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ABSTRACT

This dissertation consists of two chapters. The first chapter studies children’s skill

formation technology while endogenizing the maternal age and child investments. I

estimate the effect of a mother’s age at childbirth on her child’s health, skill level,

educational attainment, and adulthood earnings. There is a tradeoff between delay-

ing childbirth to provide a more secure economic environment for mother and child

versus the potential negative biological consequences for a child of having an older

parent. I quantify this tradeoff. The results indicate that a five-year decrease in the

maternal age of educated women, ceteris paribus, results in over 0.50 std increase in

the childs skill level due to an increase in the childs ability to acquire skills. However,

if one adjusts child investment according to individuals wage profile conditional on

reduced maternal age, the average childs skill level decreases by 0.07 std. This reduc-

tion in childrens skill highlights the impact of lower inputs that children of younger

mothers receive. The negative effect of foregone wages may be reduced through policy

approaches. My policy analysis indicates implementing a two-year maternity leave

policy that freezes mothers wages at the level before childbirth would reduce average

maternal age at the first birth by about two years, while also increasing the average

childs skill level by about 0.22 std and future earnings by over 6%.

In chapter two, I study the impact of females’ perceptions regarding their future

fertility behavior on their human capital investments and labor market outcomes.

I exploit a natural experiment to study the causal effect of fertility anticipation on

individual’s investments in human capital. I use the arguably exogenous variation in

gender mix of children as an exogenous shock to the probability of further fertility. I

document that having two children of the same gender is associated with about 5%

lower wages for the mother compared to having two children of the opposite sexes.

Mothers with same-sex children perceive themselves as more likely to bear one more

i



child, and so less attached to the labor market, so invest less in human capital, and

this is reflected in wages today.
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To my family.
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Chapter 1

CHILDHOOD INVESTMENTS, ABILITY, AND ENDOGENOUS MATERNAL

AGE

1.1 Introduction

A remarkable change in the age of motherhood has occurred gradually in American

society, as well as in other developed countries, over the last four decades: the trend

is to postpone childbirth until a later age. In the US, the mean age of mothers at

first birth has steadily increased from 21.4 years in 1970 to 26.6 years in 2016 (OECD

(2018)).

One reason for this trend is the increase in female labor supply.1 Postponing child-

birth allows females to build human capital, which has returns in the labor market

and presumably in investing in children. There is an extensive literature in economics

emphasizing the role of parental investment in child outcomes (Del Boca et al. (2013);

Cunha et al. (2010)).2 Since parental financial resources increase with parental age

(Powell et al. (2006)), mothers who delay parenthood will have more financial abil-

ity to invest in the childhood of their children.3 Thus, children might benefit from

1Womens returns to experience have increased significantly since the 1970s (Blau
and Kahn (1997) and Olivetti (2006)), and the labor force participation rate for US
women has increased from 33.8% in 1950 to 56.7% in 2015 (OECD (2018)). There has
been also a dramatic increase in married womens hours of labor market work during
that period (Olivetti (2006)). Caucutt et al. (2002) argue that increasing returns to
labor market experience have led highly-educated women to delay their fertility and
take advantage of stronger prospects in both labor and marriage markets.

2Also see Dahl and Lochner (2012) for the role of family income; Blau (1999) for a
more conservative estimate of the effect of family income on children’s outcomes; and
Cooper et al. (2013) for a literature review on the relationship between household
financial resources and childrens outcomes.

3It is a well-known fact that the real wage of individuals increases over the life-
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being born at a later maternal age. However, there are potential negative conse-

quences of postponement on child outcomes. Namely, the risks of Down syndrome,

childhood cancer, and autism increase with the maternal age (Durkin et al. (2008);

Johnson et al. (2009), Yip et al. (2006)), as does the risk of a low birthweight infant

(Restrepo-Méndez et al. (2015); Goisis and Sigle-Rushton (2014)). Delayed mother-

hood is associated with higher risk of diabetes in the child (Byrnes (2001); Cardwell

et al. (2009)). Older maternal age is also associated with mental retardation that

occurs in the absence of Down syndrome but accompanied by other neurological con-

ditions that affect the central nervous system, such as epilepsy, cerebral palsy, or birth

defects (Tearne (2015); Yeargin-Allsopp et al. (1995); Drews et al. (1995)). Postpon-

ing childbirth is also associated with reduced intelligence in the child (Bacharach and

Baumeister (1998)).

Thus, women face a crucial trade-off when deciding at which age to bear a child:

on the one hand, postponement of childbirth is beneficial to their children because

individuals receive higher wages as they accumulate human capital, which means

women will have more resources to invest in their children at later ages. On the

other hand, postponing childbearing might have a negative impact on the child, as

described above. Women have to balance these positive and negative effects when

deciding on the timing of childbirth and their subsequent investments. In this paper,

I develop a life-cycle model and estimate it using data from the Panel Study of Income

Dynamics (PSID), which provides information on the parents decisions on the timing

of fertility, labor supply, and child investments as well as data on childs outcomes. I

cycle, at least for the first half of the work-life-cycle. The life-cycle wage profile is
usually hump-shaped with a maximum at around age forty (Chéron et al. (2013)).
Theoretically, individuals accumulate human capital through work experience (learn-
ing by doing), and this leads to an increasing wage profile (see Polachek et al. (2008)
for a theoretical framework, and Lagakos et al. (2018) for an empirical cross-country
study).
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estimate my mixed-integer stochastic dynamic programming model using the method

of simulated moments. First, the model is solved by backward induction given a set

of parameters. Then, it is simulated for individuals over their life cycle. I define

a set of moments that capture the relationships between different variables in the

sample. These moments can be computed for both simulated and observed data.

Model parameters are chosen such that simulated moments replicate data moments.

Using the estimated model, I analyze both negative and positive potential impacts

of postponed childbirth on a childs skill level and investigate the extent to which

negative effects can be compensated for by additional parental investment during

childhood. I further conduct policy counterfactual analyses to evaluate the impact

on child development of implementing a maternity leave policy in the US.

Investment in the child has at least two components: child goods (money in-

vestment) and the time that the mother spends with the child (time investment).

There is a trade-off between the two; the more hours the mother spends with her

child, the fewer hours she can work, and the less financial resources she has for child

goods. However, the trade-off between money investment and time investment has

a dynamic nature due to the mothers wage life-cycle; as her wage increases, the set

of feasible pairs of time and money investments expands. Thus, a mother can make

more investments of both types by delaying her motherhood. Moreover, the trade-

off between the two types of investments is endogenous; the individuals wage profile

depends on her human capital stock, and the human capital accumulation process is

determined by intertemporal labor supply decisions. Females fertility decisions might

affect their participation in the labor market, as they need to make time investments

in their children after childbirth, and it might negatively impact their human capital

accumulation (future wages). Lower future wages lead to lower capacity for both

their own consumption and child goods expenditures. Hence, the timing of fertility
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and decisions concerning child investments and labor supply are endogenously and

intertemporally determined.

In order to study the dynamics of child development and the role of maternal

age in this process, it is necessary to endogenize all of the individuals decisions on

the timing of fertility, labor supply, leisure, consumption, and child investments. My

model builds on a rich history of dynamic life-cycle models.4 In this model, an

individuals human capital stock determines the wage evolution over her life-cycle.5

In each period, individuals make labor supply decisions and might increase their

stock of human capital by working in that period. They also decide on the timing of

childbirth and receive utility from the skill levels of their children. If a woman decides

to conceive a child in a particular period, she has to drop out of the labor force for that

period. Thus, the opportunity cost of having a child is higher in early periods because

of the forgone human capital that could have been accumulated through working in

that period, loss of which will affect her wages in all subsequent periods (Imai and

Keane (2004)). Moreover, the opportunity cost of having a child is higher for highly-

educated women because of higher forgone wages. When a child is born, the woman

chooses to optimally allocate her time among leisure, work, and childcare, and to

allocate her money between consumption and expenditure on the child. If she has a

4See Heckman and MaCurdy (1980) for a dynamic life-cycle model of female labor
supply; Eckstein and Wolpin (1989) for a discrete choice model of fertility, labor
supply, and wages; and Keane and Wolpin (1997) and Lee (2005) for a dynamic life-
cycle model of occupational choice, education, and labor supply for men. My work
is also related to that of Imai and Keane (2004), Heckman et al. (1999), and Shaw
(1989) who developed a life-cycle model of labor supply, consumption, and human
capital accumulation. Also see Attanasio et al. (2008) for a life-cycle model of female
labor force participation and savings. Finally, see Hotz and Miller (1988), Gayle
et al. (2006), and Sheran (2007) for a life-cycle model of female labor supply and
fertility. None of the studies mentioned here, however, considered the dynamics of
child development.

5See Wmann (2003) and Folloni and Vittadini (2010) for a summary of extant
studies on the effect of human capital on wage.
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child earlier in her life-cycle, the child is more likely to have higher productivity in

acquiring skills, but the net present value of forgone wages is higher, which indicates

that there would be fewer resources available to invest in the child to increase the

childs skill level. This trade-off leads more-educated women to have children later in

their life-cycles.6

My estimation results show a negative effect of advanced maternal age at childbirth

on the child’s productivity. I find that, everything else constant, lowering maternal

age of educated women by five years increases the average child’s skill level by about

11% (0.50 std), and 15% (0.24 std) increase in the child’s future earnings due to a

higher child’s ability to acquire skills. However, if I adjust child investment according

to individuals’ wage profile conditional on reduced maternal age, the average child’s

skill level decreases by 1.6%. This reduction in children’s skill highlights the impact

of lower inputs that children of younger mothers receive from their parents due to the

wage life-cycle implied by a lower maternal age.

The negative effect of foregone wages may be reduced through policy approaches

such as maternity leave. Implementing a nationwide maternity leave policy has been

the subject of heated debate among both policymakers and researchers in the US,

in part because the United States is an outlier in maternity leave provision (Rossin-

Slater (2017a)). The Family and Medical Leave Act (FMLA) entitles eligible workers

to take only 12 weeks of unpaid parental leave, a short period of time compared

to most other developed countries; for instance, Germany and France have three-

year maternity leave periods.7 Previous studies have investigated the impacts of

maternity leave policies on fertility rate, the mothers labor market outcomes, and the

6They face other trade-offs as well: conceiving a child earlier means lower oppor-
tunity cost for every hour spent with the child instead of working due to lower wages
at early stages of the work-life-cycle.

7Klerman et al. (2012) reports that only 60% of workers in the US were eligible for
the FMLA in 2012.
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childs health (Lalive and Zweimüller (2009); Schönberg and Ludsteck (2014); Rossin

(2011)). However, the potential impacts of maternity leave policies on the timing of

birth and child development, have not been investigated. My policy analysis indicates

that implementing a two-year maternity leave policy under which the mothers wage is

frozen at its pre-pregnancy level lowers the mean maternal age by about two years and

increases the mean childs test score by about 5% (0.22 std). This increase in mean

child skills is due to both higher productivity (better health status) as a result of the

reduction in maternal age and an increase in child investments as a result of the lower

wage penalty following childbirth. Back-of-the-envelope calculations suggest that the

change in the mean test score of children translates to an increase of about a 6.6%

(0.10 std) in their future earnings. With regard to the impacts of maternity leave

policies on mothers’ labor market outcomes, the predictions of my simulation analysis

are in line with the findings of a handful of papers that have investigated the impacts

of six weeks of paid leave in California on labor market outcomes (Rossin-Slater

(2017b); Baum (2003)). My policy analysis shows that implementing a two-year paid

maternity leave policy that freezes wages to the level before the leave would increase

the labor force participation of educated and non-educated mothers of six-year-old

children by about 20% and 34%, respectively.

I also study the impacts of implementing a childcare subsidy program on mothers

and children. My policy analysis indicates that although subsidizing childcare services

does not significantly change the maternal age, it can significantly increase the human

capital of both mothers and children. My analysis suggests that under a free childcare

program, the labor force participation of educated and non-educated women would

increase by about 45% and 40%, respectively. This finding is remarkably close to the

finding of Barros et al. (2011), who evaluate the causal impact of a childcare program

on the maternal labor market outcomes taking advantage of a lottery carried by the

6



municipal government in 2007 in Brazil.

This is the first study to investigate the effects of timing of birth on childrens

cognitive development while taking into account the impacts of endogenous parental

investments in children. Researchers have generally focused on the effects of different

types of investments on the childs skill level. In their models, the life-cycle generally

starts when a child is born. They take the timing of childbirth as a given and study

how the childs cognitive ability react to monetary investments, the time that parents

spend with their children, childcare usage, and other inputs received from parents.

Cunha and Heckman (2008) emphasize the importance of investments during child-

hood and show that investments made in the early years are more important than

those made in later years. Del Boca et al. (2013) argue that parents time inputs are

more productive for their childrens cognitive development than money expenditures.

However, if one does not take into account the impact of maternal age, her estimate

of child’s skill formation technology might be misleading. To estimate the impact of

child investments on child’s skill level, researchers use the variations in children’s test

scores and child investments. Older parents tend to to have more resources to invest

in their children, however, part of these greater investments only compensate for the

negative effect of a later childbirth. Hence, by overlooking the impact of maternal

age, one might underestimate the impact of investments on the child’s skill level. I

”correct” previous estimates of investment’s impact by endogenizing the timing of

birth and taking maternal-age effect into account.

Current child development models cannot evaluate the role of mother’s age at

childbirth on their child’s skill level, as current literature neglects the maternal age

effect. Despite this, some studies have assessed the effect of parents’ age at childbirth

on the child’s skill level through a reduced-form approach (Goisis et al. (2017); Leigh

and Gong (2010); Barclay and Myrskylä (2016)). The problem is that, though these
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researchers try to control confounding factors by adding explanatory variables such

as parental characteristics such as education or income, they overlook the time and

monetary investments that parents make in their children (and the fact that these in-

vestments are endogenous with respect to parental age); thus, the estimates from their

models might be impacted by the positive selection to delayed parenthood. Overlook-

ing child investments might lead a researcher to underestimate the magnitude of the

negative maternal age effect. Older parents tend to invest more in their children due

to greater parental resources, and there is a dynamic complementarity between child

investments and child’s skill in producing the next period’s skills. My simulation

experiment shows that neglecting such child investments leads one to significantly

underestimate the magnitude of the negative health impacts of greater maternal age

on child outcomes. In this paper, I address this problem by taking into account both

mother’s age at childbirth and investments made by parents in the child. Moreover,

I improve upon the reduced-form approach used in previous papers by decomposing

the negative and positive effects of delaying childbearing on the child’s outcomes.

The paper is organized as follows. Section 2 describes the data for the empirical

work, provides some descriptive statistics, and presents suggestive evidence concern-

ing the impact of postponement of childbirth on child outcomes. Section 3 describes

the model. Section 4 discusses some estimation issues. Section 5 presents the esti-

mation results. Section 6 analyzes the effects of some counterfactual policies, and

section 7 provides the conclusions. Details on the model and supplementary results

are presented in the Supplementary Appendix.

1.2 Maternal Age and Child Development: Reduced-form Evidence

In this section, after describing the datasets that I use, I show some evidence

obtained using reduced- form regressions for the role of the mothers age at childbirth
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in determining the childs skill level and also the physical characteristics of the child.

1.2.1 Data

Throughout this paper, I utilize the Panel Study of Income Dynamics (PSID)

combined with its four Child Development Supplements (CDS), and five Transition

into Adulthood Supplements (TAS). PSID is a longitudinal household survey. The

study began in 1968 with a nationally representative sample of over 18,000 individuals

in about 5,000 families in the US. PSID provides researchers with panel data on

education, marriage, wealth, employment, income, health, expenditures, childbearing,

and child development of the initial sample of individuals and their descendents. The

CDS includes data on children and their extended families, which can be used to

study the dynamics of human capital formation in children. Specifically, CDS collects

extensive child-specific developmental data. The first wave of CDS in 1997 included

up to two children per household who were between zero to twelve years old. These

children were followed over three waves, ending in 2013-14. The CDS sample size

in 1997 was approximately 3,500 children in 2,400 households. The first follow-up

study, i.e. CDS-II, was conducted in 2002-03, when the children were between the

ages of eight and 18. The next follow-up survey with these children, i.e. CDS-III,

was conducted in 2007-08. No new children were added to the study until 2013-2014

(Hofferth et al. (1997)). In 2014, CDS was conducted with a new sample including all

children in PSID households aged 0-17 years, with a sample size of 4333. The other

supplement to the PSID, i.e. the Transition into Adulthood Supplements (TAS), is a

follow-up survey of the original CDS children that was conducted when those children

reached adulthood, i.e. age 18. TAS was initiated in 2005. Hence, in the first wave

of TAS, the oldest CDS respondents were 18 to 20 years of age. TAS continued to

follow up the CDS sample in their adulthood in 2007, 2009, 2011, 2013, and 2015.
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I use PSID and CDS, which provide me with data on children and their family

characteristics, and include information on parents’ investments in their children. I

use the childrens test scores on Letter-Word (LW) Identification test as a measure of

child skill levels. The LW test is a subset of the Woodcock-Johnson Revised (WJ-

R) test of achievement. LW test aims to measure reading identification abilities of

children (Woodcock and Johnson (1989)). This measure of skill level has been used by

previous papers in the literature (see Del Boca et al. (2016)). With the TAS dataset,

I link each childs LW test score to their future educational attainment and wages,

and show that the LW test score has a predictive power for the future educational

attainment and wages of the child and therefore is a relevant measure of the child’s

skill, at least with respect to future educational attainment and wages.

1.2.2 Mother’s Age at First Birth (AFB)

Figure (1.1) shows the distribution of mothers age at first childbirth (AFB) for

non-college graduates and college graduates. A great deal of variation exists with

respect to mothers age at first birth, both among educated and less-educated females.

It is also clear that college graduates, on average, tend to have their first child at a later

age; both mean age and median age at first birth increase with the mothers education

level. While the median age for mothers with at most a high school education is 21,

it increases to 28 for those with a graduate degree. Furthermore, while the fraction of

mothers who conceived their first child after age 27 is 0.13 and 0.21 for mothers with

fewer than 12 and 12 years of schooling, respectively, it increases to 0.47 and 0.59 for

college graduates and women with a graduate degree, respectively.8 For the purpose

8Table (A.2) in the Supplementary Appendix reports the mother’s mean age and
median age at first childbirth for different education levels.
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of this model, I focus on women who did not conceive a child before age 18.9,10

Table (1.1) reports summary statistics for the subsample selected for the empir-

ical work.11 On average, college graduates have their first child later compared to

non-college graduates. College graduates also have higher mean hourly wage, mean

husbands hourly wage, and mean hours of market work. They also spend more time

with their children, and their children outperform the children of non-college gradu-

ates in terms of LW test scores.

1.2.3 Mother’s Age at First Birth and Child Outcomes

Using the PSID dataset, I provide some evidence on the impact of mother’s age

at birth on the following child’s outcomes: (1) the probability of a low birthweight

infant, (2) the child’s skill level, and (3) child investments.12

Mother’s Age at Birth and the Risk of Low Birthweight (LBW)

Note that birthweight is a child outcome that occurs immediately after birth and is not

impacted by later parental investments. Therefore, I use birthweight data to identify

an immediate effect of maternal age on child outcomes. Using the PSID dataset, I

examine the role of mothers age at childbirth on the probability of low birthweight

(LBW) of the child. LBW infants face many complications in their lives, some of

9In my dataset, about 90 percent of women did not conceive a child before age 18.
10Figure (A.1) in the Supplementary Appendix shows the distribution of the

mother’s age at first childbirth for the subsample selected for the estimation (women
who have not conceived their first child before age 18). Figure (A.2) in the Supple-
mentary Appendix shows the distribution of completed years of schooling for the same
subsample against the alternative group (women who had their first child before the
age of 18). It shows that women who conceived a child before age 18 are, on average,
less-educated than those who did not.

11Table (A.1) in the Supplementary Appendix reports summary statistics for the
full sample, which are similar to those of the selected subsample.

12According to the World Health Organization (WHO), an infant is low birthweight
if it weighs less than 2,500 grams (5 pounds, 8 ounces) at birth (WHO (2014)).
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which persist into adult life. LBW infants are more likely to suffer from weaknesses

in attention and hyperactivity, anxiety and depression, and poor social skills (Hack

et al. (2009)). These behavioral complications affect the cognitive outcomes of LBW

infants. Ribeiro et al. (2011) reports attention problems and language development

in LBW children, while Conley and Bennett (2000) reports that a LBW child is

substantially less likely to graduate from high school by age 19; specifically, the

probability of graduation is reduced by 74 percent, as compared with his or her

siblings.

Table (1.2) reports the result of a linear probability regression of LBW on mothers

age while controlling for child gender, race, year fixed-effects, mothers education level,

paternal age at delivery, marital status, and family income. In order to capture a

potential non-linear relationship between maternal age and the probability of LBW, I

consider two specifications: first, a linear specification, and second, a quadratic form

in which I add the square of maternal age as an additional regressor. Columns 1

and 2 of Table (1.2) present the linear and quadratic regression results, respectively,

before controlling for family income. Columns 3 and 4 report the results when also

controlling for family income at delivery. Both the first and the second power of

the mothers age at delivery are significant at the five percent level. These results

suggest that the risk of LBW in infants with respect to maternal age at delivery

can be represented by both a U-shaped and a linear-shaped relationship.13 There

is a higher probability of LBW associated with adolescent pregnancy. Meanwhile,

there is also a higher risk associated with delaying motherhood for most maternal

13The results still might be driven by selection based on unobservables, so I will be
cautious in their interpretation. Figure (A.3) in the Supplementary Appendix depicts
a binned scatterplot showing the U-shaped association between LBW and maternal
age. The left part of the curve might be due to selection, as adolescent childbearing
is concentrated among teenagers of low-income families, and low-income youth are at
higher risk for nutrition problems that increase the risk of LBW.
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ages, and this risk increases as the mothers age increases. Delaying pregnancy by

one additional year is associated with about 0.47 to 0.60 percentage points higher

risk of LBW (5 to 7 percent, compared to mean).14 I also could use the variation

in maternal ages between siblings to investigate the impacts of maternal age on the

risk of LBW. Table (A.3) in the Supplementary Appendix shows the results of a fixed

effect regression, in which the variation in maternal ages between sibling is used to

estimate the impact of the mother’s age at birth on the risk of LBW. The results

are similar to the linear regression model of Table (A.3); delaying pregnancy by one

additional year is associated with about 0.66 percentage points higher risk of LBW.

One might be concerned that this result is driven by LBW deliveries occurring

above the age of 35, in which case the result would be misleading because there are

no differences between maternal ages 20-25 and 25-30. To address this concern, I

repeated the probability regression of LBW on mothers age with dummy variables

representing five-year bins for the mothers age at first birth as follows: ages 15-20,

ages 25-30, ages 30-35, ages 35-40, ages 40-45, and ages 45-50. Maternal ages between

20 and 25 were omitted, as this group provides the baseline for comparisons. Table

(1.3) reports the results of this regression. The hypothesis that the previous regression

results were driven by LBW at extreme maternal ages is rejected. Instead, the results

suggest that an increase in maternal age from 20-25 to 25-30 is associated with a 4.3

percentage point (58%) increase in the risk of LBW.

One might also be concerned that the above-mentioned regression results are

driven by selection based on the socioeconomic status. Table (1.4) reports the same

regression analysis as before, but this time utilizing within-group variation in moth-

ers age at delivery and the LBW status of her child. Panel A of Table (1.4) shows

14Table (A.4) reports the results when I do not deal with the issue of missing data
on incomes.
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that when considering the relationship between maternal age at delivery and the risk

of LBW within educational strata, there remains a significant positive relationship

between maternal age and LBW. The best fit for non-college graduates is a U-shaped

specification, while the best fit for college graduates is a linear one.15 Figure (1.2) sep-

arately shows the predicted probability of LBW at each maternal age for non-college

graduates and college graduates, based on coefficients from the regression results of

Panel A in Table (1.4). The predicted probability of LBW increases with maternal

age for both groups, but is lower for college graduates, which might be due to better

average health status among that group. Panel B of Table (1.4) shows that a similar

pattern occurs when investigating the relationship within family income levels.16

In addition, I observe a negative association between infant birthweight and the

mothers age at birth. These results are reported in the Supplementary Appendix.17

I furthermore provide in the Supplementary Appendix, a brief literature review on

the effect of mothers age at delivery on the childs intelligence, risk of Down syndrome,

risk of any chromosomal abnormality, and risk of autism.

15Figures (A.4) and (A.5) in the Supplementary Appendix depict binned scatterplots
assuming quadratic and linear associations between LBW and maternal age within
education levels, respectively. Tables (A.5) and (A.6) provide the regression results
from quadratic and linear forms, respectively.

16Tables (A.5) and (A.6) provide the regression results for quadratic and linear
forms, respectively. Figures (A.6) and (A.7) in the Supplementary Appendix depict
the binned scatterplots assuming quadratic and linear associations between LBW
and maternal age within income levels, respectively. For the above-median income
families, the relationship tends to be an upward linear trend instead of U-shaped.
This might suggest that the left part of the U-shaped curve in previous figures is due
to selection into adolescent pregnancy based on income, as most teenage pregnancies
occur among low-income families.

17Table (A.7) and Figure (A.8) in the Supplementary Appendix show the relation-
ship between maternal age and the natural logarithm of the child’s birthweight while
controlling for the same set of variables used in previous regressions for the risk of
LBW. The results suggest a negative association between birthweight and maternal
age. See Black et al. (2007) for the impacts of birthweight on adulthood outcomes.
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Mother’s Age at Birth and Child’s Skill Level

To investigate the impacts of AFB on child skill level, I use a linear specification as

follows:

Yi,tk = β1age
p
i + γZi,tk + αWi + ui,tk ≡ BXi,tk + ui,tk , (1.1)

where Yi,tk is the child outcome of interest for family i at child’s age tk, agepi is the

maternal age at first birth for family i, β1 is the coefficient of interest, Wi is a vector of

child fixed-effect controls such as gender and race; Zi,tk is a vector of family controls

such as the mother’s education, father’s age at childbirth, mother’s marital status,

and family income; and E(u|X) = 0.

The first column of Table (1.5) shows the result of OLS regressions of the log test

score of the first child on the mother’s age at childbirth using only data from one-

child families.18 The first column reports the regression result when I control only

for the child’s age; i.e. age-specific dummy variables are used to control for the effect

of the childs age on their test score. The coefficient of the mothers age is positive,

but statistically insignificant. The second and third columns present the results when

controlling for other confounding factors: the mothers and fathers education, and

the mothers and fathers wages, respectively. After controlling for the mothers and

fathers education, the coefficient of interest becomes negative (changing from 0.001

to -0.005). When controlling for additional confounding factors, the coefficient of

the mother’s age at childbirth becomes greater in absolute value; the coefficient of

18Regression results including all families are reported in the Supplementary Ap-
pendix. Here, I restrict the sample to one-child families to avoid any sibling effects
and/or parental skill effects. For a given mother, parental skills might be different
when rearing the first child vs the second one. Mothers can accumulate parental skills
by ”practicing” parenthood when rearing the first child. Duncan et al. (2018), using a
reduced-form approach, find that each additional year of delaying a second childbirth
after the first one is associated with a 0.02 to 0.04 standard deviation increase in
school achievement of the second child, which might be due to accumulating parent-
ing skills over the first child. However, it also might be due to increasing parental
resources over the mother’s age.
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interest changes to -0.014, and it is statistically significant at 5%.19 This suggests

that postponing motherhood for one additional year is on average associated with a

1.4 percent decrease in the childs test score, ceteris paribus.20

Note, however, that the estimate presented in Tables (1.5) are biased. If we have

omitted variables that contribute to the effect of the mothers age at childbirth on

the childs skill levelsuch as parental investments in the childand if these variables

are correlated with the mothers age at childbirth, then estimates of the reduced-form

OLS regressions will be biased. For example, if older parents spend more hours with

their children, then under the maintained assumption that these time investments

positively impact the childs skill level, the omitted variable bias causes the coefficient

of interest in Table (1.5) to be underestimated (in terms of magnitude). In what

follows, I show some evidence that the omitted variables are in fact correlated with

the mothers age at childbirth.

Mother’s Age at Birth and Child Investments

One approach to demonstrating the relationship between mothers age at childbirth

and the amount of time she invests in her child is to regress the time spent by the

mother with her first child on age at first birth and determine whether the coefficient

19In Table (1.5), I keep the number of observations fixed across regressions in dif-
ferent columns. Alternatively, I could utilize all observations in all regressions in
different columns. In that case, going from the first column to the last, the number of
observations declines as I add more confounding factors. This is because of missing
observations on wages when a mother does not work in a given period. Table (A.8)
in the Supplementary Appendix shows the mentioned alternative regression results.
There might be a concern regarding selection due to the missing data on mothers’
wages, so I prefer to keep the number of observations fixed across different regressions.
Tables (A.9) and (A.10) report the regression results if I also include households with
more than one child (so sibling effects might exist), when the number of observations
are fixed and when the number of observations varies, respectively.

