable performance overhead, as

shown in Figure 6.2. Over an application usage period of 1000 frames or more, we
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Figure 6.2: Performance (frame rate in milliseconds) is similar across all tested ap-

plications, with and without framework integration.

report average frame length in milliseconds. In detail, it only causes a 0.27% (from

33.38 ms to 33.47 ms), 0.68% (from 36.70 ms to 36.95 ms), and 0.03% (from 41.26 ms

to 41.27 ms) increase in frame length, accordingly, in the augmented markers appli-

cation, the augmented faces application, and the text capture application. It is clear

that the required receiver and transmitter services and the associated IPC in our

proposed framework slightly decrease the frame rate but the application remains per-

formant. The change in frame length is not significant enough to merit a noticeably

different user experience.

6.0.2 Impact

We introduce a framework design that can protect sensitive user visual data in

MR/AR applications at a low cost. An end-to-end implementation of the suggested

design has the potential to protect billions of users’ visual information, as continuous
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MR/AR experiences are becoming more and more popular.

Our proposed framework will involve building a trusted platform and necessary

tools for application developers to work with. We anticipate that our work will build

trust between MR/AR application users and MR/AR application developers.

Our proposed framework opens doors for new research into not only the limited

types of applications discussed, but for applications which require complex application-

network interaction, such as multi-user experiences or applications which tightly cou-

ple user interface elements and network activity. Our work introduces research chal-

lenges that necessitate continuing work in understanding software development and

data structure patterns in split-process application construction.

6.0.3 Future work

Operating System Integration We have demonstrated the effect the framework

resource isolation has on user protection against malicious data collection. However,

the current implementation is realized by modifying code at the application level. To

ease the burden of the developers, we plan to integrate the introduced framework

into Android at the system level. A deeply integrated version of our framework

will provide developer tools to enhance the process, including IDE integrations with

static analysis feedback, a public API to interact with the system-level framework

from within an application, and dynamic information flow analysis to validate policy

enforcement on the fly.

Framework Certification Model In the current implementation, we do not ad-

dress how to strictly enforce the proposed policies in an Android environment, but

instead trust the system to manage the majority of policy enforcement To verify that

applications are following our proposed policies, future work will implement permis-

sion enforcement at application install-time and notify the user whether the requested
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application observes the framework’s requirements. We further intend to prevent typ-

ical side-channel IPC attacks via local sockets, custom bound services, and broadcast

receivers. Future implementations may include system-level unidirectional policy en-

forcement similar to the SELinux-based unidirectional data flow described by Shimko

et al Shimko and Brindle (2007).

Benchmarks This work serves as a preliminary demonstration to reveal whether that

the proposed framework is effective in protecting the MR/AR users against malicious

application developers and to drive novel research in the field of MR/AR privacy

and security. We did not compare the performance of our framework to other works

at this time. We plan to choose other state-of-the-art privacy protection systems as

benchmarks to compare against in future work.
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Chapter 7

CONCLUSION

As MR/AR technology matures, continuous visual information will allow new

application categories to develop. But rising privacy concerns will accompany new

application categories. Providing frameworks like the one presented in this work will

allow users protection against malicious applications that collect sensitive informa-

tion. Sensitive information is best protected by restricting its use to the device, as

once it is available to the network a high level of trust is required between the user and

the application developer. Future work in this area will provide stronger guarantees

through lower-level, more extensive policy enforcement. User privacy will drive the

growth of MR/AR as practical technologies; as users become more confident in the

protection of their information, they are more likely to adopt new technology.
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