20In other words, delaying childbearing for one more year is on average associated
with 1

70
standard deviation decrease in the child’s test score.
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is positive. I use the weekly number of hours that the mother spends with her child

as the dependent variable. Table (1.6) reports the result of this regression. As the

first column shows, the coefficient of the mothers age at childbirth is 0.22; it is both

positive and statistically significant at 1% after I control for race, the childs age, and

family size. As I control for the mothers education in the second column, and for the

mothers wage and hours of market work in the last column, the coefficient of interest

does not change significantly; it slightly decreases to 0.19 and remains significant at

the 1% level.21,22

These results show that there is a systematic relationship between time invest-

ment in children and the mother’s age at childbirth. This might suggest that it is

important to simultaneously model the timing of fertility and the investments made

by parents during the childhood, as these two factors are both related to each other

and important with respect to the childs skill formation.

In the next section, I develop a structural model that enables me to investigate

the role of childbearing age in the child’s skill formation.

1.3 Model

In this section, I develop a life-cycle model that will be used in my empirical work.

Note that I model the problem from the woman’s perspective. Each individual lives

until age 60 (so she lives for 42 years within the model). The model assumes that

21Given the five-year gap between the childbearing ages of educated and non-
educated women, the results of the above regression can be translated as follows:
a simple calculation shows that, everything else constant, the time that an educated
woman actively spends with her first child during their childhood, is on average 750
hours more than for a non-educated woman. (For this calculation, we assume that
the development phase of children takes 15 years.) Note that time investments are
very important for developing the child’s cognitive ability, as argued by Del Boca
et al. (2013), so I expect that this substantial difference in time investment between
older parents (educated women) and younger parents (non-educated women) make a
remarkable difference in terms of child’s skill level.

22I keep the number of observations fixed through all regressions in Table (1.6).
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a women can conceive a child until age 40, and she becomes infertile thereafter.23

Each individual decides whether or not to have a child and the timing of childbirth,

and she can have only one child. When a child is born, parents make human capital

investments in the child over each period during the childs developmental phase. The

developmental phase in this model begins when a child is born and lasts for M(= 16)

years.24 Therefore, parents invest in their child for the first “M” years of the childs

life. At age 17, the child leaves her parents and becomes independent. I model this

problem as a finite horizon problem with discrete time, and each period in the model

equals a year.

It is worth mentioning that I do not model the educational decisions of (potential)

mothers here. However, I consider their educational decisions as exogenous in my

analysis, and assume that if she chooses to continue her education in college, then

she will remain in college for four years and will not conceive a child until age 22.

1.3.1 Timing of Events

The initial condition is as follows: the model considers women with no child at age

18 (I do not model adolescent pregnancy) who have already decided whether or not

to continue their education in college.25 A fraction of these individuals are married,

the rest are single, and the probability of being married depends on the educational

decision, i.e. whether to go to college or not.26 Furthermore, they have no work

23According to the data, less than half a percent of mothers conceived their first
child after age 40.

24I use the Letter-Word (LW) identification test score as a measure of the child’s
skill level. I have the children’s LW test scores up to age 18. However, it seems that
LW test scores in the dataset do not significantly change after age 16. Thus, I assume
the development stage lasts for 16 years. Similarly, Del Boca et al. (2013) assume
development stage of 15 years.

25According to the data, less than 10% of mothers conceived their first child before
age 18.

26This probability is set according to the data.
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experience.

At the beginning of each period, first, exogenous shocks to marital status are

realized. With some probability, single women may get married and married women

may get divorced; these probabilities depend on current marital status, the woman’s

age and education level, and the presence of children.27 Next, nonlabor income shock

and wage shock are realized. Both of these shocks are exogenous and i.i.d. across

individuals and over time.

After observing these two shocks, if a woman is fertile and not in college, she

decides whether or not to try to conceive a child. If she tries, then with probability

πi,t, she becomes pregnant and will be out of the labor force for at least one period

(current period). The probability of getting pregnant, πi,t, depends on the woman’s

age, t. I also allow for conception error: she faces a probability λ(s) of getting

pregnant whether she intends to or not, where s denotes the woman’s education

level. Then, if she is not pregnant, she chooses her labor supply. After employment

status is established, she decides about consumption, leisure, and if there is a child

whose age is under M years, also about child expenditures and the time to spend with

the child. Figure (1.3) shows the timing of events in period t.

1.3.2 Utilities

I assume that utility is intertemporally separable, and the instantaneous utility

is separable in consumption and leisure (see Del Boca et al. (2013)).28 The utility

of a woman in period “t,” ui,t, is derived from household consumption, cHHi,t , and the

amount of leisure time, li,t. If a child exists at the beginning of period “t,” then the

27See Klaauw (1996), Keane and Wolpin (2010), Francesconi (2002), and Adda et al.
(2013) for studies that endogenize marriage decisions in a life-cycle model of female
labor supply. They do not model child development, however.

28See Blundell et al. (2016a) for an intertemporally separable but instantaneously
not separable utility function in consumption and leisure.
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woman also has utility from her childs skill level, ki,t. The women’s age is indexed

by “t.” I assume a log linear utility function; hence, when no child exists, utility is

defined over consumption and leisure as follows:

u0(cHHi,t , li,t) = α1log(cHHi,t ) + α2log(li,t),

As stated before, when a child exists, the woman also has a utility derived from her

child’s skill level. I assume that when the developmental phase is done (i.e. after the

first “M+1” periods of the child’s life), the child leaves her home and begins the next

stage of her development. Thus, the flow utility derived from the child’s skill level

after the child leaves home is discounted by a multiplier φ, which is a free parameter

to be estimated. Therefore, I have the following utility when a child exists:

u1(cHHi,t , li,t, ki,t, t
k) = α1log(cHHi,t ) + α2log(li,t)

+ α3[Ii,tk≤M log(ki,t) + φ(1− Ii,tk≤M)log(ki,M+1)],

where Ii,tk≤M is an indicator variable equal to one if the child’s age is less than M ,

and zero otherwise. I normalize the impact factors, i.e, α’s, such that
∑3

j=1 αj = 1.

Therefore, a woman receives the following (flow) utility at period t:

u(cHHi,t , li,t, ki,t, bbi,t, t
k) = bbi,tu

1(cHHi,t , li,t, kt, i, t
k) + (1− bbi,t)u0(cHHi,t , li,t), (1.2)

where bbi,t is is an indicator variable equal to one if there exists a child at the beginning

of the period t and zero otherwise, and uj(.) is defined in the previous equations

∀j = 0, 1.

1.3.3 Child’s Skill Formation

Let tk denote the child’s age. I assume that the child’s skill level at tk + 1, ki,tk+1

is produced by the current level of the child’s skill, ki,tk ; the time that the mother
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actively spends with the child, τi,tk ; and the money investment in the child, ei,tk . I

use a Cobb-Douglas functional form to specify the child’s skill formation:

ki,tk+1 = f(Ri,tk , τi,tk , ei,tk , ki,tk) = Ri,tkk
γ
1,tk

i,tk
τ
γ
2,tk

i,tk
e
γ
3,tk

i,tk
, (1.3)

where Ri,tk is a function of the mother’s age at birth and innate ability, and the child’s

age; i.e. Ri,tk = g(agepi , IQ
p
i , t

k). I use the following functional form to specify the

relationship between the child’s productivity and her mother’s characteristics:

log(Ri,tk) = log(Atk) + ε1(agepi ) + ε2(agepi )
2 + ε3(IQp

i ) + υi,tk , (1.4)

In this specification, agepi is the mother’s age at childbirth; ε1 and ε2 together

define the effect of maternal age at delivery on the productivity factor; IQi is the

mothers innate ability; and ε3 captures the effect of the mothers innate ability on

the productivity factor. Finally, υi,tk is the productivity shock, which I assume is

i.i.d. N(0, σ2
R). I use a Cobb-Douglas functional form to specify the skill formation

technology. Other empirical studies have used linear, constant elasticity of substitu-

tion (CES) or Cobb-Douglass functional forms to specify the child’s skill production

function (see for example Cunha and Heckman (2008), Bernal (2008), Del Boca et al.

(2013), and Lken et al. (2012)). I do not use a linear functional form for two reasons.

First, it imposes the restriction that early and late investments are perfect substitutes;

and second, I want to allow the inputs to interact in producing the output.

Assuming a log-linear production function would help make a complicated problem

more tractable. Nonetheless, I also use the Cobb-Douglas functional form to specify

the production function; this enables me to get closed-form solutions for expenditures

and time investments in the child. However, note that choosing a Cobb-Douglas func-

tional form to specify the childs skill production function, in combination with the

log linear utility function, implies that time and monetary investments are indepen-

dent of the childs skill level. This might not be true in reality; parents may consider
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the childs skill level when making decisions about human capital investment in their

children.

I do not use a linear function to specify the productivity term because, based

on the medical evidence, the marginal effect of the mothers age at childbirth on the

childs innate ability might not be constant; instead, the marginal detrimental effect

of maternal age may be higher as maternal age increases.

I model the effect of the parents age at childbirth on the childs innate ability by

including the parents age in the productivity term. Indeed, I assume that human

capital corresponds to any stock of knowledge, experience, and skills but has nothing

directly to do with innate ability.

One might expect that including other regressors such as the mothers health status

might attenuate my estimate of the maternal age coefficient. First of all, the reduced

form regressions presented in the previous section suggest that maternal age plays a

role in the childs skill formation, and here, I aim to investigate that role. Hence, the

production function includes maternal age. Moreover, the results of Table 2 suggested

that adding more and more variables makes the coefficient of the maternal age greater

(in absolute value) and more precise. Note that I do not intend to (and do not need

to) exclude the effects of other factors that affect the childs productivity, as long as

these factors are driven by the mothers age or happen to occur as mothers get older.29

29As an example, consider the effect of the mothers health status on the childs
productivity, which is omitted in my specification. Suppose that the mothers health
status is negatively correlated with her age and might affect the childs productivity
in some way. Now, if health status were exacerbated as the mother grows old (for
example, some mutation might happen in the reproductive cells that negatively affects
the childs productivity, and of course, that mutation is positively correlated with the
mothers age), then I do want the coefficient of age in the productivity function to pick
up such effects of health as well. Note that the individual faces a trade-off between
childbearing versus continuing to participate in the labor market. As long as they
do not have the power to avoid such negative effects of delayed childbearing on child
outcomes, it is not important what factor actually makes older parents more likely to
have a child who might have lower productivity. Interpreting the age coefficient this
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1.3.4 Skills and Wages

Wages depend on education level and actual experience, which may depreciate

when out of work; the depreciation rate potentially depends on education level, as in

Blundell et al. (2016a).

I assume that individuals accumulate skills by working. For any given period,

if they work, then their skills will be increased by one unit. Therefore, I have the

following equation:

xi,t = xi,t−1 + Ihi,t≥h − (1− Ihi,t≥h)δs,txi,t−1, (1.5)

where xi,t denotes human capital, which, in this model, I assume to be the number of

(effective) years of work experience accumulated up to period t; Ihi,t≥h is an indicator

variable equal to one if the individual works at least h hours; and δs,t is the depreci-

ation rate of skills due to unemployment or career interruptions associated with the

years that the individual does not work, which I allow to depend on education level, s

(time invariant), and the woman’s age, t, at which she drops out of the labor market.

I allow the depreciation rate to depend on education level. This allows the model to

capture the fact that while out of the labor force, less-educated individuals with rou-

tine jobs may loose less than educated individuals in more skilled (abstract) jobs.30

I allow the depreciation rate to depend on the woman’s age because in the first few

years of the work-life-cycle, individuals might build their career, develop a network of

professional contacts, show their commitment to work, and improve their reputation;

way, I might leave the age effect as a black box; I do not know if it is because health
status becomes worse as people get older, because some mutations in genes are more
likely to happen as more time passes, et cetera. I am interested in investigating the
implications of this fact on both individuals decisions and child outcomes.

30I assume that the depreciation rate is constant across individuals. I know that
it might be different across occupations; some women might select into child-friendly
occupations, and the depreciation rate for skills might be lower in those occupations
(see for example Adda et al. (2017)). However, I do not focus on this issue here.
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thus work interruptions during this phase might have a detrimental, irreversible im-

pact on the individual’s human capital in its broad sense. In contrast, dropping out

of the labor market for one/a few years later in the work-life-cycle may have only a

mild negative impact on the individual’s human capital. The above-mentioned spec-

ification of human capital allows the impacts of work interruption to decrease during

the work-life-cycle, i.e. ∂δs,t
∂t

< 0. Finally, I assume that a lower bound is needed for

working hours in order to obtain an increase in the work experience of individuals. I

set h to correspond to working four hours per workday.31

Following the Mincerian approach, I assume that the wage offer received depends

on education level and skills. However, I specify the wage equations separately for

educated and non-educated females:

log(wi,t) = η0,s + η1,sxi,t + η2,sx
2
i,t + ωsi,t, s = H,C, (1.6)

where subscript s denotes the individual’s education level indicating non-college grad-

uates if it takes H, and college graduates if C; η0,s is a constant; ωsi,t is the log wage

shock, which is i.i.d. N(0, σ2
w,s); and η1,s and η2,s define the return to work experience

for group s.

With the above-mentioned specification, I allow the return to experience to in-

crease with education and decrease with the level of work experience. As I assume

that if a woman decides to conceive a child, she has to drop out of the labor force

for one period, this specification implies that the opportunity cost of childbearing

is higher for more-educated women than for less-educated women. Moreover, the

31Indeed, h is the cut-off level for the lower bound of hours needed in every given
period in order to change the years of work experience effectively. Note that without
this threshold, the solution to labor supply is sometimes not well-defined because one
might work for an infinitesimal amount (that converges to zero) just to take advantage
of greater future wages through higher experience, so the solution does not exist. I
set h to 20 hours per week. I assume that to get one unit of experience, the individual
needs to work at least half as much as an average full-time worker.
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opportunity cost of conceiving a child might be higher at the beginning of the work-

life-cycle. The reason for the higher cost is that if a woman drops out of the labor

force for one period early in her working life, even though the forgone wage is rela-

tively low, her wages in all subsequent periods will be lower as a consequence of being

out of the labor force and not accumulating human capital.32

1.3.5 Marriage and Divorce

I do not model marriage and divorce in this paper as choices of individuals. In-

stead, I incorporate them in the model as exogenous events.33 I assume that the

probability of getting married, Πm
i,t(agei,t, bbi,t, si), depends on woman’s age, the pres-

ence of children, and her education level. If an individual is married in a given period,

the probability of getting divorced, Πd
i,t(agei,t, bbi,t, si), again depends on the woman’s

age, the presence of children, and the education level. I use data to estimate these

probabilities non-parametrically– i.e. I use the crude marriage (divorce) rates while

conditioning on marital status, the woman’s age and education level, and the presence

of children.34

1.3.6 Husband’s Earnings

I assume that the husband always works, so instead of his skill level, I use his

age as a determinant of the earning equation. His earnings also depend on the wife’s

education level. That is, I allow the model to have assortative mating based on

education level as observed in data (Chiappori et al. (2009)); hence, the spousal

32See Huggett et al. (2011) for heterogeneity in wage profiles, and Adda et al. (2013)
for specifying human capital accumulation based on hours of market work.

33Chiappori et al. (2002) analyze the impacts of the marriage market and divorce
legislation, which vary by state and over time, on household labor supply. Here, I
abstract this issue.

34I assume that marriage probability does not depend on the individual’s choices
such as labor supply decisions, nor on their years of work experience.
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earnings are as follows:

log(wspi,t) = ηsp0,s + ηsp1,sage
sp
i,t + ηsp2,sage

sp
i,t

2 + ωs,spi,t , (1.7)

where subscript s denotes the wife’s education level indicating non-college graduates

if it takes H and college graduates if C; and ωs,spi,t is the wage shock, which is assumed

to be i.i.d. N(0, σs,spw
2).

1.3.7 Conception

Based on medical evidence, the probability of conception decreases with the

woman’s age. Rosenthal and Khatamee (2002) estimate that at age 20, a woman

has 90% chance of conceiving a child, but the probability declines to 70% at age 30,

6% at age 45, and almost zero after age 50. Therefore, I assume that in any given pe-

riod, if the woman decides to conceive a child, she does so with probability πt, where

t denotes the woman’s age. I assume that all women are capable of conceiving, but

allow the probability to decline with age (see Rosenthal and Khatamee (2002)).35 I

use the probability function estimated by Rosenthal and Khatamee (2002) to specify

πt; this function is depicted in Figure (A.9) in the Supplementary Appendix. More-

over, I allow for conception error because in reality, some pregnancies are unwanted.

This means that if a woman decides not to have a child in the next period, she still

faces a probability of getting pregnant. This probability depends on her education

level; it is λc if she is a college graduate and λh if she is a non-college graduate, where

λc and λh are free parameters to be estimated. For this estimation, I use data on

the fraction of unwanted live births in the US, conditional on the woman’s education

level, to recover λc and λh. Table (A.11) in the Supplementary Appendix provides

35I am aware that in the US, about 8% of women 15-29 years old have impaired
fecundity. Some of them, however, can conceive a child after treatment (Chandra
et al. (2005)).
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some information about pregnancy intention in the US between 2006 and 2010.

1.3.8 Nonlabor Income

For the nonlabor income process, because I see a large number of observations

with no nonlabor income in a given period, following Del Boca et al. (2013) I consider

nonlabor income a truncated version of a latent variable process in levels. Specifically,

I assume the following process to model the latent non-labor income in period t:

I∗i,t = µnonlb + ωnonlbi,t , (1.8)

where µnonlb is the mean and ωnonlbi,t is the disturbance term that is i.i.d. N(0, σ2
nonlb).

36

The observed (actual) nonlabor income is as follows:37

Ii,t = max (0, I∗i,t). (1.9)

1.3.9 Childcare Costs

I assume that if a mother wants to participate in the labor market in a given

period, then the family should pay a fixed childcare cost equal to cc in that period

unless the child is school-age. I also assume that cost does not depend on hours of

36The estimates of the mean and standard deviation of this process for one-child
households are as follows: µnonlb = −14.12 and σnonlb = 376.16.

37I assume that if a woman gets pregnant unintentionally (note that in this model
women can conceive a child out of wedlock), and she is single (so has no husband’s
income), then she will receive a one-time transfer equal to “TR” in the period of
pregnancy. In this model, if a woman is single at period “t,” and the nonlabor income
in that period is zero, then she never chooses to intentionally become pregnant in that
period. This is because I assume logarithmic preference, and in the optimal solution,
consumption cannot be zero. If she wants to get pregnant, she cannot work for that
period; then, having no husbands income, no labor income, and no nonlabor income,
there is nothing to consume. Naturally, there is a probability of unintentionally
getting pregnant even if she is single and has no nonlabor income. For the problem
to be well-defined in that situation, I assume a one-time transfer equal to “TR.”
However, it turns out that changing the value of TR has no impact on the individuals
decisions, it only helps the process have well-defined solutions. Hence, I can fix TR
at an arbitrary level
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market work. Moreover, I assume that hours spent in day care (or family care) centers

has no impact on the child’s human capital accumulation process.

1.3.10 Budget Constraint

Each individual faces the following budget constraint in each period:

cHHi,t + ei,t + ccIhi,t>0Ii,tk<8 = hi,twi,t + h̄wspi,tmi,t + Ii,t, (1.10)

where cHHi,t is household consumption. If the woman is single, I simply assume that

it is equal to the individual’s own consumption, ci,t; if she is married, it is double,

2ci,t. Therefore, by deciding her own consumption, she decides about household

consumption as well. In the above equation, ei,t denotes expenditures on a child’s

skill; cc is the fixed childcare cost if the mother works in the labor market; Ihi,t>0 is an

indicator equal to one if the mother works, and zero otherwise; Ii,tk<8 is an indicator

equal to zero if the mother has no children or her child is school-age, and 1 otherwise;

hi,twi,t is the woman’s labor income, and h̄wspi,t is the spousal total earnings; Ii,t is the

nonlabor income; and mi,t is an indicator variable for marital status, equal to one if

married and zero otherwise.38

Each individual faces a time constraint, as well. This constraint can be written

as follows:

TT = li,t + hi,t + τi,t, (1.11)

where TT is the total available time in each period; li,t is the leisure time; hi,t is the

hours of market work; and τi,t is the time that the mother actively spends with her

child.

There is one more nontrivial constraint for this problem:

hi,tbi,t = 0,

38I assume that the husband works for h̄ hours in each period no matter what.
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where bi,t denotes pregnancy decisions. This constraint ensures that the woman can-

not work during the period in which she gets pregnant.39

Finally, the model has nonnegativity constraints for choice variables hi,t, ci,t, li,t, τi,t,

and ei,t.

1.3.11 Recursive Formulation

If a child exists, then a woman optimally chooses her labor supply, leisure, con-

sumption, and child inputs to maximize her lifetime utility depending on marital

status, nonlabor income, and the current level of the childs skill. If no child exists,

she makes a pregnancy decision (if still fertile), and labor supply decisions as well.

This problem can be formulated recursively. For simplicity of representation, suppose

that there is no uncertainty about fertility decisions– i.e., π(agew) = 1– and there is

no conception error– i.e., λ = 0. With these assumptions, the value function for the

individual’s problem is as follows:

Let V 0(t, St) denote the value of having no child at period t while the vector of

state variables is St, and let V 1(t, St) denote the value of having a child at period

t while the vector of state variables is St. I measure both V 0(t, St) and V 1(t, St) at

the beginning of period t, after all shocks are realized.40 Then, I have the following

Bellman equations:

V 1(t, St) = max
cHH
t ,et,τt,lt,ht

{u(cHHt , lt, kt, bbt, age
c) + βEt[V

1(t+ 1, St+1)]} (1.12)

V 0(t, St) = max
cHH
t ,lt,bt,ht

{u(cHHt , lt, kt, bbt, age
c)+β[btEt(V

1(t+1, St+1))+(1−bt)Et(V 0(t+1, St+1))]},

(1.13)

39Regression results in Table (A.12) in the Supplementary Appendix suggest that
this is not a very bad assumption.

40Note that in this model, they can have only one child.
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where β ∈ (0, 1) is the discount factor, and Et is the conditional expectation operation,

which takes expectation with respect to the period t information set. This expectation

is taken with respect to future wage shocks, marital status shocks, and nonlabor

income shocks; bt is a binary variable equal to 1 if the individual decides to conceive a

child at period t and zero otherwise. Finally, St = (mt, s, xt, age
p
t , kt,Ωt) is the vector

including state variables: mt is the marital status; s is the level of education; xt is

the work experience at the beginning of period t; agept is the age of the mother at

childbirth41; kt is the skill level of the child42; and Ωt is a vector including all shocks

(the wage shock for the wife and the husband, the non-labor income shock, and the

pregnancy shock).

Note that the last Bellman equation is valid when the individual is fertile (i.e.

t ≤ 40), and thus able to decide whether or not to conceive a child. If t > 40 and

no child exists, then since she can no longer get pregnant, the Bellman equation is as

follows:

V 0(t, Si,t) = max
ci,t,li,t,hi,t

{u(cHHi,t , li,t, ki,t, bbi,t, t
k) + βEt[V

0(t+ 1, Si,t+1)]}. (1.14)

41agept ∈ {∅, 18, 19, ..., 40}, where ∅ indicates that there is no child, so the age of mother when a

child is born, is not defined.
42It equals nothing if no child exists.
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1.3.12 Model Solution

Having the recursive formulation of the problem, since I have a finite horizon

problem, I can solve the problem by starting with the final period and moving back-

wards. I begin by solving the last-period problem of the individual numerically and

then going on recursively to find the value function for the individual for any possible

values of the state vector. In what follows next, I briefly discuss the solution to the

individual’s problem modeled in the previous subsection.

Child Investments

According to equation (1.3), by assuming a Cobb-Douglass form for the skill formation

technology, it is obvious that whenever a child exists, I can never have any corner

solutions to the household input choice problem during the investment period (i.e.

the development stage).43 However, the model allows for corner solutions for labor

supply– i.e. the hours worked may be zero in any given period. I can write the

conditional factor demands for child inputs (expenditures on the child and the time

spent with the child), where I condition on the labor supply choices, nonlabor income,

and the husband’s income (if she is married). These conditional factor demands also

depend on the child’s existence and the child’s age when a child exists. The conditional

factor demand for child inputs at child’s age tk, is as follows:

τ ∗i,tk(hi,tk) = (TT − hi,tk)
ϕ2,tk

α2 + ϕ2,tk
, (1.15)

e∗i,tk(hi,tk) = (hi,tkwi,tk + h̄wsp
i,tk
mi,tk + Ii,tk − ccIhi,tk>0Ii,tk<8)

ϕ3,tk

α1 + ϕ3,tk
, (1.16)

43If any factor takes zero in any given period, then because of the Cobb-Douglass
technology function, the child’s skill level will be zero at all the subsequent periods,
and by log linear utility function ui,t → −∞ whenever ki,t → 0.
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where

ϕj,tk = βγj,tkξi,tk+1, j = 2, 3 (1.17)

The sequence {ξi,tk}M+1
tk=1

is defined (backwards-) recursively as

ξi,M+1 = ψα3

ξi,M = α3 + βγ1,Mξi,M+1

...

ξi,m = α3 + βγ1,mξi,m+1

...

ξi,1 = α3 + βγ1,1ξi,2

where ψi = φ(β + β2 + · · ·+ β60−agepi−M).

It is worth mentioning that ξi,m is the marginal utility of (log) child quality to the

household in period t, i.e., ξi,m = ∂Vm(Si,tk)/∂ln(ki,tk).

Labor Supply

I derived the solutions to child inputs conditional on hours of market work. Now, the

optimal solution to the labor supply is conditional on the existence of a child and on

the pregnancy decision as well.

Working more than the cut-off level, h, increases the individual’s work experience

by one unit, but any changes to hours of market work, as long as the individual works

more than the cut-off level has no additional impacts on her work experience and so

future wages. Also, any changes to hours of market work, as long as the individual

works less than the cut-off level does not change her future work experience and so
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future wages. However, changing hours of market work from below the cut-off level to

above it effectively increases the individual’s work experience and so changes future

wage possibilities. In other words, the decisions on labor supply at the extensive mar-

gin, i.e. whether to work or not, affect future wage possibilities through the return

to work experience, but at the intensive margin, the future return to hours of market

work is constant no matter how many hours she work (as long as it is at least equal

to the threshold). Hence, the individual makes decision on discrete choices here. In

other words, there are two corner solutions here: 1) h = 0 so she does not work, and

2) h = h so she works the least hours needed to get one more unit of experience in

period t. There are four cases in regard with the child existence and the fertility status:

First Case: a child exists whose age is less than M : The individual maxi-

mizes her life-time utility by choosing hours of market work, hi,t:

max
hi,t

α1log(hi,twi,t + h̄wspt mi,t + Ii,t − ccIhi,t>0Ii,tk<8) + α2log(TT − hi,t − τ(hi,t))

+ α3φlog(ki,t) + βEt[V
1(t+ 1, Si,t+1)], (1.18)

where V 1 is the value function described in the previous section. Remember that I

already derived the optimal child inputs conditional on hours of market work and

I compute the value function recursively by starting from the last period and going

backwards in time. So for every single value of hi,t, I can compute the individual’s

life-time utility.

Now, to derive the first order condition (FOC) for this maximization problem,

one should note that the continuation value, V 1(t+ 1, Si,t+1) is not continuous at the

cut-off level, h, because the work experience (which is a state variable of function

V 1) is a step function with respect to hi,t. If hi,t ∈ [0, h), then V 1(t + 1, Si,t+1) =

V 1(t+ 1, ., ., xi,t− δs,txi,t, ., .), which means that the state variable ”work experience”
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will be depreciated by the trophy rate δ; and if hi,t ∈ [h, TT ), then V 1(t+ 1, Si,t+1) =

V 1(t+ 1, ., ., xi,t + 1, ., .), which means that the state variable ”work experience” will

be one unit more tomorrow.

Hence, the continuation value, V 1(t+ 1, Si,t+1) is a step function in hi,t and there

is a kink at h. This means that V 1(t + 1, Si,t+1) is not differentiable with respect to

hi,t at the kink point, which is h, but it is differentiable with respect to hi,t over both

intervals (0, h) and (h, TT ), and the derivative is zero over both intervals. Hence, in

order to find the optimal solution to hi,t, I consider three cases:

1) hi,t 6= h: in this case, since the V 1(t+ 1, Si,t+1) is differentiable with respect to

hi,t, I can derive the FOC by taking derivative of the life-time utility, i.e. expression

(17), with respect to h, which yields the following (after I solve it for hi,t):
44

ĥ1
i,t =

wi,tTT (α1 + ϕ3,t)− (α2 + ϕ2,t)(hi,twi,t + h̄wspt mt + Ii,t)

wi,t(α1 + α2 + ϕ3,t + ϕ2,t)
, (1.19)

where h1
i,t is the interior solution to the maximization problem. So the life-time utility

of the individual is equal to:

α1log(ĥ1
i,twi,t + h̄wspt mi,t + Ii,t − ccIhi,t>0Ii,tk<8) + α2log(TT − ĥ1

i,t − τ(hi,t))

+ α3φlog(ki,t) + βEt[V
1(t+ 1, Si,t+1)],

Where the state variable of work experience in the state vector, xi,t, should be updated

correspondingly with respect to the value of ĥ1
i,t.

2) hi,t = h: in this case, the life-time utility of individual is simply equal to the

following:

α1log(hwi,t + h̄wspt mi,t + Ii,t − ccIhi,t>0Ii,tk<8) + α2log(TT − h− τ(hi,t)) + α3φlog(ki,t)

+ βEt[V
1(t+ 1, Si,t+1)],

44The derivation is shown in the Supplementary Appendix.
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Where the state variable of work experience in the state vector, xi,t, should be updated

correspondingly with respect to the value of hi,t = h, so xt+1 = xi,t + 1.

3) hi,t = 0: in this case, the life-time utility of individual is simply equal to the

following:

α1log(h̄wspt mi,t + Ii,t) + α2log(TT − τ(hi,t)) + α3φlog(ki,t) + βEt[V
1(t+ 1, Si,t+1)],

Where the state variable of work experience in the state vector, xi,t, should be updated

correspondingly with respect to the value of hi,t = 0 and the depreciation rate. The

optimal solution to the labor supply can be found easily by comparing the life-time

utility to the individual under three cases described above.

To put it in a nutshell, the optimal choice for labor supply is as follows:

h∗i,t = arg max
hi,t∈{0,max {0,ĥ1i,t},h}

α1log(hi,twi,t + h̄wspt mi,t + Ii,t) + α2log(TT − hi,t − τ(hi,t))

+ α3φlog(ki,t) + βEt[V
1(t+ 1, Si,t+1)],

where Si,t = (mi,t, si, xi,t, age
p
i,t, ki,t,Ωi,t) is the vector including state variables, and

V 1(t+ 1, Si,t+1), as defined earlier, indicates the value function when a child exists at

the beginning of period t+1 and the state vector is Si,t+1. When solving the problem

backwards in time, in a given period t, I know the value of V 1(t + 1, Si,t+1) for all

possible values that the state vector might have. Note that when hi,t is zero or less

than the cut-off level, the next period’s experience will be discounted by δs,t−1, and

when hi,t is greater than the threshold the next period’s experience will be one more

unit higher than today’s, no matter what the value to hi,t is.

Second Case: a child exists, but older than M : In this case, since the

development stage is already done, then, hours of market work does not play any

role in determining current or future child’s skill levels. Hence, hours of market work
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is determined by comparing the values to corner solutions and the interior solution

while the interior solution is determined only by the trade-off between consumption

and leisure (no dynamics exist in this case). The procedure is similar to the previous

case, but in this case the interior solution, which is derived using the FOC, is as

follows:45

ĥ0
i,t =

α1wi,tTT − α2(h̄wspi,tmi,t + Ii,t)

wi,t(α1 + α2)
, (1.20)

Hence, the optimal hours of market work is as follows:

h∗i,t = arg max
hi,t∈{0,max {0,ĥ0i,t},h}

α1log(hi,twi,t + h̄wspt mi,t + Ii,t) + α2log(TT − hi,t)

+ ϕα3φlog(ki,M+1) + βEt[V
1(t+ 1, Si,t+1)],

Third Case: no child exists and the fertility period is over: In this case, there

is no child, and since the individual is older than 40 years of old, she cannot decide

to get pregnant, so no pregnancy decision is made. Similar to the previous case,

hours of market work is determined by comparing the values to corner solutions and

the interior solution while the interior solution is determined only by the trade-off

between consumption and leisure (no dynamics exist in this case). The solution in

this case is similar to the previous case:

h∗i,t = arg max
hi,t∈{0,max {0,ĥ0i,t},h}

α1log(hi,twi,t + h̄wspt mi,t + Ii,t) + α2log(TT − hi,t))

+ βEt[V
0(t+ 1, Si,t+1)],

Fourth Case: no child exists and the individual is still in the fertility

window: In this case, the optimal choice for labor supply can be derived conditional

on the pregnancy choice. First, suppose that she decides to get pregnant. Then, she

cannot work in this period if she actually gets pregnant.46 Hence there is no choice

45The derivation is shown in the Supplementary Appendix.
46For the simplicity of representation, I ignore the uncertainty about the pregnancy

outcome here.
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to make on hours of market work, and it is equal to zero: h∗ = 0. Now, if she decided

not to conceive a child in the current period hours of market work is determined by

comparing the values to corner solutions and the interior solution while, similar to

the previous case, the interior solution is determined only by the trade-off between

consumption and leisure (no dynamics exist in this case). Hence, the optimal choice

for labor supply can be derived as follows:

h∗i,t = arg max
hi,t∈{0,max {0,ĥ0i,t},h}

α1log(hi,twi,t + h̄wspt mi,t + Ii,t) + α2log(TT − hi,t))

+ βEt[V
0(t+ 1, Si,t+1)],

Pregnancy Choices

The solutions to child inputs described above are derived conditional on existence

of a child; upon arrival of a child, mothers make optimal decisions regarding the

labor supply and child inputs. In a given period, if a fertile individual has no child,

then she has to decide whether to conceive a child, or to delay childbearing for one

additional period, and also make decision on how much to work if not pregnant. To

make optimal childbearing decisions, she compares the lifetime utility of conceiving

a child in the current period (conditional on making optimal decisions regarding the

child inputs and labor supply thereafter) to the lifetime utility of not conceiving a

child (conditional on making optimal decisions in the following periods). Hence, the

individual makes the decision weather or not to conceive a child in the current period,

t, according to the following maximization:

V 0(t, Si,t) = max {V 0
nobb(t, Si,t), V

0
bb(t, Si,t)},
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where V 0
bb, i.e. the value to decide to get pregnant, is as follows:

V 0
bb(t, Si,t) = α1log(h̄wspt mi,t + Ii,t) + α2log(TT )

+ βEt[V
1(t+ 1, Si,t+1)],

where the value of state variables in Si,t+1 is updated; specifically, bbi,t+1 = 1 (i.e.

it changes from zero to one), and agepi,t+1 = t (i.e. it changes from nothing to t).47

Note that in this case, she cannot work so hi,t = 0, and the income comes from the

husband’s work and non-labor income. Moreover, the value to the work experience

decreases due to depreciation, xi,t+1 = (1− δs,t)xi,t .

The value to decide not to get pregnant, i.e. V 0
nobb(t, Si,t) in the above-mentioned

maximization is as follows:

V 0
nobb(t, Si,t) = max

hi,t∈{0,ĥ0i,t,h}
α1log(htwt + h̄wspt mi,t + Ii,t) + α2log(TT − hi,t)

+ βEt[V
1(t+ 1, Si,t+1)],

Note that the value of all state variables in Si,t+1 is the same as Si,t except (probably)

for the work experience.

1.4 Estimation

In this section, I first explain the model specification. I discuss the functional

forms that I have chosen and the implications of these modeling choices for the final

results. Then I review the sources of heterogeneity and uncertainty in the model

that help me recover the model parameters. After that, I discuss the parameter

identification: I assume that the specification represents the data generating process,

and the issue is how to recover the model parameters using observed data. Finally, I

describe the estimation method.

47It has been equal to nothing while entering this period.

38



1.4.1 The Sources of Heterogeneity and Uncertainty

This model has two sources of heterogeneity. Individuals differ in their education

levels, and they face different probabilities of unwanted pregnancies according to those

levels. They also differ in their marital status. I use completed years of schooling

to denote education level in the estimation. To be more precise, individuals differ in

their educational decisions by age 18.

Except for these differences, all individuals face the same problem. Individuals

also face uncertainty regarding wage shocks, productivity factor shocks, and nonlabor

income shocks. All of these shocks are independently distributed across individuals

and over time. Individuals also face shocks to their marital status in each period;

these shocks depend on the woman’s age, the presence of children, and her previous

marital status. Moreover, individuals face uncertainty about the outcomes of their

pregnancy decisions. If a woman decides to get pregnant at age y, she will get

pregnant with probability π(y), and if she decides not to get pregnant, then she may

still get pregnant with probability λ(s) . Exogenous variations in nonlabor income,

wage, marital status, pregnancy, and education level in the data help to recover the

model parameters.

1.4.2 Model Specification

In this section, I discuss my modeling choices.

I allow the elasticity parameters in the child’s skill production function, i.e. γ1,tk ,

γ2,tk , γ3,tk , to change with age of the child. However, to keep the number of parameters

that I need to estimate as small as possible, I assume the following functional form

for modeling how the elasticity parameters in Equation (1.3) change with the child’s
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age, tk:

γj,tk = exp(γj,0 + γj,1t
k), j = 1, 2, 3 (1.21)

I use a similar approach for modeling the depreciation rate in Equation (1.5),

δ(s, t) as follows:

δs,t = exp(δs,0 + δs,1t), s = H,C (1.22)

where subscript H denotes non-college graduates, and subscript C indicates that the

individual is a college graduate.

Furthermore, I allow the intercept of the productivity factor to depend on the age

of the child as follows:

Atk = exp(A0,0 + A0,1t
k), j = 1, 2, 3 (1.23)

In this paper, I model the effect of the mother’s age at childbirth on the child’s

innate ability by including the parent’s age in the productivity factor term. I assume

that initial skill is homogeneous because every child is born with almost the same

endowment in terms of knowledge, skills, and experience, but with different innate

abilities. Lower innate ability driven by the age effect might affect the childs ability

to absorb investments (both time and monetary) and to translate them into human

capital. For example, suppose that two children have the same stock of human capital

at period t. If child 1 has a greater innate ability (say a higher productivity factor)

than child 2, and they receive the same amount of inputs, child 1 will have a greater

stock of human capital at period t+1 compared to child 2 because the first child can

better absorb the investment and transform it into human capital.

To specify the productivity factor term, I use a log-quadratic functional form over

childbearing age. Medical evidence shows that the marginal effect of the mother’s age

at childbirth on the child’s innate ability is not constant. The marginal detrimental
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effect of maternal age is greater as maternal age increases. Moreover, some evidence

shows that it has an inverse-U shape. There are also some risks associated with

pregnancy before age 20. The specification I chose is able to capture such a pattern.

1.4.3 Identification

In this subsection, I discuss the econometric identification issues. First, I assume

that the functional-form assumptions represent the true data generation process of

the population exactly. Then, I show how the model parameters could be recovered

using the observed data in a relatively simple manner. The estimator I actually use for

recovering the primitive model parameters has practical and theoretical advantages

over the proposed identification method below. Nonetheless, the following discus-

sion helps one develop intuition to better understand the key sources of identifying

information given the model I specified earlier.

I begin with the determination of preference parameters, and the parameters in the

skill formation technology. Here, I face some challenges: first, household consumption

and child expenditures are not observed in my dataset. The second issue concerns

missing data in the dataset. For each child in each survey year, I observe the time

spent with the child and the child’s test scores, but I do not observe the child’s test

scores in successive years– i.e. I do not observe “ki,tk” and “ki,tk+1” at the same

time. I can see the child’s skill level only in the next survey, which is five years

later. Therefore, I have observations on “ki,tk” and “ki,tk+5.” This makes it difficult

to estimate parameters for the skill formation technology.

Let’s first restrict our attention to the skill formation technology parameters in

the child’s skill formation function specified in Equations (2) and (3). In the skill

formation technology specified earlier, the observation period for each household is

defined by the age of their child, i.e. period t begins when the child turns age tk.
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Under the maintained assumptions, if the child of household i turns age tk with a

skill level of ki,tk , then, her skill level at the beginning of the next period, ki,tk+1, is

determined by the following equation:

lnki,tk+1 = lnAtk + ε1age
p
i + ε2(agepi )

2 + ε3IQ
p
i + exp(γ1,0 + γ1,1t

k)lnki,tk

+ exp(γ2,0 + γ2,1t
k)lnτi,tk + exp(γ3,0 + γ3,1t

k)lnei,tk + υi,tk ,

≡ X(agepi , IQ
p
i , t

k, τi,tk , ei,tk , ki,tk ; γ) + υi,tk ; i = 1, 2, ..., N,

where N is the number of observations. The disturbances, υi,tk ’s, are independently

distributed across households and over time. The IQ of mothers is proxied by their

level of education, and for each child, I can observe the education level of the mother

and the mother’s age at birth, agepi . Given the assumptions I made, the skill formation

technology parameters, γ’s, could be estimated using a non-linear least squares (NLS)

estimator as follows:

γ̂NLS = argmin
γ

N∑
i

(lnki,tk+1 −X(agepi , IQ
p
i , t

k, τi,tk , ei,tk , ki,tk ; γ))2

In order to recover the technology parameters in this manner, I need the standard

full rank condition on the matrix X. The full rank condition requires that not all

mothers have the same education level, not all mothers have the same age at first

birth, and not all mothers choose the same level of investments in their child. These

conditions are easily satisfied in the actual dataset. Moreover, since I specified the

parameters as a monotone function of the child’s age, I need at least two children of

different ages in my dataset in order for the full rank condition to be satisfied.

A challenge that one faces when estimating skill formation technology in the man-

ner just discussed, is that the child goods expenditures, ei,tk ’s, are not directly ob-

servable in the dataset. However, under the maintained assumptions, child goods

expenditures is the only decision variable that depends on the family’s income. As
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previously shown in Equation (1.15), the child goods expenditures is a fraction of the

family income, and that fraction is a function of preference parameters, skill formation

technology parameters, and the mother’s age at childbirth. As family incomes are

observable for each observation period, Equation (1.15) can be used to back out child

goods expenditures given preference parameters. Hence, the skill formation tech-

nology parameters could be estimated using a NLS estimator given the preference

parameters.

Another challenge faced in estimating the technology parameters using a NLS

estimator is missing data in the children’s test scores. The concern here is that child

investments and skill levels are observable, but child supplement interviews have only

been conducted every five years, so for a given child, skill levels cannot be observed

for two successive years. Hence, for family i, both ki,tk and ki,tk+1 cannot be observed

at the same time. The estimation method I actually use is explained in the next

section in detail. Using the derived solutions to child investments under the specified

model, the child skill levels in each period can be simulated for every realization of

exogenous shocks to marital status, wages, and non-labor incomes for a given set of

parameters. Hence, for an arbitrary set of model parameters, it is possible to solve

each individual’s problem, and simulate the path of their child’s skill levels. With

the simulated data, I can compute sample characteristics for the simulated dataset

and compare them to the actual sample characteristics.48 The next step is to change

the set of assumed model parameters and repeat the process, i.e. simulate a dataset

based on the assumed parameters, compute the simulated sample characteristics, and

compare it to the actual sample characteristics. This process is continued until the

48Also, before computing the simulated sample characteristic, I generate the sim-
ulated dataset S times, while each time drawing a random number for the random
shock variables according to their data generating process. In this way, when com-
puting the sample characteristics, I can effectively take the effect of random shocks
out by integrating over the different random shock realizations.
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model parameters are tuned such that the simulated sample characteristics match the

actual sample characteristics.

In this section, I discussed how I could use a NLS approach to estimate the

technology parameters when given the preference parameters while ignoring missing

data issue. Now, I discuss how to estimate the preference parameters using the

dataset when given the technology parameters. There are five preference parameters:

the impact factors for consumption, leisure, and child’s skill level, i.e. α’s; the discount

factor for when the child reaches age 18 and leaves home, i.e. φ; and the time discount

factor, β. After normalizing the impact factors by assuming that
∑3

1=1 αi = 1, only

four parameters effectively remain to be estimated. I already derived optimal solutions

for the labor supply and child inputs conditional on labor supply choices. The labor

supply choices and time investments in children are observable in my dataset, and I

can use this information to back out the preference parameters. I need two individuals

whose ages at childbirth are different and who both chose non-corner solutions for

labor supply in at least one period. This condition is satisfied in my dataset. Hence,

using Equations (14) and (16), which specify the optimal solutions for child time

investment and labor choices, and the actual choices observed in the dataset for these

two hypothetical individuals, I can recover the four preference parameters given the

skill formation technology parameters.

As shown here, even though the consumption and child goods expenditures are

not observed in my dataset, the dataset is rich enough to still enable me to recover

the primitive parameters of the specified model.

The process for nonlabor income is assumed to be exogenous in this model. Sep-

arately, I can estimate this process, described in equations (7) and (8), using cross-

section data on the households’ nonlabor income. Hence, parameters in the nonlabor

income process can be identified outside of the model.
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What remains is the determination of parameters in the wage equations. Al-

though the wage offer process can be estimated outside of the model, the problem

with directly estimating the wage process is that there are nonrandomly missing ob-

servations due to corner solutions for labor supply. Indeed, when the individual is not

working, I cannot observe the wage offer. These missing wage offers are not randomly

distributed because the higher the wage offer, the higher is the probability that the

woman works in that period. In other words, the larger the error term of the wage

process, the higher the probability that the wage offer is observable. Wage offers are

observed only for women who work for wages, so a naive estimator would be biased.

Hence, I cannot estimate the wage process using OLS.49,50 Therefore, I estimate the

parameters of the wage processes simultaneously with other parameters of the model

using the estimation method that is described in the next section. Using the paramet-

ric distribution assumptions about the wage offers, explained in the model section,

I can identify the parameters describing the wage offer distribution alongside other

parameters of the model.

In the next section, I explain the estimation strategy. But first, I will explain

intuitively why I am able to recover the preference parameters and the technology

parameters even without observing expenditures and consumption. According to the

model, expenditures are always a fraction of total income (Equation (1.15)), which is

observable, and this fraction is a function of the model parameters. Hence, because I

observe total income and the child’s skill level, exogenous variations in the wage shock

and nonlabor income help me recover the impact of expenditures on the child’s skill

level– i.e. γ3, provided that the model is correctly specified. Consumption, again, is

49I also used a Monte Carlo simulation to see if I could obtain consistent coefficients
for the wage process using OLS regression when ignoring those nonrandomly missing
data. My simulation results suggest that I cannot.

50This problem is known as incidental truncation in the econometrics literature.
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a fraction of total income, and this fraction is a function of the model parameters.

Therefore, the model reveals the relationship between consumption and income, and

this helps me recover the impact of consumption on the individual’s utility. It is

worth thinking about the two extreme cases. If an individual cares only about her

consumption– i.e. puts zero weight on leisure and the child’s skill level– then she

never decides to conceive a child. On the other hand, if she cares only about the

child’s skill level, then she spends all of her resources on her child, consumes nothing,

and never uses her free time for enjoyment (leisure). Observations on the time that

individuals spend with their children and the evolution of the child’s skill level help

to recover the consumption impact parameter, α1. The next section provides a more

detailed explanation illustrating how the model parameters could be recovered using

the observed data, even though I do not observe consumption and child expenditures,

and even without having observations on childs skill levels for successive years.

1.4.4 Estimator

I consider two education levels, four-year college graduate and non-college gradu-

ate. A fraction of individuals decide to continue their education at college. I set the

fraction of non-college graduates and college graduates according to data from Panel

Study of Income Dynamics (PSID). The PSID data also show that, for each group of

individuals, some percentage are single at age 18, and the others are married. These

fractions define the initial distribution of heterogeneous individuals in the model.51

In total, the model has 40 parameters to be estimated simultaneously: eleven

parameters of the technology function–i.e. ε1, ε2, ε3, two for A, two for γ1, two for γ2,

51According to the data, 46% of women continue their education in college. Provided
that they have decided not to continue their education in college, the probability of
her being single is 0.85, and of being married is 0.15. In contrast, for a woman that
has decided to go to college, the probability of being single is 0.95, and of being
married is 0.05.
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and two for γ3; four preferences parameters– i.e. α1, α2, φ, and β; sixteen coefficients

of the wage functions– i.e. four for δ, two for η0, two for η1, two for η2, two for ηsp0 ,

two for ηsp1 , and two for ηsp2 ; two probability parameters for conception errors, λc and

λh; and five distributional parameters for wage shocks and productivity shocks– i.e.

two for σw, two for σspw , and σ2
R; and two parameters for the distribution of initial

child skill. I use the Method of Simulated Moments (MSM) estimator to recover the

primitive parameters of the model simultaneously, which is described below.52

The data I use provide detailed information about the households in the survey.

They include some characteristics of parents, such as the ages at childbirth, the

mother’s education, hours worked, their accepted wages, household income, and hours

spent with their child. They also include some measures of the child’s skill level at

different ages during the development period.

In order to implement the method of simulated moments, I first define a set of

moments (sample characteristics) that capture the relationships between different

variables in the sample for each year in which the survey was conducted and also

between surveys in different years. Let this set be denoted by M . To find the

estimator in this method, I utilize the simulation method. This means that, using my

model, conditional on the parameter vector Ω, I can solve the individuals’ problem

throughout their life-cycle and compute the moments I already have defined for this

population. I denote this moment vector by M̃(Ω). The MSM estimator of the

parameter vector Ω can be defined as follows:

Ω̂ = arg min
Ω

(M − M̃(Ω))′W (M − M̃(Ω)), (1.24)

where W is a symmetric positive-definite weighting matrix. I use the bootstrapping

method to define this weighting matrix. Indeed, by resampling the data, I simply

52See Lerman and Manski (1981), McFadden (1989), Pakes and Pollard (1989),
Gourieroux et al. (1993), and Gallant and E. Tauchen (1996) for some references.
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set W equal to the inverse of the covariance matrix of M .53 It turns out that this

estimator is consistent.54

The moment vector that I use includes the average and standard deviation of

mothers’ ages at the birth of the first child (if they have one), for both college and

non-college graduates; the average and standard deviation of test scores at each child’s

age; the average and standard deviation of hours of work for mothers; the average

and standard deviation of child investment hours at each child’s age; the average and

standard deviation of accepted wages and the correlation in wages across parents;

and contemporaneous and lagged correlations among the observed labor supply, time

with children, child’s skill level, wages, and income. In order to compute the standard

errors of the parameter estimates, I use the bootstrapping method. I generate new

datasets using sampling data over individuals with replacement. Then, I implement

the method of simulated moments to reestimate the model parameters using the new

data sets.55 Finally, I calculate the standard errors of the parameter estimates.

1.5 Model Estimates

1.5.1 Parameter Estimates

In this section, I present the results of the estimation of the theoretical model–

namely, the estimated parameters and sample fit of the model. Then, I report the

results of the variance decomposition of the child’s skill level at the end of the devel-

53I did not use the asymptotically optimal weighting matrix because of computa-
tional cost. Also, Altonji and Segal (1994) examined the finite-sample performance of
the asymptotically optimal weighting matrix and concluded that the asymptotically
optimal weighting estimator is seriously biased in small samples.

54See Cameron and Trivedi (2005) for a discussion of the properties of this estimator.
55While reestimating parameters using the new bootstrapped datasets, I keep fixed

the random draws for wage shocks, marital status shocks, nonlabor income shocks,
and productivity shocks. I also hold the starting values constant when reestimating
model parameters for the bootstrapped datasets.
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opment phase. Finally, I discuss some counterfactual policies regarding the timing of

birth.

Preference Parameters

Preference parameters and the corresponding standard errors are presented in Table

(1.7). The preference parameters α1, α2, and α3 correspond to consumption, leisure,

and the child’s skill level, respectively. These parameters determine the relative im-

portance of those factors in the utility function. A 1% increase in consumption has

the highest impact on the utility function (log(0.42)), compared to a 1% increase in

household leisure or in the child’s skill level. The leisure impact is equal to 0.27, and

the child’s skill impact is equal to 0.31. To get a better understanding of what these

numbers mean, it might be helpful to think about the following two extreme cases:

first suppose that α3 = 0. In this case, the woman does not care about her child’s skill

level at all. In the context of this model, this means that she would get no enjoyment

from having a child. Therefore, she never decides to conceive a child; no child will

be conceived intentionally. On the other hand, suppose that α3 = 1, which implies

that α1 = α2 = 0. In this case, the woman cares only about the child’s skill level and

the utility is derived only through the child’s skill level. In this case all resources are

devoted to the child and nothing would be consumed by the household, i.e, no leisure

and no consumption occurs at all.

Production Technology Parameters

Production technology parameters are presented in Table (1.8). It seems that of all

inputs, time investment has the strongest effect on skill formation, especially during

the early years of the child’s life. The elasticity of the next period’s skill level with

respect to time investment is much greater than that of money investment and the
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current period’s level of skill. Figure (1.4) depicts the technology parameters against

child age. The results suggest that while the impact of time investments decreases

with increasing child age, the impacts of child goods expenditures and the current

level of human capital become larger.

Table (1.8) also shows the estimate of the effect of the mother’s age at childbirth

on the child’s productivity. Both ε̂1 and ε̂2 are negative. However, ε̂2 is close to

zero, meaning that the second-order effect is relatively small. The estimate of the

first-order effect, ε1, is equal to −0.015. If I assume that ε2 is zero, then, according to

equations (2) and (3), I can interpret the results as follows: all else held constant, one

year increase in maternal age at childbirth decreases the next period’s skill level by

about 1.5% with respect to the child-age-specific average of test scores. Given that

the development phase lasts for 15 years, the detrimental effect of postponement of

childbirth on child’s skill level seems to be considerable. Figure (A.10) shows how the

productivity of the child changes with the mother’s age at childbirth.

Table (1.8) also reports the standard error of these estimated parameters.

Depreciation Rate Parameters

Table (1.9) provides the estimated parameters regarding depreciation rates. Figure

(1.5) depicts how the depreciation rates of one period of absence from the labor market

change over the woman’s life-cycle by education level. The results suggest that the

deprecation rates decrease with age, and that the rate for educated women is higher

than that of less-educated women. Figure (1.5) shows that for college graduates, the

depreciation rate ranges from over 12% to about 3%, while it ranges from 6% to about

4% for non-college graduates. Previous papers provide a wide range of estimates for

depreciation rates. Blundell et al. (2016b) document that the human capital for UK

women depreciates between 5.7% and 11.0% a year when being out of work. Olivetti
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(2006) finds that a woman with zero labor supply between ages 20 and 29 loses about

50% of her human capital by age 30. Guner et al. (2018) find yearly depreciation

rates of 2.5% for unskilled women and 5.6% for skilled women. Using data from

the German chemical sector, Gerst and Grund (2017) estimate the effect of career

interruption on wages as about 11% per year of interruption. Moreover, Jacobsen

and Levin (1995) find that there is a 14% reduction in women’s wages in the case of

intermittent labor force attachment. Caucutt et al. (2002) finds that if a woman does

not supply any labor when she is young, she experiences about a 10% decline in her

wages ten years later. Kleven et al. (2018) show from the Danish administrative data

that the hourly wages of women drop permanently by about 10% right after the birth

of their first child. Finally, to estimate the human capital depreciation rate, Ejrnæs

and Kunze (2013) exploit arguably exogenous variation in the time out of the labor

force induced by the expansion in parental leave in West Germany; they find that

mothers wages after returning to work decrease by 3.4% and 5.8% per year of leave for

low-skilled and medium-skilled mothers, respectively. None of these studies, however,

examined how the wage penalty associated with career interruption due to a childbirth

changes over the female’s life-cycle. That said, Miller (2011) uses biological fertility

shocks to instrument for age at first birth, and finds that motherhood delay leads to

a substantial increase in wages of 3% per year of delay; this advantage is largest for

college-educated women and those in professional and managerial occupations.

Finally, Table (1.10) provides estimated parameters regarding the earnings func-

tions and unintended pregnancy.

Within-sample Fit

Table (1.11) reports the values of different moments calculated using the data and

compares them to corresponding values from the simulated data using estimated
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parameters. The first two columns correspond to highly-educated women and the

last two correspond to less-educated women.

The first moment in Table (1.11) is the mean age at childbirth. It can be seen that

the model is a good fit for mean age at first childbirth in both highly-educated and

less-educated women. The second row reports the standard deviation of the mother’s

age at first childbirth. The standard deviation of the simulated data is lower than

that observed in the real data. The model is also a good fit on the test scores at the

last period of development. Hours worked per week match well between the data and

the model.

Figures (1.6) and (1.7) show the sample fit of the average child’s test score over

the whole child development phase for children of less-educated and educated women,

respectively.

Figures (1.8) and (1.9) show the sample fit of the distribution of age at first child-

birth for less-educated and educated women, respectively. The simulated distribution

of maternal age at birth matches the data distribution well for both less-educated

women and educated women.

Discussion

In this section, I relate my results to previous papers in the literature. Cunha and

Heckman (2008) and Cunha et al. (2010) provide some empirical evidence that tends

to support the idea that child goods expenditures during early childhood are very

effective, and to a large extent determine future child quality.

Del Boca et al. (2013) examines the impacts of child goods expenditures and time

investments in children by estimating the child’s skill formation technology within a

standard household model. They model the household decisions on child investments

and labor supplies, leaving the age of parents exogenous. Their findings suggest that

52



even though early childhood expenditures might be more important than those made

later in the child’s life; however, the effects of child goods expenditures are very

limited at any stage of the child’s life; time investments made by parents have more

effective impact on developing skills in the child. The findings of this paper tend

to support the findings of Del Boca et al. (2013), in which, time investments play a

bigger role compared to the child goods expenditures. However, my findings suggest

that the effect of child goods expenditures could be underestimated in models that

do not account for decision of household with respect to the timing of childbearing.

Households decide on both the timing of birth and child investments, and these

decisions are related to each other. As explained earlier in this paper, educated

women tend to have their first child later in life, and holding education constant, older

parents, on average, make more investments in their children. Moreover, children born

to older individuals may be more likely to be less productive. Neglecting these age

effects may lead one to underestimate the effects of time investments and money

investments. In fact, the returns from investments made by educated parents, who

are, on average wealthier and older, might not be as large as for those made a few

years earlier, when they were younger. Hence, if we ignore the role of parental age

in the childs skill formation technology, we might underestimate the effects of child

investments.

In this paper, as in many previous papers (including those mentioned in this sec-

tion), I did not allow for saving/opportunity in the model developed for my empirical

work. One reason is the computational difficulty related to the huge space of state

variables in this model. I expect, however, that extending the model to incorporate

saving opportunity would not significantly affect childbearing decisions. In the frame-

work presented in this paper, saving opportunity does not relieve the main trade-off

that women face between the childs productivity factor and the resources available
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to invest in the child. They cannot avoid the postponement of childbearing that ac-

companies accumulating financial resources during early work-life-cycles. Moreover,

their wages are relatively low in early periods, which makes it hard for them to save

in order to make future investments in their child. It is more likely that individuals

would rather have an opportunity to borrow in the early periods to smooth their

consumption. If they could transfer their future resources to early periods, then they

would have more resources to invest in the child during early periods to increase her

skill level; hence, they would not be required to delay their childbearing to later ages

at which they would have higher wages.

Nonetheless, it is useful to think about how not including saving could make my

estimates biased. First of all, if saving was allowed, people could invest part of their

savings in their children, and people with higher incomes could save more. When

estimating the impact of child goods expenditures on the child’s skill level, I use the

variation of incomes between families. Since I did not allow saving to play a role in my

model, the impact of child goods expenditures might be overestimated; the variation

in child goods expenditures may have actually been higher than what is implied by

the differences in incomes between families (because saving is used to increase child

goods expenditures). Also, it is possible that neglecting saving opportunities makes

me underestimate the effect of maternal age at delivery on the child’s skill level. I use

variation in the mother’s age at birth to assess the effect of the mother’s age on the

child’s skill level while taking into account the effects of income differential due to the

wage life-cycle. However, if I overlook the effect of saving on child goods expenditures,

I might have not completely accounted for how higher incomes (and savings) made by

older parents can compensate for negative effects. This may introduce a downward

bias to my estimate of the magnitude of the negative impacts of mother’s age on

child skill level. I could enrich the model to include borrowing opportunities, as well.
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However, I know that at early periods, individuals usually do not have high credit

scores, and their access to the credit market is limited. The model presented here can

be considered an extreme case in which the borrowing upper bound is zero. Therefore,

the results are unlikely to change significantly if I extend the model to include saving

and borrowing opportunities, provided there are tight credit constraints in the early

stages of the work-life-cycle.

As discussed earlier, previous papers usually have used a reduced-from regression

to estimate the impacts of maternal age on child cognitive ability or child’s test scores

by controlling for socioeconomic characteristics of parents such as parental education,

single parenthood, and a measure of family income (see for example Goisis et al.

(2017), Barclay and Myrskylä (2016), and Leigh and Gong (2010)). The results of my

simulation exercise reported in Table (A.13) in the Supplementary Appendix suggest

that neglecting child investments significantly biases one’s estimate of maternal age on

child outcomes even after controlling for those parental socioeconomic characteristics,

and the bias leads one to underestimate the magnitude of the negative health impacts

of greater maternal age on child outcomes, ceteris paribus. My results suggest that

neglecting child investments biases my estimate of the maternal age effect on child’s

skill level because older parents tend to invest more in their children due to greater

parental resources, and there is a dynamic complementarity between child investments

and child’s skill in producing the next period’s skills. Hence, the estimate of the

maternal age effect in a log-linear specification is biased if one neglects the child

investments, and this statement is true even after controlling for the mother’s and

the father’s wages, hours of market work, and their marital status.56

56In section 2, I provided a reduced-form estimate of the maternal age effect on
child’s test scores using observational data (see Table (1.5)). As explained before,
those estimates might be biased due to omitted variables, i.e. child investments,
which are positively correlated with maternal ages. To illustrate the omitted variable
bias problem, I use the simulated data in order to estimate the impact of maternal
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1.6 Simulation Experiments

1.6.1 Decomposition Analysis

As explained earlier, previous studies emphasized the impacts of both child goods

expenditures and time investments on the child’s skill level. Other studies highlighted

the effects of maternal age on child outcomes. Hence, females face a trade-off once

deciding when to bear a child: the younger the parents, the greater the expected

productivity of the child, but the lower their resources to invest in the child. One

contribution of this paper is to separate out the two effects by modeling all endoge-

nous choices on the timing of birth, child goods expenditures, and time investments

in the child. In order to decompose the effects of maternal age at childbirth on the

child’s skill from the impacts of child investments, I design some simulation experi-

ments. I use the estimated parameters presented in the previous section throughout

all experiments. The decomposition exercise is as follows:

First: I hold investments in the child fixed at their level in the baseline model,

and change the maternal age of educated mothers to 22.57 Then, assuming that the

maternal age is 22, I simulate the model and evaluate child skill levels at different

ages while using the investments from the baseline model to update the child’s skill

age on child’s test scores through a reduced-form approach similar to what I used
in Table (1.5). Table (A.13) reports regression results of such an exercise. Column
1 of Table (A.13) shows the results when I control for the mother’s education and
marital status, and also the child’s age. The coefficient of the maternal age is equal to
−0.014. Column 2 reports the results when I also control for the family income when
the child was 2 years of old; the coefficient of interest changes to −0.015. Column
3 shows the results when I also control for the mother’s hourly wages, mother’s
hours of market work, and father’s hourly wages. This specification is similar to the
regression results reported earlier in Table (1.5). The coefficient of interest in this
case is equal to −0.017. Finally, Column 4 of of Table (A.13) shows the results when
child investments in the past periods are also controlled for; the coefficient of interest
changes to −0.019.

57This is the median age of first childbirth for less-educated women.
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level in each period. In other words, I assume that investments in the child are not

affected by the change that I made with respect to maternal ages, i.e. the reduction

of maternal age from the baseline to 22.

Second: In the second experiment, I require the maternal age of educated females

to be 22 while allowing child goods expenditures to decrease according to that hypo-

thetically enforced parental age. Then, I evaluate the child’s skill level at different

ages of the child. In other words, I assume that everyone conceives a child at age 22,

and child investments are reduced accordingly with respect to the mother’s wages.

Assuming that the maternal age is 22, the implied mother’s wages during the early

stages of childhood development are lower due to both lower work experience and

higher depreciation rate at age 22.

Third: In the last experiment, in addition to the decrease in money investment, I

also reduce time investments in children according to the results of Table (1.6); with

a five-year decrease in the maternal age, time investments are reduced by 3%.

The difference in child skill between exercise 1 and the benchmark is due to the

five-year difference in maternal age; this demonstrates the intrinsic effect of maternal

age on child skill. The difference in child skill between exercise 1 and step 3 illustrates

the impact of differential investments originating from different birth timing.

The results of the decomposition exercise are shown in Table (1.12). They suggest

that both choices of the parent, i.e. childbearing age and child inputs, are extremely

important for developing the child’s human capital. Comparing the benchmark to ex-

ercise 1 suggests that reducing the maternal age of educated women without changing

actual child investments would increase the final stage human capital of the child by

over 11 percent, which is about 0.5 standard deviations. Also, comparing exercise 3 to

the benchmark reveals that reducing child investments to the hypothetical level that

educated women would have made if they conceived a child five years earlier would
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decrease the final test score of the children by about 1.6% on average, which is about

0.12 standard deviations. From exercises 2 and 3, it can be seen that even though

the five-year decrease in maternal age gives children the advantage of a better health

status compared to the benchmark, their final skill level is still lower. This is because

lower child investments are made by the age-shifted mothers. Hence, it seems that

the investment effects are dominant over health effects for a marginal mother.

In order to get a better sense for the magnitude of the mothers age effect on the

childs skill level, it might be useful to compare the result to the value added by school

teachers. Published estimates of the average standard deviation for gains in student

achievement within a single grade attributable to higher value-added teachers at a

given school range from 0.13 to 0.17 (Hanushek and Rivkin (2010)). Hence, the effect

of a five-year decrease in maternal age on the childs skill level is comparable to the

impact of having a higher value-added teacher for between three and four years.

1.6.2 Policy Analysis

In this section, I analyze the impacts of a wide variety of maternity leave polices,

child care subsidy programs, and transfer policies on human capital of mothers and

their children.

Maternity Leave Policies

Implementing a nationwide maternity leave policy has been the subject of heated de-

bate among both policymakers and researchers in the US, in part because the United

States is an outlier in maternity leave provision (Rossin-Slater (2017a)). The Fam-

ily and Medical Leave Act (FMLA) entitles eligible workers to take only 12 weeks of

unpaid parental leave, a short period of time compared to most other developed coun-

tries; for instance, Germany and France have three-year maternity leave periods. It is
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worth mentioning that less than 60% of private sector workers in the US were eligible

for the FMLA in 2012 (Klerman et al. (2012)). Previous studies have investigated

the impacts of maternity leave policies on fertility rate, the mothers labor market

outcomes, and the childs health (see Lalive and Zweimüller (2009); Schönberg and

Ludsteck (2014); Rossin (2011)). However, the potential impacts of maternity leave

policies on the timing of birth and child development, have not been investigated.58

I implement an unpaid maternity leave policy under which employers must guar-

antee a woman on maternity leave a return to her old job after two years. It also

freezes her wages at the level before childbirth. In the context of the model, this

means that the depreciation rate is zero. In this case, the only impact of childbearing

on wages would be the forgone wages associated with the year of lost experience right

after childbirth. I analyze the impacts of such a policy on the timing of births, child

investments, and child skill.

I also consider some counterfactual policies in regard to paid maternity leave. I

define two types of paid maternity leave policies: 1) mothers are paid for two years

after birth while not working, but depreciation to a decrease in their future wages

when going back to work, and 2) mothers are paid for two years after birth, and the

wage for each individual is the same as its value before childbirth, which means that

the depreciation rate for being out of the labor market during pregnancy is zero.

Table (1.13) shows the results of the above-mentioned maternity leave policies.

Columns (1) and (4) of Table (1.13) shows the result of an unpaid maternity leave

policy under which the wage is frozen at its level before childbirth. Results suggest

that implementing such a policy could decrease the childbearing age of educated

58Lalive and Zweimüller (2009) is an exception. They evaluate the effects of expan-
sion of paid leave in Austria in 1990 on the likelihood of a closely spaced second child.
They show that increasing paternal leave from one to two years is associated with a
15% increase in the likelihood of having another child within three years.
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and less-educated females, on average, by over 6% (less than 2 years) and about 2%

(less than half a year), respectively, or equivalently, by about 0.3 and 0.07 standard

deviations of maternal age at first birth in the benchmark. It also reduces the variation

of childbearing ages among both groups. As a result, the final test scores of children

increase by about 5% (0.25 standard deviations) and 3% (0.15 standard deviations) for

college graduates and non-college, respectively. Hence, such a maternity leave policy,

which avoids the wage penalty by freezing wages, can increase the children’s human

capital by a sizable amount. This increase stems from both having more financial

resources available to invest in the child and reducing the negative productivity effects

of delayed childbearing.

Columns (2) and (5) show the results for the first paid maternity leave policy,

under which individuals are paid while on leave but the wage is allowed to decrease

according to the depreciation rate. The results suggest the effect of this policy on

the average maternal age is similar to the result of the unpaid maternity leave policy.

The reduction in maternal ages improves the test scores of children. However, the

improvement is not as big as the previous policy. The reason is that under this

paid maternity leave policy, there is a depreciation of human capital associated with

being out of the labor market during pregnancy, and it negatively affects future

wages of mothers and so child goods expenditures. Under the second paid leave

policy, individuals are incentivized to bear in early periods due to elimination of

depreciation associated with being out of the labor market for pregnancy. Columns

(3) and (6) of Table (1.13) show that implementing such a policy, on average, would

lower the average maternal age by about 8% (over two years) and 3% (over half a

year) for educated and less-educated females, respectively, or equivalently, by about

0.4 and 0.12 standard deviations of maternal age at first birth in the benchmark.

Consequently, it would increase the final test scores of children by about 6% (0.3
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standard deviations) and 4% (0.2 standard deviations) for college graduates and non-

college, respectively. This is attributable to both the lower maternal age at birth and

the higher future wages conditional on birth compared to the pre-policy era.

It is worth noting that while impacts of the discussed paid and unpaid maternity

leave polices are qualitatively similar in terms of the maternal age at first birth and

the average children’s test scores, they have completely different implications for the

human capital path of mothers. I focus on the first two previously explained maternity

leave policies to elaborate the issue. When the depreciation rate is zero under the

unpaid maternity leave policy, i.e. the first policy, the mean labor force participation,

work experience, hours of market work, and hourly wages all increase. It is interesting

that the mean time investments goes down in this case, which is compensated with

greater child goods expenditures, however. Of course, both mothers and children

would be better off under this policy. In contrast, under the second policy, the mean

labor force participation, work experience, hours of market work, and hourly wages all

decrease. The reason is that they decide to have a child earlier to take advantage of a

child with higher ability and the transfer at childbirth. But, they face a depreciation

rate associated with the years out of the market when pregnant, which negatively

affects their wages. The optimal decision following the birth under this policy would

be to increase the leisure and time investments in the child, which compensates the

lower child goods expenditures. Again, both mothers and children would be better

off.

With regard to the impacts of maternity leave policies on mothers’ labor market

outcomes, the predictions of my simulation analysis are in line with the findings of

a handful of papers that have investigated the impacts of six weeks of paid leave in

California on labor market outcomes. Using a difference-in-differences design, Baum

(2003) show the FMLA has increased the probability that eligible mothers return
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to work at their pre-childbirth jobs by about %30.59 Their finding is in line with

my finding of the impacts of unpaid maternity leave policy on mothers’ labor force

participation six years after childbirth; columns 1 and 4 of Table (1.13) show that

implementing two-year unpaid maternity leave policy would increase the labor force

participation of educated and non-educated mothers of six-year-old children by about

20% and 33%, respectively.

A few studies has investigated the impacts of California’s paid leave policy, which

provides six weeks of paid leave. Rossin-Slater et al. (2013) provide evidence that

California’s paid family leave increased the work hours of employed mothers of one

to three-year-old children by 10% to 17% and that their labor incomes have risen by

a similar amount. Baum and Ruhm (2016) provides evidence that California’s paid

leave policy increased the likelihood that mothers return to work by a year after birth

and raised maternal hours and weeks of work by 11% to 19% during the second year

of the childs life. These findings are in line with my finding of the impacts of unpaid

maternity leave policy on mothers’ labor market outcomes; columns 3 and 6 of Table

(1.13) show that implementing a two-year paid maternity leave policy that freezes

wages to the level before the leave would increase the labor force participation of

educated and non-educated mothers of six-year-old children by about 20% and 34%,

respectively.

Schönberg and Ludsteck (2014) study the impact of five expansions in leave cover-

age in Germany on German mothers’ labor supply. They find that with regard to the

long-run effects of the expansions in leave coverage, four out of the five expansions in

leave coverage had almost no impact on mothers employment rates and labor income

three to six years after arrival of children. In all of these four reforms the job protec-

59See Rossin-Slater (2017b) for a review on studies on maternity and family leave
policies.

62



tion period is as long as or exceeds the maternity benefit period. By contrast, for the

other reform, which extended the maternity benefit period beyond the job protection

period the result is different; they find this reform discouraged up to 4% of mothers

from returning to work when their child was six years old, and lowered their labor

income by roughly 8%. This finding is consistent with my finding of the impact of

paid maternity leave on mothers’ labor market outcomes (column 2 of Table (1.13)).

Childcare Subsidy Program

I also implement a counterfactual policy under which families receive subsidies for

their childcare costs. Previous studies have investigated the impacts of childcare poli-

cies on fertility rate, mother’s labor market outcomes, and child health (see Bauern-

schuster et al. (2016); Baker et al. (2008); Havnes and Mogstad (2011)). This is the

first study, however, to investigate the potential impacts of childcare policies on the

timing of birth, and through it on child skill level.

Table (1.14) shows the results of the above-mentioned childcare subsidy policy.

The first to third columns provide the results of implementing the childcare policy

when 50%, 75%, and 100% of childcare costs are paid by the government. It turns out

that subsidizing childcare costs does not significantly change the maternal age. Even

though the effect of the mentioned childcare subsidy policy on maternal age at first

birth is not substantial, the policy would increase the final test scores of children by

around one-twentieth and one-tenth of a standard deviation for college graduates and

non-college graduates, respectively; this is because of higher financial resources for

child investment stemming from lower childcare costs and higher participation rates.

As Table (1.14) shows, providing a subsidy on child care costs would decrease the

reservation wage of mothers, so the labor force participation goes up; the observed

accepted wages go down. Consequently, women’s work experiences increase (under
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75% and 100% subsidies), which has positive impacts on the child goods expendi-

tures.60 My analysis suggests that under a free childcare program, the labor force

participation of educated and non-educated women would increase by about 45% and

40%, respectively. This finding is remarkably close to the finding of Barros et al.

(2011), who evaluate the causal impact of a childcare program on the maternal labor

market outcomes taking advantage of a lottery carried by the municipal government

in 2007 in Rio de Janeiro, Brazil. Barros et al. (2011) find that access to free publicly

provided child care services led to a very large increase in the use of care (from 51%

to 94%), a considerable increase in mothers’ employment (from 36 to 46 percent),

and an almost doubling in the employment of mothers who were not working before

the lottery took place (from 9% to 17%).

Transfer Policy to Households

Finally, I investigate the impacts of two types of monetary transfer to the household:

(1) a $250 transfer per week in the form of nonlabor income to each family with a child

in the development stage, and (2) a transfer targeted to children by providing 250

dollars’ worth of child goods to the household each week during the development stage.

Table (1.15) reports the results. Mean maternal age at first birth does not change

significantly under any policy. However, due to the increase in financial resources

provided by the transfer to families, the average test score increases by about 2%

and 4% for children of college graduates and non-college graduates, respectively. The

impact is greater for non-college graduates because they have fewer financial resources.

This transfer policy reduces the inequality between high income families (college

graduates) and low-income families (non-college graduates). The impact of the second

60It is worth mentioning that I set the childcare cost to its lower bond, and that
might explain the mild effect obtained from the childcare subsidy policy.
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policy is larger because the entire transfer is invested in the children; In contrast

to the untargeted policy, families cannot use the targeted transfer to smooth their

consumption or leisure. However, the feasibility of implementing such a policy would

be under question. Under the second policy, the mean test score at the end of the

development stage increases by 11% and 15% for children of college graduates and

non-college graduates, respectively. These results suggest that the impact of a transfer

policy to households is substantially greater for less-educated mothers, which might

be due to them having fewer financial resources to invest in their children if they

work as much as educated women do, and also having fewer hours they can spend

with their children if they increase their hours of market work in order to match the

earnings of educated women.

1.6.3 Child’s Skills, Educational Attainment, and Future Earnings

In this section, I link the Child Development Supplements (CDS) to the Adult-

hood Supplements (TAS) to identify the relationship between the specific measure of

children’s skill that I used in this paper, i.e. Letter-Word identification test score,

and the future educational attainment and earnings of those children.

Table (1.16) reports the regression results that link LW test scores to the future

educational attainment of the CDS sample of children. Figure (1.10) shows the binned

scatterplot that depicts a strong relationship between the LW test scores and the

probability of having a college degree at age 24. It suggests that after controlling

for the mother’s education level and race, and for the gender of the child, a ten

percent increase in LW test score at ages 16-18 corresponds to an 0.63 percentage

point (2.0%) increase in the probability of having a bachelor’s degree seven to twelve

years after taking the LW test. Thus, the LW test score has a predictive power for

the future educational attainment of the child and therefore is a relevant measure of
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the child’s skill, at least with respect to her future educational attainment. Moreover,

using a back-of-the-envelope calculation, I can estimate the monetary benefits of the

previously-mentioned counterfactual policies.

Table (1.17) reports the regression results that link LW test scores to the future

annual earnings of the CDS sample of children. Figure (1.11) shows the binned scat-

terplot that depicts a strong relationship between LW test score and the future annual

earnings of the child. The results suggest that after controlling for the mother’s edu-

cation level and race, and for the birth order, age, education level, and gender of the

child, a ten percent increase in LW test score at ages 16-18 corresponds to increases

of 6.6% and 9.8% in annual earnings based on OLS and fixed-effect regressions, re-

spectively, seven to twelve years after taking the LW test.61 Note that this impact of

the LW test score is in addition to its impact on educational attainment. The results

suggest that the LW test score has a predictive power for the future income of the

child, and thus is a relevant measure of child skill, at least with respect to her skills

later in the labor market.

Now, using some simple back-of-the-envelope calculations, I evaluate the impacts

of the maternity leave policies discussed earlier in this section in terms of a money-

metric measure. I focus only on educated individuals here. First, it is worth noting

that the fixed-effect regression results in column 3 of Table (1.17) suggest that a 10%

increase in LW test score increases annual earnings 7-14 years later by about 9.8%,

and this is in addition to the positive impact of increased LW test score on educational

attainment. Second, from Table (1.16), a 10% increase in LW test score increase the

probability of getting a four-year college degree by about 4.8 percentage point (16%).

Now, I use Zimmerman (2014) to find the causal impact of getting a four-year

61I observe a similar relationship between the LW test score and the future hourly
wages. Figure (A.11) in the Supplementary Appendix depicts such a relationship
when I use hourly wages instead of annual earnings.
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college degree on thd future earnings. Zimmerman (2014) studies the impact of

admission to a low-ranked public university on the future earnings of academically

marginal students. For a marginal admission, he estimated earnings gains of 22%

between eight and 14 years after high school completion. Here, I use Zimmerman’s

finding to set a lower bound for the average return to earnings of obtaining a four-

year college degree. In Zimmerman’s paper, the average return includes students who

were admitted to college but later dropped out. Moreover, his result is based on

data from a non-competitive public university. Hence, it seems that I can set 22%

as conservative estimate, i.e. a lower bound, for the return to completing four-year

college program. Hence, a 10% increase in mean LW test score increases the future

earnings of children, on average, by about 22∗0.16 ≈ 3.5%, and does so only through

increasing the probability of earning a four-year college degree that positively impacts

their earnings. Thus, the 4.96% increase in the LW test scores of children under the

unpaid maternity leave policy can be translated to a 3.5∗0.5 ≈ 1.8% increase in future

wages through the channel of college attainment. Moreover, according to Table (1.16),

that 4.96% increase can be translated to a 0.5∗9.8 ≈ 4.9% increase in future earnings

on top of the impact of higher educational attainment. In total, an 4.96% increase in

the mean LW test scores of children resulting from the unpaid maternity leave policy

can be considered as an increase of about 4.9+1.8 = 6.7% in the mean future earnings

of the children.62 Regarding the paid maternity policy, after a similar calculation, the

62I can also apply some back-of-the-envelope calculations for the monetary cost of
implementing such a maternity leave policy. While implementing this policy is costless
for the government, it may affect the profit of firms because they have to pay the same
wage to mothers who take the maternity leave and come back to work even though
their human capital is not the same as before (due to deprecation rate associated with
being out of work). Thus, one might consider this policy as a redistribution from firms
to working mothers, which benefits children of these mothers (6.7% increase in future
earnings). One way to look at the cost to firms is to see how the wage bills change
after implementing the policy. Implementing an unpaid maternity leave policy would
increase the wage bills (defined as hours of market work times the hourly wage) by
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change in the mean children’s test score can be translated to a 2.9% increase in annual

earnings.63

1.7 Conclusion

In this paper, using reduced-form regressions, I presented evidence of the negative

relationship between mother’s age at childbirth and child’s skill level. However, I also

showed that mothers’ ages are correlated with the amount of time that mothers spend

with their children; thus, the reduced-form estimate of the pure effect of mother’s age

at childbirth on child’s skill level is biased. Then, I developed a structural model to

investigate the effect of delayed childbearing on the child’s skill level. I studied the

problem women face in choosing the timing of childbirth while taking into account

possible negative and positive effects of delayed childbearing on the child’s skill level.

I developed a life-cycle model of child development while endogenizing the timing of

childbearing to assess the effect of maternal age at childbirth on the child’s skill level.

The model also helped me determine the effect of the mother’s age versus those of

all the inputs that a child receives from their parents during the child development

process. Knowing that advanced maternal age at childbirth may be associated with

negative effects on the child’s skill level, individuals choose the timing of childbearing,

about 10%. It is worth noting that mothers also benefit from the policy through both
higher wages (so more consumption), and higher child skill levels. These benefits,
however, have not been captured by my cost-benefit analysis here.

63I can also apply some back-of-the-envelope calculations for the monetary cost of
implementing such a paid maternity leave policy. In this case, there is a cost only
during the leave because the firm does not compensate for depreciation rates in the
periods following childbirth, when the mother goes back to work. The post-policy
maternal age is about 25. On average, the government has to pay only once for each
agent, amounting to twice her annual earnings at age 25. If I suppose that each
individual works on average for 30 years, then the cost burden of the policy is equal
to 2 ∗ 1

30
≈ 6.7% of their annual earnings. Again, we should note that mothers also

benefit from the policy through both higher wages (so more consumption), and higher
child skill levels.
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make labor supply decisions, and provide time and money inputs into the child’s skill

formation process during the development period.

In the model presented in this paper, each individual can increase her work expe-

rience by one unit in each period through working in that period. She also decides

the timing of childbirth. Individuals receive utility from the skill level of their chil-

dren. If a woman decides to conceive a child in a given period, she has to drop out

of the labor force for that period. Therefore, the opportunity cost of having a child

at early periods is higher because the forgone human capital will affect her wages in

all subsequent periods. Moreover, the opportunity cost of having a child is higher

for highly-educated women because their forgone wages are greater. When a child

is born, the woman chooses to allot her time optimally among leisure, work, and

childcare and to allocate her money between consumption and child goods expendi-

tures. Therefore, when it comes to the timing of childbirth, women face a trade-off:

if they have a child earlier in their life-cycle, the child is more likely to have higher

productivity in acquiring skills, but the net present value of forgone wages is higher,

which indicates there would be fewer resources available to invest in the child during

early childhood. This trade-off leads more educated women to have children later in

their life-cycles, which is consistent with the studied data.

I estimated the model and found a negative effect of advanced maternal age at

childbirth on the child’s productivity. With everything else constant, delaying ma-

ternity age by five years decreases the child’s skill level by about 11%. However, con-

sistent with the data, the model predicts that even though highly-educated women

delay childbearing, the skill levels of their children at the end of the development

process are, on average, actually higher than those of the children of less-educated

women. This finding highlights the effects of inputs that a child receives from her

parents during childhood.
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In this paper, I showed that implementing a maternity leave policy that freezes

the wages of mothers decreases maternal age at first birth by about two years and

increases the human capital of children by about 5%, which leads them to earn 6.6%

more in adulthood. I also investigated the effects of a childcare subsidy program,

which pays a portion of childcare costs to families. The effect of the policy depends

on childcare costs and the amount of subsidy. Overall, the policy might not be as

effective as the described maternity leave policy in terms of lowering maternal age at

first birth and boosting the human capital of children.

Future work should address the role of credit constraint in the timing of fertility

and child investments. First, there is no opportunity for borrowing and saving in

this model. If I allowed for saving and borrowing, I could investigate the effects of

credit constraints on the timing of childbirth and child skill levels. It would also

be interesting to investigate the effect of uncertainty concerning labor and nonlabor

incomes on the timing of childbearing and child skill levels within the framework

presented in this paper.

In this paper, I analyzed the impacts of implementing a maternity leave policy on

the timing of first birth and child skill levels. From a policy perspective, it is also

important to study the impacts of such a policy on the demand side of the labor

market. The model developed in this paper can be extended to analyze the overall

impacts of a maternity leave policy in a general equilibrium context. Moreover, the

impacts of a maternity policy are heterogeneous across women depending on their

education levels. Hence, it is also interesting to investigate how implementing such a

policy might change women’s educational decisions.
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1.8 Figures

Figure 1.1: Distribution of Age at First Childbirth by Education Level
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Notes: This graph shows the distribution of age at first birth for women aged 40 or above in 2015.
High school level is defined as 12 completed years of schooling or less. College graduates are defined
as 16 completed years of schooling or more.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure 1.2: The Risk of Low Birthweight and the Maternal Age

Notes: Low birthweight indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
High school level is defined as 12 completed years of schooling. College graduates are defined as 16
completed years of schooling.
The probability of low birthweight at each maternal age is calculated base on the coefficient estimates
reported in Panel A of Table (1.4).

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure 1.3: Timing of events in period t
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Figure 1.4: Estimated Technology Parameters by Child Age

Notes: This graphs estimated parameters by child age (from Table (1.8)).
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Figure 1.5: Estimated Depreciation Parameters by Mother’s Age

Notes: This graphs estimated effect of career interruption on human capital by women’s age (from
Table (1.9)).
It shows the estimated depreciation rate of human capital associated with one year being out of the
labor market.

75



Figure 1.6: Sample Fit of Average Childs Letter Word Score (Non-college Graduates)

Notes: Data is actual data from sample of non-college mothers with one child. Simulated is the
model prediction at estimated parameters given above.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews and 1967-2015
PSID core data.
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Figure 1.7: Sample Fit of Average Childs Letter Word Score (College Graduates)

Notes: Data is actual data from sample of college mothers with one child. Simulated is the model
prediction at estimated parameters given above.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews and 1967-2015
PSID core data.
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Figure 1.8: Sample Fit of Distribution of Age at First Birth (Non-college Graduates)

Notes: Data is actual data from sample of non-college mothers with at least one child in 2015.
Simulated is the model prediction at estimated parameters given above.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews and 1967-2015
PSID core data.
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Figure 1.9: Sample Fit of Distribution of Age at First Birth (College Graduates)

Notes: Data is actual data from sample of college mothers with at least one child in 2015. Simulated
is the model prediction at estimated parameters given above.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews and 1967-2015
PSID core data.

79



Figure 1.10: The Letter-Word Test Score and Future College Attainment

Notes:This Graph shows the relationship between children’s Letter-Word (LW) test scores at age
16-18 and their future college attainment, 7 to 12 years later, i.e. when they were between 23 to 30
years of old.
The x-axis variable is LW test score of children in CDS dataset. Children were between ages 16-18
when they took the LW test.
The y-axis variable show the predicted probability of having a college degree in 2015, when the
children were between 23 to 30 years of old.
The binned scatterplot is shown here. The plot shows the regression in column (2) of Table (1.16),
binned into 20 bins.

Source: CDS dataset (2002-2007) combined with TAS dataset (2005-2007-2009-2011-2013-2015).
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Figure 1.11: The Letter-Word Test Score and Future Earnings

Notes:This Graph shows the relationship between children’s Letter-Word (LW) test scores at age
16-18 and their future earnings, 7 to 12 years later, i.e. when they were between 23 to 30 years of
old.
The x-axis variable is LW test score of children in CDS dataset. Children were between ages 16-18
when they took the LW test.
The y-axis variable is the predicted log annual earnings in 2014, when the children were between 23
to 30 years of old.
The binned scatterplot is shown here. The plot shows the regression in column (1) of Table (1.17),
binned into 20 bins.

Source: CDS dataset (2002-2007) combined with TAS dataset (2015).
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1.9 Tables

Table 1.1: Summary Statistics

Non-college College Graduates
Variable Mean Mean
First child LW test score 34.9 37.9

(15.4) (15.5)
First child’s age 9.9 9.5

(4.1) (4.0)
Mother’s age at first birth 22.4 27.2

(5.5) (5.2)
Mother’s years of schooling 11.7 15.5

(1.43) (1.2)
Father’s hourly wage ($) 17.6 24.6

(10.7) (17.3)
Mother’s hourly wage ($) 12.7 16.7

(8.6) (11.8)
Mother’s hours worked (per week) 16.9 22.8

(17.9) (22.8)
Father’s hours worked (per week) 38.0 39.6

(17.4) (15.1)
Moms’ time with child (hrs/week) 33.6 35.3

(19.0) (18.9)

Note: This Table shows summary statistics of the subsample of obser-
vations for which age at first birth was after 18.
Standard deviations are reported in parenthesis.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014
interviews and 1968-2015 PSID core data.
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Table 1.2: Linear Regression of Low Birthweight (LBW) on Maternal Age

Probability of LBW (%)
Quadratic Linear Quadratic Linear

(1) (2) (3) (4)
Mother’s age at 1st birth (agepi ) -2.16** 0.47*** -1.71* 0.60***

(1.00) (0.16) (1.01) (0.16)

Age square (agepi
2) 0.05** – 0.04** –

(0.02) – (0.02) –
Mean dependent variable 8.24 8.24 8.24 8.24
Child’s gender dummy Yes Yes Yes Yes
Race dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Education level dummies Yes Yes Yes Yes
Paternal age dummies Yes Yes Yes Yes
Marital status dummies Yes Yes Yes Yes
Family income No No Yes Yes
Observations 3169 3169 3169 3169
Adjusted R2 0.02 0.02 0.03 0.04

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: 100 ∗LBWi = β1age
p
i +β2age

p
i

2
+αWi +ui, for the quadratic specification in columns (1) and (3).

100 ∗ LBWi = β1age
p
i + αWi + ui, for linear specification in columns (2) and (4).

Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e. 88
ounces, or 2500 grams).
Income levels are measured at the year in which the first child is born.
In columns 3 and 4, the missing data on income is treated as follows: I plugged in an arbitrary value (-9)
for all missing data cases on incomes, and I included in the regression a dummy variable coded 1 if data
in the original variable was missing (i.e. a value has been plugged in for missing data), 0 otherwise. Table
A.4 in the Supplementary Appendix shows the case when I do not adjust for the missing data on incomes,
and the number of observations decreases.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History (1985-2015)
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Table 1.3: Low Birthweight Risk Regression Using Age Intervals

Probability of LBW (%)
(1) (2) (3)

15 <Maternal age at first birth ≤ 20 2.54 1.78 1.78
(2.46) (2.50) (2.50)

25 < Maternal age at first birth ≤ 30 2.86 3.71* 4.27**
(2.10) (2.15) (2.17)

30 < Maternal age at first birth ≤ 35 10.53*** 11.65*** 12.86***
(2.82) (2.88) (2.95)

35 < Maternal age at first birth ≤ 40 13.51*** 14.84*** 16.68***
(4.34) (4.40) (4.51)

40 < Maternal age at first birth ≤ 45 25.45** 26.52** 27.59**
(11.13) (11.23) (11.23)

45 < Maternal age at first birth ≤ 50 90.94*** 92.89*** 97.84***
(27.91) (27.83) (27.94)

Race dummies Yes Yes Yes
Year dummies Yes Yes Yes
Paternal age dummies Yes Yes Yes
Marital status dummies Yes Yes Yes
Education level dummies No Yes Yes
Family income No No Yes
Observations 1580 1580 1580
Adjusted R2 0.02 0.03 0.04

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: 100∗LBWi = I15<AFB≤20 +I25<AFB≤30 +I30<AFB≤35 +I35<AFB≤40 +I40<AFB≤45 +I45<AFB≤50 +αWi +ui,
where I25<AFB≤30 is an indicator variable equal to one if mother’s age at first birth is between 20 and 25 and zero otherwise,
and W is the vector of control variables.
Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces (2500 grams).
The baseline group for comparison is mothers whose age at first birth are between 20 and 25, which is the omitted dummy
in the above regression. The mean dependent variable for the baseline group is 7.3.
Income levels are measured at the year in which the first child is born.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History (1985-2015).
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Table 1.4: Linear Regression of LBW on Maternal Age

Panel A: By Education Level

Non-college College Graduates

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at 1st birth (agepi ) -4.10* 0.42**

(2.17) (0.20)

Age square (agepi
2) 0.09** –

(0.04) –
Mean dependent variable 11.30 7.03
Observations 777 657
Adjusted R2 0.07 0.03

Panel B: By Income Level

Below-Median Above-Median

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at 1st birth (agepi ) -5.26** 1.06**

(2.45) (0.31)

Age square (agepi
2) 0.12*** –

(0.05) –
Mean dependent variable 11.23 8.27
Child’s gender dummy Yes Yes
Race dummies Yes Yes
Year dummies Yes Yes
Education dummies Yes Yes
Observations 800 800
Adjusted R2 0.04 0.05

Robust standard errors clustered at the individual level are reported in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: 100 ∗ LBWi = β1age
p
i + β2age

p
i
2

+ αWi + ui, for the quadratic specification in column (1).
100 ∗ LBWi = β1age

p
i + αWi + ui, for linear specification in column (2).

Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces
(i.e. 88 ounces, or 2500 grams).
Estimates in Panel A are controlled for family income, and estimates in Panel B are controlled for
education level.
Estimates in Panel A are represented for two levels of education, separately. The first column
reports the result for non-college graduates (i.e. 12 years of schooling), and the second column
shows the results for college graduates (i.e. 16 years of schooling).
Income levels are measured at the year in which the first child is born.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
* p < 0.1, ** p < 0.05, *** p < 0.01

85



Table 1.5: Regression Results Including Only One-child Families

(1) (2) (3)
ln(Score) ln(Score) ln(Score)

Mother’s age at 1st birth (agepi ) 0.001 -0.005 -0.014**
(0.003) (0.004) (0.006)

Mother’s years of schooling 0.040*** 0.030**
(0.015) (0.015)

Father’s years of schooling 0.010 -0.001
(0.011) (0.014)

Father’s hourly wage 0.007**
(0.003)

Father’s hours worked (per week) 0.005**
(0.002)

Mother’s hourly wage 0.006*
(0.003)

Mother’s hours worked (per week) -0.003
(0.002)

Child’s age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Race dummies Yes Yes Yes
Marital status dummies No No Yes
Paternal age dummies No No Yes
Child’s gender dummy No No Yes
Observations 206 206 206
Adjusted R2 0.87 0.88 0.89

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Ln(score)i,t = β1age
p
i + γZi,t + αWi + ui,t,

The dependent variable is the natural logarithm of Letter-Word Identification Test
score. I only use the data on the first child of mothers.
Child’s age is controlled in all above equations using age-specific dummy variables.
The coefficient of interest can be translated to 1

70 standard deviation of LW test
score, i.e, Z-score is equal to -0.014.
The coefficient of interest can be translated to 1

20 of average increase in LW test
score when a child becomes a year older.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews.
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Table 1.6: Regression Results: Time Investment Per Week

(1) (2) (3)
Hours/week Hours/week Hours/week

(τ) (τ) (τ)
Age at 1st birth (agepi ) 0.22*** 0.20*** 0.19***

(0.07) (0.07) (0.08)

Years of schooling 0.20 0.30
(0.21) (0.22)

Mother’s hourly wage -0.01
(0.05)

Mother’s work hours per week -0.15***
(0.03)

Child’s age dummies Yes Yes Yes
Year fixed effect dummies Yes Yes Yes
Race dummies Yes Yes Yes
Number of children dummies Yes Yes Yes
Marital status dummies No No Yes
Child’s gender dummy No No Yes
Observations 1726 1726 1726
Adjusted R2 0.16 0.16 0.17

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: τi,t = β1age
p
i + γZi,t + αWi + ui,t,

The dependent variable is the weekly hours that the mother spends with her
child.
I only use the data on the first child of mothers.
Mean dependent variable is 34.
Child’s age is controlled in all above equations using age-specific dummy
variables.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 in-
terviews.
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Table 1.7: Preference Parameter Estimates

Parameter Description Value SE

α1 Consumption impact 0.420 0.0064
α2 Parents leisure impact 0.275 0.0035
α3 Child’s skill level impact 0.305 0.0228
ϕ Child’s skill multiplier after final period 0.026 0.0005

Table 1.8: Technology Parameter Estimates

Parameter Description Value SE

γ1,0 Last periods child quality intercept -2.0625 0.0050
γ2,0 Mother’s time intercept -1.1520 0.0083
γ3,0 Child expenditures intercept -2.8612 0.0111
γ1,1 Last periods child quality slope 0.0960 0.0010
γ2,1 Mother’s time slope -0.0596 0.0016
γ3,1 Child expenditures slope 0.0974 0.0010
ε1 Parameter in productivity factor equation -0.0150 0.0012
ε2 Parameter in productivity factor equation -0.0004 0.0001
ε3 Parameter of prod. wrt mother’s innate ability 0.0710 0.0047
A0,0 Constant term in skill formation technology 1.3813 0.0053
A0,1 Constant term in skill formation technology 0.0803 0.0003
σR Standard deviation of shocks to A 0.0086 0.0002
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Table 1.9: Depreciation Parameter Estimates

Parameter Description Value SE

δH,0 Depreciation rate intercept for non-college grads −2.29 0.1188
δC,0 Depreciation rate intercept for college grads −1.01 0.0459
δH,1 Depreciation rate slope for non-college grads −0.04 0.0017
δC,1 Depreciation rate slope for college grads −0.06 0.0032

Table 1.10: Wage Parameter Estimates and Pregnancy Parameter Estimates

Parameter Description Value SE

η0,C Intercept of the log hourly wages (college grads) 2.816 0.0355
η1,C Return to education (college grads) 0.110 0.0067
η2,C Coefficient of sq. experience (college grads) -0.006 0.0002
η0,H Intercept of log hourly wages (non-college grads) 2.431 0.1035
η1,H Return to education for college graduates 0.050 0.0013
η2,H Coefficient of sq. experience (non-college grads) -0.006 0.0002
σωC

Std. dev. of log wage shocks (college grads) 0.549 0.0251
σωH

Std. dev. of log wage shocks (non-college grads) 0.853 0.0645
λc Prob. of unintended births (college grads) 0.079 0.0022
λh Prob. of unintended births (non-college grads) 0.193 0.0374
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Table 1.11: Sample Fit

Moment College Graduates Non-college

Data Model Data Model

Mean age at the first birth 26.2 26.5 22.4 21.6
Mean test score at the last period 50.3 50.6 48.5 48.0
Mean wage at 2 years of experience 13.3 14.4 11.3 12.2
Mean wage at 8 years of experience 18.4 19.7 14.1 14.9
Mean hours worked per week 26.7 23.1 24.2 21.8
Mean time with the 1st child 21.9 30.5 21.7 30.9
Fraction of the 1st births after age 27 0.47 0.47 0.15 0.09
Fraction of unintended births 0.17 0.15 0.40 0.34
Corr(wsp, k) 0.19 0.24 0.19 0.23
Corr(agech, k) 0.85 0.71 0.85 0.56
Corr(agechild, τ) -0.44 -0.69 -0.47 -0.71
Corr(w, k) 0.14 0.27 0.14 0.14
Corr(x, k) 0.38 0.50 0.37 0.28
Corr(agep, ki,t − kt−5) -0.08 -0.06 0.02 -0.01

Notes: Data is actual data from sample of non-college mothers with at least one
child in 2015.
Simulated is the model prediction at estimated parameters given above.
Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews and 1967-
2015 core data.
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Table 1.12: Decomposition Exercise

Percent Change from Baseline

Exercise (1) Exercise (2) Exercise (3)
Mean test score at age 16 11.4 -0.8 -1.6

Child goods fixed ↓ ↓
Time investments fixed fixed ↓
Age at first birth (AFB) 22 22 22

Notes: This Table decomposes the maternal age effect on the child’s skill level into the negative health effect of the maternal aging
and the positive impact of higher child investments. College graduates are considered for this exercise.
Exercise 1: First, I lower the maternal age of each educated mother from the benchmark (the fitted simulated dataset in which the
mean AFB is 27) to age 22. Hence, Exercise 1 assumes that everyone conceives a child at age 22. But the investments are the same
as the benchmark (no reduction in investments as a result of a reduction in maternal age). Thus, investments are those investments
that older parents would make, but the maternal age is 22.
Exercise 2 assumes that everyone conceive a child at age 22, and child investments are reduced accordingly with respect to the
mother’s wages. Child good expenditures are reduced in proportion to the reduce in the mother’s wage if the mother would conceive
a child at age 22, which means that the wage is lower due to both lower work experience and the high depreciation rate at age 22 .
Exercise 3 is the same as Exercise 2, but this time the time investments are also reduced according to the results of Table (1.6).
Time investments are reduced by 3%.
Numbers in this Table show the average of percentage changes from the baseline over the children in the simulated data (first changes
are calculated for each individual, and then, the average change is calculated).
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Table 1.13: Counterfactual Maternity Leave Policies

Moment College Graduates Non-college

(1) (2) (3) (4) (5) (6)
Unpaid Paid Paid (no dep) Unpaid Paid Paid (no dep)

Percent Change from Baseline

Age at first birth -6.40 -7.89 -7.91 -1.72 -3.04 -3.04
Fraction of births after 35 -51.92 -61.54 -67.31 -9.09 -36.36 -36.36

Mean test score at age 16 4.96 2.16 5.87 3.04 1.03 3.71

Mean time w/ child at age 6 of children -6.58 13.35 -6.59 -9.59 0.76 -9.75
Mean child expenditures at age 6 of children 13.95 -32.42 10.94 29.44 -5.44 27.41
Fraction who works at age 6 of children 20.53 -45.19 19.75 33.23 -4.27 33.84
Mean hours worked at age 6 of children 22.06 -44.76 22.09 32.04 -2.54 32.58
Mean leisure at age 6 of children -6.58 13.35 -6.59 -9.59 0.76 -9.75

Mean consumption at age 6 of children 13.94 -32.47 10.93 29.44 -5.44 27.41
Mean wage at age 6 of children 13.17 -49.25 10.01 31.54 -3.59 29.83
Mean experience at age 6 of children -30.08 -58.56 -34.00 6.33 -10.35 2.89

Notes: All values are the percentage change from the baseline values given in prior tables.
Unpaid maternity leave policy: Under the unpaid maternity leave policy, mothers can leave their job for 2 years.
They can return to their work while receiving the same wage as before the childbirth.
Paid maternity leave policy: Under this policy, mothers can leave their job for 2 years and receive their previous wage.
They can return to their work after 2 years. Their wages, however, might be lower when back due to depreciation.
Paid (no depreciation) maternity leave policy: Mothers leave their job for 2 years and receive their previous wage.
They can return to their work while receiving the same wage as before the childbirth (there is no depreciation).
Fraction of births after age 35 in the benchmark is equal to 0.13 and 0.04 for college grads and non-college grads, respectively.
For each policy, first changes are calculated for each individual, and then, the average change is calculated.
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Table 1.14: Counterfactual Childcare Subsidy Policy

Moment College Graduates Non-college Graduates

Subsidy rate 50% 75% 100% 50% 75% 100%
Percent Change from Baseline

Age at first birth -0.10 0.08 0.10 0.00 0.00 -0.10
Fraction of births after 35 -5.77 -1.92 -5.77 0.00 0.00 -9.09

Mean test score at age 16 0.04 0.74 1.15 0.96 1.52 2.19

Mean time w/ child at age 6 of children -1.66 -6.49 -9.06 -3.39 -5.14 -7.18
Mean child expenditures at age 6 of children -1.00 10.53 15.43 6.50 10.72 16.22
Fraction who works at age 6 of children 9.22 31.99 45.73 14.94 26.52 40.15

Mean hours worked at age 6 of children 5.58 21.77 30.38 11.31 17.18 23.99
Mean leisure at age 6 of children -1.66 -6.49 -9.06 -3.39 -5.14 -7.18

Mean consumption at age 6 of children -0.99 10.54 15.44 6.50 10.72 16.22
Mean wage at age 6 of children -11.19 -5.82 -7.72 -1.94 -3.29 -4.06
Mean experience at age 6 of children -1.96 10.37 14.45 5.70 9.39 13.84
Mean utility 2.27 3.30 3.91 3.30 4.36 5.45

Notes: All values are the percentage change from the baseline values given in prior tables.
50% subsidy policy: Under this policy, the government provides 50% subsidy on the child care cost.
75% subsidy policy: Under this policy, the government provides 70% subsidy on the child care cost.
100% subsidy policy: Under this policy, the government provides 100% subsidy on the child care cost (free public child care system).
Fraction of births after age 35 in the benchmark is equal to 0.13 and 0.04 for college graduates and non-college graduates, respectively.
For each policy, first changes are calculated for each individual, and then, the average change is calculated.
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Table 1.15: Counterfactual Transfer Policy

Moment College Graduates Non-college Graduates

(1) (2) (3) (4)
Untargeted Targeted Untargeted Targeted

Percent Change from Baseline

Age at first birth 0.68 -0.66 0.50 -0.37
Fraction of births after 35 -4.08 -24.49 0.00 0.00

Mean test score at age 16 1.97 11.97 4.40 15.75

Mean time w/ child at age 6 of children 6.31 0.50 10.83 0.80
Mean child expenditures at age 6 of children 6.77 198.78 8.91 269.76
Fraction who works at age 6 of children -5.45 -0.89 -14.38 -1.89

Mean hours worked at age 6 of children -14.74 -1.17 -27.08 -2.00
Mean leisure at age 6 of children 6.31 0.50 10.83 0.80

Mean consumption at age 6 of children 6.77 -2.41 8.91 -1.83
Mean wage at age 6 of children 1.80 -2.57 5.53 -1.20
Mean experience at age 6 of children -1.32 -2.47 -5.57 -2.47

Notes: All values are the percentage change from the baseline values given in prior tables.
Untargeted policy: a $250 transfer per week in form of nonlabor income to each family with a child during the development stage.
Targeted policy: a transfer targeted to children by providing 250 dollars worth of child goods to the household each week.
Fraction of births after age 35 in the benchmark is 0.13 and 0.04 for college graduates and non-college graduates, respectively.
For each policy, first changes are calculated for each individual, and then, the average change is calculated.
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Table 1.16: Regression Results- LW Test Score and Educational Attainment

Pooled OLS Fixed-effect using siblings

(1) (2) (3) (4)
High school Bachelor High school Bachelor

Log LW test score 0.52*** 0.77*** 0.63*** 0.43***
(0.06) (0.10) (0.13) (0.13)

Mean dependent variable 0.94 0.30 0.94 0.30

Gender Yes Yes Yes Yes
Age dummies Yes Yes Yes Yes
Race dummies Yes Yes Yes Yes
Mother’s education dummies Yes Yes Yes Yes
Maternal age dummies Yes Yes Yes Yes
Birth order dummies Yes Yes Yes Yes

Observations 1354 1354 1354 1354
Adjusted R2 0.14 0.22 0.26 0.19

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: hsi,2014 = β1ln(LWi,16yrs) + αWi + ui,
collegei,2014 = β1ln(LWi,16yrs) + αWi + ui,
This Table shows the relationship between children’s Letter-Word (LW) test scores at age 16-18 and their
future educational attainment, 7 to 12 years later, i.e. when they were between 23 to 30 years of old.
The regressor in this Table is LW test score of children in CDS dataset. Children were between ages 16-18
when they took the LW test.
In the first column, the dependent variable, i.e. hsi,2014, is a binary variable equal to 1 if the individual
has a high school degree, and 0 otherwise. In the second column, the dependent variable, i.e. collegei,2014,
is a binary variable equal to 1 if the individual has a bachelor’s degree, and 0 otherwise. The dependent
variable is related to the individual’s educational status in year 2014, when the children were between 23
to 30 years of old.
The last two columns report the family fixed-effect regression results. I use the within-family variations
in educational attainments and LW test scores, i.e. the variations in LW test scores and educational
attainments between the siblings in a family, to examine the relationship between the LW-test score and
the educational attainment.
A one-percent increase in LW test score is associated with 0.52 or 0.63 percentage point increase in the
probability of getting a high school degree based on pooled OLS or fixed-effect, respectively.
A one-percent increase in LW test score is associated with 0.77 or 0.43 percentage point increase in the
probability of getting a bachelore’s degree based on pooled OLS or fixed-effect, respectively.

Source: CDS dataset (2002-2007) combined with TAS (2005-2007-2009-2011-2013-2015).
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Table 1.17: Regression Results- LW Test Score and Future Earnings

Pooled OLS Fixed-effect

(1) (2) (3)
Ln(earnings) Ln(earnings) Ln(earnings)

Log LW test score 0.75** 0.66** 0.98***
(0.31) (0.32) (0.50)

Gender Yes Yes Yes
Age dummies Yes Yes Yes
Race dummies Yes Yes Yes
Mother’s education dummies Yes Yes Yes
Maternal age dummies Yes Yes Yes
Birth order dummies Yes Yes Yes
Education level No Yes Yes

Observations 408 408 408
Adjusted R2 0.08 0.12 0.77

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ln(earningsi,2014) = β1ln(LWi,16yrs) + αWi + ui,
This Table shows the relationship between children’s Letter-Word (LW) test scores at age 16-18
and their future earnings, 7 to 12 years later, i.e. when they were between 23 to 30 years of old.
The regressor in this Table is LW test score of children in CDS dataset. Children were between
ages 16-18 when they took the LW test.
The dependent variable is the log annual earnings in all regressions. All earnings are related to year
2014, when the children were between 23 to 30 years of old.
The last two columns report the family fixed-effect regression results. I use the within-family
variations in educational attainments and LW test scores, i.e. the variations in LW test scores and
annual earnings between the siblings in a family, to examine the relationship between the LW-test
score and the annual earnings.
A one-percent increase in LW test score is associated with 0.66 or 0.98 % increase in the annual
earnings based on pooled OLS or fixed-effect regressions, respectively, and this is on top of the
impacts of LW test score on the annual earnings.

Source: CDS dataset (2002-2007) combined with TAS dataset (2015).
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Chapter 2

GENDER MIX OF CHILDREN, MOTHERS EARNINGS, AND THE GENDER

WAGE GAP

2.1 Introduction

The gender wage gap (GWG) has been extensively studied over the past few

decades. In accounting for the observed differences in earnings between males and

females, early approaches to explaining the GWG focused on the role of human capital

(schooling and work experience), the family division of labor, compensating wage

differentials, gender differences in occupations/industries, and discrimination (Blau

and Kahn (2017)). These studies emphasize the role of differences in preferences,

comparative advantage, and job characteristics. Some recent papers highlight the role

of motherhood in explaining the gender gap in pay (Kleven et al. (2018); Cukrowska-

Torzewska and Lovasz (2016); Adda et al. (2017)). Among these studies, Kleven et al.

(2018) show that the arrival of children creates a gap in earnings. They find that 80%

of the GWG in Denmark for the year 2013 can be attributed to the arrival of children.

Gallen (2018) studies the relationship between the gender productivity gap, the pay

gap, and motherhood in Denmark. The study finds that 75% of the GWG can be

accounted for by productivity differences between men and women. However, while

the earnings gap coincides with the productivity gap for mothers, the productivity

gap is so small that it cannot explain the GWG for young women without children,

suggesting there is a discrimination against young, non-mother female workers.1

1Researchers tend to use regression analysis to decompose the gap in pay into that
which can be attributed to observable differences between males and females workers
and a residual is usually perceived as discrimination; see Blau and Kahn (2017) for a
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If a sizable portion of the gap in pay between males and females is due to the arrival

of children as Kleven et al. (2018) find, or if it can be attributed to the decline in

future productivity of women expected for childbirth (and/or interruption of women’s

work as a consequence of childbearing), then one might ask the following question:

Assuming perfect foresight for individuals, how might this anticipated child penalty”

affect females’ decisions to invest in human capital, and thereby their earnings? Most

of the previous studies have focused on the ex-post effects of children given choices

made before arrival of children, and less is known about the ex-ante effects of fertility

plans on women’s earnings.2 In this paper, I aim to shed light on the influence of

female workers’ expectations regarding their future fertility behavior on their current

investment in human capital through on-the-job training. This study is designed to

investigate the extent to which there is a wage differential between female workers, if

any, based on their expectations about future fertility decisions. The question I ask is

For women at child-bearing ages, what is the effect of the anticipation of motherhood

in terms of earnings and other labor market outcomes?

In this paper, I utilize variation in the gender mix of children to investigate the

role of the female’s expectation regarding future fertility in guiding her human capital

investments and earnings. The genders of children are generally exogenously deter-

mined, i.e. their assignment is a quasi-random event. As soon as a second child is

born, the gender mix of children comes into play, and it exogenously changes the like-

lihood of future fertility. Parental preferences for variety in their children’s genders

make mothers of children of the same gender more likely to conceive another child.

This exogenous heterogeneity in the likelihood of further fertility helps me identify

survey of the literature.
2Adda et al. (2017) is an exception. They assess the contribution of fertility to the

gender wage gap within a dynamic model of career choice, human capital accumula-
tion, and labor supply decisions. However, they mainly focus on the effects of fertility
on occupational choices.
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the impacts of fertility expectation on a woman’s earnings.

I use the Panel Study of Income Dynamics (PSID), National Longitudinal Survey

of Youth 1997 (NLSY97), and National Longitudinal Survey of Youth 1979 (NLSY79)

datasets to investigate the role of anticipation of motherhood on females’ earnings. I

track females’ labor market decisions (i.e. labor force participation, hours of market

work, and occupations/industries) and their labor market outcomes (i.e, labor income

and hourly wages) over their life-cycle. The datasets also provide rich information on

each individual’s fertility-related behavior (such as the number of children, timing of

births, and the marital status), as well as each individual’s age, race, and educational

attainment. Thus, I observe how each individual’s labor market outcome changes over

time, both before and after each childbirth. I consider the gender mix of children as

a treatment, mothers with children of different genders as the control group, and

mothers of children of the same sex as the treatment group. Then, in an event study

framework, I investigate the effects of the quasi-random assignment of gender mix on

the treatment group.

I find that having two children of the same gender (two boys or two girls) is

associated with between 4% and 6% lower hourly wages for the mother after the

second birth compared to having two children of opposite sexes, regardless of the

number of children the mother will ultimately have. I find that parental preferences

for variety make having a third child about 12% more likely when the first two are of

the same gender. I argue that mothers with two boys or two girls perceive themselves

more likely to bear one more child, so are less attached to the labor market compared

to mothers with one boy and one girl. The wage differential between mothers of

same-gender children and opposite-gender children exists even for women who never

conceived a third child. Having a third child is probabilistic; women who will have

a third child do not know this fact beforehand with certainty. However, mothers
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who have two children of the same gender face a higher probability of conceiving a

third child. In other words, when it comes the the impact of sibling genders on their

mother’s earnings, the mother’s beliefs about the likelihood of future fertility matters,

not the actual future fertility. I also provide support for this hypothesis using data

on individuals’ beliefs concerning their future fertility plans.

In order to model the impact of a woman’s expectation regarding her future fer-

tility on human capital investments, I follow Polachek et al. (2008); I assume that in

each period, each individual maximizes her expected present value of life-time earn-

ings by allocating optimally her resources to human capital investments. In a given

period, actual earnings are potential earnings minus investment costs. Human capital

investments increase the individual’s human capital stock and future earnings power.

The expected lifetime labor force participation influences an individual’s human cap-

ital investments. The higher the expected labor force participation, the more gains

from investments in human capital, the higher the amount of investments, and higher

wages. Thus, the higher probability of future fertility, the lower expected life-time

labor force participation, the lower gains from investing in human capital, the lower

wages. This model explains how an exogenous shock to the probability of future fer-

tility, driven by the gender mix of the first two children, affects one’s human capital

investment decisions, so wages.

One might argue that the consequences of having a third child might not be as

significant of those of a first childbirth and therefore individual’s beliefs about the

likelihood of their future fertility are not relevant for their human capital investments.

To address this concern, using a difference-in-differences event study approach, I find

that labor force participation declines by about 30% right after a third childbirth

compared to the year before the third pregnancy. Also, for those who continue to

participate in the labor market after a their third childbirth, hours of market work
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decrease by about 30%. Hence, conceiving a third child is associated with sizable

reductions in labor force participation at both extensive and intensive margins, and

the higher the probability of a third childbirth, the higher is the probability of a

reduction in labor force participation in future. Anticipation of this discontinuous

labor force participation affects individuals’ decisions on human capital investment

and on-the-job training. Hence, on average, mothers of two children of the same

gender have less incentive to invest in their own human capital and face lower wages

compared to mothers of children with opposite genders.

Kuziemko et al. (2018) hypothesize that when women are making key human

capital decisions, they underestimate the impact of motherhood on their future labor

supply; they do not anticipate the substantial and persistent ”motherhood penalty”.

Results of this paper might suggest that women do anticipate the consequences of the

arrival of children. However, the results also might be reconciled with the findings of

Kuziemko et al. (2018) in the following sense: in this paper I use data on the gender

mix of children and therefore all women in my sample already have two children,

which means they have faced with the consequences of childbirth on their labor market

outcomes in the past and learned from it. Hence, they can anticipate the consequences

of an additional childbirth on their labor market outcomes.

Also, it is worth mentioning that the gender mix of children has been widely used

as an Instrumental Variable (IV) to study the effect of family size on labor market

outcomes. The results of this paper cast doubt on the validity of using this IV in

many applications within the literature.

2.2 Data

I utilize the Panel Study of Income Dynamics (PSID) and four waves of its Child

Development Supplement (CDS). The PSID is a longitudinal survey of a nationally-
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representative sample of U.S. families. It was initiated in 1968 including about 4,800

families. Data was collected for those families and their descendants in different

waves over 49 years, through 2017. Currently, PSID collects information on almost

25000 individuals in more than 10000 families. The dataset includes characteristics

of parents such as their age at childbirth, education level, hours worked, accepted

wages, household income, and hours spent with children (see Dascola et al. (2015) for

the PSID Main Interview User Manual, and Hofferth et al. (1997) for the user’s guide

to the CDS.). I also use the National Longitudinal Survey of Youth 1997 (NLSY97)

and the National Longitudinal Survey of Youth 1979 (NLSY79). The NLSY79 is a

nationally representative sample of 12,686 young men and women who were 14-22

years old when they were first surveyed in 1979. These individuals were interviewed

annually through 1994, and biennially thereafter. The NLSY97 consists of a nationally

representative sample of about 9,000 youths who were 12 to 16 years old in 1996. The

first wave was conducted in 1997. For this paper, I mainly use data from PSID in

the empirical analysis. I use the NLSY79 and NLSY97 datasets for robustness checks

with respect to the choice of dataset.

Table (2.1) provides summary statistics for the PSID data used throughout the

paper. Notably, the median number of children at age 40 for mothers whose first two

children have different genders is two, while the median is three for mothers whose

first two children have the same gender. More precisely, 53% of mothers with two

children of the same gender will rear another child, compared to 47% of mothers with

two children of different genders.

2.3 Evidence from the PSID

The question posed in the first section has implications for the gender mix of

children, which can be tested by observational data. Under three assumptions that:
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(1) parental preferences for variety make having a third child more likely when

the first two have the same gender, i.e. there is a desire to have at least one of each

gender;

(2) the gender of children is assigned exogenously; and

(3) females, while investing in their own human capital, might take their future

fertility decisions (and their consequences) into account,

I hypothesize that there might be a human capital differential between females with

two children of the same gender and females with two children of different genders,

and this differential could be reflected in their hourly wages.

I test the first assumption using the observatiobal data. Specifically, I test whether

or not the gender mix of children has predictive power for the total number of children

that a woman will have.

In Tables (2.2), I use different models to estimate the effect of having two children

of the same sex on the probability of having further children. The dependent variable

is an indicator variable, which is equal to one if the individual has her third child by

age 40, and zero otherwise. The first column of Table (2.2) shows the results from

a linear probability model. The coefficient of interest is positive and statistically

significant at the one percent confidence level. Mothers who have two children of the

same gender are about six percentage points (i.e. about 12%) more likely to have

further children by the end of their childbearing years, i.e. age 40. The second and

third columns show the results from using probit and logit models, respectively. The

coefficient of interest is again positive and statistically significant at the one percent

level. All told, these results show that the gender mix of children is informational

concerning the future fertility of women. Tables (B.1) in the Supplementary Appendix

show the results of using indicators for the gender of children when a mother has two

children with the same gender, i.e. having two boys might impact the probability of
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having further children differently than having two girls. The results suggest that the

effect of having two boys is similar to the effect of having two girls. Again, mothers

who have then children of the same gender are about 12% more likely to have further

children by the end of their childbearing age.3

Moreover, in the dataset that I use, the individuals are explicitly asked whether

they want to have more children in future. Hence, there is data on individuals’ beliefs

concerning their future fertility plans. Restricting the sample to mothers with exactly

two children, it can be seen that those with two children of the same sex are more

likely to show interest in having more children, and this is significantly different from

mothers of children with different genders. These results are reported in Tables (2.3).

Similar to the ex-post analysis in Table (2.2), I use linear probability, probit, and logit

models to investigate the effects of child gender on ex-ante fertility decisions.4 The

results from these models are similar to the ex-post analysis. However, the coefficients

of interest are bigger in ex-ante case.

The results in Tables (2.2) and (2.3) show that I can confirm the first assumption

based on both individuals’ actual fertility behavior and their beliefs regarding their

future fertility plans.

As the fertility rate has declined over the past four decades, one might expect that

nowadays, not many people decide to have more than two children. To address this

concern, I look at the distribution of family sizes in the US over the past four decades.

Figure (B.2) in the Supplementary Appendix shows that in 1976, 65% of mothers age

3Figure (B.1) in the Supplementary Appendix shows how the marginal effect of
the gender mix of children on future fertility decisions has changed over the past few
decades for different cohorts. All point estimates are significantly different from zero.
Overall, mothers who have two children of the same gender are 8 to 13% more likely
to have further children by the end of their childbearing age, compared to mothers
with children of different genders.

4Table (B.2) in the Supplementary Appendix shows the results from using different
indicators for mothers with two boys and mothers with two girls. The results are
similar to Table (2.3).
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40 to 44 had at least three children, while in 1994 and 2014 that became 36% and

38%, respectively. The highest frequency of children in 1976 was four, followed by

three, two, and one, and the median number of children was three. However, in the

mid-nineties the median number of children was two and the highest frequency is

two children, followed by three, one and four children. This pattern has remained

stable thereafter. Hence, it seems that four decades ago, the marginal mother was

deciding between having three or more children, while nowadays, the marginal mother

is deciding between having two or three children. Therefore, the gender mix of children

might play a larger role in determining the likelihood of rearing a third child.

Assuming that parents have no control over the gender of their child, I exploit ex-

ogenous variation in the gender mix of children to examine the effect of the likelihood

of future fertility on labor market outcomes.5

2.3.1 Regression Analysis

I use a Mincerian wage equation in order to investigate the impact of children

gender mix on mothers’ hourly wages:

log(wit) = β0 + β1potit + β2pot
2
it + β3dit + β4samei + εit, (2.1)

where wit denotes the hourly wage of individual i at time t; potit is their potential

experience; dit is the education level measured as completed years of schooling; samei

is an indicator variable that is one if the first two children are of the same gender,

and zero otherwise; and εit is a zero conditional mean error term, which is assumed

to be i.i.d., normally distributed over individuals, and time-invariant.6 I control for

year fixed-effects, race, etc. by adding dummy variables to the regression specified

5It is unlikely that they deliberately terminate pregnancies using abortion when
the gender of their child is realized. This is because abortion might have negative
impacts on both their health and their future fertility outcomes.

6The potential experience is defined as age minus years of schooling minus six.
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above. The coefficient of interest is β4, which captures the effect of children with the

same sex on their mother’s wages.

I also use a similar setting to examine the impact of the gender mix of children

on other aspects of mothers’ labor market outcomes, including labor force participa-

tion, labor income, and hours of market work. The results are reported in the next

subsection.

2.3.2 Results

Table (2.4) reports the regression results for Equation (2.1). The criteria used for

sample selection are as follows: I only use observations on women. The sample is

restricted to women in PSID who are of childbearing age (between ages 21 and 40). I

also restrict the analysis to the subsample of women who already have two children.

Then, the sample is selected based on the following time restrictions: at least two years

after the second childbirth and before a third childbirth. Hence, all observations on

wages are from women with two children where the age of the youngest child is greater

than two. These individuals might end up having two or three children, but I only use

observations corresponding to periods in which only two children exist.7 I also focus

on women with greater than high school education as these women are working in

positions that need some skills and doing tasks that require some knowledge, training,

and human capital. These individuals are more likely to improve their skills through

on-the-job training and investing in their human capital, the better to get promoted.

The dependent variable is the natural logarithm of hourly wage. I control for age

effects using age-specific dummy variables. I also control for year fixed-effects in all

regressions. Moreover, I control for the number of children that they will have by age

7This is because I do not want the coefficient of the gender mix of children to pick
up the effects of a third child on female wages.
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40 as this number might reveal some information about their types. The coefficient

of interest, i.e. the coefficient on samei, is negative, statistically significant, and

sizable, -0.04. This coefficient does not change significantly as I control for additional

confounding factors. In column 2, the state fixed effects are controlled for. Column

3 reports the results when I control for occupation and industry fixed effects as well.

Hours of market work and ages at births are also controlled as confounding factors in

columns 4 and 5, respectively. As column 5 shows, after controlling for all confounding

factors, the coefficient of interest is -0.05, statistically significant at the five percent

level. This result is economically significant as the order of magnitude of the effect

is comparable to the return to one more additional year of schooling at college, i.e,

0.07 according to the results in column 5.

Table (B.3) in the Supplementary Appendix shows the results when I do not

control for the number of children that each individual ultimately will have. These

results are similar in magnitude to the results in Table (2.4), which might suggest that

women who will have a third child do not know this fact beforehand with certainty.

In other words, having a third child is probabilistic. However, mothers who have two

children of the same gender face a higher probability of conceiving a third child. I also

provide support for the hypothesis that a third child is probabilistic by restricting

the sample to individuals who end up having only two children as of age 40. Table

(2.5) reports the results, which still shows the gender mix effect.

Table (B.4) in the Supplementary Appendix reports the results when using differ-

ent indicators for having two boys versus having two girls. It seems that the effects

of these gender combinations are not significantly different.

Table (B.5) in the Supplementary Appendix reports the results when I select the

sample based on a narrower range of childbearing ages, i.e. individuals between age

21 and 35. In this case, the coefficient of interest increases (in absolute value) to
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-0.06, after controlling for all confounding factors in the last column. It is worth

mentioning that the coefficient is more precisely estimated in this case, and it is

statistically significant at the 1% level in all columns.

As explained earlier, in the dataset that I use, the individuals are explicitly asked

whether they want to have more children in future. I use the data on individuals’

beliefs concerning their future fertility plans along with their hourly wages to find the

impact of uncertainties about future fertility on hourly wages of these women. In the

survey, women are asked about their future fertility as follows: ”How sure are you

that you will not have any (more) children? (1) sure or very sure, (2) fairly sure or

hope not to, (3) will have a child/not sure/do not know”. I define dummy variables

corresponding to answers to this question regarding future fertility. Then, I use a

regression similar to equation (2.1), in which, instead of using gender mix of children,

I use dummy variables that indicate individual’s uncertainties about her future fer-

tility behavior. Table (2.6) shows the results. The benchmark in the regression, i.e.

omitted dummy variable, is when the individual has mentioned that she will have

a child in future, or she is not sure, or she does not know about her future fertility

plans (answer (3) to the question above). It turns out that after controlling for the

education level, race, year fixed-effect, state fixed-effect, and hours of market work,

individuals who are certain that they will not have any (more) children, on average,

have hourly wages 7% higher than those who are uncertain about having a child in

future. It is also interesting that individuals who are fairly sure that they will not

have a child in future, on average, have hourly wages 5% higher than those who are

uncertain about having a child in future. The coefficient for the latter group is not

significant however, which is probably due to small sample size. This finding lends

support to my previously-stated hypothesis that females, while investing in their own

human capital, might take their uncertainty about future fertility into account. Hu-
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man capital differential across females with different degrees of uncertainty is reflected

in their hourly wages.

2.3.3 Robustness Checks

Table (B.6) in the Supplementary Appendix shows the regression results of Equa-

tion (2.1) with the same sample selection criteria used for regression in Table (2.4),

except for one difference: I also include observations corresponding to periods with

three children while controlling for the number of children. The results are similar to

the previous results.

Table (B.7) in the Supplementary Appendix shows the regression results of Equa-

tion (2.1) when wage level, instead of log wage, is used as the dependent variable.

The coefficient of interest is still significant at the five percent level and is similar in

magnitude to those suggested by the regressions in Table (2.4).

Table (B.8) in the Supplementary Appendix shows the regression results of Equa-

tion (2.1) with the same sample selection criteria used for regression in Table (2.4),

except for one difference: I restrict the sample to males instead of females. In this

case, the coefficient of interest is almost zero in all regressions no matter which con-

founding factors are controlled for. This is consistent with my hypothesis regarding

the effect of fertility plans and the ex-ante effects of children on labor market out-

comes, as we know that females and not males are those usually affected in terms of

their labor market outcomes when rearing children.

I also have done a robustness check with respect to the choice of dataset: I use the

NLSY79 and NLSY97 datasets as alternatives and repeat the analysis. The results

of this set of robustness checks are presented in the Supplementary Appendix.

As another exercise, Table (B.9) in the Supplementary Appendix shows the re-
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gression results of Equation (2.1) with the same sample selection criteria used for

regression in Table (2.4), except for one difference: I restrict the sample to women

who completed their fertility period with two children. The results suggest that the

gender mix of children plays no role in terms of wages when uncertainty about future

fertility is resolved.

Then, I look for some potential explanations for the negative association between

the hourly wages of mothers and having children of the same gender. I look at

other aspects of the mothers’ labor market decisions to see if there is a significant

difference between mothers with children of the same gender and those of different

genders. Table (B.10) in the Supplementary Appendix, calculated using a probit

model, suggests that there is no difference between the two groups in labor force

participation at the extensive margin, i.e. whether to work or not. Moreover, Table

(B.11) in the Supplementary Appendix shows that, conditional on being working,

there is no significant difference between the two groups at the intensive margin, i.e.

hours of market work. It seems that when it comes to decide on whether to work and

how much to work, the gender mix of children plays no role. Also, Table (B.12) in

the Supplementary Appendix provides evidence that there is no significant difference

between the two groups in terms of the hours they spend with their children. Hence,

the wage differential across the two groups cannot be attributed to different decisions

on labor force participation at the extensive or intensive margins, and it also cannot

be attributed to how they spend their time while at home.

2.4 Model

Polachek et al. (2008) provides a theoretical framework in which anticipated dis-

continuous labor force participation affects individuals’ decisions on human capital

investment (see also Weiss and Gronau (1981)). In the case of an anticipated discon-
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tinuous labor force participation, the present value of the marginal gain from a unit

of investment is initially lower. Moreover, investments do not need to decline mono-

tonically for the discontinuous worker. This implies that discontinuous workers not

only invest less over their lifetime, but also their investment need not monotonically

decline.

The objective function of each individual is as follows:

max J =

∫ T

0

[Nt − st]w(Kt)Kte
−rtdt

subject to the following constraint on the rate of change of capital stock:

K̇ = Qt − δ(t,K)Kt = f [st, kt, xt]− δ(t,Kt)Kt = b0s
b1
t K

b2
t X

b3
t − δKt

where Kt denotes the amount of human capital at time t, w(Kt) is the wage rate per

unit of human capital, st denotes the percent of total available time spent investing

in human capital in period t, Nt is the percent of total available time spent in labor

force participation including the investment time, rt is the sum of the rate of discount

and rate of depreciation of human capital stock, xt denotes the goods used in the

production of human capital, and δ(t,Kt) is the annual rate of depreciation of capital

stock.

The Hamiltonian equation for this problem are as follows:

H = w0(Nt − st)e−rtKt + λb0s
b1
t K

b1
t

The first order conditions for this problem is as follows:

∂H

∂st
= −w0Kte

−rt + λb0b1s
b1−1
t kb1t = 0,

λ̇ = −w0(Nt − St)e−rt − λb0b1s
b1
t k

b1−1
t ,

K̇ = Qt = b0s
b1
t K

b1
t .
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It is worth mentioning that λt represents the marginal returns on human capital

investment in period t, and it can be shown that:

λ = [
w0

b0b1

]K1−b1
t s1−b1

t e−rt,

λ̇ = −w0Nte
−rt ≤ 0,

λ(t0) =

∫ T

0

w0Nτe
−rτdτ,

λ(t) =

∫ T

t

w0Nτe
−rtdτ.

In the continuous participation case, I would have: N(τ) = N(t) for all t ≤

τ ≤ T . However, when there is an anticipated discontinuous participation, N(t) is

changing over time, and the marginal benefit of investment in human capital is not

monotonically decreasing. Hence, if females with two children of the same gender

expect a higher likelihood of a further pregnancy, and so higher unemployment, then

their investment pattern could be different over their entire remaining life cycle from

mothers with two children of opposite genders, even before any actual childbearing.

In the next section, I use a Difference-In-Differences (DID) approach to show (1)

how the labor market outcomes of the mother will be affected by a third childbirth in

terms of labor force participation (at both intensive and extensive margins) and hourly

wages, and (2) how these anticipated changes in labor market outcomes following a

future third childbirth affect a woman’s human capital investments and wages today,

i.e. before a third childbirth is actually realized.

2.5 Empirical Approach

Following Kleven et al. (2018), I use an event study approach to identify post-child

effects after nonparametrically controlling for education level, time trends, and age
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effects. I denote by t = 0 the year in which the individual has her third child and

index all years relative to that year.

I follow individuals from four years before childbirth through ten years after. I

study labor market outcomes as a function of event time.

Yist =
∑
j 6=−2

αj.I[j = t] +
∑
k

βk.I[k = ageis] +
∑
y

γy.I[y = s] +
∑
e

θe.I[e = d] + vist,

(2.2)

where Yist is the labor market outcome of individual i at year s and at event time t.

Parameter αj, i.e. the event time coefficient, captures the effect of the third childbirth

on labor market outcomes in the j-1 year after the third pregnancy, βk captures the

age fixed effect when age is equal to k, βk represents the fixed effect of year k, and

θe’s parameters capture the effects of education level. I control for education level, d,

using dummy variables. Finally, vist is the zero conditional mean error term. Note

that the event time coefficients measure the impact of a third childbirth relative to

the year just before pregnancy.

2.6 Results

I use Equation (2.2) to find the impact of the third childbirth on a variety of labor

market outcomes. The results are reported in the following subsection.

2.6.1 Impacts of Third Childbirth on Labor Market Outcomes

Figure (2.1) depicts the impact on labor income of conceiving a third child. It is

clear that labor income tends to decrease during pregnancy and right after childbirth,

and it takes about five years for it to converge to the level before the pregnancy. The

reduction in labor income is huge; about 40% decrease in labor income relative to
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the year before the pregnancy occurs right after childbirth.8 To identify the driving

forces behind this reduction in labor income, I look at the changes in labor force

participation, hours worked, and hourly wages. Figure (2.2) shows the impact of

the third childbirth on labor market participation at the extensive margin. The

results suggest that the third childbirth is associated with a decrease of over 15

percentage points in the probability of working right after childbirth, relative to the

year just before the pregnancy, which is equivalent to about 25% reduction in labor

force participation.9 Moreover, if I restrict my attention to the intensive margin by

looking at women who work after childbirth or during pregnancy, it is clear that these

individuals work fewer relative to the years before pregnancy. As Figure (2.3) shows,

the third childbirth is associated with a reduction of about seven hours in market

work per week (about 20% decrease relative to the baseline) for individuals who

participated in the labor force, and it takes about seven years for them to converge

to their previous levels.10 Finally, Figure (2.4) shows that the third childbirth is

associated with a decrease in hourly wage rate that tends to be both sizable (between

10 to 20%) and persistent.11.12

8I excluded the observations corresponding to periods after a fourth childbirth. So
my estimates are not contaminated by introducing the effects of further childbearing
decisions.

9I excluded the observations corresponding to periods after a fourth childbirth so
that my estimates are not contaminated by introducing the effects of further child-
bearing decisions.

10Again, I excluded the observations corresponding to periods after a fourth child-
birth. So my estimates are not contaminated by introducing the effects of further
childbearing decisions.

11Again, I excluded the observations corresponding to periods after a fourth child-
birth so that my estimates are not contaminated by introducing the effects of further
childbearing decisions.

12These reductions in labor force participation at the intensive and extensive mar-
gins, and in hourly wages following childbirth might be due to discrimination against
mothers with infants, or it might be the case that mothers with a new-born child
optimally decide to drop out of the labor market or reduce the hours of market work
to take care of their child. I do not take a stand on any side here. I only assume that
they have perfect foresight over these changes in labor market outcomes following the
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2.6.2 DID approach

In order to get more precise estimates of the impact of third childbirth on the labor

market outcomes of mothers, I exploit a difference-in-differences (DID) event study

design that uses women who never conceived a third child. Following Kleven et al.

(2018), I assign a placebo third childbirth to women who did not actually rear a third

child, drawing from the distribution of age at third childbirth among individuals who

did have a third one.13 I follow a DID approach in which I treat those individuals with

an assigned placebo third childbirth as the control group, and the women with a third

child as the treatment group. Then, using the event study approach, I investigate the

effects of the third childbirth on mothers’ labor market outcomes by comparing the

changes in the variable of interest before and after the childbirth across the treatment

and control group.14 Figure (2.5) depicts labor income trends for the control group

and the treatment group before and after the third childbirth.15 The pre-treatment

trend is not common between the two groups, so the parallel trend assumption is

violated. Figure (2.6) depicts labor force participation rates for the control group

and the treatment group before and after the third childbirth. In this, the control

group and the treatment group share a common pre-treatment group.16 The results

suggest that bearing a third child is associated with a decrease of over 20 percentage

points in the labor force participation rate, which is a 30% decrease from the baseline.

third childbirth.
13I repeat this process 50 times.
14It is similar to what was described in the previous section; however, I do not

control for age effects, year fixed effects, or education level. This is because I take
advantage of using the DID approach; by differencing between the control group
and the treatment group, those fixed effects will be taken out (as long as parallel
pre-treatment trends exist).

15Figure (B.3) in the Supplementary Appendix shows the difference between the
control and the treatment group.

16Figure (B.4) in the Supplementary Appendix shows the difference between control
and treatment groups.
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Figure (2.7) shows that the parallel pre-treatment trend between the treatment group

and the control group is maintained when the outcome variable is hours of market

work conditional on having worked.17 This suggests that bearing a third child is

associated with a decrease of over ten hours’ reduction in hours worked, which is

about a 30% decrease. Finally, Figure (2.8) shows the results when the outcome

variable is log hourly wage. Obviously, the pre-treatment trends are different across

groups, and it is not clear from these figures how wage rate changes with the third

childbirth18.19

2.6.3 Gender Mix of Children and Mothers’ Earnings

In this section, I follow the event study approach described using Equation (2.1)

to investigate the effects of the gender mix of children on the mothers’ labor market

outcomes, with modification. Here, I define t = 0 as the year in which the individual

has her second child and index all years relative to that year. Hence, I study the

outcome variables before and after the second childbirth, i.e. when the gender mix of

children is determined by the second childbirth. In fact, I assume that the gender of

the second child is exogenously determined, i.e. it is a quasi-random event. As soon

as the second child is born, the gender mix of children is realized (0 if the gender

of the second child is different from that of the first one, or 1 if the genders of the

two children match). I consider the gender mix of children as the treatment, mothers

with children of different genders as the control group, and mothers of children of the

same sex as the treatment group. Then, I investigate the effects of the quasi-random

17Figure (B.5) in the Supplementary Appendix shows the difference between control
and the treatment group.

18Figure (B.6) in the Supplementary Appendix shows the difference between control
and the treatment group.

19Based on what is said, one can conclude that the parallel trend assumption in
labor income analysis is violated due to there being different trends in wage rates
between the control group and the treatment group.
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treatment assignment on the treatment group.

Figure (2.9) depicts the results when the outcome variable is annual labor income,

which suggest that the treatment group tends to have lower labor income in the post-

treatment period. In order to identify the driving forces behind this pattern, I look

at the effect of treatment assignment on labor force participation, hours of market

work, and the wage rate.

With respect to attachment to the labor market, Figure (2.10) shows the results

when I focus on the effect of treatment on labor force participation. These results

suggest that the treatment has no significant effect on labor force participation. Also,

Figure (2.11) depicts the effect of treatment on hours worked; it suggests that there

is no significant effect. Overall, Figures (2.10) and (2.11) indicate that my treatment

does not affect the extent to which the treated individuals are attached to the labor

market.

Finally, Figure (2.12) shows the results when the outcome variable is log hourly

wages. While the wage rates are not significantly different between the control group

and the treatment group in the pre-treatment period, they are significantly different

in the post-treatment period. Mothers of children with the same sex tend to have

lower hourly wages. Note that in all analyses in this subsection, I exclude observations

after a third child is born. Hence, the wage differential between treatment and control

groups cannot be attributed to a difference in the number of children across the two

groups.

This result confirms the regression results presented earlier in Tables (2.4) and

(2.5). The wage differential is much more evident if I restrict the sample to individuals

with at least a high school degree. Figure (2.13) depicts this case. Mothers of children

with the same gender earn significantly less per hour of market work than those with

two children of different genders. This result lends support to my hypothesis regarding
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the effect of future fertility decisions on investment in human capital; as explained

before, I expect that the link between human capital and hourly wages is stronger for

those tasks that need knowledge, skill, and experience; and highly educated women

are more likely to work at positions that necessitate such tasks.

2.7 Implications for Gender Wage Gap

The above analysis suggests that the ex-ante effects of children on mothers’ wages

might be an important factor in the wage gap between men and women. Previous

literature has mostly have focused on the ex-post effects of children on mothers’

labor market outcomes. However, the evidence provided in this paper lends support

to the hypothesis that women’s perception of their likelihood of future fertility might

significantly contribute to the gender wage gap through decreasing incentives to invest

in their human capital.

Given the hypothesis, I expect the gender wage gap, driven by uncertainty about

future fertility, to be higher for individuals at prime childbearing ages. At the end of

the fertility period, the likelihood of future fertility goes down to zero,, the uncertainty

about future futility is resolved, and the degree of attachment to the labor market

increases, leading these individuals to invest more in their human capital; this can

reduce the gender wage gap. I test this hypothesis using separate linear regressions

for young workers (21 to 35 years old) and old workers (36 years or older). Tables

(2.7) and (2.8) show the results. While the gender wage gap in the first group is

between 22% and 24%, it decreases to between 18% and 19% for those who have

completed their fertility phase and resolved the uncertainty about future fertility.
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2.8 Conclusion

In this paper, I documented the new finding of a statistically significant relation-

ship between the gender mix of children and their mother’s wage. Specifically, having

two children of the same gender (two boys or two girls) is associated with between 4%

and 6% lower hourly wages for the mother compared to having two children of the

opposite sex. My results passed various alternative specifications. I discussed several

potential explanations that could explain the relationship I observed in the data.

Moreover, I used exogenous variation in the gender mix of children to study the ef-

fect of future fertility decisions on current investment in human capital, and thereby

wage rates. I showed that if the two first children are of the same sex, then the

likelihood of conceiving a third child is significantly higher, which is consistent with

the findings of previous papers. This increase might be due to parental preference

for variety in child genders. I found that right after a third childbirth labor force

participation rate declines by about 30% compared to the year before the third preg-

nancy. Also, for those who continue to participate in the labor market after their

third childbirth, hours of market work decrease by about 30%. Hence, conceiving a

third child is associated with sizable reductions in labor force participation at both

extensive and intensive margins, and the higher the probability of a third childbirth,

the higher probability of reduced labor force participation in future. I used a theo-

retical framework to illustrate that this anticipated reduced attachment to the labor

market, perceived by mothers with children of the same sex, leads them to invest less

in their human capital using on-the-job training, compared to mothers of children of

different genders; this lower investments in human capital will be reflected in their

wage rates. My Difference-In-Differences analysis showed that the exogenous gender

mix of children has a sizable impact on female wages per se, i.e. not only through the
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impacts on family size (the number of children) but also probably through different

investments in human capital due to differential likelihood of future fertility.

One important implication of the findings of this paper is that the ex-ante effects

of fertility decisions on the gender wage gap are greater than previously thought.

Previous papers have focused on the impact of motherhood on women’s labor market

outcomes while neglecting the impact of anticipated fertility decisions on human

capital investments. The results of this paper suggest that women’s expectation

regarding their future fertility might play an important role in their human capital

accumulation.

It is worth mentioning that since Angrist and Evans (1996), the gender mix of

children has been widely used as an IV to study the effect of family size on labor

market outcomes. However, the results of this paper cast doubt on the validity of

using this IV in that context and in many other applications within the labor market

literature.

Future work should address the welfare and policy implications of the findings

of this paper. From a policy perspective, it is interesting to study how individuals’

human capital investments might be affected by provision of a high quality publicly

subsidized day care. Implementing a childcare subsidy program might help females to

remain in the labor force after childbirth. Knowing that they can take advantage of

childcare services for their child, women perceive themselves as being more attached

to the labor market in the future, so they have incentive to invest more in their

human capital long before any actual childbirth is realized. Moreover, the return to

human capital investments potentially depends on education level. The impact of a

subsidized childcare policy might be heterogeneous across women depending on their

education levels. Hence, it would also be interesting to investigate how implementing

a childcare policy might change women’s educational decisions.
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2.9 Figures

Figure 2.1: Arrival of a Third Child and Mother’s Labor Income

Third Childbirth
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the annual income. Cohort fixed-effect, age
effect, race effect, and education effects are controlled using dummy variables.
Event time coefficients measure the impact of the third childbirth relative to the year just before
pregnancy in terms of percentage changes.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure 2.2: Arrival of a Third Child and Mother’s Participation

Childbirth
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the labor force participation status. Cohort
fixed-effect, age effect, race effect, and education effects are controlled using dummy variables.
Event time coefficients measure the impact of the third childbirth relative to the year just before
pregnancy in terms of percentage point changes.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.

122



Figure 2.3: Arrival of a Third Child and Mother’s Work Hours

Third Childbirth
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the hours of market work conditional on
participating in the labor market. Cohort fixed-effect, age effect, race effect, and education effects
are controlled using dummy variables.
Event time coefficients measure the impact of the third childbirth relative to the year just before
pregnancy in terms of hours of work per week.
The 95% confidence intervals, shown by vertical line around each point, are based on robust
standard errors.
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Figure 2.4: Arrival of a Third Child and Mother’s Wage Rate

Childbirth

-.3
-.2

-.1
0

.1
.2

Lo
g 

W
ag

e 
D

iff
er

en
ce

 R
el

at
iv

e 
to

 E
ve

nt
 T

im
e 

-2

-5 0 5 10
Event Time (years)

Impact of Third Child on Wage Rate

Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the hourly wage conditional on participating
in the labor market. Cohort fixed-effect, age effect, race effect, and education effects are controlled
using dummy variables.
Event time coefficients measure the impact of the third childbirth relative to the year just before
pregnancy in terms of fraction of changes.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.5: Arrival of a Third Child and Mother’s Labor Income (Placebo Control)
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the log annual income.
Here, I run the specification (2.1) separately for mothers with two children and mothers with three,
while assigning placebo birth date for the third childbirth to the first group. The placebo birth time
is randomly assigned based on the distribution of observed timing of third birth among women with
three children.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.6: Arrival of a Third Child and Mother’s Participation (Placebo Control)
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the percentage of participants in the labor
market.
Here, I run the specification (2.1) separately for mothers with two children and mothers with three,
while assigning placebo birth date for the third childbirth to the first group. The placebo birth time
is randomly assigned based on the distribution of observed timing of third birth among women with
three children.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.7: Arrival of a Third Child and Mother’s Work Hours (Placebo Control)
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the mean hours of market work per week
conditional on participating in the labor market.
Here, I run the specification (2.1) separately for mothers with two children and mothers with three,
while assigning placebo birth date for the third childbirth to the first group. The placebo birth time
is randomly assigned based on the distribution of observed timing of third birth among women with
three children.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.8: Arrival of a Third Child and Mother’s Wage Rate (Placebo Control)
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
third childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the log hourly wage conditional on
participating in the labor market.
Here, I run the specification (2.1) separately for mothers with two children and mothers with three,
while assigning placebo birth date for the third childbirth to the first group. The placebo birth
time is randomly assigned based on the distribution of observed timing of third birth among women
with three children.
The 95% confidence intervals, shown by vertical line around each point, are based on robust
standard errors.
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Figure 2.9: Gender Mix of Children and Mother’s Labor Income
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
second childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the difference in log annual income relative
to the year before the second pregnancy, conditional on participating in the labor market.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.10: Gender Mix of Children and Mother’s Participation
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
second childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the difference in the labor force participation
rate relative to the year before the second pregnancy, conditional on participating in the labor
market.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.11: Gender Mix of Children and Mother’s Work Hours
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
second childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the difference in the hours of work (per week)
relative to the year before the second pregnancy, conditional on participating in the labor market.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.12: Gender Mix of Children and Mother’s Wage Rate
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
second childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the difference in log hourly wage relative to
the year before the second pregnancy, conditional on participating in the labor market.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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Figure 2.13: Gender Mix of Children and Mother’s Wage (High School Graduates)
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Notes: This figure shows event time coefficients estimated from equation (2.1), 5 years before the
second childbirth, and 10 years after.
The outcome of interest, i.e. the dependent variable, is the difference in log hourly wage relative to
the year before the second pregnancy, conditional on participating in the labor market.
Sample is restricted to women who completed high school education.
The 95% confidence intervals, shown by vertical line around each point, are based on robust standard
errors.
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2.10 Tables



Table 2.1: Summary Statistics- Year 2015

Variable Statistic All Same sexes Opposite p-value

Years of schooling Mean: 13.13 13.14 13.12 0.66
Median: 13.00 13.00 13.00
Std Dev: (2.56) (2.54) (2.59)

Labor force participation Mean: 0.67 0.67 0.68 0.31
Median: 1.00 1.00 1.00
Std Dev: (0.47) (0.47) (0.47)

Hours worked (per week) Mean: 21.16 21.07 21.28 0.71
Median: 22.88 22.62 23.00
Std Dev: (18.38) (18.38) (18.39)

Time with child (hr/week) Mean: 28.83 27.70 29.83 0.25
Median: 27.04 24.92 28.42
Std Dev: (20.29) (20.15) (20.39)

Hourly wage ($) Mean: 16.85 16.98 16.71 0.56
Median: 13.47 13.54 13.22
Std Dev: (11.20) (11.66) (10.72)

Annual Labor income ($) Mean: 15.17 15.18 15.16 0.97
Median: 9.85 10.06 9.15
Std Dev: (17.78) (17.89) (17.66)

Mother’s age Mean: 49.88 50.12 49.63 0.02
Median: 51.00 51.00 51.00
Std Dev: (13.25) (13.16) (13.33)

Mother’s age at 1st birth Mean: 22.11 22.12 22.09 0.65
Median: 21.00 21.00 21.00
Std Dev: (4.63) (4.63) (4.62)

Mother’s age at 2nd birth Mean: 25.62 25.64 25.61 0.74
Median: 25.00 25.00 25.00
Std Dev: (5.15) (5.16) (5.14)

Mother’s age at 3rd birth Mean: 27.40 27.47 27.30 0.16
Median: 27.00 27.00 27.00
Std Dev: (5.19) (5.22) (5.15)

Marital status Mean: 0.64 0.63 0.65 0.09
Median: 1.00 1.00 1.00
Std Dev: (0.48) (0.48) (0.48)

Number of children Mean: 2.87 2.88 2.85 0.11
Median: 3.00 3.00 2.00
Std Dev: (1.15) (1.13) (1.18)

Same genders Mean: 0.51
Median: 1.00
Std Dev: (0.50)

Fraction with 3 children Mean: 0.51 53 47

Number of observations 14486 7365 7095

Notes: Income and wages are normalized to 2000 dollar.

Sample restricted to females with at least two children at 2015.

Income and wages are normalized to 2000 dollar.

Incomes above $100000 are dropped. Hourly wages less than $7 are dropped.



Table 2.2: The Gender Mix of Children and (Ex Post) Fertility Behavior

Third child Third child Third child
(OLS) (Probit) (Logit)

(1) (2) (3)
Same gender 0.06*** 0.14*** 0.23***

(0.01) (0.03) (0.05)

Constant 0.81*** 1.09** 1.89*
(0.09) (0.53) (1.04)

Observations 7601 7601 7601
Adjusted R2 0.04 0.03 0.03
Race Y Y Y
Education Level Y Y Y

Robust standard errors clustered at the individual level are reported in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Sample have been restricted to individuals older than 40 years of old at
2014.
I also restrict the analysis to the subsample of women who have at least two children.
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Table 2.3: The Gender Mix of Children and (Ex Ante) Fertility Decisions

Third child Third child Third child
(OLS) (Probit) (Logit)

(1) (2) (3)
Same Gender 0.08*** 0.35*** 0.61***

(0.03) (0.12) (0.22)

Constant 0.03 -2.62*** -4.88***
(0.09) (0.61) (1.32)

Observations 1249 1249 1249
Adjusted R2 0.11 0.15 0.15

Age Y Y Y
Race Y Y Y
Education Y Y Y
Year Y Y Y

The question is asked from females in PSID between 1969 to 1972 & 1976.

Dependent variables take 1 if the individual expects more children, 0 otherwise.

The Sample is restricted to women in PSID between age 21 and 40 with 2 children.

Robust standard errors are reported in parentheses in all specifications.

* p < .1, ** p < .05, *** p < .01
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Table 2.4: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.08*** 0.08*** 0.07*** 0.07*** 0.07***
(0.01) (0.02) (0.01) (0.01) (0.01)

Potential experience square -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.09*** 0.09*** 0.06*** 0.06*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same sex -0.04** -0.04** -0.04** -0.04** -0.05**
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 1.10*** 0.90*** 1.55*** 1.62*** 1.41***
(0.25) (0.26) (0.28) (0.29) (0.32)

Observations 4871 4753 4561 4561 4540
Adjusted R2 0.18 0.23 0.30 0.31 0.33

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses
The potential experience is defined as age minus years of schooling minus six.
The Sample is restricted to women in PSID between age 21 and 40.
I also restrict the analysis to the subsample of women who already have two children.
Sample is restricted to two years after the second childbirth and before a third childbirth.
I control for the number of children that each individual will have in all regressions.
Sample restricted to women whose education levels are higher than high school.
Sample restricted to individuals who work at least 20 hours per week.
Robust standard errors clustered at the individual level are reported in parentheses.
* p < .1, ** p < .05, *** p < .01
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Table 2.5: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.07*** 0.06*** 0.07*** 0.06*** 0.06***
(0.02) (0.02) (0.02) (0.02) (0.02)

Potential experience square -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.08*** 0.08*** 0.06*** 0.06*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same sex -0.04* -0.04* -0.04** -0.04* -0.05**
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 1.26*** 1.19*** 1.67*** 1.70*** 1.49***
(0.19) (0.21) (0.28) (0.29) (0.31)

Observations 4501 4390 4218 4218 4198
Adjusted R2 0.19 0.23 0.30 0.30 0.34

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses
The potential experience is defined as age minus years of schooling minus six.
The Sample is restricted to women in PSID between age 21 and 40.
I also restrict the analysis to the subsample of women who already have two children.
Sample is restricted to individuals who will end up having two children.
Sample restricted to women whose education levels are higher than high school.
Sample restricted to individuals who work at least 20 hours per week.
Robust standard errors clustered at the individual level are reported in parentheses.
* p < .1, ** p < .05, *** p < .01
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Table 2.6: Regression Results Using Beliefs about Future Fertility

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.060*** 0.060*** 0.060*** 0.060*** 0.057***
(0.007) (0.007) (0.007) (0.007) (0.007)

Potential experience square -0.002*** -0.002*** -0.002*** -0.002*** -0.002***
(0.000) (0.000) (0.000) (0.000) (0.000)

1-No more child (sure/very sure) 0.098*** 0.100*** 0.069* 0.066* 0.074**
(0.032) (0.031) (0.037) (0.037) (0.035)

2-No more child (fairly sure/hope not to) 0.082 0.081 0.041 0.029 0.055
(0.061) (0.061) (0.065) (0.067) (0.063)

Constant 1.886*** 1.808*** 1.790*** 1.686*** 1.916***
(0.050) (0.105) (0.106) (0.131) (0.246)

Observations 611 611 611 611 611
Adjusted R2 0.31 0.31 0.31 0.32 0.38

Education Y Y Y Y Y
Race N Y Y Y Y
Year N N Y Y Y
Hours worked N N N Y Y
State N N N N Y

Standard errors in parentheses
The potential experience is defined as age minus years of schooling minus six.
This table shows the impact of uncertainty about future fertility on hourly wages of women.
Women are asked about their future fertility: ”How sure are you that you will not have any (more) children?”
(1) sure or very sure, (2) fairly sure or hope not to, (3) will have a child/not sure/do not know.
The benchmark in the above regression, i.e. omitted dummy, is the last choice, i.e. (3).
The Sample is restricted to women in PSID younger than 40.
Sample restricted to individuals who work at least 20 hours per week.
Robust standard errors clustered at the individual level are reported in parentheses.
* p < .1, ** p < .05, *** p < .01
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Table 2.7: Mincerian Wage Equation- OLS Results for Older Individuals

Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4)

Female -0.18*** -0.18*** -0.18*** -0.19***
(0.03) (0.02) (0.03) (0.03)

Potential experience -0.08 -0.08 -0.04 -0.04
(0.07) (0.06) (0.06) (0.06)

Potential experience square 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Years of schooling 0.03 0.03 0.02 0.02
(0.03) (0.03) (0.03) (0.03)

Constant 3.20*** 3.10*** 2.49** 2.54**
(1.24) (1.17) (1.18) (1.19)

Observations 4279 4174 3809 3809
Adjusted R2 0.11 0.15 0.23 0.23

Age Y Y Y Y
Race Y Y Y Y
Year Y Y Y Y
Region N Y Y Y
Occupation N N Y Y
Hours worked N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample restricted to people older than 35 years of old in PSID.

Sample restricted to individuals whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table 2.8: Mincerian Wage Equation- OLS Results for Younger Individuals

Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4)

Female -0.24*** -0.23*** -0.22*** -0.24***
(0.01) (0.01) (0.01) (0.01)

Potential experience -0.00 -0.02*** -0.01*** -0.02***
(0.00) (0.00) (0.00) (0.00)

Potential experience square 0.00 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00)

Years of schooling 0.09*** 0.09*** 0.06*** 0.06***
(0.00) (0.01) (0.01) (0.01)

Constant 1.52*** 1.53*** 1.86*** 2.06***
(0.09) (0.10) (0.12) (0.12)

Observations 19772 19189 18140 18140
Adjusted R2 0.18 0.21 0.27 0.28

Age Y Y Y Y
Race Y Y Y Y
Year Y Y Y Y
Region N Y Y Y
Occupation N N Y Y
Hours worked N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample restricted to individuals in PSID between age 21 and 35.

Sample restricted to individuals whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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A.1 Extra Figures

Figure A.1: Distribution of First-birth Age for Women with No Child at Age 18
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Notes: This graph shows the distribution of age at first birth for women aged 40 or above in 2015
whose first birth was after age 18.
High school level is defined as 12 completed years of schooling or less. College graduates are defined
as 16 completed years of schooling or more.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.2: Distribution of Completed Years of Schooling

Source: PSID-CDS.

Notes: This graph shows the distribution of years of schooling for women aged 40 or above in 2015
whose first birth was after age 18.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.3: Maternal Age at Delivery and Prob. of Low Birthweight (LBW)

Notes: Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8
ounces (i.e. 88 ounces, or 2500 grams).
The binned scatterplot is shown here. The plot shows the regression in column (1) of Table (1.2),
binned into 20 bins.
The probability of low birthweight is controlled for paternal age, infant’s gender, race, mother’s
education and marital status at birth, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.4: LBW and Maternal Age, by Education Level (Quadratic From)

Notes: Low birthweight indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
The binned scatterplot is shown here. The plot shows the regression in columns (1) and (2) of of
Panel A of Table (A.5), binned into 20 bins.
The probability of low birthweight is controlled for the infant’s gender, race, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.5: LBW and Maternal Age, by Education Level (Linear Form)

Notes: Low birthweight indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
The binned scatterplot is shown here. The plot shows the regression in columns (1) and (2) of of
Panel A of Table (A.6), binned into 20 bins.
The probability of low birthweight is controlled for the infant’s gender, race, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.6: LBW and Maternal Age, by Income Level (Quadratic From)

Notes: Low birthweight indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
The binned scatterplot is shown here. The plot shows the regression in columns (1) and (2) of of
Panel B of Table (A.5), binned into 20 bins.
The probability of low birthweight is controlled for the infant’s gender, race, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.7: LBW and Maternal Age, by Income Level (Linear From)

Notes: Low birthweight indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
The binned scatterplot is shown here. The plot shows the regression in columns (1) and (2) of of
Panel B of Table (A.5), binned into 20 bins.
The probability of low birthweight is controlled for the infant’s gender, race, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Figure A.8: Mother’s Age at First Birth and the Log Birthweight of the Infant

Notes: The binned scatterplot is shown here. The plot shows the regression in column (1) of Table
(A.7), binned into 20 bins.
The dependent variable, i.e, log birthweight, is controlled for paternal age, infant’s gender, race,
mother’s education and marital status at birth, and year fixed effects.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).

159



Figure A.9: Conception Probability over the Life-cycle

Notes: This graph shows how the conception probability declines over a female’s age.

Source: Rosenthal and Khatamee (2002)
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Figure A.10: Estimated Productivity Parameters by Child Age

Notes: This graphs estimated productivity of the child by mother’s age at childbirth (from Table
(1.8)). All values for college graduates are normalized to the child’s productivity of the maternal
age 22, and all values for non-college graduates are normalized to the child’s productivity of the
maternal age 18.
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Figure A.11: The Letter-Word Test Score and Future Hourly Wages

Notes:This Graph shows the relationship between children’s Letter-Word (LW) test scores at age
16-18 and their future wages, 7 to 12 years later, i.e. when they were between 23 to 30 years of old.
The x-axis variable is LW test score of children in CDS dataset. Children were between ages 16-18
when they took the LW test.
The y-axis variable is the predicted hourly wage in 2014, when the children were between 23 to 30
years of old.
The binned scatterplot is shown here. Observations are binned into 20 bins.

Source: CDS dataset (2002-2007) combined with TAS dataset (2015).
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Figure A.12: Maternal Age and the Risk of Autism

Notes: The odds ratios are controlled for paternal age, birth order, gender, race, education, gesta-
tional age, and birthweight.
The odds ratios are normalized with respect to the benchmark group, which is maternal age between
25-29.

Source: Durkin et al. (2008)
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A.2 Extra Tables

Table A.1: Summary Statistics

Non-college Grads College Grads
Variable Mean Mean
First child LW test score 34.7 37.8

(15.5) (15.5)
First child’s age 10.3 10.3

(4.1) (4.1)
Mother’s age at first birth 22.2 25.8

(4.8) (5.5)
Mother’s Completed years of schooling 11.6 15.4

(1.49) (1.2)
Father’s hourly wage ($) 17.9 23

(10.7) (15.4)
Mother’s Hourly wage ($) 13.5 17.9

(8.7) (11.6)
Mother’s Hours worked (per week) 24.8 27.8

(29.9) (22.8)
Father’s hours worked (per week) 40.7 40.5

(28.4) (20.8)
Moms’ total time with child (hrs/week) 35.1 36.4

(20.0) (18.9)

Note: This Table shows summary statistics of the data before dropping women
whose age at first birth were before 18.
Standard deviations are shown in parenthesis.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews
and 1968-2015 PSID core data.
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Table A.2: Mean and Median Age at First Birth over Education Level

Mean Median Std Fraction after 27

0-12 years of schooling 22.4 21 4.2 0.13
14 years of schooling 23.8 23 4.6 0.21
16 years of schooling 26.7 27 4.9 0.47
Graduate degree 27.9 28 5.0 0.59

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014
interviews and 1968-2015 PSID core data.

Table A.3: Regression Results for Low Birthweight (LBW), Fixed-Effect

(1) (2)
Mother’s age at birth 0.66* 0.66*

(0.38) (0.37)

Child’s gender dummy Yes Yes
Year dummies Yes Yes
Marital status dummies Yes Yes
Birth order Yes Yes
Family income No Yes
Observations 6153 6153
Adjusted R2 0.02 0.02

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: These results are obtained using a fixed effect regression, in which the varia-
tion in maternal ages between sibling is used to estimate the impact of the mother’s
age at birth on the risk of LBW.
100∗LBWi,j = β1age

p
i,j+β2αWj+ui,j , where i denotes mothers and j denotes children

of mother i.
Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds,
8 ounces (i.e. 88 ounces, or 2500 grams).
Income levels are measured at the year in which the birth occurs.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adop-
tion History (1985-2015)
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Table A.4: Linear Regression of Low Birthweight (LBW) on Maternal Age

Prob. of LBW (%)
Quadratic Linear Quadratic Linear

(1) (2) (3) (4)
Mother’s age at first birth (agepi ) -2.16** 0.47*** -2.47* 1.15***

(1.00) (0.16) (1.47) (0.23)

Age square (agepi
2) 0.05** – 0.06** –

(0.02) – (0.02) –
Child’s gender dummy Yes Yes Yes Yes
Race dummies Yes Yes Yes Yes
Year dummies Yes Yes Yes Yes
Education level dummies Yes Yes Yes Yes
Paternal age dummies Yes Yes Yes Yes
Marital status dummies Yes Yes Yes Yes
Family income No No Yes Yes
Observations 3169 3169 1600 1600
Adjusted R2 0.02 0.02 0.03 0.04

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: 100 ∗ LBWi = β1age
p
i + β2age

p
i

2
+ αWi + ui, for the quadratic specification in columns (1)

and (3)
100 ∗ LBWi = β1age

p
i + αWi + ui, for linear specification in columns (2) and (4)

Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces (i.e.
88 ounces, or 2500 grams).
Income levels are measured at the year in which the first child is born.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History (1985-
2015)
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Table A.5: Linear Regression of LBW on Maternal Age, Quadratic Specification

Panel A: By Education Level

Non-college College Graduates

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at 1st birth (agepi ) -4.10* -1.79

(2.17) (1.40)

Age square 0.09** 0.04
(0.04) (0.02)

Observations 777 1898
Adjusted R2 0.07 0.03

Panel B: By Income Level

Below-Median Above-Median

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at 1st birth (agepi ) -5.26** -0.85

(2.45) (2.35)

Age square 0.12*** 0.02
(0.05) (0.04)

Child’s gender dummy Yes Yes
Race dummies Yes Yes
Year dummies Yes Yes
Education dummies Yes Yes
Observations 800 800
Adjusted R2 0.04 0.05

Robust standard errors clustered at the individual level are reported in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: 100 ∗ LBWi = β1age
p
i + β2age

p
i
2

+ αWi + ui,
Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces
(i.e. 88 ounces, or 2500 grams). Estimates in Panel A are controlled for family income, and esti-
mates in Panel B are controlled for education level.
Income levels are measured at the year in which the first child is born.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).
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Table A.6: Linear Regression of LBW on Maternal Age

Panel A: By Education Level

Non-college College Graduates

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at 1st birth 0.45 0.42**

(0.33) (0.20)

Observations 777 1898
Adjusted R2 0.05 0.02

Panel B: By Income Level

Below-Median Above-Median

Prob. of LBW (%) Prob. of LBW (%)
Mother’s age at first birth 1.12*** 1.06***

(0.39) (0.31)

Child’s gender dummy Yes Yes
Race dummies Yes Yes
Year dummies Yes Yes
Education dummies Yes Yes
Observations 800 800
Adjusted R2 0.03 0.05

Robust standard errors clustered at the individual level are reported in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: 100 ∗ LBWi = β1age
p
i + αWi + ui,

Low birthweight (LBW) indicates that the baby is born weighing less than 5 pounds, 8 ounces
(i.e. 88 ounces, or 2500 grams). Estimates in Panel A are controlled for family income, and esti-
mates in Panel B are controlled for education level.
Income levels are measured at the year in which the first child is born.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and Adoption History
(1985-2015).

168



Table A.7: Linear Regression of Log Birthweight (BW) on Maternal Age

Log BW Log BW
Mother’s age at first birth -0.004* -0.008**

(0.001) (0.002)
Child’s gender dummy Yes Yes
Race dummies Yes Yes
Year dummies Yes Yes
Education Level dummies Yes Yes
Paternal Age dummies Yes Yes
Marital Status dummies Yes Yes
Income No Yes
Observations 2758 1609
Adjusted R2 0.03 0.04

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Income levels are measured at the year in which the first child is
born.
ln(BW )i = β1age

p
i + αWi + ui, for linear specification in column (2).

Birthweights are measured in ounces.

Source: PSID Family-level Data (1967-2015) combined with Childbirth and
Adoption History (1985-2015).
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Table A.8: Regression Results Including Only One-child Families

ln(Score) ln(Score) ln(Score)

Mother’s age at 1st birth (agepit) 0.009*** 0.006** -0.014**
(0.002) (0.002) (0.006)

Mother’s years of schooling 0.023*** 0.030**
(0.008) (0.015)

Father’s years of schooling 0.019** -0.001
(0.008) (0.014)

Father’s hourly wage 0.007**
(0.003)

Father’s hours worked (per week) 0.005**
(0.002)

Mother’s hourly wage 0.006*
(0.003)

Mother’s hours worked (per week) -0.003
(0.002)

Child’s age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Race dummies Yes Yes Yes
Marital status dummies No No Yes
Paternal age dummies No No Yes
Child’s gender dummy No No Yes
Observations 832 543 206
Adjusted R2 0.86 0.87 0.89

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ln(scorei,t) = β1age
p
i + γZi,t + αWi + ui,t,

The dependent variable is the natural logarithm of Letter-Word Identification Test
score. I only use the data on the first child of mothers.
Child’s age is controlled in all above equations using age-specific dummy variables.
The number of observations is not constant across columns due to missing data on
wages and education levels.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews.
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Table A.9: Regression Results Including All Households (Constant # of Obs.)

ln(Score) ln(Score) ln(Score)

Mother’s age at 1st birth (agep) 0.007*** 0.004* -0.000
(0.002) (0.002) (0.003)

Mother’s years of schooling 0.013** 0.014**
(0.006) (0.006)

Father’s years of schooling 0.016*** 0.014***
(0.005) (0.005)

Father’s hourly wage 0.002
(0.001)

Father’s hours worked (per week) 0.000
(0.001)

Mother’s hourly wage -0.000
(0.002)

Hours worked (per week) -0.001*
(0.001)

Child’s age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Race dummies Yes Yes Yes
Number of children dummies Yes Yes Yes
Marital status dummies No No Yes
Paternal age dummies No No Yes
Child’s gender dummy No No Yes
Observations 762 762 762
Adjusted R2 0.85 0.86 0.86

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ln(scorei,t) = β1age
p
i + γZi,t + αWi + ui,t,

The dependent variable is the natural logarithm of Letter-Word Identification Test
score. I only use the data on the first child of mothers.
Child’s age is controlled in all above equations using age-specific dummy variables.
The number of observations is held constant across columns.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews.
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Table A.10: Regression Results Including All Households

ln(Score) ln(Score) ln(Score)

Mother’s age at 1st birth (agepi ) 0.011*** 0.006*** -0.000
(0.001) (0.001) (0.003)

Mother’s years of schooling 0.014*** 0.014**
(0.004) (0.006)

Father’s years of schooling 0.017*** 0.014***
(0.003) (0.005)

Father’s hourly wage 0.002
(0.001)

Father’s hours worked (per week) 0.000
(0.001)

Mother’s hourly wage -0.000
(0.002)

Hours worked (per week) -0.001*
(0.001)

Child’s age dummies Yes Yes Yes
Year dummies Yes Yes Yes
Race dummies Yes Yes Yes
Number of children dummies Yes Yes Yes
Marital status dummies No No Yes
Paternal age dummies No No Yes
Child’s gender dummy No No Yes
Observations 3077 2117 762
Adjusted R2 0.85 0.86 0.86

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: ln(scorei,t) = β1age
p
i + γZi,t + αWi + ui,t,

The dependent variable is the natural logarithm of Letter-Word Identification Test
score. I only use the data on the first child of mothers.
Child’s age is controlled in all above equations using age-specific dummy variables.
The number of observations is not constant across columns due to missing data on
wages and education levels.

Source: PSID-CDS combined sample from 1997, 2002, 2007, and 2014 interviews.

Table A.11: Percentage of Births Intended at Conception, by Education of Mother

Statistics Percentage
Less than high school diploma 59
High school diploma 60
College degree 83

Source: U.S. Department of Health and Human Services, 2012
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Table A.12: Linear Regression of Work Experience

Years of Work Experience
Potential Experience 0.601***

(0.006)

Years of Schooling 0.651***
(0.013)

1. Family size -0.664***
(0.076)

2. Family size -1.790***
(0.100)

3. Family size -3.121***
(0.145)

4. Family size -4.772***
(0.217)

5. Family size -7.001***
(0.284)

Race dummies Yes
Birth year dummies Yes
Marital status dummies Yes
Demographics Yes
Observations 166076
Adjusted R2 0.64

Robust standard errors clustered at the individual level are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Income levels are measured at the year in which the first child is born.

Source: Source: NLSY79 (1979-2015) combined with NLSY97 (1997-2015).
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Table A.13: Regression Results Using the Simulated Data

(1) (2) (3) (4)
ln(Score) ln(Score) ln(Score) ln(Score)

Mother’s age at 1st birth (agepi ) -0.014*** -0.015*** -0.017*** -0.019***
(0.001) (0.001) (0.001) (0.001)

Mother’s years of schooling 0.025*** 0.025*** 0.031*** 0.029***
(0.002) (0.002) (0.002) (0.002)

Mother’s hourly wage 0.005*** 0.004***
(0.000) (0.000)

Mother’s hours worked (per week) -0.003*** -0.003***
(0.000) (0.000)

Child’s age dummies Yes Yes Yes Yes
Marital status dummies Yes Yes Yes Yes
Family income at age 2 of the child No Yes Yes Yes
Father’s hourly wage No No Yes Yes
Child investments in past periods No No No Yes
Observations 3300 3300 3300 3300
Adjusted R2 0.65 0.65 0.71 0.77

Notes: Ln(score)i,t = β1age
p
i + γZi,t + αWi + ηIi,t′ + ui,t,

where Ii,t′ denotes the vector of past investments.
The dependent variable is the natural logarithm of Letter-Word Identification Test
score.
Child’s age is controlled in all above equations using age-specific dummy variables.

Source: The simulated dataset is used for this exercise.
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Table A.14: Regression of Child IQ at 36 Months on Independent Variables

Child IQ Child IQ Child IQ Child IQ
(1) (2) (3) (4)

Maternal IQ 0.47*** 0.47*** 0.33*** 0.26***
(0.04) (0.04) (0.05) (0.08)

Maternal Age -0.02 -0.24* -0.24*
(0.19) (0.14) (0.14)

Family Income 0.40*** 0.35***
(0.05) (0.05)

Quality of Home 0.60***
(0.14)

Constant 47.70*** 47.97*** 56.60*** 43.04***
(3.19) (4.05) (4.08) (4.18)

Observations 453 453 453 453
R2 0.28 0.28 0.36 0.38

Standard errors are reported in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The sample restricted to preterm low-birth-weight
children.

Source: Bacharach and Baumeister (1998)
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Table A.15: Risk of Down Syndrome and Chromosomal Abnormalities at Live Birth

Maternal age Risk of Risk of Any
at delivery (yr) Down Syndrome Chromosomal Abnormality

20 1
1667

1
526

25 1
1200

1
476

30 1
952

1
385

35 1
378

1
192

40 1
106

1
66

45 1
30

1
21

Source: Heffner (2004)
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A.3 Literature Review on Biological Impacts of Maternal Age

There are many potential negative consequences of postponement of childbirth
on child outcomes, which are documented in previous papers. The risks of Down
syndrome, childhood cancer, and autism increase with the maternal age (Durkin et al.
(2008); Johnson et al. (2009); Yip et al. (2006)). A ten-year increase in maternal age
is associated with a 20% to 30% increase in Autism Spectrum Disorder risk. Also,
the risk of a low birthweight infant increases with maternal age (Restrepo-Méndez
et al. (2015); Goisis and Sigle-Rushton (2014)). Delayed motherhood is associated
with a higher risk of diabetes in the child (Byrnes (2001); Cardwell et al. (2009), after
reviewing 30 observational studies, conclude that, on average, a five-year increase in
maternal age is associated with a 5% to 10% increase in the risk of childhood type
1 diabetes. Older maternal age has also been linked with mental retardation in the
absence of Down syndrome but accompanied by other neurologic conditions such as
epilepsy, cerebral palsy, or birth defects affecting the central nervous system (Tearne
(2015); Yeargin-Allsopp et al. (1995); Drews et al. (1995)).

Postponing childbirth is associated with reduced intelligence in the child (Bacharach
and Baumeister (1998)). Table (A.14) shows the results of Bacharach and Baumeister
(1998). After controlling for the maternal IQ, the family income, and the quality of
home, there is a significant negative association between the maternal age at delivery
and the child’s IQ at 36 months, suggesting that postponing childbirth is associated
with reduced intelligence in the child. Since they directly control for the mother’s IQ
in their regressions, one might be less worry about the role of selection in timing of
births based on the innate ability of mothers.

With respect to the risk of Down syndrome, Table (A.15) in the Supplementary
Appendix shows how the risk of Down syndrome and the risk of any chromosomal
abnormality increase with maternal ages. The statistics are based on the crude fre-
quency of the chromosomal abnormality in live births (see Heffner (2004)).

Figure (A.12) is depicted based on the regression results reported by Durkin et al.
(2008). It shows the positive association between maternal age at delivery and the
risk of autism after controlling for the paternal age, race, birth order, and gender of
the child, mothers’ education level, gestational age, and birthweight. Based on these
results, the risk of autism increases by maternal age at delivery by a sizable amount.
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B.1 Robustness Checks

In this appendix, I use other datasets to investigate whether my regression results
in Table (2.4) are robust to my choice of dataset. I use NLSY79 and NLSY97 as
alternative datasets and follow a similar approach presented in section 3.1. However,
using these mentioned alternative datasets, I take advantage of having more precise
information on the work experience of individuals and their cognitive ability as well.
The latter is because I observe the AFQT score for each individual. Hence, the
regression used for the analysis using these alternative datasets is as follows:

log(wit) = β0 + β1AFQTi + β2expit + β3exp
2
it + β4dit + β5samei + εit, (B.1)

where wit denotes hourly wage of individual i at at time t, AFQTi denotes the in-
dividual’s AFQT percentile score, expit is the years of work experience1, dit is the
education level measured as completed years of schooling, samei is an indicator vari-
able which is one if the first two children are of the same gender, and zero otherwise,
and εit is a zero conditional mean error term, which is assumed to be i.i.d and nor-
mally distributed over individuals and assumed to be time-invariant. I control for
year fixed effects, race, etc by adding dummy variables to the regression specified
above. The coefficient of interest is β5, which captures the effect of children with the
same sex on their mother’s wages.

Results are presented in Tables (B.14) through (B.17) when I use different criteria
for the sample selection procedure.

The results are less robust compared to my original analysis using PSID data. I
conjecture that this is due to the sample size issue as the number of observations is
considerably lower compared to the baseline dataset, and this makes my estimate less
precise. However, in general, the results provide some evidence for the effects on the
mother’s hourly wage of the gender mix of her children.

1It is calculated as the number of years (since age 18) in which the individual has worked at least
for 1500 hours.
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B.2 Extra Figures

Figure B.1: Gender Mix of Children and Observer Fertility Rate over Time
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Notes: This figure reports the marginal effect of having two children of the same gender on future
fertility based on ex post fertility outcomes.
Notes: A probit model, similar to column 2 of Table (2.2) has been used to estimate the marginal
effect of having same-gender children on future fertility.
Notes: A probit model, similar to column 2 of Table (2.2) has been used to estimate the marginal
effect of having same-gender children on future fertility.
Notes: In order to estimate the marginal effect, for each year, I use the fertility outcomes of all
women above 40 years old in that year.
Notes: The abrupt increase in 1997 might be due to the refresher sample added to the PSID data
set in 1997.
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Figure B.2: Family Size Distribution in the US

Source: Livingston (2015)
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Figure B.3: Impact of Arrival of a Third Child on Mother’s Labor Income

Third Childbirth
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Notes: This figure shows the difference between the control group and the treatment group in Figure
(2.5) 5 years before the third childbirth, and 10 years after.
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Figure B.4: Impact of Arrival of a Third Child on Mother’s Participation

Third Childbirth
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Notes: This figure shows the difference between the control group and the treatment group in Figure
(2.6) 5 years before the third childbirth, and 10 years after.
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Figure B.5: Impact of Arrival of a Third Child on Mother’s Work Hours

Third Childbirth

-1
0

-5
0

5
D

iff
er

en
ce

 in
 H

ou
rs

 w
or

ke
d 

(p
er

 w
ee

k)

-5 0 5 10 15
Event Time (years)

Impact of Third Child on Hours Worked

Notes: This figure shows the difference between the control group and the treatment group in Figure
(2.7) 5 years before the third childbirth, and 10 years after.
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Figure B.6: Impact of Arrival of a Third Child on Mother’s Wage Rate
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Notes: This figure shows the difference between the control group and the treatment group in Figure
(2.8) 5 years before the third childbirth, and 10 years after.
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B.3 Extra Tables

Table B.1: The Gender Mix of Children and (Ex Post) Fertility Behavior

Third child Third child Third child
(OLS) (Probit) (Logit)

(1) (2) (3)
Two boys 0.05*** 0.14*** 0.22***

(0.01) (0.04) (0.06)

Two girls 0.06*** 0.15*** 0.25***
(0.01) (0.04) (0.06)

Constant 0.81*** 1.09** 1.89*
(0.09) (0.53) (1.04)

Observations 7601 7601 7601
Adjusted R2 0.04 0.03 0.03
Race Y Y Y
Education Level Y Y Y

Robust standard errors clustered at the individual level are reported in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Sample have been restricted to individuals older than 40 years of old at 2014.
I also restrict the analysis to the subsample of women who have two children.
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Table B.2: The Gender Mix of Children and (Ex Ante) Fertility Decisions

Third child Third child Third child
(OLS) (Probit) (Logit)

(1) (2) (3)
Two boys 0.08** 0.35** 0.63**

(0.03) (0.14) (0.26)

Two girls 0.07** 0.34** 0.59**
(0.04) (0.15) (0.27)

Constant 0.03 -2.62*** -4.88***
(0.09) (0.61) (1.32)

Observations 1249 1249 1249
Adjusted R2 0.11 0.15 0.15

Age Y Y Y
Race Y Y Y
Education Y Y Y
Year Y Y Y

Robust standard errors clustered at the individual level are reported in parentheses.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The question is asked from females in PSID between 1969-1972 & 1976.
Dependent variables take 1 if the agent expects more children, 0 otherwise.
The Sample is restricted to women between age 21 and 40 with 2 children.
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Table B.3: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.08*** 0.08*** 0.07*** 0.07*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.01)

Potential experience square -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.09*** 0.09*** 0.06*** 0.06*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same sex -0.04** -0.04** -0.04** -0.04** -0.04**
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 1.12*** 0.91*** 1.56*** 1.63*** 1.43***
(0.24) (0.26) (0.28) (0.28) (0.31)

Observations 4871 4753 4561 4561 4540
Adjusted R2 0.18 0.23 0.30 0.31 0.33

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample is restricted to women in PSID between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.4: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.08*** 0.08*** 0.07*** 0.07*** 0.07***
(0.01) (0.02) (0.01) (0.01) (0.01)

Potential experience square -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.09*** 0.09*** 0.06*** 0.06*** 0.07***
(0.01) (0.01) (0.01) (0.01) (0.01)

Two boys -0.04* -0.04* -0.04* -0.04* -0.04**
(0.02) (0.02) (0.02) (0.02) (0.02)

Two girls -0.04 -0.04* -0.05** -0.04** -0.05**
(0.03) (0.02) (0.02) (0.02) (0.02)

Constant 1.09*** 0.91*** 1.56*** 1.62*** 1.42***
(0.25) (0.27) (0.29) (0.29) (0.32)

Observations 4871 4753 4561 4561 4540
Adjusted R2 0.18 0.23 0.30 0.31 0.33

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample is restricted to women in PSID between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.5: Mincerian Wage Equation- OLS Results (A Narrower Range of Ages)

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.09*** 0.08*** 0.07*** 0.07*** 0.09***
(0.02) (0.02) (0.02) (0.02) (0.02)

Potential experience square -0.00*** -0.00*** -0.00*** -0.00*** -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.06*** 0.07*** 0.04** 0.04*** 0.04***
(0.01) (0.02) (0.01) (0.01) (0.02)

Same sex -0.07*** -0.08*** -0.07*** -0.07*** -0.06***
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 1.56*** 1.18*** 1.77*** 1.91*** 1.85***
(0.31) (0.32) (0.36) (0.36) (0.40)

Observations 2551 2489 2368 2368 2633
Adjusted R2 0.15 0.21 0.29 0.29 0.30

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses
The potential experience is defined as age minus years of schooling minus six.
The Sample restricted to women in PSID between age 21 and 35.
I also restrict the analysis to the subsample of women who already have two children.
Sample is restricted to two years after the second childbirth and before a third childbirth.
Sample restricted to women whose education levels are higher than high school.
Sample restricted to individuals who work at least 20 hours per week.
Robust standard errors clustered at the individual level are reported in parentheses.
* p < .1, ** p < .05, *** p < .01
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Table B.6: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience 0.06*** 0.06*** 0.05*** 0.05*** 0.04***
(0.01) (0.01) (0.01) (0.01) (0.01)

Potential experience square -0.00*** -0.00*** -0.00** -0.00** -0.00*
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.10*** 0.10*** 0.07*** 0.07*** 0.06***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same sex -0.04** -0.05** -0.04** -0.04** -0.05**
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 0.92*** 0.50*** 0.89*** 1.03*** 1.11***
(0.18) (0.19) (0.26) (0.27) (0.28)

Observations 3732 3640 3444 3444 3422
Adjusted R2 0.14 0.19 0.27 0.27 0.29

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample restricted to women in PSID between age 21 and 35.

I also restrict the analysis to the subsample of women who already have two children.

Sample includes observations after a third child while controlling for the number of children.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.7: Mincerian Wage Equation- A Robustness Check

Wage Wage Wage Wage Wage
(1) (2) (3) (4) (5)

Potential experience 1.63*** 1.49*** 1.41*** 1.40*** 1.24***
(0.25) (0.25) (0.23) (0.23) (0.23)

Potential experience square -0.07*** -0.06*** -0.07*** -0.06*** -0.05***
(0.01) (0.01) (0.01) (0.01) (0.01)

Years of schooling 1.43*** 1.45*** 1.03*** 1.07*** 1.05***
(0.16) (0.17) (0.18) (0.18) (0.21)

Same sex -0.71** -0.71** -0.72** -0.69** -0.80**
(0.35) (0.34) (0.32) (0.32) (0.32)

Constant -10.06*** -13.06*** -2.83 -1.42 -2.54
(3.35) (3.54) (4.65) (4.80) (5.43)

Observations 4871 4753 4561 4561 4540
Adjusted R2 0.18 0.22 0.28 0.29 0.33

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample restricted to women in PSID between age 21 and 35.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.8: Mincerian Wage Equation- OLS Results (Males)

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Age 0.10*** 0.09*** 0.09*** 0.11*** 0.07*
(0.03) (0.03) (0.03) (0.03) (0.03)

Age square -0.00*** -0.00** -0.00** -0.00*** -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.07*** 0.07*** 0.05*** 0.05*** 0.04***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same gender -0.00 -0.00 -0.00 -0.00 -0.00
(0.02) (0.02) (0.02) (0.02) (0.02)

Constant 0.02 0.22 0.76 0.73 1.40**
(0.49) (0.51) (0.57) (0.59) (0.65)

Observations 4535 4391 4137 3829 3826
Adjusted R2 0.13 0.16 0.19 0.21 0.24

Race Y Y Y Y Y
Year Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to males in PSID between age 21 and 40.

I also restrict the analysis to the subsample of males who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to men whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.9: OLS Mincerian Regressions - When Fertility Period Completed

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

Potential experience -0.01 0.00 -0.01 0.01 0.01
(0.03) (0.03) (0.03) (0.03) (0.03)

Potential experience square 0.00 0.00 0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.14*** 0.14*** 0.11*** 0.11*** 0.10***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same sex 0.04 0.03 0.03 0.03 0.03
(0.03) (0.03) (0.02) (0.02) (0.02)

Constant 0.55 0.28 0.67 0.51 1.31**
(0.54) (0.56) (0.55) (0.57) (0.56)

Observations 6098 5934 5696 5696 5656
Adjusted R2 0.14 0.18 0.26 0.28 0.30

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Family size Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The potential experience is defined as age minus years of schooling minus six.

The Sample restricted to women in PSID between older than 40 years of old.

I also restrict the analysis to the subsample of women who have two children.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.10: Probit Model of Labor Force Participation

LFP LFP LFP LFP
(1) (2) (3) (4)

Age -0.02 -0.04 -0.15 -0.17
(0.07) (0.07) (0.12) (0.14)

Age square 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Years of schooling 0.03 0.05** 0.01 0.03
(0.02) (0.02) (0.04) (0.04)

Same gender -0.08 -0.11* -0.04 -0.00
(0.06) (0.06) (0.07) (0.07)

Constant -0.13 -0.18 3.95* 4.10*
(1.11) (1.19) (2.09) (2.33)

Observations 8692 8420 6073 5969

Race Y Y Y Y
Year Y Y Y Y
Family size Y Y Y Y
State N Y Y Y
Occupation N N Y Y
Age at births N N N Y

Standard errors in parentheses

The Sample restricted to women in PSID between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a 3rd one.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.11: OLS Regressions of Hours Worked (per week)

Hours Hours Hours Hours
(1) (2) (3) (4)

Age -0.03 0.01 -0.06 0.19
(0.41) (0.43) (0.42) (0.46)

Age square 0.00 -0.00 0.00 -0.00
(0.01) (0.01) (0.01) (0.01)

Years of schooling -0.23 -0.28** -0.33** -0.16
(0.14) (0.14) (0.15) (0.15)

Same gender 0.45 0.39 0.23 0.30
(0.32) (0.32) (0.31) (0.31)

Constant 36.20*** 37.28*** 40.58*** 31.88***
(7.67) (7.52) (7.65) (7.93)

Observations 5557 5424 5153 5131
Adjusted R2 0.03 0.05 0.07 0.08

Race Y Y Y Y
Year Y Y Y Y
Family size Y Y Y Y
State N Y Y Y
Occupation N N Y Y
Age at births N N N Y

Standard errors in parentheses

The Sample restricted to women in PSID between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.12: OLS Regression of Time Spent with Children (Hours per week)

Hours Hours Hours Hours Hours
(1) (2) (3) (4) (5)

Age 7.01 6.04 3.89 2.56 -4.38
(4.26) (4.57) (8.53) (9.35) (35.04)

Age square -0.09 -0.08 -0.04 -0.02 0.19
(0.06) (0.07) (0.12) (0.13) (0.27)

Years of schooling 0.54 0.68 -0.26 0.27 1.21
(0.85) (0.93) (2.01) (2.26) (2.62)

Same gender 0.12 0.46 1.62 0.67 -0.98
(1.83) (1.98) (4.86) (5.45) (9.31)

Constant -96.48 -83.49 -36.52 -20.77 7.26
(72.81) (79.39) (147.43) (163.75) (713.93)

Observations 373 363 132 125 125
Adjusted R2 0.13 0.11 -0.17 -0.30 -0.07

Race Y Y Y Y Y
Year Y Y Y Y Y
Age of Child Y Y Y Y Y
State N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to women in PSID between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than high school.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.13: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

AFQT 0.01*** 0.01*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Experience 0.05** 0.04* 0.05** 0.06** 0.07***
(0.02) (0.02) (0.02) (0.02) (0.02)

Experience square -0.00 -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.06*** 0.06*** 0.09*** 0.09*** 0.08***
(0.02) (0.02) (0.02) (0.02) (0.02)

Same gender -0.04 -0.06 -0.04 -0.03 -0.04
(0.04) (0.05) (0.04) (0.04) (0.04)

Constant 2.05*** 2.72*** 2.05*** 1.85*** 1.58***
(0.39) (0.50) (0.62) (0.61) (0.56)

Observations 1152 960 951 951 947
Adjusted R2 0.19 0.21 0.32 0.34 0.39

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Region N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to women in NLSY79 and NLSY97 between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than 15 years of schooling.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.14: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

AFQT 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Experience 0.04*** 0.03** 0.04** 0.05*** 0.05***
(0.01) (0.02) (0.01) (0.01) (0.01)

Experience square -0.00 -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.07*** 0.07*** 0.09*** 0.09*** 0.09***
(0.01) (0.01) (0.01) (0.01) (0.01)

Same gender -0.02 -0.03 -0.02 -0.02 -0.01
(0.03) (0.04) (0.03) (0.03) (0.03)

Constant 1.20*** 1.25*** 1.32*** 1.33*** 0.89**
(0.16) (0.21) (0.29) (0.30) (0.36)

Observations 1845 1570 1549 1549 1544
Adjusted R2 0.22 0.24 0.35 0.36 0.39

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Region N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to women in NLSY79 and NLSY97 between age 21 and 40.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than 14 years of schooling.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01

199



Table B.15: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

AFQT 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Experience 0.02* 0.02** 0.03** 0.03*** 0.03***
(0.01) (0.01) (0.01) (0.01) (0.01)

Experience square 0.00 0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.06*** 0.06*** 0.07*** 0.07*** 0.07***
(0.01) (0.02) (0.02) (0.02) (0.02)

Same gender -0.06 -0.08* -0.07* -0.07* -0.09**
(0.04) (0.04) (0.04) (0.04) (0.04)

Constant 1.83*** 2.43*** 2.39*** 2.36*** 1.84***
(0.36) (0.38) (0.50) (0.52) (0.51)

Observations 2331 2134 2104 2104 2100
Adjusted R2 0.21 0.22 0.33 0.34 0.38

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Region N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to women in NLSY79 and NLSY97 between age 21 and 50.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than 15 years of schooling.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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Table B.16: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

AFQT 0.00*** 0.00*** 0.00** 0.00** 0.00**
(0.00) (0.00) (0.00) (0.00) (0.00)

Experience 0.02 0.02 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

Experience square 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.07*** 0.07*** 0.07*** 0.07*** 0.07***
(0.02) (0.02) (0.02) (0.02) (0.02)

Same gender -0.08* -0.09* -0.11*** -0.11*** -0.13***
(0.05) (0.05) (0.04) (0.04) (0.04)

Constant 1.22*** 1.31*** 2.35*** 2.52*** 1.80***
(0.35) (0.34) (0.36) (0.41) (0.48)

Observations 1607 1600 1572 1572 1572
Adjusted R2 0.16 0.19 0.34 0.35 0.40

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Region N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses
The Sample restricted to women in NLSY79 and NLSY97 between age 40 and 60.
I also restrict the analysis to the subsample of women who already have two children.
Sample is restricted to two years after the second childbirth and before a third childbirth.
Sample restricted to women whose education levels are higher than 15 years of schooling.
Sample restricted to individuals who work at least 20 hours per week.
Robust standard errors clustered at the individual level are reported in parentheses.
* p < .1, ** p < .05, *** p < .01
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Table B.17: Mincerian Wage Equation- OLS Results

Log(w) Log(w) Log(w) Log(w) Log(w)
(1) (2) (3) (4) (5)

AFQT 0.00*** 0.00*** 0.00*** 0.00*** 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Experience 0.02** 0.03** 0.03** 0.03*** 0.03***
(0.01) (0.01) (0.01) (0.01) (0.01)

Experience square 0.00 0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Years of schooling 0.06*** 0.06*** 0.07*** 0.07*** 0.07***
(0.02) (0.02) (0.01) (0.01) (0.01)

Same gender -0.06 -0.07* -0.07* -0.07* -0.09**
(0.04) (0.04) (0.04) (0.04) (0.04)

Constant 1.64*** 2.21*** 2.30*** 2.31*** 1.83***
(0.39) (0.40) (0.51) (0.55) (0.52)

Observations 2660 2461 2425 2425 2421
Adjusted R2 0.20 0.21 0.33 0.33 0.38

Age Y Y Y Y Y
Race Y Y Y Y Y
Year Y Y Y Y Y
Region N Y Y Y Y
Occupation N N Y Y Y
Hours worked N N N Y Y
Age at births N N N N Y

Standard errors in parentheses

The Sample restricted to women in NLSY79 and NLSY97 between age 21 and 60.

I also restrict the analysis to the subsample of women who already have two children.

Sample is restricted to two years after the second childbirth and before a third childbirth.

Sample restricted to women whose education levels are higher than 15 years of schooling.

Sample restricted to individuals who work at least 20 hours per week.

Robust standard errors clustered at the individual level are reported in parentheses.

* p < .1, ** p < .05, *** p < .01
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